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EQUIVARIANT INFINITE LOOP SPACE THEORY, I.

THE SPACE LEVEL STORY

J. PETER MAY, MONA MERLING, AND ANGÉLICA M. OSORNO

Abstract. We rework and generalize equivariant infinite loop space theory,
which shows how to construct G-spectra fromG-spaces with suitable structure.
There is a naive version which gives naive G-spectra for any topological group
G, but our focus is on the construction of genuine G-spectra when G is finite.

We give new information about the Segal and operadic equivariant infinite
loop space machines, supplying many details that are missing from the litera-
ture, and we prove by direct comparison that the two machines give equivalent
output when fed equivalent input. The proof of the corresponding nonequivari-
ant uniqueness theorem, due to May and Thomason, works for naive G-spectra
for general G but fails hopelessly for genuine G-spectra when G is finite. Even
in the nonequivariant case, our comparison theorem is considerably more pre-
cise, giving a direct point-set level comparison.

We have taken the opportunity to update this general area, equivariant and
nonequivariant, giving many new proofs, filling in some gaps, and giving some
corrections to results in the literature.
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1. Introduction and preliminaries

Equivariant homotopy theory is much richer than nonequivariant homotopy the-
ory. Equivariant generalizations of nonequivariant theory are often non-trivial and
often admit several variants. Nonequivariantly, symmetric monoidal (or equiva-
lently permutative) categories and E∞ spaces give rise to spectra. There are sev-
eral “machines” that take such categorical or space level input and deliver spectra
as output, and there are comparison theorems showing that all such machines are
equivalent [29, 30, 38, 51].

Equivariantly, there are different choices ofG-spectra that can be taken as output
of infinite loop space machines. One choice is naive G-spectra, which are simply
spectra with a G-action. They can be defined for any topological group G. The
weak equivalences between them are the G-maps that induce nonequivariant weak
equivalences on fixed point spectra. As we shall indicate, it is quite straightforward
to generalize infinite loop space theory so as to accept naive input, such as G-spaces
with actions by nonequivariantE∞ operads, and deliver naiveG-spectra. Moreover,
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the nonequivariant comparisons generalize effortlessly to this context. As we shall
see, this much all works for any topological group G.

Naive G-spectra really are naive. For example, one cannot prove any version of
Poincaré duality in the cohomology theories they represent. They can be indexed
on the natural numbers, and n should be thought of geometrically as a stand-in
for Rn or Sn, with trivial G-action. When G is a compact Lie group, we also
have genuine G-spectra, which are indexed on representations or, more precisely,
real vector spaces (better, inner product spaces) V with an action of G. Their
one-point compactifications are the representation spheres, denoted SV , and these
spheres are inverted in the genuine G-stable homotopy category.

The weak equivalences between genuine G-spectra are again nonequivariant
equivalences on fixed point spectra. However, since suspending and looping with
respect to the spheres SV does not commute with passage to H-fixed points when
the action of G on V is nontrivial, the H-fixed spectra retain homotopical infor-
mation about the representations of G. That information is encoded in the notion
of equivalence of genuine G-spectra. One can also restrict attention to subclasses
of representations and obtain a plethora of kinds of G-spectra intermediate be-
tween the naive ones (indexed only on trivial representations) and the genuine ones
(indexed on all finite dimensional representations).

Our focus is on finite groups G and equivariant infinite loop space machines
whose inputs are G-spaces X with extra structure and whose outputs are genuine
Ω-G-spectra whose zeroth spaces are equivariant group completions of X . The two
nonequivariant machines in most common use are those of Segal [51] and the senior
author [27], and we call these the Segal and operadic machines. The Segal machine
was generalized equivariantly in [54] and the operadic machine was generalized
equivariantly in [10] and more recently in [12], which can be viewed in part as a
prequel to this paper. We study these equivariant generalizations of the Segal and
operadic infinite loop space machines and prove that when fed equivalent data they
produce equivalent output.

Due to their very different constructions, the two machines have different ad-
vantages and disadvantages. Whereas the operadic machine is defined only for
finite groups, the Segal machine can be used to construct genuine G-spectra for
any compact Lie group G. These spectra are unfortunately not Ω-G-spectra unless
G is finite, but their restrictions to finite subgroups H are Ω-H-spectra. The Segal
machine also works simplicially and is likely to be the machine of choice in motivic
contexts, if and when such a motivic theory is developed; it has yet to be developed
even nonequivariantly. The operadic machine generalizes directly to give machines
that manufacture intermediate types of G-spectra from intermediate types of input
data, but we do not know a Segal type analogue. Due to its more topological flavor,
the operadic machine was used to produce genuine G-spectra from categorical data
in [12], where the machine was used to give categorical proofs of topological results.

We have several ways to generalize the Segal machine equivariantly, and we have
comparisons among them. We develop the one closest to Segal’s original version in
§2, highlighting the role of its inductive simplicial definition in proving the group
completion property. This version of the machine, which has not previously been
developed equivariantly, starts from F -G-spaces, namely functors from the category
F of finite sets, the opposite of Segal’s category Γ, to the category of based G-
spaces. It produces naive G-spectra for any topological group G. We shall use it
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to prove the equivariant group completion property for our other versions of the
Segal machine. Following Segal [51] nonequivariantly, we compare that machine to
a conceptual version that is defined by categorical prolongation of functors defined
on F to functors defined on the category WG of G-CW complexes. However, the
homotopical conditions needed to make the conceptual machine useful are seldom
satisfied by the examples that arise in nature.

We recall the homotopically well-behaved machine in §3, which is based on the
two-sided bar construction. This version of the Segal machine was first defined
nonequivariantly by Woolfson [59], but the equivariant generalization of his defini-
tion starting from F -G-spaces fails to be well-behaved homotopically. Following
Shimakawa [54, 55, 56], we instead focus on an equivariant generalization that starts
from the category of FG-G-spaces, which are functors from the category FG of fi-
nite G-sets to the category of based G-spaces. As we reprove, these categories of
input data are equivalent. The comparison of equivalences and the relevant “spe-
cialness” conditions shed considerable light on the underlying homotopy theory. To
explain ideas without technical clutter, we defer the longer proofs about the Segal
machine from §2 and §3 to §9.

To prove that the Segal and operadic machines are equivalent, we must first
redevelop and generalize both so that they do in fact accept the same input. The
generalizations follow the corresponding nonequivariant theory in May and Thoma-
son [38]. Categories of operators were introduced there in order to simultaneously
generalize F -spaces and E∞ spaces, and G-categories of operators serve the same
purpose equivariantly. We have E∞ G-categories of operators D over F and E∞

G-categories DG over FG, and we have algebras over each; F = D and FG = DG

are special cases. Ignoring operads, we develop and compare Segal machines that
produce genuine G-spectra from such algebras in §4.

Turning to operads, in the brief §5 we show how to construct a G-category of
operators D(CG) over F and a G-category of operators DG(CG) over FG from
an operad CG. Our focus in this paper is on E∞ operads CG, and we prove that
D(CG) and DG(CG) are E∞ G-categories of operators when CG is an E∞ operad.

Letting CG be an E∞ G-operad, we have algebras over CG, D(CG), and DG(CG).
In §6, we generalize the operadic machine to accept such generalized input. Start-
ing from CG-algebras, the equivariant operadic machine was first developed by
Costenoble and Waner [10]1 and is given a thorough modern redevelopment in [12].
Therefore we focus on the generalization and on comparisons of the machines start-
ing from these three kinds of operadic input. This is conceptually the same as
in May and Thomason [38], but the key proof equivariantly is considerably more
intricate and is deferred to §8. A curious feature is that, in contrast to the Segal
machine, there is no particular need to consider FG rather than F when developing
the operadic machine, although use of FG is convenient for purposes of comparison.

The comparison of the Segal and operadic machines starting from the same input
is given in §7. It seems quite amazing to us. Even nonequivariantly, it is far more
precise than the comparison given in [38]. There is a family of operads, called the
Steiner operads [58] (see also [12]). They are variants of the little cubes and little
discs operads that share the good properties and lack the bad properties of each
of those, as explained in [36, §3]. Nonequivariantly, they have played an important
role in infinite loop space theory ever since their introduction in 1979. We see here

1In part they follow extensive unpublished work of Hauschild, May, and Waner.
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that they mediate between the Segal and operadic infinite loop space machines just
as if they had been invented for that purpose. That is wholly unexpected and truly
uncanny.

Some background may help explain why we find such a precise point-set level
comparison so surprising. In the Segal machine, higher homotopies are encoded in
the specialness property of the structure map δ : Xn −→ Xn

1 relating the nth space
to the nth power of the first space of an F -G-space. In the operadic machine, they
are encoded in the structure given by the action maps CG(n) × Xn −→ X of a
CG-algebra. Actions by the G-category of operators DG(CG) encode both sources
of higher homotopies in the same structure and yet, up to equivalence, carry no
more information than either does alone.

The difference is perhaps illuminated by thinking about the commutativity op-
erad N with N (j) = ∗. The G-category D(N ) over F is just F itself. An
N -G-space X = X1 is the same thing as an F -G-space with Xn = Xn

1 . Both
just give X the structure of a commutative monoid in GT , and that is far too re-
stricted to give the domain of an infinite loop space machine: the fixed point spaces
of the infinite loop G-spaces resulting from such input are equivalent to products
of Eilenberg-MacLane spaces. From the point of view of the Segal machine, we
are replacing N -G-spaces with homotopically well-behaved F -G-spaces as input.
From the point of view of the operadic machine, we are replacing N -G-spaces by
CG-spaces for any chosen E∞ operad CG.

Consideration of categorical input is conspicuous by its absence in this paper
and is crucial to the applications to equivariant algebraic K-theory that we have in
mind. Both for application to the most natural input data and for the multiplicative
theory, it is essential to work 2-categorically with lax functors, or at least pseudo-
functors, rather than just with categories and functors, and it is desirable to work
with symmetric monoidal G-categories rather than just the (genuine) permutative
G-categories defined in [12]. That requires quite different categorical underpinnings
than are discussed in this paper or in [12] and will be treated in detail in [15, 16].
We note that while permutative G-categories and their symmetric monoidal gener-
alization are defined operadically in the cited papers, they are processed using the
equivariant version of the Segal machine that we develop in this paper.

Model categorical interpretations may also be conspicuous by their paucity. All
relevant model structures are developed in the papers [18, 24, 26, 44], and it is not
hard to interpret some of our work, but not the essential parts, model theoretically.
One point is that the group completion property, which is central to the theory and
nearly all of its applications, is invisible to the relevant model categories. Another is
that model categorical cofibrant and/or fibrant approximation might obscure what
is intrinsically a quite intricate collection of very precisely interrelated notions. Per-
haps unfashionably, we are interested in preserving as much point-set level structure
as possible, which we find illuminating, and of course that is precisely what more
abstract frameworks are designed to avoid.

We complete this section with some preliminaries that give common background
for the various machines, fixing notations and definitions that are used throughout
the paper. While our main interest is in finite groups, unless otherwise specified
we let G be any topological group here and in §2 and §3. Subgroups of G are
understood to be closed and homomorphisms are understood to be continuous. We
restrict to finite groups starting in §4.
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1.1. Preliminaries about G-spaces and Hopf G-spaces. We let U be the cat-
egory of compactly generated spaces weak Hausdorf spaces, let U∗ be the category
of based spaces, and let T be its subcategory of nondegenerately based spaces. We
let GU , GU∗ and GT be the categories of G-spaces, based G-spaces, and nonde-
generately based G-spaces, with left action by G; G acts trivially on basepoints.
Maps in these categories are G-maps. We write GT (X,Y ) for the based space of
based G-maps X −→ Y , with basepoint the trivial map.

We let TG be the category whose objects are the nondegenerately basedG-spaces,
but in contrast to GT , whose morphisms are all based maps, not just the G-maps.
Then G acts on maps by conjugation: for a map f : X −→ Y , (gf)(x) = g·f(g−1·x).
We write TG(X,Y ) for the based G-space of based maps X −→ Y , with G acting
by conjugation. Thus TG(X,Y ) is a G-space with fixed point space GT (X,Y ).
We can view TG as a G-category such that G acts trivially on objects, and then
GT can be viewed as the fixed point category of TG. In our treatment of the
Segal machine, we will also need to consider the full subcategories GW ⊂ GT and
WG ⊂ TG of based G-CW complexes.2

Properties of G-spaces are very often defined by passage to fixed point spaces.
For example, a G-space X is said to be G-connected if XH is (path) connected for
all H ⊂ G.

Definition 1.1. Let f : K −→ L be a map of G-spaces. We say that f is a weak
G-equivalence if fH : KH −→ LH is a weak equivalence for all H ⊂ G. A family of
subgroups of G is a set of subgroups closed under subconjugacy. For a family F of
subgroups of G, we say that f is a weak F-equivalence if f is a weak H-equivalence
for all H ∈ F. We often omit the word weak, taking it to be understood throughout.

The following families are central to equivariant bundle theory and to the analysis
of equivariant infinite loop space machines. They will be used ubiquitously. Let Σn
denote the nth symmetric group.

Definition 1.2. For a subgroup H of G and a homomorphism α : H −→ Σn, let
Λα be the subgroup {(h, α(h)) |h ∈ H} of G×Σn. All subgroups Λ of G×Σn such
that Λ∩Σn = {e} are of this form. Let Fn denote the family of all such subgroups.
Taking α to be trivial, we see that H ∈ Fn for all n and all H ⊂ G.

2For our purposes, we need not restrict to essentially small full subcategories.
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Remark 1.3. Since our homomorphisms are continuous, any α : G −→ Σn factors
through a homomorphism π0(G) −→ Σn. In particular, there are no non-trivial
homomorphisms if G is connected. There are also infinite discrete groups G that
admit no non-trivial homomorphisms to a finite group. Therefore, although the
families Fn appear in general, they are only of real interest when G is finite.

When G is finite, we adopt the following conventions on finite G-sets.

Notation 1.4. Let n denote the based set {0, 1, . . . , n} with basepoint 0. For a
finite group G, a homomorphism α : G −→ Σn determines the based G-set (n, α)
specified by letting G act on n by g · i = α(g)(i) for 1 ≤ i ≤ n. Conversely, a based
G-action on n determines a G-homomorphism α by the same formula. Every based
finite G-set with n non-basepoint elements is isomorphic to one of the form (n, α)
for some α. We understand based finite G-sets to be of this form throughout.

We also need some preliminaries about H-spaces, which we call Hopf spaces to
avoid confusion with subgroups of G. Recall that a Hopf space is a based space X
with a product such that the basepoint is a two-sided unit up to homotopy. For
simplicity, we assume once and for all that our Hopf spaces are homotopy associative
and homotopy commutative3, since that holds in our examples. We say that a Hopf
space is grouplike if, in addition, π0(X) is a group, necessarily abelian.

Definition 1.5. A Hopf map f : X −→ Y is a group completion if Y is grouplike,
f∗ : π0(X) −→ π0(Y ) is the Grothendieck group of the commutative monoid π0(X),
and for every every field of coefficients, f∗ : H∗(X) −→ H∗(Y ) is the algebraic
localization obtained by inverting the elements of the submonoid π0(X) of H∗(X).4

Definition 1.6. A Hopf G-space is a based G-space X with a product G-map
such that its basepoint e is a two-sided unit element, in the sense that left or
right multiplication by e is a weak G-equivalence X −→ X . Then each XH is a
Hopf space, and we assume as before that each XH is homotopy associative and
commutative. A Hopf G-space X is grouplike if each XH is grouplike. A Hopf
G-map f : X −→ Y is a group completion if Y is grouplike and the fixed point
maps fH are all nonequivariant group completions. Clearly a group completion of
a G-connected Hopf G-space is a weak G-equivalence.

1.2. Preliminaries about G-cofibrations and simplicial G-spaces. Since G-
cofibrations play an important role in our work, we insert some standard remarks
about them.5

Remark 1.7. A map is a G-cofibration if it satisfies the G-homotopy extension
property and a basepoint ∗ ∈ X is nondegenerate if the inclusion ∗ −→ X is a G-
cofibration. Since we are working in GU , a G-cofibration is an inclusion with closed
image [33, Problem 5.1]. By [6, Proposition A.2.1] (or [33, p. 43]), if i : A −→ B
is a closed inclusion of G-spaces, then i is a G-cofibration if and only if (B,A) is a
G-NDR pair. Using this criterion, we see that i is then also an H-cofibration for
any (closed) subgroup H of G and that passage to orbits or to fixed points over

3It would suffice to assume that left and right translation by any element are homotopic.
4Segal [51, §4] describes the notion of group completion a bit differently, in a form less amenable

to equivariant generalization, and he makes several reasonable restrictive hypotheses in his proof
of the group completion property. In particular, he assumes that X is a topological monoid and
that π0(X) contains a cofinal free abelian monoid.

5They are part of the h-model structure on GU , as in [37] nonequivariantly.
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H gives a cofibration. Moreover, just as nonequivariantly, a pushout of a map of
G-spaces along a G-cofibration is a G-cofibration.

The Segal and operadic infinite loop space machines are both constructed using
geometric realizations of simplicial G-spaces X q. Such realizations are only well-
behaved when X q is Reedy cofibrant.

Definition 1.8. Let X q be a simplicial G-space with G-space of n-simplices Xn.
The nth latching space of X is given by

LnX =

n−1⋃

i=0

si(Xn−1).

It is a G-space, and the inclusion LnX −→ Xn is a G-map. We say that X q is
Reedy cofibrant if this map is a G-cofibration for each n.

With different nomenclature, this concept was studied nonequivariantly in the
early 1970’s (e.g. [27, §11], [28, Appendix], [51, Appendix A]). We will use the
following standard results.

Lemma 1.9. A simplicial G-space X q is Reedy cofibrant if all degeneracy operators
si are G-cofibrations.

Proof. The nonequivariant statement is proven by an inductive application of Lil-
lig’s union theorem stating that the union of cofibrations is a cofibration [23] (or
[27, Lemma A.6]). The proof can be found in [51, proof of A.5] or [22, proof of
2.4.(b)]. The equivariant proof is the same, using the equivariant version of Lillig’s
theorem, which is a particular case of [7, Theorem A.2.7]. �

The converse to Lemma 1.9 is proved in [45, Proposition 4.11], but we shall not
use it.

Theorem 1.10. Let f q: X q−→ Y q be a map of Reedy cofibrant simplicial G-spaces
such that each fn is a weak G-equivalence. Then the realization |f q| : |X q| −→ |Y q|
is a weak G-equivalence.

Proof. Nonequivariantly this is in [28, Theorem A.4], and the equivariant version
follows by application of the nonequivariant case to fixed point spaces, noting that
geometric realization commutes with taking fixed points. �

The following result is well-known, but since we could not find a proof in the
published literature, we provide one in §10.6

Theorem 1.11. Let f q: X q−→ Y q be a map of Reedy cofibrant simplicial G-spaces
such that each fn is a G-cofibration. Then the realization |f q| : |X q| −→ |Y q| is a
G-cofibration.

Remark 1.12. Without exception, every simplicial G-space used in this paper is
Reedy cofibrant. In each case, we can check from the definitions and the fact that we
are working with nondegenerately based G-spaces that all si are G-cofibrations. For
the examples appearing in the Segal machine, the verifications are straightforward.
For the examples appearing in the operadic machine, the verifications follow those
in [27, Proposition A.10] and elaborations of the arguments there.

6We were inspired by [45], an unpublished masters thesis, which gives a detailed exposition of
simplicial spaces. However, its statement of Theorem 1.11 is missing a necessary hypothesis.
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1.3. Categorical preliminaries and basepoints. Some familiarity with enriched
category theory, especially in equivariant contexts, may be helpful. A more thor-
ough treatment of the double enrichment present here is given in [17]. We need
some general definitions that start with a closed symmetric monoidal category V
with unit object U and product denoted by ⊗. Closed means that we have internal
function objects V (V,W ) in V giving an adjunction

V (X ⊗ Y, Z) ∼= V (X,V (Y, Z))

in V . We assume that V is complete and cocomplete.
A V -category E is a category enriched in V . This means that for each pair (m,n)

of objects of E there is an object E (m,n) of V and there are unit and composition
maps I : U −→ E (m,m) and C : E (n, p) ⊗ E (m,n) −→ E (m, p) satisfying the
identity and associativity axioms. It would be more categorically precise to write
E (m,n), saving E (m,n) for the underlying set of morphismsm −→ n. A V -functor
F : E −→ Q between V -categories is a functor enriched in V . This means that for
each pair (m,n), there is a map

F : E (m,n) −→ Q(F (m), F (n))

in V , and these maps are compatible with the unit and composition of E and Q.
A V -transformation η : F −→ F ′ is given by maps ηm : U −→ Q(F (m), F ′(m)) in
V such that the evident naturality diagram commutes in V .

E (m,n)
F //

F ′

��

Q(F (m), F (n))

(ηn)∗

��
Q(F ′(m), F ′(n))

(ηm)∗
// Q(F (m), F ′(n))

We are especially interested in the cases V = T and V = GT . In this paper,
topologicalG-categories are understood to mean categories enriched in GT .7 When
we enrich in spaces, the hom set is obtained from the hom space just by forgetting
the topology, and we omit the underline. Thus when thinking of enrichment in T ,
we write T (X,Y ) for the based space of based maps X −→ Y when there is no
G-action in sight and we write GT (X,Y ) for the based space of based G-maps
X −→ Y when X and Y are G-spaces.

We previously defined TG to be the category of based G-spaces and nonequiv-
ariant maps, with G acting by conjugation on the hom spaces TG(X,Y ). From the
point of view of enriched category theory, TG just gives another name for the hom
objects that give the enrichment. That is,

GT (X,Y ) = TG(X,Y ),

and similarly for U . We speak in general of GT -categories, but we distinguish
notationally by writing GT -functors as X : E −→ GT when G acts trivially on E
and X : E −→ TG in general. In the first case, we are enriching just in T , using
spaces of G-maps, but this is a G-trivial special case of equivariant enrichment.

There is considerable confusion in the literature concerning the handling of base-
points. The category T has two symmetric monoidal products, ∧ with unit S0 and
× with unit ∗. When enriching in T , we must use ∧ since we must use the closed
structure given by the spaces F (X,Y ) of based maps, with basepoint given by

7In the sequels [15, 16], we work more generally with categories internal to GU .
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X → ∗ → Y . However, we sometimes use the forgetful functors T −→ U and
GT −→ GU to forget basepoints in our enrichments, and implicitly we are then
thinking about ×.

In all variants and generalizations of the Segal machine, we start with a category
E enriched over T or GT . It has a zero object 0, so that there are unique maps
0→ n and n→ 0 for every object n ∈ E . Then E (n, 0) and E (0, n) are each a point
and the map m→ 0→ n is the basepoint of E (m,n), which must be nondegenerate
to have the cited enrichment. We are concerned with GT -functors defined on E ;
by neglect of G-action, they are also T -functors. The following trivial observation
has been overlooked since the start of this subject.

Lemma 1.13. For any T -functor X : E −→ T , X(0) = ∗.

Proof. The unique map 0 → 0 in E (0, 0) is both the basepoint and the identity;
X : E (0, 0) −→ T (X(0), X(0)) must send it to both the trivial map X(0) −→ X(0)
that sends all points to the basepoint and the identity map. This can only happen
if X(0) is a point. �

Remark 1.14. For a GU -category J and a GT -category Q, we can add disjoint
basepoints to the hom objects of J to form a GT -category J+ or we can forget
basepoints to regard Q as a GU -category UQ. Via the adjunction betwen (−)+
and U, GU -functors J −→ UQ can be identified with GT -functors J+ −→ Q.

Remark 1.15. Let E be a GT -category with a zero object. A GU -functor
X : UE −→ UG is said to be reduced if X(0) is a point. If X is reduced the
map X(0) −→ X(n) induced by 0 −→ n gives each X(n) a basepoint, and com-
position preserves basepoints. Moreover, if these basepoints are nondegenerate, X
will give a T -functor E −→ TG, as X then sends the zero map m→ 0→ n to the
trivial map X(m)→ ∗ = X(0)→ X(n).

Let E be a GT -category with a zero object 0, and let X and Y be respectively
covariant and contravariant GT -functors E −→ TG. Then the tensor product of
functors Y ⊗E X is defined as the coequalizer of the diagram

∨

m,n

Yn ∧ E (m,n) ∧Xm
//
//
∨

n

Yn ∧Xn,

where the arrows are given by the action of E on X and on Y , respectively.
We obtain GU -functors UX , UY : UE −→ UG by forgetting basepoints. The

tensor product of functors UY ⊗UE UX is the coequalizer of the diagram
∐

m,n

Yn × E (m,n)×Xm
//
//
∐

n

Yn ×Xn.

The following result shows that the difference between these two constructions
is only apparent. Later on, we shall sometimes use wedges and smash products and
sometimes instead use disjoint unions and products, whichever seems convenient.

Lemma 1.16. With E , X, and Y as above, there is a natural isomorphism

Y ⊗E X ∼= UY ⊗UE UX.

Proof. We will show that the quotient of
∐
n Yn × Xn given by the coequalizer

encodes the required basepoint identifications. Let (y, ∗n) ∈ Yn × Xn. As noted
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above, the basepoint in Xn is given by ∗n = (00,n)∗(∗0), where ∗0 is the unique
point in X0 and 00,n is the unique map 0 −→ n in E . Then

(y, ∗n) = (y, (00,n)∗(∗0)) ∼ (0∗0,n(y), ∗0) = (∗0, ∗0),

the last equation following from the fact that Y0 is a singleton. A similar argument
shows that (∗n, x) ∼ (∗0, ∗0). �

1.4. Spectrum level preliminaries.

Definition 1.17. A naive G-spectrum, which we prefer to call a G-prespectrum,
is a sequence of based G-spaces {Tn}n≥0 and based G-maps σn : ΣTn −→ Tn+1.
It is a naive Ω-G-spectrum if the adjoint maps σ̃n : Tn −→ ΩTn+1 are weak G-
equivalences. It is a positive Ω-G-spectrum if the σ̃n are weak G-equivalences for
n ≥ 1. We let GP denote the category of G-prespectra. We call zeroth spaces T0
of naive Ω-G-spectra naive infinite loop G-spaces.

When we restrict to compact Lie groups, our preferred category of (genuine)
G-spectra will be the category GS of orthogonal G-spectra. Orthogonal G-spectra
and their model structures are studied in [24], to which we refer the reader for
details and discussion of the following definition. We use Remark 1.14.

Definition 1.18. Let G be a compact Lie group and let IG be the GU -category of
finite dimensional real G-inner product spaces and linear isometric isomorphisms,
with G acting on morphism spaces by conjugation. Note that IG is symmetric
monoidal under ⊕. An IG-G-space is a GU -functor IG −→ TG or, equivalently
by Remark 1.14, a GT -functor IG+ −→ TG. The sphere IG-G-space S is given
by S(V ) = SV . The external smash product

X ⊼ Y : IG ×IG −→ TG

of IG-G-spaces X and Y is the GU -functor given by

(X ⊼ Y )(V,W ) = X(V ) ∧ Y (W ).

A (genuine orthogonal)G-spectrum is an IG-G-space E : IG −→ TG together with
a GU -transformation E ⊼ S −→ E ◦ ⊕ between GU -functors IG × IG −→ TG.
Thus we have G-spaces E(V ), morphism G-maps

IG(V, V
′) −→ UG(E(V ), E(V ′))

and structure G-maps

σ : E(V ) ∧ SW −→ E(V ⊕W ).

natural in V and W . Note in particular that IG(V, V ) is the orthogonal group
O(V ), with G acting by conjugation, so that E(V ) is both a G-space and an O(V )-
space and σ is a map of both G-spaces and O(V ) × O(W )-spaces. A G-spectrum
E is an Ω-G-spectrum if the adjoint maps

σ̃ : E(V ) −→ ΩWE(V ⊕W )

are weak G-equivalences. It is a positive Ω-G-spectrum if these maps are weak
G-equivalences when V G 6= 0. We let GS denote the category of G-spectra. We
call zeroth spaces E(0) of Ω-G-spectra genuine infinite loop G-spaces, or simply
infinite loop G-spaces.
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The Ω-G-spectra are the fibrant objects in the stable model structure on GS
and the positive Ω-G spectra are the fibrant objects in the positive stable model
structure. The identity functor is a left Quillen equivalence from the stable model
structure to the positive stable model structure. We have the following change of
universe functor, which is a right Quillen adjoint.

Definition 1.19. The forgetful functor i∗ : GS −→ GP sends a G-spectrum X
to the (naive) G-prespectrum with nth space Xn = X(Rn).

Remark 1.20. If V G 6= 0, we can write V = R⊕W and thus SV = S1 ∧ SW and
ΩV = ΩΩW . Then σ̃ : X0 −→ ΩVX(V ) factors as the composite

X0
σ̃ //ΩX1

Ωσ̃ //ΩΩWX(R⊕W ) = ΩVX(V ).

If X is a positive Ω-G-spectrum, then the second arrow is a weak G-equivalence.
Therefore, if X0 −→ ΩX1 is a group completion, then so is X0 −→ ΩVX(V ) for all
V such that V G 6= 0.

1.5. Equivariant infinite loop space machines. In this section, we give a very
quick overview of equivariant infinite loop space machines. The details are worked
out in the next few sections.

Nonequivariantly, there are several recognition principles that one can apply to
spaces to determine whether they become infinite loop spaces after group comple-
tion. One is the operadic approach developed by the first author in [27] and another
is the approach using Γ-spaces developed by Segal in [51]. The opposite category
of Segal’s Γ is the category F of finite sets, and we shall call Γ-spaces F -spaces.
Infinite loop space machines take some appropriate input Y , part of which is an
underlying Hopf space X , and construct from it an Ω-spectrum EY together with a
group completion X −→ E0Y . This form was taken as the definition of an infinite
loop space machine in [38]. If G acts on the input data Y through maps that are
compatible with the structure, then both the operadic machine and the Segal ma-
chine generalize immediately to give infinite loop space machines landing in naive
Ω-G-spectra.

The genuine equivariant theory is much harder since genuine infinite loop G-
spaces have deloopings not only with respect to all spheres Sn, but also with respect
to all representation spheres SV for all finite dimensional G-representations V . For
finite G, the genuine equivariant generalization of the operadic approach was first
worked out in [10] and is worked out more fully in [12]. The genuine equivariant
version of Segal’s approach was first worked out in [54] and is worked out more fully
here. Both machines are generalized here to forms which accept the same input,
and then they are proven to give equivalent output when fed the same input.

When G is a finite group, genuine equivariant infinite loop space machines EG

take appropriate input Y with underlying Hopf G-spaces X to genuine Ω-G-spectra
EY . They restrict to give underlying naive G-spectra, and the group completion
X −→ E0Y is seen by the underlying naive G-spectrum. As we shall see, the
machines as they appear most naturally do not take precisely this form, and we
then have to tweak them into the form just specified. There are general features
common to any equivariant infinite loop space machine, and we refer the reader
to [12, §2.3] for a discussion. For example, the group completion property directly
implies that any machine commutes with products and with passage to fixed points.
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2. The simplicial and conceptual versions of the Segal machine

There are several variants of the Segal infinite loop space machine, as originally
developed by Segal [51] and Woolfson [59]. Later sources include Bousfield and
Friedlander [8], working simplicially, and, much later, Mandell, May, Schwede, and
Shipley [25]. Equivariant versions appear in Shimada and Shimakawa [53, 54, 55]
and, later, Blumberg [5].

