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 Annals of Mathematics, 116 (1982), 65-112

 The image of J in the EHP sequence

 By MARK MAHOWALD

 1. Introduction

 The EHP sequence is based on a result of James [J] who showed that there is
 H

 a map H such that S _> Q Sn+- > S2n+1 is a fibration when localized at 2. The

 map Sn ..> Sn+ is usually labeled E. The boundary homomorphism in the
 homotopy sequence is usually labeled P. For our purposes it will be most
 convenient to combine all the EHP sequences into one system. This gives the

 following filtration of O201:S? = Q(S?):

 QS1 C 02S2 ... C QnSn . . C Q(SO).

 Associated to this filtration is a spectral sequence {Er } whose E' term is
 El= Tt(QsSs, 0s1-Ss1-) and dr: Er -- Er-r t-P The E??-term is an associated S, t ~ ~~~~~~~~s, t sr
 graded group of gr*(S0). James' result referred to above gives El = st(sS2s-l)
 when localized at 2. Indeed, since this is the calculation of the homotopy groups

 of the base space in a fibration, if Y is any space then the homotopy theory

 [W'Y, ] can be used. The resulting spectral sequence {Er t(Y)} has as E' term
 = [yty, &sS2s1].
 We will study this EHP spectral sequence. The primary tool will be a

 comparison of this homotopy functor spectral sequence with another spectral

 sequence which is a homology spectral sequence. This second spectral sequence
 is sometimes called the stable EHP sequence. We now describe it.

 Snaith [S] has constructed maps QnSn+1 > Q(yPn), where Pn is real
 projective space, which give maps 2n+lSn+l _ Q(Pn). In [K] it is proved
 that skeleton filtration of P is comparable to the EHP sequence filtration. In

 particular for each n there is a map (2nSn, Qn-1Sn-1) 3> (Qpn-i Qpn-2)
 The skeleton filtration in P induces a spectral sequence {SEr} whose E' term

 is SE"t = Tt(QS-l) and Snaith and Kuhn's results together give a mapping
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 66 MARK MAHOWALD

 of spectral sequences s: { E s} -- { SE t}. This map at El is induced by
 uss2s-l c Qss-1.

 The Kahn-Priddy theorem [KP] shows that r.(Q(S0)) --> gr*(QP) is monic
 in dimension > 0. It is in the nature of spectral sequences that this property

 should not hold at the E0. level and, indeed, the generator of the image of J in
 7rl6(QS0) has bigrading (3, 16) in the EHP sequence and its image in lr,6(QP) has
 bigrading (2, 16).

 The "image of J" for the purpose of this paper is the homotopy of the

 spectrum J which is the fiber of a map bo -- Vbsp where bo and bsp are the

 connected a-spectra whose E0 term is Z X BO or Z X Bsp (Z X the classifying
 space of the symplectic group) respectively. The map defining J was first given
 by Adams using the Adams operation 43 - 1. Another such map is given in
 [M2]. The key result of [MM] is that for any map A: bo --> 4bsp such that
 H4(4) is a 2 primary isomorphism, there is a 2 primary isomorphism between

 'T*(J) and 'n*(4). This paper studies the homotopy module gr*(J) and the role
 this module plays in the EHP sequence.

 First we can produce a stable EHP sequence with J* as the functor. This
 gives a mapping of spectral sequences { E* s() { SE' *(J)1 where

 SElt(I) = At(00(Ss-l A J)) = Jt(Ss-l).

 We think of SE'*(J) as the stable EHP sequence for the image of the J spectrum.
 We wish to compare this spectral sequence with { E * }. The idea will be to find
 a homotopy theory which can be applied to the EHP sequence filtration (so that
 we can use James' result to calculate the E1 term) and which stabilizes to a
 homology theory in some sense isomorphic to J* (so that we can compare it with
 the stable EHP sequence for the J spectrum).

 The homotopy theory we will use is based on Cp2 A RP2. Let {Ynf}
 be the suspension spectrum based on this smash product indexed so that

 Yn= -'n-6CP2 A RP2. Let 7Tn(X; Y) = [Yn, X]. For n large there is a self map
 V.

 yf+2 -4 Yn each of whose iterates is essential (Prop. 2.2). Thus gr*(X; Y) is

 a Z/4[vl] module. In Section 2 we show that 2v, = 0O so *(X, Y) is a
 Z/4[vl]/2v, module. Call this model R. The homotopy theory we wish to study

 is 7T*( ; Y) ERZ/2[vl, v1'] = V-7T*( ; Y). (If M is any R module we will let
 V1M = M ?&RZ/2[vi, vT'].)

 A corollary of the main result in this paper is the following.

 THEOREM 1.0. The Snaith map induces an isomorphism V-l(7T*(QS0); Y)
 > V- 1(J A Y)*(P).
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 THE IMAGE OF j 67

 This result shows that V-'(IT*( ; Y)) is the homotopy theory for which we
 are looking. For technical reasons it is easier to look at a modification of the EHP

 sequence. We wish to consider the following:

 QS' CQ3S3 C ... Cc2n+lS2n+l C ... CQ(SO)

 QP Qpo v2 . .. __2n . ... _ Q(P).

 Let W(n) be the fiber of the map S2,-l .Q2S2-l. Then for this filtration we

 get an EHP-like sequence {( t} with

 El = t (u2s+ls2s+l &22s-ls2s-l) = t (&22s-2W(S)

 Let {SEr t be the corresponding stable EHP sequence with SE' = rt(QP22ssl).
 Using the homotopy theory V-1"T*( ; Y) and the homology theory based on
 J A Y, we get a mapping of spectral sequences {Er, *(V'r*( Y)}
 {SEr*, r(W'(J A Y*( ))}. The E1 terms give the following map:

 V-1( (02s-2W(S); Y)) V- V' A*

 which is the map induced by the composite 22s2W(s) > Q(PU1) >
 Q ( P22n1 A J A Y ).

 A principle result of this paper is the following:

 THEOREM 1.1. The map s* is an isomorphism and induces an isomorphism
 of spectral sequences

 {E* *(V-17T*( ;Y))} -- {SE*, *(V-l(JA Y)*( ))}

 Since we are really interested in T 2*( 22nIlS2n+l) and ,r*(QP2n), we need to
 get more information than just what Theorem 1.1 gives. To this end we calculate
 V- 1T*( ; Y) for the various spaces involved.

 THEOREM 1.2. V 1(7T*(SO; Y)) = E(a) and V'(QT*(M2,; Y)) = E(a, b)
 where the gradation of a and b is 1. (So is the suspension spectrum of the sphere
 and M2L is the Z/2 Moore spectrum.)

 THEOREM 1.3. Let sn be the Snaith map [S] sn Q2nS2n+l 2oooo+lp2n.
 Then sn induces an isomorphism

 V 1(7*(S2n+l; Y)) -> V-1(7T*(2oooo(E 2n+lP2n); Y)).
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 68 MARK MAHOWALD

 THEOREM 1.4. Let g,: p2n p2n A J be the Hurewicz map. Then gn
 induces an isomorphism

 V-1(IT*(P2n; y)) ..> V1(T*(P2n A J; Y))

 and V-W1( *(p2n A I; Y)) = E(a, bn). The gradations of a and bn are both 1.

 A comment about these results and K-theory is in order. Since K theory is a

 homology theory it is not very good on unstable objects and fibrations. The

 results of this paper suggest that the homotopy theory, 7T*( ; Y), is the theory of

 choice to use on such unstable objects to get the kind of results that K-theory gets

 on stable objects.

 These results have another interpretation. Let Mn = Sn-1 U2Len be the nth
 space in the Z/2 Moore space spectrum, M2L. Adams [A] constructed a map A:

 M8n ...> Mn for n large with the property that all of the iterates of A are

 essential. Let a be a class in [Mi, Sn]. The question we ask is: Find all a such that

 aAk is essential for all k. Adams in [A] found a collection of classes with this

 property and we proved in [M2] that his collection is everything which occurs

 stably. The above results describe everything which occurs unstably for odd

 spheres and which occurs stably for p2nf. From this description it is clear that we

 are really studying an unstable e-invariant and getting a complete description.

 In [Ml], results concerning the homotopy module gr*(J) in the EHP

 sequence are described. Detailed proofs have not appeared. This paper describes

 those results and gives proofs of the main results in [Ml]. The key results in [Ml]

 follow directly from the following.

 THEOREM 1.5. The composite -- >Tj( (p2n) is
 onto if j-2n + 1 and j -2mod8. If j-2n + 8 + 2i when j_

 (2' - 2) mod 2'+ 1 then the composite is onto.

 The exceptional values of j correspond to the Kervaire invariant problem.

 This connection is discussed in Section 7. In particular see Theorem 7.11.

 In proving Theorem 1.5 we will give an explicit construction of the

 homotopy classes involved. In particular we show that the classes in

 IT*(Q2n+lS2n+l) which map onto the classes in J*p2n are in the image of
 T* (2n?1:2n?1P2n?1) where p2n > l2n+lS2n+l factors through SO(2n + 1).
 This shows that the homotopy classes are natural under suspension. One might
 ask whether the map E2n+1p2n S S2n+1 induces an epimorphism in homotopy in

 dimension greater than 2n + 1. This would be a finite Kahn-Priddy result.
 Finally it is worthwhile mentioning at least one of the corollaries of 1.5.

 THEOREM 1.6. If n = 3,5mod8, n > 3, then 'i+n( Sn) is nonzero for all
 j?n.
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 THE IMAGE OF J 69

 This theorem follows from 1.5 and the calculations in Section 7 which show

 that in these cases, Ji(P2f) #f 0. In particular, compare the table given after 7.9.

 Sections 5 and 6 of [Ml] give some further applications. In particular the

 unstable composition properties of the classes described by 1.5 in terms of the

 form 8k - 1 are particularly interesting.

 Section 2 describes the functor 7T*( ; Y) and redoes [M2] in this language.

 The whole theory of bo-resolutions takes on a particularly nice, simple form when

 studied this way. Theorem 1.2 is proved in this section. It is essentially a

 restatement of the main theorem of [M2].

 In Section 2, the theory is studied effectively for the spectra S0 and M2L. In
 order to get at theorems like 1.1 and 1.3 we use Adams resolutions. By this we

 mean a resolution of a space by generalized Eilenberg-MacLane spaces to get

 unstable Adams spectral sequences. We generalize the notion slightly and study

 the situation where we have a map f: X -* Z, where X and Z are spaces with
 resolutions such that f extends to a map between the resolutions. We show in

 Section 3 how this situation leads to a resolution of the fiber of f. In this setting,

 if f induces an isomorphism in the resolution above a "1/5 line" then f induces

 an isomorphism in the v1-periodic homotopy. Sections 3, 4 and 5 are devoted to

 describing this situation in general and to applying it in particular to the Snaith

 map W(n) -* V"3M2L. In [M3], an algebraic map between resolutions of W(n)
 and the stable resolution of M2L is given. In Section 5, using a result of F. Cohen,

 we show how to get a geometric map between the two resolutions. Theorem 1.1

 then follows quite easily.

 Theorem 1.0 follows immediately from Theorem 1.1 and the map X: P -> S0
 QXQS which is the stable version of P -> SO -> QS0. The composite QP QS0 >

 Q??(P A J) induces an isomorphism V-Wl*(P; Y) - V-1(J A Y)*(P) by 1.1 and
 this gives 1.0.

 Theorems 1.3 and 1.4 are proved in Section 6.

 The results of Section 2 on bo-resolutions give quickly a proof of 1.4. The

 proof of 1.5 occupies the bulk of Section 7.

 Section 8 gives some results which connect the homotopy detected by

 J*(p2,) with the image of J. The connection of Theorem 1.5 with the EHP

 sequence is also discussed.

 2. bo-resolutions

 The key results on bo-resolutions which allow for a determination of the

 homotopy localized at v1 are contained in [M2]. These results are summarized

 here from the point of view of the functor gr*( ; Y).
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 70 MARK MAHOWALD

 First we will introduce g*(; Y) formally and prove some of the elementary

 properties.

 Definition 2.1. Let Y be the suspension spectrum of Cp2 A Rp2 indexed so

 that an = zn6CP2 A RP2. Let 7T,(X; Y) = [Yn, X]. If X is a space, then n - 6.
 To get an Abelian group we need n - 8.

 PROPOSITION 2.2. 1) There is a self map v1: y2 y0 such that the
 composite vkl: y2k Y0 is essential for all k. The map v1 can be chosen to be self
 dual.

