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Abstract 

The basic theory of fibrations is generalized to a context in which 

fibres, and maps on fibres, a re constrained to lie in any preassigned cate

gory of spaces f . Then axioms a re placed on } to allow the development 

of a theory of associated principal fibrations and, under several choices of 

additional hypotheses on j , a classification theorem is proven for such 

fibrations. The same proof applies to the classification of bundles and 

generalizes to give a classification theorem for fibrations or bundles with 

additional s t ructure , such as a reduction of the s t ructural monoid, or a 

trivialization with respect to a coa r se r type of fibration, or an orientation 

with respect to an extraordinary cohomology theory. The proofs are con

structive and are based on use of the two-sided geometric bar construction, 

the topological and homological propert ies of which a re analyzed in detail. 

Related topics studied include the classification of fibrations by t ranspor t s , 

the Eilenberg-Moore and Serre spectral sequences, and the group completion 

theorem. 
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Introduction 

"The theory of fibrations is thus fairly complete and well worked 

out on a conceptual level; the rest should be applications and computations." 

So ended Stasheff's 1970 survey article [35] on the classification of fibrations. 

At the time, the conclusion seemed not unreasonable. The basic 

outlines of a complete theory were visible, and this theory did seem ade

quate for most applications. Even in Stasheff's very clear summary, the 

theory appeared technically to be extremely complicated, but this was felt 

to be intrinsic to the subject,, 

However, recent developments make this sanguine view of the ade

quacy of the theory untenable and, in the process of obtaining a theory which 

is adequate for the new applications, we shall also see how to avoid most of 

the previous technical complications. 

A brief account of the existing classification theorems will be 

necessary in order to place our contribution in perspective. 

The simplest and most conceptual method of classification is based 

on the observation that if £T is a small topological category and if a space 

<$£•» is appropriately constructed from the associated simplicial space 

(technically, by use of face but not degeneracy operators in forming the 

geometric realization), then *$3£T classifies the functor defined on para-

compact spaces X as the quotient obtained from the cohomology set 

H (X; £f) by identifying homotopic cohomology c lasses . This method is due 

v 
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Introduction 

to Segal [30], and an exposition has also been given by Stasheff [2, p. 86-94], 

£ £ is a generalization of Milnor's classifying space for topological groups 

[24], and this method of classification is a generalization of one found for 

bundles by torn Dieck [6], It is particularly appropriate to the study of 

foliations via the classification of Haefliger s t ructures (e .g . [2]). While 

this approach is very general, it is only useful when the s t ructures one 

wishes to study are obtained by patching together local coordinates by means 

of cocycles with values in some category £, . In practice, this means that 

the morphisms of C, must at least be homeomorphisms, so that £ is a 

topological groupoid, and this approach is inapplicable to the classification 

of fibrations or of bundles with globally defined additional s t ructure . 

A second conceptual method of classification is based on appeal to 

Brown's representabili ty theorem [4]. It has two defects. F i r s t , as applied 

to fibrations, there is no completely rigorous treatment in the l i tera ture . 

The point is that if one wishes to represent a set-valued functor, then one 

must first verify that one's proposed functor does indeed take well-defined 

sets as values. This is by no means obvious for the functors of interest in 

the theory of fibrations, and this set- theoret ical question has been totally 

ignored in the l i te ra ture . Second, and probably more fundamental, the basic 

purpose of a classification theorem is to enable one to calculate the r ep re 

sented functor, or at least to calculate invariants of the s tructures under 

study. A space constructed by appeal to Brown's theorem can generally be 

vi 
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Introduction 

studied only by reverting to analysis of the originally given functor and is 

therefore of very limited use for purposes of computation. 

The bulk of Stasheff's survey is devoted to the various alternative 

methods of classification, and we shall not give references here . In con

t ras t to the general methods described in the previous two paragraphs, 

these alternative methods appear to be specific to part icular types of fibra-

tion, or at least to require considerable reworking to be made applicable to 

varying types. Technically, with one exception, each such method involves 

at least one of the theory of simplicial sets , a combinatorial theory of 

cellular monoids, careful local pasting arguments, or the use of higher 

homotopies. The exception is Stasheff's original proof [3 2] of the classifi

cation theorem for fibrations with fibres of the homotopy type of a finite 

CW-complex. 

Why are these results not adequate ? F i r s t , fibrations with 

localized or completed spheres as fibres play a key role in Sullivan's 

beautiful proof of the Adams conjecture [39]. Such spaces are not finite 

CW-complexes, and one source of technical difficulty in Sullivan's argument 

is the absence of a good model for the relevant classifying spaces. Our 

Corollary 9. 5 will rectify this, and we shall return to this point in [21 ] 

where a. new theory of localization and completion of topological spaces will 

be given. 

Second, spherical fibrations and bundles oriented with respect to an 

extraordinary cohomology theory are central to many applications, and there 

v i i 
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Introduction 

is no proof of a classification theorem for such structures in the l i te ra ture . 

As we shall show in [19] and [ZO], Theorem 11.1 implies such a classifica

tion tneorem, and its use allows easy derivations of some of the results of 

Adams on vector bundles and of Sullivan on topological sphere bundles. 

Third, for the study of orientations, it is very convenient to have 

a variant of Stasheff's theorem in which fibrations are given with a c r o s s -

section which is a cofibration. Corollary 9.8 will give such a result . 

Beyond these explicit applications, there is an evident need for a 

single coherent theory of fibrations and their classification which will 

simultaneously yield the various classification theorems desired in practice 

as special cases of one general result , or at least as consequences of one 

general pattern of proof. Moreover, such a theory should if possible avoid 

techniques, such as those listed a few paragraphs ear l ie r , which, however 

great their interest within the theory of fibrations, are irrelevant to the 

actual computations based on the theory. Needless to say, our theory does 

meet these c r i te r ia . 

We should say a bit more about two of the techniques we avoid. 

Much has been written about the inevitability of the appearance of higher 

homotopies in any complete theory of fibrations, and we freely admit that 

they are indeed implicitly present . Nevertheless, at each place where it is 

generally felt they ought to appear, we shall find that some conceptual tr ick 

leads to an equivalent solution with no such notion visible. Thus we shall 

classify principal G-fibrations for a rb i t ra ry grouplike topological monoids 

v i i i 
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Introduction 

G in Corollary 9. 4, we shall show the independence of the choice of fibre 

in the classification of fibrations with fibres of a given homotopy type in 

section 12, and we shall classify such fibrations by use of associative t r a n s 

ports (which are actions on fibres by the Moore loop space of the base) in 

section 14. In each case , the actual details are very much simpler than 

would be the case if higher homotopies were explicitly introduced. 

Similarly, we have chosen to work with Hurewicz, rather than with 

Dold (or weak) fibrations, throughout We freely admit that Dold fibrations 

have important technical advantages and are implicit in the notion of fibre 

homotopy equivalence. However, since the local pasting arguments for 

which they are essential are unnecessary in our work, their use would 

introduce considerable additional complexity while adding nothing of signifi

cance to our theory. Although the most important results concerning the 

local nature of fibrations are valid in our general context, local considera

tions will only play a role in those instances of our classification theorems 

which involve bundle theory. 

The paper consists of fifteen sections, with logical interrelat ion

ships as indicated in the following chart : 
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Introduction 

The first three sections are devoted to a redevelopment of the 

theory of fibrations, including the basic theorems of Dold [7 ,3 . 3 and 6.3] 

and Hurewicz [ l l ] , for fibrations with fibres constrained to lie in any p re -

assigned category j . Technically, the main point here is that the section 

extension property which Dold takes as fundamental does not generalize to 

our context, hence we have been forced to find alternative proofs. While 

these are still based on the ideas of Dold, they a re shorter and may seem 

simpler even in the classical case . 

The special properties required of Jr in order to classify 

j - -fibrations are discussed in sections 4 and 5, and examples of ca te

gories which satisfy these properties are given in section 6. The relevant 

propert ies ensure that associated principal fibrations can be constructed 

and that quasifibrations can be replaced by fibrations; for the lat ter , the 

point of interest is that the standard procedure is inadequate for the study 

of fibrations with cross-sec t ion . 

In sections 7 and 8, we summarize the topological properties of 

the two-sided geometric bar construction. Most of the proofs have already 

been given, in a more general setting, in [17, §9-11 (which are independent 

of §1-8)] or [18, Appendix], This construction is a straightforward 

generalization, implicit in Stasheff's paper [34], of the standard Milgram-

Steenrod [23,38] classifying space functor. The generalization, despite its 

simplicity, t ransforms the bar construction from an invariant of topological 

monoids to an extremely flexible tool in the theory of fibrations and their 

classification. 
x 
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Introduction 

We reach our basic classification theorems for fibrations and 

bundles in section 9. The method of proof is to write down an explicit uni

ve r sa l fibration (or bundle) and to verify that it classifies by explicitly con

structing a classifying map for any given fibration (or bundle). In section 

12, we generalize the standard Segal [30] classifying space functor on small 

topological categories to a two-sided bar construction (technically, using 

both face and degeneracy operators) . This generalization allows us to r e 

work our basic theory, in favorable cases , so as not to give any particular 

choice of fibre a privileged role. 

A general notion of additional global s tructure on a fibration or 

bundle is introduced in section 10. Special cases include reductions of the 

s tructural monoid, trivializations with respect to a coarse r type of fibration, 

and orientations (of spherical fibrations or bundles) with respect to an extra

ordinary cohomology theory. We demonstrate in section 11 that the proof of 

our classification theorems directly generalizes to a proof of classification 

theorems for such fibrations or bundles with additional s t ructure . 

The last three sections are pr imari ly concerned with homological 

propert ies of the geometric bar construction. In section 13, after 

generalizing results of Milgram [23] and Steenrod [38] concerning the cellu

la r propert ies of classifying spaces, we obtain a technical result (Theorem 

13.9) which relates the two-sided algebraic and geometric bar constructions 

by mixed use of singular and cellular chain groups. This result , which 

should be regarded as a generalization of a special case of a result of 

Stasheff [31], gives the Eilenberg-Moore and Rothenberg-Steenrod spectral 
xi 
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Introduction 

sequences [26, 29], with their products, and shows that the two are in fact the 

same. In section 14, we introduce the notion of a t ransport , use it to prove 

a classification theorem for fibrations (suggested by a result due to Stasheff 

[33]), and combine it with Theorem 13.9 to give a novel derivation of the 

Ser re spectral sequence, with its products. Finally, in section 15, we give 

a brief proof of the "group completion theorem", due to Bar ra t t -Pr iddy [l] 

and Quillen [28], which analyzes the homological behavior of the natural map 

G -* QBG for appropriate non-connected topological monoids G. This result 

plays a fundamental role in the theory of infinite loop spaces and its applica

tion to algebraic K-theory [18]. 

Added, December, 1979. Pa r t s of sections 5,6, and 9 admit some im

provement, and several papers applying and extending this theory have 

appeared in the interim. These developments are briefly summarized at the 

end of the paper, beginning on page 99. 

Xll 
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1. ff-spaces and J- -maps 

We take the position that types of fibrations ought to be specified by 

assigning structure to the fibres and that this is most sensibly done by 

specifying a category in which the fibres must lie. We here develop a f rame

work in which to define such fibrations and generalize to this framework a 

theorem of Dold [7 , 3. 3] to the effect that a local fibre homotopy equivalence 

is a fibre homotopy equivalence. 

We shall work in the category IX of compactly generated weak Haus-

dorff spaces [37; 22, §2]; thus products, function spaces, etc . are always to 

be given the compactly generated topology. Throughout the first five sections 

3 will denote a category with a faithful "underlying space" functor y -*• LL 

Thus each object of J* is a space and the set ^ ( F , F ' ) of morphisms 

F -* F ' in $ is a subset of n X ( F , F ' ) . We agree either to insist that Jf-

contain with each F € j ~ the spaces FX * and * X F and the evident homeo-

morphisms between these spaces and F or to identify these spaces with F , 

where * is any one-point space. 

Definition 1 .1 . An ^--space is a map TT; E -* B in U* such that 

TT~ (b) € jr for each b € B; B and E are the base space and total space 

oi IT. An $ -map (g, f); v -*• IT is a commutative diagram 

LJ y j ^ 

1 . 1" 
B 
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J. P . May 

in li such that g: v (a) -• IT (f(a)) is in J for each a € A; if A = B 

and f is the identity map, then g is said to be an ^ -map over B. An 

7 -homotopy is an $. _ m a p (H, h) of the form 

D X I => E 

v X 1 

A X I - > B 

Thus it is required that each (H ,h ) be an y -map, H (d) = H(d, s)j if 

A = B and h (b) = b, then H is said to be an jh-homotopy over B. An 

S~ -map g:D -*• E over B is an ^--homotopy equivalence if there is an 

X -map g ' :E -*- D over B such that g'g and gg1 a re .9 -homotopic over 

B to the respective identity maps . An ^ -space TT: E -*• B is said to be 

9 -homotopy trivial if it is y~ -homotopy equivalent to the projection 

T T . : B X F -*• B for some F € '± , 

1 -̂  

By restr ict ion to one-point base spaces, the definition specializes 

to define £f -homotopies and ^ -homotopy equivalences between spaces in 

We can form induced j j -spaces precisely as usual. The following 

lemma fixes notations. 

Lemma 1. 2. Let IT: E -•* B be an ~j- -space and let f: A -*• B be a 

map in ]^y . Define a space f E and maps f TT: f E -*• A and f: f E -*• E by 

f*E = { (a, e) | f(a) = ir(e)} C A X E , f*Tr(a, e) = a , and ?(a, e) = e. 
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Classifying spaces and fibrations 3 

Then f IT is an y -space and (f, f) is an ^ - m a p . Moreover, if 

v : D -+ A is an _4 -space and (g,f): v -»* TT is an Jf -map, then the unique 

map g":D -*• f E which makes the following diagram commutative, namely 

g (d) = (v(d), g(d)), is an J- -map over A: 

> B 

The remainder of this section will be devoted to the promised 

generalization of Dold's theorem. We assume given y- -spaces v : D -*• B 

and HI E -*- B and an j - -map g:D -*- E over B9 We require some nota

tions and a lemma. 

Notations 1.3. Let G denote the subspace of D X E consisting of 

all pairs (d, 6 ) such that g(d) = 8(0) and E (I) C TT ( v (d)). Define 

maps ft;G-*D and p : G -* E for s e l by or (d ,£ )=d and (3 (d, B.) = £(s). 

By an J -section of g, we understand a map <r : E -*• G such that P ° cr = 1 

-1 -1 

on E and such that, for all b € B, each of the maps a cr t TT (b) -* V (b) and 

P o cr i TT (b) -*- TT (b) is in ± . Thus an ^ - s e c t i o n of g consists of an 

j - -map g1 = aocrtE -*- D over B together with an J/ -homotopy H = P o cr 

over B from gg' to the identity map of E. 

Licensed to Univ of Rochester.  Prepared on Mon Jul 27 14:50:18 EDT 2015for download from IP 128.151.13.18.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



4 J. P . May 

If A is a subspace of B, we let E ,G , e t c . , denote the part of 
A A 

E, G, e t c . , over A; explicitly, G = { (d,e) | v(d) € A} C G. 

A 

Lemma 1. 4. Assume that g is an 3 -homotopy equivalence. Let 

0:B -* I be a map, let A = jT (l) , and let V = 0~ (0, 1]. Then, for any 

J- -section cr : E -*- G of g, there exists an -̂  -section p : E -*• G of g 

such that p = o- on E M . 
A 

Proof. Let g ' :E -+ D be an ZJ -homotopy inverse of g and let 
H: gg1 ~ i and H':g fg ~ 1 be J- -homotopies over B. Define an L JD 

jr -section r : E -+ G of g by -r(e) = (g'(e), H(e)), where H(e)(s) = H(e, s) . 

Define a homotopy L : G X I - * G from the composite T o 8 to the identity 

map of G by the formula 

(g'£(l-2t) , H £ ( l - 2t)) if t < 1/2 

L((d ,£) , t ) = 

(H'(d, 2 t - l ) , J (d ,£ ,2 t -1 ) ) if 1/2 ^ t 

where J(d, £, t)(s) = jk(s, t) for some chosen retraction 

k : i X I •* ( I X 0 ) U ( 0 X I ) U ( I X 1 ) 

and where j(s, 0) = H(g (0), s), j(0, t) = gH«(d, t), and j(s , 1) = £(s). 

The desired J r -section p of g is then defined by the formula 

r(e) if 0-ir(e) < l / 2 

P(e) = J 

L(cr(e), 20-ir(e)-l) if l /2 < (̂ -ir(e) 
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Classifying spaces and fibrations 5 

Recall that a cover L of a space B is said to be numerable if it 

is locally finite and if for each U € £ the re is a map \ : B -*• I such 

that U = X (0, 1]. Recall too that a space B € LL is paracompact if 

and only if every open cover of B admits a numerable refinement and that 

any CW-complex is paracompact. 

Theorem 1. 5. Let v ; D -* B and ir: E -* B be ^ - s p a c e s . Let 

g,:D -*• E be an j -map over B such that g res t r i c t s to an J- -homotopy 

equivalence over each set of a numerable cover £" of B. Then g is an 

£ -homotopy equivalence. 

Proof. It suffices to construct an ^ - s e c t i o n (r : E -*- G of g. 

