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EXAMPLES OF DESCENT UP TO NILPOTENCE

AKHIL MATHEW

Abstract. We give a survey of the ideas of descent and nilpotence. We focus on examples arising
from chromatic homotopy theory and from group actions, as well as a few examples in algebra.

1. Introduction

Let (C,⊗,1) denote a tensor-triangulated category, i.e., a triangulated category equipped with a
compatible (in particular, biexact) symmetric monoidal structure. Examples of such abound in various
aspects both of stable homotopy theory (e.g., the stable homotopy category) and in representation
theory, via derived categories of representations and stable module categories. In many such cases,
we are interested in describing large-scale features of C and of the associated mathematical structure.
To this end, there are a number of basic invariants of C that we can study, such as the lattice of thick
subcategories (or, preferably, thick ⊗-ideals) or localizing subcategories, the Picard group Pic(C) of
isomorphism classes of invertible objects, and the Grothendieck group K0(C).

One of our basic goals is relate invariants of C to those of another ⊗-triangulated category C′

receiving a ⊗-triangulated functor C → C′; for whatever reason, we may expect invariants to be
simpler to understand for C′. However, we can also hope to use information over C′ to understand
information over C via “descent.” Consider for instance the extension R ⊂ C of the real numbers to
the complex numbers. Since C is algebraically closed, phenomena are often much easier to study over
C than R. However, we can study phenomena over C via the classical process of Galois descent.

Classically, in algebra, descent is carried out along faithfully flat maps of rings. Here, however, it
turns out that there is a large class of extensions which are far from faithfully flat, but which satisfy
a categorical condition that forces the conclusion of descent nonetheless to hold. The key definition
is as follows.

Definition 1.1. Let C be a ⊗-triangulated category and let A be an algebra object. An object of C
is said to be A-nilpotent if it belongs to the thick ⊗-ideal generated by A. The algebra A is said to
be descendable if the unit of C is A-nilpotent. We will say that a map R → R′ of E∞-ring spectra is
descendable if R′ is descendable in Mod(R), the category of R-module spectra.

The notion of “A-nilpotence” is very classical and goes back to Bousfield [Bou79]. The idea of
“descendability” is implicit at various points in the literature (in particular, in the work of Hopkins-
Ravenel in chromatic stable homotopy theory) but has been systematically studied by Balmer [Bal16]
(especially in relation to the spectrum of [Bal05]) and by the author in [Mat16a]. We refer as well
to [Lur16b, Appendix D.3] for a treatment. The notion of descendability is enough to imply that a
version of faithfully flat descent holds; however, a descendable algebra may be far from being faithfully
flat. A simple example is the map KO→ KU of ring spectra.

In this paper, our goal is to give an introduction to these ideas and an overview of several examples,
emphasizing the F -nilpotence of [MNN17, MNN15]. This paper is mostly intended as an exposition,
although some of the results are improvements or variants of older ones. A number of basic questions
remain, and we have taken the opportunity to highlight some of them. We have in particular empha-
sized the role that exponents of nilpotence (Definition 2.28) plays. One new result in this paper, which
was explained to us by Srikanth Iyengar, is Theorem 3.13, which gives a larger class of faithfully flat
extensions which are descendable.
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There are many applications of these ideas that we shall not touch on here. For example, we
refer to [MS16, HMS15] for the use of these techniques to calculate Picard groups of certain ring
spectra; [Bal16, Mat15a] for applications to the classification of thick subcategories; and [CMNN16]
for applications to Galois descent in algebraic K-theory.

Conventions. Throughout this paper, we will use the language of∞-categories as in [Lur09, Lur16a].
In most cases, we will only use the language very lightly, as most of the invariants exist at the
triangulated level.1

In particular, we will use the phrase stably symmetric monoidal ∞-category to mean a (usually
small) symmetric monoidal, stable∞-category whose tensor product is biexact; this is the natural∞-
categorical lift of a tensor-triangulated category. We will also need to work with large ∞-categories.
We will use the theory of presentable ∞-categories of [Lur09, Ch. 5]. In particular, a presentably

symmetric monoidal stable ∞-category is the natural “large” setting for these questions; it refers
to a presentable, stable ∞-category equipped with a symmetric monoidal tensor product which is
bicocontinuous.

We will let Alg(C) denote the ∞-category of associative (or E1) algebras in a symmetric monoidal
∞-category and let CAlg(C) denote the ∞-category of commutative (or E∞) algebras. If R is an
associative (i.e., E1) ring spectrum, we will write Mod(R) for the ∞-category of R-module spectra
(see [EKMM97], [Lur16a, Ch. 7]). When R is an E∞-ring, then Mod(R) is a presentably symmetric
monoidal stable ∞-category. When R is a discrete associative (resp. commutative) ring, then we can
regard R (or the associated Eilenberg-MacLane spectrum) as an E1 (resp. E∞)-ring and will write
either Mod(R) or D(R) for the ∞-category of R-module spectra, which is equivalent to the derived
∞-category of R.

Acknowledgments. I would like to thank Bhargav Bhatt, Srikanth Iyengar, and Jacob Lurie for
helpful discussions. I would especially like to thank my collaborators Niko Naumann and Justin Noel;
much of this material is drawn from [MNN17, MNN15]. Most of all, I would like to thank Mike
Hopkins: most of these ideas originated in his work.

2. Thick ⊗-ideals and nilpotence

2.1. Thick subcategories and ⊗-ideals. We begin by reviewing the theory of thick subcategories.
As this material is very classical, we will be brief.

Let C be an idempotent-complete stable ∞-category.

Definition 2.1. A thick subcategory of C is a full subcategory D ⊂ C satisfying the following three
conditions:

(1) 0 ∈ D.
(2) If X1 → X2 → X3 is a cofiber sequence (i.e., exact triangle) in C, and two out of three of the
{Xi} belong to D, then the third belongs to D.

(3) D is idempotent-complete. Equivalently, if X,Y ∈ C and X ⊕ Y ∈ D, we have X,Y ∈ D.

Given a collection S ⊂ C of objects, there is a smallest thick subcategory of C containing S; we will
write Thick(S) for this and call it the thick subcategory generated by S.

Construction 2.2. We suppose that S is closed under direct sums and suspensions Σi, i ∈ Z. Then
Thick(S) has a natural inductive increasing filtration Thick(S)0 ⊂ Thick(S)1 ⊂ · · · ⊂ Thick(S). This
filtration is well-known in the literature. Compare Christensen [Chr98, Sec. 3.2], the dimension of
triangulated categories introduced by Rouquier [Rou08], and the treatment and the theory of levels
in Avramov-Buchweitz-Iyengar-Miller [ABIM10, Sec. 2.2].

• Thick(S)0 = {0}.
• Thick(S)1 consists of the retracts of objects in S.

1We note that the descent-theoretic approach to Picard groups uses∞-categorical technology in an essential manner.
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• An object X belongs to Thick(S)n if X is a retract of an object X̃ such that there exists a

cofiber sequence X̃ ′ → X̃ → X̃ ′′ such that X̃ ′ ∈ Thick(S)1 (i.e., X̃ ′ is a retract of an object

in S) and X̃ ′′ ∈ Thick(S)n−1.

Proposition 2.3. (1) Thick(S) =
⋃
n≥0 Thick(S)n and each Thick(S)n is idempotent-complete.

(2) Given a cofiber sequence X ′ → X → X ′′ with X ′ ∈ Thick(S)n1 and X ′′ ∈ Thick(S)n2 , we
have X ∈ Thick(S)n1+n2 .

Proof. By construction, each Thick(S)n is idempotent-complete. To see that Thick(S) =
⋃
n≥0 Thick(S)n,

one easily reduces to seeing that the union is itself a thick subcategory, which follows from the second
assertion. We are thus reduced to proving (2), which is effectively a diagram chase.

We prove (2) by induction on n1+n2. We can assume n1, n2 > 0. Up to adding a summand to both
X ′ and X , we may assume that there exists a cofiber sequence Y1 → X ′ → Y2 with Y1 ∈ Thick(S)1
and Y2 ∈ Thick(S)n1−1. We consider the homotopy pushout square

X ′

ψ1

��

φ1 // X

ψ2

��
Y2

φ2 // X ⊕X′ Y2

.

The cofiber of φ2 is equivalent to the cofiber of φ1, i.e., X
′′. It follows that we have a cofiber sequence

Y2 → X ⊕X′ Y2 → X ′′,

which shows by the inductive hypothesis thatX⊕X′Y2 ∈ Thick(S)n1+n2−1. In addition, the homotopy
fibers of ψ1, ψ2 are identified with Y1 ∈ Thick(S)1, and the cofiber sequence

Y1 → X → X ⊕X′ Y2,

with Y1 ∈ Thick(S)1, shows that X ∈ Thick(S)n1+n2 . �

Let f : X → Y be a map in C. We say that f is S-zero if for all A ∈ S, the natural map

[A,X ]∗ → [A, Y ]∗

is zero. It now follows that if A′ ∈ Thick(S)n and f1, . . . , fn are composable S-zero maps in C with
g = fn ◦ · · · ◦ f1 : X → Y , then g∗ : [A′, X ]∗ → [A′, Y ]∗ is zero. Compare [Chr98] for a detailed
treatment.

General thick subcategories can be tricky to work with. In practice, for example for classification
results, it is often convenient to restrict to thick ⊗-ideals.

Definition 2.4. Let C be a symmetric monoidal stable ∞-category. A thick ⊗-ideal is a thick
subcategory D ⊂ C which has the following additional property: if X ∈ C and Y ∈ D, then X⊗Y ∈ D.
Given a collection S ⊂ C of objects, there is a smallest thick ⊗-ideal of C containing S; we will write
Thick⊗(S) for this and call it the thick ⊗-ideal generated by S.

Construction 2.5. In the same fashion as Thick(S), we can define a filtration {Thick⊗(S)n}n≥0 on

Thick⊗(S). Suppose S is closed under direct sums and suspensions Σi, i ∈ Z. We can define

Thick⊗(S)n = Thick(S ′)n,

where S ′ consists of all objects in C of the form X1 ⊗ X2 with X1,∈ C, X2 ∈ S. One sees that
Thick⊗(S) = Thick(S ′) and that this gives an increasing filtration on Thick⊗(S).

Given a stably symmetric monoidal, idempotent-complete ∞-category C, the classification of thick
⊗-ideals of C is an important problem. The first major classification result was by Hopkins-Smith
[HS98], who carried this out for finite p-local spectra, which was followed by work of Hopkins-Neeman,
Thomason, Benson-Carlson-Rickard, and many others. In general, the classification of thick ⊗-ideals
can be encapsulated in the spectrum of Balmer [Bal05], a topological space built from the prime thick
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⊗-ideals which determines all the thick ⊗-ideals (at least under some conditions, e.g., if objects are
dualizable).

We give one example of how thick ⊗-ideals can be constructed. Given an object X ∈ C, we write
π∗X = π∗HomC(1, X). We let R∗ = π∗1 = π∗HomC(1,1). Then R∗ is a graded ring and π∗X is a
graded R∗-module.

Example 2.6. Given a homogeneous ideal I ⊂ R∗, we consider the subcategory of all X ∈ C such
that for all Y ∈ C, the R∗-module π∗(X ⊗ Y ) is I-power torsion. This is a thick ⊗-ideal.

2.2. A-nilpotence. We now come to the key definition, that of A-nilpotence. While these ideas are
quite classical, for a detailed presentation of this material along these lines, we refer in particular to
[MNN17].

Let C be a stably symmetric monoidal, idempotent-complete ∞-category and let A ∈ Alg(C).

Definition 2.7 (Bousfield [Bou79]). We say that an object X ∈ C is A-nilpotent if X belongs to
Thick⊗(A). We will also write NilA = Thick⊗(A). Note that NilA is also the thick subcategory of C
generated by all objects of the form A⊗ Y, Y ∈ C, i.e., NilA = Thick⊗(A) = Thick({A⊗ Y }Y ∈C).

We give one example of this now; more will follow later.

Example 2.8. Suppose C = D(Z) is the derived ∞-category of abelian groups and A = Z/pZ. Then
an object X ∈ C is A-nilpotent if and only if there exists n ≥ 0 such that the map pn : X → X is
nullhomotopic. In particular, it follows that such an object is p-adically complete and p-torsion.

Remark 2.9. Suppose X ∈ C is a dualizable object. Then the thick ⊗-ideal generated by X is equal
to the one generated by the algebra object X ⊗X∨. Therefore, Thick⊗(X) = Thick⊗(X ⊗X∨) is the
subcategory of X ⊗X∨-nilpotent objects. It follows that any thick ⊗-ideal of C generated by a finite
collection of dualizable objects is automatically of the form NilA for some A.

Let X ∈ C. Then we can try to approximate X in C by objects of the form A⊗X ′, X ′ ∈ C. There
is always a canonical way of doing so.