 2) The identity map of Y has order 4. The following composite is twice the

 identity map: Y3 ; S3 S' --*So Y3 where p pinches onto the top cell and i is the
 dual of p.

 Proof; Part 1 is quite easy and is covered in detail in [DM]. Part 2 can best

 be seen by looking at M2, A Y. The Cartan formula shows Sq4 is non-zero and
 this shows that the three skeleton of M2, A Y3 is [Y U Ely](3). Thus the map 2
 has the same cofiber as the map given in 2.2.2.

 Let R = Z/4 [v1]/2v1 = 0. Let v1 have degree 2. Let R' = Z/2 [v1].

 PROPOSITION 2.3. The homotopy theory T*( ; Y) is an R-module.

 Proof First note that because v1 is chosen to be self dual 2v1 = v12. Next

 we need to show Y--Y Y3 is null homotopic. But this is the same as

 -* S5 52 , -* Y3. This composite has Adams filtration 2 and indeed the

 map S5 _ y3 is also a map of Adams filtration 2. But Extsf t(H*(Y), Z/2) = 0 if
 s ? 2 and t - s = 5. This calculation is easy.

 PROPOSITION 2.4. 7T*(bo; Y) = R'.

 Proof. By Spanier-Whitehead duality, [Yi,bo] = -r,(bo A Y3). But bo A
 :-2CP2 - bu. Thus 7T*(bo A Y3) = 7*(bu; Z/2) = Z/2[vl].

 This result suggests that Y is the dual homotopy theory to the cohomology

 theory bo. The duality is strained but K(Z) is the space whose homotopy is Z

 which is the universal ring for ordinary homotopy v*. Now 2.4 says that bo is the
 "Eilenberg-MacLane" space for 7T*( ; Y) whose universal ring is R. (R and R'
 are different but the analogy is still amusing.) Because of this, bo-resolutions are

 fundamental for studying Y-homotopy.

 Recall from [M2] the following results. By a bo-resolution we mean a tower

 of spectra  s1 ' A bo s1 4 *o
 bo S1 Abo S A bo
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 THE IMAGE OF J 71

 where S, A bo <- S <- S+1 is a fibration and t: S0 -* bo is the unit. If we apply
 *, then we get an exact couple with E', t = 7Tt(S, A bo).

 There is a natural map e: 7T*(bo) -* Z/2 induced by bo -* K(Z/2). We say a
 7T*(bo) module M is a Z/2-vector space if there is a commutative diagram

 7T*(bo) 0) M-M

 e id\

 Z/2 0 M

 The main result of [M21 is the following.

 THEOREM 2.5.
 (Z. t O

 a) EW={ t - Z/2, t 1,2mod8

 0 O all other t

 Z/218k12 t= 4k
 b) Elt Z/2 t=1,2mod8

 0 O all other t

 where I 1 12 is the 2-adic norm of j (the power of 2 in the prime decomposition of

 j), and all classes are vl-periodic.
 c) Es, t = O for 6s > t + 12 and is a Z/2 vector space (as a 7T*bo module)

 for all s > 1 and all t.

 This is proved in [M2] and another discussion of it is given in [DGM]
 This theorem yields the following. Let {Er(S0; Y)} be the exact couple

 which results from applying the functor *( ; Y) to the bo resolution.

 THEOREM 2.6. a) E? * R R' with the generator having dimension 0.
 b) E *= Z/2 + R' with the Z/2 class having dimension 4 and the free

 class having dimension 6.

 c) Es, * is a Z/2 vector space as an R-module and Es, t = O for 6s > t + 12,

 s > 1. (There is a natural map of R -* Z/2.)

 We will show below how 2.5 implies 2.6 and we will outline, using detailed
 results from [M2], a direct proof of 2.6. It is hoped that the second part will be
 useful in understanding [M2]. First we observe the following corollary.

 COROLLARY 2.7. V-'(7T*(S0; Y)) = E(a) where E(a) is the exterior algebra
 on one generator over the ring v'l-R.

 This is part 1 of 1.2. The second part of 1.2 follows immediately from the

 sequence S- M2t- S and the fact that the homotopy sequence for 7T*( , Y)
 splits on the parts which are R' free.
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 72 MARK MAHOWALD

 As an illustration of T*( , Y), we give the following low-dimensional calcula-

 tions. For free R or R' modules only the generator is given.

 j=O 1 2 3 4 5 6,

 'ni(S0; Y) = R' 0 0 Z/2 0 R' Z/2,
 Xj(M2,; Y) = R' R' Z/2 Z/2 R' R.

 The only surprise is the R in '76(M2l, Y). These calculations are easily
 obtained from the known Ext calculations.

 We will now give the proof of 2.6 from 2.5. The homotopy described in 2.5

 for s = 0 and 1 is the ker and coker respectively of the map T: bo -* >4bsp
 which is a homology isomorphism in dimension 4. Clearly 7T*(bo; Y) = R' with
 generator in dimension 0 and 7T*(Y4bsp; Y) = Z/2 ED R' with generators in

 dimension 4 and 6 respectively. The second statement may take a little work.

 Recall bsp = B(1) A bo and B(1) is the cofiber of q': E2M2t -* So. Consider the
 sequence

 *.7-j(E:M2, A bo; Y) -*'7Tj(S0 A bo; Y) -*r(bsp; Y) -*...

 The groups are:

 rj(E2M2, A bo; Y) = j 0,3

 =R' j 1, 2 generated by a,.

 qj(S0 Abo;Y) = j 0

 = R' j = 0 generated by 1.

 ,r,(bsp; Y) = Z/2 J= 0

 = R' j = 2 generated by b

 =0 j=1,3.

 It is easy to see that #a2 = vpl so j*: (R't) -* Z/2 is the augmentation. Then
 a*b = a1 is necessary for exactness.

 This establishes parts a and b. To establish part c, let Y'n > S? be a map

 which lifts to Ss, s > 1. We have the following diagram:

 QSs-j Abo

 yn+2' VI _,.yn _ ts Xss *fSs A bo.

 sio
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 THE IMAGE OF J 73

 The map v1 has Adams filtration 1 so that the composite g~f~vl has Adams
 filtration - 1. By 5.11 of [M2] (see also 3.6 of [DM2]), this implies there is a map

 4 so that gsis4 = gsfsvl. Thus (fivl - is) is a lift of fvl which lifts to SS+1. Thus
 if f: Y' -* S0 has filtration s > 1 in the bo resolution spectral sequence, then the

 composite y(n?2) 4 yn LS0 has filtration - s + 1 and this is part c.

 Note that Corollary 2.7 actually asserts a little more. Indeed if a E 7Tn(S0; Y)
 has bo-resolution filtration > 1 then there is a k such that arvk = 0. The above

 argument shows that avks has filtration > 1 + k. The connectivity of Ss is 3s - 1
 while arks EE 7Tn+2k(S0; Y). Thus there is a k such that '7Tn+2k(Sl+k; Y) 0 and
 avk factors through this group.

 Next we will recast the proof of 2.5 given in [M2] in terms of 7T*(; Y). It
 has a particularly nice form when we invert v1. These following paragraphs then
 contain a sketch of a direct proof of Corollary 2.7.

 00

 PROPOSITION 2.8. 7T*(bo A bo; Y) D R'an E W where an is a generator
 n=0

 in dimension 8n - 2a(n) and W is some Z/2 vector space (a(n) is the number
 of l's in the dyadic expansion of n; a(O) = 0).

 Proof Theorem 2.4 of [M2] asserts that there are spectra B(i) such that
 bo A bo = VV."B(i) A bo. Theorem 3.6 of the same paper asserts that there are

 maps f: B(2i) A bo -- bo4i-a(i) and gi: B(2i + 1) A bo -- bsp4i-a(i) whose fibers
 are wedges of K(Z/2). (bok is the k-th level of an Adams resolution of bo. In
 particular Exts t(H*(bok), Z/2) - Ext+ k, t+k(Z/2, Z/2). bspk is similarly de-
 fined.) Since v*(bo4i-a(i); Y) 1R' + W where the free R' generator is
 in dimension 8i - 2a(i) and W is a Z/2 vector space of some unspeci-

 fied dimension, we have VT*(18iB(2i) A bo; Y) = R'a2i + W2i. Since
 V*(bsp4i-a(i); Y) = R' e W where the free generator is in dimension 8i +
 2a(i) + 2 and W is as before, we have 7r*(z8i+4B(2i + 1) A bo; Y)
 R1'a2i1 + W2i+l. This completes the proof of the proposition.

 Let Z = En=0R'an where the an are as in Proposition 2.8. This presenta-
 tion of Z by just listing generators may seem strange. The next result justifies the
 notation. On the other hand there are several other ways to label generators. The

 notation, with hi, as the class in the bar resolution for , is frequently used.
 With this notation, Z = E(hi 11, i = 2,3,...). Since hi 1 has homology dimension

 2i+1 - 2, the generator an corresponds to ll22h'il where n = 0i=0ei2' and
 Ei = 0 or 1. Under this representation the next result is very complicated to state.
 We should also note that the formula of Ravenel [R] has some connection with
 the next proposition.

This content downloaded from 128.151.150.17 on Tue, 10 May 2016 18:58:34 UTC
All use subject to http://about.jstor.org/terms



 74 MARK MAHOWALD

 The bo resolution when 7r*( ; Y) is used as a functor gives rise to a chain

 complex where Z = E)20R an:

 f di W Z O Z ED W2 2d** ZOS
 where Z = E@,OR'an and Ws is a free Z/2 module for each s. The next result
 asserts that d1 at least on the R' free part behaves in a way analogous to a
 divided polynomial algebra.

 PROPOSITION 2.9. dtan-= k+?=nV=1v(k 'i)a, 0 ak modulo classes in W2, where
 v(k, I) is the power of 2 present in the binomial coefficient (') (i, k)

 Proof Theorem 5.8 [M2] implies that the composite 2.9.1,

 2.9.1 24nB(n) A bo -bo A bo - bo A bo A bo -K (B(j) A B(k) A bo)
 for j + k = n is a map of degree ( ') on the cell in dimension 4n. This gives for
 n, j, and k even,

 bO2n-a(n) bo2,+2k-a(i)-a(k)

 for filtration v(j, k) = a(j) + a(k) - a(n). But

 (bo2-?+2k-a(i)-a(k) )a(l)+a(k)-a(n) = bo2n-a(n)

 and so the induced map gives rise to the map generated by

 a -> a(a?a(k)- a(O)a a

 The proposition is the summing of all these parts. Note that if n, j or k is odd the
 argument works exactly the same way.

 To complete the analysis of the bo resolution we note that 5.8 of [M2]

 implies that ds for every s is the sum of maps like dj. Thus the chain complex is
 that of a "divided polynomial algebra". Precisely we have

 THEOREM 2.10. In V-1(Z) let a- = V a(n)a . Then

 d: V-1(Z) -> V-1Z 0 V-'(Z) is d ad d 0 ai.
 i+j=n

 This is immediate from 2.9. Thus the bo resolution and the functor

 V-l(v*( ; Y)) give rise to the standard complex for computing the homology of
 a polynomial algebra on one generator. The answer is an exterior algebra on one
 generator. This is 2.6 and more specifically 2.7.

 We close this section with some simple calculations.

 2.11. Let = 4CP2 be considered as a suspension spectrum. There is
 a natural isomorphism of [Mtn; M2l] and 7Tn(S0; Y).

 This follows directly from Spanier-Whitehead duality.
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 THE IMAGE OF j 75

 2 2V-1(V*(p2n+12k; y)) - V-l(vT*(S', Y))(bn C, )( ab iafe 2.12. ?2k.)" V(Cn(0 Y)b , c,0k) (M(a, b) is a free M
 module on generators a and b.)

 We prove this by induction. Suppose we have the result for fixed n and k.

 Then we have

 V1( *(P2n+k; y))'VV-1(VT*(p2n+2k+2; y))

 V-p ( P2n+2k+2; y))

 The proposition would be established if we proved a*(1) = cn, k and i*Cn k+1

 - b where V-'(7r*(M2,; Y)) = V-1(7T*(S0; Y)(1 + b)). To prove the claim it is
 sufficient to consider

 p 2n+12k A op2n +2k+2 A oP22nn+ 2kk+12A bo. p2n?2 A bo -*- P4-2k?2 A bo _*P49~ b

 Applying 7r*( ; Y) to this sequence, we have, with W', W and W" arbitrary,

 Z/2 modules,

 R'(c2n+2, C2n+2k) e W R (c2n+2, C2n+2k+2) ev W

 1Ri(C2n+2k+l? C2n+2k+2) ev W

 and a*(C2n+2k+)= C2n+2k. The calculations now follow easily.