Indeed, this will give a right $• -homotopy inverse g1 of g. g1 will r e 

str ict to an ~r -homotopy equivalence over each U € £T since if f is an 

J- -homotopy inverse to g , then f ^ f g g1 ^ g! (where ^ means 

"is 3- -homotopic to"). Therefore g' will itself have a right $- -homotopy 

inverse g", and g ^ gg'g" - g". For U e £f , choose a map \ • B -*»I 
_\ 

such that U= XTT(0,ll. For a union V= I I U. of sets U. € £f define U W
T i 1 ^ 

j € J J J 
\ = 5 2 X u ' S ° t h a t V = "fxl XyW > 0 } . We assume that £ is 

J e J J 

irredundant, and then V C W if and only if X < \ . Let OL denote the 

set of pairs (V,or ) such that V is a union of sets in £* and (r: E ~* G 

is an jf -section of g. Par t ia l order CL by (V,o-) < (W, T) if V C W and 

o-(e) = T(e) for all e c ir" V such that X -rr(e) = Xwir(e) (thus, or (e) / -r(e) 
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6 J. P . May 

implies ir(e) € U for some Uc t^> such that U C W but U c£ V). Any 

totally ordered subset {(V, , cr) ] k € K} of (X has the upper bound 

(V, cr) defined by V = l^J V and cr(e) = cr (e) for e € TT V and all 
keK k k 

sufficiently large k. Here cr is well-defined and continuous and 

(V, cr) > (V , c )̂ for all k e K since if b € V and V(b) denotes the union 

of those Ue £T such that b e U C V, then V(b) C V , . for some k(b) e K 

(because C* i s locally finite) and therefore cr = cr . * over V(b) for all 

k > k(b). By Zorn's lemma, (X contains a maximal element (V, cr). We 

claim that V s B . Suppose not; choose U € £ such that U <fi V and 

let W = U U V. Define fii W - I by 

rf(b) 

,1 if Xn(b) < Xy(b) (hence Xy(b) > 0) 

X v (b)A u (b) if X ^ b J ^ X ^ b ) (hence X^b) > 0) 

0(b) > 0 if and only if X (b) > 0, hence cr is defined over f$ (0, 1], By 

the lemma, there is an j -section p*E -* G of g such that p = cr over 

0' ( 1 ) 0 U . Define T : E w - G w by 

or(e) if XTTir(e) < Xv-rr(e) 

T(e) = 
p(e) if Xunr(e)>XvT(e) 

Clearly (W, T) > (V, cr), which is the desired contradiction. 
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Classifying spaces and fibrations 7 

2. J7 -fibrations 

Definition 2. 1. An *} -space ir: E -* B is an $ -fibration if it 

satisfies the following J- -covering homotopy property (abbreviated 

£ -CHP): for every $ -space v : D -* A and i -map (g,f): v -* IT and 

every homotopy h : A X I - * B of f, there exists a homotopy H : D X I - E 

of g such that the pair (H, h) is an £- -homotopy. 

-fibration is clearly just an ordinary (Hurewicz) fibration. 

We here generalize the elementary theory of fibrations to 3~ -fibrations 

and generalize Dold's theorem [ 7 ,6 .3 ] to the effect that a map of'fibra-

tions is a fibre homotopy equivalence if it res t r ic t s to a homotopy equivalence 

on each fibre. We observe first that the j r -homotopy (H, h) asser ted to 

exist by the J- -CHP is itself unique up to j -homotopy. 

Lemma 2. 2. Let (H, h), (H!, h*) , and (J, j) be jf -homotopies with 

domain v X l : D X l - * A X I and range TT: E -*• B, where v i s an J -space 

and -rr is an -J- -fibration,, Assume that (J, j) is an J~ -homotopy from 

(H , h ) to (H* , h ' ) and assume given k : A X I X I - * B such that 

k(a, s, 0) = h(a, s j , k(a, s, 1) = h'(a, s), and k(a, 0, t) = j(a, t) . 

Let C = ( I X 0 ) W ( I X 1 ) U ( 0 X I ) C I X I and define g: D X C — E by 

g(d fs ,0) = H(d,s) , g(d, s , l ) = H'(d, s), and g(d, 0, t) = J(d, t). 

Then there exists K : D X I X I - ^ E such that K | D X C = g and the pair 

(K, k) is an j -homotopy. 
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8 J . P . M a y 

Proof. (g> 0 i s a n -^ -map, where f = k| A X C. Since the pairs 

(I X I, C) and (I X I, I X 0) are homeomorphic, the conclusion follows 

directly from the $ -CHP. 

The following result is an easy consequence of the lemma. 

Proposition 2« 3, An 3 -fibration TT: E -*• B determines a functor 

L from the fundamental groupoid of B to the homotopy category of 3 by 

L(b) = TT (b) for b c B and L[h] = [H ] for a path h:I -* B, where 

A - 1 

H:TT-1h(0) X I - E is any homotopy of the inclusion TT h(0) -*• E such that 

(H, h) is an 3" -homotopy. In part icular , if B is connected, then any two 

fibres of TT have the same Jr -homotopy type. 

We shall find it convenient to compose paths in the reverse of the 

usual order ; with this convention, the functor L is covariant. 
We show next that induced j -fibrations behave properly. 

Lemma 2. 4. Let IT: E -*• B X I be an *}- -fibration and let IT : E -* B 

denote the part of TT over B X {s} . Then TT and TT are ^/--homotopy 

equivalent. 

Proof. Define h : B X I X I X I ^ B X I by h(b, r, s, t) = (b, (l-t)r-Hs). 

By the "} -CHP, there exists H : E X I X I - * E such that H(e, s, 0) = e and 

(H, h) is an ^ -homotopy. Define K: E X I -* E by K(e, s) = H(e, s, 1). 

Observe that if TT !:E -* B and TT":E -*• I are defined by ir(e) = (Tr'(e), Tr»'(e)), 
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Classifying spaces and fibrations 9 

then iTK(e, s) = (7r'(e), s) and t raversa l of H(e, TT" (e), t), 0 < t < l , gives 

an J- -homotopy over B X I from the identity of E to the 5" -map 

k : E - * E over B X I defined by k(e) = K(e,-ir"(e)). Define k 1 : E ° - * E 1 

and k : E 1 — E by k (x) = K(x, 1) and k°(y) = K(y, 0). Via the homo-

1 0 topies K(K(y,s) , l ) and K(K(x, 1-s), 0), 0 < s < l , the maps k k and 

k k are j -nomotopic over B to kk |E and kk |E , respectively. 

1 0 ^ 
Therefore k and k are inverse J -homotopy equivalences. 

Proposition 2. 5. Let TT: E -* B be an jf -fibration. Then 

f IT: f E -*• A is an ^ - f ib ra t ion for any map f: A -*• B and homotopic maps 

A -* B induce -/--homotopy equivalent Jr-fibrations over A. In part icular, 

any % -fibration over a contractible base space is % -homotopy tr ivial . 

Proof. The first half follows from Definition 2. 1 and Lemma 1. 2, 

and the second half follows by application of the previous lemma to 

* * 
h ir:h E - * A for any homotopy h ; A X l - * B . 

Dold's theorem [ 7 , 6.3] now generalizes readily to our context. 

Theorem 2. 6 . Let v : D -*• B and i r : E - * B be jr -fibrations. 

Let g: D -* E be an Q -map over B such that g: v (b) -* TT"" (b) is an 

jr -homotopy equivalence for each b e B. Assume that B admits a numer

able cover (7 such that the inclusion map U ~* B is null-homotopic for 

each U e (f . Then g is an 1 -homotopy equivalence. 

Proof. Let U € f and let h : U K I - * B be a null-homotopy, 

h (u) = u and h (u) = b . Define g: h D -* h E by the universal property of 
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10 J. P . May 

* s * 

h E and let g denote the restr ict ion of g to the part of h D over 

U X {s} . Then g° = g: v~1U -* TT"1U and g ^ l X g i U X v"4(b) — U X T T " 1 ^ ) . 

Construct maps K, k, k and k for h IT and J , j , j and j for h*v by 

the proof of Lemma 2.4. Then g is Jf -nomotopic over U X {0} to 

k"g j and, via the homotopy K( g J(x, s), 0), 0 < . s < . l , k"g j is 1 -homo-

topic over U X{0} to the composite of o -homotopy equivalences k g j , 

Thus g is an ^ -homotopy equivalence over each U € (̂  , and the result 

follows from Theorem 1.5. 

Observe that the assumption on B is invariant under homotopy 

equivalence and is satisfied by spaces, such as CW-complexes, which are 

paracompact and locally contractible. In [ 7 , 6 . 7 ] , Dold has given a direct 

construction of a cover of the required type for any CW-complex B. Of 
-1 -1 

course, if B is connected, the assumption on g; v (b) -»• ir (b) will be 
satisfied for all b € B if it is satisfied for any one b e B. 

3. .3 -lifting functions 

We here generalize to our context the relationship between fibrations 

and lifting functions and Hurewicz's theorem [11] to the effect that a local 

fibration is a fibration. We first fix notations for Moore paths; use of such 

paths will simplify proofs here and will be essential in later sections. 
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Classifying spaces and fibrations 11 

Notations 3, la For B € "K , let I1B denote the set of paths (p, s) 

P:[0, s] -* B, When convenient, we let p(t) = p(s) for t > s; a point 

(P, s) € nB is then specified by p : [0 ,co]-*B and s c [0,oo), and nB is 

topologized as a subspace of ^(.([O, oo], B) X [0,oo). Define the composite 

(ap, r+s) of paths (a, r) and (p, s) such that a(0) = p(s) by 

(<*p)(t) = p(t) if 0 < t < s and (<*p)(t) = ar(t-s) if s < t < r+s. 

We shall abbreviate p = (p, s), and we shall write i(p) = s and p(p) = p(s) 

for the length map and end-point projection. We shall consider B to be con

tained in nB as the subspace consisting of all paths of length zero . 

Definition 3. 2. Let TT : E -* B be an J -space. Define a space TE 

and maps TTT :TE -* B, n : E - * r E , and \L% r r E -> TE by 

TE = { (p, e) | p(0) = ir(e)} C nB X E and r-rr(p, e) = p(p), 

r(e) = (ir (e), e) and yi(a, (p, e)) = (orp, e). 

An j? -lifting function £ for IT is a map £, : rE-*• E such that 

•no £ = r-rr, £, o r| = 1, and the map £ o p:~n- p(0) -*-TT" p(P) is in $ £°T 

^ -1 -1 ~> 

each p € nB , where (3:-IT p(0) -* (PIT) p(p) is given by p(e) = (p, e). 

£ is said to be transit ive if, whenever P(0) = ir(e) and a(0) = p(p), 

£ ( a r , 4 ( p , e ) ) =  Ha p , e ) . 

For example, \i is a transitive (X-lifting function for TTT: TE-*• B. 
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12 J. P . May 

Lemma 3. 3. If £ is a (transitive) j -lifting function for an 

'j- -space IT: E -*• B and f: A -*• B is a map, then f £ is a (transitive) 

j r -lifting function for f -rr: f E -* B, where f*£ is defined by 

(f*e)(«,(a,e))= (p(«) , | ( f .ar ,e)) 

for or € nA, a e A , and e € E such that <ar(0) = a and f(a) = ir(e). 

Proposition 3.4. An £ -space IT: E -* B is an 3 -fibration if and 

only if TT has an 3 -lifting function £. 

Proof. If p :I1B -+> B is the initial projection, then TE = p E as 

a space and (p*n, p 0 ) : p TT -*- IT is an J- -map. Define a homotopy 

h:IIBX [0,co] — B of p by h(p,t) = p(t). If TT is an J- -fibration, 

there is a homotopy H:TE X [0, oo] -*- E of p such that (H, h) is an 

,Jr -homotopy, and an jr -lifting function £ is then given by 

£ (P, e) = H((p, e), £ (p)). Conversely, assume given £ . Fo r an j ^ - m a p 

(g,f):v -*- TT , v : D -* A, and a homotopy h of f, let h (a) denote the 

path of length t in B given by h (a)(u) = h(a, u), a € A, and define 

H(d, t) = £ (h v(d), g(d)). Clearly H is a homotopy of g such that ( H, h) 

is an 3 -homotopy. 

The following immediate consequence should be noted. 

Corollary 3. 5. Let $• -* jr be a functor over c\Ji (that is , the 

underlying space functor j " * lL is the composite j - -*• J -*» W-). Then an 

*/• -fibration TT is an $- -fibration; in part icular, TT is a fibration. 

Licensed to Univ of Rochester.  Prepared on Mon Jul 27 14:50:18 EDT 2015for download from IP 128.151.13.18.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Classifying spaces and fibrations 13 

When 3r =11 , Definition 3.2 describes the standard procedure for 

replacing a map by a fibration. We note the following facts about this pro

cess . 

Remarks 3.6. Let TT:E -*• B be a map (that is, a XL -space). 

(i) If £ is a lifting function for TT, then 1 ^ n £ over B via the homotopy 

Vt(P,e) = (p; ,e(P t ,e)) , where 

!(P t) = t l (p ) and pt(u) = p(u) 

and 
i(Pp = ( l - t ) i (p) and (Jj(u) = p(u+t l (p) ) . 

Therefore n and £ are inverse fibre homotopy equivalences. 

(ii) r|(E) is a strong deformation retract of TE via the homotopy 

h (p, e) = (p , e). Thus r\ res t r ic t s to a weak homotopy equivalence on each 

fibre if TT is a qua si-fib rat ion (so that TT : *rr.(E, TT" b, e) -+ ir.(B,b) is a 
• 1 1 

bijection, i >. 1, and TT (TT b, e) -* TT (E, e) -+ TTn(B,b) -*- * is exact for all 

b e B and e € TT b). 

Remarks 3. 78 For a %L -map (g, f): v -*» TT, V : D -»• A and TT: E -** B, define 

a c\jL~map r (g , f ) :Tv - TTT by r (g , f ) = ( rg , f), where Tg: TD -> TE is 

given by Tg(o',d) = (£°a, g(d)). Then T is a functor from the category 

of W. -spaces to itself. The^lX-maps n: E -* TE and p. : TTE -»- TE over 

B define natural transformations n: 1 -* T and \±: TT -*• T such that the 

following diagrams of 'Ll-maps over B are commutative for each TT: E -*• B: 
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14 J . P . May 

TE 
T t i 

> r r E 

TE 

-*—L TE and r r r E -*- r r E 

r f E M- -*- TE 

In categorical language, ( r , ^ , n) is a monad in the category of l i - s p a c e s 

[ 17 ,2 .1] , A transit ive lifting function £ for TT is a 'UL-ma.p £:TE -> E 

over B such that the following diagrams of %L -maps over B are com

mutative: 

and r r E TE 

r e 

TE -*- E 

Thus the pair (IT, £) is a T-algebra in the sense of [ 17, 2 ,2] , Moreover, 

by [ l7 , 2.9] , for any ^ - s p a c e -rr, (rir, fi) is the free T-algebra generated 

by -rr. 

The observation above was also noted by Malraison [ 1 5 ]. 

The res t of this section is devoted to the proof of the following 

generalization of Hurewicz's theorem [ 11]. 

Theorem 3. 8. Let -rr: E -*- B be an j / -space and assume that B 

admits a numerable cover (J such that TT: E •* U is an y- -fibration 

for each U € <Jf . Then -rr is an ?--fibration. Therefore an J- -space 
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Classifying spaces and fibrations 15 

over a paracompact base space is an j - -fibration if and only if it is a 

local J* -fibration. 

Proof. Our argument is a corrected version of Brown's modification 

[ 3 ] of Hurewicz's original proof. We shall construct an Q -lifting func

tion £ for TT. For any finite ordered set s = { U , . . . , U } of not 

necessar i ly distinct sets in fe , define 

W = { p | p ( t ) c U. if ( i - l )£ (pVi i£ t< i f (p ) /n} C OB. 
to X 

By hypothesis, there exists an J- -lifting function £.:TE -+ E for 
i i 

each i. For 0 < u < v < 1 and a path p € IIB , define the sub-path 

p[u,v] of p by i p[u,v] = (v-u)i(p) and 

P[u,v](t) = p(t +u£(p)) . 

Let ( i - l ) /n < u < i /n and ( j - l ) /n < v < j / n for integers 0 < i < j 1 n. 

-1 
Fo r e c TT p[u,v](0) and pe W , define 

(1) e s ( P K v], e) = £.(p[ J ^ i , v], Zh±(rt¥ > ^ r L . . • 

Let \ . : B - * I be such that X. ( 0 , l ] = U . and define X : nB -* I by l l J l s J 

Xs(p) = inf{X.p(t)| ( i - l ) i (p) /n <Lt£ i i (p ) /n and l < i < n } . 

Then W = X (0,1], {W } is a cover of nB, but it is not locally finite. 

Let c(s) = n if s has n elements and note that {W s | c(s) < n} is a 
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16 J. P . May 

locally finite set for each fixed n. Define 0 on FIB by 

9 (P) = 5D X (P)' T h e n define y on nB by 
c(s)<n 

ys(p) = max(0,X s(P) - n0n(p)) if c(s) = n. 

Define V = {P | \ (P) > 0} C W . It is easily verified that {Vg} is a 

locally finite cover of I1B. Total order the set Q of finite ordered sets 

of sets in £ . Fo r (p, e) € r E , define 

(2) £(P,e) = e s ( * . , 0 , ^ ( t f V 2 f t q - i ] ' - ' - , e s ( P l V t j L e ) . . . ) ) , 
q q-i 1 

where s, < . . . < s are all elements s € A such that 8c V 1 q ^ s 

and where t = j t \ (p)/ ] T y (p) . . s. " .-*-; "s. 
i= l i i= l i 

£ is the desired lifting function. It is c lear from (1) and (2) that £ 

res t r i c t s to a finite composite of maps in Jr for each fixed p. 
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Classifying spaces and fibrations 17 

4. Categories of fibres 

In order to classify 1} -fibrations, we must of course place severe 

restr ict ions on the category 3" . We here define the notion of a "category 

of fibres, " which is essentially a category with just enough structure to allow 

the development of a theory of associated principal fibrations. Such a theory 

is essential in our approach to classification theorems and is an obvious de

sideratum of any general theory of fibrations. 

We topologize _^(X,X') as a subspace of the function space \i{XtX
}), 

with the (compactly generated) compact-open topology. 

Definition 4 .1 . Let 3 have a distinguished object F . Then (3 ,F ) 

is said to be a category of fibres if every map in j is a weak homotopy 

equivalence, ^ ( F , X ) is non-empty for each X e 3, and composition with ft 

3(iJ):3 (F.F) - J(F,X) 

is a weak homotopy equivalence for each 0€ ^ ( F , X ) . 3 is said to be a 

homogeneous category of fibres if (3 ,F) is a category of fibres for every 

object F . 

Recall that a topological monoid is an associative H-space G with a 

two-sided identity element e and that a left G-space is a space X with an 

associative and unital action map G X X -*• X. G is said to be grouplike if 

TT G is a group under the product induced by that of G. This holds if each 

right translation map g: G -*• G induces an isomorphism on TT G, and then 

translation by g on any (left or right) G-space is necessar i ly a homotopy 

equivalence. 
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18 J. P . May 

Definition 4.2. A category of fibres (fy , G) is said to be principal 

if G is a grouplike topological monoid, each object Y 6,/w is a (non-empty) 

right G-space, and the space /J(Y, Y') coincides with the space of right 

G-maps from Y to Y !. Identify the space /8(G,Y) with Y via 0<H>0(e) 

and note that ,&(l,J2f):G -*- Y is given by g -*• 0(e)g and is required to be a 

weak homotopy equivalence. This condition already implies that all maps in 

H- are weak homotopy equivalences (as one sees by composing a map Y-*-Y' 

in ft with any map G -»• Y in /J ). 