Recall that ∆+ denotes the category of finite linearly ordered sets, so that ∆+ is the union of the
usual simplex category ∆ with an initial object [−1].

Construction 2.10. Suppose that A ∈ Alg(C). Then we can form an augmented cosimplicial diagram
CBaug(A) in C,

CBaug(A) : 1→ A⇒ A⊗ A
→
→
→
. . . .

The underlying cosimplicial diagram CB•(A)
def
−−→ CBaug(A)|∆ is called the cobar construction or

Amitsur complex. The diagram CBaug(A) admits a splitting or extra degeneracy (see [Lur16a, Sec.
4.7.3]) after tensoring with A. Compare [Rog08, Ch. 8] or [MNN17, Sec. 2].

Example 2.11. Let F : C → Sp be a functor. It follows that we have a Bousfield-Kan [BK72] type
spectral sequence

(1) Es,t2 = Hs(πtF (X ⊗ CB•(A))) =⇒ πt−sTot(F (X ⊗ CB•(A))).

We will call this the A-based Adams spectral sequence. When one takes C = Sp, F = id, and A = HFp,
then one recovers the classical Adams spectral sequence.

The first key consequence of A-nilpotence is that the cobar construction always converges very
nicely. Not only does it converge (to the original object) in C, but it does so universally in the
following sense. We will elaborate more on this “universal” convergence below.

Proposition 2.12. Suppose X ∈ Thick⊗(A). Then for any stable ∞-category D and exact functor
F : C → D, F (X ⊗ CBaug(A)) : ∆+ → D is a limit diagram. That is, the natural morphism

(2) F (X)→ Tot
(
F (X ⊗A) ⇒ F (X ⊗A⊗ A)

→
→
→
. . .
)

is an equivalence in D.
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In particular, taking F to be the identity functor, it follows that the augmented cosimplicial diagram

∆+ → C given by X →
(
X ⊗A⇒ X ⊗A⊗A . . .

→
→
→

)
is a limit diagram. This limit diagram has the

additional property that it is preserved (i.e., remains a limit diagram) after applying any exact functor.
This is a very special property of such diagrams which we will discuss further below.

Proof. The basic observation is that if X = A⊗ Y for some Y ∈ C, then the augmented cosimplicial
diagram X⊗CBaug(A) has an “extra degeneracy” or splitting [Lur16a, Sec. 4.7.3], which in particular
implies that it is a universal limit diagram. It follows that (2) is an equivalence if X = A⊗ Y . Since
the class of X for which (2) is an equivalence is thick, it follows that this class includes NilA. �

Definition 2.13. Let A ∈ Alg(C). Fix X,Y ∈ C. By convention, we call the A-based Adams

spectral sequence the Tot spectral sequence (or BKSS) converging to π∗HomC(Y,Tot(CB
•(X)))

(which coincides with π∗HomC(Y,X) if X ∈ NilA).
We will say that a map Y → X has Adams filtration ≥ k if the induced map Y → Tot(CB•(X))

is detected in filtration ≥ k in the BKSS. This is equivalent to the existence of the map Y → X
factoring as a k-fold composite of maps each of which becomes nullhomotopic after tensoring with A.
Compare [Chr98, Sec. 4] for a detailed treatment (albeit with arrows in the opposite direction from
our setting).

In general, Tot spectral sequences (i.e., those giving the homotopy of a cosimplicial space or spec-
trum) are only “conditionally” convergent, with potential lim1 subtleties. In the nilpotent case, the
spectral sequence converges in the best possible form and is essentially finitary.

Proposition 2.14. Suppose X ∈ NilA. The spectral sequence (1) has the following property. There
exists N ≥ 2 such that at the EN -page, there exists a horizontal vanishing line of some height h: that
is, Es,tN = 0 for s > h.

We will discuss this result in the next section.

2.3. Towers. In this subsection, we will discuss more closely the behavior of the cobar construction
of an A-nilpotent object. First we will need some preliminaries about towers. Let C be an idempotent-
complete stable ∞-category.

Definition 2.15. A tower in C is a functor Zop≥0 → C, i.e., a sequence

· · · → Xn → Xn−1 → · · · → X1 → X0.

The collection of towers in C is naturally organized into a stable ∞-category Tow(C).

Construction 2.16. Let X• : ∆ → C be a cosimplicial object. Then the sequence of partial total-
izations

Totn(X
•)

def
−−→ lim←−

[i]∈∆,i≤n

X i

is naturally arranged into a tower, whose inverse limit is given by the totalization Tot(X•). A version
of the Dold-Kan correspondence, due to Lurie [Lur16a, Sec. 1.2.4], implies that the cosimplicial object
can be reconstructed from the tower. In fact, one has an equivalence of ∞-categories

Fun(∆, C) ≃ Tow(C),

which sends a cosimplicial object X• to its Tot tower.

Definition 2.17. A tower {Xi}i≥0 is said to be nilpotent if there exists N ∈ Z≥0 such that for each

i ∈ Z≥0, the natural map Xi+N → Xi arising from the tower is nullhomotopic. We let Townil(C) ⊂
Tow(C) denote the subcategory spanned by the nilpotent towers.

We have the following straightforward result.

Proposition 2.18. Townil(C) ⊂ Tow(C) is a thick subcategory.
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Definition 2.19. We will say that a tower {Xi}i≥0 is quickly converging if it belongs to the

thick subcategory of Tow(C) generated by the constant towers and the nilpotent towers. The quickly

converging towers form a thick subcategory Towfast(C) ⊂ Tow(C). We will also say that a cosimplicial
object in C is quickly converging if the associated tower is quickly converging.

The first key observation about quick convergence is that it guarantees that limit diagrams are
universal.

Proposition 2.20. Let X• ∈ Fun(∆, C) be a cosimplicial object. Suppose X• is quickly converging.
Then:

(1) Tot(X•) exists in C.
(2) F (X•) is quickly converging in D.
(3) For any idempotent-complete stable ∞-category D and exact functor F : C → D, the natural

map
F (Tot(X•))→ Tot(F (X•))

is an equivalence.

That is, the limit diagram defined by X• is universal for exact functors. In the language of pro-
objects, the pro-object defined by the tower {Totn(X

•)} is constant. Compare the discussion in
[Mat16a, Sec. 3.2].

Proof. Any exact functor respects finite limits, so we can replace the totalization by the inverse limit
of the Tot tower. It thus suffices to show that if {Yi} is a quickly converging tower, then the natural
analogs of the three statements hold. That is, lim

←−
Yi exists in C, {F (Yi)} is quickly converging, and

the natural map F (lim
←−

Yi)→ lim
←−

F (Yi) is equivalence. The class of towers {Zi} for which these three
assertions is thick; it clearly contains the constant and nilpotent towers, so it contains the quickly
converging towers. This proves the result. �

Let X• be a cosimplicial spectrum. In this case, we have the classical Bousfield-Kan spectral
sequence converging to π∗Tot(X

•).

Proposition 2.21. LetX• be a quickly converging cosimplicial spectrum. Then the BKSS converging
to π∗Tot(X

•) has a horizontal vanishing line at some finite stage: i.e., there is N ≥ 2 and h ≥ 0 such

that Es,tN = 0 for s > h.

We refer to [Mat15a, Prop. 3.12] for an account of this result in this language. Of course, the idea
is much older, and seems to be elucidated in [HPS99], where the authors consider the more general
case of spectral sequences that have a vanishing line of some (possibly positive) slope at a finite stage.
It appears prominently in the proof of many foundational results in chromatic homotopy theory.

Quick convergence indicates that a homotopy limit in a stable∞-category which is a priori infinite
(such as a totalization) actually behaves like a finite one, up to taking retracts.2 For example, any
exact functor preserves finite limits. An exact functor need not preserve totalizations, but it will
preserve quickly converging ones by Proposition 2.20.

Here is an instance of this phenomenon.

Proposition 2.22. Let X• ∈ Fun(∆, C) be a quickly converging cosimplicial object. Then Tot(X•)
belongs to the thick subcategory of C generated by the

{
X i
}
i∈Z≥0

.

Proof. Note that each Totn(X
•) belongs to the thick subcategory generated by the

{
X i
}
as Totn is a

finite homotopy limit. It suffices to show that if {Yi}i≥0 is a quickly converging tower, then Y = lim
←−

Yi
belongs to the thick subcategory generated by the {Yi}. In fact, this follows from the claim that Y is
a retract of some Yi.

To see this, we need to produce a map Yi → Y for some i such that the composite Y → Yi → Y
is the identity. We consider the functor C → Spop given by X 7→ HomC(X,Y ). Since the tower

2We remind the reader that taking retracts, in the ∞-categorical setting, is not a finite homotopy limit.
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{Yi} is quickly converging, it follows by applying this functor (and dualizing) that the map of spectra
lim
−→i

HomC(Yi, Y ) → HomC(Y, Y ) is an equivalence, in view of Proposition 2.20. Unwinding the defi-

nitions, it follows that there exists fi : Yi → Y such that Y → Yi
fi
→ Y is the identity, as desired. �

Example 2.23. Let G be a finite group and let X ∈ Fun(BG, C). We can form the homotopy fixed
points XhG ∈ C, which can be recovered as the totalization of a cosimplicial object. Namely, choosing
the standard simplicial model EG• of EG as a free G-space, we have

XhG = MapG(EG,X) = Tot (MapG(EG•, X)) .

Here EG• is levelwise a finite free G-set; namely, EGn = Gn+1. Therefore, we have a cosimplicial

object X̃• such that X̃n =
∏
Gn X such that XhG = Tot(X̃•).

Suppose this cosimplicial object is quickly converging. Then we find:

(1) XhG belongs to the thick subcategory of C generated by X .
(2) For any exact functor F : C → D, the natural map F (XhG)→ F (X)hG is an equivalence.

In particular, taking homotopy fixed points behaves like a finite homotopy limit in this case. We will
return to this example below (see subsection 4.1) and show the connection to Tate vanishing.

Our goal in this subsection is to show that the theory of “A-nilpotence” is closely connected to the
theory of quickly converging towers. This will take place through the cobar construction. First, we
will describe the associated tower to the cosimplicial object CB•(A). We now assume that C is an
idempotent-complete, stably symmetric monoidal ∞-category. Compare [MNN17, Sec. 4].

Construction 2.24. Fix A ∈ Alg(C). We let I be the fiber of 1→ A, so that we have a natural map
I → 1. Taking the tensor powers, we obtain a natural tower

{
I⊗k

}
k≥0

in C.

Then we define an exact functor

AdamsA : C → Tow(C)

which sends X ∈ C to the tower AdamsA(X) =
{
I⊗k ⊗X

}
k≥0

, which we call the Adams tower.

We note that we have a natural map of towers

(3) AdamsA(X)→ Const(X),

where Const(X) denotes the constant tower at X .

We have the following basic result. Although surely folklore, it is a little tricky to track down in
the older literature. We refer to [MNN17, Prop. 2.14] for a proof in modern language.

Proposition 2.25. The Tot tower {Totn(CB
•(A) ⊗ X)} is equivalent to the cofiber of the map of

towers (3).

With this in mind, we can state the following basic characterization of A-nilpotence. It implies
Proposition 2.14, in view of Proposition 2.21. We leave the details to the reader. Compare the
discussion following Definition 2.28 below.

Proposition 2.26. The following are equivalent for X ∈ C:

(1) X ∈ NilA.
(2) The cobar construction CB•(A) ⊗X is quickly converging and has homotopy limit given by

X .
(3) The Adams tower AdamsA(X) is nilpotent.

Example 2.27. We consider again our basic example of A = Z/pZ in C = Mod(Z). Here the Adams
tower is given by

· · · → Z
p
→ Z.

We thus recover the fact that X ∈ C is A-nilpotent if and only if some power of p annihilates X .
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2.4. Exponents of nilpotence. We keep the same notation from the previous subsection. We recall
that NilA = Thick⊗(A) and Thick⊗(A) has a natural filtration. This leads to the following natural
definition:

Definition 2.28. Fix X ∈ NilA. We will say that X has nilpotence exponent ≤ n if the following
equivalent conditions hold:

(1) X ∈ Thick⊗(A)n in the notation of 2.5.
(2) The map I⊗n → 1 becomes null after tensoring with X .

We will write expA(X) for the minimal n such that X has nilpotence exponent ≤ n.

We outline the argument that conditions (1) and (2) are equivalent.

(1) If X ∈ Thick⊗(A)n, we claim that I⊗n⊗X → X is null. For n = 0, the claim is obvious. For
n = 1, if X ∈ Thick⊗(A)1, then X is a retract of A⊗ Y for some Y , and the map I ⊗X → X
is nullhomotopic because X → A ⊗X admits a section. In general, we can induct on n and
use the inductive description of Thick⊗(A)n.