 3. Unstable resolutions

 The last paragraph of Section 2 describes the general strategy to be used to

 prove 1.1. We first introduce some definitions. The basic tool which we will use

 is a resolution of a space by Eilenberg-MacLane spaces. Such resolutions are the

 heart of the Adams spectral sequence approach but we would like to consider

 slightly more general resolutions.

 Definition 3.1. A resolution of a space X, ?, is a quintuple

 ({Xi}, {FFi, {pi}, {f}, {gi}) giving a diagram

 F1 F2 Fs

 Po Pi I X

 x

 where X X- <- Fs+, is a fibration classified by X9 -sBF? and Fs is a
 product of Eilenberg-MacLane spaces. We say that the resolution is proper if
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 76 MARK MAHOWALD

 ker p* ker f*. To get an Adams resolution we would require in addition that
 f* be onto for each s. We will not usually require this. For our purposes here we

 also require that Fs be a product of K(Z/2, n)'s.
 Clearly the most simply described resolution for a locally finite space is one

 where X0 = K(H*(X)) and inductively BFs = K(kerfs*) and the maps are
 defined in the obvious way. This gives an Adams resolution and the problem

 addressed by Massey and Peterson [MP2], Wellington [W] and others is to get

 some manageable description of this resolution and in particular its E2-term. We

 will usually use resolutions with nice properties. The general question will not

 concern us.

 Associated to any resolution X there is an Adams type spectral sequence. Let

 E'S t( 3) be the homotopy exact couple of the resolution. We will usually index the

 spectral sequence by Es, t(3E) = rTTs(Fs). The spectral sequence converges tc
 E07T*(Xo) and if f. is a homotopy equivalence, this is Eo0T*(X).

 Also associated to any resolution X is a filtration of H*(X) given by

 Fs(H*(X)) = im fs*. For an Adams resolution this filtration is trivial. Note alsc
 that if ker p * =# ker s* then we would get a spectral sequence, which converges
 to H*(X), from the Serre spectral sequences of the fibrations.

 If we need to talk about two spaces X and Z and resolutions between them,
 we will use the functorial notation X(X), X(Z). The resolutions we use are

 usually not functorial but the notation is very useful.

 PROPOSITION 3.2. Let h: X -* Z be a map. If X(X) is an Adams resolution

 and X(Z) is any resolution then the map h induces h#: X(X) -X(Z).

 Proof. Consider the diagram

 h
 X _ z

 fA(X) 1Mf(Z)

 XO(X) XO(z)

 Since fo*(X) is onto and XO(Z) is a product of Eilenberg-MacLane spaces, we
 can find ho: XO(X) -* XO(Z), making the resulting diagram commute. Now
 suppose we have the following:

 x ~ ~ ~~~~hZ

 f s+l(X) Xs+l(Z) ifs,

 Xs(X) hXs(z)

 BFs+ (Z)
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 with h fs = f'h. We need to get h?+1 such that fS+?h? 1 fh'?1h. To construct
 an h we need g'h p5 0. But this is so if and only if p*h*g'* = 0. Now

 kerp* = kerfs* so hs+l exists if fs*h*g'* = 0. But this is h*fst*g'* which is
 clearly zero. Thus hs+1 exists. The difference of f[s+lh and hs+?f+?1 is a map X:

 X -* Fs+?(Z). This difference can be eliminated if and only if X factors through

 X Xs+?(X). Since fs*+> is onto this always happens.
 The next result is crucial for our application but it is a very easy result.

 PROPOSITION 3.3. Suppose X and Z are spaces with resolutions and h:

 X Z is given with a map h.: X(X) -* X(Z). Then there is a resolution of the
 fiber of h, X(h), and we have a long exact sequence

 ..-* , Est(Y(h)) -, E- t((X )) E+,"t(Ys(h)) >

 Proof. Let Xs(h) be the fiber of the map Xs(X) *Xh2 (Z) It is easy to
 see that Xs+l(h) -> Xs(h) is classified by BFs(X) X Fs>l(Z). Indeed, the dia-
 gram

 Fs+l(h) ---Fs+l(X) ' Fs(Z)

 Xs+ 1(h) Xs+ l(X) *Xs (Z)'

 Xs(h) oXs(X) 'Xs-l(Z)

 exhibits Fs+?(h) as a fibration over Fs+?(X) with QFs(X) as fiber.
 Let G be the fiber of Xs(X) -->Xs(Z). Then we have

 Fs+ AX) QFs(Z) Fs(Z)

 Xs+l(h).Xs+l(x)--.Xs(Z) and G-.-XXs(X)-- Xs(Z)

 i l / I / \ I
 G Xs(X) Xs(h) Xs - (Z)

 Thus

 Xs+l(h) - G- .Xs(h)
 I I

 Fs +l(X) 0 Fs(Z)

 which is a tower of fibrations, represents Fs+?(h) as a fibration over Q2Fs(Z). This
 implies Fs+?(h) = Fs+?(X) X Q2Fs(Z) as claimed. Thus for the E1 terms we have
 a short exact sequence:

 0 Es-* -t(*(Z)) E-s' t(X(h)) --> -t(*(X)) 0.
 Taking homology gives the proposition.
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 We are now in a position to outline the proof of 1.1. Let W(n) be the fiber

 of S2n-' 5~i22S2n?1. If we use an Adams resolution for S2n', ?(S2n') and

 522,(S2n+l) for S2n+1, where this means the double loop of an Adams resolution

 of S2n+l, then we have a mapping i: 3(S2n-l) __ U23(S2n+ ) by 3.2. By 3.3 we
 have a resolution 3(i) which is a resolution of W(n). The E2 term of this

 resolution was analyzed in [M3]. The principal result of that paper established an

 isomorphism between E2' t(X(i)) and Ext?' t'(H(M2L), Z/2) for s and s', t and t'

 satisfying a " 1/5 line" requirement. Precise statements are given in 4.4. We need

 now to construct a map from W(n) to Q(M2 ), that is, from an unstable object to

 a stable object, which can be extended to resolutions. (QM2, is the zero-th
 space in the 52 spectrum constructed from the suspension spectrum S0 U2 el.)
 Snaith [S] has constructed the maps. The map between the resolutions does

 not immediately follow. We will get it by constructing a map a: W( n) -*
 Q24W(n + 1) and showing that this map extends to a map of the resolution

 for W(n) and W(n + 1). Then using 3.3 we get a resolution of the fiber of an
 and by [M3] this resolution has a "1/5 edge". This will be enough to show

 V-'(Tr*(an; Y)) = 0. This then will give a proof of 1.1.

 4. The fiber of the double suspension map

 In this section we will investigate W(n), the fiber of S2'- 2S2+'. Our

 first goal is to describe a particular resolution for W(n). The easiest way to do

 this is via the A-algebra of [6A]. We recall these results.

 Let A be a differential graded algebra over Z/2 generated by symbols Xi of
 degree i + 1. The relations are given by

 O( k) Xm+i-kx2m+l+k 0
 for all m - 0 and j ? 0. The differential is given by

 A - ( i + 1 )X AX

 These are not necessarily the easiest formulae to work with but they are the

 easiest to remember. In this paper we do not make any explicit calculations. The

 main result of [6A] is:

 THEOREM 4.1. H**(A, d) = Ext*' *(Z/2, Z/2).

 By use of the relations, it is possible to get a Z/2 basis of A given by A

 where I = (il,...,i) and 2i, > i -+l-1. Let An be the subspace of A spanned
 by X1 with il < n.
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 THEOREM 4.2. [R]. The subspace of A, An, is a differential sub-complex of

 A and H**(A, d) = E2* *(Sf) where S' is the E2-term of the spectral sequence

 {Er(j(Sn))} where 3(Sn) is an Adams resolution of Sn.

 This result was first proved by Rector. We will give a proof in Section 5

 because we need the following result which follows easily from a particular proof

 of 4.2.

 The following result has been known for many years and I am not sure who

 first noticed it. The resolution ukx, for any resolution X, is ({fkXi}, {k kFi},
 {Qkpi}, {Qkfi}, {fkgi}). It is a resolution of QkX if X* is a resolution of X. It may
 not be a proper resolution.

 THEOREM 4.3. Let k < i and let X be an Adams resolution of Si. Then
 (Qkfs)*: H*(Xs(QkX)) > H*(QkSi) is onto in dimensions < 2s+(i - k).

 This result is proved in Section 5.

 We now apply this theory to W(n). First note that A2n-l C A2n+l as

 differential graded objects. In our notation A2n-l is the E1 term of an unstable

 Adams spectral sequence of S2n-1. (A2n-l)st = Tt-s-2n-1 (Fs(S2n-1) for a
 particular resolution. We will use X(S2n-1) to refer to this particular resolution.)

 The double suspension map gives a map S2n-1 0 2S 2n?+1 By 3.2 we have a map

 (S2n-1) -> u2x(s2n+1) and this map is just A2Mn c A2n +. By 3.3 we have a
 resolution of W(n). By considering the complex A2n+l/A2n-l we have a
 candidate for a resolution of W(n). The five lemma shows that the homologies of
 A2n+l/A2n-1 and E2(X(i)) are isomorphic.

 We find that a shift in indexing these groups is convenient. Also when we

 mean the appropriate A-algebra resolution we will drop the X and just write

 Es, t(Sn), for example. The normalization of the groups Es, t(Sn) is such that t - s

 refers to the stem. Thus Es t(Sn) = Z/2 if s = t = 0 and is 0 for t < 0. The
 indexing we use for W(n) gives E 12(W(n)) = Z/2 and Es t(W(n)) = 0 if s 0
 or t < 2. The long exact sequence becomes

 Es, t(S2n-) -> Es, t(S2n+l) -Es t-2n+2(W(n)) - Es, t(S2n1) -

 A key step in proving Theorem 1.1 is the following:

 PROPOSITION 4.4. There is a map on: W(n) -Q 4W(n + 1) of degree 1 in
 homology in dimension 4n - 3. This map induces a map qn4: X(W(n)) ->
 Q4 X (W(n + 1)) and an4: E2 t(W(n)) -* Es, t(W(n + 1)) is an isomorphism for
 6s > t + 20 - 4n.

 We will first deduce 1.1 from 4.4. The proof of 4.4 follows. Let X be any

 space and let X be any resolution of X. A map k: Y -* X has filtration i with
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 respect to X if there is a map ki: Y ( () where (f) is the fiber of the map f:
 X -> Xi such that the composite Y -> () -- X is k.

 LEMMA 4.5. If k: Y -> X has filtration i then kv1 has filtration i + 1.

 Proof. The fibration (ff+1) -> (f) Fi is clear. The map k ivI is zero in
 cohomology so it lifts to (jf+?).

 Now let (hn) be the fiber of hn and let X(hj) be the resolution given from
 3.3 and 4.4. Let k: Ym -* (hn) be any map. Then kv7 has filtration a in the
 resolution X(h). The isomorphism part of 4.4 implies that the fiber of f8:

 (hn) > X,(Hn) is 5s - 20 + 8n - 3 connected. Thus for a large enough, we see
 that kv': ym+2a (hn) factors through a point and so is inessential. Thus
 V-'(7T*((hn); Y)) 0 and this implies V-'(7T*(W(n)) - V-'(w *(W(n + 1)) for
 every n. This then implies 1.1.

 The rest of this section is devoted to a proof of 4.4. The isomorphism part of

 4.4 is the main theorem of [M3]. What we need to do here is to construct the

 map an and show that an extends to a map between the resolutions. Cohen, May
 and Taylor first constructed maps like this [CMT]. The best which follows from

 their work is a map W(n) -> QW(n + 2). The following proposition is interest-
 ing because it is not done via Snaith type maps. I am indebted to F. Cohen for
 helpful conversation about this map. In particular a key step in the proof which
 follows is due to him.

 PROPOSITION 4.6 (F. Cohen [Co]). There is a map an: W(n) __ Q4W(n + 1)
 which is an isomorphism in H4n3( ; Z).

 Proof We will state three lemmas whose proofs we will give later. The

 proposition will follow from them. If H is an H-space, let H{2} be the fiber of the

 H-space squaring map H H X H -* H. If X is a suspension let X{2} be the fiber

 of the degree 2 map X X V X X where p is the pinch map and f is the

 folding map. Typically (US'){2} and Q(Sf{2}) are different spaces.