We here give a simplicial variant8 and two equivalent conceptual variants, one
starting from finite sets and the other starting from finite G-sets. Of course, the
use of finite G-sets is mainly of interest when G is finite, but it applies in general.
We defer consideration of our preferred homotopical variant to the next section.

The simplicial variant is the equivariant version of Segal’s original definition
[51]. As far as we know, his paper is the only source in the literature that actually
proves the crucial group completion property, and his proof makes essential use of
his original simplicial definition.9 This version does not directly generalize to give
genuine G-spectra when G is a compact Lie group or even a finite group, and it
does not appear in the equivariant literature. Therefore, even at this late date,
there is no published account of the equivariant Segal machine that proves the
group completion property. Just as nonequivariantly, this property is central to the
applications, especially to algebraic K-theory.

In fact, we do not know a direct proof of the group completion property starting
from the conceptual or homotopical variants treated in [8, 25, 53, 59] and, equivari-
antly, [5, 54]. Rather, we derive it for the conceptual variants from their equivalence
with the simplicial variant. To give the group completion property equivariantly,
to differentiate the theory for varying types of groups, and to prepare for a com-
parison with the operadic machine, we give a fully detailed exposition of the Segal
machine in all its forms. This may also be helpful to the modern reader since even
nonequivariantly the original sources make for hard reading and are sketchy in some
essential respects.

2.1. Definitions: the input of the Segal machine.

Definition 2.1. Let F be the opposite of Segal’s category Γ.10 It is the category
of finite based sets n = {0, 1, . . . , n} with 0 as basepoint. The morphisms are the
based maps, and the unique morphism that factors through 0 is a nondegenerate
basepoint for F (m,n). Let Π ⊂ F be the subcategory with the same objects
and those morphisms φ : m −→ n such that φ−1(j) has at most one element for
1 ≤ j ≤ n; these are composites of projections, injections, and permutations. Let
Σ ⊂ Π be the subgroupoid with the same objects and the elements of the symmetric
groups Σn, regarded as based isomorphisms n −→ n, as morphisms.

Since the composition in F factors through the smash product, we can view F
as a category enriched in T , with the discrete topology on the based hom sets.

Definition 2.2. An F -space is a T -functor X : F −→ T , written n 7→ Xn; Π-
spaces are defined similarly. A map of F -spaces or of Π-spaces is a T -natural
transformation.

8We are referring to simplicial spaces, not simplicial sets, here.
9His proof imposes some unnecessary restrictive hypotheses that generally hold in practice.
10As in [25] and elsewhere, we use the notation F to avoid confusion between Γ and Γop = F .
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Definition 2.3. The Segal maps δi : n −→ 1 in F send i to 1 and j to 0 for
j 6= i. These maps are all in Π. For an F -space X , the Segal map δ : Xn −→ Xn

1

has coordinates induced by the δi. If n = 0, we interpret δ as the terminal map
X0 −→ ∗. The “multiplication map” φn : n −→ 1, which is not in Π, sends j to 1
for 1 ≤ j ≤ n. It induces an “n-fold multiplication” Xn −→ X1 on an F -space X .

Definition 2.4. An F -G-space is a T -functor X : F −→ GT ; Π-G-spaces are
defined similarly. A map of F -G-spaces or Π-G-spaces is a GT -natural transfor-
mation. Since Σ ⊂ Π ⊂ F , Xn and Xn

1 are (G× Σn)-spaces and δ : Xn −→ Xn
1 is

a map of G× Σn-spaces.

Remark 2.5. It is usual, starting in [51, Definition 1.2], to define an F -space to
be a (non-enriched) functor F −→ T , requiring X0 to be contractible, and to say
that X is reduced if X0 is a point. This led to mistakes and confusion, as explained
in [35]. As we observed in Lemma 1.13, our requirement that X be a T -functor
forces X0 to be a point for trivial reasons; compare Remark 1.15.

Recall from Definition 1.2 that for a homomorphism α : G −→ Σn, Λα is the
subgroup {(g, α(g))|g ∈ G} of G× Σn.

Definition 2.6. LetX,Y be Π-G-spaces, and f : X −→ Y be a map of Π-G-spaces.

(i) The Π-space X is F•-special if δ : Xn −→ Xn
1 is a weak Λα-equivalence for all

n ≥ 0 and all homomorphisms α : G −→ Σn (where Σ0 = {e} = Σ1).
(ii) The Π-space X is special if each δ : Xn −→ Xn

1 is a weak G-equivalence.
(iii) The map f is an F•-level equivalence if each fn : Xn −→ Yn is a weak Λα-

equivalence for all homomorphisms α : G −→ Σn.
(iv) The map f is a level G-equivalence if each fn : Xn −→ Yn is a weak G-

equivalence.

An F -G-space X is F•-special or special if its underlying Π-G-space is so. A
special F -G-space X is grouplike or, synonymously, very special if π0(X

H
1 ) is a

group (necessarily abelian) under the induced product for each H ⊂ G. A map
f : X −→ Y of F -G-spaces is an F•-level equivalence or level equivalence if it is so
as a map of Π-G-spaces.

When there are no non-trivial homomorphisms G −→ Σn, for example when G
is connected, a Π-G-space is F•-special if and only if it is special. In fact, the notion
of an F•-special Π-G-space is only of substantial interest when G is finite. However,
§2.4 will give motivation that applies in general.

We need several technical results about these notions, the first of which is the
key to the following two.

Lemma 2.7. Let X be a G-space, and let Λ = {(h, α(h)) | h ∈ H} ⊂ G × Σn,
where H ⊂ G and α : H −→ Σn is a homomorphism. Then there is a natural
homeomorphism

(Xn)Λ ∼=
∏

XKi ,

where the product is taken over the orbits of the H-set (n, α) and the Ki ⊂ H are
the stabilizers of chosen elements in the corresponding orbit.

Proof. The Λ-action on Xn is given by

(h, α(h))(x1, . . . , xn) = (hxα(h−1)(1), . . . , hxα(h−1)(n)).
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The partition of n into H-orbits decomposes n as the wedge of finite subsets, each
with a transitive set of shuffled indices, so it is enough to consider each H-orbit
separately. Thus we may as well assume that the H-action on (n, α) is transitive.
Note that this reduction is natural in X .

Let K ⊂ H be the stabilizer of 1 ∈ n. We claim that projection onto the first
coordinate induces the required natural homeomorphism π : (Xn)Λ −→ XK . If
(x1, . . . , xn) ∈ Xn is a Λ-fixed point, then x1 is a K-fixed point since

kx1 = kxα(k−1)(1) = x1

for k ∈ K, the second equality holding because (x1, . . . , xn) is fixed by Λ.
To construct π−1 : XK −→ (Xn)Λ, for 1 ≤ j ≤ n choose hj ∈ H such that

α(hj)(1) = j. This choice amounts to choosing a system of coset representatives for
H/K, and the map j 7→ [hj ] gives a bijection of H-sets between (n, α) and H/K.
We claim that the map : X −→ Xn that sends x to the n-tuple (h1x, . . . , hnx)
restricts to the required inverse π−1. This map is clearly continuous. We first show
that if x ∈ XK , then (h1x, . . . , hnx) is fixed by Λ. Let h ∈ H and note that

α(hhα(h−1)(j))(1) = α(h)(α(hα(h−1)(j))(1)) = α(h)(α(h−1)(j)) = j.

In view of our bijection between (n, α) and H/K, there exists k ∈ K such that
hhα(h−1)(j) = hjk. The jth coordinate of (h, α(h)) · (h1x, . . . , hnx) is given by

hhα(h−1)(j)x = hjkx = hjx,

the second equality holding because x ∈ XK . Thus (h1x, . . . , hnx) is fixed by Λ.
Since K is the stabilizer of 1, h1 ∈ K. Thus the first coordinate of (h1x, . . . , hnx)

is x itself, and π ◦ π−1 = id. If (x1, . . . , xn) is fixed by Λ, then xj = hjx1 for
all j. By the definition of hj , the jth coordinate of (hj , α(hj)) · (x1, . . . , xn) is
hjxα(h−1

j )(j) = hjx1. Since(x1, . . . , xn) is a Λ-fixed point, this shows that xj = hjx1,

hence π−1 ◦ π = id. �

Definition 2.8. For a based G-space X , let RX denote the Π-G-space with nth
G-space Xn. The Π-space structure is given by basepoint inclusions, projections,
and permutations.

Lemma 2.9. If f : X −→ Y is a weak equivalence of based G-spaces, then the
induced map Rf : RX −→ RY is an F•-level equivalence of Π-G-spaces.

Proof. This is immediate from Lemma 2.7. �

Lemma 2.10. Let f : X −→ Y be an F•-level equivalence of Π-G-spaces. Then X
is F•-special if and only if Y is F•-special. Similarly, if f is a level G-equivalence,
then X is special if and only if Y is special.

Proof. Consider the commutative diagram

Xn
fn //

δ

��

Yn

δ

��
Xn

1 fn
1

// Y n1 .

For the first statement, the horizontal arrows are weak Λα-equivalences by assump-
tion and Lemma 2.9, so one of the vertical arrows is a weak Λα-equivalence if and
only if the other one is. The proof of the second statement is similar but simpler. �
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We defined F•-special Π-G-spaces in terms of those subgroups Λ in the family Fn

(see Definition 1.2) which are defined by homomorphisms α : G −→ Σn, ignoring
those which are defined by homomorphisms β : H −→ Σn for proper subgroups H
of G. The following result shows that when G is finite we obtain the same notion
if we instead use all of the groups in Fn. The result implicitly relates F•-special
Π-G-spaces to equivariant covering space theory and relates F•-special F -G-spaces
to the operadic approach to equivariant infinite loop space theory. It therefore
explains and justifies the terms F•-special and F•-level equivalence.

Lemma 2.11. Assume that G is finite. Then a Π-G-space X is F•-special if and
only if the Segal maps δ : Xn −→ Xn

1 are weak Fn-equivalences for all n ≥ 0.
Similarly, a map f : X −→ Y of Π-G-spaces is an F•-level equivalence if and only
if fn is a weak Fn-equivalence for all n ≥ 0.

Proof. If δ : Xn −→ Xn
1 is a weak Fn-equivalence, then it is a weak Λβ-equivalence

for all H ⊂ G and all homomorphisms β : H −→ Σn. Restricting to those homo-
morphisms with domain G, this condition for all n implies that X is F•-special.
Conversely, assume that X is F•-special. We must prove that each δ is a weak
Fn-equivalence.

Thus consider a subgroup Λβ ⊂ G × Σn, β : H −→ Σn. We will show that
δ : Xn −→ Xn

1 is a weak Λβ-equivalence by displaying it as a retract of a suitable
weak equivalence. The homomorphism β gives rise to an H-set B = (n, β). Embed
B as a subset of the G-set A = G+ ∧H B and observe that, as an H-set, A splits as
B ∨C, where C = (A \B)+. Let p = |A \B| and q = n+ p. Use the given ordering
of B and an ordering of C to identify A with (q, α). Here q = n ∨ p and α is a
homomorphism G −→ Σq which when restricted to H is of the form β ∨ γ. That
is, (q, α|H) = (n, β) ∨ (p, γ|H). Let

ι : (n, β) −→ (q, α|H) and π : (q, α|H) −→ (n, β)

be the inclusion that sends i to i for 0 ≤ i ≤ n and the projection that sends i to i
for 0 ≤ i ≤ n and i to 0 for i > n. Then the following diagram displays a retraction.
Its bottom arrows are the evident inclusion and projection.

Xn

δ

��

ι∗ // Xq

δ

��

π∗ // Xn

δ

��
Xn

1
// Xq

1
// Xn

1

Since X is F•-special, the middle vertical arrow δ is a weak Λα-equivalence and
thus a weak Λα|H-equivalence. Therefore the left arrow δ is a weak Λβ-equivalence.

Similarly, if f : X −→ Y is an F•-level equivalence, we have a retract diagram

Xn

fn

��

ι∗ // Xq

fq

��

π∗ // Xn

fn

��
Yn ι∗

// Yq π∗

// Yn

in which fq is a weak Λα-equivalence and therefore fn is a weak Λβ-equivalence. �
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2.2. The simplicial version of the Segal machine. Let ∆ be the usual sim-
plicial category. A simplicial object is a contravariant functor defined on ∆, and a
cosimplicial object is a covariant functor. Regarding F as a full subcategory of the
category of based sets, we may regard the simplicial circle S1

s = ∆[1]/∂∆[1] as a
contravariant functor F : ∆op −→ F . By pullback along F , an F -G-space X can
be viewed as a simplicial G-space, and it has a geometric realization |X | = |X ◦F |;
we use the standard realization, taking degeneracies into account. The evident G-
map X1 × I −→ |X | factors through a natural G-map ΣX1 −→ |X | with adjoint
η : X1 −→ Ω|X1|. We shall give the proof of the following result in §9.2. It is
implicit in many early sources; we will follow [40, §15].

Proposition 2.12. If X is a special F -G-space, then the G-map η : X1 −→ Ω|X |
is a group completion of Hopf G-spaces.

From here, the Segal machine in its first avatar is constructed as follows [51, §1].
Working equivariantly, we use a slight reformulation that is given in [38].11

Remark 2.13. We have the smash product ∧ : F ×F −→ F . It sends (m,n) to
mn and is strictly associative and unital using lexicographic ordering. The unit is
1. We also have the wedge sum ∨ : F ×F −→ F which sends (m,n) to m+ n.
It is also strictly associative and unital, with unit 0, and F is bipermutative under
this sum and product.

Definition 2.14. Let X be a special F -G-space. We have the functor

X ◦ ∧ : F ×F −→ GT .

For each q, let X [q] be the F -G-space that sends p to X(p ∧ q); thus X [0] = ∗
and X [1] = X . Following Segal, define the classifying F -G-space BX to be the
F -G-space whose qth G-space is the realization |X [q]|. Iterating, with B0X = X ,
define Bn+1X = B(BnX) for n ≥ 0. The F -G-spaces BnX for n ≥ 1 are again
special; since (BnX)1 is G-connected, they are also grouplike.

Notation 2.15. Let SNGX denote the resulting naiveG-prespectrum with nth space
(SNGX)n = (BnX)1 for n ≥ 0. Thus its 0th G-space is X1 and, by Proposition 2.12,
its structure map X1 −→ Ω(SNGX)1 is a group completion and the structure maps
(SNGX)n −→ Ω(SNGX)n+1 for n ≥ 1 are weak G-equivalences.

With this definition, SNGX is a positive Ω-G-spectrum. Varying the definition
by taking the 0th G-space to be Ω(BX)1, the nonequivariant Segal machine plays
a special role. As proven in [38], any infinite loop space machine that takes F -
spaces, or appropriate more general input, to Ω-spectra and has a natural group
completion map from X1 to its zeroth space is equivalent to the Segal machine. The
proof makes essential use of the fact that the Segal machine produces FF -spaces,
namely functors F −→ FT .

We emphasize that this construction of the Segal machine works for any topo-
logical group G. Moreover, the uniqueness proof for infinite loop space machines
in [38] works verbatim to compare any other infinite loop space machine landing
in naive G-spectra to the Segal machine. However, even when G is finite, this con-
struction does not work to construct genuine G-spectra from F -G-spaces: there is
no evident way to build in deloopings by non-trivial representations of G.

11Perversely, [38] takes ∆ to be the opposite of the category every other reference calls ∆.
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2.3. The conceptual version of the Segal machine. Returning to F -G-spaces,
the more conceptual variants of the nonequivariant Segal machine generalize to give
genuine G-spectra when G is compact Lie. These variants do not make use of the
functor F : ∆op −→ F . That is, underlying simplicial G-spaces play no role in
their construction. We follow the nonequivariant exposition of [25]; [5] gives some
relevant equivariant details. While [5] dealt with compact Lie groups, much of it
applies equally well to general topological groups G. We introduce notation for the
categories of enriched functors that we shall be using. Recall §1.3.

Notation 2.16. For a (small) GT -category D , let Fun(D ,TG) denote the category
of GT -functors D −→ TG and GT -natural transformations between them. When
G acts trivially on D , as is the case of F , a GT -functor defined on D take values
on morphisms in the fixed point spaces TG(X,Y )G = GT (X,Y ) of based G-maps
X −→ Y . We therefore use the alternative notation Fun(D , GT ) in that case.

Definition 2.17. A WG-G-space Y is a GT -functor WG −→ TG. A map of WG-G-
spaces is a GT -natural transformation between them. Regarding F as a G-trivial
G-category, it is both a full subcategory of GW and a G-trivial full G-subcategory
of WG. We have the functor categories

Fun(F , GT ) = Fun(F ,TG)

of F -G-spaces and Fun(WG,TG) of WG-G-spaces. The inclusion F ⊂ WG induces
a forgetful functor

U : Fun(WG,TG) −→ Fun(F ,TG).

We say that a WG-G-space Y is F•-special, special, or grouplike if the F -G-space
UY is so.

As a matter of elementary category theory (see e.g. [25]), the functor U has a
left adjoint prolongation functor

P : Fun(F ,TG) −→ Fun(WG,TG).

The study of model structures on WG-G-spaces given in [5] when G is a compact
Lie group applies verbatim when G is any topological group.

Remark 2.18. Let Y be any WG-G-space, such as Y = PX for an F -G-space X .
For G-spaces A,B ∈ GW , the adjoint B −→ WG(A,A ∧B) of the identity map on
A ∧B can be composed with Y to obtain a G-map

B −→ TG(Y (A), Y (A ∧B)).

Its adjoint is a G-map

(2.19) Y (A) ∧B −→ Y (A ∧B).

Letting A = Sn and B = S1 with trivial G-action, these maps give the structure
maps

ΣY (Sn) −→ Y (Sn+1)

of a naive G-prespectrum UGPY .
When G is a compact Lie group we can define an orthogonal G-spectrum given

at level V by Y (SV ). The composites

IG(V, V
′) //WG(S

V , SV
′

)
Y //TG(Y (SV ), Y (SV

′

))
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of Y and the map induced by one-point compactification of maps V −→ V give
a GU -functor IG −→ TG or, equivalently and more sensibly here, a GT -functor
IG+ −→ TG. Just as in the nonequivariant case [25], letting A = SV and B = SW

in (2.19) for representations V and W , we obtain the structure G-maps

ΣWY (SV ) −→ Y (SV⊕W )

of an orthogonal G-spectrum UGSY such that i∗UGSY = UGPY .

More generally, as in [25], we have forgetful functors

UC : Fun(WG,TG) −→ C ,

where C can be the category of G-prespectra, symmetric G-spectra, or orthogonal
G-spectra. Of course, nonequivariantly, Segal took C to be prespectra. We choose
naive G-prespectra, GP, for general topological groups G and genuine orthogonal
G-spectra, GS , for compact Lie groups G.

Definition 2.20. For a general topological group G, the conceptual Segal machine
on F -G-spaces is the composite

UGP ◦ P : Fun(F , GT ) = Fun(F ,TG) −→ GP.

For compact Lie groups G, the conceptual Segal machine on F -G-spaces is the
analogous composite

UGS ◦ P : Fun(F , GT ) −→ GS .

Its composite with i∗ : GS −→ GP is UGP ◦ P.

The functor P is a left Kan extension that is best viewed as a tensor product
of functors. For A ∈ GW , we have the contravariant GT -functor A• : F −→
GT . Conceptually, it is the represented functor that sends n to the function space
WG(n, A) ∼= An with its induced action by G. By definition,

(2.21) (PX)(A) = A• ⊗F X.

Taking A = n, the unit η : X −→ UPX of the adjunction sends x ∈ Xn to (idn, x);
by Yoneda, η is a natural isomorphism. For a WG-G-space Y : WG −→ TG, the
counit ε : PUY −→ Y is given on A ∈ GW by the composites

WG(n, A) ∧ Y (n)
Y ∧id //TG(Y (n), Y (A)) ∧ Y (n)

eval //Y (A).

For an F -G-space X : F −→ GT , we write Xn for X(n) as before, but we
follow the usual convention of abbreviating notation by writing (PX)(A) = X(A)
for general A ∈ GW . The following result is a variant of Segal’s [51, Proposition
3.2 and Lemma 3.7].

Proposition 2.22. The naive G-prespectrum UGPPX is naturally isomorphic to
the G-prespectrum SNGX (of Notation 2.15). Thus, if X is special, then UGPPX is
a positive Ω-G-prespectrum with bottom structural map a group completion of X1.

Segal’s proof is very briefly sketched in [51, §3], in different language. For the
reader’s convenience, we give a more complete argument in §9.1. The following
result is the key observation, and it is the crucial point for us. Via Proposition 2.12,
it makes the group completion property for UGPPX transparent.

Proposition 2.23. For F -G-spaces X, there is a natural G-homeomorphism

|X | −→ (S1)• ⊗F X = (PX)(S1).
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2.4. A factorization of the conceptual Segal machine. The previous sections
apply to general topological groups. We continue in that generality. The results
of this section are illuminating in general, but they are only really useful when
G is finite. Here we consider the G-category FG of finite based G-sets rather
than just the category F of finite based sets. Use of FG in tandem with F is
essential to our work. In practice, input arises most often as F -G-spaces but, by
a result of Shimakawa [55] that we shall reprove with different details,12 these are
interchangeable with FG-G-spaces.

Definition 2.24. Let FG be the G-category of finite based G-sets and all based
functions, with G acting by conjugation on function sets. For convenience and
precision, we restrict the objects of FG to be the finite G-sets A = (n, α), as
in Notation 1.4. Let ΠG be the G-subcategory with the same objects and those
morphisms φ : (m, α) −→ (n, β) such that φ−1(j) has at most one element for
1 ≤ j ≤ n. We obtain inclusions F ⊂ FG and Π ⊂ ΠG by restricting to the trivial
homomorphisms εn : G −→ Σn.

As with F , we view FG as a category enriched in GT , with the discrete topology
on the based hom sets of maps, on which G acts by conjugation. The basepoint of
FG((m, α), (n, β)) is the unique map that factors through 0. When G is finite, a
finite G-set is evidently a G-CW complex and for a general G we can enlarge WG

if necessary to obtain an inclusion FG ⊂ WG.

Definition 2.25. An FG-G-space Y is a GT -functor Y : FG −→ TG; a ΠG-G-
space Y is a GT -functor Y : ΠG −→ TG. Morphisms are GT -natural transforma-
tions. We write Y (A) for the value of Y on A = (n, α), writing Yn for the value of
Y on (n, εn). We let (Y n1 )α denote Y n1 with the G-action

g(y1, . . . , yn) = (gyα(g−1)(1), . . . , gyα(g−1)(n)).

It can be identified with the G-space TG(A, Y1).

Definition 2.26. For A = (n, α) and a ΠG-G-space Y , define a based G-map
ε : A ∧ A −→ 1 = S0 by the Kronecker δ function: (i, j) 7→ 1 if i = j and to 0 if
i 6= j. Its adjoint is a G-map A −→ FG(A,1). Composing with

Y : FG(A,1) −→ TG(Y (A), Y1)

and adjointing, we obtain a G-map ∂A : A∧Y (A) −→ Y1. Thus ∂A(j, y) = (δj)∗(y)
for 1 ≤ j ≤ n, where δj is induced by the jth projection (n, α) −→ (1, ε1). The
Segal map

δA : Y (A) −→ TG(A, Y1) ∼= (Y n1 )α

is the adjoint of ∂A; we usually abbreviate δA to δ. Note that δ is a G-map, although
it components δj are usually not.

Definition 2.27. A ΠG-G-space Y is special if the δA are weak G-equivalences
for all A = (n, α). A map f : Y −→ Z of ΠG-G-spaces is a level G-equivalence if
each f : Y (A) −→ Z(A) is a weak G-equivalence. We say that an FG-G-space is
special if its underlying ΠG-G-space is so and that a map of FG-G-spaces is a level
G-equivalence if its underlying map of ΠG-G-spaces is so.

12The starting point of [55] came from conversations during a long and mutually profitable
visit Shimakawa made to the first author.
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The inclusion F →֒ FG induces a restriction functor

U : Fun(FG,TG) −→ Fun(F , GT )

which has a left adjoint prolongation functor

P : Fun(F , GT ) −→ Fun(FG,TG).

The adjunction (P,U) of Definition 2.17 factors as the composite of the analogous
adjunctions given by the functors

Fun(F , GT )
P //Fun(FG,TG)

P //Fun(WG,TG)

Fun(WG,TG)
U //Fun(FG,TG)

U //Fun(F , GT ).

The units of these adjunctions are isomorphisms since the forgetful functors U are
induced by the full and faithful inclusions F →֒ FG and FG →֒ WG.

Notation 2.28. For A ∈ WG, we now write A• ambiguously for both the restriction
to FG ⊂ TG and the restriction to F ⊂ FG ⊂ TG of the represented functor
TG(−, A) : T op

G −→ TG.

Then the factorization of P as PP takes the explicit form

(2.29) A• ⊗F X ∼= A• ⊗FG
(FG ⊗F X) = A• ⊗FG

PX.

While our main interest is in FG-G-spaces and F -G-spaces, we will also use
the analogous forgetful and prolongation functors relating ΠG-G-spaces and Π-
G-spaces.

Observe that we have no analogue for ΠG-G-spaces (or for FG-G-spaces) of the
dichotomies between F•-special and special and between F•-level equivalences and
level G-equivalences that we had for Π-G-spaces (and thus for F -G-spaces). The
following result shows that the notions defined in Definition 2.27 for ΠG-G-spaces
correspond to the F•-notions for Π-G-spaces. That should help motivate the latter,
which may at first sight have seemed unnatural.

Theorem 2.30. The adjoint pairs of functors

Fun(Π, GT )
P //Fun(ΠG,TG)
U

oo

and

Fun(F , GT )
P //Fun(FG,TG)
U

oo

specify equivalences of categories. Moreover, the following statements hold.

(i) A ΠG-G-space Y is special if and only if the Π-G-space UY is F•-special.

(ii) A map f : Y −→ Z of ΠG-G-spaces is a level G-equivalence if and only if the
map Uf : UY −→ UZ of Π-G-spaces is an F•-level equivalence.

(iii) A Π-G-space X is F•-special if and only if the ΠG-G-space PX is special.

(iv) A map f of Π-G-spaces is an F•-level equivalence if and only if the map Pf
of ΠG-G-spaces is a level G-equivalence.

All of these statements remain true with with Π and ΠG replaced by F and FG.
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Proof. For a Π-G-space X and a finite G-set A = (n, α),

(PX)(A) = A• ⊗Π X,

where A• : Π −→ GT is the functor that sends m to ΠG(m, A). Recall that the
underlying set of ΠG(m, A) is just Π(m,n) with G-action induced by the action of
G on n given by α. The action of G on A•⊗ΠX is induced by the diagonal action.
For n ≥ 0, the unit

η : Xn −→ Π(−,n)⊗Π X

is the G-map given by η(x) = (idn, x). It is a G-homeomorphism with inverse given
by η−1(µ, x) = µ∗(x) for µ : m −→ n in Π and x ∈ Xm. Clearly η−1 is well-defined,
η−1η = id, and ηη−1 = id since (µ, x) ∼ (idn, µ∗x). Since η

−1 is inverse to a G-map,
it is a G-map.

We must show that the counit ε : PUY −→ Y is an isomorphism for a ΠG-G-
space Y . Again let A = (n, α) ∈ ΠG. Then

ε : (PUY )(A) = A• ⊗Π (UY ) −→ Y (A)

is the G-map given by ε(µ, y) = µ∗y for µ : m −→ A and y ∈ Ym, where µ∗ : Ym −→
Y (A). It is a G-homeomorphism with inverse given by ε−1(y) = (ι−1, ι∗y) for
y ∈ Y (A), where ι ∈ ΠG(A,n) is the morphism whose underlying function on n

is the identity. Clearly εε−1 = id, and ε−1ε = id since (µ, y) ∼ (ι−1, ι∗µ∗y). The
identification uses the morphism ι ◦µ in Π. Again, since ε−1 is inverse to a G-map,
it is a G-map. The proof with Π and ΠG replaced by F and FG is the same.

To prove (i) and (ii), we describe more explicitly how a ΠG-G-space Y is re-
constructed from its underlying Π-G-space. For a finite G-set A = (n, α), let Y αn
denote Yn with a new action ·α of G specified in terms of α and the original action
of G by g ·α y = α(g)∗(g · y). In effect, ε−1 identifies Y (A) with the G-space Y αn .

Consider Λα = {(g, α(g))}. Projection onto the first coordinate gives an isomor-
phism Λα −→ G. The Λα-action on Yn obtained by restriction of the action of
G× Σn is given by

(g, α(g)) · y = α(g)∗(g · y).

Thus it coincides with the G-action that we used to define Y αn . This immediately
implies (ii). Similarly, the Λα-action on Y n1 obtained by restriction of the action of
G× Σn given by the diagonal action of G and the permutation action of Σn is

g(y1, . . . , yn) = (gyα(g−1)(1), . . . , gyα(g−1)(n)).

Thus it coincides with the G-action that we used to define (Y n1 )α. Therefore ε−1

identifies the Segal G-map δ : Y (n, α) −→ (Y n1 )α with the Λα-map δ : Yn −→ Y n1 .
This immediately implies (i), and (iii) and (iv) follow formally from (i) and (ii)
since η : id −→ UP is an isomorphism.

Since statements (i)-(iv) for F -G-spaces and FG-G-spaces depend only on their
underlying Π-G-spaces and ΠG-G-spaces, they follow immediately. �

We record analogues for FG-G-spaces of Lemmas 2.9 and 2.10 for F -G-spaces.
While they could be proven directly, we just observe that the first follows immmedi-
ately from Theorem 2.30(iii), and the second follows as in the proof of Lemma 2.10.

Definition 2.31. For a based G-space X , let RGX denote the ΠG-G-space with
(n, α)th G-space (Xn)α. Conceptually, it is obtained by prolonging the Π-G-space
RX from Definition 2.8 to a ΠG-G-space.
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Lemma 2.32. If f : X −→ Y is a weak equivalence of based G-spaces, then the
induced map RGf : RGX −→ RGY is a level G-equivalence of ΠG-G-spaces.

Lemma 2.33. If f : X −→ Y is a level G-equivalence of ΠG-G-spaces, then X is
special if and only if Y is special.

The factorization of the Segal machine holds for any topological group G. Since
actions of G on finite G-sets factor through actions of π0(G), it is clear that WG-
G-spaces generally incorporate much more information than F -G-spaces do.

3. The homotopical version of the Segal machine

For the moment, we continue to work with a general topological group G. How-
ever, our interest is to understand the Segal machine homotopically when G is finite
or compact Lie. While UGSP(X) gives the most conceptually natural equivariant
version of the Segal machine on F -G-spaces X , it is by itself of negligible use since
the functor P does not enjoy good homotopical properties before some kind of ho-
motopical approximation of X . We define a naive homotopical Segal machine in
§3.2 and show its defects. Restricting to compact Lie groups, we define a genuine
homotopical Segal machine and summarize its homotopical properties in §3.3, de-
ferring the longer proofs to §9. In §3.4, we discuss the case of finite groups model
theoretically and contrast the case of compact Lie groups.

The homotopical version of the Segal machine is defined in terms of an appro-
priate enriched version of the two-sided categorical bar construction. We start in
§3.1 with a general discussion of this construction.