(2) Suppose ψ : I⊗n ⊗X → X is nullhomotopic. Then X is a retract of the cofiber of ψ. It thus
follows that we need to show that the cofiber of ψ belongs to Thick⊗(A)n. It suffices to show
that the cofiber of I⊗n → 1 belongs to Thick⊗(A), but it is an extension of the n objects
cofib(I⊗(k+1) → I⊗k) ≃ A⊗ Ik for k ≤ n− 1.

The exponent of nilpotence is closely related to the behavior of the A-based Adams spectral se-
quence. We recall that if X ∈ NilA, then the A-based Adams spectral sequence collapses at a finite
stage with a horizontal vanishing line.

Proposition 2.29 (Cf. [Chr98, Prop. 4.4], [MNN15, Prop. 2.26]). SupposeX ∈ NilA and expA(X) ≤
n. Then the A-based Adams spectral sequence for π∗HomC(Y,X) satisfies Es,tn+1 = 0 for s ≥ n.

2.5. The descent theorem. We now specialize to the case where every object is A-nilpotent.

Definition 2.30 (Balmer [Bal16], Mathew [Mat16a] ). We say that the algebra object A is descend-
able or of universal descent if 1 ∈ NilA = Thick⊗(A) (equivalently, if C = Thick⊗(A)).

When A is descendable, many properties of objects or morphisms in C can be checked after tensoring
up to A, sometimes up to nilpotence.

Proposition 2.31. Suppose A is descendable. Then if X ⊗A = 0, then X = 0.

Proof. The class of all Y such that X ⊗ Y = 0 is clearly a thick ⊗-ideal; if it contains A, it must
therefore contain 1, so that X = 0. �

As another example, we have the following proposition, which can be proved using a diagram-chase.
We leave the details to the reader (or compare the discussion in [MNN17, Sec. 4] and [Mat16a, Sec.
3]).

Proposition 2.32. Say that a map f : X → Y in C is A-zero if 1A ⊗ f : A ⊗ X → A ⊗ Y is
nullhomotopic. The following are equivalent:

(1) A is descendable.
(2) If I = fib(1→ A), then the map I → 1 is ⊗-nilpotent, i.e., there exists N such that I⊗N → 1

is null.
(3) There exists N ≥ 1 such that if f1, . . . , fN are composable A-zero maps, then fN ◦ · · ·◦f1 = 0.

Proposition 2.33. Let A ∈ Alg(C) be descendable. Let R be an algebra object in C. Suppose
x ∈ π∗R maps to zero in π∗(A⊗R). Then x is nilpotent.

Proof. This is a special case of the previous result. Alternatively, we can use the A-based Adams
spectral sequence to compute π∗R. Since the spectral sequence degenerates with a horizontal vanishing
line at a finite stage, we see easily that any permanent cycle in positive filtration must be nilpotent. �
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Example 2.34. Suppose that 1 is a retract of A. Then clearly A is descendable, and we can take
N = 1 in the above. This case was considered by Balmer [Bal12], who shows that a type of descent at
the level of homotopy (triangulated) categories holds. When A is descendable but 1 is not a retract,
one still has a descent statement, but it requires the use of ∞-categories which we explain below.

One of the key features of the notion of descendability is that it enables a formulation of a derived
analog of faithfully flat descent, as in [Mat16a]. This essentially uses the theory of ∞-categories. We
refer also to [Lur16b, Appendix D.3] for another account of these results.

If A ∈ Alg(C), then we can form a stable ∞-category of A-modules ModC(A). If C is presentable
and A is a commutative algebra in C, then ModC(A) acquires a symmetric monoidal structure from
the A-linear tensor product. We refer to [Lur16a] for an ∞-categorical treatment of these ideas, and
the original source [EKMM97] that developed the theory in spectra.

The basic result is that one can recover C as the ∞-category of “A-modules with descent data,”
if A is descendable. This is an ∞-categorical version of the classical situation in algebra, which we
review briefly.

Example 2.35. We remind the reader of the classical setting in ordinary algebra as developed in
[SGA03, Exp. VIII]. A modern exposition is in [Vis05]. Let R→ R′ be a map of commutative rings.
Given an R-module M , we can form the base-change MR′ = R′ ⊗RM , which is an R′-module. The
R′-module MR′ comes with the following extra piece of data: there is an isomorphism of R′ ⊗R R′-
modules

φM : R′ ⊗RMR′ ≃MR′ ⊗R R
′

(coming from the fact that both are base-changed from M along R → R′ ⊗R R′). In addition, φM
satisfies a cocycle condition. Namely, the map φM yields two natural isomorphisms of R′⊗RR′⊗RR′-
modules

R′ ⊗R R
′ ⊗RM ≃M ⊗R R

′ ⊗R R
′

given by (φM,12 ⊗ 1R′) ◦ (1R′ ⊗ φM,23) and φM,13. In this case, we have an equality of maps φM,13 =
(φM,12 ⊗ 1R′) ◦ (1R′ ⊗ φM,23); this is called the cocycle condition.

In general, an R′-module with descent datum consists of an R′-module N ′ and an isomorphism
φ : R′⊗RN ≃ N ⊗RR′ of R′⊗RR′-modules satisfying the cocycle condition. Any R-module yields in
the above fashion an R′-module with descent datum. Grothendieck’s faithfully flat descent theorem
states that, if R → R′ is faithfully flat, this functor implements an equivalence of categories between
R-modules and R′-modules with descent datum.

Example 2.36. Consider the special case R → C. In this case, given an R-vector space V , we can
form the complexification VC = C ⊗R V . The C-vector space VC is equipped with a C-antilinear
involution ι : VC → VC given by complex conjugation on the C factor. In this case, faithfully flat
descent states that the category of R-vector spaces is equivalent to the category of C-vector spaces
equipped with an antilinear involution. Note that we can recover V as the fixed points of the C2-action
on VC. More generally, given a G-Galois extension of fields K ⊂ L, a descent datum on an L-vector
space W consists of a G-action on W which is L-semilinear, i.e., for a scalar l ∈ L and w ∈ W , we
have g(lw) = g(l)g(w) for g ∈ G and g(l) ∈ L comes from the natural action of g on L.

In the ∞-categorical setting, it is generally unwieldy to spell out explicitly the higher analogs of
the coherence condition (which are replaced by with higher homotopies). However, it is possible to
describe an ∞-categorical analog of the category of descent data as an appropriate homotopy limit,
or as an ∞-category of coalgebras. We refer also to the work of Hess [Hes10] for a detailed treatment
in a related setting.

Let C be presentably symmetric monoidal stable ∞-category. As mentioned earlier, for every
A ∈ CAlg(C), we have associated a presentably symmetric monoidal ∞-category ModC(A). This is
functorial in A. Let Cat∞ be the ∞-category of ∞-categories. Then we have a functor CAlg(C) →
Cat∞ sending A 7→ ModC(A) and a map A → A′ to the relative tensor product functor A′ ⊗A · :
ModC(A)→ ModC(A

′) .
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If A ∈ CAlg(C), then we can form the cobar construction CB•(A) as a diagram in Fun(∆,CAlg(C)),
i.e., as a cosimplicial diagram in C. Similarly, the augmented cobar construction CBaug(A) is a diagram
in CAlg(C).

Definition 2.37. Let C be a presentably symmetric monoidal stable∞-category and let A ∈ CAlg(C).
The ∞-category of descent data DescA(C) is given by the totalization in Cat∞

(4) DescA(C)
def
= Tot(ModC(CB

•(A))) = Tot
(
ModC(A) ⇒ ModC(A⊗A)

→
→
→
. . .
)

Note that since CB•(A) receives an augmentation from 1, we obtain a natural symmetric monoidal,
cocontinuous functor

(5) C → DescA(C).

Remark 2.38. Informally, an object of DescA(C) consists of the following:

(1) For each [n] ∈ ∆, an A⊗(n+1)-module M[n].

(2) For each map [n]→ [m] in ∆, an equivalence M[m] ≃ A
⊗(m+1) ⊗A⊗(n+1) M[n].

(3) Cocycle conditions for these equivalences, and higher homotopies.

This yields a generalization of the construction of Example 2.35. Note that the approach to descent
data considered in [Hes10] is based on comonadicity, which applies in more general situations than this.
In this setting, a descent theorem will state that a comparison map of the form (5) is an equivalence.

There is a direct analog of faithfully flat descent when we work in the case C = Sp or Mod(A).

Definition 2.39. A map of E∞-rings A→ B is said to be faithfully flat if:

(1) π0A→ π0B is faithfully flat.
(2) The natural map π0B ⊗π0A π∗A→ π∗B is an isomorphism.

In this case, one can prove an analog of faithfully flat descent for modules.

Theorem 2.40 (Lurie [Lur16b, Theorem D.6.3.1], [Lur11b, Theorem 6.1] ). Suppose A → B is
a faithfully flat map of E∞-rings. Then the natural map implements an equivalence of symmetric
monoidal ∞-categories Mod(A) ≃ DescB(Mod(A)).

A key result in the theory of “descent up to nilpotence” is that the analogous conclusion holds when
one assumes descendability. Unlike faithful flatness, descendability is a purely categorical condition,
which makes sense in any stably symmetric monoidal ∞-category (not only Sp).

Theorem 2.41 ([Mat16a, Prop. 3.22]). Suppose A ∈ CAlg(C) is descendable. Then the natural
functor implements an equivalence of symmetric monoidal ∞-categories

C ≃ DescA(C).

Proof sketch. The descent theorem is an application of the ∞-categorical version of the Barr-Beck
monadicity theorem proved in [Lur16a] (see also [RV16] for another approach to the monadicity
theorem). As in [Lur16b, Lemma D.3.5.7], one can identify the ∞-category DescA(C) with the ∞-
category of coalgebras in ModA(C) over the comonad arising from the adjunction C ⇄ ModC(A)
given by extension and restriction of scalars. The key point is then to show that the adjunction
C ⇄ ModA(C) is comonadic. By the monadicity theorem, we need to show two statements:

(1) The functor A⊗ · : C → ModC(A) is conservative.
(2) The functor A ⊗ · : C → ModC(A) preserves totalizations in C which admit a splitting after

tensoring with A.

Statement (1) follows from Proposition 2.31. Statement (2) follows in a similar (but more elaborate)
fashion: given any X• ∈ Fun(∆, C) such that A⊗X• is quickly converging (e.g., admits a splitting),
we argue that X• is quickly converging. This means that any exact functor, e.g., tensoring with A,
preserves the inverse limit of X• by Proposition 2.20. �
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3. Examples of nilpotence

3.1. First examples of descendability. We start by giving a number of elementary examples,
mostly from [Mat16a].

Let A ∈ CAlg(C). Then an A-module is nilpotent if it belongs to the thick subcategory of C
generated by those objects which admit the structure of A-module; in particular, A is descendable if
the unit has this property. Sometimes, we can check this directly.

Example 3.1. Let R be a commutative ring and let I ⊂ R be a nilpotent ideal. Then the map
R→ R/I is clearly descendable. In fact, the (finite) I-adic filtration on R gives a filtration of R with
subquotients R/I-modules.

Example 3.2. Let R be a connective E∞-ring which is n-truncated, i.e., such that πiR = 0 for i > n.
Then the map R→ π0R = τ≤0R is descendable for a similar reason: we have the Postnikov filtration
of R whose subquotients admit the structure of π0R-modules (internal to Mod(R)).

Example 3.3. Suppose 1 ∈ CAlg(C) is a finite inverse limit of Aα ∈ CAlg(C), α ∈ I. Then
∏
αAα

is descendable. For example, if an E∞-ring R is a finite inverse limit of E∞-rings Rα, then the map
R→

∏
Rα is descendable.

Example 3.4. Suppose R is an E∞-ring and X is a finite, pointed, connected CW complex. Then
the map RX = C∗(X ;R)→ R given by evaluation at the basepoint is descendable.

Example 3.5. Suppose R is an E∞-ring with π0R = k a field and suppose given a map R → k
inducing the identity on π0. Suppose that πiR = 0 for i > 0 and for i ≪ 0. Then the map R → k is
descendable. This follows from the work of [DGI06].

In fact, we claim that ifM is an R-module such that πiM = 0 for i /∈ [a, b] for some a ≤ b ∈ Z, then
M is k-nilpotent; applying this to R itself we can conclude. Using [DGI06, Prop. 3.3], we can induct
on b − a and reduce to the case where a = b; then [DGI06, Prop. 3.9] implies that M is actually a
k-module inside of Mod(R).

One necessary (but not sufficient) condition for descendability of A ∈ CAlg(C) is that the kernel
of the map π∗1 → π∗A consists of nilpotent elements by Proposition 2.33. In fact, an elaboration
of that argument shows that the kernel of the aforementioned map needs to be a nilpotent ideal in
π∗1. Another necessary condition is that descent for modules holds. The latter condition is again
insufficient in view of the following example.