 LEMMA 4.7. There is a map h: 02S2,11 __ (Q2S4n+'){2} which is an

 isomorphism in H4n-2( ; Z).

 LEMMA 4.8. There is a map in: (u2S4n+'){2} _> Q3(S4n+2{2}) which is an
 isomorphism in H4n-2( ; Z).

 LEMMA 4.9. There is a map Yn: S4n+2{2} -> W(n + 1) which is an isomor-
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 Now the proposition follows from the fiber diagram

 Wn s2n 1 --,. Q2s2n +1
 | ?n |

 Q4 n -n 3

 where g is the composite Q3Yn o in o h and an is some lifting of the fiber.

 Proof of 4.7. This proof is an adaptation of an argument due to James [J]

 and Moore [Mo]. Let 4 be the composite

 S2n+l S2n+1 V S2n+1(, )S2n+1 V S2n+1S 1

 Clearly 4 is null homotopic. The Hilton-Milnor theorem ([Wh], pages 511-540)

 gives a decomposition of Q(S2n+1 V S2n+l) which allows us to study Q+. We get
 a factorization of i4 as follows:

 us2n+1 A (US2n+1)3 0(-l)X2(L)Xh2 (S2n+1)2

 xsnl(id)2 X aW(snl22snl X QSn1 (US +)2 QSn1

 where w is the Whitehead product S4n+l - S2n+1 and m(x, y, z) = (xy)z. Thus

 0 = Qf = Q(-1) + Q(1) + (2w) o h2, and h2 o (Q(-1) + Q(1) + Ow o h2) =

 0. Since w is a suspension class which is annihilated by a suspension, h2Qw = 0.

 Thus Q h2 (i22(-1) + 02(1)) = 0. Also note that h2(Q(-1)) = h2 and so we

 have Qh2 (2) = 0. This gives h in the diagram

 (Q2S4n+1) {2} -- ,2S4n+1 2 Q2S4n+l

 \ h

 Q2S2n +l

 Proof of 4.8. The argument is very similar. Consider

 snl S /\n Snl f X~~ S4'-1 S'1 A s2--1 L 2 5

 which represents 2, and look at Q(2). As above, using the Hilton-Milnor theorem,

 we have

 ?n (US4n+1)3 (id)2Xh2 ( S4n+1)2 X QS8n+'1 *( 2S 1)3 mQ

 Thus 02 = 2 + S2w o h2. Since w maps to zero in S4n+2 we have a commutative
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 diagram

 QS4n+1 2 QS4n+1 2

 p2 (2) Q2S~n+2 u2() s2s~n+2
 This implies 4.8.

 Proof of 4.9. Splicing two EHP sequences together we see that W(n + 1) is

 the fiber of a map QS4n+5 __QS4n3. This map has degree 2 on the cell in
 dimension 4n + 2. This gives the desired map.

 The final step in the proof of 4.4 is the following.

 PROPOSITION 4.10. The map an of 4.6 extends to a map between the
 resolutions of W(n) and W(n + 1).

 Proof. The resolution for W(n) is the resolution of the fiber of S2n-'

 Q2S2n+1 where the resolution of S2n-1 is ?(S2n- ) and the resolution of Q22S2n+i
 is Q23(S2n+'). Clearly there is no trouble getting the map between X0(W(n))

 and Q4XO(W(n + 1)). Suppose we have the following commutative diagram

 (without (an)i+l):

 W(n) n+1
 \ \ +1 +

 +X (W(n)) (24X i?(W(n + 1)) ,

 i
 Xi(W(n)) ( Q4X (W(n + 1))

 Igi

 Q4BFi+?(W(n + 1)).

 We need to construct (an)j+1 so the top square commutes. First we construct a
 lift of (an) ipi. To do this we need the fact that p *(aj) g* = 0. The kerp=
 ker fi*. Thus we need that f*(an)*g* = 0. This is the same as an*f'*gi, since f'
 lifts f'*g* = O. Thus (an)j+j exists. The difference of (an)i+lfi+l and fi+jan is
 represented by a map X: W(n) > Q4Fi(W(n + 1)). If X factors through f1l,
 then we can alter the lift (n)i+l to get rid of this difference. By 4.3 we see that
 f* is onto through dimension 2 +2(4n - 3) - 1. (In homology we have H*W(n

 + 1)) = H*(22S4n-1) 0 H*(Q3S4n+l) and the first class not in f* 1 is the dual
 of (a4n-3)2 where a4n-3 generates H43(u2S4n-1).) On the other hand,
 Q4Fi(W(n + 1)) is a product of Eilenberg-MacLane spaces such that
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 ll*(Q24F-(W(n + 1)) _ :Ai+3(W(n + 1)) where Ai+1(W(n + 1)) is the Z/2
 vector space spanned by A', I admissible, length of (I) = i + 2 and if I =

 (i,... . ,i1) then i1 = 2n + 1 or 2n + 2. The dimension of X' is ii + 2n -4.
 The largest one is I = (2n + 2, 4n + 4,... ,2'+1(2n + 2)). Thus its dimension is
 (2i+2 - 1)(2n + 2) + 2n - 4. If 2 +2(4n - 3) - 1 > (2i+2 - 1)(2n + 2) + 2n

 - 4 then X factors through f+ 1 and (on)i + 1 can be chosen to give a commutative
 diagram. Clearly the inequality is satisfied if n ? 3. Thus we have two special

 cases to consider.

 Case 1. W(2) __ 24W(3). To handle this case we note that the map h of 4.7
 gives a map h W(2) __ (U3S9){2}. The maps i2 and y2 of 4.8 and 4.9 give a map

 h: US9{2} -Q->2W(3). We will show that each of these extends to a cover. The

 argument is the same as above except that the maximum dimension in Fi(23S9{2})
 corresponds to a X, with leading i = 8 and length i. In particular the maximum
 dimension is (2i+1 - 1) - 8 +_6 which is < 2i+2 - 5. Thus h lifts to a map of

 resolutions. To see that h lifts to a map of resolutions, note that i*+ H*(Xj+j((2S9)(2}))- H*(S?S9){2} is onto in dimension less than 2i+2 * 7
 while, as above, the maximum dimension of nonzero homotopy in Fi(Q2W(3)) is
 (2i+2 1) * 6 + 1. Again it is easily checked that 2i+2 * 7 > (2 +2 - 1) * 6 + 1.

 Thus h lifts to a map of resolutions. The desired map between resolutions

 covering a2 is the composite hh.

 Case 2. W(1) Q_ U4W(2). The argument is similar to the above except we
 need to observe that there is a map hE BW(1) _* (2 2S5){2}. This map lifts to a
 map of resolutions by similar dimensional analysis. The map im: ((S5){2} -
 U2(S6{2}) lifts to a map of resolutions since f1: H*(Xi+1((US5){2})) is onto in
 dimensions less than 2i?+2 3 while w,(FF,(i2(S6{2})) is zero if j> (2i1 -1) * 5
 + 3. Finally it is easy to verify that y2: S6{2} -* W(2) lifts to a map of
 resolutions.

 This completes the proof of 4.4 and thus also 1.1.

 5. Proof of 4.3

 This section contains a proof of 4.3. In doing this we give a development of

 the A-algebra and the resolution it gives. We first summarize the work of Massey

 and Peterson [MP1] and [MP2].

 Let M be a graded module over A. For each m E M, let I m I be the
 dimension of m. The module M is an unstable module if for each m E M,

 SqWm = 0 for all i >1 m I .
 Let M be an unstable module. Let s: M -* M be defined by s(m) = Sq1m1 m

 for all m E M. (s is called X in [MP]. In order to avoid confusion with the
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 A-algebra we use s.) Thus M can be considered as a Z/2 [s]-module with
 sm)= s -s1(m)). M with this module structure is called an s-module. More

 generally if N is a graded module over Z/2 and s is a Z/2 vector space
 homomorphism from N to N with s(N)i C N2i, then N inherits a Z/2 [s]-module
 structure. As usual, an s-module is free if it has a basis.

 Let M be an s-module. Then U(M) is the free symmetric algebra on M,
 modulo the ideal generated by m2 - s(m).

 PROPOSITION 5.1 (10.4 of [MP1]). Let M be an s-module which is locally
 finite. Then U(M) is a polynomial algebra if and only if M is a free s-module.

 Let M be any graded module over Z/2. Let aM be the free s-module
 generated by M where (M) = (M),'.

 Let M be a graded module over Z/2 and let N be an s-module. A boundary

 type map f: M -* N is any map which can be factored as M * aM N where f is
 an s-module map and i is the obvious degree 1 inclusion.

 An amusing exercise in these definitions is the following version of the
 Cartan basis theorem.

 PROPOSITION 5.2. The Z/2 cohomology of K(Z/2, n) is U(an(Z/2).

 The proof is the same as given in [MT].

 A chain complex of free s-modules is a collection of free s-modules Ci and
 boundary type maps di: Ci -* Ci_1 so that di-,di = 0. Hn(Ci, di) =
 kerdi/imdi+1 where di+1 is the s-module map determined by the boundary
 type map di+1.

 A key result of [MP1] is the following.

 THEOREM 5.3 (7.4 OF [MP1]). If C1 and CO are s-free unstable A-modules
 and H*(Xi) = U(Ci), i = 0,1, and X1 -* E -* X0 is a fiber space with
 C1 C H*(X1) transgressive, then T (C1) C CO and H*(E) U(ker T)/im p* and
 kerp* =U(imi).

 We can construct a particular resolution of Sn which gives the unstable

 A-algebra at least formally. There is some connection between this treatment and
 the work of Priddy [P]. I would also like to thank E. Ossa who pointed out a
 difficulty with an earlier treatment of this material.

 Let A be the algebra generated by Sq, i > 0, subject to the relations
 {SqSqb = 0 if a < 2b}. As Z/2 graded modules A and A are isomorphic under

 the map 4: SqJ -* Sq' where J= (il... .i5) and ji > 2i+ 1 Let Ln C A (or
 Ln C A) be the vector space spanned by SqJ, J admissible, J = (il-. .. ,il) and
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 j, - n. Let Lj(j) C L. be the subspace spanned by SqJ with excess e(J) '
 j (e(J) = 2j, + dim I). Change the gradation of Lj(j) so that (Ln(j))t =
 {SqJ I dim J + j= t}. Then L.( I) is an unstable A module and is a free s-module.
 Also aLn(j) = Ln(j + 1). Then 5.2 can be interpreted to be

 H*(K(Z/2, j)) = U ED LnJ))
 n:<i

 but not as A modules.

 Now we can write down an explicit resolution of Z/2 by unstable A

 modules for each j.

 YViZ/2 '- E) LnJO '- E) ( ) LnOj + i1 - ) Gil ' **
 nf<l ii<i n<j+ii

 d3 ( d3L (i + "k- S)) GI
 I E s( i) n ' i+7-ik-S

 where I = (ii' is, ,il) and i, < 2i._ and Js(i) = {I| ii < 2ijif and i1 ?I).
 The maps ds are boundary type maps defined by

 dpal = Sqsal where I = (is. . . ,i) and I' (il-,* ..

 The observation that Ln(j) = @k-?2nLk(n + j)Sqn allows one to show easily that
 the homology of this complex is just Z/2 in dimension j and degree 0. The maps

 d are boundary type maps and this accounts for the "-s " which occurs in the
 formulae.

 From this resolution of unstable A modules we wish to produce a resolution

 of unstable A modules,

 5.4 riZ/2d d3 (or l-l/2) ai * or - 3(i2ts/2) a, <

 with ds being a boundary type map equal to ds modulo a relation. The rela-
 tion we use is a modification of the notion of "moment" as discussed in [SE],

 Chapter 1.

 By the moment of Sq'au, m(Sq'au), we mean 21=lSis + 2k=1(l + s)Ik8s+
 where J (il,. . ,/l) and I =(ik,. ,ik ) and i, < 2ii. Let IlSq'au1I =
 min{m(SqitG) I SqJ = ISq" and T' is admissible in the Steenrod algebra sense,
 (ii ' 2ji1)}. Call llSqJa' 11 the norm of SqJa'.

 PROPOSITION 5.5. There is a resolution 5.4 of unstable A modules with ds
 being a boundary type map such that 4(ds(Sq'1()) = dsSq'au modulo classes of
 norm < IISq'a111.
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 Proof We begin the construction with d1 as follows:

 dail= Sqi' E &iZ/2.