Observe that to specify a principal category of fibres, we need only 

specify an appropriate collection of right G-spaces. 

Definition 4.3. Let (3 »F) be a category of fibres. Define the 

associated principal category of fibres (^ , G) by letting /g have objects 

5 ( F , X ) for X € 3" , with G= ^ ( F , F ) ; the product on G and the action of 

G on j^(F,X) are given by composition. For an 3 -space TT: E -* B, 

define a H -space PIT: PE -* B by letting PE be the subspace of U.(F,E) 

which consists of those maps \\J: F -*• E such that IJJ(F) C IT" (b) for some 

b € B and ip: F ~+ TT (b) is a map in 3 and by letting (PTT)(L(J) = iri|;(F). For 

an 3 -map (g,f): v -*" TT, V :D -*• A, define a /J -map p(g,f):Pv -*-pir by 

P(g»f) = (Pg,f)> where (Pg)(4j) = goi|j for i\) € PD0 Then P is a functor 

from the category of jf -spaces to the category of Jl - spaces . 

The definition of P is based on ideas of Dold and Lashof [ 8 ], who 

called P Pr in . 
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Classifying spaces and fibrations 19 

Remark 4. 4. A principal category of fibres ( Q , G) may be identified with 

its associated principal category of fibres. Let TT: E -*> B be a A2 -space. 

Define a bijection of sets al E •— PE by tf(x)(g) = xg for x e E and g € G; 

a" (\\>) = i>(e) f ° r 4^ G -* E in PE. a" is always continuous and a is con

tinuous provided that the given right actions of G on the fibres of TT define 

a continuous function E X G -*• E. Henceforward, by a /3 -space, we under

stand one for which E X G -** E is continuous; this is a reasonable restr ict ion 

since, inthe contrary case, we can retopologize E by requiring a to be a 

horneomorphism and so make the action continuous. With this convention, 

we can identify E and PE via a and regard P as the identity functor on 

/J - spaces . 

The following pair of lemmas record obvious propert ies of the 

"associated principal fy -space" functor P for a fixed category of fibres 

( 5 , F ) . 

Lemma 4. 5. If TTS E -*• B is an 3- -space and f: A -* B is a map, 

then there is a unique ^ - m a p T: Pf ' E -*- f*PE over A such that the 

following diagram is commutative: 

PE 

Pf TT PIT 
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20 J . P . May 

Lemma 4 .6 . Let ir: E -*• B be an $• -fibration with (transitive) 

9~ -lifting function £: TE -*• E. Then PIT: PE -* B is a n -fibration with 

(transitive) .ft-lifting function P£: TPE -* PE defined by 

(P£)(P,+)(x) = g(P,+(x)) , hence (Pg)(p,+) = £•?•+: !* - I T W ) , 

for x e F , p € I1B, and ty € PE such that p(0) = (PIT)(I|J). 
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Classifying spaces and fibrations 21 

5. 3 -quasifibrations and based fibres 

Our explicit classifying space constructions will yield universal 

quasifibrations. Since pullbacks of quasifibrations need not be quasifibra

tions, we shall sometimes have to use the functor T to replace 

3 -quasifibrations, by which we understand 3 -spaces TT: E -• B such that 

TT is a quasifibration, by 3 -fibrations. The following definition records 

the minimum amount of information that will suffice for this purpose. 

Definition 5. 1. A category of fibres (3 ,F ) is r -complete in a full 

subcategory QI ofTJlif 3 C 5 , » &c2>* anc* the following statements are valid 

for $ -quasifibrations TT : E -*- B with B and E in 2 • 

(1) r i r : r E -+- B is a 3 -fibration with ^--lifting function u.. 

(2) n: E -*- TE is an 3 -map over B. 

(3) r takes 5 -maps between 3 -quasifibrations in jL to 3 -maps . 

Let J denote the category of nondegenerately based spaces in and 

basepoint preserving maps. In some very important examples, the functor 

factors through J . In the definition just given, there is clearly 

no way to give the fibres of TTT basepoints such that each 

••v -1 -1 ~ 
|jL(3:(rTr) p(0) -*• (TTT) p(p) is basepoint preserving (since \ifi(o!fe) = (p<*, e)). 

We need a few more definitions in order to circumvent this difficulty. 

Definition 5. 2. When given a category jr with a faithful functor 

3 -+J , redefine an 3 -space to be a map TT: E -•• B such that not only is 

TT (b) in 3 for all b € B but also the function cr : B -+ E specified by 

sending b to the basepoint of TT (b) is continuous and is a fibrewise 
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cofibration, in the sense that there exists a representation (h, u) of (E,trB) 

as an NDR-pair [17, A. l ] such that h: E X I -*• E is a *J- hoinotopy over B 

(so that (h, u) r e s t r i c t s to a representation of (IT (b), crb) as an NDR-pair). 

All other definitions and results obtained so far in this paper apply verbatim 

to these j r -spaces with a canonical c ross-sec t ion (because J- -maps are 

automatically section preserving). We refer to a category of fibres ( 3 ,F) 

such that J maps faithfully to J as a category of based fibres. 

Definition 5 .3 . Let IT: E -*• B be a $ - space . Define a ^p-space 

F'TT : r ' E - B and maps V : E - * T f E and f i ' : r r ' E -• T'E as follows. T'E 

is obtained by growing a long whisker on each fibre of TIT. Formally , T'E 

is the quotient space obtained from the disjoint union of TE and B X [0,co] 

by identifying (b, crb) € FE with (b, 0) € B X [0, co] for each b e B. r 1 ir 

coincides with TIT on TE and with the projection to the first coordinate on 

BX[0 , co ] . The c ross -sec t ion r c r : B - * r f E is defined by (ro")(b) = (b, co) 

and is clearly a fibrewise cofibration. With (h, u) as in the previous defini

tion, define rj1 by 
f ( i r (e ) , l /u (e ) -2) if 0 < u(e) < l/2 

tl '(e) = \ 
(ir(e), h(e, 2 - 2u(e)) if i/Z < u(e) < 1 

Then rj' is a J" -map over B and a homotopy equivalence. Define JJL' by 

\L1 = u on r F E c r r ' E and by 

[ (P* ,crp»(0)) if 0 < t < I(p) 

\L'(P> (b.t)) 

( p ( P ) , t - j f ( p ) ) if l (p ) < t <oo 
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where (3(0) = b, l(p') = *(p)- t , and p'(s) = p(s+t). Then \i% is easily ve r i 

fied to be a J-lifting function for Tf IT. With the evident definition on 

J -maps, r 1 becomes a functor from J"-spaces to J~-fibrations. 

Definition 5. 4. A category of based fibres (5- ,F) is T'-complete 

in a full subcategory Q, of HJL if $c % > he ol > anc* t n e following statements 

are valid for J -quasifibrations IT: E -+ B with B and K in 2 . 

(1) r ' l r t T ' E - ^ B is an ^-f ibrat ion with jf-lifting function |±\ 

(2) r|'; E -*- F 'E is an 3 -map over B, 

(3) r 1 takes J -maps between 3 -quasifibrations in <x to ^--maps. 

A five lemma argument gives the following observation. 

Lemma 5. 5. Let (9 ,F ) be T-complete (or r ' - comple te ) in oL 

and let TTI E-* B be an jf - quasifibration with B and E in ^ . If 

PIT: PE -*• B is again a quasifibration, then the /A-map Pr|; PE -*• PEE (or 

PT| ' : PE -*• P r ' E ) over B is a weak homotopy equivalence. 

We record the following remarks for use in [19]« 

Remarks 5. 6. Let v : D -** A and TT : E -** B be J -spaces. Define a. J -

space v A TT: D A E -*• A X B, the fibrewise smash product of v and TT, as 

follows. Let DA E = D X E/ (~) , where the equivalence identifies the wedge 

-1 -1 

(era, TT b) v ( v a, crb) to the point (era, crb) for each (a, b) e A X B, and let 

v A TT be induced from v X TT; the cross-sect ion of v A TT is induced from 

cr X cr. If v and TT are J -fibrations, then so is v A TT since v ATT 

clearly inherits the J -CHP from v and TT. There is a natural 

T - m a p g: T'D A r ' E -* Tf(D A E) over A X B specified for (a, d) e TD, 
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(P, e ) c T E , (a, s) € A X [0,oo] and (b, t) e B X [0, 00] by 

and 

g((ar,d)*(p,e)) = (a X p,dAe) 

g((a, s) A(b, t)) = (a X b, m a x ( s , t ) ) 

(*« Xb,or^(0) Ao-b) 

g((*,d)A(b,t)) 

g((a,s)A(p,e)) = < 

(pa X b, t - 1(a)) 

( a X p ; ,craAcrP^(0)) 

( a X P p , s -£(p)) 

if t < 1(a) 

if 1(a) <t 

if s < /(p) 

if f(p) < s 

where X(< )̂ = /(») - t, or̂ (u) = <*(t+u), l(p^) = i ( P ) - s , and p> (u) = p(s+u). 

It is not hard to see that g res t r ic t s to a weak homotopy equivalence on 

each fibre if v and *rr are quasifibrations with connected fibres. 
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6. Examples of categories of fibres 

We here define the functors to which our classification theorem will 

apply (in favorable cases) and discuss various examples of categories of 

fibres. 

Definition 6.1. Let A e U . Define £ 3 ( A ) t o b e t h e collection 

(assumed to be a set) of equivalence classes of if-fibrations over A under 

the equivalence relation generated by the J- -maps over A. For a map 

f : A - A \ define f*: £ J (A ' ) "* £ :J(A) by f*{ v }= {f*v}, where {v} de

notes the equivalence class of v . By Proposition 2. 5, £5" is a contra-

variant functor from the homotopy category of TX to the category of se ts . 

By Lemmas 4.5 and 4. 6, P induces a natural transformation £_?-*£& when 

(5", F) is a category of f ibres. By Corollary 3.5, any functor g-+ 3* over 

îX induces a natural transformation £J — g g ' . 

Note that the assumption that our equivalence relation leads to a set 

of equivalence c lasses is non-tr ivial . It will hold in our classification 

theorem because our constructive proof will display a set of J -fibrations 

over A such that any given 3r -fibration over A is equivalent to an ele

ment of the displayed set. 

At first sight, our choice of equivalence relation may seem less 

natural than the obvious (and more res t r ic t ive) one of ^ -homotopy 

equivalence. In the classical examples, every map in _5 is an 3- -homotopy 

equivalencea In such cases , Theorem 2. 6 ensures that our equivalence 

relation coincides with JJ -homotopy equivalence (over good base spaces). 
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In the contrary case, it is very hard to verify that a given ^ - m a p is in fact 

an fj -homotopy equivalence. Our equivalence relation allows us to ignore 

this problem and to freely use arb i t ra ry .9"-maps over A. It is this f ree

dom which enables us to avoid both local pasting arguments and higher 

homotopies. 

We now turn to examples. We first consider the principal case , 

Examples 6. 2. Let G be a grouplike topological monoid. Specify four 

successively smaller categories /d such that ( jj , G) is a principal category 

of fibres by letting a right G-space Y be an object of jj. if and only if the 

maps y: G -+ Y defined for y € Y by y(g) = yg are all 

(i) weak homotopy equivalences; write ( Q , G) = G\L . 

(ii) homotopy equivalences; write (jb » G) = GJV . 

(iii) G-equivariant homotopy equivalences. 

(iv) homeomorphisms, where G is a topological group. 

Let y\T denote the full subcategory of U o f spaces having the homo

topy type of CW-complexes. Clearly, (i) and (ii) are appropriate to "U. and 

W , respectively, but are conceptually s imilar . Case (iii) is most 

refractory, and we shall not study it. The point is that, in general, there is 

no effective way of telling when a G-equivariant map which is a homotopy 

equivalence is a G-equivariant homotopy equivalence. In particular, we have 

no analog of the following lemma. 

Lemma 6. 3. Let G be a grouplike topological monoid. Then GlX 

is T-complete in XL and, if G € jV , GYf is T-complete in W . 
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Proof. Write M for G U or GW and let TT: E — B be a 

h -quasifibration, with B and E in \L or XT • Via ((3, e)g = (p, eg), the 

right action of G on E induces a right action of G on TE such that 

r): E -*• TE, \i. i r r E -*• r E , and the (3 are all maps of right G-spaces. We 

must show that (TTT) (b) € li for all b e B. Let y = (P,x) be a typical 

point in (rir) (b), so that p(0) = TT(X) and p(p) = b. We must verify that 

the map y: G -*• (rir) (b) is a weak homotopy equivalence; when .&= GJV* 

and G €JV , the Whitehead theorem and the theorem of Stasheff [ 32] quoted 

just below will imply that (r-ir) (b) € jy" and will thus complete the proof. 

Consider the following commutative diagram: 

where p(v,w) = (pv,w) for v € FIB and w € E such that v(0) = TT(W) and 

py = p(0). Since n, p, and H are weak homotopy equivalences by Remarks 

3.6, Proposition 2. 3, and hypothesis, p and *y a re also weak homotopy 

equivalences. 

The required result of Stasheff can be stated as follows. 

Theorem 6.4. Let v : D -* A be a fibration with A € JV . Then 

(i) DejY if and only if v" (a) € JY for all a e A; and 

(ii) If A' € JV , f; A' — A is a map, and D € ^V , then f*D € yr . 

1. The proof in [32] is not correct , but can be patched. 
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For the next example, recall the following standard results about the 

relationship between "U and JT(e . g. [21,2.9 and 3.10]). Let [X,Y] 

denote the set of homotopy classes of maps X -* Y. 

Theorem 6. 5. (i) If 0: Y -• Z is a weak homotopy equivalence and 

X c Yf , then 0.:[X,Y] -*• [X, Z] is an isomorphism. 

(ii) There are a functor and natural transformation on the homotopy ca te

gory of XL which assign a CW-complex X' and a homotopy class of weak 

homotopy equivalences Xf -*• X to a space X. 

Example 6. 6. Let F € )V . Define two categories of fibres FIX and TTJV 

with distinguished object F as follows. 

(i) X € FIX if X is of the same weak homotopy type as F ; the maps in FIX 

are the weak homotopy equivalences X -*• X1. 

(ii) X e F)V if X is of the same homotopy type as F ; the maps in F)V are 

the homotopy equivalences X -+ X1; thus JTJY =>1/ n FIX . 

In (i), F 'U(F,X) is non-empty by Theorem 6. 5(ii) and the fact that F e }Y. 

Fo r J2f:F -> X in FlX and any CW-complex K, 

^ : [ K X F , F ] - [ K X F , X ] 

is an isomorphism, by Theorem 6. 5(i), and therefore 

U ( 1 , 0 ) * : [ K / U ( F , F ) ] - tK.U(F.X)] 

is an isomorphism. Since FlX(F,F) and FlX(F,X) are unions of com

ponents of X l (F ,F ) and U J ( F , X ) , because a map homotopic to a weak homo

topy equivalence is a weak homotopy equivalence, it follows that F*Ll(l,0) is 
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a weak homotopy equivalence and thus that (i) and (ii) do indeed define cate

gories of f ibres. 

Recall the following result of Milnor [ 25]. 

Theorem 6. 7. If X € JY and C € \JL is compact, then U ( C , X ) < E > V . 

Fo r this reason, case (ii) is adequate when F is compact. When F 

is not compact, for example when F is a localization or completion of the 

n-sphere at a set of pr imes , we shall have to use fibres not in yf , as 

allowed in case (i). 

Theorem 6.4 and a proof s imilar to, but simpler than, that of 

Lemma 6.3 give the following resul t . 

Lemma 6. 8. Let F e JV . Then FIX is T-complete in %L and, 

if F is compact, F>V is T-complete in /{'. 

There is a based variant of the preceding example. Let °\f = "Jo >/", 

the category of nondegenerately based spaces in >Y", and recall that 

Theorems 6. 5 and 6. 7 remain valid if all maps and homotopies in sight are 

required to preserve basepoints. 

Example 6. 9. Let F €°\/ . Define two categories of based fibres F T 

and FV with distinguished object F as follows. 

(i) X e F ' J if X e T is of the same based weak homotopy type as F ; 

the maps in F J are the based weak homotopy equivalences. 

(ii) X € FY if X e V is of the same based homotopy type as F ; the 

maps in F V are the based homotopy equivalences; thus FY = Ŷ > F J . 
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Lemma 6. 10. Let F € "V • Then F J is F1-complete in 

IX and , if F is compact, F'V is F1-complete in y . 

Note that we impose basepoints only on fibres, not on base spaces 

or total spaces. 

Example 6. 11. Let G be a topological group and let F be a left G-space 

on which G acts effectively. Define a category 5 as follows. Let _? 

have objects all pairs (X,x) such that X is a left G-space and x : F -*• X 

is a homeomorphism of left G-spaces. Let the set of morphisms from 

(X,x) to (X',x !) be {x'gx" |ge G} , with the evident operation of composi

tion. 3 has the distinguished object (F, i ) , and we call (3 , F) a cate

gory of bundle fibres. If ( ^ , G) is the associated principal category of 

f ibres, then G is the given group retopologized with its possibly coarse r 

topology as a subspace of ^ ( F , F ) ; we insist that G, so topologized, again 

be a topological group. Of course, in practice, the two topologies usually 

agree . By Theorem 3. 8, a Steenrod fibre bundle with group G (with either 

topology) and fibre F which is t r ivial over each set of a numerable cover 

of its base space is an *} -fibration. Following Dold [7], we say that such a 

bundle is numerable. 
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7. The geometric bar construction 

We here review the definition and propert ies of the two-sided geo

metr ic bar construction introduced in [17 , §9-11]. Let G be a topological 

monoid such that its identity element e is a strongly nondegenerate base-

point (in the sense that (G, e) is a strong NDR-pair [17, A. i]) . Let X and 

Y be left and right G-spaces . Define a simplicial topological space 

Bj{e(Y, G,X) by letting the space of j - s impl ices be YX GJ X X, with typical 

elements written in the form y[g, , . . . , g.]x, and letting the face and de

generacy operators be given by 

y g . t g v •• » g J x if i = o 5 l L & 2 ' " - " & j J 

9 i (y[g 1». . .»gj] x ) =t y [ g 1 " - ' g i . i ' g i g i + 1 ' g i + 2 " < " ' g j ] x tf 1 l i < J 

I y t g ^ . - - . g j . J g - x if i = j 

and s i(y[g1 , . . . ,g ]x) = y[g t , . . . , g., e, g i + 1 , . . . , g ]x . 