3.1. The categorical bar construction. We here define the variant of the bar
construction used in the homotopical Segal machine. We begin with some gen-
eral definitions that start with a closed symmetric monoidal category V and a
V -category E , as in §1.3. Let Y be a contravariant and X be a covariant V -functor
E −→ V . They are given by objects Yn and Xn in V and maps in V

Y : E (m,n) −→ V (Yn, Ym) and X : E (m,n) −→ V (Xm, Xn)

that are compatible with composition and identity. These have adjoint evaluation
maps

EY : E (m,n)⊗ Yn −→ Ym and EX : E (m,n)⊗Xm −→ Xn.

Associated to the triple (Y, E , X) we have a categorical two-sided bar construc-
tion B q(Y, E , X). It is a simplicial object in V . Its q-simplex object in V is the
coproduct

(3.1) Bq(Y, E , X) =
∐

(n0,...,nq)

Ynq
⊗ E (nq−1, nq)⊗ · · · ⊗ E (n0, n1)⊗Xn0 ,

where (n0, . . . , nq) runs over the (q + 1)-tuples of objects of E . Its faces di for
0 ≤ i ≤ q are induced by the evaluation maps of Y and X and by composition in
E , and its degeneracies si for 0 ≤ i ≤ q are induced by the unit maps of E . In more
detail, the di are induced by

E (n0, n1)⊗Xn0

EX //Xn1 if i = 0,

E (ni, ni+1)⊗ E (ni−1, ni)
C //E (ni−1, ni+1) if 0 < i < q,

Ynq
⊗ E (nq−1, nq)

EY //Ynq−1 if i = q.
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The si are induced by

U
I //E (ni, ni) if 0 ≤ i ≤ q.

When V is cartesian closed, so that ⊗ = ×, B q(Y, E , X) is the nerve of an internal
“Grothendieck category of elements” C (Y, E , X). The objects and morphisms of
this category are both objects of V . The object of objects is the coproduct

C0 =
∐

n

Yn ×Xn,

where n runs over the objects of E . The object of morphisms is the coproduct

C1 =
∐

m,n

Yn × E (m,n)×Xm,

where (m,n) runs over the pairs of objects of E . We have source, target, and
identity maps S, T , and I given as follows: S and T are given on components by
the evaluation maps of Y and X .

S = EY × id : Yn × E (m,n)×Xm −→ Ym ×Xm

T = id×EX : Yn × E (m,n)×Xm −→ Yn ×Xn;

I is induced by the identity maps U −→ E (n, n) of E .
The composition

C : C1 ×C0 C1 −→ C1

is induced by the composition in E . The point is that when ⊗ = × we have the
identification

C1 ×C0 C1
∼=

∐

(m,n,p)

Yp × E (n, p)× E (m,n)×Xm.

where (m,n, p) runs over the triples of objects of E .
When V has a suitable covariant simplex functor ∆ −→ V so that we have

a “geometric realization” functor from simplicial objects in V to V , we define
B(Y, E , X) to be the realization of B q(Y, E , X).

Remark 3.2. The two-sided bar construction goes back to [40, §12]. It is described
in the form just given in Shulman [57, Definition 12.1], where more details can be
found. The construction in this generality and in this form is central to the study
of weighted colimits in enriched category theory.

Now let us return to our space level context. The discussion just given applies
with V = GU for any G, where we take ⊗ = ×. It also applies with V = GT ,
where we take ⊗ = ∧. Given a based triple (Y, E , X), so taking V = GT and
using ⊗ = ∧ everywhere, specialization of our general construction gives a bar
construction B∧(Y, E , X). Alternatively, forgetting about basepoints, we can take
V = GU and use ⊗ = × everywhere to get a bar construction B×(Y, E , X).
Neither is right for our purposes. With B∧, a key later proof, that of the wedge
axiom in §9.4, would fail. With B×, we could not enrich over GT , as we now
explain.

As in §1.3, we assume that E has a zero object 0 such that each E (0, n) and
E (n, 0) is a point. Then each E (m,n) has the basepoint m → 0 → n. For each
object n of E , we have the represented functor En = E (−, n). In particular, E0 is
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the constant functor ∗ at a point. As n varies, the bar constructions B×(En, E , X)
give a covariant functor

B×(E , E , X) : E −→ GT .

It is a GU -enriched functor but it is not GT -enriched because the map

E (m,n) −→ TG

(
B×(Em, E , X), B×(En, E , X)

)

does not send the basepoint of the source to the basepoint (zero map) of the target.
Let ε : B×(E , E , X) −→ X be the canonical map of (non-enriched) functors

E −→ GT , constructed at level n by passing to realization from the map of sim-
plicial G-spaces

εn : B
×
q
(En, E , X) −→ (Xn) q

that is given by composition in E and the action of E on X . Here (Xn) q denotes
the constant simplicial G-space at Xn. Each εn is a G-homotopy equivalence with
homotopy inverse

ηn : Xn −→ B×(En, E , X)

given by sending x ∈ Xn to the zero simplex (idn, x) ∈ E (n, n) × Xn. Then
B×(∗, E , X) is contractible (since X0 = ∗ and E0 = ∗).

We have an inclusion ∗ −→ Y given by the basepoints of the Yn and we define

(3.3) B(Y, E , X) = B×(Y, E , X)/B×(∗, E , X).

The inclusions of basepoints ∗ −→ Yn are G-cofibrations. Since our bar construc-
tions are Reedy cofibrant simplicial G-spaces, so that the geometric realization of
a level G-cofibration is also a G-cofibration (see Theorem 1.11), these inclusions
induce G-cofibrations B×(∗, E , X) −→ B×(Y, E , X). Therefore the quotient map

(3.4) B×(Y, E , X) −→ B(Y, E , X)

is a G-homotopy equivalence. With Y = En, this gives the following result.

Proposition 3.5. B(E , E , X) is a GT -functor E −→ TG, and ε induces a level-
wise G-homotopy equivalence B(E , E , X) −→ X of such functors with level inverses
induced by the ηn.

Remark 3.6. Again using Reedy cofibrancy, we see that B(Y, E , X) is the geo-
metric realization of the simplicial based G-space whose space of q-simplices is

Bq(Y, E , X)/Bq(∗, E , X).

This can be rewritten as the wedge of half-smash products
∨

n

Yn ∧B
×
q−1(En, E , X)+.

As explained in complete categorical generality in [57, Lemma 19.7], we can com-
mute realization and ⊗E to obtain the isomorphism

B(Y, E , X) ∼= Y ⊗E B(E , E , X).

One proof uses a direct comparison of definitions on the level of q-simplices for each
q, but the result is also an application of the (enriched) categorical Fubini theorem.

More generally, if D and E are both as above, ν : D −→ E is a GT -functor,
Y is a contravariant GT -functor E −→ TG, and X is a covariant GT -functor
D −→ TG, there is an isomorphism

B(ν∗Y,D , X) ∼= Y ⊗E B(E ,D , X),
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where ν∗Y = Y ◦ν and, similarly, each En is viewed as a contravariant GT -functor
D −→ TG by precomposition with ν.

Remark 3.7. The homotopical Segal machine is obtained by using examples of
two-sided bar constructions to construct WG-G-spaces. The structure maps of the
G-spectra they give by restricting to spheres must come from comparison maps of
the form

(3.8) B(Y, E , X) ∧ C −→ B(Y ∧ C, E , X).

We have such maps with our definition of the bar construction, but we would not
have them if we tried to use B×. The point is that (2.19) in Remark 2.18 does not
apply if we use B× due to the difference between unbased and based enrichment.
To make this more precise, consider the relationship between smash products and
products. For based spaces A, B, and C, there is no natural map

(A×B) ∧ C −→ (A ∧ C)×B.

Under the natural isomorphism (A×B)×C ∼= (A×C)×B, we collapse out different
subspaces to construct the source and target, and neither is contained in the other.
Explicitly, writing a, b, c for the basepoints of A,B,C and x, y, z for general points
of A,B,C, we identify all points (x, y, c) and (a, b, z) with (a, b, c) in the source,
but we identify all points (a, z, y) and (x, c, y) with the point (a, c, y) in the target.

Our interest is in the case where E is F or FG or the more general categories of
operators D and DG to be introduced later. Note that although F is topologically
discrete and G-trivial, we still view it as a category enriched in TG.

3.2. The naive homotopical Segal machine. Specializing from the previous
section, let Y : F −→ GT be a contravariant GT -functor and X : F −→ GT
be a covariant GT -functor. We then have the bar construction B(Y,F , X). The
action of G on it is induced diagonally by the actions on the Yn and Xn.

For GT -functors Y : F op
G −→ TG and X : FG −→ TG, we have the resulting

two-sided bar construction B(Y,FG, X). For its construction, we must remember
the action of G on the finite G-sets FG((m, α), (n, β)). While we are interested in
general X , in both cases we are only interested in particular Y , namely those of
the form Y = A•, as in Notation 2.28.

Nonequivariantly, Woolfson [59] constructed a homotopical Segal machine by
restricting B(A•,F , X) to spheres A = Sn.13 Equivariantly, we can apply the
same construction, taking G to be any topological group, X to be an F -G-space,
and A to be in GW . For reasons we now explain, this construction fails to lead to
genuine Ω-G-spectra when G is finite, even when X is F•-special.

When A = n, A• is the represented functor Fn = F (−,n), and as n varies
we obtain the F -G-space B(F ,F , X) whose nth G-space is B(Fn,F , X). We
have an implicit and important action of Σn on source and target; Σn ⊂ F (n,n)
acts from the left on Fn by postcomposition in F , and that induces the action on
B(Fn,F , X). Observe that B q(Fn,F , X) is a simplicial (G×Σn)-space and εn is
the geometric realization of a map B q(Fn,F , X) −→ (Xn) q of simplicial (G×Σn)-
spaces. Proposition 3.5 specializes to give the following result.

13This is revisionist. He was writing before the two-sided bar construction was formally defined.
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Proposition 3.9. Let X be an F -G-space X. Then the map

ε : B(F ,F , X) −→ X

of F -G-spaces is a level G-equivalence, hence X is special if and only if B(F ,F , X)
is special.

Warning 3.10. While the map εn is a map of (G× Σn)-spaces, the map

ηn : Xn −→ B(Fn,F , X)

is not Σn-equivariant since the action of Σn occurs on F (−,n) in the target and on
Xn in the source, so that η(σx) = (idn, σx) while ση(x) = (σ, x). Thus there is no
reason to expect ε to be a level F•-equivalence and no reason to expect B(F ,F , X)
to be F•-special even if X is so.

By Propositions 2.22 and 3.9, B(F ,F , X) and X can be used interchangeably
when passing to naive G-prespectra. Recall that we also have the two-sided bar
construction with F replaced by FG. We elaborate our comparison to include
UB(FG,FG,PX). Here B(FG,FG, Y ) is defined at level (n, α) by replacing the
left variable FG by the functor FG(−, (n, α)) : F op

G −→ TG represented by (n, α).
This comparison will also pave the way towards the construction of genuine G-
spectra when G is a compact Lie group.

Still letting G be any topological group and using Lemma 2.33, we have the
following analogue of Proposition 3.9.

Proposition 3.11. Let Y be an FG-G-space. Then ε : B(FG,FG, Y ) −→ Y is a
level G-equivalence, hence Y is special if and only if B(FG,FG, Y ) is special.

We view UB(FG,FG,PX) as a genuine homotopical approximation to X in
view of the following corollary, which is immediate from Theorem 2.30. Note that
we can identify X with UPX via the unit isomorphism.

Corollary 3.12. For any F -G-space X, the map Uε : UB(FG,FG,PX) −→ X is
an F•-level equivalence, hence X is F•-special if and only if UB(FG,FG,PX) is
F•-special.

Remark 3.13. We compare bar constructions along the adjoint equivalence (P,U)
between F -G-spaces and FG-G-spaces. For F -G-spaces X , we have

PB(F ,F , X) = FG ⊗F B(F ,F , X) ∼= B(FG,F , X).

The inclusion ι : F −→ FG induces a natural map of FG-G-spaces

ι∗ : PB(F ,F , X) −→ B(FG,FG,PX)

such that the following diagrams commute; the second is obtained from the first by
applying U.

PB(F ,F , X)

ι

��

Pε // PX

B(FG,FG,PX)

ε

88♣♣♣♣♣♣♣♣♣♣♣

B(F ,F , X)

Uι

��

ε // X

UB(FG,FG,PX)

Uε

88♣♣♣♣♣♣♣♣♣♣♣♣

In the first, the diagonal arrow ε is a level G-equivalence, but we cannot expect ι
and Pε to be level G-equivalences since that would imply that all three arrows in
the second diagram are F•-level equivalences, contradicting Warning 3.10. In the
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second diagram, Uε is an F•-level equivalence and the other two arrows are level
G-equivalences.

Using Proposition 2.22, we see that this comparison implies the following com-
parison of naive G-prespectra.

Proposition 3.14. Let X be a special F -G-space. Then the positive naive Ω-G-
prespectra obtained by prolonging X, B(F ,F , X), and UB(FG,FG,PX) to WG-
G-spaces and then restricting to spheres Sn are level G-equivalent. Their bottom
structural maps are compatible group completions of G-spaces equivalent to X1.

Proof. For any A, functoriality of prolongation applied to the second diagram of
Remark 3.13 gives a commutative diagram

B(A•,F , X)

��

// X(A).

B(A•,FG,PX)

77♣♣♣♣♣♣♣♣♣♣♣

Here we have used the factorization of prolongation from F -G-spaces to WG-G-
spaces through FG-G-spaces and the isomorphism PU ∼= Id, where P is prolonga-
tion from F -G-spaces to FG-G-spaces. By Lemma 2.10 and Remark 3.13, all three
of our F -G-spaces are special. Restricting to spheres Sn, we can apply Proposi-
tion 2.22 to each of them. Taking A = S0, we see compatible G-equivalences with
X1, and taking A = S1, we see that the bottom structure maps are compatible
group completions. That implies that we have weak G-equivalences at level 1.
In turn, since we are comparing Ω-G-prespectra, that implies that we have weak
G-equivalences at all levels n. �

3.3. The genuine homotopical Segal machine. Let G be a compact Lie group.
We cannot expect to construct genuine Ω-G-spectra from special F -G-spaces, but
we show here how to construct a genuine G-spectrum SGX from an F•-special F -
G-space X . Equivalently, we construct a genuine G-spectrum SGY from a special
FG-G-space Y . We think of Y = PX or, equivalently, X = UY . When G is finite,
SGX is a (genuine) positive Ω-G-spectrum whose bottom structural G-map is a
group completion of X1. Prolongation of B(F ,F , X) to a WG-G-space does not
give a positive Ω-G-spectum; prolongation of B(FG,FG, Y ) to a WG-G-space does.

The following definition gives a modernized version of Shimakawa’s equivariant
Segal machine [54].14 The strange looking notation id∗ anticipates a later general-
ization. Recall Notation 2.28.

Definition 3.15. Write id∗ Y = B(FG,FG, Y ) for an FG-G-space Y ; thus id∗ is
a functor Fun(FG,TG) −→ Fun(FG,TG). For a compact Lie group G, the Segal
machine SG on FG-G-spaces is the composite

Fun(FG,TG)
id∗ //Fun(FG,TG)

P //Fun(WG,TG)
UGS //GS .

More explicitly, taking A = SV ,

SG(Y )(V ) = B((SV )•,FG, Y ) = (SV )• ⊗FG
id∗ Y.

14Orthogonal G-spectra had not been developed when [54] was written; he worked with Lewis-
May G-spectra.
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The Segal machine SG on F -G-spaces X is defined by

SGX = SGPX.

The definition makes sense for anyX . When X is special, Proposition 3.14 shows
that the underlying naive G-prespectrum of SGX is equivalent to SNGX hence is a
positive Ω-G-prespectrum with bottom structural map a group completion of X1.

Remark 3.16. The group completion property is not easy to see directly from the
definition of SG. Shimakawa’s strategy [56, p 357], not fully detailed, was to show
that for H ⊂ G, Woolfson’s version of the nonequivariant Segal machine S(Y H)
is equivalent to (SGY )H , where Y H is the composite of restriction to F and the
H-fixed point functor, so that (Y H)n = Y (n)H , and then to quote the equivalence
of Woolfson’s version with Segal’s original version. With our proof, the equivalence
on fixed points follows formally from the group completion property, as is shown
quite generally in [12, Theorem 2.20].

We are primarily interested in understanding SGX when G is finite and X is F•-
special. However, the following variant of the standard notion of a linear functor
(compare [5, 25]) makes sense for any topological group G. Recall that GW and
WG are the categories of based G-CW complexes whose respective morphisms are
based G-maps and all based maps, with G acting by conjugation.

Definition 3.17. A WG-G-space Z is positive linear if for any G-connected A and
any G-map f : A −→ B in GW ,

Z(A)
f∗ //Z(B)

i∗ //Z(Cf)

is a fibration sequence of based G-spaces, where i : B −→ Cf is the cofiber of
f . That is, the induced map from Z(A) to the homotopy fiber of i∗ is a weak
G-equivalence.

The “positive” refers to the assumption that A is G-connected.
In §9.3, we adapt and extend nonequivariant arguments of Segal and Woolfson

[51, 59] to prove the following result, which applies to a general topological group
G and is of independent interest. It is perhaps surprising that we only need X to
be special, not F•-special, for the first statement and that we do not know how
to derive either statement from the other. However, we will only make use of the
second statement in this paper.

Theorem 3.18. Let G be a topological group. If X is a special F -G-space, then
the WG-G-space that sends A to B(A•,F , X) is positive linear. If Y is a special
FG-G-space, such as PX for an F•-special F -G-space X, then B(A•,FG, Y ) is
positive linear.

Now let G be finite. We want to understand the structure maps of the genuine
G-spectrum SGX . The following result is closely related to nonequivariant results
in [8, 25, 46, 51, 59] and equivariant results of Segal [52] and Shimakawa [54]. Our
formulation is a slight variant of the specialization to finite groups G of a result of
Blumberg [5, Theorem 1.2] about WG-G-spaces for compact Lie groups G.

Theorem 3.19. Let G be finite and let Z be a positive linear WG-G-space such
that the restriction of Z to FG is a special FG-G-space. Then UGSZ is a positive
Ω-G-spectrum.
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Remark 3.20. This result depends on the Wirthmüller isomorphism, and the
proof of its specialization to finite groups can be simplified quite a bit by use of
the simplified proof of that result in [34]. In turn, that depends implicitly on
Atiyah duality for finite based G-sets and, as explained in [13, §3.2], the map ε of
Definition 2.26 plays a central role in that. This ties the proof of Theorem 3.19 to
the Segal map Y (G/H) −→ TG(G/H, Y1); compare [5, Remark 3.18].

Remark 3.21. Clearly Theorem 3.19 applies to Z = PX when X is F•-special.
Despite Theorem 3.18, we have no such conclusion when X is only special.

Here now is the fundamental theorem about the Segal machine for finite groups.

Theorem 3.22. Let G be finite and let X be an F•-special F -G-space. Then SGX
is a positive Ω-G-spectrum. Moreover, if V G 6= 0, then the composite

X1 −→ B(FG,FG,PX)1 = (SGX)(S0) −→ ΩV (SGX)(SV )

of η1 and the structure G-map is a group completion.

Proof. Let Z be the WG-G-space B((−)•,FG,PX). Then Z is positive linear by
Theorem 3.18 and its restriction to F is an F•-special F -G-space by Corollary 3.12.
Therefore Theorem 3.19 implies the first statement, and the second follows from
Proposition 3.14 and Remark 1.20. �

3.4. Change of groups and compact Lie groups. We summarize our conclu-
sions. For any topological group G, we have a functor SNG that takes F -G-spaces
to G-prespectra. It has four variants. The first uses Segal’s original simplicially
defined inductive machine. The second is the conceptual machine and the third
and fourth are composites that first take F -G-spaces to WG-G-spaces by one of
two choices of a bar construction and then take WG-G-spaces to G-prespectra.

We restrict attention to special F -G-spaces X , reduced as always, for clarity
in this digressive section. Then the four choices are equivalent and the functor
SNG assigns a positive naive Ω-G-spectrum to X , together with a group completion
η : X1 ≃ (SNGX)0 −→ Ω(SNGX)1.

If H is a subgroup of G and we write ι : H −→ G for the inclusion, then we have
various functors ι∗ that restrict given G actions to H actions. By inspection, these
functors commute with all constructions in sight. Therefore ι∗SNGX

∼= S
N
Hι

∗X . In
fact, these functors ι∗ are Quillen right adjoints with respect to the various model
structures in [5, 24, 25] on our categories. Moreover, they also commute with the
group completion maps η, so that ηι∗ = ι∗η : ι∗X1 −→ (SNHι

∗X)1.
For finite groups G, if X is F•-special rather than just special, we have a posi-

tive genuine Ω-G-spectrum SGX with underlying naive Ω-G-spectrum SNGX . For-
mally we have a forgetful functor from genuine orthogonal G-spectra indexed on a
complete G-universe to naive G-spectra indexed on the trivial universe, and this
functor is a Quillen right adjoint with respect to to the various model structures
in [5, 24, 25]. Restriction to subgroups works the same way on the level of genuine
G-spectra as it does on the level of naive G-spectra. Note that if H is a finite
subgroup of a topological group G and X is an F -G-space which is F•-special as
an F -H-space, then ι∗SNGX

∼= SNHι
∗X is the underlying naive Ω-H-spectrum of a

genuine Ω-H-spectrum.
Now let G be a compact Lie group. Just assuming that X is special, our

construction still gives a genuine G-spectrum SGX whose underlying naive G-
prespectrum is the Ω-G-spectrum S

N
GX , and we still have the group completion
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η : X1 −→ Ω(SGX)1. However, in contrast to the case of finite groups, even if X is
F•-special, SGX need not be a positive genuine Ω-G-spectrum. Let R denote fibrant
approximation in the positive stable model structure on G-spectra. We agree to
replace SGX by its fibrant approximation RSGX , and we regard the new SGX as
the genuine G-spectrum constructed from the F -G-space X . Its underlying naive
G-spectrum is positive fibrant, and its structure maps (SGX)0 −→ ΩV (SGX)(V )
are group completions when V G 6= 0. However, they are not group completions of
the originally given X1, as we now explain in a model theoretic framework. Never-
theless, even though we know little about how its homotopy type relates to X1, we
view the new SG as the best equivariant infinite loop space machine we can hope
for when G is a compact Lie group.

The adjoint pair relating WG-G-spaces to orthogonalG-spectra is a Quillen equiv-
alence even whenG is a compact Lie group, as noted in [5, Theorem A.13]. However,
consider the prolongation functor P from F -G-spaces to WG-G-spaces and its right
adjoint U. We have noted that the unit of the adjunction is the identity. When
G is finite, we have a complementary result about the counit. It is best expressed
model theoretically, and we digress to summarize relevant background.

The absolute stable model structure on the category Fun(WG,TG) is defined
in [5, §A.4]. It starts with the absolute level model structure in which a map
Y −→ Z is a fibration or weak equivalence if each Y (A) −→ Z(A) is a Serre G-
fibration or a weak G-equivalence. The absolute stable model structure has the
same cofibrations, but a map is a weak equivalence if it is a stable equivalence in
the sense that the underlying map of G-prespectra is a π∗-isomorphism. The fibrant
WG-G-spaces Z are those for which the maps Z(A) −→ ΩV Z(A ∧ SV ) of (I.3.4)
are weak G-equivalences for all A ∈ WG and all G-representations V . There is a
Quillen equivalent stable model structure with the same weak equivalences, and it
is Quillen equivalent to the category of orthogonal G-spectra.

It has long been understood15 that the categories Fun(F ,TG) and Fun(FG,TG)
admit stable model structures such that the three pairs (P,U) in sight are Quillen
adjunctions. The proofs are similar to those of [25, §18] and [50]. More recent
relevant expositions are in [44, 48, 49]. We start with the level model structures,
which are defined in the same way as for Fun(WG,TG). The stable equivalences are
the maps f such that Pf is a stable equivalence of WG-G-spaces. The fibrant objects
are the grouplike F•-special F -G-spaces or the grouplike special FG-G-spaces.

16

Proposition 3.23. Let G be finite. Let Y be a positive linear WG-G-space whose
underlying FG-G-space is special. Let λ : X −→ UY be a bifibrant approximation of
the underlying F -G-space UY in the stable model structure on F -G-spaces. Then
the composite of Pλ and the counit ε is a stable equivalence PX −→ PUY −→ Y .

Proof. This is proven nonequivariantly in [25, Lemma 18.10], and we can mimic
the argument indicated there. As in [25, Proposition 18.8], PX is positive linear.
Therefore, since G is finite, Theorem 3.19 implies that, after applying UGS to the
composite, we obtain a map of connective orthogonal Ω-G-spectra which is a weak
G-equivalence on 0th spaces and is therefore a stable equivalence. �

As in [25, Theorem 0.10], this implies that (P,U) is a connective Quillen equiv-
alence between F -G-spaces and WG-G-spaces, that is, a Quillen adjoint pair that

15The paper [5] deferred exposition, which would have been digressive there.
16Note that the group completion property is invisible from the model theoretic perspective.
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induces an equivalence between the respective homotopy categories of connective
objects. These conclusions do not generalize to compact Lie groups G. As was
noted by Blumberg [5, Appendix C], following Segal [52], they already fail when
G = S1. In fact, taking G = S1, Blumberg concludes that no reasonable condition
on an F -G-space can imply that UGSPX is a positive Ω-G-spectrum. However,
there was no reason to expect any such result. From the point of view of con-
structing genuine G-spectra with good properties from naturally occurring space
level data, our construction works as well as can be expected. However, unlike
the case of finite groups, there is no reasonable specification of space level data
on F -G-spaces sufficient to construct all connective G-spectra. We cannot even
expect to construct suspension G-spectra since we do not have an analog of the
Barratt-Priddy-Quillen theorem for compact Lie groups.

4. The generalized Segal machine

Unless otherwise specified, we take our group G to be finite from here on out.

The input of the Segal infinite loop space machine looks nothing like the input
of the operadic machine. To compare them, we must generalize the natural input
of both to obtain common input to which generalizations of both machines apply.
We explain the generalized Segal machine in this section, postponing consideration
of operads to the next. We define two equivariant versions of the categories of
operators introduced in [38]. One version has finite sets as objects, the other finite
G-sets, generalizing F and FG respectively. As in §2.4, we show how to construct
examples of the second kind from examples of the first kind.

After defining what it means for a G-category of operators to be an E∞ G-
category of operators, we generalize the homotopical version of the Segal machine
by generalizing its input from F -G-spaces to D-G-spaces, where D is any E∞ G-
category of operators over F . We compare the D and DG machines to the F and
FG machines by proving that they have equivalent inputs and that they produce
equivalent output when fed equivalent input. Thus the increased generality is more
apparent than real. The point of the generalization is that operadic data feed
naturally into the D-G-space rather than the F -G-space machine. We reiterate
that the categorical input data of the sequels [15, 16] is intrinsically operadic.

4.1. G-categories of operators D over F and D-G-spaces.

Definition 4.1. A G-category of operators D over F , abbreviated G-CO over F ,
is a category enriched in GT whose objects are the based sets n for n ≥ 0 together
with G-functors

Π
ι //D

ξ //F

such that ι and ξ are the identity on objects and ξ ◦ ι is the inclusion. Here G acts
trivially on Π and F . We say that D is reduced if D(m,n) is a point if either
m = 0 or n = 0, and we restrict attention to reduced G-COs over F henceforward.
A morphism ν : D −→ E of G-COs over F is a GT -functor over F and under Π.

Remark 4.2. We have omitted cofibration conditions that will be added later,
since what we need is a bit different for the Segal and the operadic machines. See
Remark 4.16 for the Segal and Remark 6.15 for the operadic machine. The purpose
of these conditions is to ensure that all bar constructions in sight are realizations
of Reedy cofibrant simplicial G-spaces, as claimed in Remark 1.12.
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Since we have morphism G-spaces D(m,n) such that composition is given by
equivariant maps, we have G-fixed identity elements, and we have maps

Π(m,n) −→ D(m,n) −→ F (m,n)

whose composite is the inclusion. Note that Π(m,n) is contained in D(m,n)G. Of
course, ξ : D −→ F is a map of G-COs over F for any G-CO D over F .

Recall that TG denotes the GT -category of nondegenerately based G-spaces and
all based G-maps, with G-acting by conjugation.

Definition 4.3. A D-G-space X is a GT -functor X : D −→ TG. A map of D-G-
spaces is a GT -natural transformation. Composing X with ι : Π −→ D gives X
an underlying Π-G-space. We say that X is F•-special if its underlying Π-G-space
is F•-special. We say that a map of D-G-spaces is an F•-level equivalence if its
underlying map of Π-G-spaces is an F•-level equivalence. Let Fun(D ,TG) denote
the category of D-G-spaces.

4.2. G-categories of operators DG over FG and DG-G-spaces. We can further
generalize the input, following §2.4.

Definition 4.4. A G-category of operators DG over FG, abbreviated G-CO over
FG, is a category enriched in GT with objects the based G-sets (n, α) for n ≥ 0
and α : G −→ Σn, together with G-functors

ΠG
ιG //DG

ξG //FG

such that ιG and ξG are the identity on objects and ξG ◦ ιG is the inclusion. We
say that DG is reduced if DG((m, α), (n, β)) is a point if either m = 0 or n = 0,
and we restrict attention to reduced G-COs over FG henceforward. A morphism
νG : DG −→ EG of G-COs over FG is a GT -functor over FG and under ΠG.

Remark 4.5. As in Remark 4.2, we have omitted the cofibration condition specified
in Remark 4.16 and the evident analogue of the cofibration condition specified in
Remark 6.15.

Of course, G acts non-trivially on the morphism sets of ΠG and FG. We have
morphism G-spaces DG((m, α), (n, β)) such that composition is given by G-maps,
we have G-fixed identity elements, and we have G-maps

ΠG((m, α), (n, β)) −→ DG((m, α), (n, β)) −→ FG((m, α), (n, β))

whose composite is the inclusion. Again, ξG : DG −→ FG is a map of G-COs over
FG for any G-CO DG over FG.

Regarding sets n as G-trivial G-sets, we have the following observation.

Lemma 4.6. The full subcategory D with objects n of a G-category of operators
DG over FG is a G-category of operators over F .

Conversely, just as we constructed ΠG and FG from Π and F , we can construct
a G-CO DG over FG from any G-CO D over F . We shall only be interested in
those DG that are constructed in this fashion.

Construction 4.7. Let D be a G-category of operators over F . We define a
G-category of operators DG over FG whose full subcategory of objects n is D .
The morphism G-space DG((m, α), (n, β)) is the space D(m,n), with G-action
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induced by conjugation and the original G-action on D(m,n). Explicitly, for f ∈
DG((m, α), (n, β)),

g · f = β(g) ◦ (gf) ◦ α(g−1);

We check that g · (h · f) = (gh) · f using that G acts trivially on permutations since
they are in the image of Π. Composition and identity maps are inherited from D
and are appropriately equivariant.

A routine verification shows the following.

Lemma 4.8. The inclusion D →֒ DG makes the following diagram of GT -categories
commute.

(4.9) Π //
� _

��

D //
� _

��

F� _

��
ΠG // DG

// FG.