 The map di considered as a boundary type map extends to

 a&Z/2 - ED (oirillZ/2)>a
 il ci

 and has coker = Z/2 in degree j. The kernel of d1 is spanned by classes

 Sq (Sqiiuil + 2 (i1c 1) Sqi2i?c ()

 where (I', ij) is admissible and ji < 2ij. Indeed the argument in [SE, page 8]
 shows that if J is admissible then II d1 Sq'ai1 ? lSq'ai1 and equality holds if and
 only if i, ? 2ij.

 Now suppose by induction we have constructed the complex 5.4 through
 dimension s - 1 with all the required properties. Suppose further that the kernel

 of ds51 is spanned by classes of the form Sq"(Sqilau + a(ij, I)) where (J', ji) is
 admissible, I = (isJ. .. I. ,ij) and il < 2is-1, and a(jl, I) = ESq'iaui where Ji are
 admissible and II Sqjisi 11 < II Sqial 11. This induction hypothesis is what we have
 shown for d1 and is the consequence of d s being equal to d s modulo the
 norm relation. Then

 (is: E) (a0+Mij-s)Z/2)(TI E (O0~+Mij-s+l)Z/2)(T
 Icjs(i) Ie-sS(j))

 is defined by dpal = Sqisu1, + a(is, I') where (is' I') = I. The norm property
 again shows that I d sSqa I I ?' IISq'au II and equality holds if and only if Ii 2 is.
 Thus ds and ds agree on the norm preserving part, ds maps onto the ker ds i;
 thus, as graded vector spaces, ker ds and ker ds are isomorphic. Then for each

 j < 2is, 11 dsSq au111 < IlSqia' 11 and dsSqui1 E ker ds51. Now dsSqGI1 = dsa(j, I)
 where a is a sum of classes SqiA ui, SqJi admissible, and II Sqji 11 < II Sqia' II. Thus
 Sqiau + a(j, I) E kerd5 and the classes Sq"(Sqia' + a(j, I)), as (I', I) ranges
 over admissible sequences in (ri+?ik-sZ/2), are linearly independent and span
 ker ds since they are in 1-1 correspondence with a set spanning ker ds. This
 completes the induction and proves 5.5.

 The Steenrod algebra includes Sq0 and the relation Sq0 = 1. Following
 Priddy [P], we note that the resolution we have is one constructed from an
 associated graded algebra to the Steenrod algebra. Getting the differential thus
 follows by standard arguments.
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 From 5.5 we can now prove the following result where

 C = ( (0i?+ik-sZ/2)a
 Ieds

 THEOREM 5.6. There is a sequence of spaces Xi and maps pi and f and hi
 such that

 Si

 Pi P2 PS PS+1

 f fhi lhs

 K(Z/2,i) K(V1) K(Vs)

 1) pi is a fibration with K(Vi) as fiber and ker pi ker Ji.
 2) f* is an epimorphism.

 3) Vs is a graded Z/2 vector space generated by a, where I (is,..., i)
 ik < 2ikl. The dimension of al is isk=,(ik - 1) + 1.

 4) Let M(V') be the s-free unstable A module such that U(M(Vs))

 H*(K(Vs)). Then M(Vs) = Cs and the composite Cs *CCS1 - U(Cs~) is the
 transgression homomorphism of the fibration X5 -* XS l.

 Proof Let X0 = K(Z/2, j) and let X1 be the fiber of the map gl:
 X -I II l=K(Z/2, i + 1) defined by (Sq',... ,Sqi). Let V1 be generated by
 0ailIO< i1 j} and the dimension of ail bej+ i-1.ThenX0 < X1 -K(V1)
 is a fibration. Theorem 5.3 applies and gives H*(X1) - IM/U(ker T). But T is
 just di followed by a monomorphism and so H*(X1) - EM/U(ker d1). The map
 f1 is the lift of the nontrivial map fo: Si -* X0.

 Now suppose we have defined XS' and all associated maps and have shown

 that H*(Xs) IWM/U(kerds). Then we define Xs+, as the fiber of the map
 X S :BK(Vs~) where g5 is induced by d5~1 Cs+- Cs. This is well defined
 since im(d S ) is kerdS. Also U(C(s + 1)) H*(BK(Vs+1)). This yields the
 fibration

 hS?1 P"?1
 K (VS+,) -*Xs+1 _4XS.

 Thus ker ps+ 1 is generated by im d s+ 1 which clearly equals ker fs*+ 1 by 5.3. Again

 by 5.3 we have H*(XS+1) l ,M/U(ker ds+1) and the induction is complete.
 The homotopy exact couple induced by this resolution has an E1 term

 isomorphic to the A-algebra Adams spectral sequence for Si at least as graded

 Z/2 vector spaces. To get the A-algebra of [6A] explicitly, map ai -> X i and

 send aiai -> X iX-1. This proves 4.2.
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 What we are explicitly interested in is what happens to the resolution when
 each space is replaced by Qk of the space. Consider

 UkX < 2kX1<_ . * * _ Xs

 This resolution is related to the complex of unstable modules:

 5.7 or;- Z/2 X3 E (or i+ii 1 kz/2) (i E) ................<X (0ri+Mik-s-k)(Y.........

 Let (Cs) be the complex of 5.7.

 THEOREM 5.8. The homology of the complex (Cs) is the Z/2 vector space
 generated by A, where Ek=2(2k-1 -ik) ? k - 2 + s, I E JSM-

 Proof Associated to the resolution 5.7 is the corresponding A resolution.
 The theorem is obvious in that context; hence it is true.

 The proof of 4.3 follows easily from 5.8. The homology H*(C) gives a

 filtration of H*(2 kSi). The correspondence given by Qj ' Yj-k+i-1 allows one to
 compare the two groups as Z/2 vector spaces. The conclusion of 4.3 is implied

 byHs, (C) =Oif 1<2s(j-k).

 6. The proof of Theorems 1.3 and 1.4

 The key tool in proving 1.3 will be to use the Snaith maps sn. We need the
 following result. It seems to have been first proved in [CT] and it is also in [K]. A
 modification of [S] can also be used to prove it. One might note that the
 Kahn-Priddy theorem is an easy corollary.

 THEOREM 6.1. The following diagram commutes for each n:

 Q( p22n _j) Q(yp2n-2)_Q(y P 2n

 S S2n-1 S2n+1

 u2n-2( W( n)),u2n-2s2n-1 _,22nSn

 where the si are the Snaith maps [S].

 From 6.1 we can construct an induction argument to complete the proof of

 1.3. Assume that s2n-1 induces an isomorphism

 V- 1(IT* (2n-2s2n-1; Y)) -->V-1(?T*(Q~p2n-2; Y)).

 We have seen that the map construction, via 4.4., of W(n),-j Q()2n3p2U1)
 introduces an isomorphism

 V"77*(W(n); Y) > V-17r*( 2n ; Y).
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 It is easily seen that if > Q 2fl3P2n1 is the stabilization map, then

 V-17 (* 2 n-13P ; Y) -*V'*Q2: 2n-1; Y)
 is an epimorphism and so * will be an isomorphism for any map which is correct

 in dimension 2n - 3, and therefore, in particular, for the Snaith map. Now the

 five lemma completes the proof.

 Instead of proving 1.4, we will prove the following more general result.

 THEOREM 6.2. Let X be a suspension spectrum of a finite dimensional

 locally finite CW complex. Then V' 1(7r*(X; Y)) V'1(ST7*(X A J; Y)).

 Proof Let

 Xl __ X2 ** *>Xn ***> X

 be the skeleton decomposition of X. The cofibers at each stage are wedges of

 spheres. In the stable category, these cofibrations are fibrations and we have the

 homotopy exact couple, E1(X) = 7T*(Xn, Xn-1; Y) and E,, = E07r(X; Y). If we
 consider the tower

 X' AJ j > X2 AJ > Xn AJ j
 we again have a homotopy exact couple with E1(X A J) = r*(Xn A J,
 Xn-1 A J; Y). The Hurewicz map gives a map E1(X) -> E1(X A J) which

 is a map of spectral sequences. Theorem 1.2 asserts V- 1( E X))

 V-'(E1(X A J)). Thus these spectral sequences are isomorphic and so
 E,,(V-'(E1(X)) E,,(V-'(E1(X A J)). This implies the theorem.

 In general when one studies homotopy with coefficients, one has the
 problem of recovering the actual homotopy. A Bockstein spectral sequence is a
 frequently used device to accomplish this. Results such as 6.2 make this task

 much easier in the case of 7T*(X; Y) if it is possible to calculate 7T*(X A J). In the
 cases that we are interested in, S2n+1 and p2n, we have the following which
 follows directly from 6.2:

 PROPOSITION 6.3. Let Fn be the fiber of the Snaith map followed by the
 Hurewicz image U2nS2n1 3 Q(EP2n A J). Then 7Tj(Fn; Y) is annihilated by vk
 for some k which may depend on j.

 Remark: This result is discussed again in Section 9, problem 1.

 7. Proof of 1.5

 In this section we will prove 1.5. The proof is not really hard but is long. We

 need to calculate j*(P2n). To do this we need to calculate J*(P) and J*(P2n+l).
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 Then we will calculate the images of r*(P!) -* J*(Pk) for k = 1, 1 = 2n or x
 and k = 2n + 1, 1 = x. Using these results we will be able to prove 1.5.

 The chapter is long and so a guide as to what results are located where

 might be useful. Results 7.1 though 7.6 calculate the relevant Ext groups. The

 answers are given as charts following 7.6. These are charts for the resolution

 constructed for the fiber of the map P A bo -- P A V bsp following 3.3. The
 differentials are calculated in Theorem 7.7. This result contains a new proof,

 then, of the vector field problem for spheres and, in particular, calculates

 (43 - 1) action in stunted projective spaces. Theorem 7.9 specializes the result

 to p2n and tables are given to list the groups j*(p2n). The rest of the section is
 devoted to proving 1.5. The idea is to use the composite

 u2n+122n+1p2n > o2n+ls2n+l Qp2n

 where the first map is obtained from p2n C SO(2n + 1) c 02n+ls2n+?. A
 periodicity-type map is stably constructed giving stable maps

 p.2n+8k > p2n 8k+1

 of Adams filtration 4k which induces isomorphism in V-'7r*( ; Y) homotopy.
 These maps give a means to construct elements in 7T*(S2n+l) which map onto

 generators in j*(P2n). The details are given in results 7.10 through 7.19.

 We begin with the J-groups. Recall that J is the fiber of a map bo l:V bsp.

 We get a resolution of p2n A J from a stable Adams resolution of p2n A bo and
 p2n \ 24 bsp by a stable version of 3.3. Call this resolution ?(p2n). There are
 analogously described resolutions for P and P2n+l which are labeled X(P) and
 3( P2n+,1) respectively.

 Let X be one of the spaces p2n, P or P2n+1; B(1) is defined in Section 2.

 LEMMA 7.1. There are resolutions of X A bo and X A E4 bsp so that

 = Ext, t((H*(X), Z/2) E Exts(-1 H* (X A B(1)), Z/2).

 Proof. The resolutions of X A bo and X A bsp we wish to use are minimal

 ones used to construct Exts t(H*(X A bo), Z/2) and Exts, t(H*(X A bsp), Z/2).

 Since H*bo =A 0AAZ/2, we use a change of rings to get

 Extjt(H*(X A bo),Z/2) Ext(t(H* (X), Z/2).
 Note that bsp = B(1) A bo. The rest of the argument is similar.

 The groups ExtAl(H*(X), Z/2) have been calculated in many places. The
 x

 following is possibly novel and the ideas will be used later. Let P-4 SO be the
 w

 standard map. (X is the adjoint of the composite P -* SO -S QS where W is
 the map used to define the homology of SO.) Let R be the fiber.
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 LEMMA 7.2. The spectrum R A bo, when localized at 2, is homotopy equiva-
 lent to V nfoK(Z(2) 4n).

 Proof We need only look at the A1 module structure of R. Filter H*R

 by letting Fi(H*(R)) = im{Al 09 (%?2:Hi(R))} -> H*(R)). Then F2 = Fj+l
 unless i + 1 = 4k. It is easily seen that F4k/ 4k-= 14kA1 ?AOZ/2.
 Thus Ext (t(EkD F4k/F4kl, Z/2) = (ekOEXtAO(k Z/2, Z/2). This is the
 E1 term of a spectral sequence, associated to the filtration, converging to

 E0 ExtA,(H*(R), Z/2). There can be no differentials for dimensional reasons. In
 H*(R A bo) there are infinite cyclic classes in dimension 4k. Let R A bo -4

 V k oK(Z, 4k) be defined by these. This map induces an isomorphism in Ext
 groups and so is a homotopy equivalence when localized at 2.