Example 3.6. Let C = M̂od(Z)p denote the ∞-category of p-complete objects in Mod(Z) ≃ D(Z);
this is equipped with the p-adically completed tensor product. Let A = Z/pZ. Then tensoring with A
is conservative. Since A is dualizable, tensoring with A commutes with all limits. By the∞-categorical
Barr-Beck theorem, the natural map C → DescC(A) is an equivalence (cf. the discussion in [Lur16b,
Lemma D.3.5.7]). However, Z/pZ is clearly not descendable.

Nonetheless, under strong conditions descendability is actually equivalent to this conclusion. The
following appears as [Mat16a, Th. 3.38]; however, the proof given there uses more abstract category
theory than necessary. We give a simplified presentation here.

Theorem 3.7. Let B ∈ Alg(C). Suppose 1 is compact and B is dualizable. Suppose that ·⊗B : C → C
is conservative. Then B is descendable.

Proof. Note first that tensoring with DB is also conservative. In fact, this follows because B is a
retract of B ⊗DB ⊗B because B is a module over B ⊗DB. Note that B and DB generate the same
thick ⊗-ideal in C.

We consider the augmented cobar construction CBaug(B) ∈ Fun(∆+, C). It takes values in dual-
izable objects; therefore, we consider the dual, DCBaug(B) ∈ Fun(∆+,op, C). Since CBaug(B) ⊗ B is
split, it follows that DCBaug(B)⊗DB is a split augmented simplicial diagram and is therefore a colimit
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diagram. Since tensoring with DB is conservative, it follows that DCBaug(B) is a colimit diagram. It
follows that the natural map

|DCB•(B)| → 1

is an equivalence in C. The geometric realization is the filtered colimit of its finite skeleta, |DCB•(B)| =
lim
−→
|sknDCB

•(B)|. Since 1 is compact, it follows that 1 is a retract of sknDCB
•(B) for some n.

Therefore, 1 is B-nilpotent and B is descendable. �

Even under compact generation, it is far from sufficient to assume that tensoring with an object is
conservative to guarantee descendability. We give a simple example below.

Example 3.8. Let C = Mod(Z(p)). Then A = Q × Fp has the property that tensoring with A is
conservative on C, but A is not descendable. For example, the exact functor Mod(Z(p))→ Mod(Z(p))

given by X 7→ (X̂p)Q annihilates any A-module but is nonzero.

3.2. Maps of discrete rings. Given the motivation of faithfully flat descent, it is a natural question
now to ask when a map of discrete rings is descendable.

Question 3.9. Let f : A→ B be a faithfully flat morphism of commutative rings. Is f descendable?

In general, we do not know the answer to the above question. We can restate it as follows. Consider
the homotopy fiber sequence

(6) I
φ
−→ A→ B

in the derived ∞-category D(A). Then I = M [−1] where M is an A-module which is flat; namely,
M = B/A. It suffices to show that φ is ⊗-nilpotent, i.e., for some n, the map φ⊗n : I⊗n → A is
nullhomotopic in D(A). Now φ : I → A is an example of a phantom map in D(A). We recall the
definition below.

Definition 3.10. A map N → N ′ in D(A) is said to be phantom if for every perfect A-module F
with a map F → N , the composite F → N → N ′ is nullhomotopic.

We refer to [CS98, Nee97] for a treatment of phantom maps in some generality. Equivalently, a
phantom map is a filtered colimit of maps, each of which is nullhomotopic (but the nullhomotopies need
not be compatible with the filtered colimit). In general, in (6), I is a filtered colimit I = lim

−→
Mα[−1],

where eachMα is a finitely generated free A-module, by Lazard’s theorem (see, e.g., [SPA, Tag 058G])
and the induced mapMα[−1]→M [−1]→ A is clearly nullhomotopic, which means that φ is phantom
as desired.

In general, phantom maps are very far from being zero, but under countability conditions the class
of phantom maps can be shown to be a square-zero ideal. That is the content of the following classical
result.

Theorem 3.11 (Christensen-Strickland [CS98], Neeman [Nee97]). Let A be a countable ring. Then
the composite of any two phantom maps in D(A) is nullhomotopic.

The result is based on showing that homology theories in D(A) satisfy Brown representability. It
follows that if A is a countable ring and A → B is faithfully flat, then B is descendable: in fact,
A is B-nilpotent of B-exponent at most two because φ⊗2 is nullhomotopic. Using recent work of
Muro-Raventós [MR16], one can extend this to show that if A has cardinality at most ℵk for some
k <∞, then the composite of k + 2 phantom maps is zero. This leads to the following result:

Proposition 3.12 ([Mat16a, Prop. 3.32] or [Lur16b, Prop. D.3.3.1]). Suppose the cardinality of A
is at most ℵk for some k ∈ [0,∞). Then the answer to 3.9 is positive.

In general, we do not know whether Question 3.9 holds without cardinality hypotheses. Nonetheless,
the answer is positive if one assumes that A is noetherian of finite Krull dimension. We are indebted
to Srikanth Iyengar for pointing out the following to us.
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Theorem 3.13. Suppose A is a noetherian ring of finite Krull dimension and suppose B is a faithfully
flat A-algebra. Then B is descendable.

Proof. Keep the same notation as in (6). Choose n > dimA. Then I⊗n ≃M⊗n[−n], so that the map
φ⊗n is classified by an element in ExtnA(M

⊗n, A). We claim that this group itself vanishes, so that
φ⊗n is nullhomotopic.

We use [GJ81, Cor. 7.2] to observe now that, as a flat A-module, the projective dimension of M⊗n

is at most dimA. It follows that the group ExtnA(M
⊗n, A) itself vanishes, which proves that φ is

⊗-nilpotent as desired. �

Example 3.14. Let (A,m) be a noetherian local ring. Then the map A→ Â is descendable.

If we do not assume finite Krull dimension then, by contrast, we do not even know if A →∏
p∈SpecAAp (which is faithfully flat if A is noetherian) is descendable.
We can also easily extend Theorem 3.13 to the case of ring spectra. A map A → B of E∞-ring

spectra is said to be faithfully flat if π0A→ π0B is faithfully flat and the natural map π∗A⊗π0Aπ0B →
π∗B is an isomorphism.

Corollary 3.15. Suppose A is an E∞-ring with π0A noetherian of finite Krull dimension and B is a
faithfully flat E∞-A-algebra. Then A→ B is descendable.

Proof. Again, we form the fiber sequence I
φ
→ A→ B. Let n > dimA; then we argue that I⊗n → A

is nullhomotopic. In general, given N1, N2 ∈ Mod(A), we have the usual spectral sequence (cf.
[EKMM97, Ch. IV, Th. 4.1])

Es,t2 = Exts,tπ∗(A)(π∗(N1), π∗(N2)) =⇒ πt−sHomA(N1, N2).

Note that φ induces zero on homotopy, so it is detected in filtration at least one in the Ext spectral
sequence. It follows that φ⊗n is detected in filtration at least n in the Ext spectral sequence. However,
we see already (using [GJ81, Cor. 7.2]) that everything in filtration ≥ n of the Ext spectral sequence
for HomA(I

⊗n, A) vanishes, so that φ⊗n must vanish. �

We have already seen some examples where a map which is far from faithfully flat is nevertheless
descendable, for example the quotient by a nilpotent ideal. Here is another example. We refer to
[BS15, Prop. 5.25] for a more general statement, showing that the condition of descendability in the
noetherian case is equivalent to being a cover in the h-topology. As this special case is elementary, we
illustrate it here.

Theorem 3.16. Let f : A → B be a finite map of noetherian rings such that kerf is nilpotent
(equivalently, SpecB → SpecA is surjective). Then f is descendable.

In this proof, we will break with convention slightly and indicate derived tensor products by
L
⊗.

This is to avoid confusion, as we will also work with strict quotients by ideals.

Proof. Let Z ⊂ SpecA be a closed subscheme, defined by an ideal J ⊂ A. We consider the condition
that A/J → B/JB is descendable. Using Example 3.1, one sees that this only depends on the radical
of J . Thus we can consider the condition on closed subsets of SpecA.

By noetherian induction, we may assume that the condition holds for all proper subsets of SpecA,
i.e., that if J is a non-nilpotent ideal, then A/J → B/JB is descendable. We then need to prove that
A→ B is descendable.

First assume that SpecA is reducible. Let {pi} be the minimal prime ideals of A. Then the map
A→

∏
iA/pi is descendable since the intersection of the pi is nilpotent. By hypothesis, A/pi → B/piB

is descendable because no pi is nilpotent. However, now by a transitivity argument it follows that
A→ B is descendable.

Thus, we may assume that SpecA is irreducible, so that it has a unique minimal prime ideal p,
which is nilpotent. Replacing A,B by A/p, B/pB, we may reduce to the case where p = 0 so that A is
a domain. This forces A→ B to be injective. Let K(A) be the quotient field of A. Since B ⊗AK(A)
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is finite free over K(A), there exists a nonzero f ∈ A such that Bf is finite free over Af , so that
Af → Bf is clearly descendable.

In particular, the map φ in (6) gives an element of Ext1A(B/A,A) which is f -power torsion. Suppose
fNφ = 0. Note that A/(f) → B/(f) is descendable by the inductive hypothesis; therefore, so is

A/f → B
L
⊗A A/f . It follows that φ⊗n becomes nullhomotopic after (derived) base-change along

A → A/f for some n. Consider the object HomD(A)(B/A
L⊗n, A) ∈ D(A) in which φ⊗n lives in π0.

Since B/A is a finitely generated A-module, we see easily that we have an equivalence in D(A/f),

HomD(A)(B/A
L⊗n, A)

L
⊗A A/f = HomD(A/f)(B/A

L⊗n
L
⊗ A/f,A/f).

Let N ∈ D(A). The long exact sequence associated to the cofiber sequence N
f
→ N → N

L
⊗A

A/f shows that if x ∈ π0N maps to zero in N
L
⊗A A/f , then x is divisible by f . Taking N =

HomD(A)(B/A
L⊗n, A), we see that we have φ⊗n = fψ for some ψ ∈ π0HomD(A)(B/A

L⊗n, A). It now

follows that as fNφ = 0, we have φ⊗nN+1 = 0. This proves that A→ B is descendable. �

We refer to [BS15, Sec. 5] for some applications of these ideas in the setting of perfect rings, and
in particular h-descent for quasi-coherent sheaves.

3.3. Galois extensions. In this subsection, we note another example of descendability: the Galois

extensions studied by Rognes [Rog08]. We begin with an important special example.

Proposition 3.17. The map KO→ KU is descendable.

Proof. We use the basic equivalence, due to Wood, of KO-module spectra

(7) KU ≃ KO ∧Cη,

where Cη ≃ Σ−2CP2 denotes the cofiber of the Hopf map, and now the fact that η is nilpotent.
Namely, the equivalence (7) implies inductively by taking cofiber sequences that KO ∧ Cηn is KU -
nilpotent for n ≥ 1. Taking n ≥ 4 (so that η4 = 0),3 we find thatKO itself isKU -nilpotent, as desired.
We note that this argument is very classical and appears, for example, in the proof of [Bou79, Cor.
4.7]. �

The analog also works for the map of connective spectra ko → ku, because the equivalence (7)
passes to the connective versions as well.

We note a basic phenomenon here: the homotopy groups of KU are very simple homologically, i.e.,
π∗(KU) ≃ Z[β±1]. By contrast, the homotopy groups of KO have infinite homological dimension,
π∗(KO) ≃ Z[η, t4, u

±1
8 ]/(2η, η3, t24 = 2u8). As a result, it is generally much easier to work with KU -

modules than with KO-modules. Note that this simplification of the homological dimension is very
different from the setting of faithfully flat descent.

There are more complicated versions of this. For example, we have a map of E∞-rings tmf(2) →
tmf1(3)(2). Here tmf(2) has extremely complicated homotopy groups, while π∗tmf1(3)(2) ≃ Z(2)[v1, v2]
as in [LN12]. In [Mat16b], it is shown that there is a 2-local finite complex DA(1) such that tmf(2) ∧
DA(1) ≃ tmf1(3)(2), a result originally due to Hopkins-Mahowald. Here DA(1) has torsion-free
homology, and by the thick subcategory theorem [HS98], the thick subcategory that DA(1) generates
in spectra contains the 2-local sphere. Therefore, tmf(2) → tmf1(3)(2) is easily seen to be descendable.

Definition 3.18 (Rognes [Rog08]). Let G be a finite group. A faithful G-Galois extension of an
E∞-ring A consists of an E∞-A-algebra B together with a G-action such that:

(1) The natural map A→ BhG is an equivalence.
(2) The natural map B ⊗A B →

∏
GB is an equivalence.

(3) ⊗A is conservative on C.