Moreover, a map ν : D −→ E of G-COs over F induces a map

νG : DG −→ EG

of G-COs over FG, which is compatible with the inclusions.

Definition 4.10. A DG-G-space Y is a GT -functor Y : DG −→ TG. A map of
DG-G-spaces is a GT -natural transformation. Composing Y with ιG : ΠG −→ DG

gives Y an underlying ΠG-G-space. We say that Y is special if its underlying ΠG-
G-space is special. We say that a map of DG-G-spaces is a level G-equivalence if its
underlying map of ΠG-G-spaces is a level G-equivalence. Let Fun(DG,TG) denote
the category of DG-G-spaces.

4.3. The equivalence between Fun(D ,TG) and Fun(DG,TG). We can now gen-
eralize §2.4 to a comparison between D-G-spaces and DG-G-spaces. The forgetful
functor

U : Fun(DG,TG) −→ Fun(D ,TG)

has a left adjoint prolongation functor

P : Fun(D ,TG) −→ Fun(DG,TG).

Explicitly,

(PX)(n, α) = DG(−, (n, α))⊗D X =
∨

m

DG(m, (n, α)) ∧Xm/ ∼,

where (f, φ∗x) ∼ (fφ, x) for a map φ : k −→ m in D , an element x ∈ Xk, and a
map f : m −→ (n, α) in DG(m, (n, α)). (We have written out this coequalizer of
G-spaces explicitly to facilitate checks of details). The following result generalizes
Theorem 2.30 from F to an arbitrary G-CO over F .

Theorem 4.11. The adjoint pair of functors

Fun(D ,TG)
P //Fun(DG,TG)
U

oo

specifies an equivalence of categories.
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The proof is very similar to that of the special case D = F dealt with in
Theorem 2.30. Only points of equivariance require comment, and the following
lemma is the key to understanding the relevant G-actions. It identifies the G-space
(PX)(n, α) with the space Xn with a new G-action induced by α and the original
G-action on Xn. We denote this G-space Xα

n .

Lemma 4.12. For a D-G-space X, the G-space (PX)(n, α) is G-homeomorphic to
the G-space Xα

n , namely Xn with the G-action ·α specified by g ·α x = α(g)∗(gx).
Via this homeomorphism, the evaluation maps

DG((n, α), (p, β)) ∧ (PX)(n, α) −→ (PX)(p, β)

are given on the underlying spaces by the corresponding maps for X,

D(n,p) ∧Xn −→ Xp.

Proof. Modulo equivariance, this is an application of the Yoneda lemma. Write
idα : n −→ (n, α) for id: n −→ n regarded as an element of DG(n, (n, α)). Define

F : Xα
n −→ DG(−, (n, α))⊗D X

by sending x ∈ Xn to the equivalence class of (idα, x). Then F is a G-map since

F (g ·α x) = (idα, g ·α x) = (idα, α(g)∗(gx)) ∼ (idα ◦α(g), gx) = (g idα, gx).

Define an inverse map

F−1 : DG(−, (n, α))⊗D X −→ Xα
n

by sending the equivalence class of (f, x) ∈ DG(m, (n, α)) × Xm to f∗(x), where
we think of f as a map m −→ n in D and interpret f∗(x) to mean X(f)(x) ∈ Xn.
Note that F−1 is well defined. We have

F−1F (x) = F−1(idα, x) = id∗x = x

and

FF−1(f, x) = F (f∗x) = (idα, f∗x) ∼ (f, x),

hence F and F−1 are inverse homeomorphisms. Note that F−1 is automatically a
G-map since it is inverse to the G-map F . The compatibility with the DG-G-space
structure is clear. �

Using this, we mimic the proof of Theorem 2.30 to prove the equivalence of the
categories of D-G-spaces and DG-G-spaces.

Proof of Theorem 4.11. Clearly, since the inclusion D −→ DG is full and faithful,
the unit X −→ UPX of the adjunction is an isomorphism for any D-G-space
X . Let Y be a DG-G-space. We must show that the counit PUY −→ Y of the
adjunction is an isomorphism. A check of definitions shows that the counit G-map
(PUY )(n, α) −→ Y (n, α) agrees under the isomorphism of Lemma 4.12 with the
map, necessarily a G-map,

idα∗ : Y
α
n −→ Y (n, α)

induced by the morphism idα ∈ DG(n, (n, α)). Writing αid : (n, α) −→ n for
id: n −→ n regarded as an element of DG((n, α),n), we see that αid induces the
inverse homeomorphism

αid∗ : Y (n, α) −→ Y αn
to idα∗. Again, αid∗ is automatically a G-map since it is inverse to a G-map. �
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Just as for F -G-spaces in §2.4, a D-G-space X has two ΠG-G-spaces associated
to it. We can either apply P to its underlying Π-G-space or we can apply P to X
and take its underlying ΠG-G-space. The proof of Theorem 4.11 implies that these
two ΠG-G-spaces coincide. Therefore the four statements about Π and ΠG that are
listed in Theorem 2.30 also hold for D and DG. We record them in the following
two corollaries.

Corollary 4.13. A D-G-space X is F•-special if and only if the DG-G-space PX is
special. A DG-G-space Y is special if and only if the D-G-space UY is F•-special.

Corollary 4.14. A map f of D-G-spaces is an F•-level equivalence if and only
Pf is a level G-equivalence of DG-G-spaces. A map f of DG-G-spaces is a level
G-equivalence if and only if Uf is an F•-level equivalence of D-G-spaces.

4.4. Comparisons of D-G-spaces and E -G-spaces for ν : D −→ E . Let X be
an F -G-space. Then X and the D-G-space ξ∗X = X ◦ξ : D −→ TG have the same
underlying Π-G-space, hence one is F•-special or special if and only if the other is
so. The left adjoint of ξ∗ : Fun(F ,TG) −→ Fun(D ,TG) is given by the evident left
Kan extension along ξ : D −→ F . Following [38, Theorem 1.8] nonequivariantly,
we expect the bar construction to give a homotopically well-behaved variant. With
F replaced by D , the analogue of Proposition 3.9 holds and admits the same proof.

To implement this strategy, we start with an F•-special D-G-space Y and con-
struct from it an F•-specialF -G-space ξ∗Y together with a zigzag of F•-equivalences
between Y and ξ∗ξ∗Y . We shall use this to construct a Segal machine whose input
is an F•-special D-G-space Y and whose output is equivalent to SGξ∗Y .

As in [38], we work more generally here, starting from a map ν : D −→ E of G-
COs over F and comparing D-G-spaces and E -G-spaces. We are mainly interested
in the case ν = ξ. We write νG : DG −→ EG for the induced map of G-COs over
FG. Focus on νG rather than ν allows us to focus on G-equivalence rather than
F•-equivalence. For clarity, we sometimes write UD and PD instead of U and P for
the adjunction between Fun(D ,TG) and Fun(DG,TG), and similarly for E .

Definition 4.15. For Z ∈ Fun(DG,TG), define νG∗Z ∈ Fun(EG,TG) by

νG∗Z = B(EG,DG, Z).

Here the target is defined levelwise by replacing EG by the composite

EG(−, (n, α)) ◦ νG : Dop −→ TG,

of νG and the GT -functor E op
G −→ TG represented by (n, α). For Y ∈ Fun(D ,TG),

define ν∗Y ∈ Fun(E ,TG) by

ν∗Y = UE νG∗PDY = UEB(EG,DG,PDY ).

Remark 4.16. To ensure that the bar constructions we use are geometric realiza-
tions of Reedy cofibrant simplicial G-spaces, we require the unit maps

∗ −→ DG((n, α), (n, α))

of G-COs over FG to be G-cofibrations, and similarly for G-COs over F . This
holds when DG is constructed from a G-operad C such that id: ∗ −→ C (1) is a
G-cofibration, as is true in our examples.
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Definition 4.17. A map νG : DG −→ EG of G-COs over FG is a G-equivalence if
each map

νG : DG((m, α), (n, β)) −→ EG((m, α), (n, β))

is a weak G-equivalence. A map ν : D −→ E of G-COs over F is an F•-equivalence
if the associated map νG : DG −→ EG of G-COs over FG is a G-equivalence.

Recall the notion of an F•-level equivalence of Π-G-spaces from Definition 2.6
and Lemma 2.11. Recall too that a map of Π-G-spaces is an F•-level equivalence if
and only if its associated map of ΠG-G-spaces is a level G-equivalence; see Defini-
tion 2.27 and Theorem 2.30(iv). These definitions and results are inherited by D
and DG (as in Corollary 4.14). The following definition recalls notation from §3.1.

Definition 4.18. For a G-CO D over F and a fixed n, let Dn be the corepre-
sented D-G-space specified by Dn(p) = D(n,p), with the action of D given by
composition. Analogously, we have corepresented DG-G-spaces DG(n,α).

Lemma 4.19. If ν : D −→ E is an F•-equivalence of G-COs over F , then for each
n, ν restricts to an F•-level equivalence of D-G-spaces Dn −→ ν∗En.

Proof. One can check that the cited restriction is a map of D-G-spaces. Moreover,
an easy comparison of definitions shows that PDn can be identified with DGn.
Therefore the conclusion follows from Corollary 4.14 and our definition of an F•-
equivalence of G-COs over F , which of course was chosen in order to make this
and cognate results true. �

Theorem 4.20. Let νG : DG −→ EG be a G-equivalence of G-COs over FG.

(i) Let X be an EG-G-space and Y a DG-G-space. Then there are natural zigzags
of level G-equivalences between νG∗ν

∗
GX and X and between νG

∗νG∗Y and Y .
(ii) Y is a special DG-G-space if and only if νG∗Y is a special EG-G-space.
(iii) A map f of DG-G-spaces is a level G-equivalence if and only if νG∗f is a level

G-equivalence of EG-G-spaces.

Proof. Abbreviate notation here by writing α for a finite G-set (n, α) and Xα for
X(n, α) when X is an EG-space. Starting with X , we have the natural maps

(4.21) (νG∗νG
∗X)α = B(EG,DG, νG

∗X)α
B(id,νG,id) //B(EG, EG, X)α

ε //Xα.

Starting with Y we have the natural maps

(4.22) (νG
∗νG∗Y )α = νG

∗B(EG,DG, Y )α B(DG,DG, Y )α
ε //B(νG,id,id)oo Yα.

The maps ε with targets Xα and Yα are G-equivalences, with the usual inverse
equivalences η, as in the proof of Proposition 3.9(ii). At each level α, the other
two maps are realizations of levelwise simplicial G-equivalences, and the Reedy
cofibrancy of the simplicial bar construction ensures that these realizations are
themselves G-equivalences, by Theorem 1.10. Note that we do not need X or Y to
be special to prove (i).

By Lemma 2.33, (i) implies (ii). Indeed, Y is special if and only if νG
∗νG∗Y is

special and, since νG
∗νG∗Y and νG∗Y have the same underlying Π-G-space, one is

special if and only if the other is so. Part (iii) follows from the naturality of the
G-equivalences in (4.22). �
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As in Lemma 4.8, the following diagram of GT -categories commutes.

Π� _

��

// D
ν //

� _

��

E � _

��

ξ // F� _

��
ΠG // DG νG

// EG
ξG

// FG.

Therefore ν∗UE = UDν
∗
G, as we shall use in the proof of the following analogue of

Theorem 4.20 for G-COs over F .

Theorem 4.23. Let ν : D −→ E be an F•-equivalence of G-COs over F .

(i) Let X be an E -G-space and Y be a D-G-space. Then there are natural zigzags
of F•-equivalences between ν∗ν

∗X and X and between ν∗ν∗Y and Y .
(ii) Y is an F•-special D-G-space if and only if ν∗Y is an F•-special E -G-space.
(iii) A map f of D-G-spaces is an F•-level equivalence if and only if ν∗f is an

F•-level equivalence of E -G-spaces.

Proof. Recall from Theorem 4.11 that (PD ,UD) is an adjoint equivalence of cate-
gories, and similarly for E . Note that we have the following sequence of natural
isomorphisms of DG-G-spaces

PDν
∗X ∼= PDν

∗
UEPEX = PDUDν

∗
GPEX ∼= ν∗GPEX.

To prove (i), write ≃ to indicate a zigzag of F•-level equivalences. Recall from
Corollary 4.14 that P takes F•-level equivalences to level G-equivalences and U

takes level G-equivalences to F•-level equivalences, while νG∗ preserves level G-
equivalences by Theorem 4.20(iii). Therefore, by Theorem 4.20(i), we have the
zigzags

ν∗ν
∗X = UE νG∗PDν

∗X ∼= UE νG∗ν
∗
GPEX ≃ UEPEX ∼= X

and

ν∗ν∗Y = ν∗UE νG∗PDY = UDν
∗
GνG∗PDY ≃ UDPDY ∼= Y

of level G-equivalences. Using Corollary 4.14, (ii) and (iii) follow as in the proof of
Theorem 4.20. �

4.5. Comparisons of inputs and outputs of the generalized Segal machine.

Definition 4.24. We say that a G-CO DG over FG is an E∞ G-CO if the map
ξG : DG −→ FG is a G-equivalence. We say that a G-CO D over F is an E∞

G-CO if its associated DG is an E∞ G-CO over FG.

The term “E∞” is convenient, but it is a little misleading, as will become clear
when we turn to operads.

We assume throughout this section that D is an E∞ G-CO over F , and we
specialize the results of the previous section to ξ : D −→ F and εG : DG −→ FG.
The following results are just specializations of Theorems 4.20 and 4.23.

Theorem 4.25. The following conclusions hold.

(i) Let X be an FG-G-space and Y a DG-G-space. Then there are natural zigzags
of level G-equivalences between ξG∗ξ

∗
GX and X and between ξ∗GξG∗Y and Y .

(ii) Y is a special DG-G-space if and only if ξG∗Y is a special FG-G-space.
(iii) A map f of DG-G-spaces is a level G-equivalence if and only if ξG∗f is a level

G-equivalence of FG-G-spaces.
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Theorem 4.26. The following conclusions hold.

(i) Let X be an F -G-space and Y a D-G-space. Then there are natural zigzags
of F•-equivalences between ξ∗ξ

∗X and X and between ξ∗ξ∗Y and Y .
(ii) Y is an F•-special D-G-space if and only if ξ∗Y is an F•-special F -G-space.
(iii) A map f of D-G-spaces is an F•-level equivalence if and only if ξ∗f is an

F•-level equivalence of F -G-spaces.

Therefore the pair of functors

ξ∗G : Fun(FG,TG) −→ Fun(DG,TG) and ξG∗ : Fun(DG,TG) −→ Fun(FG,TG)

induce inverse equivalences between the homotopy categories obtained by inverting
the respective level G-equivalences, and this remains true if we restrict to special
objects. Similarly, the pair of functors

ξ∗ : Fun(F ,TG) −→ Fun(D ,TG) and ξ∗ : Fun(D ,TG) −→ Fun(F ,TG)

induce inverse equivalences between the homotopy categories obtained by inverting
the respective F•-level equivalences, and this remains true if we restrict to F•-special
objects. We conclude that the four input categories for Segal machines displayed
in the square of the following diagram are essentially equivalent.

(4.27) Fun(F ,TG)

ξ∗

��

Fun(FG,TG)
Uoo

ξ∗G
��

Fun(WG,TG)
Uoo UGS // GS

Fun(D ,TG) Fun(DG,TG)
U

oo

Here ξ∗U = Uξ∗G. We regard the four categories in the square as possible domain
categories for generalized Segal infinite loop space machines.

The functors in the square are right adjoints. By Theorems 2.30 and 4.11, the
inclusions of F in FG and D in DG induce equivalences of categories, denoted
U in the diagram. Their left adjoints P give inverses, and the functors U and P

preserve the relevant special objects and levelwise equivalences. Theorems 4.25
and 4.26 show that the vertical arrows ξ∗ and ξ∗G become equivalences of homotopy
categories with inverses ξ∗ and ξG∗ (not the left adjoints) after inverting the relevant
equivalences. Consider the following diagram of functors.

(4.28) Fun(D ,TG)

ξ∗

��

P // Fun(DG,TG)

ξG∗

��
Fun(F ,TG)

P

// Fun(FG,TG)
P

// Fun(WG,TG)
UGS

// GS

The isomorphism PU ∼= id on FG-G-spaces and the definitions of ξ∗ and ξG∗

imply that the square commutes up to natural isomorphism. The composite in the
bottom row is our original conceptual Segal machine. We can specialize by letting
ξ = id: F −→ F and ξG = id: FG −→ FG. According to Definition 3.15, the
composite UGSP id∗ starting at Fun(FG,TG) is the Segal machine SG on FG-G-
spaces Y and the composite UGSP id∗ P is the Segal machine on F -G-spaces X .
That is

(4.29) SGY = UGS P id∗ Y and SGX = UGSP id∗ PX ∼= UGSPP id∗X.
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We regard the composites obtained by replacing the functors id∗ with ξ∗ and
ξG∗ as generalized Segal machines SG defined on D-G-spaces X and DG-G-spaces
Y . Explicitly, we define the corresponding orthogonal G-spectra to be

(4.30) SGY = UGS PξG∗Y and SGX = UGSPξG∗PX
∼= UGSPPξ∗X.

Clearly the machines starting with F -G-spaces or FG-G-spaces are equivalent
and similarly for D and DG. Theorem 4.32 below will show that the machines start-
ing with F -G-spaces or D-G-spaces and the machines starting with FG-G-spaces
or DG-G-spaces are equivalent. Thus the four machines in sight are equivalent un-
der our equivalences of input data. That is, we obtain equivalent output by starting
at any of the four vertices of the square, converting input data from the other three
vertices to that one, and taking the relevant machine SG. We use the following
invariance principle in the proof of Theorem 4.32.

Proposition 4.31. The following conclusions about homotopy invariance hold.

(i) If f : X −→ Y is a level G-equivalence of D-G-spaces, then

f : B(A•,D , X) −→ B(A•,D , Y )

is a weak G-equivalence for all A ∈ GW .
(ii) If f : X −→ Y is a level G-equivalence of DG-G-spaces, then the induced map

f : B(A•,DG, X) −→ B(A•,DG, Y )

is a weak G-equivalence for all A ∈ GW .
(iii) If f : X −→ Y is an F•-level equivalence of D-G-spaces, then the induced map

f : B(A•,DG,PX) −→ B(A•,DG,PY )

is a weak G-equivalence for all A ∈ GW .

Proof. By Remark 1.12 (see also Remark 4.16), our bar constructions are all geo-
metric realizations of Reedy cofibrant simplicial G-spaces, hence Theorem 1.10
gives the first conclusion. The second statement follows similarly. The third fol-
lows from the second using that Pf is a level G-equivalence of DG-G-spaces by
Corollary 4.14. �

The limitations of the first part and need for the second are clear from the fact
that B(F ,D , X) is only level G-equivalent, not F•-level equivalent, to X .

Theorem 4.32. The following four equivalences of outputs hold.

(i) If X is a D-G-space, then the G-spectra SGX and SGξ∗X are equivalent.
(ii) If Y is a DG-G-space, then the G-spectra SGY and SGξG∗Y are equivalent.
(iii) If X is an F -G-space, then the G-spectra SGX and SGξ

∗X are equivalent.
(iv) If Y is an FG-G-space, then the G-spectra SGY and SGξG

∗Y are equivalent.

Proof. We first prove (ii), which is the hardest part, and then show the rest. Thus
let Y be a DG-G-space. We claim that the WG-G-spaces PξG∗Y and P id∗ ξG∗Y are
level equivalent. Applying UGS , this will give (ii). Thus let A ∈ WG. Then

(PξG∗Y )(A) = A• ⊗FG
B(FG,DG, Y ) ∼= B(A•,DG, Y )

and

(P id∗ ξG∗Y )(A) = A• ⊗FG
B(FG,FG, ξG∗Y ) ∼= B(A•,FG, ξG∗Y ).
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In both cases, the isomorphism comes from Remark 3.6. By Theorem 4.25(i) there
is a natural zigzag of level G-equivalences between ξ∗GξG∗Y and Y . By Proposi-
tion 4.31(ii), this gives a zigzag of level G-equivalences of DG-G-spaces

B(A•,DG, Y ) ≃ B(A•,DG, ξ
∗
GξG∗Y ).

Since ξG : DG −→ FG is a G-equivalence of G-categories of operators, B(id, ξG, id)
induces an equivalence at the level of q-simplices of the bar constructions

B(A•,DG, ξ
∗
GξG∗Y ) −→ B(A•,FG, ξG∗Y ).

Again, since these bar constructions are geometric realizations of Reedy cofibrant
simplicial G-spaces, we get a weak G-equivalence on geometric realizations by The-
orem 1.10. This proves the claim and thus proves (ii).

To prove (i), let X be a D-G-space. Applying (ii) to Y = PX and using (4.29)
and (4.30), we see that

SGX ∼= SGPX ≃ SGξG∗PX
∼= SGPξ∗X ∼= SGξ∗X.

To prove (iv), let Y be an FG-G-space. We claim that the WG-G-spaces P id∗ Y
and PξG∗ξ

∗
GY are level equivalent. Here

(P id∗ Y )(A) = A• ⊗FG
B(FG,FG, Y ) ∼= B(A•,FG, Y )

and

(PξG∗ξ
∗
GY )(A) = A• ⊗FG

B(FG,DG, ξ
∗
GY ) ∼= B(A•,DG, ξ

∗
GY ).

The isomorphisms again come from Remark 3.6. Just as before, B(id, ξG, id) in-
duces a weak G-equivalence

B(A•,DG, ξ
∗
GY ) −→ B(A•,FG, Y ).

Finally, (iii) follows by application of (iv) to Y = PX . �

Use of the generalized homotopical Segal machine will be convenient when we
compare the Segal and operadic machines, but it is logically unnecessary. We could
just as well replace D-G-spaces Y by the F -G-spaces ξ∗Y and apply the Segal ma-
chine SG on them. We have just shown that we obtain equivalent outputs from these
two homotopical variants of the Segal machine. We conclude that all homotopical
Segal machines in sight produce equivalent output when fed equivalent input. The
resulting G-spectra are equivalent via compatible natural zigzags. We conclude
that all of our machines are essentially equivalent, and they are all equivalent to
our preferred machine SG on F•-special F -G-spaces.

5. From G-operads to G-categories of operators

We show here how operadic input, like Segalic input, can be generalized to
G-categories of operators. This section, like the previous one, is based on the
nonequivariant theory developed in [38], but considerations of equivariance require
a little more work. We show how to construct G-categories of operators from
G-operads in §5.1. We show that the construction takes E∞ G-operads to E∞

G-categories of operators, which is not obvious equivariantly, in §5.2.
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5.1. G-categories of operators associated to a G-operad CG. We assume
that the reader is familiar with operads, as originally defined in [27]. More recent
brief expositions can be found in [31, 32]. Operads make sense in any symmetric
monoidal category. Ours will be in the cartesian monoidal category GU . We
assume once and for all that our operads C are reduced, meaning that C (0) is a
point. We have a slight clash of notation since we follow [12] in writing C for an
operad in U , regarded as a G-trivial G-operad, whereas we write CG for a general
G-operad. This clashes with the dichotomy between D and DG.

17

Definition 5.1. Let CG be an operad of G-spaces. We construct a G-CO over
F , which we denote by D(CG), abbreviated D when there is no risk of confusion.
Similarly, we write DG = DG(CG) for the associatedG-CO over FG. The morphism
G-spaces of D are

D(m,n) =
∐

φ∈F(m,n)

∏

1≤j≤n

CG(|φ
−1(j)|)

with G-action induced by the G-actions on the CG(n). Write elements in the form
(φ, c), where c = (c1, . . . , cn). For (φ, c) : m −→ n and (ψ, d) : k −→m, define

(φ, c) ◦ (ψ, d) = (φ ◦ ψ,
∏

1≤j≤n

γ(cj ;
∏

φ(i)=j

di)σj).

Here γ denotes the structural maps of the operad. The di with φ(i) = j are ordered
by the natural order on their indices i and σj is that permutation of |(φ ◦ ψ)−1(j)|
letters which converts the natural ordering of (φ ◦ψ)−1(j) as a subset of {1, . . . , k}
to its ordering obtained by regarding it as

∐
φ(i)=j ψ

−1(i), so ordered that elements

of ψ−1(i) precede elements of ψ−1(i′) if i < i′ and each ψ−1(i) has its natural
ordering as a subset of {1, . . . , k}.

The identity element in D(n,n) is (id, idn), where id on the right is the unit
element in CG(1). The map ξ : D −→ F sends (φ, c) to φ. The inclusion ι : Π −→ D
sends φ : m −→ n to (φ, c), where ci = id ∈ CG(1) if φ(i) = 1 and ci = ∗ ∈ CG(0)
if φ(i) = 0. This makes sense since Π is the subcategory of F with morphisms φ
such that |φ−1(j)| ≤ 1 for 1 ≤ j ≤ n.

Observe that D is reduced as a G-CO over F since CG is reduced as an operad.

Observation 5.2. Since we will need it later and it illustrates the definition, we
describe explicitly how composition behaves when the point c or d in one of the
maps is of the form (id, . . . , id) ∈ C (1)× · · · × C (1).

For φ : m −→ n and a permutation τ : m −→m,

(φ, c1, . . . , cn) ◦ (τ, id, . . . id) = (φ ◦ τ,
∏

j

(γ(cj , id, . . . , id)σj)

= (φ ◦ τ, c1σ1, . . . , cnσn),

where cj ∈ C (|φ−1(j)|), and σj ∈ Σ(|(φ◦τ)−1(j)| = Σ|φ−1(j)|. Note that σj depends
only on φ and τ and not on c.

For ψ : m −→ n and a permutation τ : n −→ n,

(τ, id, . . . , id) ◦ (ψ, d1, . . . , dn) = (τ ◦ ψ,
∏

j

(γ(id, dτ−1(j))σj))

= (τ ◦ ψ, dτ−1(1), . . . , dτ−1(n))

17For this and related reasons, we do not adopt the original notation Ĉ from [38].
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since each σj is the identity (because there is only one i such that τ(i) = j).

Example 5.3. The commutativity operad N has nth space a point for all n. We
think of it as a G-trivial G-operad. Then F = D(N ), again regarded as G-trivial.

For any operad CG, an F -G-space Y can be viewed as the D(CG)-G-space ξ∗Y .
Thus D(CG)-G-spaces give a generalized choice of input to the Segal machine. As
we shall discuss in §6.4, they also give generalized input to the operadic machine.
Indeed, an action of the operad CG on a G-space X gives rise to an action of D(CG)
on the Π-G-space RX with (RX)n = Xn.

5.2. E∞ G-operads and E∞ G-categories of operators. Let CG be a (reduced)
operad of G-spaces, or G-operad for short. We say that CG is an E∞ G-operad if
CG(n) is a universal principal (G,Σn)-bundle for each n. This means that CG(n)
is a Σn-free (G× Σn)-space such that

CG(n)
Λ ≃ ∗ if Λ ⊂ G× Σn and Λ ∩ Σn = e (that is, if Λ ∈ Fn).

Since CG(n) is Σn-free, CG(n)Λ = ∅ if Λ /∈ Fn. We call G-spaces with an action
by an E∞ G-operad E∞ G-spaces. As we recall from [10, 12] in the next section,
they provide input for an infinite loop space machine that sends an E∞ G-space to
a genuine Ω-G-spectrum whose zeroth space is a group completion of X . We prove
the following theorem.

Theorem 5.4. If CG is an E∞ G-operad, then D = D(CG) is an E∞ G-CO over
F or, equivalently, DG is an E∞ G-CO over FG.

Consider the trivial map of G-operads ξ : CG −→ N that sends each CG(n) to
the point N (n). Of course, N is not an E∞ G-operad, but it is clear from the
definitions that F = D(N ) is an E∞ G-CO over F . The map ξ : D −→ F is D(ξ).
The following result with C ′ = N has Theorem 5.4 as an immediate corollary. We
give pedantic details of equivariance since this is the crux of the comparison of
inputs of the Segal and operadic machines.

Theorem 5.5. Let ν : CG −→ C ′
G be a map of G-operads such that the fixed point

map νΛ : CG(n)Λ −→ C ′
G(n)

Λ is a weak equivalence for all n and all Λ ∈ Fn. Then
the induced map νG : DG −→ D ′

G of G-COs over FG is a G-equivalence.

Proof. We must prove that the map

νG : DG((m, α), (n, β)) −→ D ′
G((m, α), (n, β))

is a G-equivalence for all (m, α) and (n, β). Recall that DG((m, α), (n, β)) is just
D(m,n) with the G-action given by g · f = β(g) ◦ (gf) ◦ α(g−1).

Let H be a subgroup of G. We claim that there is a homeomorphism
[
DG((m, α), (n, β))

]H ∼=
∐

φ

∏

i

C (qi)
Λi ,

where φ runs over the H-equivariant maps (m, α) −→ (n, β), i runs over the H-
orbits of (n, β), and qi and Λi depend only on φ and H , with Λi in Fqi . This
homeomorphism is moreover compatible with the map νG. It follows from the
assumption that the map

(νG)
H :
[
DG((m, α), (n, β))

]H
−→

[
D ′
G((m, α), (n, β))

]H

is a weak equivalence for all subgroups H , as wanted.
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To prove the claim, recall that

D(m,n) =
∐

φ : m−→n

∏

1≤j≤n

C (|φ−1(j)|).

Using Definition 5.1 and in particular Observation 5.2, the new action on D(m,n)
is given by

g·(φ;x1, . . . , xn) = (β(g)φα(g−1); gxβ(g−1)(1)σβ(g−1)(1)(g
−1), . . . , gxβ(g−1)(n)σβ(g−1)(n)(g

−1)),

where σj(g
−1) ∈ Σ|(φ◦α(g−1))−1(j)| = Σ|φ−1(j)| is that permutation of |(φ◦α(g−1))−1(j)|

letters which converts the natural ordering of (φ ◦ α(g−1))−1(j) as a subset of
{1, . . . ,m} to its ordering obtained by regarding it as

∐
φ(i)=j α(g)(i), so ordered

so that α(g)(i) precedes α(g)(i′) if i < i′.
Note that the component corresponding to φ is nonempty in the H-fixed points

if and only if φ is H-equivariant. In what follows we fix such a φ. Careful analysis
of the definition of σj(h) shows that for j ∈ {1, . . . , n}, and h, k ∈ H , we have

(5.6) σj(hk) = σj(h)σβ(h−1)(j)(k).

The H-action shuffles the indices within each H-orbit of (n, β|H), so it is enough
to consider each H-orbit separately. We can assume then that the H-action on
(n, β|H) is transitive. The rest of the proof is analogous to the proof of Lemma 2.7.

Since φ is H-equivariant and the action is transitive, all the sets φ−1(j) have the
same cardinality, say q. Let K be the stabilizer of 1 ∈ n under the action of H . By
(5.6), σ1 restricted to K is homomorphism, and thus

Λ = {(k, σ1(k) | k ∈ K} ⊆ G× Σq

is a subgroup that belongs to Fq. To complete the proof of the claim, we note that
the projection to the first coordinate induces a homeomorphism

(
C (q)× · · · × C (q)

)H
−→ C (q)Λ.