 Since 0 -4 H'(EP A bo) -4 HI(R A bo) -4 Hi(bo) - 0 is exact for each j, we
 have long exact sequences for each t

 * Extst(Z/2, Z/2) j Extst(H* (R), Z/2)

 3 Ext, t-1(H*(P), Z/2) -4 Exts" t(Z/2, Z/2).

 If t - s = 4k the map p# is a monomorphism. This proves the following.

 LEMMA 7.3.

 [Z/2 (s,t) = (4k,1 + 12k),(1 + 4k,3 + 12k)

 Exts t(H*P, Z/2) = J Z/2 if t-s = 4k- Iand s < 2k if k = O mod 2,
 Al s -::: 1 s ?2kifk lmod2

 L 0 otherwise.

 FZ/2 j_1,2mod8

 77.(P A bo) = Z/2 j=4k- 1, k-Omod2
 1 Z/22kl j 4k - 1, k lmod2,
 O all other j.

 To calculate Exts(t(H*(P A B(1)), Z/2) we have the following sequence of
 A1 modules:

 O <- H*(B(1)) <- A1 0AOZ/2 <_ E5Z/2 <- 0.

 Hence we have long exact sequences for each t:

 Exts-1 t-5 (H*(P), Z/2) Exts, t(HI*(P A B(1)), Z/2)

 Extsgt(H*(P), Z/2)

 Exts, (f(H*(P), Z/2) >
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 where

 Exts~t(H*(P),Z/2) {/2, s > 0, AO Z/2, ~~s - 0, t - 21 - 1,

 and the map p is zero. This proves the following:

 LEMMA 7.4.

 Ext s (fiH*(P /\ B (1)), Z/2) Ext s-1 t5 (Hi*(P), Z/2) (D Ext S (Hi*(P), Z/2).

 Z/2 j 1or 6mod8,

 Z/2 + Z/2 j5 mod 8,

 q7jP A bsp z/22k-1 j4k- 1, k 1 mod2,
 Z/22k j=4k-1, k-Omod2,

 O all other j.

 LEMMA 7.5.

 Extst(H*(P4 1),Z/2) - Exts At-4n(H*(P),Z/2).

 Ext st(fi*(P4n-1),Z/2) , Ext s-1 lt-4n (I!*(P),Z/2), s > O

 =Z/2, s =O, t =4k -1, k:z>n.

 Proof By [MR], 24n P A bo P4n+1 A bo and this gives the first statement.

 The map P4n1id 2 P4n-1 factors through P4n-1 -P4n+l LP4n- where p is the

 pinch map and f is a map of filtration 1. It is easy to verify that P4n1 UfCP4n+l
 is A1 free; thus f induces an isomorphism for s ?0, Extst(H*(p4n+l) Z/2)
 Exts'" t+l(H*(P4n-1), Z/2). The rest of the calculation is now simple.

 Let as be the function

 F8kifs = 4kor4k + 1
 s 8k+ 1ifs=4k+ 2

 L8k + 3ifs = 4k + 3

 LEMMA 7.6.

 Exts t(H*(p4n), Z/2)

 (Extsgt(H*(P),Z/2), s > t-4n-as

 = Z/2, (s, t) = (I + 4k, 4n + I + 12k)
 = (2 + 4k,4n + 3 + 12k)

 10 otherwise.
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 Exts, (fi*(p4n( 2 ), Z/2)

 [Extslt(H*(P),Z/2), s > t -4n -a

 = Z/2, (s, t) (2 + 4k,4n + 2 + 12k)
 (3 + 4k,4n + 5 + 12k)

 Lo otherwise.

 Proof We use the short exact sequence 0 -O H*(P2n+l) H*(P)
 H*(P2n) __ 0 to get a long exact sequence in the Ext groups from which the
 theorem follows immediately from the previous calculation.

 The following charts summarize all the above calculations. Periodicity gives

 the complete picture from these charts since

 Extt(H*(P2n),Z/2) - Ext-4 t+l2(H* (P2n), Z/2)

 for all s and t. In these charts, vertical lines indicate classes connected by ho
 multiplications and slanting lines indicate classes connected by h1 multiplica-

 tions.

 8

 6

 4

 2

 4k + 0

 6

 t-s-8k -1 0 2 4 6 8 10 12

 CHART 1

 E1(X(P)) for large values oft - s
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 4

 2

 s = 4n -2 T tl

 611

 0

 t-s-8n -4 -2 0 2 4 6 8 8k-2 0 2

 CHART 2

 El( y(p8n))

 8

 4n-2

 6 ?t t 4 1<...r

 2

 0

 t-s-8n -2 0 2 4 6 8 10 12 14 16

 CHART 3
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 4n-2 iL i i L
 4~~~~~~~~

 0

 t-s-8n?+ 2 4 6 8 10 12 14 16 18 20

 CHART 4

 4n=0 2

 8

 6 T T

 4 Tt

 2

 s0

 t-s-8n = 6 8 10 12 14 16 18 20 22

 CHART 5
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 Next we need to calculate the resulting spectral sequence. We will first

 calculate the differentials in E*(X(P)). It is clear from chart 1 that the only
 differentials which are possible go from t - s = 4 1 to t - s = 4j - 2. Let

 I 12 be the 2-adic norm of j, i.e., the coefficient of 2 in the prime factorization
 of j.

 THEOREM 7.7. In the spectral sequence { E,(X(P))), the class 14j- in
 E0'41 is a cycle in E1112 and 3W214j,1 0 if El24i ?il2 # 0. his formula
 implies all differentials.

 Proof Using 7.2, we have a commutative diagram

 D - > PPAJ

 _ __ { f 1
 bo V ?oK(Z 4n4n) - PAbo

 10 IP 1
 24 bsp -V n>oK(Z, 4n) X K(Z/2,4n + 2) _>5P A bsp

 where D is the fiber of p and p is defined to make the square with 0 commute.
 Clearly E' t(X(P)) maps under f onto E' t(X(P)) if t - s = 4 -1 or 4 -2.

 Thus the spectral sequence for P A J is determined by that of D. The spectral
 sequence of D follows easily from what the map p does in homotopy. The map p

 in homotopy follows from what 0 does in homology. We have the following
 lemma.

 LEMMA 7.8. O*: H4k(bo) -* H4k(24 bsp) is multiplication by k on a choice
 of the free Abelian summand.

 We delay the proof of the lemma.

 p*: 7r4i(V nK(Z, 4n) -*> 7r41(A n>O(K(Z, 4n) V K(Z/2,4n + 2)))

 is multiplication by 21i12 X 1 where 1 is odd. This translates exactly into the

 conclusion of the theorem applied to {Er(X((p)))1 and by naturality to
 {Er(?E(P))1 which gives the theorem.

 Proof of 7.8. Let S5 -* B20 be a generator. Then Qg: Si25 BO is well
 defined. Let X5 be the Thom complex. Then X5 is a ring spectrum and

 X5AX5s2S+AX5= V 2 4iX5 [M8]. Let f be the composite o X5 At
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 X5 A X5 -* AX5 -*-- VX5. In [M8] it is shown that f*: H4k(X5; Z) -
 H4k(E4 X5, Z) is just multiplication by k. By using 5.10 of [M2] we have a
 commutative diagram of 2-adic completed spaces (bspin in [M2] is bsp here).

 bo-2 4bsp

 f 4

 where g and g' induce isomorphisms

 g*: H*(X5; Z) --*- H *(bo, Z) /Torsion

 4:H* (E24X5Z H* (V4bsp; Z) /Torsion.

 This completes the proof of 7.8.

 The differentials in { Er(3E(p2))1 are all implied by the following:

 THEOREM 7.9. Each class a in E~' t(X(P 2n)) for t - s =4 j - 1 projects a

 cycle in Eand 81,2a =# 0 if E1I2'4i-2?IiI# 0. This formula implies all the
 differentials.

 The proof is immediate from 7.7 and the inclusion p2, - P. Using the
 charts we have the following:

 1) In E*( X(p2n)) there are no differentials if n ?< 3. Thus

 j*(p2n) = bo* (p2n) e bsp* (14p2n) if n ?< 3.

 2) E2( (p8)) =E.(X(p8 )) and the only non-zero 81 is

 S1:E E34s, 14? 2s~Ej4+ 4s, 14?+12s ,S?~0.

 Thus we have

 Z/2 h1,2, 4,or 6,and 0(8) with j16

 Z/2 +Z/2 8)j :9
 Z/8 j3(8)

 Ji(p8) Z/16 j6 or 7(8), j?~7
 Z/2?+Z/2 + Z/2 j8

 Z/2 EDZ/8 j2(8), j?~10

 0 j4 or5(8),j?5.
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 3) For P we have the following where Ak =Z/2t16k2:

 Ji(P8) j?6otherwise
 Z/2 ED Z/2 j_0, 1(8)

 Z/2 j_2,9(8)
 Jj(P) = Z/8 j-3(8)

 0 j-5(8)

 Z/(21k12+l) j 8k -2

 Ak j=8k-1.

 To complete the calculation we give the following tables. Let

 bk1j = min{ I 16k 12, I order of the line bundle over Pi 121.

 Let Ak(M) Z/2bk l.

 JO(P) j < 8n otherwise
 (Z/2)3 0, 1(8)

 (Z/2) + Z/8 j 2(8)
 J(p8n)= Z/8 i-3(8)

 0 j4, 5(8)

 Ak(8n) j=8k-2

 Ak(8n) + Z/2 j=8k-1.

 J(P) j< 8n + 2 otherwise

 Z/2 + Z/2 j= 8n + 2

 Z/8 j= 8n + 3

 j( p 8n?+2) =Z/2 j=0, 5(8)

 Z/2 + Z/2 j = 1, 4(8)

 Z/8 + Z/2 j = 2, 3(8)

 Ak(8n + 2) j = 8k-i, i = 2 or 1.

 JO(P) < 8n + 4
 ,(p8n+4) =J(p8n+2) ;>8n + 45 j7= 8k + i, i 2 or 1

 LAk(8n + 4) j8k + i, i = 2 or 1.
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 JO(P) j<8n + 6
 Z/214nl2 j = 8n + 6 otherwise

 (Z/2)3 j 0, 1(8)

 J(p8n+6) = Z/8 + Z/2 j-2(8)
 Z/8 1 3(8)
 0 j_4,5(8)

 Ak(8n + 6) j=8k-2

 Ak(8n + 6) + Z/2 j=8k-1.

 As a first step toward proving 1.5 we prove the following.

 THEOREM 7.10. Let s be the map -S'S' QIP. Then s*: -*(S ) Jj(P)
 has the following cokernel:

 Z/2 j-4mod8

 Z/2 jOmod8, I#2i

 Jj(P) j_6mod8 j#2'-2

 Ji(P)/Z/2 1=2? - 2 6'j'62
 0 all other j except if j 2' -2.

 Remark: It has been conjectured that if the Kervaire invariant manifold

 exists in dimension 2' - 2 then Coker(s*)2'-2 = J2'-2(P)/Z/2. This is equiva-
 lent to the conjecture in [M6], page 4. Partial results are known but apparently

 the strongest form of the conjecture has not been proved.

 Proof We first consider j 0 mod 4. Let p: P -* P4.-3 be the pinch map.
 Then the coset in 7T4,(P) corresponding to the class in El 4n?+l projects under p
 to a class in the image of 7r4"(E4,-3j) - 7r4n(P4n3 A J). The class on the left
 represents v, the generator of the three stem. Thus if there is a map f: S4, -* P
 such that the composite S4, -* P -- P A J is in this coset, then f fits in the
 diagram

 P P P4n-3

 s4n s4n-3.

 Compare this with the following diagram where the top row is the EHP

 sequence, the middle row is the fibration induced by S4n-3 C Q(S4n-3) and the
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 lower right hand square is obtained from the map pn-l -* iQ2SQ which factors
 through SO(n).

 u2s8n-5 us4n-2

 tI I (z) ' s4n 3 2 s4n-3)

 (f) ,4n-3p4n-2_Q (V4n-3p)

 We see that the existence of such an f implies there is a class in 7T8n-2( S4n-2)
 with Hopf invariant P. Results of [M5] and [M9] show that this happens only if

 n = 2'. The resulting homotopy classes are called 'qi in [M5].
 Next we consider the case j = 6 mod 8. What we can prove here is related to

 the Kervaire invariant as remarked above so we isolate the statement as a

 theorem.