Let B(Y,G,X) denote the geometric realization of B (Y,G,X), as defined 

in [17, 11. 1], Then B is a functor to IX from the category CL(l\Ji) of 

t r iples (Y,G,X); the morphisms of CLM1) are t r iples (k, f, j ) : (Y, G, X) — 

(Y^G'jX1) where f: G -*• G' is a map of topological monoids and j : X -> X1 

and k: Y •* Y1 are f-equivariant maps, j(gx) = f(g)j(x) and k(yg) = k(y)f(g). 

The functor B was first defined (implicitly) by Stasheff [34 ]. Let * de

note the one-point G-space and define 

B G = B ( * , G , * ) and EG = B(*, G, G). 
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BG is the standard classifying space of G, namely the normalized version 

of the Dold-Lashof [ 8 ] construction, as defined by Stasheff [31, p. 289], 

exploited by Milgram [ 23], and analyzed in detail by Steenrod [38 ]. 

Many of the results of this section and the next are due to the authors 

cited above, but our explicit use of simplicial spaces simplifies nearly all of 

the proofs by reducing them to tr ivial verifications on the level of simplicial 

spaces followed by quotations of general results about geometric realization. 

The following ser ies of propositions give the basic facts about the topological 

behavior of the functor B. 

Proposition 7. 1. B (Y,G,X) is a proper simplicial space. 

B(Y,G,X) is n-connected if G is (n- l)-connected and X and Y are 

n-connected. 

Proof. The first statement means that (Y, 0) X (G, e)J X (X,0) is a 

strong NDR-pair (where 0 is the empty set) and holds by [ 17, A. 3]. The 

second statement follows by [17 , 11. 12] (its extra hypothesis of s tr ict 

propriety being unnecessary by [ 1 8 , A. 5]). 

Now [ 18 , A. 6 and A. 4] imply the following two resul ts . 

Proposition 7. 2. If Y,G, and X are in N , then so is B(Y,G,X). 

Proposition 7 . 3 . Let (k, f, j): (Y, G, X) -> (Y', G', X') be a morphism 

in (X(U). 

(i) If k, f, and j induce isomorphisms on integral homology, then so does 

B(k,f , j ) . 
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(ii) If k, f, and j are homotopy equivalences, then so is B(k, f, j). 

Note in (ii) that no equivariance conditions are required of the given 

homotopy inverses and homotopies. 

Since B^ preserves products by [17 , 10. l] and geometric rea l i 

zation preserves products by [17, 11. 5], the following result holds. 

Proposition 7.4 . For (Y,G,X) and (Y'.G' .X1) in Q.(ti)> the 

projections define a natural homeomorphism 

B(Y X Y ' .GX Gf, X X X') - B(Y, G, X) X B(Y ', G', X') . 

We shall often write 

T = T(P) : Z -> B(Y,G,X) and E = £ (X): B(Y, G, X) - Z 

for the maps induced via [17, 9. 2 and 11.8] from a map p: Z -* Y X X and 

from a map X : Y X X -> Z such that X(yg,x) = X (y, gx); the intended choice 

of p and X should be clear from the context. Clearly £ factors through 

Y X X, the quotient of Y X X by the equivalence relation generated by 
G 

(yg» x) ~(y» gx)« Note that B(G,G,X) is a left G-space (again, because 

realization preserves products). The following result is a consequence 

of [ 1 7 , 9 . 8 , 9 . 9 , and 11. 10]. 

Proposition 7. 5. £ : B(G, G, X) -* X is a map of left G-spaces and a 

strong deformation retraction (with right inverse T ) . The symmetric con

clusion holds for E : B(Y, G, G) - Y. 

We shall always write 
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p:B(Y,G,X) - B(Y,G,*) and q:B(Y,G,X) - B(*, G, X) 

for the maps induced from the tr ivial G-maps X -> * and Y -*• * . 

Theorem 7. 6. If G is grouplike, then p and q are quasi-

fibrations. 

Proof. Consider p, the case q being handled symmetrically. As 

realizations of simplicial spaces, B(Y,G, *) and B(Y,G,X) are filtered 

spaces [17,11.1] and F.B(Y, G,X) = p^F.BfY, G, *). Visibly, 

F Q B ( Y , G , X ) = Y X X and, if j > 0, 

F.(B(Y,G,X) - F. B(Y,G,X) = (F.B(Y, G, *) - F. B(Y,G, *))XX. 

By [17, A. 3 and A. 4], any representations of (G, e) and (A.,3A.) as strong 

NDR-pairs determine a representation (k, v) of (G, e) X (A., 8A.) as a 

strong NDR-pair. Together with the obvious representations of (X, 0) and 

(Y,0) as strong NDR-pairs (namely, the constant homotopies and the tr ivial 

maps onto { 1 )C I), (k, v) determines representations (h, u) and (H, up) of 

(F.B(Y,G,*), F . ^ B ^ G , * ) and (F.B(Y, G, X), F._1B(Y, G, X)) 

as strong NDR-pairs such that H covers h. Let U = u [0, 1). Then h 

res t r ic t s to a deformation of U onto F. B(Y,G, *). (it is for this that 

strong NDR-pairs, ra ther than just NDR-pairs, are needed.) By results of 

Dold and Thorn [ 9 ] (as formulated in [17, 7. 2]), it suffices to verify that , 

for all z e U, H :p (z) -*• p h (z) is a weak homotopy equivalence. If 

z e F. B(Y,G, *), H is the identity. Thus let z = | y[g , . . . , g.], a | e U, 

where g e G - { e } and a € A. - 3A., and let |y'[gl , . . . , g1.], a' | , i < j , be 
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the non-degenerate representat ive for h (z) [17,11.3] . Since G is group

like, it suffices to show that there exists g € G such that the diagram 

X -> X 

H 
- 1 , p" (z) -> p h ^ z ) 

commutes, where i and t ' are the homeomorphisms 

t(x)= l y t g ^ - . - . g . K a l and t ,(x)= | y'tg^, . . , g!]x, a' | . 

Let k (g , . . . , g., a) = (g? , . . . , g!1 , a"). The reduction of the point 

H L (x) = | y[g" , . . . , g" ]x, a" | to non-degenerate form by use of [17, 11.3] 

will yield a point t ' (gx), where g results from last face operators and is 

independent of x since the part icular face and degeneracy operators r e 

quired for the reduction are independent of x. 

p: EG -** BG should be thought of as the universal GLi- quasifibration. 

The following corollary a s se r t s its essential uniqueness. 

Corollary 7 .7 . Let G be grouplike and let p ! : E ' -*• B1 be a 

GU.-quas if ib ration such that E1 is aspherical . Then the maps £ and q are 

weak homotopy equivalences in the following commutative diagram: 

Ef <-

B'<-

B(E' ,G, G) -

P 

- B(E' ,G, *) 

-> EG 

BG 
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p: B(Y, G,X) — B(Y, G, *) should be thought of as the quas if ib ration 

with fibre X associated to the principal quas if ib ration 

p: B(Y, G, G) -* B(Y, G, *). According to the following result , it can be thought 

of as classified by q. 

Proposition 7 ,8 . Let (k, f, 1): (Z, H, X) -* (Y, G, X) be a morphism 

i-n Ci OX)' Then the following diagrams are pullbacks: 

B(Z,H,X) B ( k > f > 1 ) >B(Y,G,X) and B(Y,G,X) 5 > B(*, G, X) 

P P 
+ T 

*) B(Y,G, *) - > BG B (Z,H,*) B ( k > f > i ) > B(Y,G, 

Proof. The second diagram is the case k: Y -* * and f = 1 of the 

first . Since geometric realization preserves pullbacks [17, 11.6 ], the 

result follows from the observation that the diagrams 

Z X Hj X X k X f X *> Y X Gj X X 

X H3 k X f 
Y X G J 

are pullbacks for all j >. 0. 

Proposition 7. 9. If G is grouplike and Y is a right G-space, then 

G l > Y —-—> B(Y, G, *) q > BG 

is a quas if ib ration sequence, where i (g) = y g for any chosen y e Y. 

Proof. We must show that T is equivalent to a quasifibration, with 

i equivalent to the inclusion of the fibre. Consider the following diagram, 
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Classifying spaces and fibrations 37 

in which the maps T with range B(Y, G, G) are induced from the maps 

G - Y X G and Y - Y X G specified by g - (y g) and y - (y, e): 

B(Y,G,*) 

B(Y, G,G) 

The right triangle commutes and the left triangle homotopy commutes via 

the homotopy h(g, t) = | y [g]e, (t, 1-t) | . 

Our final result strengthens the analogy with bundle theory. 

Proposition 7. 10. Let (^ , F) be a category of fibres with 

associated principal category of fibres ( ^ , G ) . Let f: H -* G be a map of 

topological monoids and let Y be a right H-space. Then there is a homeo-

morphism 
<*:B(Y,H,G) - PB(Y,H,F) 

of y -spaces over B(Y,H, *). In part icular , if H i s grouplike, 

Pp:PB(Y,H, F) -* B(Y,H, *) is a quasifibration. 

Proof. ff|y[hl,...ihj]gfa|(f)= lyfty . . . . h ]g(f), a| for y € Y, 

h. e H, g e G = j r ( F , F ) , ae A., and f e F . a is given by 

a (i|i ) = |y[h1# . . . , h ] g , a | , 

where (Pp)(i(j)= | y[h , . . . , h.] , a | , in non-degenerate form, and where 

g : F - F is defined by ^ (f) = | y[h1, . . . , h ]g(f), a | . 
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8. Groups, homogeneous spaces, and Abelian monoids 

We here give special propert ies of BG and EG when G is a topolo

gical group or Abelian topological monoid. We also develop a generalized 

concept of "homogeneous space" for use in section 10. 

The following theorem is due to Steenrod [38]. 

Theorem 8. 1. Let G be a topological group. Then EG admits a 

natural s tructure of topological group such that the following statements hold. 

(i) G is a closed subgroup of EG and the action EG X G - * EG agrees with 

the product in EG. 

(ii) BG is the homogeneous space EG/G of right cosets and p: EG -* BG is 

the natural projection. 

(iii) The natural homeomorphism E(G X G1) -** EG X EG1 is an isomorphism 

of groups when G and G1 a re groups. 

Proof. A product-preserving functor D from spaces to simplicial 

spaces was constructed in [17, 10.Z]; of course , D necessar i ly takes topo

logical groups to simplicial topological groups. A homeomorphism 

a :E G -* D G of simplicial right G-spaces was defined in [17, 10.3]. Thus, 

by [17, 11.7], EG inherits a natural structure of topological group from 

|D^G| . G = D G , and (i) and (ii) holdby inspection of [17, 10.2 and 10.3]. 

Pa r t (iii) is c lear . 

Steenrod's construction of a group structure on EG is rather different 

from ours , and I have not tr ied to compare definitions. The following 
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theorem is an improvement due to McCord [22, §4] of a result due to 

Milgram and Steenrod [23, 38], 

Theorem 8.2. Let G be a topological group (with identity element a 

nondegenerate basepoint). Then p: EG -*• BG is a numerable principal 

G-bundle. 

Proof. Write E = EG and E = F EG. The representation of n n 

(E . ,E . ) as an NDR-pair defined inthe proof of Theorem 7. 6 is G-

equivariant. As observed by Steenrod [38, 4. 2], [37, 7. 1 and 9. 4] imply 

that each (E,E ) also admits a representation , (h , u ) say, as a G-NDR n' r ' v n n 7 

pair . For n > 0, define a G-map p : E -*- I (where G acts tr ivially on I) 

b y P0(x) = i-u0(x) and, if n > 0, p j x ) = ( l - ^ t o ) V l ( V X ' {))' 

Let r .sE -> E be the G-map defined by r .(x) = h.(x, 1). Then 
I 1 1 

EQC p ^ O ) . 1] C r 0 - i E ( ) and. if » > 0, V E n - l C " n ^ l ] c < X " En-1>-

Define further G-maps -nr : E -*• I, n >. 0, by 

n - i 
Trn(x) = max (0, pn(x) - n ^ PjW) 

i= 0 

and define W = ir " (0 , i ] and V = pW C BG. Then {V } is a numerable n n n n n 

open cover of BG. We have a G-homeomorphism 

E n £* F BG X G or, if n > 0, E - E 4 « (F BG - F 4 BG) X G, 0 0 n n-1 n n-1 

and we define v : W -*• G to be the composite of r ^ W^ -*• Ert or, if n > 0, n n r 0 0 0 

r :W - E -n n n E and the second coordinate of this homeomorphism. De-n-1 r 

fine £ : W X G -> W by 
n n ri . . . / \-1 

£n(y> g) = yvn(y) g 
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Then £ induces a map t, :V X G -*• W , and £, is a homeomorphism n n n n n 

with inverse p X v by direct calculation . Now p ; EG "*" BG is a princi

pal G-bundle by [36 ,7 .4] , since the product structure on W gives a local 

c ross-sec t ion of G in EG, and the result is proven. 

The theorem and Proposition 7.8 give the following result . 

Corollary 8. 3. For any right G-space Y, p : B(Y, G, G) -* B(Y, G, *) 

is a principal G-bundle classified by q: B(Y, G, *) -*• BG. 

We can see the following complement in two ways. 

Corollary 8« 4. For any right G-space Y and left G-space F on 

which G acts effectively, p : B(Y, G,F) -* B(Y, G, *) is the G-bundle with 

fibre F associated to p : B(Y, G, G) -* B(Y, G, *). 

Proof. On the one hand, it is evident that 

B(Y,G,F) = B ( Y , G , G ) X G F . 

On the other hand, if H = G and PB(Y,G,F) is retopologized as the 
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classical associated principal bundle in Proposition 7. 10, then the map a 

displayed there is an equivalence of principal G-bundles. 

In a sense, every bundle a r i ses in this fashion. 

Proposition 8. 5. Let G act principally from the right on Y and 

effectively from the left on F . Then the following diagram is a pullback in 

which the maps 6 are weak homotopy equivalences (and 6 : F -*• * is the 

tr ivial map): 

B(Y,G,F) 

P 

B(Y,G,*)-

Y X F 

1 X 5 
G 

Y X * 
G 

Proof. The bottom map £ is a weak homotopy equivalence by the 

case F = G of the diagram and Proposition 7. 5, and the diagram implies 

that the top map £ is also a weak homotopy equivalence. By [17 , 9. 2, 11. 8, 

and 11.6 ], it remains to verify that the following diagram is a pullback for 

j > o : 

Y X GJ X F 

Y X G J 

-̂ > Y X F 
G 

1XG6 

-> Y X * 

Write {y,x} for the image of (y,x) c YX F in Y X F . The map from 
G 

Y X G X F into the fibred product of the bottom map E and 1 X 6 specified 
G 

by 
(y, g ^ . . . ,g ,x) - ( ( y , g 1 , . . . , g . ) , { y , g 1 . . . g . x ) ) 

is a homeomorphism with inverse specified by 
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((y, g ^ - - .»g.),{y f»x'}) - (y, g t , . . . , g . , g . ...gt gx l), 

where g is the unique element of G such that y1 = yg. 

When Y = G1, where G is a closed subgroup with a local c r o s s -
section in G', G'X * is the homogeneous space of right cosets of G in Gf. 

G 

With Stasheff [34], we define generalized homogeneous spaces as follows. 

Definition 8.6. Let f: H -* G be any map of topological monoids. 

Define 
G/H = B(G, H, *) and H\G = B(*, H, G), 

where H acts on G (from the left and right) through f. 

We shall compare G/H to the fibre of Bf, but we must first insert 

the standard comparison of G to QBG (where BG has the basepoint 

* = It ]» (01 = F
0

B G ) « Write jf (I, X) for the path space of a based space X 

and write p: J~ (l>X) -*• X for the endpoint projection. Write X for the 

standard inverse map QX -*ftX. For a based map k; Y -*• X, write Fk for 

the homotopy theoretic fibre of k , 

Fk = {(p, y) | p € J (I, X), y £ Y, p(l) = k(y)} , 

and write i : ftX -*• Fk and TT: Fk -*• Y for the natural inclusion and pro

jection, i (p) = (0, *) and TT(0, y) = y. With these notations, the proofs of 

the following two propositions are straightforward verifications from the 

definition, [ 1 7, 11. l ] , of geometric realization and the form of the face and 

degeneracy operators on the relevant simplicial spaces. 
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Proposition 8. 7. For a topological monoid G, define 

I: E G - J (I. BG) by 

? | [ g 1 - . . . g j ] g j + 1 . a | ( t ) = | [ g 1 . . . . . g j + 1 ] . ( t a . l - t ) | 

for g e G, a e A., and t€ I. Define £,:G-*QBG by 

«g)(t) = | [ g ] . ( t , l - t ) | . 

Then the following diagram is commutative, hence t, is a weak homotopy 

equivalence if G is grouplike: 

G 1 > EG - ^ BG 

flBG - > 'J(I> BG) — > BG 

The behavior of £, when G is not grouplike will be studied in 

section 15. 

Proposition 8. 8. Let f: H -*• G be a map of topological monoids. 

Define + : Q/H-*FBf by i|i(x) = (0(x), q(x)), where 

P | g [ h 1 , . . . , h . ] , a | ( t ) = | [ g , f ( h 1 ) , . . . , f ( h . ) ] , ( l - t , t a ) i 

for g c G, h. e H, a e A., and t € I. Then the following diagram is com

mutative, hence ijj is a weak homotopy equivalence if H and G are both 

grouplike: 

f . « T 
H — > G > G/H-

1+ 

ftBH - ^ ^ a- «BG — ** FBf • 

_S , B H - ^ >BG 

BH — ^BG 
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By symmetry, an analogous result is valid for H\G, and it follows 

that G/H and H\G are weakly homotopy equivalent when H and G are 

grouplike. We shall use the following observations in section 10. 

Remarks 8. 9. Let f: H -*• G be a morphism of monoids. Then the following 

two diagrams are commutative! 