3Or n ≥ 3, since η3 = 0 in π∗(KO).
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Example 3.19. Let A → A′ be a G-Galois extension of commutative rings (i.e., SpecA′ → SpecA
is a G-torsor in the sense of algebraic geometry). Then the induced map on associated E∞-rings is
Galois in Rognes’s sense.

Example 3.20. The fundamental example of a Galois extension is that KO→ KU is a faithful C2-
Galois extension, where C2 acts onKU via complex conjugation. The extensions of connective spectra
tmf(2) →→ tmf1(3)(2) are not Galois, but the periodic analogs fit into a Galois picture. Compare
[MM15].

Proposition 3.21. Suppose A→ B is a faithful G-Galois extension. Then A→ B is descendable.

Proof. In fact, B is dualizable as an A-module by [Rog08, Prop. 6.2.1]. Since tensoring with B is
conservative on Mod(A), the result now follows from Theorem 3.7. �

We refer to [Mat16a] for more details on the relationship between Galois theory and descendability.
In particular, a treatment is given there of how one can fit Rognes’s theory into the “axiomatic Galois
theory” of [SGA03]: the Galois extensions are precisely torsors with respect to descendable morphisms.

We end this subsection by describing how the general descent theorem (Theorem 2.41) applies in
the case of a Galois extension. If A → B is G-Galois, then the G-action on B induces a G-action
on the ∞-category Mod(B). The following result has been observed independently by many authors.
Compare in particular [GL, Hes09, Mei12, Ban13].

Theorem 3.22 (Galois descent). Suppose A→ B is a faithful G-Galois extension. Then we have an
equivalence of symmetric monoidal ∞-categories Mod(A) ≃ Mod(B)hG.

This result can also be proved for G-Galois extensions when G is not necessarily finite (which we
do not discuss here). We refer to [Mat16a, Th. 9.4] for the statement when G is allowed to be a
topological group and [Mat15b] for an application.

Remark 3.23. We refer to [MS16, HMS15] for a description of how these results can be used to
calculate Picard groups of ring spectra. For instance, it is possible to calculate the Picard group of
KU -modules relatively directly using the homotopy groups of KU (compare [BR05]), while invertible
modules over KO can then be determined by descent.

3.4. The Devinatz-Hopkins-Smith nilpotence theorem. The following result is fundamental for
all the applications of nilpotence in stable homotopy theory: a criterion for the nilpotence of elements
in ring spectra. Throughout, we work in C = Sp.

We let MU denote the E∞-ring spectrum of complex bordism. We will also need to use the ring
spectra K(n) associated to an implicit prime p and a height n. These are no longer E∞, but they are
E1-ring spectra. We have π∗K(n) ≃ Fp[v±1

n ] with |vn| = 2(pn − 1).

Theorem 3.24 (Devinatz-Hopkins-Smith [DHS88]). If R is a ring spectrum and α ∈ π∗(R) maps to
zero in MU∗(R), then α is nilpotent.

Corollary 3.25 (Hopkins-Smith [HS98]). Let R be a ring spectrum and let α ∈ π∗(R). Then the
following are equivalent:

(1) α is nilpotent.
(2) The image of α in K(n)∗(R) for each implicit prime p and 0 < n <∞ is nilpotent. Similarly,

the image of α in (HFp)∗(R) for each p and HQ∗(R) is nilpotent.

We remark that the benefit of the above results is that the K(n)∗ and MU∗-homology theories
are much more computable than stable homotopy groups itself. That is, while MU∗ and K(n)∗ are
much easier to work with than π∗, they are still strong enough to detect nilpotence. Our goal in
this subsection is to explain how one can interpret the nilpotence theorem in terms of exponents of
nilpotence. This subsection is essentially an amplification of remarks of Hopkins [Hop08].

We remark first that Theorem 3.24 would be immediate if we knew that MU was descendable in
spectra. It is also immediate for ring spectra which are MU -nilpotent. This is not the case, as there
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are nontrivial spectra Y with MU ∧ Y = 0, for instance the Brown-Comenentz dual of the sphere (cf.
[HS99, Lem. B.11]). Nonetheless, a partial version of this statement holds in some generality.

As explained in [DHS88], it suffices to assume that R is connective in Theorem 3.24. Let X be
a connective spectrum. In this case, while X need not be MU -nilpotent, the truncations τ≤kX are
necessarily MU -nilpotent because they can be finitely built from Eilenberg-MacLane spectra. The
MU -exponents of nilpotence of τ≤kX turn out to give an equivalent formulation of the nilpotence
theorem. We will in fact formulate a general question for an connective ring spectrum.

For simplicity, we work localized at a prime number p.

Definition 3.26. Let R be a connective p-local ring spectrum with π0R = Z(p) and πiR a finitely
generated Z(p)-module for all i. We define the function fR : Z≥0 → Z≥0 via the formula

fR(k) = expR(τ≤(k−1)S
0
(p)).

In general, it is probably impossible to calculate fR(k) exactly except in very low degrees, but we
ask the following general question.

Question 3.27. What is the behavior of the function fR(k) as k →∞?

We note first that the function fR is subadditive, i.e., f(k1+k2) ≤ f(k1)+f(k2); this follows from the
cofiber sequence τ[k1,k1+k2−1]S

0
(p) → τ≤k1+k2−1S

0
(p) → τ≤k1−1S

0
(p) and the fact that τ[k1,k1+k2−1]S

0
(p) is

a module over τ≤k2−1S
0
(p). It follows that

lim
k→∞

fR(k)

k

exists, and as fR(1) = 1 we find that this limit is between 0 and 1.

Proposition 3.28. The following are equivalent:

(1) fR(k) ≤ m.
(2) Let X be a connective p-local spectrum and let i ≤ k − 1. Any α ∈ πiX of R-based Adams

filtration of α at least m vanishes. It suffices to take X with finitely generated homology.

Proof. This follows from a straightforward diagram chase. Suppose fR(k) ≤ m and fix α ∈ πiX of
filtration at least m, for some i ≤ k − 1. Let IR be the fiber of the unit S0

(p) → R. By the discussion

of the Adams tower in sec. 2, we then have a lifting of α : Si(p) → X through I∧mR ∧X and form the

diagram

I∧mR ∧X

��

p2// I∧mR ∧X ∧ τ≤k−1S
0
(p)

0

��
Si(p)

α //

;;
✇
✇
✇
✇
✇
✇
✇
✇
✇

X
p1 // X ∧ τ≤k−1S

0
(p)

.

The hypothesis that fR(k) ≤ m implies that the map I∧mR ∧ τ≤k−1S
0
(p) → τ≤k−1S

0
(p) is nullhomotopic.

Hence the smash product with X , which is the right vertical map in the diagram, is also nullhomotopic.
Since the map p1 is an isomorphism on πi, the commutativity of the diagram now implies that α is
nullhomotopic.

Now suppose that the second hypothesis holds. We need to show that the map I∧mR ∧ τ≤k−1S
0
(p) →

τ≤k−1S
0
(p) is null. Since R has finitely generated homology, it suffices to show that if F is a p-local

finite connective spectrum with cells in degrees up to k − 1 equipped with a map F → I∧mR , then the
composite

φ : F → I∧mR ∧ τ≤k−1S
0
(p) → τ≤k−1S

0
(p),

is nullhomotopic.



EXAMPLES OF DESCENT UP TO NILPOTENCE 17

The composite φ is of R-based Adams filtration at least m. It follows that the adjoint map
a : S0

(p) → τ≤k−1S
0
(p) ∧ DF also has R-based Adams filtration at least m. Since the cells of F are in

degrees up to k − 1, it follows that Σk−1DF is connective. Thus, we obtain a map

Σk−1a : Sk−1
(p) → Σk−1τ≤k−1S

0
(p) ∧ DF

which has Adams filtration ≥ m, and where the target is connective. It follows that Σk−1a is null by
our hypotheses, which implies that φ is null as desired. �

Proposition 3.29. Let R be a connective ring spectrum with π0R = Z(p) and suppose that fR(k) =
o(k) as k → ∞. Then R detects nilpotence, i.e., if R′ is a connective p-local ring spectrum and
α ∈ πk(R′) maps to zero in πk(R ∧R′), then α is nilpotent.

Proof. Let R′ be a connective p-local ring spectrum and let α ∈ πn(R′) map to zero in πn(R ∧R′) =
πn(R ∧ τ≤nR′). For each m, it follows that αm is detected in R-based Adams filtration at least m in
πnm(τ≤nmR

′). Once m is chosen large enough such that

expR(τ≤nmR
′) ≤ fR(nm+ 1) < m,

it follows that αm = 0 by Proposition 3.28, which proves that α is nilpotent as desired. �

We then have the following equivalent reformulation of the nilpotence theorem.

Theorem 3.30 (Nilpotence theorem, equivalent reformulation). We have fMU(p)
(k) = o(k) as k →∞.

In particular, if X is a connective p-local spectrum, then expMU(p)
(τ≤kX) = o(k) as k→∞.

Proof. This will follow from the results of [DHS88] as well as the general vanishing line arguments of
[HS98]. Fix a connective p-local spectrum X and ǫ > 0. Taking direct sums, we can assume that X is
actually chosen so that it attains the bound given by fMU(p)

: that is, we can assume for each k > 0,

there exists a nonzero αk ∈ πk−1X of filtration fMU(p)
(k).

We claim that there exist N,M such that in the MU(p)-based Adams spectral sequence for X , we

have Es,tN = 0 if s > ǫ(t − s) +M . It follows from [HPS99] that the class of X with this property is
thick. By [DHS88, Prop. 4.5], it follows that there exists a finite torsion-free p-local spectrum F such
that X ∧ F has this property (in fact, we can take N = 2). It follows that X has this property in
view of the thick subcategory theorem of [HS98].

Choose N,M such that we have the vanishing line Es,tN = 0 if s > ǫ(t− s) +M . Then the Adams-
Novikov spectral sequence together with assumption that the αk exist show that fMU(p)

(k) ≤ ǫk+O(1).
Since ǫ was arbitrary, it follows that fMU(p)

(k) = o(k) as k →∞. �

Remark 3.31. In [Hop08], Hopkins explains this result in the following (equivalent) manner: the
Adams-Novikov spectral sequence (i.e., the spectral sequence based on the cosimplicial object CB•(MU(p))∧
R), which always converges for R connective, has a “vanishing curve” of slope tending to zero at E∞.
That is, there is a function t 7→ φ(t) with φ(t) = o(t) such that any element in πt(R) of filtration at
least φ(t) vanishes. We can take φ(t) = fMU(p)

(t + 1) in our notation. Hopkins also raises the more

precise question of the behavior of fMU(p)
(t) as t → ∞, and suggests that fMU(p)

(t) ≃ t1/2. Hopkins

actually works in the integral (rather than p-local setting).

We now explain the situation when R = HZ(p). Of course, HZ(p) is very insufficient for detecting
nilpotence. So we should expect fHZ(p)

(k) 6= o(k). In fact, we can determine its behavior.
Suppose X is a connective p-local spectrum and suppose that X is n-truncated, i.e., πiX = 0 if

i /∈ [0, n]. Then, by induction on n and the Postnikov filtration, we find easily that expHZ(p)
(X) ≤ n+1.

One can do somewhat better.

Proposition 3.32. We have fHZ(p)
(k) = k

2p−2 +O(1).
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Proof. This is based on the vanishing line in the HFp-based Adams spectral sequence. Compare

[Mat16c, Prop. 3.2–3.3]. The argument there shows that expHZ(p)
(τ≤kS

0
(p)) ≤

k
2p−2 + O(1). In fact,

it shows the stronger claim that expHFp
(τ[1,k]S

0
(p)) ≤

k
2p−2 +O(1).

To see the converse, we consider the ring spectrum ku/p. The element v1 ∈ π2p−2(ku/p) maps to
zero in π2p−2(HZ(p) ∧ (ku/p)) ⊂ π2p−2(HFp ∧ (ku/p)). However, v1 is not nilpotent. It follows that
vn1 ∈ πn(2p−2)(ku/p) has HZ(p)-Adams filtration at least n. It follows from this and Proposition 3.28
that fHZ(p)

(n(2p− 2) + 1) ≥ n+ 1. This proves the claim. �

We can also ask intermediate questions. We have a whole family of ring spectra interpolating
between MU and HZ(p). Since we are working p-locally, it is easier to replace MU with BP . We
then have the family of ring spectra BP 〈n〉. Essentially by construction, BP 〈n〉 does not see vn+1-
fold periodicities and higher; for instance, BP 〈n〉 is annihilated by the Morava K-theories K(m) for
m ≥ n+ 1. This leads to the following question:

Question 3.33. For R = BP 〈n〉, do we have

lim
k→∞

1

k
expBP 〈n〉(τ≤kS

0
(p)) =

1

2(pn+1 − 2)
?