 THEOREM 7.11. If the image of 7rT8n2(S) -> J8n-2(P) is Z/2 then n = 2'
 and there is a manifold with Kervaire invariant 1 in dimension 23 - 2.

 Proof The argument uses the following diagram. The maps P and E are the

 usual ones in the EHP sequence. The maps E and E' are suspension type maps.
 As usual (f) is the fiber of a map f.

 s1 -n i P8 n-2 -1

 k

 (8n-lp8n-2 Q(8fn-lp )

 lkl 1k2 1

 (E ) s8n-1 'Q(S8n-1'

 P E
 0 2sl6n-1 san

 Now P(t) [t8n-1 t8n-1]. But P(t) = (i2klkj)*(t) where j is the degree one
 map. Thus [t8n-1, t8n-1] is in the image of (k2)*. Suppose

 f: S'6n-3 -*2 Q(8n-P)

 projects to the class of order 2 in J8n-2(P). This class factors through E8n-1p8n-2

 where it has order at least 4 since it has order 4 in 8n-2( p8n-2). Let
 a E 7T8n-2(P8n-2) be such a class. The image of 2a in J8n-2(p8n-2)
 is the same as the image of S8n-2 _> p8n-2 which defines P'. There
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 (k2)*(2a + /3) = [t8n-1, t8n-1] for some /3 which maps to zero in J8n_2(P8f-2).
 Since /3 is a stable homotopy class, the Adams filtration of /3 is 3 except if
 n - 2. The Adams filtration of a must also be ? 3 except if n 2'. But the
 Adams filtration of [t8n.1, t8n-1] is 2 unless n = 2' when it is equal to 3.

 Using the results of [BP], we see that a E { h2+2} and this completes the
 proof of 7.11 (and the case _ 6mod8 of 7.10).

 Remark: This argument shows clearly the connection between the class of

 order 2 in J8n-2(P) and the Kervaire invariant. Also if there is a class Oi E {hfW}
 and if 2Oi = 0 then we see immediately that s*(Oi) E J2'+12(P) is non-zero. This
 result should be true if Oi exists but is not of order 2. I do not know of a proof of
 this.

 To complete the proof of 7.10 we must show that the rest of the classes in

 J*(P) are in the Hurewicz image. Consider the following diagram:

 XAid

 P PAJ J

 3 XAid 3
 f P A 3bsp - 3bsp

 f g

 m7

 where X: P -* S0 is the stable map obtained from the composite P -> SO C Q(S?).
 In the following we write X A id as X. All the other maps except f, g and f have
 been defined. By 7.2 we see that every map g: M7 __> 3bsp of Adams filtration 1

 factors through X. Let f: M7 -* P A E3bsp be a factorization of the composite

 M7 L2 S7 2:~3bsp where P is the pinch map and - is a generator. Since P and

 P A J agree through dimension 6 we can construct f to give a commutative
 diagram. Let A: M'5 __ M7 be the Adams map [A]; then i2gAk is essential for all

 k. Thus fAk is essential for all k. We need to show that S8k+6 M8k+7 M7 P

 is null homotopic. Since f has filtration 1 and Ak has filtration 4k, the composite
 has Adams filtration 4k + 1. We will prove the following later.

 LEMMA 7.12. There is no non-zero homotopy class in 7r8k+6(P), k-1, of
 Adams filtration 4k + 1.

 This lemma shows that M8k?7 P factors through a map S8k?7 P

 and since the composite M8k?7 ,P -p P A I is essential, f is essential and
 projects to a generator of J8k+7(P). Let q- generate the Z/4 in 7r2(M1). Then
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 Ak

 S8k?8 -M8k?7 -M7- P generates the Z/2 in J8k+8(P) of filtration 4k + 6. All
 of the other classes are constructed in a similar fashion.

 Proof of 7.12. Consider the composite SO L > --* QP where s is the loop
 of the Barratt Eccles map [BE]. Let E2(SO) and E2(U'S') be E2 terms for

 unstable Adams spectral sequences for SO and Q'S?? respectively. Let E2(X(P))
 be the looping of a stable Adams spectral sequence for P. Then we have

 maps E2(SO) - E2(Q'S') E2(3E(P)). Let f: M" -* SO be the composite
 P gen ~~~~~~~~~~~~Aki1

 Mll --> Sll g SO. By Curtis [C, page 191] f has filtration 3. Thus M3+8k -*

 M" - SO has filtration 3 + 4k and the composite M3+8k -> QP has filtration
 >-1 + 4k. Since the class of Adams filtration 1 + 4k in stem 2 + 8k cannot

 be in the image of J, the composite S12+8k Mll+8k _> QP is zero. Thus the
 class of Adams filtration 4k in stem 3 + 8k represents the generator of the image

 of the I homomorphism. Since 7rllT+ 8k(SO) o v = 0, the class in Adams filtration
 1 + 4k and stem 6 + 8k, which is h2 composed with the class of Adams

 filtration 4k in stem 3 + 8k, cannot represent a nonzero homotopy class.

 Next we study {Er(X(P2n+i))1 and I*(P2n+?). Lemma 7.5 calculates the
 El-term and Theorem 7.6 implies all the differentials. The result of this calcu-
 lation is the following.

 THEOREM 7.13. The groups J*(P2n+?) are given by the following table
 where an = 0, n 0(2) and an 2 if n = 1(2).

 Z/2 j=2n+ 1

 Z/2 j= 2n + 2, n 0(2)

 0 = 2n + 2, n-1(2)

 Z/8 j= 2n+3,n-0(2)

 Z/2 j=2n+3,n-1(2)

 J(p2n+1= (Z/2)2 j (2n + an)(8),5 (2n + 1 + an)(8)
 Z/2 -(2n + an + 4)(8)
 A(jn) j-2n-an=2(8)

 B(j,n) j-2n-an=3(8)

 C(j,n) j-2n-an=6(8)

 D(j,n) j-2n-an=-7(8)

 The groups A, B, C, D fit into the following exact sequences.

 (i+ 1)

 0 B(j, n) boi(2n+l) bspi-4(2n+) A(j-(1+n) 0)

 n Dnf, n)h boP ..(phn. + ..) -> bspi-4(~+1) O- n) n
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 Remarks. The map (j + 1) means multiplication by the integer j + 1 which,
 since the groups on both sides are 2-groups, is multiplication by 21i+112. For values

 of j large compared to 2n + 1 we have

 j_2(8), A(j, n) = 0 =QCj, n), Bf j + 1, n) = Z/8 =Df j + 1, n)
 j = 8k - 2, A(j, n) = Z/21k12 =C(j, n), B(j + 1, n) = Z/2116kl2 D(j + 1, n).

 (Note that for a given j = 2(8) and a given n only one of A(j, n) or C(j, n) is
 defined, and similarly for B and D. For example A(26,5) is not defined since
 26 - 10 - 2 6 mod 8 but C(26, 5) is defined (and is zero).)

 THEOREM 7.14. Let a, be the cokemel of the Hurewicz map 7mp(P21+1)
 .j(P2n+1). Suppose j > 2n + 10. Then a, = Z/2 if j-4(8), = 0 if j
 -1, 2, 3, 5 mod 8 and = Z/2 or 0 if j 0 mod 8.

 Remarks on unsettled cases. If j-6 mod 8 then knowledge of the Kervaire
 invariant is necessary to determine the cokernel in all cases. Partial results are

 known. If j 0 mod 8 then the results on q, [M5] are relevant. The results in
 [M6] settle the story if j = 8 mod 16 completely. Also all small values of j - 2n
 are settled in [M6]. The dependence on n and j is very complicated in these
 cases.

 Proof The case j 4(8) is effectively handled in [M6]. The balance of the
 theorem essentially asserts that the " v1 periodic" homotopy is mapped isomor-
 phically. We know this for Y homotopy. If we consider the sequence

 (P2n+1 A J) A M2t -(P2n+1 A bo) A M2t _(P2n+l A y4 bsp) A M2l,

 we see that ?Tj(P2n+1 A J A M2t) = Vij(Ekbo A M2,) G Vi(Ek+ lbo A M2t) + Wj
 where W is a Z/2 vector space (as a v.(bo) module) if j ' k and k ? 2n + 8
 and k - 1(mod 8). From this it follows immediately that the (Z/2)'s claimed in
 the image for j 0, 1, 2 mod (8) are in the image. All that remains is to verify the
 result for j -1(4). We will give an explicit construction for the homotopy
 class. The following result is necessary.

 For any suspension spectrum X and any a & 'nk(S0) we have a map a:

 2kX -- X which is a A id. The map 2: P4n-1 _ P4n-1 factors through P4n+1. Let
 f1: P4n+1 -- P4._1 be such a factorization. The map 2: P4n+l -* P4n+1 factors
 through P4n+2. Let f2: P4n+2 -_ P4n+l be such a factorization. Let q: P4n+2 -_
 S4n+2 be a degree 2 map. Then (2 - t4n+2q): P4n+2 -_ P4n+2 factors through f3:
 P4,n?3 -~P4n?2, where t4n2: S4n+2 P4n?2 is a generator.

 LEMMA 7.15. There is a map q: 24n+2B(1) -_ P4n+2 with cofiber
 Cq(4n + 3) and a map p- 24n+5 M2 P4n+3 with cofiber Cp(4n + 3) such that
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 the following diagram commutes:

 P P ~~~~~P P4n+5 P4n+3 4n+2

 1i3 ti2 li4n+l 4n-1l

 P4n+7' Cp(4n + 3) CCq(4n + 3) 12

 In addition each map fi and each map ji has Adams filtration 1 and each ji and f1
 induce an isomorphism in ExtA for 6s > t + 14. (B(1) is defined in ? 2.)

 Proof The construction of the maps q and p need the homotopy calcula-

 tions of [M6]. The map q is constructed by observing that the composite

 4n+3m2t S4n+2-- P2n+2 is null homotopic. It clearly has Adams filtration
 71214n+2

 two and [M6, table 8.3] shows that there is nothing of Adams filtration two in

 these dimensions. Thus S4'+2 U 7CE4n+3M2l P4q 2 and this defines Cq. Choose

 q to be a map of Adams filtration 1. Then f2q has filtration 2 and again by

 inspection of [M6; table 8.4] we see that the composite is trivial. Hence i2 exists.

 The map p: E4f+5M2t - P4n+3 is an extension of the non-trivial map of S4n+5

 P4n+3' The composite f3p is zero and so i3Cp -* Cq exists. The map f3 is the

 standard map. The composite P4n+56 > P4n+5 P4n 3-C is inessential since
 f1 has Adams filtration 1. Thus P4n+5 U CP44n+6 n7
 the maps. The statements about Adams filtration follow from the constructions.

 The fact, that ji and f1 induce isomorphism in Ext groups, asserted follows from

 the easily verified fact that H*Cfh and H*C, i = 1, 2, are all A1 free modules.
 (Cg is the mapping cone of g.) This completes the proof.

 We return to the proof of 7.14. The argument is easier for 2n + 1 = 8N + 3

 or 8N + 5, and the two cases are similar. We will do 2n + 1 = 8N + 3.

 First recall that if 1 8112 = 4a + b, 0 < b < 3, then the solution to the

 vector field on spheres problem gives us a map g: S81-* P8i_(8a+2b) which
 projects to a generator of bO8k-1(P8j-(8a+2b)). Lemma 7.15 gives a map
 g1: P81-(8a+2b) - P8N+3 which induces multiplication by 2 to the power
 4(j - a - N) + b in bo8-11. Thus the composite

 S~j-1 -P8i-(8a+2b) P8N+3 P8N+3 A J P8N+3 A bo

 has the same image in homotopy in the 8j - 1 stem as g3. Hence g3 induces a

 surJection in homotopy in stem 8j - 1. To help check this we recall the
 calculation of 7.13. For this it is easier to just write down the powers of 2

 involved. The generator of J8i-1(P8N+3) maps to 2(4j - 4N - 1 - 2 - 4a - b).
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 (2(a) = 2a.) The map g1 from 7.15 is obtained essentially by multiplying 2 to a
 power which is 4/ - 4a - b - 4N - 3. These two exponents are the same.

 (These numbers are just the filtration of the classes in E1(X(P2,+1)).)
 Minor modifications are needed to handle 8N + 5. More serious modifica-

 tions are needed to handle 8N + 1 and +7. Again they are similar and if

 b # 1, 2 the proof is as before. If b = 1, or 2 then as before we get a map

 g1: P8i_(8a+2b) 4 ' P8N+3

 but the vector field solution no longer applies. We will prove the following.