G - > B(H\G, G, G) 2 > B(H\G, G, *) 

k e(p) 

1 > H\G > BH 

and 

BH< C(p) 

Bf 

B(H\G, G, *) 

Bf 

BG 

BG<__£iPi B(G\G, G, *) BG 

where, in the middle, Bf is short for B(B(1, f, 1), 1, 1). Let H and G be 

grouplike. Then, by Proposition 7. 5 and Theorem 7.6, the first diagram 

shows that £(p): B(H\G, G, *) -* BH is a weak homotopy equivalence. In 

the second diagram, G\G = EG and the bottom maps £ (p) and q a re weak 

homotopy equivalences by Corollary 7 .7 . The last step of the proof of 
-1 

Theorem 9. 2 below will give that, for A e Y/ , the automorphism q. £(p). 

of [A, BG] is the identity. We conclude that, from the point of view of 

representable (or ra ther , represented) functors on hJV, the maps 

q: B(H\G, G, *) -* BG and Bf : BH — BG can be used interchangeably. 
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The following pair of remarks summarize properties of BG and 

EG when G is an Abelian topological monoid and relate the functors B and 

E to the infinite symmetric product . These results a re due to Milgram [23]. 

Remarks 8. 10. If G is Abelian, its product is a morphism of monoids and 

therefore EG and BG are Abelian topological monoids by Proposition 7. 4 

and naturality. If, in addition, G is a topological group, then its inverse 

map is also a morphism of monoids and EG and BG are topological groups 

by naturality. The group structure so defined on EG coincides with that 

obtained in Theorem 8.1 since a trivial verification shows that this is true 

on the level of simplicial spaces. Of course, BG is the quotient group 

EG/G when G is an Abelian group. 

Remarks 8 ,11 . Let NX denote the infinite symmetric product of a space 

X € J and let n : X -** NX denote the natural inclusion [ 9 or 17, §3]. 

Then there is a commutative diagram 

X ! 

n 

N 
f 
X 

• > c x — 

1 
> El> 

*1 
r 
JX - P 

—> SX , 

—> Br* 

*\ 
j 
JX 

where CX and SX are the (reduced) cone and suspension on X, t and ir 

are the natural inclusion and quotient map, r\ is determined by commutativity 

of the diagram, and 

Tf|(x.t)= | h ( x ) ] e , ( t , l - t ) | 

for x € X and t e I ; here the left square commutes since 
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T T I ( X ) = | [ ]T, (X) . (1) | = |h(x)]e f ( l f 0 ) | = ?u(x). 

Since NX is the free Abelian topological monoid generated by X, there 

result maps 0(TQ and ft (rj) of topological monoids such that the following 

diagram is commutative: 

N t NTT 
NX - > NCX — 

m) 

NX ENX 

N2X 

BNX 

As noted by Milgram [23 , p. 245], 0(rj) and ff('r\) a re in fact homeo-

morphisms . 
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9. The classification theorems 

It is now an easy mat ter to use the bar construction to prove a 

general classification theorem for fibrations, and another for bundles. We 

shall only classify over base spaces in Y/; greater generality would be use

less for purposes of calculation. Nevertheless, for some important 

examples, we cannot insist that all spaces in sight be in J/f; in such cases , 

we shall rely on the following consequences of the Whitehead theorem. 

Remarks 9.1. Let f% B -*• A be a weak homotopy equivalence, where A e Y{'. 

Since f : [A, B] -* [A, A] is an isomorphism, there exists one and, up to 

homotopy, only one map g: A -*• B such that fg ^ 1. Moreover, g is 

natural in the sense that, given a homotopy commutative diagram 

B > A 

k J 

B1 >A 
I* 

in which A, A1 € /V and f and f a re weak homotopy equivalences, the 

following diagram is also homotopy commutative: 

A s > B 

'I , J* 
A' s $> B i 
1 , Ik 

A' S $> B i 

(since f'g'j ^ j — jfg — f'kg and f' is an isomorphism ). 

Licensed to Univ of Rochester.  Prepared on Mon Jul 27 14:50:18 EDT 2015for download from IP 128.151.13.18.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



48 J . P . May 

To avoid cluttering up the statement and proof of the following 

theorem with minor technicali t ies, we tacitly assume that the identity e le 

ments of all monoids are (strongly) nondegenerate basepoints and that all 

c ross-sec t ions are fibrewise cofibrations. These assumptions will be 

discussed in Remarks 9. 3 and 9.7 below. 

Theorem 9. 2. Assume one of the following hypotheses. 

(a) (5*>F) is a category of fibres which is either 

(i) T-complete in TJI o r 

(ii) r -complete in W . 

(b) (*}, F) is a category of based fibres which is either 

(i) r ' - comple t e in ^U or 

(ii) r ' - comple te in j y . 

(c) (3- »F) is a category of bundle f ibres. 

Let ( b>G) be the associated principal category of fibres of (*} , F) . Then, 

for A eW , the set <?£(A) of equivalence c lasses of $ -fibrations over 

A is naturally isomorphic to [A, BG]. 

Proof. In the cases (ii), Theorems 6. 4 and 6. 7 and Proposition 7. 2 

will ensure that all spaces in sight are in JV". By abuse, let us agree to 

write ( r , r|) for (T\ r\%) in case (b) and to write (T, rj) for the identity 

functor and identity natural transformation in case (c). With this uniform 

notation, let 
TT = Tp :TB(*, G,F) -* BG 
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in all cases . By Definitions 5.1 and 5.4 and Theorem 7.6 in cases (a) and 

(b) and by Example 6. 11 and Theorem 8. 2 in case (c), TT is an J -fib ration. 

Define 

* : [ A , B G ] - e.?(A ) 

by ^[f] = {f *n"). ^ is well-defined and natural by Proposition 2. 5 , In 

the other direction, define 

• : < T K A ) - [ A . B G ] 

as follows. Given an ^ -fibration v :D -*• A, consider the following com

mutative diagram, where v :PD X G -*- PD is given by composition: 

PD £ g ( \ ) 

Pv 

B(PD,G,G) 

P 

=*• EG 

P 

c(Pv) 
A l . V - . . ^ B ( P D , G , *) - • BG 

€ ( v) is a homotopy equivalence by Proposition 7. 5 and it res t r ic t s to a 

weak homotopy equivalence on each fibre since ( E ( V ) , £(PV )) is a /g-map. 

Since p and P v are quasifibrations, ^(Pv ) is a weak homotopy equiva

lence by the five lemma. Let g be a right homotopy inverse to £(Pv ) and 

define ${v} = [qg]. $ is well-defined and natural by the evident naturality 

of the diagram above, before insertion of g, and by Remarks 9. 1. ^ $ is the 

identity transformation on £*J(A). Indeed, with the notations above, the 

following diagram displays a chain of 3" -maps over A which connects v to 
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f TT, where f = qg, and thus displays an equivalence (in the sense of 

Definition 6. 1) between these 5/-fibrations over A: 

D 

r€(x)y 

TB(PD,G,F) 

r P 

T q 

TD <-

r v i 

^— g*rB(PD,G,F) 

g r P 

- > r B ( * , G , F ) 

Tr=rp 

K 

B(PD, G, *) - •BG 

->f TB(*, G,F) 

I TT 

Here \; PD X F -• D is the evaluation map, H is obtained by application of 

the ^ - C H P to the J- -map ( r e (X) e g , f (Pv)og) and any homotopy 

h: A X I -*• A from f (Pv)og to the identity, and K is given by the universal 

property of f TT. Finally, to analyze $ ^ , assume given f: A -* BG and 

consider the following d iagram: 

A < . . ^ _ _ ^ B(Pf*rB(*, G, F) , G, *) 2 > BG 
g 

f 

BG <- fc(P*) 

B ( P £ I , I ) 

B(PrB(* ,G,F) ,G ,* ) BG 

The argument used to define $ demonstrates that £(PTT) is a weak homotopy 

equivalence (although it need not have a right inverse since BG need not be 

in fr). By Lemma 5. 5 and Propositions 7. 5 and 7. 10, PFB(*,G,F) is of 

the same weak homotopy type as EG and is thus aspherical . Since the 

bottom map q is a quasifibration with aspherical fibre, it is a weak homo-
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topy equivalence. By Theorem 6. 5 and the diagram, $>£ is an auto

morphism of [A, BG]. But then ^ is a bijection and 

V = (<&$)y - ^ ( $ ^ ) , hence $¥ is the identity transformation, 

Remarks 9. 3. In case (c), the requirement that (G, e) be an NDR-

pair appears to be an essential hypothesis. In cases (a) and (b), such an 

hypothesis can be eliminated as follows. Let G1 be the monoid obtained 

from G by growing a whisker from e [17,A. 8]. Via the retraction G' -* G 

(which is a homotopy equivalence) any left or right G-space is also a G1-

space. Replace each B(Y,G,X) in the statement and proof of the theorem 

by B(Y,G',X). Then, -with tr ivial modifications, the argument goes through 

to give £ 3{A) ^ [A,BG'] . Note in part icular that B(Y,G' ,G') is homotopy 

equivalent to B(Y,G f ,G) by Proposition 7.3 and that B(Y,G',G) is homeo-

morphic to PB(Y, G', F) by Proposition 7. 10. 

In all of the following corol lar ies , we agree to read BG1 for BG if 

the basepoint of G happens to be degenerate. 

In view of Example 6. 2 and Lemma 6. 3, we have the following 

classification theorem for principal fibrations. 

Corollary 9. 4» Let G be a grouplike topological monoid and let 

A e JY . 

(i) (fG'UjfA) is naturally isomorphic to [A, BG], 

(ii) If G e i f , £G J-V-(A) is naturally isomorphic to [A, BG], hence the 

natural map i : CG>ir(A) -*• £ G^(A) is a bijection. 
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Similar ly , in view of Example 6. 6, Theorem 6. 7, and Lemma 6. 8, 

we have the following generalization of Stasheff's classification theorem [32] 

for fibrations with fibres of the homotopy type of a given finite CW-complex. 

Corollary 9. 5 . Let F € )Y , let HF denote the topological 

monoid of homotopy equivalences of F , and let A e )Y. 

(i) £FU.(A) is naturally isomorphic to [A,BHF]. 

(ii) If F is compact, £ F >V (̂A) is naturally isomorphic to [A, BHF], 

hence the natural map i : £FJsY(A) -* £F*U.(A) is a bijection. 

Of course , in (ii), the equivalence relation used to define £F>K(A) 

coincides with fibre homotopy equivalence. 

The compatibility of the previous two corol lar ies is immediate 

from our construction of classifying maps. Thus we have the following 

result . 

Corollary 9,6. For F € W and A e JY , P : £ F 11(A) - £HFU(A) 

and, if F is compact, P : £FJV(A) -*• £HFJY(A) a re bijections of se ts . 

Remarks 9. 7. In case (b), we assumed in the proof of Theorem 9. 2 that 

the c ross -sec t ion of p: B(Y, G, F) -* B(Y, G, *) is a cofibration for certain Y. 

Let F 1 be the G-space obtained from F by growing a whisker from the 

given basepoint and letting G act tr ivially on the whisker. The basepoint 

1 e F 1 is the endpoint of the whisker,and (F1, 1) is a G-equivariant NDR-

pair . The cross-sec t ion of p: B{Y, G, F ' ) -*- B(Y, G, *) is thus a fibrewise co

fibration. Provided that F* e $- and the retract ion F ' -̂  F is a map in ^r , 
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the proof of Theorem 9. 2 goes through, with tr ivial modifications, with F 

replaced by F f . 

In view of Example 6. 9, Theorem 6.7, and Lemma 6. 10, we have 

the following new variant of Stasheff's theorem. In [19], this result will 

play a key role in the study of E-oriented spherical fibrations for a com

mutative ring spectrum E. 

Corollary 9. 8. Let F € ^ , let JF denote the topological monoid 

of based homotopy equivalences of F , and let A € Y/ . 

(i) £F *J (A) is naturally isomorphic to [A, BJF] . 

(ii) If F is compact , £ F°\J (A) is naturally isomorphic to [A, BJF] , 

hence the natural map i : £ F V ( A ) - f F 7 ( A ) is a bij ection. 

In (ii), the equivalence relation used to define £Jjy(A) coincides 

with section preserving fibre homotopy equivalence, where homotopies are 

required to be section preserving for each parameter value t e I. 

Corollary 9 .9 . For F eV and A € y{ , P : £ F J (A) -* £ J F U (A) 

and, if F is compact, P : f F V ( A ) -* (JFyV(A) are bijections of se ts . 

Theorem 9. 1 0. Let a topological group G act effectively from the 

left on a space F and let $tj(A) denote the set of equivalence classes of 

numerable G-bundles with fibre F over A. Assume that (G, e) is an NDR-

pair* Then, for A € f{ , $Zf (A) is naturally isomorphic to [A,BG], 
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Proof. Numerable Steenrod fibre bundles are known to 

satisfy the bundle-CHP (which is formulated precisely as was the J - C H P 

but with J- -maps replaced by bundle maps) and the obvious analog of 

Lemma 2.4 [36,§11 and 7], With P the classical associated principal 

bundle functor, the proof is formally identical to that of case (c) of 

Theorem 9. 2. 

Corollary 9 .11 . Let a topological group G ac t effectively from 

the left on a space F and let (^ ,F) denote the corresponding category of 

bundle f ibres. For spaces A e N , let p :<#^(A) -+ $ $ (A) 

denote the natural transformation obtained by regarding a G-bundle with 

fibre F as an 3 -fib ration. Then p is a bijection of sets provided that 

the identity map from G, with its given topology, to Q (F ,F ) , with the com

pact-open topology, is a weak homotopy equivalence and (G, e) is an 

NDR-pair in both topologies. 

Proof. By our construction of classifying maps, the following 

diagram of natural transformations is commutative: 

33 5(A) *- £3(A) 

$ 
B ( I ; 

* 

[A,BG] =—»- [A,B4(F ,F) ] 

The conclusion follows, since B(l) is a weak homotopy equivalence if 1 is 

(by a comparison of quasifibrations). 

We thus have a precise comparison between bundle theory and fibra-

tion theory. 
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10. The definition and examples of Y-st ructures 

Until otherwise specified, let ($• , F) be a category of fibres which 

satisfies one of the hypotheses of Theorem 9. 2, let ( £ , G) be its 

associated principal category of fibres, andlet Y be any right G-space. 

Consider q: B(Y, G, *) -* BG. B(Y, G, *) can be thought of as the classifying 

space for J -fibrations together with a "Y-s t ructure" . In many important 

special cases , Y-s t ructures can be described intrinsically, without refer

ence to the classification theorem, and can then be proven to be classified 

by B(Y, G, *). We give a general intrinsic definition and several examples 

in this section and prove such a classification theorem in the next. The 

motivating example of E-oriented spherical fibrations will be treated in 

[19]; it will in fact be a special case of Example 10. 6 below. 

Definition 1 0 . 1 . Assume given an auxiliary space Z and an inclu

sion of Y in the function space 1jl(F, Z) such that the right action of G on Y 

is induced by restr ic t ion from the action of G = ^ ( F , F ) on Ul(F, Z) given 

by composition. Define a Y-structure 6 on an ^ - s p a c e v : D -*• A to be a 

map 6:D -*• Z such that the composite 0OIJJ:F -*• Z is an element of Y for 

every element \\J: F -> D of PD. Define an JJ-map (v, 0) -*- (v \ 0') of 

j -spaces with Y-structure to be an JE--map (g,f): v -*• v1 such that 0'g is 

homotopic to 0 via a homotopy h: D X I -*• Z such that h I)J: F -*• Z is an 

element of Y for every I)J € PD and t c I (that i s , via a homotopy through 

Y-st ructures) . Define £j^(A;Y) to be the set of equivalence classes of 
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j j-f ibrat ions with Y-structure under the equivalence relation generated by 

the 5 -maps over A. 

Our notions of 5 - m a p s and of equivalence suggest that a 

Y-structure on a given >?-space should be reinterpreted as a homotopy 

class of Y-s t ructures , and we adopt this terminology henceforward. 

Although the definition may seem artificial, at first sight, we shall see that 

it does satisfactorily account for the most important types of additional 

s tructure on ^ - f ib ra t ions . 

When (3- ,F) satisfies hypothesis (a) or (b) of Theorem 9. 2, we shall 

need further conditions on Y and Z in order to ensure that jf--quasifibra

tions with Y-structure in can be replaced 

functorially by 3" -fibrations with Y-structure in Ji . As in the proof of 

Theorem 9.2, we agree to write ( r , r\) for ( r , r|), ( r 1 , V), or the identity 

functor and identity natural transformation according to whether (jf ,F) 

satisfies hypothesis (a), (b), or (c) of that theorem. The following definition 

should be compared with Definitions 5. 1 and 5. 4. 

Definition 10. 2. Let {3~ , F) be T-complete in oL [that i s , r or T1 

complete], and let Y be a sub right G-space of U.(F, Z). The pair (Y, Z) 

will be said to be admissible if Y € JL and the following statements are 

valid for -jr -qua s if ib rat ions TT; E -*• B in JL with (homotopy class of) 

Y-structure 0:E -* Z. 

(1) r 7 r : r E - * r B admits a Y-structure r 9 : r E - * Z 0 

(2) T) :E-*rE defines an J--map (TT, 0) -* (r-rr, r e ) over B. 
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(3) F takes J - m a p s (TT, 9) - (ir\ 0') to ^ - m a p s (rir, TO) - (rir1, re»). 

If (J-, F ) i s a category of bundle fibres, any pair (Y, Z) such that Y is a sub 

right G-space of "U.(F, Z) will be said to be admissible. 

The following two examples give generalised versions of familiar 

types of Y-s t ruc tures . 

Example 10. 3. Let ( 5 f »F) be a second category of fibres, with associated 

principal category ( & ! ,G') , and let j : £ -+ £ » be a functor over Xl(or 

over ^) ii J and ^ ' a re based). Then j defines a morphism of monoids 

G -+ G< = ^ ' ( F , F ) . In Definition 10. 1, set Y = G1 and Z = F . Then a G'-

structure 0 : D -> F on an $ -fibration v : D -*- A is just the second 

coordinate of an J ' - m a p D - ^ A X F over A (at least if a$ e ^ ' and 

P e ^ ' implies a € $~}). In other words, a G'-s t ructure is precisely an 

jf-'-trivialization of the J- -fibration v . Of course, B(G*,G, *) is the 

generalized homogeneous space G'/G of Definition 8. 6. In the interesting 

applications, (j- ,F ) will be a category of bundle fibres, hence the question 

of admissibility will not a r i se . 