One can easily check that if (x1, . . . , xn) ∈ C (q)n is an H-fixed point, then x1 is a
Λ-fixed point, since for all k ∈ K we have that

(k, σ1(k)) · x1 = kx1σ1(k
−1) = kxβ(k−1)(1)σβ(k−1)(1)(k

−1) = x1,

the last equality being true by the assumption that (x1, . . . , xn) was fixed by H .
To construct an inverse, for every j, choose hj ∈ H such that β(hj)(1) = j. Note
that choosing these amounts to choosing a system of coset representatives for H/K.
Consider the map C (q) −→ C (q)n that sends x to the n-tuple with jth coordinate

xj = hjxσ1(h
−1
j ).

We leave it to the reader to check that this map restricts to the fixed points and is
inverse to the projection. �

6. The generalized operadic machine

Having redeveloped the Segal infinite loop space machine equivariantly, we now
review and generalize the equivariant operadic infinite loop space machine. Since
the prequel [12] of Guillou and the first author also reviews that machine, in part
following the earlier treatment of Costenoble and Waner [10], and since the equi-
variant generalization of the basic definitions of [27] is entirely straightforward, we
shall be brief, focusing on the material that is needed here and is not treated in
[12]. In particular, again following the nonequivariant work of Thomason and the
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first author [38], we develop a generalization of the equivariant operadic machine
analogous to our generalization of the equivariant Segal machine. We compare the
inputs and outputs of the classical and generalized machines and show that they
are equivalent. Starting from an E∞ G-operad, the generalized input is the same
as the generalized input to the Segal machine that we saw in §5.2.

6.1. The Steiner operads. The advantages of the Steiner operads over the little
cubes or little discs operads are explained in detail in [36, §3]. The little cubes
operads Cn work well nonequivariantly, but are too square for multiplicative and
equivariant purposes. The little discs operads are too round to allow maps of op-
erads Dn −→ Dn+1 that are compatible with the natural map ΩnX −→ Ωn+1ΣX .
The Steiner operads are more complicated to define, but they enjoy all of the good
properties of both the little cubes and little discs operads. Some such family of
operads must play a central role in any version of the operadic machine, but the
special features of the Steiner operads will play an entirely new and unexpected
role in our comparison of the operadic and Segal machines.

We review the definition and salient features of the equivariant Steiner operads
from [12, §1.1] and [58], referring to those sources for more detailed treatments.
Let V be a finite dimensional real inner product space and let G act on V through
linear isometries. We are only interested in the group action when G is finite; for
more general groups G, we only use these operads to construct naive G-spectra,
taking the action to be trivial. Define a Steiner path to be a continuous map h
from I to the space of distance-reducing embeddings V −→ V such that h(1) is the
identity map; thus |h(t)(v) − h(t)(w)| ≤ |v − w| for all v, w ∈ V and t ∈ I. Define
π(h) : V −→ V by π(h) = h(0) and define the “center point” of h to be the value of
0 ∈ V under the embedding h(0), that is c(h) = π(h)(0) ∈ V . Crossing embeddings
V −→ V with idW sends Steiner paths in V to Steiner paths in V ⊕W .

For j ≥ 0, define KV (j) to be the G-space of j-tuples (h1, . . . , hj) of Steiner
paths such that the embeddings π(hr) = hr(0) for 1 ≤ r ≤ j have disjoint images;
G acts by conjugation on embeddings and thus on Steiner paths and on j-tuples
thereof. Pictorially (albeit imprecisely), one can think of a point in the Steiner
operad as a continuous deformation of V into a point in the little disks operad. The
symmetric group Σj permutes j-tuples. We take KV (0) = ∗ and let id ∈ KV (1)
be the constant path at the identity V −→ V . Compose Steiner paths pointwise,
(ℓ ◦ h)(t) = ℓ(t) ◦ h(t) : V −→ V . Define the structure maps

γ : KV (k)×KV (j1)× · · · ×KV (jk) −→ KV (j1 + · · ·+ jk)

by sending

(〈ℓ1, . . . , ℓk〉; 〈h1,1, . . . , h1,j1〉, . . . , 〈hk,1, . . . , hk,jk〉)

to

〈ℓ1 ◦ h1,1, . . . , ℓ1 ◦ h1,j1 , . . . , ℓk ◦ hk,1, . . . , ℓk ◦ hk,jk〉.

Note that K0 is the trivial operad, K0(0) = ∗, K0(1) = {id} and K0(j) = ∅ for
j ≥ 2. Via π, the operad KV acts on ΩVX for any G-space X in the same way
that the little cubes operad acts on n-fold loop spaces or the little discs operad acts
on V -fold loop spaces.

Define ζ : KV (j) −→ Conf(V, j), where Conf(V, j) is the configuration G-space
of ordered j-tuples of distinct points of V , by sending 〈h1, . . . , hj〉 to (c(h1), . . . , c(hj)).
The original argument of Steiner [58] generalizes without change equivariantly to
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prove that ζ is a (G×Σj)-deformation retraction. With G finite, we may take the
colimit over V in a complete G-universe U to obtain an E∞ G-operad KU .

6.2. The classical operadic machine. Recall the definition of an E∞ G-operad
from §5.2 and let CG be a fixed chosen E∞ G-operad throughout this section.

A CG-algebra (X, θ) is a G-space X together with (G× Σj)-maps

θj : CG(j)×X
j −→ X

for j ≥ 0 such that the diagrams specified in [27, §1] or [31, 32] commute. We call an
algebra over CG a CG-space. Since CG(0) = {∗}, the action determines a basepoint
in X , and we assume that it is nondegenerate. Several examples of E∞ operads
CG and CG-spaces appear in [12, 14]. As explained in [36, §8], the operadic infinite
loop space machine is a homotopical adaptation of Beck’s categorical monadicity
theorem. If G is finite, this machine is a functor EG from CG-spaces to (genuine)
orthogonal G-spectra. We summarize the construction of EG, following [12].

An operad CG determines a monad CG on based G-spaces such that the category
CG[GT ] of CG-algebras is isomorphic to the category CG[GT ] of CG-algebras.
Nonequivariantly, this motivated the definition of operads [27, 31, 32], and it is
proven equivariantly in [10, 12]. Intuitively, CGX is constructed as the quotient
of
∐
j≥0 CG(j) ×Σj

Xj by basepoint identifications. Formally, it is the categorical

tensor product of functors CG ⊗I X
•, where I is the category18 of finite sets j =

{1, . . . , j} and injections. To be explicit, for 1 ≤ i ≤ j, let σi : j − 1 −→ j be
the ordered injection that skips i in its image. Note that the morphisms in I
are generated by the maps σi and the permutations. Then CG is regarded as
a functor Iop −→ GU via the right action of Σj and the “degeneracy maps”
σi : CG(j) −→ CG(j − 1) specified in terms of the structure map γ of CG by

(6.1) σi(c) = γ(c; idi−1×0× idj−i)

where 0 ∈ CG(0) and id ∈ CG(1); X• is the covariant functor I −→ GU that sends
j to Xj and uses the left action of Σj and the injections σi : X

j−1 −→ Xj given by
insertion of the basepoint in the ith position.

There are several choices that can be made in the construction of the machine EG,
as discussed in [12]. We use the construction landing in orthogonal G-spectra. It is
more natural topologically to land in Lewis-May or EKMM G-spectra [11, 21, 24]
since all such G-spectra are fibrant and the relationship of EG to the equivariant
Barratt-Priddy-Quillen theorem is best explained using them. That variant of the
operadic machine is discussed and applied in [12], and we shall say nothing more
about it here.

Regardless of such choices, the construction of EG is based on the two-sided
monadic bar construction defined in [27, §9]. In our context, that specializes to
give a based G-space B(F,CG, X) for a monad CG in GT , a CG-algebra X , and a
CG-functor F = (F, λ). Here F : GT −→ GT is a functor and λ : FCG −→ F is a
natural transformation such that λ ◦ Fη = Id: F −→ F and

λ ◦ Fµ = λ ◦ λCG : FCGCG −→ F.

There results a simplicial G-space B q(F,CG, X) with q-simplices FCqGX . Its geo-
metric realization is B(F,CG, X). We emphasize that while the bar construction
can be specified in sufficiently all-embracing generality that both the categorical

18I was often denoted Λ in the 1970’s and is nowadays often denoted FI.
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version used in the Segal machine and the monadic version used in the operadic
machine are special cases [41, 42, 43, 57], these constructions look very different.

To incorporate the relationship to loop spaces encoded in the Steiner operads,
we define CV = CG ×KV . We view CG-spaces as CV -spaces via the projection to
CG, and we view G-spaces ΩVX as CV -spaces via the projection to KV . We write
CV for the monad on GT associated to CV .

Theorem 6.2. The composite of the map CVX −→ CV Ω
V ΣVX induced by the

unit of the adjunction (ΣV ,ΩV ) and the action map CV Ω
VΣVX −→ ΩVΣVX

specifies a natural map α : CVX −→ ΩVΣVX which is a group completion if V
contains R

2. These maps specify a map of monads CV −→ ΩV ΣV .

The second statement is proven by the same formal argument as in [27, Theorem
5.2]. The first statement is discussed and sharpened to the case V ⊃ R in [12]. The
adjoint α̃ : ΣV CV −→ ΣV of α is an action of the monad CV on the functor ΣV

and we have the monadic bar construction

(EGX)(V ) = B(ΣV ,CV , X)

for CG-spaces X . An isometric isomorphism V −→ V ′ in IG induces natural
transformations ΣV −→ ΣV

′

and CV −→ CV ′ , which in turn induce a map

B(ΣV ,CV , X) −→ B(ΣV
′

,CV ′ , X).

These maps assemble to make EGX into an IG-G-space. Smashing with G-spaces
commutes with realization of based simplicial G-spaces, by the same proof as in the
nonequivariant case [27, Proposition 12.1], and inclusions V −→W induce maps of
monads CV −→ CW . This gives the structural maps

σ : ΣW−V
EGX(V ) ∼= B(ΣW ,CV , X) −→ B(ΣW ,CW , X) = EGY (W )

which are compatible with the IG-G-space structure, so EGX is an orthogonal
spectrum. The structure maps of EGX and their adjoints are closed inclusions.
As explained in [12], and as goes back to [27] nonequivariantly and to Costenoble
and Waner equivariantly [10], we have the following theorem, which gives the basic
homotopical property of the infinite loop space machine EG.

Theorem 6.3. There are natural maps

X B(CV ,CV , X)
εoo B(α,id,id) //B(ΩV ΣV ,CV , X)

ζ //ΩVB(ΣV ,CV , X)

of CV -spaces. The map ε is a G-homotopy equivalence with a natural G-homotopy
inverse ν (which is not a CV -map), the map B(α, id, id) is a group completion when
V contains R2, and the map ζ is a weak G-equivalence.

Proof. The first statement is a standard property of the bar construction that works
just as well equivariantly as nonequivariantly [27, Proposition 9.8] or [57, Lemma
9.9]. The second statement is deduced from Theorem 6.2 by passage to fixed point
spaces and use of the same argument as in the nonequivariant case [28, Theorem
2.3(ii)]. The last statement is an equivariant generalization of [27, Theorem 12.7]
that is proven carefully in [10, Lemmas 5.4, 5.5]. See [12] for further discussion and
variants of the construction. �

Define

ξ = ζ ◦B(α, id, id) ◦ ν : X −→ ΩV EGX(V ).
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Then ξ is a natural group completion when V ⊃ R2 and is thus a weakG-equivalence
when X is grouplike. The following diagram commutes, where σ̃ is adjoint to σ.

X

ξ

yysss
ss
ss
ss
s

ξ

''PP
PP

PP
PP

PP
PP

P

ΩV EGX(V )
ΩV σ̃

// ΩV⊕W
EGX(V ⊕W ).

Therefore ΩV σ̃ is a weak equivalence if V contains R2. For general topological
groups, everything works exactly the same way provided that we restrict to those
V with trivial G-action. However, even if G = S1, the group completion property
of α fails if V is a non-trivial representation of G, as was first noticed by Segal [52].
A proof can be found in [5, Appendix B]. We restrict G to be finite from now on.

Remark 6.4. With G finite, it is harmless to think of EGX(V ) as an Ω-G-
spectrum. If we set E′

GX(V ) = Ω2EGX(V ⊕ R2), then the maps σ̃ : EGX(V ) −→
E′
GX(V ) specify an equivalence from EGX to an Ω-G-spectrum, giving a simple

and explicit fibrant approximation whose zeroth space is a group completion of X .

6.3. The monads D and DG associated to the G-categories D and DG.

Recall that the category CG[GT ] of algebras over an operad CG is isomorphic to
the category CG[GT ] of algebras over the associated monad CG. Let D = D(CG)
be the G-CO over F associated to CG and let DG be the associated G-CO over FG.
As worked out nonequivariantly in [38, §5], we define monads D on the category of
Π-G-spaces and DG on the category of ΠG-G-spaces. The commutative diagram of
inclusions of categories

Π //

i

��

ΠG

iG

��
D // DG

gives rise to a commutative diagram of forgetful functors

Fun(Π,TG) Fun(ΠG,TG)
Uoo

Fun(D ,TG)

i∗

OO

Fun(DG,TG).

i∗G

OO

U
oo

Categorical tensor products then give left adjoints making the following diagram
commute up to natural isomorphism.

Fun(Π,TG)
P //

D

��

Fun(ΠG,TG)

DG

��
Fun(D ,TG)

P

// Fun(DG,TG)

Here D and DG are the left adjoints of i∗ and i∗G, respectively. By a standard abuse
of notation, we write D and DG for the resulting endofunctors i∗D on Fun(ΠG,TG)
and i∗GDG on Fun(ΠG,TG). Explicitly, the monads D and DG are defined as

(6.5) (DX)(n) = D(−,n)⊗Π X
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for a Π-G-space X , where D(−,n) is the represented functor induced by i, and

(6.6) (DGY )(n, α) = DG(−, (n, α)) ⊗ΠG
Y

for a ΠG-G-space Y , where DG(−, (n, α)) is the represented functor induced by iG.
The units η of the adjunctions (D, i∗) and (DG, i

∗
G) give the unit maps of the

monads, and the action maps of the D-G-spaces DX and DG-G-spaces DGY give
the products µ. More concretely, µ : DD −→ D and µ : DGDG −→ DG are derived
from the compositions in D and DG, respectively, and thus from the structure
maps γ of CG. The unit maps η are derived from the identity morphisms in these
categories and thus from the unit element id ∈ CG(1).

As shown nonequivariantly in [38, §5], there are isomorphisms of categories from
the category Fun(D ,TG) of D-G-spaces to the category D[Fun(Π, GT )] of algebras
over the monad D and from the category Fun(DG,TG) of DG-G-spaces to the
category DG[Fun(ΠG, GT )] of algebras over the monad DG.

Proposition 6.7. The categories Fun(D ,TG) and D[Fun(Π,TG)] are isomorphic.
The categories Fun(DG,TG) and DG[Fun(ΠG,TG)] are isomorphic. Therefore the
categories D[Fun(Π,TG)] and DG[Fun(ΠG,TG)] are equivalent.

Proof. The proof for D is a comparison of action maps D(m,n)∧X(m) −→ X(n)
and (DX)(n) −→ X(n); it is entirely analogous to the original argument for alge-
bras over operads in [27, Proposition 2.8]. A similar proof works for DG. The result
there can also be derived from the result for D, using DGP

∼= PD and Theorem 4.11,
and that result also implies the last statement. �

Since the categories of D-algebras and of DG-algebras are equivalent, the monads
D and DG can be used interchangeably. This contrasts markedly with the Segal
machine, where considerations of specialness led us to focus on DG rather than D .

We need some homotopical and some formal properties of the monads D and DG,
following [38]. We first establish the formal properties, whose proofs are identical to
those in [38]. We first write the following results in terms of D and D for simplicity.
With attention to enrichment, the parallel results for DG work in exactly the same
way, and they can also be derived from the results for D by use of the isomorphism
PD ∼= DGP and Proposition 6.7.

Recall that we have the functor R : GT −→ Fun(Π, GT ) given by (RX)n = Xn.
Define L : Fun(Π, GT ) −→ GT by LY = Y1. Then (L,R) is an adjoint pair such
that LR = Id. On a Π-G-space Y , the unit δ : Id −→ RL of the adjunction is given
by the Segal maps. Letting CG[GT ] denote the category of CG-spaces, we show
that (L,R) induces an adjunction between that category and Fun(D ,TG).

Proposition 6.8. The adjunction (L,R) between Fun(Π, GT ) and GT induces
an adjunction between Fun(D ,TG) and CG[GT ] such that LR = Id and the unit
δ : Id −→ RL is given by the Segal maps. A D-G-space with underlying Π-G-space
RX determines and is determined by a CG-space structure on LRX = X.

Proof. The nonequivariant proof of [38, Lemma 4.2] applies verbatim. �

We require an analyis of the behavior of the monad D with respect to the ad-
junction (L,R).

Proposition 6.9. Let X be a G-space and Y be a Π-G-space.

(i) The G-space LDRX = (DRX)1 is naturally G-homeomorphic to CGX.
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(ii) The Π-G-space DRX is naturally isomorphic to the Π-G-space RCGX.
(iii) The following diagram is commutative for each n.

(DY )n
(Dδ)n //

δ

��

(DRLY )n ∼= (CGLY )n

∼=δ

��
(DY )n1 (Dδ)n1

// (DRLY )n1
∼= (CGLY )n

(iv) The functor RCGL on Π-G-spaces is a monad with product and unit induced
from those of CG via the composites

RCGLRCGL = RCGCGL
RµL //RCGL and Id

δ //RL
RηL //RCGL.

(v) The natural transformation Dδ : D −→ DRL ∼= RCGL is a morphism of mon-
ads in the category Fun(Π, GT ) of Π-G-spaces.

(vi) If (F, λ) is a CG-functor in V , then FL : Fun(Π, GT ) −→ V is an RCGL-
functor in V with action λL : FLRCGL = FCGL −→ FL. Therefore, by
pullback, FL is a D-functor in V with action the composite

FLD
FLDδ //FLDRL ∼= FLRCGL = FCGL

λL //FL.

Proof. Nonequivariantly, these results are given in [38, §6] and the equivariance
adds no complications. The proofs are inspections of definitions and straightforward
diagram chases. �

Using the adjunction (P,U) and the isomorphism DGP
∼= PD, we derive the

analogue for DG. As in Definition 2.31, we write

RG = PR : CG[GT ] −→ Fun(DG,TG)

and

LG = LU : Fun(DG,TG) −→ CG[GT ].

With D, R, and L replaced by DG, RG, and LG, we then have the following analogue
of Proposition 6.9.

Proposition 6.10. Let X be a G-space and Y be a ΠG-G-space.

(i) The G-space LGDGRGX is naturally G-homeomorphic to CGX.
(ii) The ΠG-G-space DGRGX is naturally isomorphic to RGCGX.
(iii) The following diagram is commutative for each (n, α).

(DGY )(n, α)
DGδ //

δ
��

(DGRGLGY )(n, α) ∼= (CGLGY )(n,α)

∼=δ
��

(DGY )
(n,α)
1

(DGδ)
(n,α)
1

// (DGRGLGY )
(n,α)
1

∼= (CGLGY )(n,α)

(iv) The functor RGCGLG on ΠG-G-spaces is a monad with product and unit
induced from those of CG via the composites

RGCGLGRGCGLG = RGCGCGLG
RGµLG
−−−−−→ RGCGLG

and

Id
δ

−−−−→ RGLG
RGηLG
−−−−→ RGCGLG.



EQUIVARIANT INFINITE LOOP SPACE THEORY, I. THE SPACE LEVEL STORY 51

(v) The natural transformation DGδ : DG −→ DGRGLG
∼= RGCGLG is a mor-

phism of monads in the category Fun(ΠG,TG) of ΠG-G-spaces.
(vi) If (F, λ) is a CG-functor in V , then FLG : Fun(ΠG,TG) −→ V is an RGCGLG-

functor in V with action λLG : FLGRGCGLG = FCGLG −→ FLG. There-
fore, by pullback, FLG is a DG-functor in V with action the composite

FLGDG
FLGDGδ//FLGDGRGLG ∼= FLGRGCGLG = FCGLG

λLG //FLG.

We now turn to the homotopical properties of the monads D and DG and their
algebras. The proofs of the homotopical properties are similar to those in [38], but
considerably more difficult, so some will be deferred to §8.3. In contrast with the
Segal machine, we start with D rather than DG. Our interest is in E∞ operads,
but we allow more general operads until otherwise indicated.

Reedy cofibrancy of Π and F -spaces can be defined as in [4], but we shall be
informal about the former and not use the latter (see Remark 8.5). We give a quick
definition, which mimics Definition 1.8.

Definition 6.11. For a Π-G-space X , the ordered injections σi : n− 1 −→ n

induce maps σi : Xn−1 −→ Xn. A point of Xn in the image of some σi is said to
be degenerate. The nth latching space of X is the set of degenerate points in Xn:

LnX =
n⋃

i=1

σi(Xn−1).

It is a (G× Σn)-space, and the inclusion LnX −→ Xn is a (G×Σn)-map. We say
that X is Reedy cofibrant if this map is a (G× Σn)-cofibration for each n.

Observe that LnRX is the subspace of Xn consisting of those points at least one
coordinate of which is the basepoint. By our standing assumption that basepoints
are nondegenerate, RX is Reedy cofibrant.

Remark 6.12. Just as nonequivariantly [38, Definition 1.2], we can impose a
cofibration condition on general Π-G-spaces X which ensures that they are Reedy
cofibrant. Given an injection φ : m −→ n in Π, we let Σφ be the subgroup of Σn
consisting of those permutations τ such that τ(im φ) = imφ. Then Σφ acts on the
set m and φ is a Σφ-map. If the map φ∗ : Xm −→ Xn is a (G × Σφ)-cofibration
for all injections φ, then a direct application of [7, Theorem A.2.7] shows that X is
Reedy cofibrant.

Following [27] nonequivariantly, we say that a G-operad CG is Σ-free if the action
of Σj on CG(j) is free for each j. Surprisingly, we only need that much structure to
prove the following result. It is the equivariant generalization of [38, Lemma 5.6],
which implicitly used Reedy cofibrancy of Π-spaces via the remark above.

Theorem 6.13. Let CG be a Σ-free G-operad.

(i) If f : X −→ Y is an F•-level equivalence of Reedy cofibrant Π-G-spaces, then
Df : DX −→ DY is an F•-level equivalence.

(ii) If X is an F•-special Reedy cofibrant Π-G-space, then DX is F•-special.
(iii) For any Reedy cofibrant Π-G-space X, DX is a Reedy cofibrant Π-G-space.

Proof. The proof of (i) requires quite lengthy combinatorics about the structure
of DX and its fixed point subspaces, so we defer it to §8.3. By (i) applied to the
Segal map δ : X −→ RLX , the map Dδ is an F•-level equivalence. Since its target
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DRLX ∼= RCGLX is F•-special, Lemma 2.10 implies that DX is also F•-special. As
we explain in §8.2, (iii) follows from Remark 6.12 and a more explicit description
of DX . �

By Theorem 4.11 and Corollaries 4.13 and 4.14, the isomorphism PD ∼= DGP

and Theorem 6.13 imply the following analogue of that result.

Proposition 6.14. Assume that each CG(j) is Σj-free.

(i) If f : X −→ Y is an F•-level equivalence of Reedy cofibrant Π-G-spaces, then
DGPf : DGPX −→ DGPY , is a level G-equivalence.

(ii) If X is a F•-special Reedy cofibrant Π-G-space, then DGPX is a special ΠG-
G-space.

6.4. Comparisons of inputs and outputs of the operadic machine. We have
three equivalent ways to construct G-spectra from DG-G-spaces. We can convert
DG-G-spaces to D-G-spaces via Proposition 6.7, and we can convert those to CG-
spaces by Proposition 6.18 below. We can then apply the original machine, or we
can generalize the machine to both D-G-spaces and DG-G-spaces. All three make
use of the two-sided monadic bar construction of [27], starting from the formalities
of Propositions 6.9 and 6.10.

Remark 6.15. Just as nonequivariantly [38, Addendum 1.7], we impose an addi-
tional cofibration condition on D to ensure that our bar constructions are given by
Reedy cofibrant simplicial G-spaces. As in Remark 6.12, for an injection φ : m −→
n, let Σφ ⊂ Σn be the subgroup of permutations τ such that τ(im φ) = imφ.
Then the map D(q,m) −→ D(q,n) induced by φ is a (G × Σφ)-map, and we re-
quire it to be a (G × Σφ)-cofibration. This holds for our categories of operators
D = D(C ) since we are assuming that the inclusion of the identity ∗ −→ CG(1) is
a G-cofibration.

In fact, we really only have two machines in view of the following result. We
emphasize how different this is from the Segal machine, where the D and DG bar
constructions are not even equivalent, let alone isomorphic.

Proposition 6.16. Let CG be a G-operad in GT with category of operators D .
For any D-space X and any CG-functor F : GT −→ GT , there is a natural iso-
morphism of G-spaces

B(FL,D, X) ∼= B(FLG,DG,PX).

Proof. Since Id ∼= UP, PD ∼= DGP and LG = LU, we have isomorphisms of q-
simplices

FLDqX ∼= FLGD
q
GPX.

Formal checks show that these isomorphisms commute with the face and degeneracy
operators. The conclusion follows on passage to geometric realization. �

For variety, and because that is what we shall use in the next section, we focus
on DG rather than D in this section. The following result compares the inputs to
machines given by DG-G-spaces and CG-spaces.

Definition 6.17. For a DG-G-space Y , define a CG-space X(Y ) by

X(Y ) = B(CGLG,DG, Y ).
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Here CG is regarded as a functor GT −→ CG[GT ], and the construction makes
sense since the realization of a simplicial CG-space is a CG-space, exactly as nonequiv-
ariantly [27, Theorem 12.2].

Proposition 6.18. For special DG-G-spaces Y whose underlying Π-spaces are
Reedy cofibrant, there is a zigzag of natural level G-equivalences of DG-G-spaces
between Y and RGX(Y ). For CG-spaces X, there is a natural G-equivalence of
CG-spaces from X(RGX) to X.

Proof. Proposition 6.14 implies that DGδ : DGY −→ DGRGLGY ∼= RGCGLGY is
a level G-equivalence of DG-G-spaces. The realization of simplicial ΠG-G-spaces
is defined levelwise, and since realization commutes with products of G-spaces, we
have the right-hand isomorphism in the diagram

Y B(DG,DG, Y )
εoo B(DGδ,id,id) //B(RGCGLG,DG, Y ) ∼= RGB(CGLG,DG, Y ) = RGX(Y ).

By standard properties of the bar construction, as in [27] nonequivariantly, ε is
a level G-equivalence of DG-G-spaces. Since the bar constructions are geometric
realizations of Reedy cofibrant simplicial G-spaces (see Remark 1.12), it follows
from Theorem 1.10 that B(DGδ, id, id) is a level G-equivalence of DG-G-spaces.
For the second statement, we apply LG to the level G-equivalence of DG-G-spaces

RGX(RGX) ∼= B(RGCGLG,DG,RGX) ∼= B(RGCGLG,RGCGLG,RGX)
ε //RGX,

where the second isomorphism follows from Proposition 6.10 and inspection. �

Therefore, after inverting the respective equivalences, the functors RG and X

induce an equivalence of categories between CG-spaces and special DG-G-spaces
whose underlying Π-G-spaces are Reedy cofibrant. We conclude that, for an E∞-
operad CG, the input categories for operadic machines given by CG-spaces and by
DG-G-spaces are essentially equivalent.

To generalize the machine from CG-spaces to DG-G-spaces, we again use the
product operads CV = CG ×KV , where KV is the V th Steiner operad. We write
DG,V for the monad associated to the resulting category of operators DG,V over
FG. Then a DG-space is a DG,V -space for any representation V by pullback along
the projection DG,V −→ DG.

Definition 6.19. For a DG-G-space Y , define the V th space of the orthogonal
G-spectrum EGY to be the monadic two-sided bar construction

(6.20) EG(Y )(V ) = B(ΣV LG,DG,V , Y ).

The right action of DG,V on ΣV LG is obtained from the projection DG,V −→ KV

and the action of KV on ΣV , via Proposition 6.9(vi). The IG-G-space structure is
given as follows. For an isometric isomorphism V −→ V ′ in IG, the map

B(ΣV LG,DG,V , Y ) −→ B(ΣV
′

LG,DG,V ′ , Y )

is the geometric realization of maps induced at all simplicial levels by SV −→ SV
′

and KV −→ KV ′ . Similarly, since smashing commutes with geometric realization,
the structure maps

B(ΣV LG,DG,V , Y ) ∧ SW −→ B(ΣV⊕W
LG,DG,V⊕W , Y )

are induced from the maps of monads DG,V −→ DG,V⊕W .
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Just as we used SG for all variants of the Segal machine, we are using EG for all
variants of the operadic machine. To justify this, we must show that the machine
EG on DG-G-spaces does indeed generalize the machine EG on CG-spacesX . To see
that, observe that Proposition 6.10(ii) implies that we have a natural isomorphism
DG,VRGX ∼= RGCVX . Since LGRG = Id, that gives us a natural isomorphism

(6.21) B(ΣV LG,DG,V ,RGX) ∼= B(ΣV ,CV , X),

where we regard RGX as a DG-G-space via Proposition 6.8. Together with Propo-
sition 6.18, this gives the following comparison of outputs of our machines.

Corollary 6.22. For CG-spaces X, EGX is naturally isomorphic to EGRGX. For
special DG-G-spaces Y whose underlying Π-G-space is Reedy cofibrant, there is a
zigzag of natural equivalences connecting EGY to EGRGX(Y ) ∼= EGX(Y ).

Thus the machines EG on CG-spaces and on special DG-G-spaces are essentially
equivalent. Properties of the machine on special DG-G-spaces are essentially the
same as properties of the machine on CG-spaces, as can either be proven directly
or read off from the equivalence of machines.

7. The equivalence between the Segal and operadic machines

We give an explicit comparison between the generalized Segal and generalized
operadic infinite loop space machines. The comparison is needed for consistency and
because each machine has significant advantages over the other. That was already
clear nonequivariantly, and it seems even more true equivariantly. As in [12, 36],
in the previous section we used the Steiner operads rather than the little cubes
operads that were used in [27, 38]. That change made equivariant generalization
easy, and [36] gave other good reasons for the change. However, nothing like the
present comparison was envisioned in earlier work. As we have recalled, the Steiner
operad is built from paths of embeddings. We shall see that these paths give rise
to a homotopy that at one end relates to the generalized Segal machine and at the
other end relates to the generalized operadic machine. That truly seems uncanny.

7.1. The statement of the comparison theorem. To set the stage, we reca-
pitulate some of what we have done. We fix an E∞ operad CG of G-spaces. We
then have an E∞ G-CO D = D(CG) over F and an E∞ G-CO DG over FG. Our
primary interest here is in infinite loop space machines defined either on special
FG-G-spaces or on CG-spaces. The Segal machine is defined on the former and the
operadic machine is defined on the latter. We have generalized both machines so
that they accept special DG-G-spaces as input. Moreover, we have compared inputs
and shown that both special FG-G-spaces and CG-spaces are equivalent to special
DG-G-spaces and therefore to each other. Further, we have compared outputs.
We have shown that application of the generalized Segal machine to DG-G-spaces
is equivalent to application of the original homotopical Segal machine to FG-G-
spaces, and that application of the generalized operadic machine to DG-G-spaces
is equivalent to application of the original operadic machine to CG-spaces.