We can also ask for the value of this limit for other intermediate connective ring spectra, such as
τ≤nS

0
(p) and the X(n)-spectra used in the proof of the nilpotence theorem [DHS88].

At n = 1, closely related questions have been studied. In [Mah81, Th. 1.1], Mahowald shows that
the ko-based Adams spectral sequence for the sphere has a vanishing line at E∞ of slope 1

5 . At odd
primes, this has been considered in the work of Gonzalez [Gon00]. In particular, in [Gon00] it is shown
that the ku-based Adams spectral sequence for S0 has a vanishing line at E2 of slope (p2 − p− 1)−1.
We can recover the corresponding statement for the exponents as follows.

Example 3.34. Let n = 1 and p be an odd prime. Let ℓ be the p-adic Adams summand of k̂up.
Then we have a natural map

(̂S0)p → fib(ℓ
ψl−1
−−−→ Σ2p−2ℓ),

which is an equivalence in degrees below degree 2p2 − 2p− 2, where the first β-element β1 occurs. In

fact, the map (̂S0)p → fib(ℓ
ψl−1
−−−→ Σ2p−2ℓ) detects precisely the image of the J-homomorphism, and

β1 is the first class in p-local stable homotopy which does not belong to the image of J .

Thus the p-completion τ<(2p2−2p−2)Ŝ0
p has exponent ≤ 2 over ℓ. It follows from this that fku(2p

2−
2p− 2) = fℓ(2p

2 − 2p− 2) ≤ 2. In fact, we can apply Proposition 3.28: if X is a connective p-local
spectrum with finitely generated homology and i < 2p2 − 2p− 2, then any α ∈ πi(X) of ku-filtration

at least 2 vanishes. This follows from expℓ

(
τ<(2p2−2p−2)Ŝ0

p

)
≤ 2 and passage to p-completion

everywhere. As a result, since fku(·) is subadditive, limk→∞ fku(k) ≤
1

p2−p−1 .

3.5. The Hopkins-Ravenel smash product theorem. In this subsection, we briefly discuss the
role of nilpotence in the smash product theorem of Hopkins-Ravenel. We refer to [Rav92] for an
account of this result. See also the course notes [Lur10].

Fix a ring spectrum E.

Definition 3.35 (Bousfield). A spectrum X is E-local if for all spectra Y with E ∧ Y contractible,
we have [Y,X ]∗ = 0. To any spectrum X , we have a universal approximation LEX equipped with a
map X → LEX with the following two properties:

(1) X → LEX becomes an equivalence after smashing with E.
(2) LEX is E-local.

This is called the E-localization of X .
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Since E is a ring spectrum, we see that if X = E ∧ X ′ for any spectrum X ′, then X is E-local.
As E-local spectra form a thick subcategory of Sp, it follows that any E-nilpotent spectrum is also
E-local.

Definition 3.36. We say that a localization LE is smashing if for all spectra X , the natural map
LES

0 ∧ X → LEX is an equivalence. This holds if and only if LE commutes with arbitrary wedges
(i.e., direct sums).

Suppose that E is an E1-ring spectrum. Then we can form the cobar construction CB•(E) ∈
Fun(∆, Sp).

Proposition 3.37. Suppose the Tot tower of the cobar construction CB•(E) is quickly converging.
Then:

(1) The inverse limit of CB•(E) is given by LES
0.

(2) LE : Sp→ Sp is a smashing localization.
(3) The map LES

0 is E-nilpotent.

Proof. Since CB•(E) is quickly converging, it follows that

E ∧ Tot(CB•(E)) ≃ Tot(E ∧CB•(E)) ≃ E

as E ∧ CB•(E) admits a splitting. Therefore, the map S0 → Tot(CB•(E)) becomes an equivalence
after smashing with E. Since Tot(CB•(E)) is clearly E-local (as an inverse limit of E-local objects),
(1) follows. Since the tower is quickly converging, it follows that the limit LES

0 is E-nilpotent. �

Let En denote Morava E-theory. We refer to [Rez98] for a treatment of En and a proof that it
is an E1-ring spectrum (in fact, it is E∞ by the Goerss-Hopkins-Miller theorem). We then have the
following fundamental result.

Theorem 3.38 (Hopkins-Ravenel). The cobar construction CB•(En) is quickly converging. There-
fore, Ln is a smashing localization.

By Proposition 2.21, the Hopkins-Ravenel theorem implies that the En-based Adams spectral
sequence for any LnS

0-module has a horizontal vanishing line at some finite stage. Actually, the
proof of the Hopkins-Ravenel theorem is based on proving this uniform vanishing line. Then one uses
the following crucial result. We refer to [Lur10, Lecture 30] for an exposition.

Proposition 3.39. Suppose X• is a cosimplicial object. Suppose that there exists N, h such that for
every finite spectrum Y , the BKSS for π∗(Tot(X

• ∧ Y )) has the property that Es,tN = 0 for s > N .
Then X• is quickly converging.

Remark 3.40. This result is not totally general: it relies on the fact that the composite of two
phantom maps of spectra is zero.

4. Nilpotence and group actions

In this section, we discuss some of the relationships between nilpotence and finite group actions,
in particular the F -nilpotence theory of [MNN17, MNN15].

4.1. Group actions. Let C be a presentably symmetric monoidal stable ∞-category. Fix a finite
group G. We consider ∞-category Fun(BG, C) of objects in C equipped with a G-action. With the
tensor product inherited from the one on C, this is also a presentably symmetric monoidal stable
∞-category.

Construction 4.1. We have the homotopy fixed point functor

Fun(BG, C)→ C, X 7→ XhG,

which is the (lax symmetric monoidal) right adjoint to the symmetric monoidal left adjoint functor
triv : C → Fun(BG, C) which equips an object with the trivial action.
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We also have the homotopy orbits functor

Fun(BG, C)→ C, X 7→ XhG,

which is the left adjoint to triv.

In general, the homotopy fixed point functor is not a finite homotopy limit, because BG cannot be
modeled by a finite simplicial set. This is a basic difference between algebra and homotopy theory:
in algebra, forming the fixed points for a finite group action is a finite inverse limit. By contrast, in
homotopy theory, the homotopy fixed points XhG can be much bigger than X . (Similarly, XhG is not
a finite homotopy colimit.)

Construction 4.2. For any X ∈ Fun(BG, C), we have a natural transformation

NX : XhG → XhG

called the norm map. We refer to [Lur11a, Sec. 2.1] for the construction in this setting, though
it goes back to work of Greenlees-May [GM95]. The cofiber of the norm map is called the Tate

construction XtG.

In this subsection, we will start by describing an instance where homotopy fixed points behave
more like a finite limit.

Definition 4.3. We let DG+ ∈ Fun(BG, Sp) be the Spanier-Whitehead dual to the space G+,
equipped with the G-action by translation.

The natural symmetric monoidal functor Sp→ C yields a symmetric monoidal functor Fun(BG, Sp)→
Fun(BG, C) and we will write DG+ also denote the image. We have DG+ ∈ CAlg(Fun(BG, C)), i.e.,
it is naturally a commutative algebra object.

Definition 4.4. We also have a forgetful functor Res : Fun(BG, C) → C which remembers the
underlying object, and this functor has a biadjoint

CoInd : C → Fun(BG, C), X 7→
∏

G

X,

called coinduction. Given an object X of C, this is the indexed product of G copies of X , with G-action
permuting the factors.

We will need some basic facts about DG+:

(1) For any X ∈ Fun(BG, C), the object X ∧ DG+ ∈ Fun(BG, C) has the property that (X ∧
DG+)

hG ≃ X . In fact, X ∧DG+ ≃ CoInd(ResX), which easily implies the description of the
homotopy fixed points.

(2) Since CoInd is also the left adjoint to Res, it follows that

(X ∧ DG+)hG ≃

(∨

G

X

)

hG

≃ X,

so that the homotopy orbits are also given by X . In fact, the Tate construction is contractible
in this case and the norm map is an equivalence.

(3) The ∞-category of DG+-modules in Fun(BG, C) is equivalent to C itself. This follows as in
[MNN17, Sec. 5.3].

We can now make the main definition of this subsection.

Definition 4.5. We will say that an object X ∈ Fun(BG, C) is nilpotent if it is DG+-nilpotent.

Proposition 4.6. When X ∈ Fun(BG, C) is nilpotent, then XtG = 0.

Proof. The Tate construction is exact and it annihilates any object of the form Y ∧DG+. Therefore,
it annihilates X by the evident thick subcategory argument. �
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We have the following basic result. All of this is as in Section 2. In the case C = Sp, then we can
identify the homotopy fixed point spectral sequence with the DG+-based Adams spectral sequence in
Fun(BG, Sp).

Proposition 4.7. When X ∈ Fun(BG, C) is nilpotent, the following happen:

(1) XhG belongs to the thick subcategory of C generated by X .
(2) If C = Sp, the homotopy fixed point spectral sequence for XhG, H∗(G;π∗X) =⇒ π∗X

hG,
collapses with a horizontal vanishing line at a finite stage.

(3) Any exact functor C → C induces a functor Fun(BG, C) → Fun(BG, C) which preserves
nilpotent objects.

Going in reverse, we can also describe the Tate construction in the following manner. See also
[Kle02], which uses a version of this as the characterization.

Construction 4.8. Let X ∈ Fun(BG, C). We can write X ∈ Fun(BG, C) as an I-indexed colimit
X = lim

−→
Xi where Xi ∈ Fun(BG, C) is nilpotent. For example, we can take X ≃ (X ∧DG+)hG where

DG+ ∈ Fun(BG,Fun(BG, Sp)) ≃ Fun(B(G × G), Sp) via the right and left multiplication of G on
itself. Then

XtG = cofib(lim
−→
I

XhG
i → XhG).

We now observe that for an algebra object, Tate vanishing is actually equivalent to nilpotence.

Theorem 4.9. Suppose the unit 1 ∈ C is compact. Let R ∈ Fun(BG, C) be an algebra object. Then
the following are equivalent:

(1) The Tate construction vanishes, i.e., RtG = 0.
(2) R is DG+-nilpotent.

Proof. We refer also to [HHR16, Cor. 10.6] for a result in a similar flavor. For an abstract result
including this (and others), see [MNN17, Th. 4.19].

Let EG• denote the usual simplicial model for the G-space EG, so that EGn = Gn+1. Let sknEG
denote the n-skeleton of the geometric realization |EG•|. Then in the category Fun(BG, C), we have
an equivalence

R ≃ lim
−→
n

R ∧ sknEG+.

Since RtG = 0, it follows that we have an equivalence of RhG-modules

RhG ≃ lim
−→
n

(R ∧ sknEG+)
hG,

and the unit 1 ∈ π0RhG belongs to the image of the natural map (R ∧ sknEG+)
hG → RhG for some

n (as 1 is compact). It follows from this that in Fun(BG, C), R is a retract of R ∧ sknEG+, which is
clearly nilpotent. �

Example 4.10. Let A→ B be a faithful G-Galois extension, so that B ∈ Fun(BG,Mod(A)). Then
B is nilpotent. In fact, we know that BtG = 0 [Rog08, Prop. 6.3.3] so we can apply Theorem 4.9.
Alternatively, B ⊗A B ≃

∏
GB is clearly nilpotent, and then one can argue that B is nilpotent since

B is descendable as an A-algebra by Proposition 3.21.

Example 4.11. Suppose multiplication by |G| is an isomorphism on every object in C (equivalently,
π∗1 is a Z[1/|G|]-algebra). Then Tate constructions in C vanish.

We will now study the case G = Cp in some detail. In certain situations, we will be able to give
another description of the ∞-category Fun(BCp, C) and of what nilpotence entails.

Definition 4.12. Let V be the one-dimensional complex representation of Cp (choosing a primitive
pth root of unity) and let SV denote its one-point compactification. We have a natural map of Cp-
spaces e : S0 → SV including the points at 0 and∞. We will use the same notation for the associated
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map in Fun(BCp, Sp) obtained by taking suspension spectra. We write en for the induced n-fold
smash power S0 → SnV .

We now have the following basic result about nilpotence. In various forms, this argument is crucial
to all aspects of this theory. It appears, for example, in the work of Carlson [Car00] on Quillen
stratification (to be discussed further in the next section), and in a general form it appears in the
derived induction and restriction theory of [MNN15].

Proposition 4.13. Let X ∈ Fun(BCp, C). Then X is nilpotent if and only if X ∧ en : X → X ∧ SnV

is nullhomotopic in Fun(BCp, C) for some n≫ 0.

Proof. Note first that e ∧ DG+ is nullhomotopic. This can be seen using the self-duality DG+ ≃ G+

and the nullhomotopy is at the level of G-spaces itself. It follows that e ∧ DG+ ∧ Y is nullhomotopic
for any Y ∈ Fun(BCp, C), and it follows by a thick subcategory argument that if X ∈ Fun(BCp, C) is
nilpotent, then en ∧X is null for some n.