Example 10.4. Let f: H -*• G be any morphism of monoids and set 

Y = H\G = B(*,H, G) and Z = TB(* ,H,F) . Y is homeomorphic to 

PB(*, H,F) , by Proposition 7. 10, and the inclusion of Y in 1 I (F , Z) is the 

composite of this homeomorphism and the inclusion Pn of PB(*,H, F) in 

PZ . Let v : D -> A be an $ -space and let 8: D -* Z be a Y-s t ructure . 

Because 6 \\i is in Y for \\J in PD, 0 is fibrewise with respect to v and 

r p : F B ( * , H, F) -*• BH (at least if every point of D is in the image of some \\it 
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as always holds in practice) . We agree to strengthen the notion of an H \ G -

structure by insisting that the induced function A -*• BH be continuous. Then 

T 9 : r D -*• r Z is defined, by Remarks 3.7, and the composite 

r D - ^ * r z = r r B ( * , H , F ) ~ ^ T B ( * , H , F ) = z 

is an H\G-s t ruc tu re for TV : TD — A such that \x eTQ° n = 0. Thus the pair 

(Y, Z) will always be admissible when (j , F) satisfies hypothesis (a) or 

(b) , provided only that H € JV if % = W. We call an H\G-s t ruc tu re 

0:D -* Z on an j -fibration v : D -* A a reduction of the structural monoid 

of v to H. If H is a topological group and v admits such a reduction 0, 

then v i s equivalent to the j -fibration induced from pi B(*, H,F) -*• BH by 

the map A -»• BH derived from 0; of course , this j -fibration is an H-

bundle with fibre F if H acts effectively on F . As explained in Remarks 

8. 9, B(H\G, G, *) is weakly homotopy equivalent to BH (when H is group

like) in such a way that the maps q: B(H\G, G, *) -* BG and Bf: BH -*- BG 

are equivalent. 

We also have the following generic types of Y-s t ructures , the 

second of which will be central to [19]. 

Example 10. 5. Let F € W be compact, let Z € )Y» and let Y be the union 

of any set of components of ^L (F, Z) which is invariant under composition 

with homotopy equivalences of F . Then (Y, Z) is an admissible pair for 

F J V . Indeed, let ir: E -+ B b e a n F Jy' -quas if ib ration with B and E in 

Yf and with Y-structure 0: E -* Z. Choose a homotopy inverse £ : TE -* E 

to n and define T0 = 01, j TE -* Z. For vps F -* (rir)" (b) in P f E (that is , 
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a homotopy equivalence), consider the following diagram, in which n(b) 

-1 denotes the restr ict ion of rj to TT (b) and £, (b) is a chosen homotopy 

inverse to n(b) (which need not be the restr ict ion of t, since £, need not 

be fibrewise): 

- . f r i r r 1 ^ — — - * r E v 
r e 

TT » 

Here F0°I | J ^ r 9 ° T|(b) o C(b)ci|j = 0e^ o n ot,(b)oi); c* 0 o ^(b)*^ and, since 

C (b)4r € PD, it follows that re°i | j is an element of Y. Clearly 

n : (TT, 0) -+• (riT,r9) is an F J Y - m a p over B and r is functorial. 

Example 10. 6. Let F e V be compact, let Z e1/ , and let Y be the 

union of any set of components of J (F, Z) which is invariant under com

position with based homotopy equivalences of F . Then (Y, Z) is an ad-

mis sible pair for F V . Indeed, retaining the notations of the previous 

example (with (r, r\) interpreted as (r',T] !)), we note that L, can be chosen 

to be section preserving (although not fibre preserving) and that £>r\ is then 

homotopic to the identity via a homotopy through section preserving maps 

(because the sections of TT and Fir are cofibrations). These facts, and the 

nondegeneracy of the basepoints of the fibres of TT and TTT, allow the r e 

quired use of based maps and homotopies in the verification that r 0 ° \\J is in 

Y for \\i in PEE, Observe that a Y-structure 8: D -• Z on an F"V -

fibration v:D "*• A factors through the "Thorn complex" D/crA since 
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6i|; € Y for I|J e PD implies that 0 ca r r i es the basepoint of each fibre of v 

to the basepoint of Z. 

Of course , Definition 10. 1 admits a bundle theoretic analog. 

Definition 10.7. Let G be a topological group which acts 

effectively on a space F and let y be the derived category of bundle fibres 

(Example 6. 11). Let Y be a right G-space and let Y -*• 1i .(F, Z) be a con

tinuous one-to-one map under which the right action of G on Y agrees (as a 

function) with the right action of j (F ,F) on XI(F, Z) given by composi

tion; the pair (Y, Z) is then said to be admissible. Define aY-s t ruc tu re 9 

on a G-bundle v : D -»- A with fibre F to be a map 0: D -*• Z such that the 

composite 0I)J: F -*• Z is an element of Y for every element \\ti F -* D of 

PD and such that the function 0: PF -»• Y specified by 0(I)J) = 0°L|J is con

tinuous (where the associated principal bundle PD has its standard topology). 

Define a bundle map (v , 0) -*• (v1, 0') of bundles with Y-structure to be a 

bundle map (g, f): v -*- v' such that 0'g is homotopic to 0 by a homotopy 

through Y-s t ruc tures . Define $jf(A; Y) to be the set of equivalence c lasses 

of G-bundles with fibre F and with Y-structure over A. 

Example 10.3 applies directly to bundles, with ($- ,F) interpreted 

as the category of bundle f ibres derived from F and G. There is also an 

obvious bundle theoretic analog of Example 10.3 in which G' is taken to be a 

group which contains G and also acts effectively on F . 
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In Example 10.4, interpreted bundle theoretically, if H is also a 

group and if v : D -*• A is a G-bundle with fibre F and H\G-s t ruc ture 

8:D -*• B(*,H,F) , then 9 determines an equivalence of G-bundles from D 

to the bundle EX F , where E is the principal H-bundle induced from the 
H 

universal bundle EH -*• BH by A -*• BH. Thus our notion of a reduction of 

the group of a bundle agrees with the standard one. (Compare Lashof [1Z,§1], 

where the te rm lifting is used to emphasize that H -*• G is not assumed to be 

an inclusion. ) 
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11. The classification of Y-structures 

The following fundamental result should be regarded as an elabora

tion of Theorem 9.2 (to which it reduces when Y = * and Z = *). We again 

tacitly assume that the identity elements of all monoids are strongly non-

degenerate basepoints and that all c ross-sec t ions are fibrewise cofibrations. 

The discussions of these points in Remarks 9. 3 and 9. 7 apply verbatim to 

the present situation. We shall often abbreviate maps of the bar construc

tion of the form B(f, 1, 1) to Bf here . 

Theorem 11. 1. Let (^-,F) be a category of fibres which satisfies 

one of the hypotheses (a), (b), or (c) of Theorem 9. 2 and let ( ft , G) be its 

associated principal category of fibres. Let Y be a sub right G-space of 

' \L(F, Z) such that the pair (Y, Z) is admissible. Then, for A € )Y , the 

set f_?(A;Y) of equivalence classes of J- -fib rat ions with Y-structure 

over A is naturally isomorphic to [A, B(Y, G, *)]. 

Proof. As usual, write ( r , n) ambiguously for ( r , r)), ( r ' , n1), and 

the identity functor and identity natural transformation in cases (a), (b), or 

(c). Let \ :Y XF -*• Z be adjoint to the inclusion Y -* XK{Y t Z). Then 

^ ( \ ) : B ( Y , G , F ) - Z is a Y-structure on p: B(Y, G, F) - B(Y, G, *). Define 

an *i -fibration with Y-structure (IT, GJ ) by 

IT = r P : r B ( Y , G , F ) - B(Y,G, *) and a> = T l (\ ) :TB(Y,G,F) - Z0 

Now define * : [A ,B(Y, G, *)] - £3(A;Y) by ¥ [f] = {(f*-rr, ci) } . If 

h: A X I -*• B(Y, G, *) is a homotopy from f to f1, then the following com

posite is a homotopy through Y-structures from oof to ojf'J, , where J is 
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an jf-homotopy over A which s tar ts at the identity map of f TB(Y,G,F) 

and is obtained by application of the 5 -CHP to the identity map of A X I 

(regarded as a homotopy); 

f*rB(Y,G,F) XI - £ - * h * r B ( Y , G , F ) - ^ rB(Y, G, F) - ^ Z. 

Therefore & is well-defined. The same argument shows that £ ^ ( A ; Y ) 

is in fact a functor of A, and & is clearly natural . Define 

* : <fj(A; Y) - [A, B(Y, G, *)] as follows. Let v : D - A be an $ -

fibration with Y-st ructure 0: D — Z and let 0: PD — Y be the map of right 

G-spaces specified by 9(i)j ) = 0 ° \\j . Consider the maps 

£(Pv) B0 
A < ^ B(PD, G, *) B(Y, G, *) , 

g 

choose a right homotopy inverse g to £(Pv ) (as in the proof of Theorem 

9.2), and define ${(v,0)} = [B0 ° g]. Given (v ' ,0 1 ) , an ^ - m a p 

k:D-»- D1 over A, and a homotopy h: D X I -*• Z through Y-st ructures from 

0 to 0'k, define Phs PD X I - Y by (Ph) (i|j ) = h o \\> . Fo r f e G, 

(Ph) (ijj o 0) = (Ph) (ij; )o 0 t hence Ph is a G-equivariant homotopy. It 

therefore induces a homotopy from B0 to B0 ° BPk. Thus $ is well-

defined, and a s imilar argument shows that $ is natural . ^ $ is the identity 

transformation on £ J ( A ; Y ) . Indeed, with (v , 0) as in the definition of $, 

set f = B0o g and replace q by B0, BG by B(Y,G,*), and B(*,G,F) by 

B(Y,G,F) in the diagram used for the corresponding step of the proof of 

Theorem 9. 2. Then the resulting diagram displays an equivalence between 

v and f IT, and it is immediate from an argument like that used to prove 
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that ^ is well-defined and, in cases (a) and (b), from the functoriality of F 

such that r) is an J" -map given by Definition 10. 2 that the constructed 

equivalence is one of J- -fibrations with Y-s t ructure . Fo r the verification 

that $\fr is an automorphism and therefore also the identity, construction of 

a diagram just like that used for the corresponding step of Theorem 9. 2 

shows that we need only check that 

B w : B ( P r B ( Y , G , F ) , G , *) - B(Y,G,*) 

is a weak homotopy equivalence. By comparison of the quasifib rat ions q 

from the displayed spaces to BG, it suffices to check that 

u>: PTB(Y, G, F) -*• Y is a weak homotopy equivalence, and this follows from 

Lemma 5. 5, Proposit ions 7.5 and 7.10, and the fact that COOTJ — £ ( \ ), so 

that 
£ ° P T I <* 8 :PB(Y,G,F) « B ( Y , G , G ) - Y. 

Under the hypotheses of the theorem, consider the quasifib ration 

sequence 

G — » Y —I B(Y, G, *) —* BG 

obtained in Proposition 7 .9 . The following remarks interpret the cor

responding sequence of represented functors on )Y. 

Remarks 11. 2. (i) q^: [A, B(Y, G, *)] — [A, BG] represents the forgetful t r ans 

formation £_?(A;Y)-* £ $ (A) obtained by sending {(v,0)} to {v } since 

there is an J -map j over B(Y,G, *) such that the following diagram com-
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mutes and since ${v} = [q]${(v,0)} by the proofs of Theorems 9.2 and 11.1: 

TB(Y,G,F) T q TB(*,G,F) 

B(Y,G f * BG 

(ii) [A, Y] is naturally isomorphic to the set of (homotopy classes of) 

Y-st ructures on the tr ivial 3 -fibration £ : AX F -*• A. Indeed, given 

f: A -*• Y, its adjoint A X F -•* Z gives the corresponding Y-s t ructure . 

(iii) T :[A,Y] -* [A,B(Y,G,*)] represents the transformation which sends 

a Y-structure 0 on £ to the equivalence class {(f , 0 )} , by inspection of 

the proof of Theorem 11. 1. 

(iv) [A, G] is naturally isomorphic to the set of 3 -homotopy classes of 

5 -maps over A from £ to itself. Indeed, given f: A -*• G, its adjoint 

A X F -*• F gives the second coordinate of the corresponding 5 - m a p over A. 

(y) t :[A,G] -** [A, Y] represents the transformation which sends an J - -map 

g ; A X F - > A X F to the Y-structure 0 o g, where 6 : A X F — Z is the 

Y-structure on £ with adjoint the tr ivial map A -* {yn} e Y, y = L (e). 

Observe that if Y happens to admit a delooping, or classifying 

space, BY and if t deloops to a map BL : BG -* BY with fibre equivalent 

to q: B(Y,G,*) -• BG, then BL defines the obstruction to the existence of a 

Y-structure on an 3" -fibration v ; that is , v admits a Y-structure if and 

only if (Bi ) ^ v} is the trivial homotopy c lass . For example, when Y = G1 
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is as in Example 10 .3 , the quasifibration sequence above extends to 

J G ! /G -••BG »J-» BG1 

by Proposition 8. 8, and Bj defines the obstruction to the existence of an 

3 -trivialization of an ^-fibration. 

Remark 11 .3 . In the applications, one is often interested in two (or more) 

types of structure on j - -fibrations. The theorem already handles such 

situations since, if Y and Y1 a re right G-spaces, then the square 

BIT. 

B(YX Y' ,G, *) 

Bir. 
L 

B(Y',G,*) 

B(Y,G,*) 

q 

\ 
->> BG 

is a pullback and since, in cases (a) or (b), if (Y, Z) and (Y', Z1) are ad

missible pairs , then so also is (Y X Y1, Z X Z') . When Y1 = H\G for some 

morphism of monoids f: H -*• G, the pullback above can be used interchange

ably with the pullback 

B(Y,H,*) 33(1>£> 1) * B(Y,G,*) 

BH 
Bf 

-*• BG 

in view of Remarks 8.9 and the following commutative diagranm, in which all 

vert ical arrows are weak homotopy equivalences: 
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B(H\G,G, *) 

B(H\G,G,*) 

e(p) 

Bf 

BH-
Bf 

BG 
I 

B ( G \ G , G , * ) 

—* BG <~— 

Bq 

B(Y,G, *) 

B£ 

B(B(Y,G,G),G,*) 

£(p) 

B(Y,G,*) 

The proof of the following bundle theoretic analog is formally 

identical to the proof of Theorem 11 .1 . Recall Definition 10.7. 

Theorem 11. 4. Let a topological group G act effectively from the 

left on a space F and assume that (G, e) is an NDR-pair. Let the 

pair (Y, Z) be admissible. Then , for A € yf , the set 

$ J(A; Y) is naturally isomorphic to [A, B(Y, G, *)]. 

Of course, Remarks 11.3 apply verbatim to Theorem 11.4, and the 

obvious bundle theoretic analogs of Remarks 11. 2 are valid. 

We have an evident natural transformation t, I <g^(A;Y) -*> £^(A;Y) 

where, on the right, Y has its topology as a subspace of *"U_(F, Z). If the 

identity map from Y, with its given topology, to Y, with its function space 

topology, is a weak homotopy equivalence and if the hypotheses of 

Corollary 9. 11 are satisfied, then £> is a bijection of se ts . 
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i 2. A categorical generalization of the bar construction 

We here introduce an amusing categorical construction which allows 

us to generalize the material of section 9 to a context in which any set of 

fibres, ra ther than just a single fibre, is given a privileged role. This r e 

working of the theory yields an analysis of the effect of changing the choice 

of privileged fibre. 

Let 0* be a fixed set (of objects) regarded for our purposes as a 

discrete topological space. Define an 0" -graph to be a space (JL (of arrows) 

together with continuous maps S: &-* & and T: Q.-* 0" (called source and 

target) . Let CfGr denote the category of O'-graphs; its morphisms are 

continuous maps f« ft~~* Q-1 such that S°f = S and T«f = T. Regard Cf 

itself as that U -graph with arrow space ©r and with S and T the identity 

map . Define the product over & of ©"-graphs OL and QJ to be the 

0 -graph &P & ' with arrow space {(a, a1) | Sa = Ta1} C fr x &' and with 

source and target defined by S(a, a') = Sa1 and T(a,a !) = Ta. Clearly Q is 

associative, up to the evident natural isomorphism, and is unital with 

respect to the natural isomorphisms X: a - CTa a and p: Ci^CiQ CT 

specified by \(a) = (Ta, a) and p(a) = (a, Sa) for a € CL • 

Thus ^ G r is a monoidal category with product 0 and unit (J* . 

We can therefore define the notion of a monoid (JH,Ct I) in C^Gr. Here 

C:u a JJ-*• Q and I: Q -* H are maps of ^"-graphs (called composition and 

identity) such that C is associative and I is a two-sided unit for C . 

In other words, Q is just a small topological category with object space Qr . 
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So far we have followed Mac Lane [14, p. 10 and 48], but we must 

now take cognizance of the as symmetry of D . Define a right (/ -graph to 

be a space (pii together with a map S: ^U -+ O . Similarly, for a left fir -

graph 9^» only T: ^L "*• U is to be given. Observe that, for an Q-graph 

Q^ , we can define \J n (X and Q. 0 /k as right and left ( / -g raphs , and we 

can define ^^% as a space. Now let fi be a monoid in ^ G r . Define 

a right 0*-graph over li to be a right ©" -graph rU together with a map 

of right U-graphs which satisfies the evident associativity 

and unit formulas R(l • C) = R(R Q 1) and R ( l ° I) = p . The notion of a 

left w -graph over W is defined by symmetry. 

At this point we can generalize the definition of the two-sided geo

metr ic bar construction to tr iples flf, ti ,16), where J[j is a monoid in ©Gr 

and °U and A- are right and left 0" -graphs over H . Indeed, we need only 

replace X by D in the definition of section 7 to obtain a simplicial topo

logical space B (̂*U , }j, , % ) , and we define B(fU , j[j , 7w to D e its geometric 

realization. To ensure that the construction has good topological propert ies , 

we insist that ( A J , I © ) be a strong NDR-pair [17, A. 1], When O" is a 

singleton set, this two-sided bar construction reduces to that in section 7. 

The O'-graph & is itself a right and left ©'-g raph over (J via 

KaO -£l- h —2+ & and &o H-±-+ H - 5 - * - (5-

B ? i = B ( 8 , ) i , 0 ) is the standard classifying space of the category /d- (e. g. 