In more detail, F•-special F -G-spaces, F•-special D-G-spaces, special FG-G-
spaces, and special DG-G-spaces are all equivalent by Theorems 4.25 and 4.26,
and the Segal machines on all four equivalent inputs give equivalent output by
Theorem 4.32. We may therefore focus on the Segal machine SG defined on special
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DG-G-spaces Y . Similarly, CG-spaces, F•-special D-G-spaces, and special DG-G-
spaces are equivalent by Propositions 6.8 and 6.18, and the operadic machine on CG-
spaces is a special case of the operadic machine on DG-G-spaces by Corollary 6.22.
Thus we may again focus on the operadic machine EG defined on special DG-G-
spaces Y .

Thus, fixing an E∞ operad CG with associated category of operators DG over
FG, we consider special DG-G-spaces Y . The V th G-space of SGY is

(SGY )(V ) = B((SV )•,DG, Y ),

where, as before, (SV )• denotes the composite GT -functor

Dop
G

ξ //F op
G

//TG

that sends the object (n, α) to the cartesian power (SV )(n,α) = TG((n, α), S
V ).

With ⋆ thought of as a place holder for the representation V in the V th level of the
spectrum, we adopt the notation

SGY = B((S⋆)•,DG, Y ).

Let CV be the product operad CG ×KV and let DG,V = DG(CV ) with associated
monad DG,V on the category of ΠG-G-spaces. The V th G-space of EGY is

(EGY )(V ) = B(ΣV LG,DG,V , Y ).

Again using ⋆ as a place holder for the representation V of the V th level of the
spectrum, we adopt the notation

EGY = B(Σ⋆LG,DG,⋆, Y ).

Note the different uses of the ⋆ notation. In both machines, it is a placeholder for
representations V . However, in the Segal machine, we are using cartesian powers
of G-spheres SV to obtain functors (SV )• : F op

G −→ TG, whereas in the operadic
machine we are using the suspension functor ΣV associated to SV together with the
Steiner operad KV . While a two-sided bar construction is used in both machines,
the similarity of notation hides how different these bar constructions really are: the
use of categories and contravariant and covariant functors in one is quite different
from the use of monads, (right) actions on functors, and (left) actions on objects
in the other. Nevertheless, our goal is to give a constructive proof of the following
comparison theorem.

Theorem 7.1. For special DG-G-spaces Y , there is a natural zigzag of equivalences
of orthogonal G-spectra between SGY and EGY .

7.2. The proof of the comparison theorem. We display the zigzag and then
fill in the required constructions and proofs in subsequent sections. In addition to
using ⋆ as a placeholder for representations V , we use • as a placeholder for finite
G-sets (n, α).
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(7.2) SGY B((S⋆)•,DG, Y )

B((S⋆)•,DG,⋆, Y )

π

OO

i1

��
B(I+ ∧ (S⋆)•,DG,⋆, Y )

B((S⋆0 )
•,DG,⋆, Y )

i0

OO

B(•(S⋆),DG,⋆, Y )

ι

OO

ω

��
B(Σ⋆LG,DG,⋆, Y ) EGY.

We shall construct the intermediate orthogonalG-spectra and maps in this zigzag
and prove directly that all of the maps except ω are stable equivalences.

Recall that the homotopy groups of a pointed G-space X are πHq (X) = πq(X
H)

and the homotopy groups of an orthogonal G-spectrum T are

πHq (T ) = colimV π
H
q (ΩV T (V ))

for q ≥ 0, where the colimits are formed using the adjoint structure maps of T ; our
G-spectra are all connective, so that their negative homotopy groups are zero. A
map T −→ T ′ is a stable equivalence if its induced maps of homotopy groups are
isomorphisms. That depends only on large V . Thus we may focus on those V that
contain R2, so that the group completions of Theorem 6.2 are available. Applying
ΩV to the V th spaces implicit in (7.2), we obtain a diagram of G-spaces under Y1.
By completely different proofs, both maps

Y1 −→ ΩV SGY (V ) and Y1 −→ ΩV EGY (V )

are group completions. Therefore, once we prove that the arrows other than ω
are stable equivalences, it will follow that ω is also a stable equivalence. Indeed,
arranging as we may that our outputs are Ω-G-spectra and using that they are
connective, ω is a stable equivalence if and only if the map ω0 it induces on 0th G-
spaces is a G-equivalence. The displayed group completions imply that ω0 induces
a homology isomorphism on fixed point spaces. Since these spaces are Hopf spaces,
hence simple, it follows that ω0 induces an isomorphism on homotopy groups, so
that ω0 is a G-equivalence.

Since wedges taken over G-sets (n, α) play a significant role in our arguments,
we introduce the following convenient notation.

Notation 7.3. For a based space A, let nA denote the wedge sum of n copies of A.
Similarly, for a G-set (n, α) and a based G-space A, let (n,α)A denote the wedge sum
of n copies of A with G-acting on A, but also interchanging the wedge summands.
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We write (j, a) ∈ (n,α)A for the element a in the jth summand. The G-action is
given explicitly by g · (j, a) = (α(g)(j), g · a).

Remark 7.4. In constructing the diagram, we shall encounter an annoying but
minor clash of conventions. There is a dichotomy in how one chooses to define the
faces and degeneracies of the categorical bar construction. We made one choice in
§3.1, but to mesh with the monadic bar construction as defined in [27, Construction
9.6], we must now make the other. Therefore, on q-simplices, we agree to replace
the previous di and si by dq−i and sq−i, respectively. With the new convention, d0
is given by the evaluation map of the left (contravariant) variable in the categorical
two-sided bar construction, rather than the right variable.

7.3. Construction and analysis of the map π. Turning to the diagram (7.2),
we first define the top map π. We start by defining its source orthogonalG-spectrum
B((S⋆)•,DG,⋆, Y ). The V th space, as the notation indicates, is defined by plugging
in V for ⋆; it is the bar construction B((SV )•,DG,V , Y ), as defined in §3.1, namely
it is the geometric realization of the simplicial space with q-simplices given by the
wedge over all sequences (nq, αq), . . . , (n0, α0) of the G-spaces

(SV )(nq,αq)
∧

(

DG,V ((nq−1, αq−1), (nq, αq))×· · ·×DG,V ((n1, α1), (n0, α0))×Y (n0, α0)
)

+
.

We have implicitly composed Y with the evident projections DG,V −→ DG to
regard Y as a GT -functor defined on each DG,V , and we have composed the (SV )•

with the composite DG,V −→ DG −→ FG to regard the (SV )• as functors defined
on DG,V . Note that B((S⋆)•,DG,⋆, Y ) is not the restriction of a WG-G-space, but
it is an IG-G-space. For an isometric isomorphism V −→ V ′ in IG, the map

B((SV )•,DG,V , Y ) −→ B((SV
′

)•,DG,V ′ , Y )

is the geometric realization of the map induced at each simplicial level by the maps
KV −→ KV ′ and SV −→ SV

′

. Geometric realization commutes with ∧, and
the structure maps of the orthogonal G-spectrum B((S⋆)•,DG,⋆, Y ) are geometric
realizations of levelwise simplicial maps given by the maps j : DG,V −→ DG,V⊕W

induced by the inclusions KV −→ KV⊕W and the maps

(7.5) i : (SV )(n,α) ∧ SW −→ (SV⊕W )(n,α)

defined by
i
(
(v1, . . . , vn) ∧ w

)
= (v1 ∧ w, . . . , vn ∧ w).

An alternative construction is to use Remark 2.18 and (3.8) in Remark 3.7 to obtain
G-maps

B((SV )•,DG,V⊕W , Y ) ∧ SW −→ B((SV⊕W )•,DG,V⊕W , Y )

and to precompose with the G-map

B((SV )•,DG,V , Y ) −→ B((SV )•,DG,V⊕W , Y )

induced by j : DG,V −→ DG,V⊕W . One can easily check that these maps do indeed
give maps of bar constructions that specify the structure maps for an orthogonal
G-spectrum. The projections DG,V −→ DG induce the top map π of orthogonal
G-spectra in (7.2).

Recall that colimV KV (j) = KU (j), so that colimV (CG ×KV ) is the product
CG ×KU , which is an E∞ G-operad since it is the product of two such operads.
Therefore the projection (CG ×KU )(j) −→ CG(j) is a Λ-equivalence for all Λ ∈ Fj
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and, by Theorem 5.5, the map DG(CG ×KU ) −→ DG(CG) is a G-equivalence of
G-COs over FG. The projection map

π : B((S⋆)•,DG,⋆, Y ) −→ B((S⋆)•,DG, Y )

is not a level G-equivalence, but a direct comparison of colimits shows that π is a
stable equivalence. In more detail, in computing π on homotopy groups, we start
from the commutative diagrams

ΩVB((SV )•,DG,V , Y ) //

π

��

ΩWB((SW )•,DG,W , Y )

π

��
ΩVB((SV )•,DG, Y ) // ΩWB((SW )•,DG, Y ),

where V ⊂W . We then take H-fixed points and their homotopy groups. Since the
inclusions DG,V −→ DG,W become isomorphisms on homotopy groups in increasing
ranges of dimensions, by inspection of the homotopy types of the G-spaces com-
prising the Steiner operads in [12, §1.1], we conclude that π is a stable equivalence.

7.4. The contravariant functors I+∧(SV )• on DG,V . In the notation I+∧(S⋆)•

in (7.2), ⋆ is again a place holder for V , and the notation stands for GT -functors

I+ ∧ (SV )• : (DG,V )
op −→ TG

that are given on objects by sending (n, α) to I+ ∧ (SV )(n,α), where I is the unit
interval and we have adjoined a disjoint basepoint and taken the smash product
in order to have domains for based homotopies. The crux of our comparison is to
specify the functors on I+ ∧ (SV )• on morphisms in terms of homotopies that are
deduced from the paths that comprise the Steiner operads.

Note that (SV )(n,α) is just (SV )n with the G-action ·α specified by

g ·α (x1, . . . , xn) = (gxα(g)−1(1), . . . , gxα(g)−1(n)) = α(g)∗(gx1, . . . , gxn).

Therefore, by Theorem 4.11 and Lemma 4.12, it is enough to instead define GT -
functors

I+ ∧ (SV )• : (DV )
op −→ TG

given on objects by sending n to I+∧ (SV )n and then apply the functor P to obtain
the desired functors on DG,V . We choose to do this in order to make the definitions
a little less cumbersome.

We construct the required maps on hom objects as composites

DV (m,n) //D(KV )(m,n)
H̃ //TG(I+ ∧ (SV )n, I+ ∧ (SV )m).

The first map is the evident projection, and we shall use the same letter for maps and
their composites with that projection. To define H̃ , we shall construct a homotopy

(7.6) H : I+ ∧ (SV )n ∧D(KV )(m,n) −→ (SV )m

and then set

(7.7) H̃(f)(t, v) = (t,H(t, v, f)),

where t ∈ I, v ∈ (SV )n, and f ∈ D(KV )(m,n). We have written variables in the
order appropriate to thinking of the homotopies H as the core of the evaluation
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maps of the contravariant functor I+ ∧ (SV )• : DV −→ TG. Note that such eval-
uation maps, after prolongation to DG,V , give the zeroth face operation d0 in the
simplicial G-spaces whose realizations give the central bar constructions in (7.2).

Writing Ht for H at time t, H1 will relate to the evaluation maps of the rep-
resented functor (SV )• used in the left variable of the Segal machine and H0 will
relate to the maps that define the action of the monad KV on the functor ΣV that
is used in the left variable of the operadic machine.

The following construction is the heart of the matter. Recall that a Steiner path
in V is a map h : I −→ RV such that h(1) = id, where RV is the space of distance
reducing embeddings V −→ V . The space KV (s) of the Steiner operad is the space
of s-tuples of Steiner paths hr such that the hr(0) have disjoint images. We define
a homotopy

γ : I × SV ×KV (s) −→ (SV )s

with coordinates γr by letting

γr(t, v, 〈h1, . . . , hs〉) =

{
w if hr(t)(w) = v
∗ if v /∈ im(hr(t)).

If t = 1, this is just the diagonal map SV −→ (SV )s, which is relevant to the
Segal machine. If t = 0, this map lands in the s-fold wedge s(SV ) of copies of SV

since the conditions v ∈ im(hr(0)) as r varies are mutually exclusive; that is, there
is at most one r such that v ∈ im(hr(0)). This is relevant to the operadic machine
since the action map

α̃ : ΣVKVX = KVX ∧ S
V −→ X ∧ SV = ΣVX

is given by

α̃((〈h1, . . . , hs〉, x1, . . . , xs), v) =

{
(xr, wr) if hr(0)(wr) = v
∗ if v /∈ im(hr(0)) for 1 ≤ r ≤ s.

Remember that we understand ΣVA to be A ∧ SV for a based G-space A, but
we write the V coordinate on the left when looking at the evaluation maps of the
functor I+ ∧ (SV )•.

We now define the homotopy H of (7.6). Recall from Definition 5.1 that

D(KV )(m,n) =
∐

φ : m−→n

∏

1≤j≤n

KV (sj),

where sj = |φ
−1(j)|. Let f = (φ; k1, . . . , kn) ∈ D(KV )(m,n), where φ ∈ F (m,n)

and kj ∈ KV (sj). For 1 ≤ i ≤ m, define the ith coordinate Hi of H as follows. If
φ(i) = j, 1 ≤ j ≤ n, and i is the rth element of φ−1(j) with its natural ordering as
a subset of m, then

Hi(t, v1, . . . , vn, f) = γr(t, vj , kj),

where γr is the rth coordinate of

γ : I × SV ×KV (sj) −→ (SV )sj .

If φ(i) = 0, then Hi is the trivial map.
It requires some combinatorial inspection to check that these maps do indeed

specify a GT -functor I+ ∧ (SV )• : Dop
V −→ TG, but we leave that to the reader.

Prolonging these functors using Lemma 4.12, we obtain the GT -functors

I+ ∧ (SV )• : Dop
G,V −→ TG, (n, α) 7→ I+ ∧ (SV )(n,α),
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needed to define the two-sided bar constructions B(I+ ∧ (SV )•,DG,V , Y ). Just as
in §7.3, the assignment V 7→ B(I+ ∧ (SV )•,DG,V , Y ) gives an IG-G-space, and we
can construct structure maps that make it into an orthogonal G-spectrum.

We denote by (SV )•1 the restrictions of the functors I+∧(S
V )• to t = 1. Note that

the (SV )•1 are just the functors (SV )• used to define B((SV )•,DG,V , Y ). Similarly,
we denote by (SV )•0 the restrictions of the functors I+ ∧ (SV )• to t = 0. For any
based G-space A, let i0 and i1 denote the inclusions of the top and bottom copy of
A into the cylinder I+ ∧ A, where G acts trivially on the interval I. Note that i0
and i1 are G-homotopy equivalences.

The functors (SV )•0 and (SV )•1 from Dop
G,V to TG are restrictions of I+ ∧ (SV )•,

hence they commute with the face d0, which is given by the evaluation maps of
these functors. It is clear that the maps i0 and i1 commute with all other faces and
degeneracies. Since they are levelwise G-equivalences of Reedy cofibrant simplicial
G-spaces, their realizations

(7.8) B((SV )•0,DG,V , Y )
i0−→ B(I+ ∧ (SV )•,DG,V , Y )

i1←− B((SV )•1,DG,V , Y ),

are G-equivalences. Therefore the maps i0 and i1 in (7.2) are level equivalences of
orthogonal G-spectra.

7.5. Construction and analysis of the map ι. To define the map of orthogonal
G-spectra labeled ι in (7.2), we must look more closely at (SV )•0. Note thatH0 sends
an element indexed on φ : m −→ n to an element of the product over 1 ≤ j ≤ n
of the wedge sums sj(SV ), where |φ−1(j)| = sj . If we restrict the domain of H0 to
n(SV ) ∧ D(KV )(m,n) ⊂ (SV )n ∧ D(KV )(m,n), we land in m(SV ) since for any
element (v1, . . . , vn, f) in the domain of H0 such that all but one of the factors vj is
∗, only those i such that φ(i) = j can contribute a non-basepoint image. Therefore

H̃0 restricts to a GT -functor •(SV ) : (DV )
op −→ TG that on objects sends n to

n(SV ) and on morphism spaces is the adjoint of the restriction of H0 from products
to wedges. On wedges, we have the composite

n(SV ) ∧DV (m,n) −→ n(SV ) ∧D(KV )(m,n) −→ m(SV )

of projection and the evident map obtained by unravelling the definition of H .
Upon applying prolongation P, we obtain a GT -functor

•(SV ) : (DG,V )
op −→ TG.

It is defined on objects by sending (n, α) to (n,α)(SV ), and it is a subfunctor of
(SV )•0 : (DG,V )

op −→ TG. Note that the map i : (SV )n∧SW −→ (SV⊕W )n of (7.5)
restricts to the canonical identification of n(SV )∧SW with n(SV⊕W ), and this works
just as well when the twisted action of α is taken into account. Just as in §7.3, by
(3.8) in Remark 3.7 these maps give rise to the structure maps of the G-spectrum
B(•(S⋆),DG,⋆, Y ). The inclusions of wedges into products give the inclusions of bar
constructions that together specify the map of G-spectra labeled ι in (7.2). It is
worth pausing to say what is going on philosophically before showing that ι is a
stable equivalence of orthogonal G-spectra. The contravariant functor (SV )• from
DG,V to TG is purely categorical since it factors through FG and applies just as
well to give a functor A• for any A. The action of FG on (SV )• does not restrict
to an action on the system of subspaces •(SV ). Use of the Steiner operad in effect
gives a new and more geometric functor (SV )•0. It is again defined on products, but
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it depends on the geometry encoded in the Steiner operads and it does restrict to
a functor defined on •(SV ). That is, we have commutative diagrams

(n,β)(SV ) ∧DG,V ((m, α), (n, β))

ι∧id

��

// (m,α)(SV )

ι

��
(SV )(n,β) ∧DG,V ((m, α), (n, β)) // (SV )(m,α)

where the horizontal arrows are evaluation maps of the functors •(SV ), and (SV )•0,
respectively, and the vertical arrows are given by inclusions of wedges in products.
The diagram displays the essential part of the map d0 in the simplicial bar con-
structions that ι compares; ι is the identity on all factors in DG,V or Y of the
G-spaces of q-simplices in these bar constructions. From here, it is routine to check
that these maps of bar constructions specify a map of orthogonal G-spectra.

We claim that ι is a stable equivalence, and we spend the rest of this subsection
proving this. Note that both the source and target of ι are orthogonal G-spectra
which at level V are geometric realizations of simplicial G-spaces. Before passage
to geometric realization, we have functors ∆op × IG −→ TG. It is not hard to
see that the simplicial structure commutes with the spectrum structure maps, so
that we can view these as simplicial orthogonal G-spectra. Geometric realization
of simplicial objects can be done in any bicomplete category that is tensored over
spaces, using the usual coend definition. See for example [11, Definition X.1.1] for a
discussion in the case of EKMM spectra. In the case of orthogonal G-spectra, since
colimits and tensoring with spaces is done levelwise, we see that for a simplicial
orthogonal G-spectrum T q, the V -th level of the geometric realization is given by

|T q|(V ) = |T q(V )|.

Therefore, the source and target of ι can be viewed equivalently as geometric real-
izations in orthogonal G-spectra of simplicial orthogonal G-spectra. In light of this
we can instead think of ι as a map of simplicial orthogonal G-spectra.

First, we claim that ι gives a stable equivalence of the qth orthogonalG-spectrum
for each q. This means that ι induces isomorphisms

colimV π
H
∗

(
ΩVBq(

•(SV ),DG,V , Y )
)
−→ colimV π

H
∗ (ΩVBq((S

V )•0,DG,V , Y )).

To prove this, recall that it is standard that finite wedges are finite products in
the stable category [1, Proposition III.3.11]; the same proof works equivariantly.
The maps j : DG,V −→ DG,V⊕W of Steiner operads also induce isomorphisms on
homotopy groups in increasing dimensions. The claim follows by inspection of
colimits.

Next, we claim that the geometric realization of the map of simplicial orthogonal
G-spectra ι is also a stable equivalence. This follows from Proposition 7.9 below,
but that requires a notion of Reedy cofibrancy for simplicial orthogonal G-spectra
which we now explain.

There is a definition of latching objects LnT for simplicial objects T in any
cocomplete category as a certain colimit (see, for example, [20, Definition 15.2.5],
[47]), of which Definition 1.8 is a specialization. Again, since colimits of orthogonal
spectra are computed levelwise, we have that (LnT )(V ) = Ln(T (V )) for a simplicial
orthogonal G-spectrum T .
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A map of orthogonal G-spectra A −→ X is an h-cofibration if it satisfies the
homotopy extension property (see [19, §A.5], [24, §I.4], [25, §5] for more details).
We say that a simplicial orthogonal G-spectrum is Reedy h-cofibrant if for all n ≥ 0,
the latching map LnT −→ Tn is an h-cofibration of orthogonalG-spectra. We claim
that the simplicial orthogonal G-spectra that are the source and target of ι are
Reedy h-cofibrant. Since for each V , the simplicial G-spaces are bar constructions,
they are Reedy cofibrant, so it remains to show that the homotopy extensions
can be made compatibly with the orthogonal G-spectrum structure. To see this,
note that the latching maps are constructed from the cofibration ∗ −→ CV (1) =
CG(1) × KV (1) that includes the identity element of the operad. That map is
a cofibration because of the assumption of Remark 4.16 that ∗ −→ CG(1) is a
cofibration and the fact that {id} →֒ KV (1) is the inclusion of a deformation retract.
The explicit retraction from KV (1) onto {id} is easily seen to be compatible with
the IG-G-space structure and with the inclusions j : KV (1) −→ KV⊕W (1), so it is
compatible with the structure maps. This in turn implies the compatibility of the
retracts for the latching maps of the bar constructions as V varies.

To finish the proof, we apply the following result to the map ι in (7.2).

Proposition 7.9. Let f q: T q−→ T ′
q
be a map of simplicial Reedy h-cofibrant orthog-

onal G-spectra that is a stable equivalence at each simplicial level. Then the map of
orthogonal G-spectra |f q| obtained by geometric realization is a stable equivalence.

Proof. The proof is the same as the space level analogue, using the construction
of the filtration on geometric realization via pushouts (see [45, Theorem 4.15] and
[11, Theorem X.2.4]). The key facts we need about h-cofibrations of orthogonal
G-spectra are that they are stable under cobase change [19, Proposition A.62], that
they satisfy the analogue of [11, Lemma X.2.3] (which is proven in exactly the
same way), that the gluing lemma for h-cofibrations and stable equivalences holds
(see [19, Corollary B.21], [24, Theorem I.4.10 (iv)]), and that the filtered colimit
along h-cofibrations of a sequence of stable equivalences is a stable equivalence [19,
Proposition B.17]. �

We note that the above result holds generally in any good model category ten-
sored over spaces. A recent treatment is offered in [47, see Corollary 10.6.]. We
have not quoted that result since there is no published proof that there is a model
structure on the category of orthogonal G-spectra in which the cofibrations are the
h-cofibrations. We believe that the methods of [3] (and [2, §6.4]) can be applied to
construct one.

7.6. Construction of the map ω. To construct the map ω in (7.2) and thus to
complete the proof of Theorem 7.1, we must define maps

B(•(SV ),DG,V , Y ) −→ B(ΣV LG,DG,V , Y ).

Both source and target are realizations of simplicial (based) G-spaces, and we define
ω as the realization of a map of simplicial G-spaces. On the spaces of 0-simplices
we define

ω0 : B(•(SV ),DG,V , Y )0 =
∨

(n,α)

(n,α)
SV ∧Y (n, α)+ −→ ΣV Y1 = B(ΣV LG,DG,V , Y )0

to be the wedge sum of the composites of the quotient maps

SV ∧ Y (n, α)+ −→ SV ∧ Y (n, α)
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with the composites

(n,α)SV ∧ Y (n, α)
id∧δ // (n,α)SV ∧ Y (n,α)

1
ν //SV ∧ Y1

τ //Y1 ∧ SV = ΣV Y1.

Here, for based spaces A and B, define ν : nA ∧Bn −→ A ∧B by

ν((i, a), (b1, . . . , bn)) = (a, bi)

where (i, a) denotes the element a ∈ A of the ith wedge summand of nA and bj ∈ B,
1 ≤ j ≤ n. We check explicitly that ν is G-equivariant:

g·((i, a), (b1, . . . , bn)) =
(
(α(g)(i), g·a), (g·bα(g)−1(1), . . . , g·bα(g)−1(n))

)
7→ (g·a, g·bi)

since the α(g)(i) position is α(g)−1α(g)(i) = i. The map τ : A∧B −→ B ∧A is the
usual twist. Then all of the maps in the definition of ω0 are equivaraint.

Notation 7.10. For q > 0, we may write the space of q-simplices ofB(•(SV ),DG,V , Y )
as the wedge over pairs (m, α), (n, β) of the spaces

(n,β)SV ∧
(
DG,V ((m, α), (n, β)) × Z(m, α)

)
+
,

where Z(m, α) is the wedge over sequences ((m0, α0), . . . , (mq−2, αq−2)) of the
spaces

DG,V

(
(mq−2, αq−2), (m, α)

)
× · · · ×DG,V

(
(m0, α0), (m1, α1)

)
× Y (m0, α0).

We write Z̄(m, α) for the quotient of Z(m, α) obtained by replacing × by ∧ here.

Recall the definition of (DG,V Y ) from (6.6). The G-space (DG,V Y )(n, β) is a
quotient of the wedge over all (m, α) of the G-spaces

DG,V ((m, α), (n, β)) ∧ Y (m, α).

Therefore the space ΣV LGD
q
G,V Y of q-simplices of B(ΣV LG,DG,V , Y ) is a quo-

tient of the wedge over all (m, α) of the spaces

(DG,V ((m, α),1) ∧ Z̄(m, α)) ∧ SV .

Define ωq by passage to wedges over (m, α) and to quotients from the composites

(n,β)SV ∧
(
DG,V ((m, α), (n, β)) × Z(m, α)

)
+

��
(n,β)SV ∧DG,V ((m, α), (n, β)) ∧ Z̄(m, α)

id∧δ∧id

��
(n,β)SV ∧DG,V ((m, α),1)(n,β) ∧ Z̄(m, α)

ν∧id

��
SV ∧DG,V ((m, α),1) ∧ Z̄(m, α)

τ

��
DG,V ((m, α),1) ∧ Z̄(m, α) ∧ SV ,

where the first map is the evident quotient map.
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Since we know that these maps are G-equivariant, to check commutative di-
agrams we may drop the α’s and β’s from the notation and only consider the
underlying nonequivariant spaces. On underlying spaces, the composite above is

nSV ∧
(
DV (m,n)× Zm

)
+

��
nSV ∧DV (m,n) ∧ Z̄m

id∧δ∧id

��
nSV ∧DV (m,1)n ∧ Z̄m

ν∧id

��
SV ∧DV (m,1) ∧ Z̄m

τ

��
DV (m,1) ∧ Z̄m ∧ S

V .

We must show that these maps ωq specify a map of simplicial spaces. Again
recall Remark 7.4. In both the categorical and monadic bar constructions, the face
maps di for i > 1 are induced by composition in DV and the action of DV on Y .
Since the ωq are defined using the quotient maps Zm −→ Z̄m, commutation with
these face maps is evident. Similarly, commutation with the degeneracy maps si
for i > 0 is evident. We must show commutation with s0, d0, and d1. An essential
point is that the Segal maps are in ΠG, and we are taking the categorical tensor
product over ΠG in the target. First consider s0 on zero simplices. For (i, v) in
nSV , that is, v in the ith summand, and y ∈ Yn,

ωs0((i, v), y) = ω((i, v), idn, y)

= (δi, y) ∧ v

= (id1, δi(y)) ∧ v

= s0ω((i, v), y).

Here idn ∈ DV (n,n), the third equation uses δi = id1 ◦δi and the equivalence
relation defining DV Y , and the last equation uses that ω((i, v), y) = δi(y)∧ v. The
commutation of ω and s0 on q-simplices for q > 0 is similar. The following diagrams
prove the commutation of ω with d0 and d1 on 1-simplices, and the argument for
q-simplices for q > 1 is similar. Remember that LGY = Y1. Again, we only write
the maps of underlying spaces, dropping from the notation the indices that indicate
G-actions since the G-action is not relevant to checking that the diagrams commute.
The top left corners of the following two diagrams are canonically isomorphic, but
they are written differently to clarify the top horizontal arrows.
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n(SV ) ∧ DV (m,n)+ ∧ (Ym)+

��

H0∧id // m(SV ) ∧ (Ym)+

��
n(SV ) ∧ DV (m,n) ∧ Ym

id∧δ∧id

��

H0∧id // m(SV ) ∧ Ym

id∧δ

��
n(SV ) ∧ DV (m,1)n ∧ Ym

ν∧id

��

m(SV ) ∧ (Y1)
m

ν

��
SV

∧ DV (m,1) ∧ Ym

H0∧id

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

��

SV
∧ Y1

��
ΣV

LDV Y
∼=

// ΣV
CV LY

α̂
// ΣV Y1

n(SV ) ∧
(

DV (m,n)× Ym

)

+

��

id∧µ // n(SV ) ∧ (Yn)+

��
n(SV ) ∧ DV (m,n) ∧ Ym

id∧δ∧id

��

id∧µ // n(SV ) ∧ Yn

id∧δ

��
n(SV ) ∧ DV (m,1)n ∧ Ym

ν∧id

��

n(SV ) ∧ (Y1)
n

ν

��
SV

∧ DV (m,1) ∧ Ym

id∧µ //

��

SV
∧ Y1

��
ΣV

LDV Y
ΣV

Lµ

// ΣV Y1

Here µ denotes the action of DV on Y , which is given by the adjoints of the
G-maps Y : DV (m,n) −→ TG(Ym, Yn). Both top pieces of the diagrams commute
by formal inspection, the first lower rectangle commutes by the definitions of H0

and α̂, as recalled in the previous section, and the second lower rectangle commutes
by definition. It is not hard to check that the maps ω are maps of IG-G-spaces
and that they are compatible with the structure maps, so that they give a map of
orthogonal G-spectra.

8. Proofs of technical results about the operadic machine

We prove Theorem 6.13(i) and (iii) in this section. Thus let CG be a Σ-free
G-operad and let D be the monad on Π-G-spaces associated to the category of
operators D = D(CG). Part (i) asserts that D preserves F•-equivalences, and its
proof is the hardest equivariant work we face. It involves a detailed combinatorical
analysis of the structure of the monad D.
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8.1. The structure of DX. We first discuss the structure of DX for a Π-G-space
X . This entails combinatorial analysis of Π and F that will also be relevant to the
technical proofs for the Segal machine in §9.1.

Fix n. Then the definition of (DX)n given in (6.5) implies that it is the quotient
(∨

q

D(q,n) ∧Xq

)
/(∼)

where ∼ is the equivalence relation specified by

(ψ∗d;x) ∼ (d;ψ∗x)

for d ∈ D(q,n), ψ ∈ Π(p,q) and x ∈ Xp. By Lemma 1.16, we can replace wedges
and smash products by disjoint unions and products, that is, (DX)n is the quotient

(∐

q

D(q,n)×Xq

)
/(∼).