Conversely, we let S(nV )+ denote the unit sphere in the Cp-representation nV = V ⊕n and consider
the cofiber sequence

S(nV )+ → S0 en
→ SnV

in Fun(BCp, Sp), called the Euler sequence. If X ∧ en is nullhomotopic, it follows that X is a retract
of X∧S(nV )+ in Fun(BCp, C). Now one sees that this is nilpotent using the fact that S(nV )+ admits
a finite Cp-cell decomposition with free cells. �

Definition 4.14. Let R be an E∞-ring. R is complex-oriented if there exists a map of E1-rings
MU → R. In this case, we have an identification4

R ∧ SV ≃ Σ2R ∈ Fun(BCp,Mod(R)),

so that the map e becomes a map R→ Σ2R in Fun(BCp,Mod(R)), which is classified by an element
β ∈ R2(BCp).

In this case, we can formulate an equivalence of categories that further illuminates the condition
of nilpotence of a Cp-group action. We first recall the setup; see also the discussion of “unipotence”
in [MNN17], of which this is another form. Let R be an E∞-ring spectrum. Then for any finite group
G, we have a natural adjunction of presentably symmetric monoidal stable ∞-categories

Mod(C∗(BG;R)) ⇄ Fun(BG,Mod(R)),

where the right adjoint sends X ∈ Fun(BG,Mod(R)) to XhG. This adjunction is generally far from
an equivalence; nonetheless, sometimes it can come close.

Theorem 4.15. Suppose R is an complex-oriented E∞-ring. Then:

(1) The above adjunction induces an equivalence of symmetric monoidal ∞-categories

Fun(BCp, M̂od(R)p) ≃ M̂od(C∗(BCp;R))(p,β)

between the ∞-category of p-complete R-modules with a Cp-action and the ∞-category of
(p, β)-complete C∗(BCp;R)-modules.

(2) An object of Fun(BCp, M̂od(R)p) is nilpotent if and only if the β-action on the corresponding

C∗(BCp;R)-module is nilpotent.

Proof. Consider first the functor

(8) F : Mod(C∗(BCp;R))→ Fun(BCp,Mod(R)),

which carries C∗(BCp;R) to R equipped with trivial Cp-action. It is clearly fully faithful on the
thick subcategory generated by C∗(BCp;R). Now the cofiber of β : R → Σ2R is carried by F to
R ∧ S(V )+ ∈ Fun(BCp,Mod(R)). Since every object in Fun(BCp,Mod(R)) is complete with respect

4Stated another way, if BGL1(R) denotes the classifying space of rank 1 R-modules, then the composite BCp →

BGL1(R) classifying the representation sphere is nullhomotopic. We refer to [ABG+14] for a detailed treatment.
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to smashing with S(V )+ ∈ Fun(BCp, Sp), it follows that F factors through the β-completion, so we
obtain a functor

(9) M̂od(C∗(BCp;R))β → Fun(BCp,Mod(R)),

which, again, carries C∗(BCp;R) (which is β-complete) to R equipped with trivial Cp-action. In
particular, it carries the cofiber of β to R∧S(V )+. Equivalently, we observe that the right adjoint to
F , given by taking Cp-homotopy fixed points, lands inside β-complete objects. We can then p-complete
everywhere to obtain another functor

(10) M̂od(C∗(BCp;R))(p,β) → Fun(BCp, M̂od(R)p),

Now the cofiber of β is a compact generator for ̂Mod(C∗(BCp;R))β , and the image R ∧ S(V )+ ∈

Fun(BCp,Mod(R)) is compact, since S(V )+ is built from finitely many free Cp-cells. Similarly, the it-

erated cofiber C∗(BCp;R))/(p, β) is a compact generator for ̂Mod(C∗(BCp;R))p,β , and it corresponds

to the compact object R ∧ S(V )+/p ∈ Fun(BCp, M̂od(R)p).

We claim in fact that R ∧ S(V )+/p is a compact generator for Fun(BCp, M̂od(R)p). In fact, there

is a cofiber sequence in Fun(BCp, Sp)

Cp+
x−1
→ Cp+ → S(V )+,

where x denotes multiplication by a generator of Cp. Smashing with R/p, we obtain a cofiber sequence

R/p ∧ Cp+
x−1
→ R/p ∧ Cp+ → R/p ∧ S(V )+,

in Fun(BCp, M̂od(R)p). In particular, using the identification Fun(BCp,Mod(R)) ≃ Mod(R[Cp]), we

find that R/p∧ S(V )+ is the cofiber of multiplication by x− 1 on R[Cp]. However, x− 1 is nilpotent

on R/p ∧ Cp+ ≃ R[Cp]/p. Therefore, the thick subcategory of Fun(BCp, M̂od(R)p) generated by

R/p∧ S(V )+ actually contains R/p ∧Cp+, which is a compact generator for Fun(BCp, M̂od(R)p). It

follows that R/p ∧ S(V )+ is a compact generator for Fun(BCp, M̂od(R)p).

It follows that our comparison functor (10) carries a compact generator of the source to a compact
generator of the target, and it is fully faithful on the thick subcategory generated by the compact
generator in the source. It follows now that (10) is an equivalence, as desired.

Finally, we need to connect the notions of nilpotence on both sides of (10). Note that X ∈

Fun(BCp, M̂od(R)p) is nilpotent if and only if X is a retract of X ∧ S(nV )+ for some n. An object

Y of ̂Mod(C∗(BCp;R))p,β has nilpotent β-action if and only if Y is a retract of Y ∧ C∗(BCp;R)/β
n

for some n. Since C∗(BCp; R̂p)/β
n and R̂p ∧ S(nV )+ correspond under the equivalence of (10), the

second assertion follows. �

We will now connect this to the Tate construction.

Proposition 4.16. LetR be a complex-oriented E∞-ring. The Tate construction Fun(BCp,Mod(R))→
Mod(R) is given by the composite

Fun(BCp,Mod(R))
M 7→M̂p

−−−−−→ Fun(BCp, M̂od(R)p) ≃
̂Mod(C∗(BCp;R))β,p

β−1

−−→ Mod(R),

where the last functor is given by inverting β. In particular, RtCp = C∗(BCp, R̂p)[β
−1].

Proof. This follows from the description of the Tate construction in Construction 4.8. Note first that

the mapM → M̂p induces an equivalence on Tate constructions; this follows from the usual arithmetic
square, to which the other terms do not contribute after applying ()tCp . Fix M ∈ Fun(BCp,Mod(R)).
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We write M as the colimit M ≃ lim
−→n

M ∧ S(nV )+ in Fun(BCp,Mod(R)). It follows that

M tCp = cofib

(
lim
−→
n

(M ∧ S(nV )+)
hCp →MhCp

)
= lim
−→
n

(M ∧ SnV )hCp .

Now in view of the complex orientation we can identify this last colimit with multiplication by β, i.e.

MhCp
β
→ Σ2MhCp

β
→ . . . ,

which proves the claim. �

As a result, we are able to prove a unipotence result for associative ring spectra with Tate vanishing.
The main example is given by the Morava K-theories. We can view this as a form of the convergence
of the Eilenberg-Moore spectral sequence as in [Bau08].

Definition 4.17. We will say that a p-local ring spectrum R satisfies Tate vanishing if RtCp = 0.

Corollary 4.18. Suppose R is an E1-ring spectrum in Mod(MU). Suppose p is nilpotent in π0R.
Then the following are equivalent:

(1) RtCp = 0.
(2) The trivial Cp-action on R is nilpotent.
(3) The comparison functor (8) is an equivalence of∞-categoriesMod(C∗(BCp;R)) ≃ Fun(BCp,Mod(R)).
(4) The image of β ∈MU2(BCp) in R

2(BCp) is nilpotent.

Proof. We consider the equivalence M̂od(C∗(BCp;MU))(p,β) ≃ Fun(BCp, ̂Mod(MU)p) of Theorem 4.15.
We have an E1-algebra object given on the right-hand-side by R with trivial Cp-action and by
C∗(BCp;R) on the left-hand-side. We can thus take module categories with respect to this alge-
bra on both sides. Since p is nilpotent in π0R, we thus obtain an equivalence

M̂od(C∗(BCp;R))β ≃ Fun(BCp,Mod(R)).

The desired equivalences now follow in view of this and Proposition 4.16. For example, if β maps to a
nilpotent class in R2(BCp), then every module over Mod(C∗(BCp;R)) is automatically β-complete.

�

Example 4.19. The Morava K-theories K(n) satisfy Tate vanishing. In fact, K(n) is complex-
oriented and as K(n)∗(BCp) is a (Z/2(pn− 1)-graded) finite-dimensional vector space, it follows that
any element of the augmentation ideal, such as β, is necessarily nilpotent. Compare [GS96]. Compare
also [HL13, Sec. 5] for generalizations of these equivalences. For example, one can replace Cp by any
p-group, or in those cases by appropriate π-finite spaces.

Remark 4.20. It is also known that Tate vanishing holds telescopically. Let F be an associative ring
spectrum which is also a finite type n complex, and let x ∈ π∗X be a central vn-element (these exist
by [HS98]). Then we let T (n) = T (n, F, x) = F [x−1]. Then T (n) satisfies Tate vanishing [Kuh04].
However, the telescope is very much not complex orientable.

We close with the following natural question suggested by this discussion.

Question 4.21. What is the exponent of nilpotence for K(n) ∈ Fun(BG, Sp) (with trivial action) as
a function of G? One can also ask the analogous question for T (n), although it is likely much harder.

4.2. Nilpotence in representation theory. In the previous subsection, we explored the phenom-
enon of nilpotence in ∞-categories of the form Fun(BG, C). In general, the statement that every

object of Fun(BG, C) should be nilpotent is very strong and is not usually satisfied except in special
cases. However, a weaker form of nilpotence, which involves a family of subgroups of a given group,
is satisfied in a much wider array of cases. In this subsection, we discuss it primarily in the setting of
group actions on k-modules. The material primarily follows [MNN15].

Again, let C be a presentably symmetric monoidal stable ∞-category. We will introduce a gener-
alization of Definition 4.3 and Definition 4.4.
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Construction 4.22. For eachH ≤ G, we have a commutative algebra objectD(G/H+) ∈ CAlg(Fun(BG, C)).
This commutative algebra controls restriction to H in the following sense: we have an equivalence of
symmetric monoidal ∞-categories

ModFun(BG,C)(D(G/H+)) ≃ Fun(BH, C).

We refer to [BDS15] for a discussion of such equivalences (at least at the level of triangulated categories)
as well as [MNN17, Sec. 5.3].

Definition 4.23. Let F be a family of subgroups of G. An object of Fun(BG, C) is F-nilpotent if
it is nilpotent with respect to

∏
H∈F D(G/H+). We will say that C is F-nilpotent if every object of

Fun(BG, C) is F -nilpotent.

When F is the trivial family (consisting just of (1)), then this of course recovers Definition 4.4.
However, when F is more general, we expand the class of examples for which one has F -nilpotence.
One can show that there is always a unique minimal family with respect to which an object is F -
nilpotent.

Example 4.24. Let All be the family of p-groups of G (for any p). Then C is automatically All-
nilpotent. In fact, for each p let Gp ⊂ G be a p-Sylow subgroup. Then one sees easily that S0 ∈
Fun(BG, Sp) is a retract of

∏
p||G|D(G/Gp+), which implies that the unit S0 is All-nilpotent, and

thus any object is.

Using this, one can reduce the question of F -nilpotence to the case where G is itself a p-group.

Proposition 4.25. Let X ∈ Fun(BG, C). Then the following are equivalent:

(1) X is P-nilpotent, where P is the family of proper subgroups of G.
(2) Let ρ̃G be the (complex) reduced regular representation of G, i.e., the quotient of the regular

representation by the trivial representation. Let eρ̃G : S0 → Sρ̃G be the associated Euler class
in Fun(BG, Sp). Then X ∧ en is nullhomotopic for some n≫ 0.

The first case where this was effectively studied was when C is the derived ∞-category of a ring,
starting with the work of Quillen [Qui71] and later expanded by Carlson [Car00]. See also the work
of Balmer [Bal16], especially for the context of descent up to nilpotence.

Fix a finite group G and a field k of characteristic p > 0. We take C = Mod(k) = D(k). We consider
the presentably symmetric monoidal ∞-category Fun(BG,Mod(k)), the ∞-category of objects in
Mod(k) (or D(k)) equipped with a G-action, which we can also realize as the derived ∞-category
D(k[G]). Using the k-linear tensor product, this is a presentably symmetric monoidal, stable ∞-
category. We will also write kG/H for D(G/H)+ in here.