Segal [30] or [18, §4]), and we write E / i = B(©- , Jj. , &) . 
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All of the results of section 7 and some of the results of section 8 

generalize to B ^ , ft , % ) . Indeed, this is apparent from the fact that most 

of the proofs depended only on general properties of geometric realization 

and elementary properties of the simplicial bar construction. Note for 

Proposition 7.4 that the product Q.X CL' of an ©-graph (X and an Qx -graph 

(X is an O x C -graph and that there are evident natural isomorphisms of 

simplicial spaces 

for tr iples (TJ , ft , % ) o v e r h a n d ("U!» Jj'» JC) o v e r ©*'• F o r Theorem 

7.6, we say that fd- is grouplike if its homotopy category is a groupoid (so 

that every homotopy class of maps in fa is invertible); here p and q are 

induced from T : % - & and S:<M.-©- and are qua s if ib rat ions. Theorem 

8. 1 and Remarks 8.10 wholly fail to generalize; E w- is clearly not a group 

(or groupoid) if M is a groupoid, and commutativity in Jd only makes sense 

on subcategories with one object. 

Now suppose given a homogeneous category of fibres. Call it /4-

rather than y , to accord with our present emphasis on the nnorphism spaces 

rather than the object spaces, but continue to speak of jf -spaces and $• -

fibrations. (Note that, in our previous notations, the object spaces of the 

associated principal category were certain of the morphism spaces of the 

original category.) Let (j denote the collection of objects of hi, assume 

that 0" is a set, and give 0" the discrete topology; explicitly, Q" is to have 

one point {F} for each object space F , Let & denote the left 

C7"-graph over j j which, as a space, is the disjoint union of the object 
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spaces of ^ •, Ttj -+£) is the map which collapses a space F of the d i s 

joint union to the point {F} f and the left action Sjfl J -*J is defined by 

the evaluation maps iL(Ff F1) X F -* F \ 

Let v;D -* A be an 3 -space. Define a right (^-graph (?D 

over ft as follows. As a space, (pD is the disjoint union over F of the sub-

spaces of ^U-CFjD) which consist of the maps in / i from F to a fibre of v. 

S: (pD -+- O assigns the point {F} to all ip: F -* D in ^ D , and the right 

action is induced by the composition maps 

U ( F ' , D ) X fcJ(F,F')-*U(F,D). 

We can now formally replace all bar constructions B(Y,G,X) which 

occur in the proof of Theorem 9. 2 by corresponding bar constructions 

B(\i , fa »7w« I31 cases (a) and (b), the proof goes through without the slight

est change, We must avoid case (c), because Theorem 8.2 is not available, 

but here all fibres are homeomorphic and the present elaboration would be 

uninteresting in any case . In practice, we must also avoid case (i) of (a) 

and (b), since here J" is usually not homogeneous. This leaves case (ii), 

and here the categories J-J\ and j i of Examples 6.6 and 6.9 are 

homogeneous. 

We have ignored one difficulty: 0* was assumed to be a set, where

as the categories of interest are large . Probably the best solution to this 

problem is to res t r ic t the constructions above to the various small full sub

categories of y . For example, Theorem 9. 2 as originally developed is 

the case when ^ is replaced by its full subcategory with one object F . 
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Thus reinterpret above to be a given set of objects of our 

original category. Now note that the bar construction is functorial in (J. 

Indeed, if © is a subset of 0 and if ('Ij', £j',X ) is defined over ©" , then 

(U » H ,T ) is defined over 0 , where 

<U « S^O C Y , h = S ^ e O T ' V C W , and *= T_1(9 C JL' 

and the inclusions induce a well-defined map 

B f y . f c . X ) - B ( y , f c • , % • ) . 

In practice, by comparisons of quasifib rat ions, these maps will all be weak 

homotopy equivalent to BHX1. 

For example, to show that BHX is homotopy equivalences to BHX1 

when X and X' a re spaces of the homotopy type of a given compact space 

, we need only map the quasifib rations EHX -»• BHX and 

EHX' -* BHX1 to the quasifib rat ion E fa — B £), , where H> is the full sub

category of F>V with objects X and X1. Indeed, by use of la rger sets of 

objects, we actually obtain a coherent system of homotopy equivalences con

necting the BHX as X ranges through the given homotopy type. Of course, 

these remarks apply equally well to any other homogeneous category of 

fibres and can easily be elaborated to a precise comparison of the natural 

transformations $ and ^ (of the proof of Theorem 9.2) obtained by use of 

different choices of privileged fibre. 
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13. The algebraic and geometric bar constructions 

Let R be a commutative ring and take all homology with coeffi

cients in R throughout the last three sections. 

Just as the two-sided geometric bar construction is obtained by 

composing the simplicial bar construction on appropriate t r iples of spaces 

with geometric realization, so the two-sided algebraic bar construction is 

obtained by composing the simplicial bar construction B on appropriate 

tr iples of differential R-modules with the condensation functor C from 

simplicial differential R-modules to differential R-modules. The reader is 

referred to the Appendix of [10] for the details of the definition. Write 

B(M, U, N) for the algebraic bar construction, where U is a differential 

R-algebra and M and N are right and left differential U-modules. Write 

EU = B(R, U, U) and BU = B(R, U, R), rather than the standard notations of 

[10], in conformity with the notations for the geometric bar construction. 

In view of the similari ty between their definitions, it is natural to 

expect there to be a close relationship between the geometric and algebraic 

bar constructions. In the case of BG, this relationship was first made pre

cise by Stasheff [31], singularly, and later by Milgram [23], cellularly. 

Let ^ denote the subcategory of u. which consists of the CW-

complexes and cellular maps . There is a derived subcategory (X(£ ) °^ 

CL(TJL), with objects those tr iples (Y, G, X) such that Y, G, X e £ and the 

product and unit of G and its actions on Y and X are cellular maps. The 

component maps of morphisms in (X ( £ ) are also required to be cellular. 
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We shall write C.. for cellular chains and C , for normalized 
# * 

singular chains (both with coefficients in R). The product of CW-complexes 

X and Y is a CW-complex (since we are working in \L) with a natural cell 

s t ructure such that C„ (X X Y) can be identified with C..X® C„Y. 
TT # # 

In order to get the right signs, we agree to write simplices to the 

left, |X | = 1 1 A XX / ( « ) , when forming the geometric realization of 

simplicial spaces. 

Proposition 13. 1. Let (Y,G,X)e & ( £ ) . Then B(Y,G,X) is a 

CW-complex with a natural cell s tructure such that C„B(Y, G, X) is 
# naturally isomorphic to B(C^ Y, C G, C X). 

Proof. Give B (Y, G, X) = Y X GP X X the product cell s tructure. 
P 

Then, by [17, 11.4], B(Y,G,X) is a CW-complex with one (n+p)-cell 

A X o- for each n-cel l (r= i r . X ^ X . . . X(r X IT , . of Y X (G - e)PX X. Let p 0 1 p p+1 

A X a correspond to the element o"-[cr, , . . . , <r ](T , , of p 0 1 pJ p+1 

B(C„Y,C11G,C..X). The pieces 8A X cr and A X da- of the boundary of 
# # # p p 

A X o- give r ise to the simplicial (or external) and internal components of 

the differential d = ^T^ (-1) 3. + (-1) 3 in the bar construction (see [10, 
i=0 X 

A. 2]). 

We require the following addendum to [17, 11.15] in order to 

describe the behavior of products under the isomorphism of chains given in 

the proposition. 
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L e m m a 13 . Z. Let X and Y be s i m p l i c i a l ob jec t s in fc . Then 

the n a t u r a l h o m e o m o r p h i s m f f : | X X Y | - * | X | x | Y | is n a t u r a l l y nomotop ic 

to a c e l l u l a r m a p f and the n a t u r a l h o m e o m o r p h i s m g = (ff) is i t se l f 

c e l l u l a r . 

Proof , f = (G X G ^ f , w h e r e the G. a r e the A l e x a n d e r - W h i t n e y 

type homotopy e q u i v a l e n c e s spec i f ied in the proof of [17, 1 1 . 15], and the 

r e q u i s i t e v e r i f i c a t i o n s a r e the s a m e as t h e r e . 

We a l so w r i t e f and g for the m a p s of the g e o m e t r i c b a r con 

s t r u c t i o n de r ived v ia the iden t i f i ca t ions (of [17, 10. 1]) 

B ^ ( Y , G , X ) X B ^ Y ' . G ' . X ' ) = B ^ Y X Y ' . G X G ' . X X X ' ) . 

In p r e c i s e ana logy , [10, A, 3] g ives n a t u r a l cha in homotopy 

e q u i v a l e n c e s , t h e A l e x a n d e r - W h i t n e y and shuffle m a p s , 

g : C ( M ® N ) - C M 0 C N and n : C M ® C N - C ( M ® N ) 

for s i m p l i c i a l d i f fe ren t i a l R-module s M and N. We a l so w r i t e £ and r\ 

for the m a p s of the a l g e b r a i c b a r c o n s t r u c t i o n d e r i v e d v ia the iden t i f i ca t ions 

(again , of [17, 10. 1]) 

B ^ ( M , U , N ) ® B ( M ' . U ' . N 1 ) = B ( M ® M \ U ® U ' , N®N') . 

P r o p o s i t i o n 13. 3, Let ( Y , G , X ) and ( Y ' . G ' . X 1 ) be ob jec t s of 

(JL(^> )• Then ,unde r the i s o m o r p h i s m of P r o p o s i t i o n 13. 1, C.f co inc ides 

with £ and C„ g co inc ides with n. 
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Proof. This is verified by explicit calculations<, We omit the 

details (which really amount only to checks of signs) since the precise 

definitions of £ and n were motivated by the present result . 

The following results give special properties of BG and EG. 

Proposition 13.4. If G is a cellular topological monoid, then BG 

admits a cellular diagonal approximation with respect to which Cj.BG is 
fr 

naturally isomorphic to BC..G as a differential coalgebra. 

Proof. f ' o B A = A : B G - B G X B G , and f oBA = (G X G )A is the 

desired diagonal approximation; it is cellular by [17, 11. 15]. The chain 

level statement does not follow by naturality from the previous result, since 

BA need not be cellular, but instead requires an easy direct calculation from 

the explicit coproduct 

D [ g ! . - - - . g p ] = i ? ( - D ( p " i ) q i [ g 1 . . . . . g i ] ® [ g i + 1 . . . . . g p ] . 
i= 0 

^ = X d e § gj 

on BC„G. Note that D is independent of any possible coproduct on C.G. 
fr fr 

Proposition 13. 5. If G is a cellular topological group, then so 

is EG. 

Proof. This follows by naturality from the identification of EG 

with |D G| in the proof of Theorem 8 . 1 . 
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Proposition 13. 6. If G is a cellular Abelian topological monoid, 

then so are BG and EG. C..BG is naturally isomorphic to BC..G as a 
# if 

differential Hopf algebra. 

Proof. The first part is immediate by naturality and the second 

part follows from Propositions 13.4 and 13.3 since the product on BC G is 
# 

derived from the shuffle map by naturality. 

Remarks 13.7. Let u be an Abelian group regarded as a discrete CW-

complex. As noted by Milgram [23], if we define K(TT, n) = B IT by iteration, 

then K(TT, n) is a cellular Abelian topological group such that 

CJ,K(TT, n) = B (RTT) as a differential Hopf algebra, where RTT denotes the 

group ring of TT. This gives an alternative derivation to the classical one 

(given in detail in [l 0, Appendix]) of the geometric prel iminaries necessary 

* 
for Cartan 's calculations of H K(Tr,n). 

In order to apply the above results in full generality, we note the 

following result . Although it surely ought to be well-known, it seems not to 

appear in the l i te ra ture . Let S denote the total singular complex functor 

from spaces to simplicial se ts , let T denote the geometric realization 

functor from simplicial sets to spaces, and let $ I TSX -*• X denote the 

natural weak homotopy equivalence, $[u , f | = f(u) for u€ A and 
tr 

f:A - X (see e .g . [16]). Of course, T takes values in / ° . 
tr "^ 

Proposition 13.8. The normalized singular chains C X a re 

naturally isomorphic to the cellular chains C..TSX. The Alexander-Whitney 
# 
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and shuffle maps £ and r\ agree under this isomorphism with the 

respective composites 

V 
C TS(XXY) = CUT(SXXSY) ——*- C„(TSX X TSY) = CUTSX ® C^TSY 

# # ff # # 
and 

C#g 
C„TSX®C„TSY = C..(TSXXTSY) — ^ CJ1T(SX X SY) = C„TS(XXY) . 

# # # # # 

Proof. Let a non-degenerate simplex f: A -*• X correspond to the 

cell A X f C TSX, where the p-simplex f is regarded as a vertex of the 

discrete CW-complex S X. This correspondence sets up the required 

isomorphism. (Note that, by the paragraph after [10, A. 7], £ and r\ on 

singular chains are special cases of the maps £ and n of [10, A. 3]. ) 

Thus the geometry of simplices provides a rigorous construction 

of the Alexander-Whitney and shuffle maps on singular chains, rather than 

just the motivation for an algebraic definition. 

The following theorem is the main technical result on the relation

ship between the geometric and algebraic bar constructions. 

Theorem 13. 9. For (Y,G,X)e Q.0M, B(TSY, TSG, TSX) admits 

a cellular diagonal approximation with respect to which Cj,B(TSY, TSG, TSX) 
Tr 

is naturally isomorphic to B(C Y,C G,C^X) as a differential coalgebra. 

Therefore H B(Y,G,X) is naturally isomorphic as an algebra to the 

homology of the dual of B ^ Y , C^G, C X). 

Proof. On the level of differential R-modules, Propositions 13.1 

and 13.8 establish the required isomorphism. For the statement about the 
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diagonal, consider the following diagram (in which the isomorphisms are 

given by the results just cited): 

C B(TSY,TSG, TSX) 

C B(TSA, TSA,TSA) 

C B(TS(Y XY), TS(GXG), TS(X XX )) 
IT 

BfC^Y.C^G.C^X) 

B^A.C^A.C^A) 

S B(C:jc(YXY),C;|((GXG),C!(!(XXX)) 

C#B(f,f,f) B(e ,e .e ) 

C B(TSYXTSY, TSGX TSG, TSXX TSX) S BfC^Y ® C^Y, C^Gf&C^G, C^XI^C^X) 

C # f 

CB(TSY,TSG,TSX)®CJ3(TSY,TSG,TSX) ^ B(C^Y,C^G, C^X^B^Y.C^G.C^X) 

The fact that (£, £, £) is a morphism of tr iples in the appropriate category, 

so that B(£, £, g) is defined, follows from the commutative diagram dis

played in [10, A. 3 ] , Since £ = C,,f and rj = C„g, the same combinatorial 
TT TT 

proof shows that the analogous diagram with condensation replaced by 

geometric realization also commutes, hence that (f, f, f) is a morphism in 

(X(C )• ^ n e u P P e r two squares of our diagram commute by naturality (from 

Proposition 13. 1), and the bottom square commutes by Proposition 13.3 . 

The map f ° B(f °TSA, f °TSA, f ° TSA) is homotopic to the diagonal, and the 

coproduct on B(C .Y,C G,C X) is defined to be g • B ( ^ C A, £* C A, £ ° C A) 
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The last statement (which is given in cohomology solely in order to avoid 

flatness hypotheses for coproducts) follows since the map 

B(S,$ ,$) :B(TSY,TSG, TSX) - B(Y,G,X) 

induces an isomorphism on homology by Proposition 7 .3 . 

We complete this section with a discussion of the following theorem. 

Theorem 13. 10. Let (Y,G,X)e 0L01) and let R be a field. Then 

there is a natural spectral sequence of differential coalgebras which con-

2 H*G 

verges from the coalgebra E = Tor (H Y,H X) to the coalgebra 

H j)tB(Y,G,X). 

R is taken to be a field to avoid awkward flatness hypotheses. 

There are two conceptually different proofs. F i r s t , following 

Rothenberg and Steenrod [29], we can construct an exact couple by passage 

to homology from the filtration by successive cofibrations of the space 

B(Y,G,X). This approach is analyzed in [17,11.14], where the E - t e rm 

is computed. Because of its geometric nature, this approach makes it 

simple to put Steenrod operations into the spectral sequence when R = Z 
P 

and is applicable to any homology theory with an appropriate Kunneth 

theorem. 

Second, following Eilenberg and Moore [26], we can filter the 

algebraic bar construction B(M, U, N) by 
F B(M, U, N) = Image J £ B.(M, U, N) 

P i=0 * 
and observe that E B(M, U, N) = B(HM, HU,HN), which is a suitable 
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differential R-module (or R-coalgebra if HU is a Hopf algebra and HM and 

HN are right and left coalgebras over HU) for the computation of 

T o / (HM, HN). This approach is analyzed in [10, A. 9 and §1 ,2 ,5 ] , Be

cause of its algebraic nature, it gives maximal information on the internal 

s tructure of the spectral sequence. 

Theorem 13.9 demonstrates the applicability of the second approach 

to the calculation of H B(Y,G,X) and proves that both approaches yield the 

same spectral sequence. Indeed, the map B($, $, $) certainly induces an 

isomorphism of Rothenberg-Steenrod spectral sequences, and the isomorph

ism between C B(TSY,TSG,TSX) and BfC^Y, C^G, C^X) implies that the 

Rothenberg-Steenrod spectral sequence for the tr iple (TSY, TSG, TSX) is 

isomorphic to the Eilenberg-Moore spectral sequence for the triple 

(C Y,C G,C X). Note that our chain level isomorphism yields a par t icular-

2 
ly conceptual proof that the obvious algebraic coproduct in E converges to 

the correct geometric coproduct in the l imit. 
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1 4. Transports and the Serre spectral sequence 

As in section 1, assume given a category jr with a faithful under

lying space functor to XL • Recall that jf denotes the category of non-

degenerately based spaces in 11 . For A e J , let AA and PA denote 

the Moore loop space and path space on A and let p: PA -*• A denote the 

end-point projection. The associated principal fibration functor previously 

denoted by P will be denoted by Prin here . 