Recall that the morphism space D(q,n) is given by the disjoint union of com-
ponents indexed on all φ : q −→ n in F

D(q,n) =
∐

φ∈F(q,n)

∏

1≤j≤n

CG(jφ),

where jφ = |φ−1(j)|. The basepoint is the component indexed on φ = 0q,n. We
write a non-basepoint morphism as (φ; c), where c = (c1, . . . , cn) with cj ∈ CG(jφ).
For a morphism ψ : p −→ q in Π, write

ψ∗ :
∏

1≤j≤n

CG(jφ) −→
∏

1≤j≤n

CG(jφψ)

for the map D(q,n) −→ D(p,n) induced by ψ from the component of φ to the
component of φ ◦ψ, and write ψ∗ : Xp −→ Xq for the induced morphism giving the
covariant functoriality of X . Then the equivalence relation ∼ takes the form

(8.1) (φ ◦ ψ;ψ∗c;x) ∼ (φ; c;ψ∗x)

for (φ; c) ∈ D(q,n) and x ∈ Xp. We shall use the identifications induced by ∼ to
cut down on the number of components that need be considered. To this end, we
first describe the structure of Π and F , partially following [38, §5].

Definition 8.2. Recall that Π is the subcategory of F with the same objects and
those maps φ : m −→ n such that |φ−1(j)| ≤ 1 for 1 ≤ j ≤ n. A map π ∈ Π
is a projection if |π−1(j)| = 1 for 1 ≤ j ≤ n. A map ι ∈ Π is an injection if
ι−1(0) = {0}. The permutations are the maps in Π that are both injections and
projections. A projection or injection is proper if it is not a permutation. Recall
that I is the subcategory of injections in Π.

Definition 8.3. A map φ ∈ F is ordered (or more accurately monotonic) if i < j
implies φ(i) ≤ φ(j); note that this does not restrict the ordering of those i such
that φ(i) = k for some fixed k. A map ε ∈ F is effective if ε−1(0) = {0}, and an
effective map ε is essential if it is surjective, that is, if jε ≥ 1 for 1 ≤ j ≤ n.

Observe that every morphism of Π is a composite of proper projections, proper
injections, and permutations, and that F is generated under wedge sum and com-
position by Π and the single product morphism φ2 : 2 −→ 1.
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Lemma 8.4. A map φ : m −→ n in F factors as the composite ι ◦ ε ◦ π of a
projection π, an essential map ε and an injection ι, uniquely up to permutation.
That is, given two such decompositions of φ, there are permutations σ and τ making
the following diagram commute.

q
ε //

σ

��

r

ι

��❄
❄❄

❄❄
❄❄

❄

τ

��

m

π

>>⑥⑥⑥⑥⑥⑥⑥⑥

π′

  ❆
❆❆

❆❆
❆❆

❆ n

q
ε′

// r
ι′

??⑧⑧⑧⑧⑧⑧⑧⑧

Proof. The projection π is determined up to order by which i ≥ 1 in m are mapped
to 0 in n. The injection ι is determined up to order by which j ≥ 1 in n are not in the
image of φ. Up to order, ε is the wedge sum in F of the product maps φsj : sj −→ 1,

where sj = |φ−1(j)| for those j such that 1 ≤ j ≤ n and φ−1(j) is nonempty. Up
to permutation, these sj run through the numbers |ε−1(j)|, 1 ≤ j ≤ r. �

Remark 8.5. We remark that Π and F are dualizable Reedy categories, as defined
by Berger and Moerdijk [4, Definition 1.1 and Example 1.9(b)]. They write F+ for
the monomorphisms and F− for the epimorphisms in F . We have factored epi-
morphisms into composites of projections and essential maps to make the structure
clearer. We say that an F -G-space is Reedy cofibrant if its underlying Π-G-space
is so (see Definition 6.11). In discarded drafts, we proved that all bar construction
F -G-spaces used in the Segal machine are Reedy cofibrant.

A map φ : q −→ n in F is ineffective if and only if it factors as a composite

q
π //p

ζ //n,

where p = q − 0φ, π is the proper ordered projection such that π(k) = 0 if and
only if φ(k) = 0, and ζ is an effective morphism. Then jζ = jφ for j ≥ 1 and, as in
Observation 5.2, π∗(c) = c for any c ∈

∏
j CG(jζ). Therefore

(φ; c;x) = (ζπ;π∗(c);x) ∼ (ζ; c;π∗(x)).

This says both that we may restrict to those wedge summands that are indexed on
the effective morphisms of F , ignoring the ineffective ones, and that we can ignore
the proper projections in Π, restricting further analysis to ∼ applied to morphisms
of I ⊂ Π. Here we must start paying attention to permutations.

Lemma 8.6. If ε : p −→ n is an effective morphism in F , there is a permutation
ν ∈ Σp such that ε ◦ ν is ordered; ν is not unique, but the ordered morphism ε ◦ ν
is.

Applying ∼ to the permutations ν, we can further restrict to components indexed
on ordered effective morphisms. We abbreviate notation.

Notation 8.7. We say that an ordered effective morphism in F is an OE-function.
If ε is effective and ε ◦ ν is ordered, we call it the OE-function associated to ε. We
let E (p,n) denote the set of all OE-functions p −→ n.
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Definition 8.8. Let ε : p→ n be an OE-function. Note that the sum of the jε is
p and define

Σ(ε) = Σ1ε × · · · × Σnε
⊂ Σp,

where the inclusion is determined by identifying p with 1ε ∨ · · · ∨ nε. In other
words, we partition {1, . . . , p} into n blocks of letters, as dictated by ε.

Lemma 8.9. If ε : p → n is an OE-function and ν ∈ Σp, then ε ◦ ν is ordered
(and hence equal to ε) if and only ν is in the subgroup Σ(ε).

The equivalence relation ∼ is defined in terms of precomposition of morphisms
of F with morphisms of Π, while the action of Π on DX is defined in terms of
postcomposition of morphisms of F with morphisms of Π. Especially for permuta-
tions, these are related. We discuss composition with permutations on both sides
in the following three remarks.

Remark 8.10. Let ε : p −→ n be an OE-function and let σ ∈ Σn. Define τ(σ) ∈
Σp to be the permutation that permutes the n blocks of letters {1ε, . . . , nε} as
σ permutes n letters. Then σ ◦ ε ◦ τ(σ)−1 is again ordered, and it is the OE-
function associated to σ ◦ ε. Moreover, the function τ = τε : Σn −→ Σp is a
homomorphism. Inspecting our identifications and using Observation 5.2, we see
that postcomposition with σ sends a point with representative (ε; c1, . . . , cn;x) to
the point with representative

(8.11)
(
σετ(σ)−1; cσ−1(1), . . . , cσ−1(n); τ(σ)∗x

)
.

Remark 8.12. One can think of anOE-function ε : p −→ n as an ordered partition
of the set {1, . . . , p} into n ordered subsets. Observe that ε is essential if and only if
jε > 0 for 1 ≤ j ≤ n, so that our n subsets are all nonempty. Define the signature
of ε to be the unordered set of numbers {1ε, . . . , nε}. The action of Σn permutes
partitions with the same signature (and thus the same p). The OE-functions ε and
σ ◦ ε ◦ τ(σ)−1 have the same signature, and any two ordered partitions with the
same signature are connected this way.

Remark 8.13. If ε : p −→ n is an OE-function and ρ ∈ Σp, then

(ε ◦ ρ; c;x) ∼ (ε; (ρ−1)∗c; ρ−1
∗ x).

We have now accounted for ∼ applied to all proper projections and to all permu-
tations. It remains to consider proper injections ι. For any such ι : p −→ q, there
is a permutation ν ∈ Σp such that ι ◦ ν is ordered. Recall that we have the ordered
injections σi : p− 1 −→ p that skip i, 1 ≤ i ≤ p. Every proper ordered injection
is a composite of such σi, so it remains to account for ∼ applied to the σi. These
give an equivalence relation on

∐

q

∐

ε∈E (q,n)

( ∏

1≤j≤n

CG(jε)

)
×Σ(ε) Xq

whose quotient is (DX)n. The component with q = 0 gives the basepoint.
The monad D, like the monad CG, is filtered. Its pth filtration at level n, denoted

Fp(DX)n, is the image of the components indexed on q ≤ p. We can think of the
quotient as given by filtration-lowering “basepoint identifications”, namely

(8.14) (ε; c1, . . . , cn; (σi)∗x) ∼ (ε ◦ σi; c1, . . . , ci−1, σrci, ci+1, . . . , cn;x),
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for some i = 1, . . . , q. Here r is the position of i within its block of jε letters, where
j = ε(i), and σr : CG(jε) −→ CG(jε − 1) is the map from (6.1).19 In equivalent
abbreviated notation, we write this as

(8.15) (ε; c; (σi)∗x) ∼ (ε ◦ σi;σ
∗
i c;x)

Definition 8.16. Fixing an ε ∈ E (p,n), write [c;x] for an element of
∏

1≤j≤n

CG(jε
)
×Σ(ε) Xp,

meaning that (c;x) is a representative element for an orbit [c;x] under the action
of Σ(ε). Recall from Definition 6.11 that x is degenerate if x ∈ LpX , that is, if
x = (σi)∗y for some y ∈ Xp−1 and some i. Say that (ε; [c;x]) is degenerate if x
is degenerate. Since τ ◦ σi is a proper injection for any τ ∈ Σ(ε) and any i, the
condition of being degenerate is independent of the orbit representative (c;x).

By use of (8.15), we reach the following description of the elements of (DX)n.

Lemma 8.17. A point of (DX)n has a unique nondegenerate representative (ε; [c;x]).

Just as nonequivariantly ([38, p. 218]), we have pushouts of (G× Σn)-spaces

(8.18)
∐
ε∈E (p,n)

(∏
1≤j≤n CG(jε)

)
×Σ(ε) LpX

ν //

��

Fp−1(DX)n

��∐
ε∈E (p,n)

(∏
1≤j≤n CG(jε)

)
×Σ(ε) Xp

// Fp(DX)n

With notation as in (8.15), the map ν sends a point with orbit representative
(ε; c; (σi)∗x) to the point with orbit representative (ε ◦ σi;σ∗

i c;x).
Recall that X is Reedy cofibrant if the inclusion LpX −→ Xp is a (G × Σp)-

cofibration for each p. When X is Reedy cofibrant, each component of the left
vertical map is a (G × Σp)-cofibration before taking the quotient by Σ(ε), so the
map on Σ(ε) quotients is a G-cofibration by [7, Lemma A.2.3]. Since Σn acts by
permuting components and the factors of the displayed products, it follows that
the left vertical map is a (G×Σn)-cofibration, hence so is the right vertical arrow.

8.2. The proof that DX is Reedy cofibrant. Let T ⊂ n \ {0}. We use the
notation ΣT for the subgroup of Σn of those permutations τ such that τ(T ) = T .
Note that ΣT consists of those permutations that act separately within T and its
complement. As a group, ΣT it is isomorphic to Σ|T | × Σn−|T |.

Notation 8.19. We denote by σT : n− |T| −→ n the ordered injection that misses
the elements of T . It can be written as σT = σik · · ·σi1 where i1 < · · · < ik are
the elements of T . If T is empty we use the convention that σT = id (which makes
sense as the empty composition). Note that for a Π-G-space X ,

σTXn−|T | =
⋂

i∈T

σiXn−1.

For the case T = ∅ this matches the intuition that an empty intersection of subsets
of Xn should be Xn.

19For consistency of notation here, we might have written σ∗

r instead of σr , as appears in (6.1).
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Note that any ordered injection is of the form σT . By Remark 6.12, it suffices
to show that for all subsets T , the maps

(8.20) σT : (DX)n−|T | −→ (DX)n

are (G × ΣT )-cofibrations. Note that the action of ΣT on (DX)n−|T | is given by
restricting to the action on the block n \ T and identifying it with the set n− |T|.

Consider the cube obtained by mapping the pushout square of (8.18) for (DX)n−|T |

to the pushout square (8.18) for (DX)n. Write σT for the maps from the four cor-
ners of the first square to the four corners of the second square. We will prove by
induction on p that the map

(8.21) σT : Fp(DX)n−|T | −→ Fp(DX)n

is a (G×ΣT )-cofibration, and we assume this for the map with p replaced by p− 1.
The vertical maps in the diagram (8.18) for DXn−|T | are (G×Σn−|T |)-cofibrations,
so they are (G×ΣT )-cofibrations via the action described above. The vertical maps
in the diagram (8.18) for DXn are (G× Σn)-cofibrations, so in particular they are
also (G× ΣT )-cofibrations.

The map σT on the left corners of the diagram is given by

(ε, [(c1, . . . , cn−|T |), x)] 7→ (σT ◦ ε, [(d, x)]),

where d is the n-tuple given by

dj =

{
0 ∈ CG(0) if j ∈ T

cσ−1
T (j) if j 6∈ T

It is not hard to see that for the left entries of the pushout diagram, the map
σT is the inclusion of those components labeled by maps ε : p −→ n that miss the
elements of T . The groups Σn−|T | and Σn act on the source and target, respectively,
as stated in Remark 8.10. In particular, both actions shuffle components, hence the
inclusion of components is a (G × ΣT )-cofibration. By the induction hypothesis,
the map connecting the top right corners of the cube is also a (G×ΣT )-cofibration.

It follows from Proposition 10.1 that the map (8.21) connecting the bottom right
corners of the cube is a (G× ΣT )-cofibration, as claimed, noting that

σT

(
∐

ε∈E (p,n−|T|)

( n−|T |∏

j=1

CG(jε)
)
×Σ(ε) Xp

)
∩

(
∐

ε∈E (p,n)

( n∏

j=1

CG(jε)
)
×Σ(ε) LpX

)

is equal to

σT

(
∐

ε∈E (p,n−|T|)

( n−|T |∏

j=1

CG(jε)
)
×Σ(ε) LpX

)
.

To complete the proof that the map (8.20) is a (G × ΣT )-cofibration, we use
Proposition 10.2 to conclude that the map of colimits

σT : (DX)n−|T | = colimp Fp(DX)n−|T | −→ colimp Fp(DX)n = (DX)n

is a (G× ΣT )-cofibration. We must check that the intersection condition

σT (Fp(DX)n−|T |) ∩ Fp−1(DX)n = σT (Fp−1(DX)n−|T |)

of Proposition 10.2 is satisfied. One inclusion is obvious. For the other, take an
element (ε, [c, x]) ∈ Fp(DX)n−|T | \ Fp−1(DX)n−|T |; in particular, x ∈ Xp \ LpX .
Then σT (ε, [c, x]) = (σT ε, [σ

∗
T c, x]) ∈ Fp(DX)n \ Fp−1(DX)n, as required.
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8.3. The proof that D preserves F•-equivalences. We assume given an F•-
equivalence f : X −→ Y between Reedy cofibrant Π-G-spaces. Theorem 6.13(i)
says that Df : DX −→ DY is an F•-equivalence. We shall prove it by proving by
induction on p that f induces an Fn-equivalence Fp(DX)n −→ Fp(DY )n for each n
and each p ≥ 0, there being nothing to prove when p = 0. By the usual gluing lemma
on pushouts, proven equivariantly in [6, Theorem A.4.4] (but also a model theoretic
formality), it suffices to prove that the maps induced by f on the source and target
of the left vertical arrow in (8.18) induce equivalences on Λ-fixed point spaces,
where Λ ⊂ G × Σn and Λ ∩ Σn = {e}. We have Λ = {(h, α(h)) | h ∈ H} for some
subgroup H of G and homomorphism α : H −→ Σn, and we regard n as a based
H-set via α. Fixing Λ for the rest of the section, we shall prove Theorem 6.13(i)
by analyzing Λ-fixed points.

We first consider the target, that is the lower left corner of the diagram. To
clarify the argument, we separate out some of its combinatorics before proceeding.

Definition 8.22. Let ε : p −→ n be an OE-function, let τ : Σn −→ Σp be the
homomorphism determined by ε as defined in Remark 8.10, and define β : H −→ Σp
to be the composite homomorphism τα. Say that ε is Λ-fixed if α(h)ε = εβ(h) for
all h ∈ H . Note that this implies that jε = kε if j and k are in the same H-orbit.

Define E (p,n)Λ to be the set of all Λ-fixed OE-functions p −→ n. Fix ε ∈
E (p,n)Λ. Say that a function

γ = (γ1, . . . , γn) : H −→ Σ(ε)

is admissible, or admissible with respect to α, if

(8.23) γj(hk) = γj(h)γα(h)−1(j)(k)

for h, k ∈ H and 1 ≤ j ≤ n. For any function γ : H −→ Σ(ε), define a function20

γ · β : H −→ Σp by (γ · β)(h) = γ(h)β(h).

We leave the combinatorial proof of the following lemma to the reader. When
the action of H on n \ 0 has a single orbit, there is a conceptual rather than
combinatorial proof using wreath products.

Lemma 8.24. Fix ε ∈ E (p,n)Λ. A function γ : H −→ Σ(ε) is admissible with
respect to α if and only if γ · β is a homomorphism H −→ Σp.

The following result is the central step of the proof of Theorem 6.13(i). It
identifies the Λ-fixed points of the bottom left corner of the pushout diagram (8.18).

Proposition 8.25. Let Λ = {(h, α(h))} and assume that the action of H on n\{0}
defined by α is transitive. Then there is a natural homeomorphism

(∐
ε∈E (p,n)

((∏
1≤j≤n CG(jε)

)
×Σ(ε) Xp

))Λ

ω

��∐
ε∈E (p,n)Λ

(∐
γ : H−→Σ(ε) CG(1ε)

Λ1
γ ×X

Λγ
p

)
/Σ(ε).

In the target, the second wedge runs over all admissible functions

γ = (γ1, . . . , γn) : H −→ Σ(ε);

20We use the notation · since we often use juxtaposition to mean composition in this section.
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the groups Λγ and Λ1
γ are specified by

Λγ = {(h, (γ · β)(h))|h ∈ H} ⊂ G× Σp

and

Λ1
γ = {(k, γ1(k))|k ∈ K} ⊂ G× Σ1ε ,

where K ⊂ H is the isotropy group of 1 under the action of H on n given by α.

Proof. Since α(k)(1) = 1 for k ∈ K, γ1 is a homomorphism K −→ Σ1ε by special-
ization of (8.23). In the target, we pass to orbits from the Σ(ε)-action defined on
the term in parentheses by

ρ(γ; c;x) = (ρ ∗ γ; cρ−1
1 ; ρ∗x),

Here ρ = (ρ1, . . . , ρn) is in Σ(ε), γ is admissible, c ∈ CG(1ε)
Λ1

γ , and x ∈ X
Λγ
p . The

jth coordinate of ρ ∗ γ is defined by

(8.26) (ρ ∗ γ)j(h) = ρjγj(h)ρ
−1
α(h)−1(j).

A quick check of definitions shows that

(ρ ∗ γ) · β = ρ(γ · β)ρ−1,

which also implies that ρ ∗ γ is admissible since γ is admissible. Similarly, cρ−1
1 is

fixed by Λ1
ρ∗γ since c is fixed by Λ1

γ and ρ∗(x) is fixed by Λρ∗γ since x is fixed by
Λγ . Thus the action makes sense. Moreover, as we shall need later, this action is

free. If ρ(γ; c;x) = (γ; c;x), then cρ−1
1 = c and thus ρ1 = 1 since Σ1ε acts freely

on CG(1ε). Also, ρ ∗ γ = γ and thus ρ−1
j γj(h)ρα(h)−1(j) = γj(h) for all h. Taking

j = 1, this implies that ρα(h)−1(1) = 1 for all h. Since we are assuming the action
of H induced by α on n \ {0} is transitive, this implies that ρ = 1 ∈ Σ(ε).

We turn to the promised homeomorphism. By (8.11), for a point z represented
by (ε; c1, . . . , cn;x), cj ∈ CG(jε) and x ∈ Xp, (h, α(h))z is represented by

(
α(h)εβ(h)−1;hcα(h)−1(1), . . . , hcα(h)−1(n);β(h)∗(hx)

)

where, as before, β = τα. Assume that z is fixed by Λ. Then we must have
α(h)εβ(h)−1 = ε, so that α(h)ε = εβ(h) and thus ε ∈ E (p,n)Λ. We must also have

(c1, . . . , cn;x) ∼
(
hcα(h)−1(1), . . . hcα(h)−1(n);β(h)∗(hx)

)
,

so that for each h ∈ H there exists γ(h) = γ1(h)× · · · × γn(h) ∈ Σ(ε) such that

(8.27) cjγj(h) = hcα(h)−1(j) and x = γ(h)∗β(h)∗(hx).

Note that for any given n-tuple (c1, . . . , cn), γ(h) is unique since the action of Σ(ε)
on
∏

1≤j≤n CG(jε) is free. For h, k ∈ H and 1 ≤ j ≤ n,

cjγj(hk) = (hk)cα(hk)−1(j)

= h(kcα(k)−1(α(h)−1(j)))

= hcα(h)−1(j)γα(h)−1(j)(k)

= cjγj(h)γα(h)−1(j)(k).

Since the action of Σjε on CG(jε) is free, this implies that (8.23) holds, so that γ is
admissible. Note that we have not yet used that the action given by α is transitive.

Now the map ω is defined by

ω(ε; c1, . . . , cn;x) = (ε; γ; c1;x).
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We see from (8.27) that x is in X
Λγ
p and that c1 is in CG(1ε)

Λ1
γ , the latter using

the fact that K is the isotropy group of 1 ∈ n \ {0}. We must check that our map
is well-defined. Thus suppose that

(ε; c1, . . . , cn;x) ∼ (ε; d1, . . . , dn; y).

Then there exists ρ ∈ Σ(ε) such that cj = djρj and y = ρ∗x. Using (8.26) and
(8.27),

hdα(h)−1(j) = hcα(h)−1(j)ρ
−1
α(h)−1(j)

= cjγj(h)ρ
−1
α(h)−1(j)

= djρjγj(h)ρ
−1
α(h)−1(j)

= dj(ρ ∗ γ(h))j

Thus, comparing with (8.27) for (d1, . . . , dn; y), and using the freeness of the action,
we see that

ω(ε; d1, . . . , dn; y) = (ε; ρ ∗ γ, d1, y) = (ε; ρ ∗ γ, c1ρ
−1
1 , ρ∗x) = ρ(ε; γ; c1;x),

so that the targets of our equivalent elements are equivalent.
Clearly ω is continuous since it is obtained by passage to orbits from a (discon-

nected) cover by restriction to subspaces of the projection that forgets the coordi-
nates (c2, . . . , cn).

To define ω−1, first choose coset representatives for H/K whereK is the isotropy
group of 1, that is, choose hj ∈ H such that α(hj)(1) = j for 1 ≤ j ≤ n, taking
h1 = e. Then define ω−1 by

ω−1(ε; γ; c;x) = (ε; c1, . . . , cn;x)

where cj = hjcγj(hj)
−1. Note that c1 = c and that the map does not depend on

the choice of coset representatives. Here, ε is Λ-fixed, γ : H −→ Σ(ε) is admissible,

c ∈ CG(1ε)
Λ1

γ and x ∈ X
Λγ
p . We must show that ω−1(ε; γ; c;x) is fixed by Λ. First,

note that (h, α(h)) sends ε to α(h)εβ(h)−1 = ε, since ε ∈ E (p,n)Λ. Omitting ε
from the notation for readability,

(h, α(h))(c1, . . . , cn, x) = (hcα(h)−1(1), . . . , hcα(h)−1(n), β(h)∗(hx))

= (hcα(h)−1(1), . . . , hcα(h)−1(n), γ(h)
−1
∗ (x))

∼ (hcα(h)−1(1)γ1(h)
−1, . . . , hcα(h)−1(n)γn(h)

−1, x).

We claim that hcα(h)−1(j)γj(h)
−1 = cj. The definition of cα(h)−1(j) gives us the

following identification.

hcα(h)−1(j)γj(h)
−1 = h

(
hα(h)−1(j)cγα(h)−1(j)(hα(h)−1(j))

−1
)
γj(h)

−1

Now note that

α(hhα(h)−1(j))(1) = α(h)(α(h)−1(j)) = j,

thus hhα(h)−1(j) is in the coset represented by hj . So there exists a k ∈ K such
that hhα(h)−1(j) = hjk. Since γ satisfies equation (8.23), we get the following:

γj(h)γα(h)−1(j)(hα(h)−1(j)) = γj(hhα(h)−1(j))

= γj(hjk)

= γj(hj)γα(hj)−1(j)(k)

= γj(hj)γ1(k)
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Thus
hcα(h−1)(j)γj(h)

−1 = hjkcγ1(k)
−1γj(hj)

−1 = hjcγj(hj)
−1 = cj

as claimed. Thus the map really does land in the Λ-fixed points.
To show that ω−1 is well-defined, note that if (ε; γ; c;x) ∼ (ε, ρ ∗ γ; cρ−1

1 , ρ∗x)
for some ρ ∈ Σ(ε), we have that ω−1 sends the latter to (ε; d1, . . . , dn; ρ∗x), where

dj =hjcρ
−1
1 (ρjγj(hj)ρ

−1
α(hj)−1(j))

−1

=hjcρ
−1
1 (ρjγj(hj)ρ

−1
1 )−1

=hjcρ
−1
1 ρ1γj(hj)

−1ρ−1
j

=cjρ
−1
j

Thus
(d1, . . . , dn, ρ∗x) = ρ · (c1, . . . , cn, x),

so the map is well-defined. This map is clearly continuous.
It is easy to see that the map forward and the map backward composed in either

order are the identity, hence we get the claimed homeomorphism. �

The restriction to transitive action by α in the previous result serves only to
simplify the combinatorics. The following remark indicates the changes that are
needed to deal with the general case.

Remark 8.28. When the action of H on n \ {0} is not transitive, we argue anal-
ogously to Lemma 2.7 and Theorem 5.5 to obtain an anaologous homeomorphism.
We break the H-set n \ {0} given by α into a disjoint union of orbits H/Ka of size
na = |H/Ka|, where

∑
a na = n and Ka is the isotropy group of the initial element,

denoted 1a, in its orbit in n \ {0}. That breaks n into the wedge of subsets na
and breaks Σ(ε) into a product of subgroups Σ(ε(a)) =

∏
j∈H/Ka

Σ(jε). Paying

attention to the ordering, the product of the CG(jε) in the source of ω breaks into
the product over a of those CG(jε) such that j is in the ath orbit of n \ {0}. To
generalize the target of ω accordingly, define subgroups

Λ1a
γ = {(k, γ1a(k))|k ∈ Ka} ⊂ G× Σ(1a)ε

and replace CG(1ε)
Λ1

γ by the product over a of the CG((1a)ε)
Λ1a

γ . With these
changes of source and target and just a bit of extra bookkeeping, it is straightfor-
ward to state and prove the general analogue of Proposition 8.25.

In the single orbit case, observe that if f : Xp −→ Yp is a Λγ-equivalence, it
induces an equivalence on the target of ω before passage to quotients under the
action of Σ(ε). Since the Σ(ε) action is free, the equivalence passes to the quotients.
Generalizing to the multi-orbit case, this concludes our proof that we have a Λ-
equivalence in the lower left corner of the pushout diagram (8.18).

We next consider the upper left corner of (8.18). Precisely the same argument as
that just given, but with Xp replaced by LpX , identifies the Λ-fixed subspace of the
upper left corner in terms of appropriate fixed point subspaces of LpX . Therefore
the same argument as that just given shows that the following result implies that
f induces an equivalence on the upper left corner, as needed to complete the proof
of Theorem 6.13(i).

Proposition 8.29. If f : X −→ Y is an F•-equivalence of Reedy cofibrant Π-G-
spaces, then f : LnX −→ LnY is an Fn-equivalence for each n.
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To prove this, we need more combinatorics to identify (LnX)Λ, where Λ ∈ Fn.
We again take Λ = {(h, α(h)) | α : H −→ Σn} ⊂ G×Σn and again view n \ {0} as
an H-set via α. For a subset U of n\{0} with u elements, recall from Notation 8.19
that σU : n− u −→ n denotes the ordered injection that skips the elements in U . It
is a composite of degeneracies σU = σik · · ·σi1 where i1 < · · · < ik are the elements
of U . Given 1 ≤ i ≤ n, let πi : n −→ n− 1 be the ordered projection that sends i
to 0. Similarly, define πU : n −→ n− u to be the ordered projection that sends the
elements of U to 0; explicitly, πU = πi1 · · ·πik . Note that πUσU is the identity, and

σUπU (i) =

{
i if i 6∈ U

0 if i ∈ U.

Remark 8.30. The maps σi correspond to the degeneracies in ∆op via the inclusion
F : ∆op −→ F , except there is a shift since we are indexing on the non-zero elements
of n. The maps πi are mostly invisible to ∆. The collection of maps {σ, π} satisfies
the following subset of the simplicial relations, as can be easily checked.

πiπj = πj−1πi if i < j

σjσi = σiσj−1 if i < j

πiσj = σj−1πi if i < j

πiσi = id .

Now assume that U ⊂ n\{0} is aH-subset of n\{0} and note that its complement
is also a H-subset of n \ {0}. For h ∈ H , define

αU (h) = πUα(h)σU : n− u −→ n− u.

This is essentially the restriction of α(h) to n \ U , but using the ordered inclusion
σU to identify that set with n− u. Note that αU (e) = id and that

(8.31) α(h)σU = σUπUα(h)σU = σUαU (h)

since σUπU is the identity on n \ U and 0 on U and since α(h)σU is 0 on U and
takes n \ U to itself. This implies that αU is a homomorphism H −→ Σn−u since

αU (h)αU (k) = πUα(h)σUπUα(k)σU = πUα(h)α(k)σU = πUα(hk)σU = αU (hk),

where the second equality uses (8.31) with h replaced by k. Thus we can define

ΛU = {(h, αU (h)) | h ∈ H}.

We have the following identification of (LnX)Λ. Henceforward we abbreviate no-
tation for the action of F on X , writing σU for σU ∗ and so forth.

Lemma 8.32.

(LnX)Λ =
⋃
σU

(
(Xn−u)

ΛU

)

where the union runs over the H-orbits U ⊂ n \ {0}.

Proof. For U ⊂ n \ {0} and z ∈ (Xn−u)
ΛU , σUz is a Λ-fixed point since

(h, α(h)) · (σUz) = α(h)(hσU z) = α(h)σU (hz) = σUαU (h)(hz) = σUz,

for h ∈ H ; the next to last equality holds by (8.31) and the last holds since z is a
ΛU -fixed point. This gives one inclusion.
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For the other inclusion, we first note that the action of Σn on LnX can be
expressed as follows. Let ρ ∈ Σn and x ∈ LnX , so that x = σiy for some i,
1 ≤ i ≤ n, and some y ∈ Xn−1. Then

ρx = ρσiy = σρ(i)ρ̃y

where ρ̃ = πρ(i)ρσi is a permutation in Σn−1, as is easily checked. Now suppose
that x is a Λ-fixed point and let U be the H-orbit of i in n\{0}. Then x ∈ σj(Xn−1)
for all j ∈ U since

x = (h, α(h)) · x = α(h)(hx) = α(h)(hσiy) = α(h)σi(hy) = σα(h)(i)α̃(h)(hy)

for h ∈ H . It follows that x = σUz, where z = πUx ∈ Xn−u. We claim that z is a
ΛU -fixed point. Indeed

σUz = x = α(h)(hx) = α(h)σU (hz) = σUαU (h)(hz),

and the claim follows since σU is injective. This gives the other inclusion. �

Next we consider the intersection of the subspaces corresponding to two such
subsets U .