It has been known since the work of Quillen [Qui71] that when working with phenomena “up to
nilpotence” in the cohomology of finite groups, the the elementary abelian p-subgroups (i.e., subgroups
of the form Cnp for some n) play the basic role. This can be formulated in the following result.

Theorem 4.26 (Carlson [Car00]). Let Ep = Ep(G) be the family of elementary abelian p-subgroups

of G. Then Mod(k) is Ep-nilpotent; that is, the algebra
∏
H∈Ep(G) k

G/H ∈ CAlg(Fun(BG,Mod(k)))

is descendable.

Carlson’s original statement [Car00, Th. 2.1] is that there exists a filtration of G-representations
over k

0 =W0 ⊂W1 ⊂ · · · ⊂Wn

such that:

(1) Each quotient Wi/Wi−1 is induced from some elementary abelian p-subgroup.
(2) The trivial representation k is a retract of Wn, i.e., Wn ≃ k ⊕W ′

n for some G-representation
W ′
n.
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Clearly, this implies Theorem 4.26.
Theorem 4.26 turns out to be closely related to the “stratification” results on cohomology of finite

groups pioneered by Quillen [Qui71]. Recall the statement of Quillen’s results. Given a finite group
G and a subgroup H ⊂ G, we have a restriction map H∗(G; k)→ H∗(H ; k). We let O(G) denote the
orbit category of G, i.e., the category of all G-sets of the form G/H,H ⊂ G. Then we have a functor

O(G)op → Ring, G/H 7→ H∗(H ; k) ≃ H∗(G/H ×G EG; k).

Theorem 4.27 (Quillen [Qui71]). Let OEp
(G) ⊂ O(G) be the subcategory of G-sets of the form G/H

with H an elementary abelian p-group. The natural map

H∗(G; k)→ lim←−
G/H∈OEp (G)op

H∗(H ; k)

is a uniform Fp-isomorphism, that is:

(1) There exists N such that any element x ∈ H∗(G; k) in the kernel satisfies xN = 0.

(2) There exists M such that given any element y of the codomain, yp
M

belongs to the image.

Theorem 4.27 can be recovered from Theorem 4.26 using the Adams spectral sequence and the
machinery of descent up to nilpotence.

Proof sketch of Theorem 4.27. We claim that this follows from the horizontal vanishing line in the
Adams-based spectral sequence. Namely, we consider C = Fun(BG,Mod(k)) and the algebra object
A =

∏
H∈Ep(G) k

G/H , which is descendable by Theorem 4.26. Thus, we have a cosimplicial object

CB•(A) which quickly converges to the unit. Taking homotopy in C (equivalently, forming π∗()
hG ev-

erywhere) we thus obtain a spectral sequence converging to the homotopy groups of khG = C∗(BG; k).
The spectral sequence collapses with a horizontal vanishing line at a finite stage. Therefore, anything
in positive filtration is nilpotent. Moreover, using the Leibniz rule, one sees that any class on the
zero-line E0,t

2 survives after applying the Frobenius sufficiently many times. One can identify the

zero-line E0,t
2 with the inverse limit lim

←−G/H∈OEp (G)op
H∗(H ; k), which implies the result. �

We can ask to make this quantitative. For simplicity, we state the problem for the family of proper
subgroups.

Question 4.28. Let G be a finite p-group which is not elementary abelian and let k be a field
of characteristic p. What is the exponent of nilpotence of the trivial representation k with respect
AP =

∏
H(G k

G/H ∈ Fun(BG,Mod(k))? We write this as nP(G).
There are several equivalent reformulations of this question.

(1) Let Y be representation of G and let α ∈ Hk(G, Y ) be a class which restricts to zero on
proper subgroups. Then there exists n such that α⊗n vanishes in Hnk(G;Y ⊗n). What is the
minimal n (for all Y )?

(2) Let V be the representation
⊕

H<G k
G/H (i.e., AP) and consider the natural short exact

sequence of representations

0→ k →
⊕

H<G

kG/H →W → 0,

where W = V/k. This defines a natural class in Ext1k[G](W,k), or equivalently a class u ∈

H1(G,W∨). There exists n such that u⊗n ∈ Hn(G,W∨,⊗n) vanishes. What is the minimal
n?

(3) What is the minimal dimension of a finite G-CW complex F such that FG = ∅ and such
that the map k ∧ F+ → k in Fun(BG,Mod(k)) admits a section? Then nP(G) = dimF + 1.
Compare [MNN15, Prop. 2.26].

Suppose G is not elementary abelian and let Iess ⊂ H∗(G; k) be the ideal of essential cohomology
classes, i.e., those which restrict to zero on all proper subgroups. There is a significant literature on
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the essential cohomology ideal, and it was conjectured by Mui (unpublished) and Marx [Mar90] that
I2ess = 0. The conjecture was disproved by Green [Gre04].

We can interpret the ideal in our framework. The ideal Iess consists of the classes of Adams filtration
≥ 1 in π∗1 in Fun(BG,Mod(k)) with respect to the algebra object AP . It follows from the AP -based

Adams spectral sequence that I
nP (G)
ess = 0.

We can give some upper bounds on NP(G) as follows.

Example 4.29. Suppose we have a surjection φ : G ։ G′ and G′ is not elementary abelian. Then
nP(G) ≤ nP(G

′). This follows from item (3) above.

Example 4.30. Suppose G has a complex irreducible representation V which is not a character.
Then G acts on the projective space P(V ) without fixed points. Then, using the projective bundle
formula, one has an equivalence in Fun(BG,Mod(k)) given by

k ∧ P(V )+ ≃
dimC V⊕

i=0

Σ2ik.

Moreover, P(V )+ has a cell decomposition with cells of the form Sj × G/H+ for H ( G for j ≤
2(dimC V − 1) by the equivariant triangulation theorem. Using a cell decomposition, one sees that
(cf. also [MNN15, Ex. 5.16])

expAP
(k) ≤ expAP

(k ∧ P(V )+) ≤ 2 dimC V − 1.

Example 4.31. Suppose φ : G։ Cp is a surjection. Let β ∈ H2(Cp; k) be the usual class. Then the
cofiber of β in Fun(BCp, k) has nilpotence exponent 2 as it can be identified with k∧S(V )+ as above.
Thus, the cofiber of φ∗β has AP -exponent ≤ 2. For any family of surjections φ1, . . . , φn, the cofiber
of φ∗β1 . . . φ

∗βn ∈ H2n(G; k) has nilpotence exponent at most 2n. The cohomological length chl(G)
of G is the smallest n such that there exist surjections φ1, . . . , φn with φ∗β1 . . . φ

∗βn = 0; Serre’s
theorem [Ser65, Prop. 4] implies that such an n exists when G is not elementary abelian. It follows
that nP(G) ≤ 2chl(G). We refer to [Yal01] for upper bounds for chl(G).

In general, as above, there are both geometric and cohomological methods of obtaining upper
bounds on nP(G). It seems more difficult to obtain effective lower bounds on nP(G), for example:

Question 4.32. Is nP(G) unbounded as G varies?

4.3. Quillen’s theorem over other bases. We can attempt to replace k with any ring spectrum R
here. That is, we can consider Fun(BG,Mod(R)) as a “brave new” representation category, and ask
about the analogs of Theorem 4.26. It turns out that a better and more wide-ranging generalization
is to work with “genuinely” G-equivariant spectra, as in [MNN17, MNN15], but we will not treat this
generality here.

We raise the following two general question, to which the answer is known at least in a wide variety
of special cases.

Question 4.33. Let R be an E∞-ring spectrum and let G be a finite group. What is the minimal
family for which Mod(R) is F -nilpotent? If R is an E1-ring spectrum, what is the minimal family F
for which R ∈ Fun(BG, Sp) (with trivial action) is nilpotent?5

Remark 4.34. In the language of [MNN15], the above question is equivalent to asking for the derived
defect base of the Borel-equivariant G-spectrum associated to R (with trivial G-action).

We have the following two basic analogs over other bases, all proved in [MNN15]. The first is a
basic “complex-oriented” form of Theorem 4.26, and can be proved in many ways, such as the use
of the flag variety. One knows also that this cannot be improved; e.g. for R = MU the family of
abelian p-subgroups is the best possible. The second is closely related to the Hopkins-Kuhn-Ravenel
character theory of [HKR00].

5For the results below, it is best not only to restrict to E∞-rings as many natural examples are not (or not known
to be) E∞. If R is E∞, the two statements in the question are equivalent.
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Theorem 4.35. If R is complex-oriented, then R ∈ Fun(BG, Sp) is F -nilpotent for F the family of
abelian p-subgroups of G.

Theorem 4.36. If R is Ln-local, then R ∈ Fun(BG, Sp) is F -nilpotent for F the family of abelian
rank ≤ n p-subgroups of G.

We will sketch the proofs of these two results below. Most of the results in [MNN15] proving
F -nilpotence go through complex orientations, and the following is the basic tool.

Proposition 4.37 (General reduction step). Let R be a complex-oriented associative ring spectrum.
Suppose F is a family of subgroups of G. Suppose that for any H /∈ F , the natural restriction map
R∗(BH)→

∏
H′(H R

∗(BH ′) has nilpotent kernel. Then R ∈ Fun(BG, Sp) is F -nilpotent.

Proof. We sketch the argument when F is the family of proper subgroups of G (to which the general
case can be reduced). In this case, by Proposition 4.25, it suffices to consider the Euler class e : S0 →
Sρ̃G of the reduced regular representation; this is a map in Fun(BG, Sp).

It suffices to show that the map en ∧ R in Fun(BG,Mod(R)) is nullhomotopic for n ≫ 0. But
using the complex orientation to identify Sρ̃G with S2(|G|−1), e defines a class in R2(|G|−1)(BG) which
restricts to zero on all proper subgroups and which is therefore nilpotent, by assumption. �

Proof of Theorem 4.35 and Theorem 4.36. It suffices to show that if G is a finite group, and if x ∈
R∗(BG) is a class which restricts to zero on all abelian subgroups A ⊂ G, then x is nilpotent. To
see this, one uses a faithful complex representation of G and the associated flag bundle F → BG.
One argues that the class x pulls back to a nilpotent class on F because F can be built as a finite
homotopy colimit of spaces of the form BA, for A ⊂ G abelian. However, the map R∗(BG)→ R∗(F )
is injective by the projective bundle formula.

To prove Theorem 4.36, it suffices to treat the case where R = LnS
0. Using the smash product

theorem, one can now reduce to the case where R = En. One now reduces to the case where G is
abelian. It suffices to show that if G is of rank ≥ n + 1, then the map R∗(BG) →

∏
G′(GR

∗(BG′)
has nilpotent kernel. In fact, a calculation shows that it is in fact injectve. �

Over a field, we saw in the previous subsection how the descent-up-to-nilpotence picture was enough
to imply F -isomorphism style results after Quillen. It turns out that this works over any ring spec-
trum. We thus have the following result.

Theorem 4.38 (General F -isomorphism). Suppose R ∈ Fun(BG, Sp) with trivial action is F -
nilpotent and R is a homotopy commutative and E1-ring spectrum. Then the natural map φ :
R∗(BG)→ lim

←−G/H∈OF (G)op
R∗(BH) has the following properties:

(1) φ⊗Z Z[1/|G|] is an isomorphism.
(2) φ(p) is a uniform Fp-isomorphism.

Unlike the proof given in the previous section of Theorem 4.27, the proof of Theorem 4.38 requires
some additional work if R is not necessarily torsion-free. The key piece of input is that the higher
terms in the same Adams-style spectral sequence are all |G|-power torsion. This uses some algebraic
facts about Mackey functors. We refer to [MNN15] for details. The statement after inverting |G| is
nontrivial (in general, calculating E∗(BG)[1/|G|]) for E a spectrum is a difficult problem) and appears
in [HKR00] for R = En and related ring spectra, and follows from the spectral sequence as well.

We now note an example of a ring spectrum for which we do not have F -nilpotence for any family
smaller than the p-groups.

Theorem 4.39. If R = S0, then Mod(R) is not F -nilpotent for any family smaller than the family
of p-subgroups of G.

We do not know an “elementary” proof of the above result. For example, for p-groups, then we know
by the Segal conjecture that the stable cohomotopy of BG is very close to the p-adic completion of
the Burnside ring of G. As a result, it is possible to show that the rational conclusion of Theorem 4.38
fails.
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This raises the following general question.

Question 4.40. For which families F does there exist an associative ring spectrum R such that F is
the minimal family for which R ∈ Fun(BG, Sp) (with trivial action) is F -nilpotent?

Remark 4.41. In all the examples where one has a family smaller than the family of p-groups, the
proof relies essentially on complex orientations. In particular, in all known examples the minimal
family (if it is not all subgroups) is contained in the family of abelian subgroups. We do not know
if there exists R such that the minimal family is larger than the abelian subgroups (but not all
subgroups).
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