Definition 14. 1. An s - t ransport over a space A e J is a space 

X € 3 together with an (associative and unital) action TS AA X X -*• X such 

that T ( \ , ) :X-» X is a map in i for each Xe AA. Define 33(A) to be 

the collection, assumed to be a set, of equivalence classes of T - t ransports 

over A under the equivalence relation generated by T » T' if there exists 

a maD filX - X ' in jr such that the following diagram is commutative: 

AA X X + X 

1 XJZf U 

AA X X' *• X' 

Fo r a map f:A' -* A in J and an ^--transport T over A, define an 

5 - t ransport f*T over A1 by (f T)( X', x) = T(f © X', x) for X' € AA' and 

x € X. Then J j is a contravariant functor from J to sets . 

Observe that the adjoint AA -*» 3*(X,X) of an 3 - t ransport T is a 

map of topological monoids and that, conversely, such a map has adjoint an 

5 - t ransport over A. Clearly J^(A) is isomorphic to the set of equiva

lence classes of maps of monoids y: AA -+ jf (X, X), X € j£- , under the 
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equivalence relation generated by y « y' if there exists a map 0:X -*• X' 

in ^ such that 0( \ \ ) (x) = ( y \ )(0x) for all X € AA and x e X. 

While the proof of the following theorem works somewhat more gener

ally,we shall res t r ic t attention to the categories of Example 6.6 for simpli

city. The idea of the result , and the t e rm " t ranspor t" ,are due to Stasheff [33]. 

Theorem 14. 2. Let F e W and let J? be F1A or, if F is com

pact, YW . Then, for A €̂V , £ 3 (A) is naturally isomorphic to 33(A). 

Proof. £3( A ) ~ [A, BHF] is a well-defined set, and it will follow 

from the rest of the proof that JJKA) is also well-defined. Define 

$ : £3(A) -* J 3(A) as follows. Given an j£ -fibration v :D — A, let 

F v = ( r v ) ~ (*) C TD and let T: AA X Fv — F v be obtained by restriction 

from > : r r D — TD . Then let ${ v } = { T } . Define ¥ : J3"(A) - £"J(A) 

as follows. Given an Q - t ransport T: AA XX "* X, use it and the natural 

right action of AA on PA to construct the quotient space PA X X ; it is 
AA 

weak Hausdorff because of the nonde gene racy of the basepoint * e A. Define 

i r :PAX X -* A by Tr(p,x) = p ( p ) and note that TT~ (*) = X. Define a 

transit ive lifting function 
£ : r (PA xA A x) -> P A xA x 

v AA ' AA 

for ir by £, (a , (p,x)) = (#p, x). Then define ¥ { T } = {v}„ If T is derived 

from v ; D -*• A as in the definition of $, then 
JJL : P A x FV c r r D -* r D 

induces an j " -map PA X Fv -» TD over A which res t r ic t s on Fv to 

the identity map. Since { Tv } = { v } , it follows that >£$ is the identity 
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transformation of f 3(A). Conversely, if IT is derived as above from a 

Jr - t ransport T, SO that 

FTT = { ( * , ( p , x ) ) | <*€ ]JA, (p,x) € PA X ^ F , a(0) = p(p),p(a) = *} , 

define fi: Fir -* X by 0(ar, (p,x)) = T(arp,x). Then the diagram 

A A X F T T £ * F i r 

i T * 
AA X X *- X 

is commutative, because T( \ , T(arp, x)) = -r(\o'p,x), and therefore $ ^ is the 

identity transformation of J 3(A). 

Since, up to equivalence, a fib ration determines and is determined 

by a t ransport , it is plausible that the Serre spectral sequence can be de

rived by use of a differential R-module whidi depends only on a t ranspor t . 

We shall show that this is the case. We first note the following fact. 

Lemma 14. 3. If A € J is connected, then the diagram 

A < £ $> B(PA, AA, *) 3—>- BAA 

displays a weak homotopy equivalence between A and BAA. 

Proof. Since A i s connected, the fibration p: PA -*• A maps 

onto A and is thus a quas if ib ration. The result follows from Corollary 7 .7 . 

Recall that homology and cohomology are to be taken with coefficients 

in R. 

Licensed to Univ of Rochester.  Prepared on Mon Jul 27 14:50:18 EDT 2015for download from IP 128.151.13.18.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Classifying spaces and fibrations 8 5 

Theorem 14. 4. Let A e -3 be connected and let v : D -*• A be a 

quasifibration with F = v (*). Then there is a natural spectral sequence 

* * 

{E V) of differential algebras such that E v = H (A; 2f (F)) as an algebra 

and {E V} converges to the algebra H D. 

Proof, The result is stated in cohomology to avoid flatness 

hypotheses for coproducts, and we shall work in homology. Replacing v by 

Tv :TD •* A if necessary , we may assume without loss of generality that 

v has a transit ive lifting function £ : TD -• D. By restr ict ion of £ , we 

obtain 
£ : P A X F -> D and T : AA X F — F . 

The following diagram is commutative: 

D «-

A •*-
€(p) 

B(PA, AA,F) 

P 

B(PA, AA, *) 

-**B(*,AA,F) 

P 

-*• BAA 

£(§) res t r ic ts to the identity map on F = p (*), hence, by the lemma and 

Theorem 7.6, the upper row displays a weak homotopy equivalence between 

D and B(*,AA,F). By Theorem 13.9, we conclude that 

H^D = HB(R,C^AA,C F) . F i l te r this algebraic bar construction by wri t

ing, additively, 

and then defining 

BfR.C^AA.C^F) = BC^AA®C+F 

F B(R,C AA,C F) = ^ B . C A A 0 C F 
P i< P 

Let {E V } denote the derived spectral sequence. The degree i referred 
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0 
to in the filtration is the total degree, hence, visibly, the differential d is 

just l ® d . Thus, additively, E v = B C . A A 0 H F by the Kunneth 
pq p * q 

theorem. We may rewrite E v = B(R,C AA,H F) ; this equality holds as 

differential R-modules, the point being that the last face operator depends on 

the action of C AA on H F induced by the transport T. Since 

BC AA 9* C.BAA, by Theorem 13.9 again, we conclude that 

E v S C (BAA; H^F) . The reader is referred to Steenrod [36, §31] for a 

thorough treatment of cellular chains with local coefficients. Thus 

E v ^ H^(A5 #*F)« F o r t h e coproducts, merely note that Theorem 13.9 

implies both that B(R, C AA, C F) is a filtered differential coalgebra iso

morphic to CJ.B(*,AA,F) and that E v is isomorphic to CiBAA; >/.F) as 

a differential coalgebra. 

A comparison to the standard construction of the Serre spectral 

sequence from a filtration on C D can easily be obtained by means of a 

chain level elaboration of the geometric diagram displayed in the proof. Our 

construction is s imilar in philosophy, but not in detail, to that given by 

Brown [3] in te rms of twisted tensor products. 

There is more than just a formal similari ty between the diagram 

used in the previous argument and those used in the proof of Theorem 9.2. 

Indeed, with the notations of the proof just given, the following diagram is 

commutative (where T" and £ denote the adjoints of T and £ ) : 
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BAA 

This diagram displays a connection between the classification theorems of 

Corollary 9. 5 and Theorem 14. Z. For A e u , the classifying map 

A — BHF for v is t ransported to B'T : BAA -* BHF via the canonical 

homotopy equivalence between A and BAA. Of course, since Corollary 9.5 

refers to a fixed chosen space F e_J- whereas Theorem 14„ Z refers to a r 

bi t rary spaces in ^ , it would be necessary to use the theory of section IZ 

to make a more systematic comparison between the cited resul ts . 
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1 5. The group completion theorem 

We say that an H-space X is admissible if it is homotopy 

associative and if left translation by any given element is homotopic to 

right translation by the same element; the lat ter condition certainly holds 

if X is homotopy commutative. 

Let f: X -*• Y be an H-map between admissible H-spaces, where Y 

is grouplike. We say that f is a group completion if f :H X -* H.Y is a 

localization of the ring H X at its multiplicative submonoid "trnX for every 

commutative coefficient ring R. This condition will hold if it does so for 

all prime fields R = Z and for R = Q [28 or 18, 1.4], hence we assume 

that R is a field below. 

The purpose of this section is to prove the following result, which 

is a version due to Qaillen [28] of a theorem of Barra t t and Priddy [ l ] , 

Theorem 15. 1. Let G be a topological monoid such that G and 

QBG are admissible H-spaces . Then the natural inclusion t, :G -*• ftBG is a 

group completion. 

According to Qaillen, the admissibility of £2BG need not be 

assumed. The argument in [28] seemed unconvincing on this point, and 

Qaillen subsequently obtained a quite different proof [private communication]. 

However, this hypothesis is usually satisfied in practice and allows the 

present technically simplified version of Qiillen's original argument. 

We begin the proof with the following lemma. 
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Lemma 1 5. 2. ir C,: ir G -* ir fiBG is a group completion; that is , 

TT £ is universal with respect to morphisms of monoids from ir G to 

groups. 

Proof, ir BG = H (BG; Z) since ir ftBG is commutative by the 

admissibility of ftBG. By Theorem 13.9, we may use BC G to compute 

H BG. We find that it is the quotient of H G by the image of HQG® H G 

under the map d = 8 - 9 + 9 or 

d(x®y) = £(x)y - xy + £(y)x , 

where £:H G "*Z is the augmentation and xy is the Pontryagin product. 

In other words, H BG is the quotient of the free Abelian group generated by 

the set ir G by the subgroup generated by { x + y - x y |x, ye ^ G}. . Clearly 

TT £, agrees with the natural map, and the conclusion follows. 

To proceed further, we need Segal's (unpublished) analog for 

"special" simplicial spaces of the total singular complex. Let JL3 denote 

the category of proper simplicial based spaces. 

Definition 1 5. 3. An object Y € I J is said to be reduced if 

Y = * and to be special if, in addition, the map (6 , . . . , 5 ): Y -* Y 

is a homotopy equivalence for all p, where 6 = 9^. . . 9. , 9. ._, . . . 3 . For 
0 i - l i+2 p 

example, B^G is special for any topological monoid G € J . Let A J 

denote the full subcategory of A J whose objects are special. Let 

T: A J -*• J denote the geometric realization functor. Define a right 

adjoint S: J -*• .4 J to T by letting S X be the space of maps 
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(A A ) — (X.*), where A denotes the set of ver t ices of A , and letting p p ' v p p 

the face and degeneracy operators be induced from those of A just as for 

the total singular complex [16, p. Z]s Obviously S X = ftX, and it is t r ivial 

to verify that SX is special. The adjunction 

i + J (Y, SX) - ^ » J (TY, X) 

is given by (0f) |y ,u | = (fy)(u) and (^g)(y)(u) = g|y>u| for f; Y -*• SX and 

g; TY -•• X, where y e Y and u e A , precisely as in the classical case 

[16, p. 62]. Write 

$ = 0(1): TSX —X and * = i|;(l): Y -* STY. 

We shall need the following variant of Lemma 14 .3 . Its proof r e 

quires only tr ivial verifications and use of Proposition 8.7. 

Lemma 1 5. 4. Let X e J and define £: BAX -*• X by the formula 

i \ i \ V , u | = V " V ( . ^ V ( \ p i = i 
)) 

for \. e AX and u = (t , . . , t ) e A , where u. = t_ + . . . +t. . . Then the 
l x 0 p p l 0 l-l 

following composite is the identity map, hence £ is a weak homotopy 

equivalence if X is connected: 

fiX C AX - 2 - » fiBAX — - ^ — * QX . 

Proposition 15.5 . $ : TSX -*• X is a weak homotopy equivalence 

for any connected space X € J and T * : TY — TSTY is a weak homotopy 

equivalence for any special simplicial space Y e 
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Proof. On purely categorical grounds, £ ; BAX — X is the com-

p O S i t e Tdi(g) * 
BAX ^ TB^AX ^W>»TSX *• X . 

* 
A glance at the definitions shows that, on 1-simplices, i|; (£):AX -* ftX 

agrees with the natural retract ion. Since B AX and SX are special, it 

follows that \b ( £ )l B AX -*• S X is a homotopy equivalence for all p. 
P P P 

Therefore Tijj(£) is a homotopy equivalence by [18, A. 3]. This implies the 

first clause, and the second clause follows since the composite 

TY —*• TSTY *-TY 

is the identity map and since TY is connected by [17, 11. 11], 

A s a final prel iminary, we require the following variant of the com

parison theorem (which is s imilar to Quillen's formulation [27, 3. 8] ). 

Lemma 1 5. 6. Let {f }: {E } -* {E } be a morphism of first 

quadrant spectral sequences. Assume that 

(i) E°° = E°A, ~E°° = E ^ , and f°° = E°f for filtered graded Abelian 

groups A and A and a filtration preserving isomorphism f: A -*• A 

of graded Abelian groups; 

2 . 2 
(ii) E = 0 and E^ = 0 for q > 0 ; and x ' Oq 0q 

(iii) For a given n > 0, f is an isomorphism for q< n and all p. — pq 
2 2 

Then f, is an isomorphism and f is an epimorphism. 
In r 2n 

Proof, By the argument in [13, p. 356 and 357], (iii) implies 

(iv) f is a monomorphism if q < n and an isomorphism if q < n + l - r . 

By induction on q (for fixed p+q), (iv) and (i) imply 
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(v) f is an isomorphism if q < n and an epimorphism if q = n, 

(Use the exact sequences 0 -*• F A -* F A -* E -** 0.) By downwards 
p-1 p p* 

induction on r, (ii), (iv), and (v) imply 

(vi) f , r> p, is an isomorphism if q < n and an epimorphism if q = n. 

(Use the exact sequences E , *• E * E —*• 0. ) With 
p+r ,q- r+ l pq pq 

r 
r = p = 2, the second conclusion follows. Finally, E is an isomorphism 

for r > 2 by an argument just like that at the bottom of [13, p. 3 57], 

We can now use a variant of Quillen's argument [28, §4] to prove 

the theorem. For Y t JL J , consider the Segal spectral sequence 

{E rY} [30; 17, 11. 14]. {E rY} converges to H^TY. Since we are taking 

coefficients in a field R and Y is special, E Y = BH,Y, and 

2 ^"#^1 2 2 
E Y = Tor (R, R). Clearly ErtA Y = R and E Y = 0 for q > 0 . F rom 

7 00 0q ^ 

* : B^G -> STB G = SBG we derive {E**}: {E\ G} - {E rSBG}. Since T¥ 

is a weak homotopy equivalence, by Proposition 15. 5, hypothesis (i) of 

Lemma 15.6 is satisfied. Definition 15.3 shows that, on 1-simplices, 
Y 

¥ = £ : G ^ f t B G . Therefore E 2 * = Tor *(1,1). 

Fo r brevity of notation, we agree to write 
g = *„G , T = TTQBG , A = H^G , B = H GBG . 6 0 0 * ' * 

Let t r A -* A denote the localization of A at its submonoid g. Note that 

A" is A-flat (as a limit of free A-modules [18, 1. 2]) and that R = R ® A~ 

(because the augmentation £ I A -* R takes the value one on elements of g 

regarded via Lemma 15. 2 as elements of A). Therefore 
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T o r L ( l , l ) : T o r A ( R , R ) - TorA(R, R) 

is an isomorphism by [5, VI 4 .1 .1 ] . Thus, if C : A -+• B denotes the unique 

ring homomorphism such that £i = £ , then E ¥ c a n be identified with 

Tor ^(1 , 1): Tor A (R, R) - TorB (R, R) . 

A, hence also A, and B are Hopf algebras which, as coalgebras,are direct 

sums of connected coalgebras. Let A and B denote the components of 

the identity elements of A and B. If R g denotes the group ring of g , 

then A = A ® R g and B = B ®Rg" as R-algebras because ~g is central e e 

in both A and B by the admis sibility of G and ftBG. Clearly £ = t, ® 1 , 

where L is the restr ic t ion of t to A . By the Kunneth theorem for ^e e J 

torsion products [5,XI 3 .1] , 

•£- A" -
Tor (R,R) = Tor C(R, R) <g> Tor g(R, R) 

T T 
and similarly for B, hence Tor (1,1) = Tor e ( l , l ) ® l . We shall prove 

the following statement by induction on n. 

P T £ 2A -+ B is an isomorphism in degrees < n. n e e e & _ 

2 
P^ is trivial and we assume P _ . Then E S& is an isomorphism for 

0 n-1 pq r 

q < n and therefore, by Lemma 15.6. E, ^ is an isomorphism and E„ ¥ 
In r Zn 

is an epimorphism. This means (e .g . , by [40, §7]) that t, induces a bi-

jection between minimal sets of generators and a surjection between minimal 

sets of defining relations in degrees < n and thus implies P . Alter-
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natively, as in Quillen [28], P follows by application of the five lemma to 

exact sequences given by initial segments of the bar constructions on A 

and B . e 
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Addenda: December, 1 979 

We list some improvements and applications; let tered references are 

to the bibliography which follows. 

Gaunce Lewis [A, B] has found an alternative way to handle the problems 

with based fibrations mentioned on page 21. Given a map TT: E -*- B with 

section cr, we can grow whiskers on fibres to replace IT by a map whose sec

tion is a fibrewise cofibration. The whiskering of fibres in Remarks 9.7 is a 

special case , and Lewis has given a generally applicable cri ter ion for when 

the section of p.-B(Y,G,F) -*B(Y,G,*) is already a fibrewise cofibration, 

without whiskering. When the section cr of TT is a fibrewise cofibration, Lewis 

has shown that FIT: FE -** B can be given a new lifting function which, unlike 

the natural lifting function JJL, is actually a ^"-lifting function. This allows 

one to avoid introducing r 1 . Direct use of T simplifies various arguments, 

such as those on page 24. 

R. Schbn [E] has given a very clever and utterly tr ivial proof of the 

important theorem of Stasheff quoted on page 27. 

In [D, Lemma l . l ] , I prove that #F1(A) and $F<T(A) of Corollar ies 9.5 

and 9.8 are equal to the appropriate sets of fibre homotopy equivalence 

c lasses of fibrations over A, even when F is not compact. Thus the technical 

distinction emphasized on page 25 tends to disappear in the most important 

applications. 

References [19] and [20], which give the promised application of the 

present theory to the classification of oriented bundles and fibrations, have 
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appeared as two chapters in [C]. The promised application to fibrewise 

localization and completion will appear in [D]. 

Stefan Waner [F ,G,H] has given an equivariant generalization of the 

present theory and of its application to oriented fibrations. Here one con

siders G-fibrations for a compact Lie group G. The depth and complication 

of the generalization comes from the need to allow non-trivial actions of G on 

the base space and different actions of the appropriate isotropy subgroups on 

fibres. 
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