 LEMMA 7.16. If 141j12= 4a + b and b = 2 then there is a map S -
 Cq(8j - 8a - 2b- 2) of degree 1.

 Proof Let 4 be large compared to 1 8i 12. Then the Spanier Whitehead
 dual of

 p8j-1 is p20-1-8i+8a+6
 '8i-8a-6 2'0-1-8j+ 1

 This is the Thom complex of 20 - 8 times the line bundle over p8a+5. This

 bundle is classified by the composite p8a5 P88aa++45 BO where g extends a

 generator in dimension 8a + 4. Now Cq is defined by :81-8a-6B(1)
 Cq. Consider the finite skeleton

 28i-8a-6B(1) --P8'i-8a?-6_ [Cq(81 - 8a - 6)]8i 8a-2

 The Spanier-Whitehead dual of this gives the map h of the composite k

 6D(Cq(8i - 8a - 6))8? 8a 2 h p8 a+4 BO
 It is an easy calculation to verify that the composite k is inessential.

 The following cell diagram may help. Vertical lines mean that 2t is the

 attaching map and curved lines mean q is the attaching map.

 O t O ~ ~~ gen (oo !8 (S) " 0 BO

 D(Cq(8i - 8a - 6)) P88'j a+2 4

 This calculation induces maps among the Thom complexes:

 S2'-1-8i- V D(Cq(8j - 8a - 6) 8i-8a-2 _5J(g)

 [6D(Cq(81 - 8a - 6)]20_178i+8a+6 4p20-1-8i+8a+6
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 with degree 1 on the cell in dim 20 - 8j. Dualizing back gives

 S81-1 V[Cq(8j - 8a - 6)]8i?8a-2 Cq(8j - 8a - 6)
 and the composite

 s8j-1 _ S8'-1 V[Cq(8j - 8a - 6)]8?-8a-2 C (8j - 8a - 6)
 has degree 1. By an almost identical argument we show

 LEMMA 7.17. For a and b as functions of j as before, if b = 1, then there is

 a map of S81-' into Cp(8i - 8a - 2b - 4) of degree 1.

 Using these two lemmas, instead of the vector field solution in the argument
 for 7.14, and 2n + 1 = 8N + 3, allows one to complete the proof for 2n + 1
 8N + 1 or 8N + 7. Indeed, as before we have

 P8j-8a-1 - Cp(8j - 8a - 5) -- Cq(8j - 8a - 6) P-8 P88a7 - N+
 If b = 3 then there is a map S8i-* P8_8a-7 by the vector field theorem.
 The case of dimension 8j + 3 is handled in a very similar fashion.
 This completes the proof of 7.14. From 7.14 we prove easily

 THEOREM 7.18. If j 2n + 8 or if j = 2 - 2mod2i"', then j > 2n + 8 +
 2i; then the Hurewicz map (1(p2 n ) ] (p2n) is sur/ective.

 Proof Again because the result is true for coefficients in Y and in M2l, it is

 only necessary to verify the theorem if j p- 2 and 8p - 1. Consider the
 diagram

 V8 _T Jp-1 Pn)_ . S8p-P _ ~)_ Vt8, p1 (P2n +1 ) b78 p-2( P )

 1+ 1 1, of
 A ~ 1( J8p_J(p) r 8p-1 (p2n+l) 8-( )

 bo 13 bop Pn1 8op_1(P)b~plEnl

 By the proof of 7.14, there is a mapf: S8 p -1 P of Adams filtration 4 p - I 8p 12
 such that 4(f) is a generator. The Adams vanishing line for P2n+1 in stem
 8p- 1 is 4p - n + an where an =-1, 0, 0,-I for n = 0, 1, 2, 3 mod 4 respec-
 tively. If 4p - I 8p 12 > 4lp - n + an, then f factors through p2n and 4'(f) is a
 generator. If 4p - I 8p 12 C 4p - n + an then, if we let n - an - I 8p 12 + 1 =
 k, 2kf has filtration 4 p - n + an + 1 and thus factors through p2n. On the other

 hand, 13h42k f$ 0 So if f': S8p-1 __ p2n is such a factorization, 4'f' is a
 generator. This handles the case j = 8p - 1.
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 Let f": S8P-1 P2n+1 represent a generator. Because of the filtration
 argument just presented, f'4" cannot be in the image of i2. (It is in the image of

 G) Thus ad20ft is non-zero and al1' maps onto the image. The exceptional case
 handles the situation where 4' is not onto.

 The case i = 8p + 1 is handled in an analogous fashion. The argument is
 quite simple and is left to the reader. This argument can be helped by

 considering the charts given earlier.

 The proof of 1.5 is now easily finished. First suppose n ? 2. Recall that

 there is a map 12n+1p2n __ S2n+1. Thus from an easy modification of 7.15 we

 have for each k, P2fllP8k+2f > 2n+lp2n S2n+ ' If we loop all of this 2n + 1
 times we have

 p8k+2n u2n+1(i2n+1p8k+2n) t22n+112n+1p2n

 o2n+ls2n+l -_ Q(p2n A J).

 In the stable range of the complex on the left, 7.18 applies. Thus the Hurewicz

 image 7T-+2Jn(p2n) is onto for 8k + 2n <c<16k + 1. For any i
 there is a suitable k.

 To handle n = 1 and 2 we use the discussion following 7.9. For S3 we have

 a map -l S3 which is an extension of e. It is easily verified that M9 -- -*

 Q(,lp2 A J) is essential. The beginning homotopy of Mn satisfies: Tn(M)=
 '7n+1(M) = '7n+4(M) = Z/2, ngn+2(M) = Z/4 and 7Tn+3(M) = (Z/2)2. The Ext
 groups form a pattern as given in the following chart.

 4

 3

 2
 S  s1 < *

 0 1 2 3 4 5 6

 t- S

 Ext A(Ao, Z/2) for t and s small.

 These groups except * clearly map essentially in Q(2P2 A I). Similarly there is a

 map M12 S3 extending li. These maps with the Adams map complete the
 picture.

 Very similar arguments apply when n -2 (and 3). The result summarizes

 nicely as follows.
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 PROPOSITION 7.19. The coker of i(n2'S2~'') - J,(p2n) when n < 3 is
 Z/2 if / = 5 and equals zero in all other dimensions.

 8. The image of J and v1-periodic homotopy

 Stable homotopy theorists prefer to discuss the spectrum J and the map
 S0 - J. In some sense J "detects" the image of J. We will make this precise. To
 talk about the image of J we look at SO C Qi2'S' and consider the induced map
 in homotopy. If we look at an Adams unstable spectral sequence for SO with E2

 represented as E2(SO) we have by 3.2 a map

 I4: E' t(SO) - E2+1"t+l(SO) Exts+X1"t+ '(Z/2, Z/2).

 LEMMA 8.1. In {Er(SO)1 the generators of 7Ti(SO), / = 8k, 8k + 1, have
 filtration ?4k-3, 4k-2 respectively. The map M'+ --*SO has
 filtration 4k + 3.

 Proof Let S7 -- SO represent a generator. Then there is a map -* S7

 which extends 4T where X generates the Z/8 summand in 7r14(S7). (Compare
 7.19.) Now consider

 i
 Ak

 M15+8k M15 S7 __ SO.

 It is easily verified that this map factors as Ml5?8k S15+8' SO where g is a

 generator. Let '415: _16 M15 generate the Z/4 summand. The composite
 A0j15+8gl generates 7T17+8k(SO) and has filtration ? 4k + 2. The composite M19

 -> M'5 -~ SO factors as M'9 S19 SO where g is a generator. Thus the map

 M19+8k __- SO --* QS?S represents the generator and has filtration - 4k + 3.

 THEOREM 8.2. If k > 1, the generator of the image of J in 8k, 8k + 1 and
 8k + 3 has Adams filtration 4k - 1, 4k and 4k + 1.

 Proof The calculations of [MT] show that in t - s = 8k, k > 1, the only

 class of Adams filtration ? 4k - 2 is p(k -)cO Thus the generator in 8k is in the
 coset pk -co which is a unique class; 8k + 1 is similar. For the generator 8k + 3
 we have M8k+3 __ S0 of filtration ? 4k such that S8k+2 __*M8k+3 -- S0 is null.

 Again, inspection of the tables in [MT] implies that the coset defined by Pkh2
 represents the generator in the image of J in the 8k + 3 stem.

 Note that we say nothing about the filtration of the generator of the image

 of J in 8k - 1. There is a class in 78kA(S0) of filtration 4k - I 8k 12 which
 projects to a generator of J8k1( S).
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 THEOREM 8.3. The composite Ml5+8k AM'*15 SO -- Q(S0) -- Q(P A J) is
 essential for all k.

 This is immediate and combined with the above shows that the homotopy

 we have been dealing with is the image of J. Another discussion of this is given in
 [DM].

 A question one might ask is what is the sphere of origin of the image of J. By
 this we mean the following. What is the smallest k such that there is a class

 a E 7,T(SkSk) such that the composite l: g7j(kSk) -- g,(QS0) has the property
 that Ya is a generator of the image of the J-homomorphism? Call this k, 0(j).

 THEOREM 8.4. If j ? 15, the origin of the image of J is:

 i = 0(8)

 (i) = g 2 1(8)
 {5 3(8).

 If j -1(8) then an element of order 2a has sphere of origin O,) given by

 ea=4+i+ 81, a=41+i, i=i,2,3

 =1+81, a=41.

 If 1 8k - 1, ? 15, then the element in the image of J of order 2a has sphere of
 origin

 k = 5 + 81, a = 41 + 1

 =6+81 =41+2

 = 7 + 81 = 41 + 3

 = 1 + 81 = 41.

 This, too, follows directly from the calculations, in particular, the tables

 given after 7.9. The SO(n) of origin for the stable classes of SO is, of course,

 different. These results are not part of this discussion but 74n -(SO) is in the
 image of 74 n1(SO(2n + 1)) if n > 4. 8Xn+i(SO) is in the image of 8 n+i(SO(6))
 for i 0 and 1. (The map in question is the one induced by SO(n) C SO.)

 9. Some problems

 These results suggest some exponent problems. We first have the following

 which is proved in [M7].

 THEOREM 9.1. For each k there is a class a Ec gr(S0: Y) such that av 0 + 0
 but av k11 = 0.
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 The classes which work are obtained from q,'s [M5].
 The importance of Theorem 9.1 is analogous to the following. Let S1 -*

 K(Z) be a fibration. Then sr*(S1) is a torsion group but has torsion of arbitrary
 order. The fiber Sv1 of So -> J has a similar property with respect to v1.

 Problem 1. Let Sf(n) be the n-connected cover of Sn. Then, as is well
 known, the torsion in r*(SKnn)) is bounded. If n = 21 + 1 then S211 __
 K(Z, 21 + 1) is a rational equivalence. The fiber contains all the torsion. A useful

 notation would be S21'{ho}. Then 12fS21~'{h0} > Q(>2P2l A J) is a V- R
 equivalence. Let S211'{ho, v1} be the fiber.

 Conjecture 1. It seems likely that *(S21 +{ho, v1}; Y) is annihilated by v (l)
 for some k(l). The function k(l) should be ? [1/2] + 3. No upper bound is

 known even for S3.

 Problem 2. The maximum torsion in S21+1 seems to be detected by J*(P21).

 Conjecture 2. The 2 primary torsion of 7*(S2l1l{ho, v1}) should be about
 half that of 7*(S2l+1). It may be the same function k(l) in 1.

 Problem 3. Let Fn be the fiber of W(n) __> 4W(n + 1). The results of this
 paper and [M3] suggest that Fn has many of the properties of the space AX, a
 space whose cohomology realizes the subalgebra of A generated by Sq1 and Sq2.

 Conjecture 3. It seems likely that V27T *(Fn; Y) = 0. A result like this should
 help in problems 1 and 2.

 Problem 4. In [DM] the starting point for a v2-theory is given. Can one find

 a spectrum J2 so that So -> J2 induces a v2-isomorphism and J2 contains only

 torsion-free, vlfree and V2-free homotopy? Preliminary results give a V2-periodic
 family into which the q,'s fit and these correspond to the "/3"'s at odd prime.
 They include v, V2, z3, Iq2h4, , cK, f{hql}, /.LW5,.. . and a second family begin-
 ning with {cl}, v{c1}, {n}, {t}, {N}, . . There should be several more "inde-
 pendent families". The detailed calculations available are not adequate to shed
 much light on this. This problem is really a version of a conjecture, due to

 Ravenel, which suggests that all the homotopy of spheres fits into vi periodic
 families.

 NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS
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