Lemma 8.33. Let U and V be disjoint H-subsets of the action of H on n \ {0}
given by α. Let U have u elements and V have v elements. Then

σU

(
(Xn−u)

ΛU

)
∩ σV

(
(Xn−v)

ΛV

)
= σU∪V

(
(Xn−u−v)

ΛU∪V

)

= σUσṼ

(
(Xn−u−v)

(ΛU )
Ṽ

)
,

where Ṽ , also with v elements, is the subset of n \ (U ∪{0}) that σU maps onto the
subset V of n \ {0}.

Proof. The notation obscures the fact that Ṽ depends on U , but we always use it
directly following the U to which it pertains. Note that the last equality follows
from the facts that σU∪V = σUσṼ and ΛU∪V = (ΛU )Ṽ . Suppose that x is in the
intersection. Then x = σiyi for all i ∈ U and also for all i ∈ V , hence x = σU∪V z,
where z = πU∪V x ∈ Xn−|U∪V |. By the same argument as in the proof of the
previous lemma, z is a ΛU∪V -fixed point.

For the opposite inclusion, let x = σU∪V z, where z ∈ (Xn−|U∪V |)
ΛU∪V . Then

x = σUyU where yU = σṼ z is a ΛU -fixed point by the same argument as in the
previous proof. Indeed, its first part works for all H-subsets, not just orbits, to give
that x is a Λ-fixed point, and then its second part gives that yU is a ΛU -fixed point.
The symmetric argument gives that x = σV yV where yV is a ΛV -fixed point. �

Finally, we use these lemmas to prove Proposition 8.29.

Proof of Proposition 8.29. We first observe that an argument similar to the proof
of Lemma 8.32 shows that for all orbits (in fact, all H-subsets) U of n,

σU
(
(Xn−u)

ΛU
)
=
(
σU (Xn−u)

)Λ
= σU (Xn−u) ∩X

Λ
n .

Since σU is a closed inclusion, this shows that σU
(
(Xn−u)

ΛU
)
is closed in XΛ

n .
Let U1, . . . , Um be the orbits of the H-set n \ {0}, with corresponding cardinalities
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u1, . . . , um. For 1 ≤ k ≤ m, we have

σUk
(X

ΛUk

n−uk
) ∩

( k−1⋃

i=1

σUi
(X

ΛUi

n−ui
)

)
=

k−1⋃

i=1

σUk
(X

ΛUk

n−uk
) ∩ σUi

(X
ΛUi

n−ui
)

=

k−1⋃

i=1

σUk
σŨi

(X
(ΛUk

)Ũi

n−uk−ui
)

= σUk

( k−1⋃

i=1

σŨi
(X

(ΛUk
)Ũi

n−uk−ui
)
)

where the next to last equality holds by Lemma 8.33 and the others are standard
set manipulations. We therefore have inclusions which give the following pushout
diagram.

(8.34) σUk

(⋃k−1
i=1 σŨi

(X
(ΛUk

)Ũi

n−uk−ui
)
)

��

// ⋃k−1
i=1 σUi

(X
ΛUi

n−ui
)

��

σUk
(X

ΛUk

n−uk
) // ⋃k

i=1 σUi
(X

ΛUi

n−ui
)

This diagram is clearly a pushout of sets. It is a pushout of spaces since the lower
horizontal and the right vertical arrows are closed inclusions by our first observation,
so that their target has the topology of the union. By Lemma 8.32, the lower right
corner is (LnX)Λ when k = m.

We claim that the left vertical arrow and therefore the right vertical arrow is a
cofibration for each k ≤ m, the assertion being vacuous if k = 1. We prove this
by induction on n. Thus suppose it holds for all values less than n. In particular,
assume that it holds for each n − uk. Note that the orbits of n \ (Uk ∪ {0}) are

Ũ1, . . . , Ũk−1, Ũk+1, . . . , Ũm. Since σUk
(or any restriction of it to a subspace) is a

homeomorphism onto its image, it suffices to prove that the left vertical map is a
cofibration before application of σUk

. With n replaced by n− uk and with each Ũi
referring to Uk, the induction hypothesis applied to right vertical arrows gives that

k−1⋃

i=1

σŨi
(X

(ΛUk
)Ũi

n−uk−ui
) −→

⋃

i=1,...,k−1,k+1

σŨi
(X

(ΛUk
)Ũi

n−uk−ui
)

and each map
⋃

i=1,...,k−1,k+1,...,k+j−1

σŨi
(X

(ΛUk
)Ũi

n−uk−ui
) −→

⋃

i=1,...,k−1,k+1,...,k+j

σŨi
(X

(ΛUk
)Ũi

n−uk−ui
),

2 ≤ j ≤ m, is a cofibration. When j = m, the target of the last map is
(Ln−uk

X)ΛUk , and

(Ln−uk
X)ΛUk −→ (Xn−uk

)ΛUk

is a cofibration since X is Reedy cofibrant. Application of σUk
to the composite of

these cofibrations gives the left vertical arrow, completing the proof of our claim.
This allows us to prove by induction on k that we have a weak equivalence

k⋃

i=1

σUi
(X

ΛUi

n−ui
) −→

k⋃

i=1

σUi
(Y

ΛUi

n−ui
)
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for any k ≤ m. Since the σUi
are homeomorphisms onto their images, the base case

k = 1 holds by our assumption on f . The inductive step is an application of the
gluing lemma to the pushout diagram (8.34). For k = m, this gives that

(LnX)Λ −→ (LnY )Λ

is a weak equivalence, as required. �

9. Proofs of technical results about the Segal machine

We prove Propositions 2.22 and 2.23 in §9.1, focusing on the combinatorial anal-
ysis of the simplicial, conceptual, and homotopical versions of the Segal machine.
We prove the group completion property, Proposition 2.12, in §9.2. We prove the
positive linearity property, Theorem 3.18, in §9.3. The main step is to verify that
the relevant WG-G-spaces satisfy the wedge axiom formulated in Definition 9.9, and
we prove that in §9.4.

9.1. Combinatorial analysis of A• ⊗F X. Let X be an F -G-space. We first
compare the functor A• ⊗F X with geometric realization. Recall that the objects
of ∆ are the ordered finite sets [n] = {0, 1, . . . , n} and its morphisms are the non-
decreasing functions. As in §2.2, let F denote the simplicial circle S1

s = ∆[1]/∂∆[1]
viewed as a functor ∆op −→ F . Take the topological circle to be S1 = I/∂I.

Remark 9.1. The functor F sends the ordered set [n] to the based set n. For a map
φ : [n] −→ [m] in ∆ and 1 ≤ j ≤ n, Fφ : m −→ n sends i to j if φ(j − 1) < i ≤ φ(j)
and sends i to 0 if there is no such j. Thus

(Fφ)−1(j) = {i | φ(j − 1) < i ≤ φ(j)} for 1 ≤ j ≤ n.

If δi : [n − 1] −→ [n] and σi : [n + 1] −→ [n], 0 ≤ i ≤ n, are the standard face and
degeneracy maps that skip or repeat i in the target, then Fδi = di : n −→ n− 1

is the ordered surjection that repeats i for i < n but sends n to 0 if i = n, and
Fσi = si : n −→ n+ 1 is the ordered injection21 that skips i+1. Note in particular
that Fδ1 = φ2 : 2 −→ 1, which sends 1 and 2 to 1. In F , we also have ordered
projections πi : n −→ n− 1, used in §8.3, that are mostly invisible to ∆. The map
πi sends i to 0 and it sends j to j if j < i and to j − 1 if j > i.

To prove Proposition 2.23, we must compare

|X | = X ⊗∆ ∆ with X(A) := P(X)(A) = A• ⊗F X

when A = S1. To aid in the comparison, we rewrite |X | as ∆⊗∆op X . Here ∆ on
the left is the covariant functor ∆ −→ U that sends [n] to the topological simplex

∆n = {(t1, . . . , tn) | 0 ≤ t1 ≤ · · · ≤ tn ≤ 1}.

Nowadays it is more usual to use tuples (s0, s1, . . . , sn) such that 0 ≤ si ≤ 1 and∑
i si = 1, but the formulae si = ti+1− ti and ti = s0+ · · ·+si−1 translate between

the two descriptions. For 0 ≤ i ≤ n, the face map δi : ∆n−1 −→ ∆n and the
degeneracy map σi : ∆n+1 −→ ∆n are given by

δi(t1, . . . , tn−1) =





(0, t1, . . . , tn−1) if i = 0
(t1, . . . ti−1, ti, ti, ti+1, . . . tn−1) if 0 < i < n
(t1, . . . , tn−1, 1) if i = n

σi(t1, . . . , tn+1) = (t1, . . . , ti, ti+2, . . . , tn+1).

21In §6.2 and §8 it was denoted σi+1 as a map in the category I of finite sets and injections.
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Map ∆n to (S1)n by sending (t1, . . . , tn) ∈ ∆n to (t1, . . . , tn) ∈ (S1)n. Looking
at the definition of the functor F , we see that this defines a map ξ : ∆ −→ (S1)•

of cosimplicial spaces,22 where (S1)• is a cosimplicial space by pullback along F .
Therefore ξ induces a natural map

ξ∗ : |X | = ∆⊗∆op X −→ (S1)• ⊗F X = X(S1).

Recall that every point of |X | is represented by a unique point (u, x) such that
u ∈ ∆p is an interior point and x ∈ Xp is a nondegenerate point [39, Lemma 14.2].
Said another way, |X | is filtered with strata

Fp|X | \ Fp−1|X | = (∆p \ ∂∆p)× (Xp \ LpX),

where LpX , the pth latching space, is the union of the subspaces si(Xp−1) (see
Definition 1.8). The construction of Fp|X | from Fp−1|X | is summarized by the
concatenated pushout diagrams

(9.2) ∂∆p × LpX //

��

∆p × LpX

��
∂∆p ×Xp

// ∆p × LpX ∪ ∂∆p ×Xp

��

// Fp−1|X |

��
∆p ×Xp

// Fp|X |

We shall describe X(A) similarly for all A ∈ GW , and we shall specialize to
A = S1 to see that ξ∗ is a natural homeomorphism, using results about the structure
of F recorded in §8.1.

Remark 9.3. The functor F is a map of generalized Reedy categories in the sense
of [4]. Recall that the latching G-space LpX ⊂ Xp of an F -G-space X is defined
to be the latching space of its underlying Π-G-space, as defined in Definition 6.11.
The F -G-space X also has a latching space when regarded as a simplicial G-space
via F . Direct comparison of definitions shows that these two latching spaces are
the same.

By Lemma 1.16, the G-space X(A) is the quotient of
∐
n≥0A

n×Xn obtained by

identifying (φ∗(a), x) with (a, φ∗(x)) for all φ : m −→ n in F , a ∈ An, and x ∈ Xm.
Here φ∗(a1, . . . , an) = (b1, . . . , bm) where bi = aφ(i), with bi = ∗ if φ(i) = 0, and
φ∗(x) is given by the covariant functoriality of X . The image of

∐
n≤pA

n ×Xn is

topologized as a quotient and denoted FpX(A), and X(A) is given the topology of
the union of the FpX(A).

Notation 9.4. For an unbased G-space U , the configuration space Conf(U, p) is
the G-subspace of Xp of points (u1, . . . , up) such that ui 6= uj for i 6= j. For a based
G-space A, the based fat diagonal δAp ⊂ Ap is the G-subspace of points (a1, . . . , ap)
such that either some ai is the basepoint or ai = aj for some i 6= j. Observe that

Ap \ δAp = Conf(A \ {∗}, p).

Lemma 9.5. F0X(A) = ∗ ×X0. For p ≥ 1, the stratum

Conf(A \ {∗}, p)×Σp
(Xp \ LpX).

22Warning: we are thinking of both source and target as cosimplicial unbased spaces.
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The construction of FpX(A) from Fp−1X(A) is summarized by the concatenated
pushout diagrams

δAp ×Σp
LpX //

��

Ap ×Σp
LpX

��
δAp ×Σp

Xp
// Ap ×Σp

LpX ∪ δAp ×Σp
Xp

��

// Fp−1X(A)

��
Ap ×Σp

Xp
// FpX(A)

Proof. Using projections in F , every point of
∐
n≥1A

n×Xn is equivalent to a point

(a, x) such that either n = 0 or no coordinate of a is the basepoint of A. Using
permutations and canonical maps φi : i −→ 1 when i coordinates of a are equal,
every point is equivalent to a point (a, x) such that a has no repeated coordinates.
We must take orbits under the action of Σp as stated to avoid double counting of
elements. Using injections, every point is equivalent to a point (a, x) such that x
is nondegenerate. Taking care of the order in which the cited operations are taken,
using Lemma 8.4, the conclusion follows. �

It is now easy to see that ξ : |X | −→ X(S1) is a homeomorphism.

Proof of Proposition 2.23. As noted in Remark 9.3, the latching subspaces LpX for
X as a ∆op-G-space and as an F -G-space agree. We consider the strata on the
filtrations for |X | and X(S1) and find that ξ defines homeomorphisms

(∆p \ ∂∆p)× (Xp \ LpX) −→ Conf(S1 \ {∗}, p)×Σp
(Xp \ LpX).

To see this, identify Conf(S1\{∗}, p) with Conf(I\{0, 1}, p). Then ξ sends a point
((t1, . . . , tp), x) in the domain with 0 < t1 < · · · < tp < 1 to the equivalence class of
((t1, . . . , tp), x) in the target. Note that ((t1, . . . , tp), x) is the unique representative
of its class such that the coordinates ti are in increasing order. �

Proof of Proposition 2.22. Recall that we have the classifying F -G-space BX with
qth space |X [q]| and that SnX = (BnX)1. We must prove that (BnX)1 is home-
omorphic to X(Sn), and Proposition 2.23 shows that |X [q]| ∼= X [q](S1). For
any A ∈ GW , we have an F -G-space A ⊗ X with q-th space (X [q])(A). Thus
BX ∼= S1 ⊗X . We claim that Sn ⊗X is isomorphic to BnX ; evaluating at q = 1,
this gives the desired homeomorphism. Since Sn = S1 ∧ Sn−1, the claim is an im-
mediate induction from the following result, which is essentially Segal’s [51, Lemma
3.7]. �

Proposition 9.6. For A,B ∈ GW , A ⊗ (B ⊗X) and (A ∧ B) ⊗X are naturally
isomorphic.

Proof. Recall that X [q] has jth space Xjq, that is X(j ∧ q). Thus X [q](B) is a
quotient of

∐
j B

j ×X(j ∧ q). We can write it schematically as B• ⊗F X(• ∧ q).

Writing ⋆ for another schematic variable, we can write the q-th space of A⊗(B⊗X)
as

A⋆ ⊗F (B• ⊗F X(• ∧ ⋆ ∧ q)).
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It is a quotient of
∐
i,j A

i×Bj×Xjiq . We define a map A⊗(B⊗X) −→ (A∧B)⊗X
by passage to coequalizers from the maps that send

((a1, . . . , ai), (b1, . . . , bj), x) to ((ar ∧ bs), x)

where the ar’s are in A, the bs’s are in B, and x ∈ Xjiq . Here (ar ∧ bs) means
the set of ar ∧ bs in reverse lexicographic order. Indeed, since j ∧ i is ordered
lexicographically, we must order the ar∧bs to match that. However, r runs through
indices in i and s runs through indices in j, so the reverse lexicographical order is
required. In the other direction, given at ∧ bt for 1 ≤ t ≤ k and x ∈ Xkq we map

((a1 ∧ b1, . . . , ak ∧ bk), x) to ((a1, . . . , ak), (b1, . . . , bk),∆∗(x)),

where ∆: k∧q −→ k∧k∧q is ∆∧ id. Following Segal [51, p. 304], “we shall omit
the verification that the two maps are well-defined and inverse to each other”. It can
be seen in terms of the explicit description of the filtration strata in Lemma 9.5. �

9.2. The proof of the group completion property. Let X be a special F -G-
space, where G is any topological group. Then the Segal maps

δH : XH
n −→ (Xn

1 )
H = (XH

1 )n

are weak equivalences and XH is a nonequivariant special F -space. We emphasize
that we only need this naive condition: we do not require X to be F•-special.

It is convenient but not essential to modify the definition of a special F -G-space
by requiring the Segal maps δ to be G-homotopy equivalences rather than just weak
G-equivalences, and then their fixed point maps δH are also homotopy equivalences.
We can make this assumption without loss of generality since we are free to replace
X by ΓX , where Γ is a cofibrant approximation functor on G-spaces. We give X1

a Hopf G-space structure by choosing a G-homotopy inverse to δ when n = 2 and
using φ2. Then X1 and each XH

1 are homotopy associative and commutative, as
in our standing conventions about Hopf G-spaces in §1.1. We could instead work
with weak Hopf G-spaces, but doing so explicitly only obscures the exposition.

We must prove that the canonical map η : X1 −→ Ω|X | is a group completion
in the sense of Definition 1.6. Passage to H-fixed point spaces commutes with
realization, as we see by inspection of elements of |X |H in nondegenerate form
|x, u| where x is a nondegenerate n-simplex and u is an interior point of ∆n for
some n: x must be H-fixed. It also commutes with taking loops since G acts
trivially on S1. Thus the equivariant case of Proposition 2.12 follows directly from
the nonequivariant case. We therefore take G = e and ignore equivariance in the
rest of this section.

IfM is a topological monoid, we use its product to define a simplicial space B qM
with BnM = Mn. Then |B qM | is just the classical classifying space BM . When
M is commutative, B qM is the simplicial space obtained by pullback of the evident
special F -space with nth space Mn. When X is a special F -space its first space
X1 plays the role of M . Since X0 = ∗, X1 has a specified unit element e. Spaces
of the form X1 for a special F -space X give the Segal version of an E∞-space.

It makes sense to ask that a simplicial space X be reduced and special, since
we can use iterated face maps to define Segal maps Xn −→ Xn

1 . The Segal maps
of F -spaces are the images under F of these more general Segal maps. Then X1

is a Hopf space with product induced by a homotopy inverse to the second Segal
map and the map d1 : X2 −→ X1. When X is an F -space, φ2 = Fd1. Spaces
of the form X1 for a reduced special simplicial space X give the Segal version of
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an A∞-space. The group completion theorem for (reduced) special F -spaces is a
special case of the following more general group completion theorem.

Theorem 9.7. If X is a reduced special simplicial space such that X1 and Ω|X | are
homotopy associative and commutative, then η : X1 −→ Ω|X | is a group completion.

Just as for classical A∞-spaces, one can prove that X is equivalent as a Hopf
space to a topological monoid. Then the theorem can be derived from the result
for topological monoids. However, as we indicate briefly, the result as stated, with
homotopy commutativity weakened to the assumption that left and right multipli-
cation by any element are homotopic, was proven but not stated in [40, §15]. The
result actually stated there, [40, Theorem 15.1], is the case when Xn = Gn for a
topological monoid G but the proof is given in the generality of Theorem 9.7. We
summarize the argument, referring to [40] for details.

Since π1(|X |) = π0(Ω|X |) is an abelian group, it is isomorphic to H1(|X |;Z).
Using the Künneth theorem and inspection, we can check that π0(Ω|X |) is the
group completion of π0(X1) by an easy chain level argument given in [40, Lemma
15.2]. We just replace G and BG there with X1 and Ω|X | here.

For the rest, the proof of the homological part of the group completion property is
the same as in [40, §15]. The reader may appreciate a quick sketch since the strategy
becomes a good deal clearer without the details, but the details are there. The
proof starts from a based variant of the standard adjunction between topological
spaces and simplicial sets. By [40, Definition 15.3], there is an adjunction (T, S)
relating the category of reduced special simplicial spaces, denoted S +T there, to
the category T . The functor T = | − | is geometric realization. The functor S is
a reduced version of the total singular complex. For a based space K, SpK is the
set of p-simplices ∆p −→ K that map all vertices to the basepoint. In particular,
S1K = ΩK. Let φ : TSK −→ K and ψ : X −→ STX be the counit and unit of the
adjunction. Then [40, Proposition 15.5] gives the following result.

Proposition 9.8. If K ∈ T is path connected, then φ : TSK −→ K is a weak
equivalence. For any X ∈ S +T , Tψ : TX −→ TSTX is a weak equivalence.

From here, the main tool is the standard homology spectral sequence of the
filtered space TX = |X |. We take coefficients in a field R. Then, using the Künneth
theorem and the fact that X is special, we see that E1X is the algebraic bar

construction on H∗(X1), so that E2
p,qX = TorH∗(X1)

p,q (R,R). Clearly E2
0,0X = R

and E2
0,qX = 0 for q > 0. The spectral sequence converges to H∗(|X |). We have

the analogous spectral sequence for STX . The idea is to apply an appropriate
version of the comparison theorem for spectral sequences, [40, Lemma 15.6], to the
map of spectral sequences induced by the map of simplicial spaces ψ : X −→ STX .
On 1-simplices, ψ1 = η : X1 −→ Ω|X | and therefore E2ψ = Torη∗(id, id). The map
{Erψ} of spectral sequences converges to the weak equivalence TX −→ TSTX .
Therefore E∞ψ is an isomorphism.

Write A = H∗(X1) and let ι : A −→ A be its localization at the monoid π0(X1).
Write B = H∗(Ω|X |) and let ζ : A −→ B be the map of R-algebras such that
ζ ◦ ι = η∗; it is given by the universal property of localization. We must prove that
ζ is an isomorphism. It is a classical algebraic result [9, Proposition VI.4.1.1] that

Torι(id, id) : TorA(R,R) −→ TorA(R,R)
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is an isomorphism in our situation. Therefore we can identify E2ψ with

Torζ(id, id) : TorA(R,R) −→ TorB(R,R).

The rest of the argument is given in detail in [40, p. 93]. Both A and B are
the tensor products of their identity components with the group ring R[π0(Ω|X |)].
The cited version of the comparison theorem shows how to prove that E2

1,∗ψ is

an isomorphism and E2
2,∗ψ is an epimorphism. For connected graded algebras A,

TorA1,∗ and TorA2,∗ compute the generators and relations of A. Now the detailed
argument of [40, p. 93] proves by induction on degree that ζ is an isomorphism
between the identity components of A and B and is therefore an isomorphism.

9.3. The positive linearity theorem. We prove Theorem 3.18 in this section and
the next. In both, let G be any topological group and let X be an F -G-space. For
a based G-CW complex A, write Y (A) ambiguously for either B(A•,F , X), where
X is special, or B(A•,FG,PX), where X is F•-special; the latter case is equivalent
to B(A•,FG, Z), where Z is a special FG-G-space. Under either assumption,
write B q(A;X) for the simplicial bar construction whose realization is Y (A). These
notations remain fixed throughout these two sections. Recall §1.2. As asserted in
Remark 1.12 and is easily checked using that the degeneracy maps are given by
identity maps of F and FG, B q(A;X) is Reedy cofibrant in the simplicial sense.

To prove that the WG-G-space Y is positive linear, as defined in Definition 3.17,
we first isolate properties that together imply positive linearity.

Definition 9.9. A WG-G-space Z satisfies the wedge axiom if for all A and B in
GW the natural map

π : Z(A ∨B) −→ Z(A)× Z(B)

induced by the canonical G-maps A ∨ B −→ A and A ∨ B −→ B is a weak G-
equivalence.

Definition 9.10. Let Z be a WG-G-space and consider simplicial based G-CW
complexes A q.

(i) Z commutes with geometric realization if the natural G-map

|Z(A q)| −→ Z(|A q|)

is a homeomorphism.
(ii) Z preserves Reedy cofibrancy if the simplicial G-space Z(A q) is Reedy cofi-

brant when A q is Reedy cofibrant.

Definition 9.11. A WG-G-space Z preserves connectivity if Z(A) is G-connected
when A is G-connected.

Our WG-G-space Y satisfies all of the properties above. We record the results
here, with the proofs delayed to later.

Proposition 9.12. The WG-G-space Y satisfies the wedge axiom.

Proposition 9.13. The WG-G-space Y commutes with realization and preserves
Reedy cofibrancy.

Lemma 9.14. The WG-G-space Y preserves connectivity.

Granting these results, Theorem 3.18 is an application of the following theorem.
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Theorem 9.15. Let Z be a WG-G-space that satisfies the wedge axiom, commutes
with geometric realization, preserves Reedy cofibrancy, and preserves connectivity.
Then Z is positive linear.

The proof centers around the following construction of cofiber sequences in terms
of wedges and geometric realizations; it is a corrected version and equivariant gen-
eralization of a construction due to Woolfson [59].

Construction 9.16. Let f : A −→ B be a map in GW with cofiber i : B −→ Cf ,
where A is G-connected. We give an elementary simplicial description of Cf in
terms of wedges. Let qA denote the wedge of q copies of A, labelling the ith wedge
summand as Ai and setting 0A = ∗. We define a simplicial G-spaceW q(B,A) whose
space of q-simplices Wq(B,A) is B ∨ qA. Define face and degeneracy operators di
and si with domain Wq(B,A) for 0 ≤ i ≤ q as follows.

• All di and si map B onto B by the identity map.
• d0 maps A1 to B via f and maps Aj to Aj−1 by the identity map if j > 1.
• di, 0 < i < q, maps Aj to Aj by the identity map if j < i and maps Aj to Aj−1

by the identity map if j > i.
• dq maps Aj to Aj by the identity map if j < q and maps Aq to ∗.
• si maps Aj to Aj by the identity map if j ≤ i and maps Aj to Aj+1 by the

identity map if j > i.

The simplicial identities are easily checked.23 Note that there is not much choice:
the si must be inclusions with sisj = sj+1si for i ≤ j and they must satisfy
disi = id = di+1si. If we specify the si as stated, then the di must be as stated
except in the exceptional cases noted for d0 and dq.

Lemma 9.17. The realization |W q(B,A)| is homeomorphic to Cf . In particular,
the realization |W q(∗, A)| is homeomorphic to ΣA.

Proof. Clearly every point of Wq(B,A) for q ≥ 2 is degenerate. Therefore, identi-
fying ∆1 with I, the realization is the quotient of B × {∗} ∐ (B ∨ A)× I obtained
by the identifications

(b, t) ∼ (b, ∗) for b ∈ B and t ∈ I since s0b = b

(a, 0) ∼ (f(a), ∗) for a ∈ A since d0(a) = f(a)

(a, 1) ∼ (∗, ∗) for a ∈ A since d1(a) = ∗

It is simple to verify that the result is homeomorphic to Cf = B ∪f (A ∧ I). �

We record the following result, which is the equivariant generalization of [27,
Theorem 12.7]. It is proven by applying that result to H-fixed point simplicial
spaces for all closed subgroups H of G. A G-map f is a G-quasifibration if each fH

is a quasifibration. Similarly, a map p of simplicial based G-spaces is a simplicial
based Hurewicz G-fibration if each pH is a simplicial based Hurewicz fibration in
the sense of [27, Definition 12.5]).

Theorem 9.18. Let E q and B q be simplicial based G-spaces and let p q: E q −→ B q

a simplicial based Hurewicz G-fibration with fiber F q = p−1
q
(∗). If each Bq is G-

connected and B q is Reedy cofibrant, then the realization |p q| : |E q| −→ |B q| is a
G-quasifibration with fiber |F q|.

23They fail with the erroneous specification of faces in [59, Lemma 1.10].
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Proof of Theorem 9.15. Let f : A −→ B be a map in GW , where A is G-connected.
We must show that application of Z to the cofiber sequence

A
f //B

i //Cf

gives a fiber sequence.
Let p q: W q(B,A) −→ W q(∗, A) be the map of simplicial G-spaces given by send-

ing B to the basepoint and let i q: B q −→ W q(B,A) be the inclusion, where B q

denotes the constant simplicial space at B. On passage to realization, these give
the canonical maps

B
i //Cf

p //ΣA.

We apply our given WG-G-space Z to these maps to obtain the sequence

Z(B)
Z(i) //Z(Cf)

Z(p) //Z(ΣA) .

We claim that it is a fiber sequence. Since Z commutes with realization and since
Z(B) ∼= |Z(B q)|, this sequence is G-homeomorphic to the sequence

|Z(B q)|
|Z(i q)| // |Z(W q(B,A))|

|Z(p q)| // |Z(W q(∗, A))|.

On q-simplices, before realization, we have the commutative diagram

Z(B) // Z(B ∨ qA) //

��

Z(qA)

��
Z(B) // Z(B)× Z(A)q // Z(A)q

where the horizontal arrows are given by the evident inclusions and projections. The
vertical arrows are the canonical maps and are G-equivalences by the wedge axiom.
The simplicial G-spaces W q(B,A) and W q(∗, A) are trivially Reedy cofibrant, hence
so are Z(W q(B,A)) and Z(W q(∗, A)). The nondegeneracy of basepoints implies that
Z(B) × Z(A)• and Z(A)• are also Reedy cofibrant. Therefore the vertical arrows
become G-equivalences after passage to realization. Since A and therefore Z(A) is
G-connected, Theorem 9.18 applies to show that the realization of the bottom row
is a fibration sequence up to homotopy. Thus we have the fiber sequence

Z(B) −→ Z(Cf) −→ Z(ΣA)

and therefore also the fiber sequence

ΩZ(ΣA) −→ Z(B) −→ Z(Cf).

Specializing to the map id: A −→ A, we also have a fiber sequence

Z(A) −→ Z(CA) −→ Z(ΣA).

Since Z(CA) isG-contractible, we therefore have aG-equivalence Z(A) −→ ΩZ(ΣA)
and therefore the desired fiber sequence

Z(A) −→ Z(B) −→ Z(Cf). �

Proof of Lemma 9.14. Let A ∈ GW be G-connected, so that AH is connected for
all H . Using that passage to fixed points commutes with pushouts one leg of which
is a closed inclusion, it is easily checked that geometric realization and the bar
construction commute with passage to H-fixed points. Using this and Remark 3.6,
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we see that Y (A)H is the geometric realization of a simplicial space with 0-simplices
given by

(9.19)
∨

n

(AH)n ∧ (XH
n )+

or

(9.20)
∨

(n,α)

(A(n,α))H ∧ ((PX)(n, α)H)+,

depending on whether Y (A) is B(A•,F , X) or B(A•,FG,PX) for an F -G-space
X . We claim that the space of 0-simplices in either case is connected, so that the
geometric realization Y (A)H is also connected. In the first case, it is clear that
the space (9.19) is connected since we assume that AH is connected, and in the
second case, the space (9.20) is connected because (A(n,α))H is connected. Indeed,
note that (A(n,α))H ∼= (An)Λ where Λ = {(h, α(h)) | h ∈ H} ⊂ G × Σn, thus by
Lemma 2.7,

(A(n,α))H ∼=
∏

AKi ,

where the product is taken over the orbits of the H-set (n, α|H) and the Ki ⊂ H
are the stabilizers of elements in the corresponding orbit. Again, by our assumption
that the AKi are connected it follows that (A(n,α))H is connected. �

The following result will apply to show that Y commutes with realization.

Lemma 9.21. Let Z be a WG-G-space such that Z(A) is naturally isomorphic to
|Z q(A)| for some functor Z q from WG to simplicial based G-spaces. If the natural
G-map

|Zq(A q)| −→ Zq(|A q|)

is a G-homeomorphism for all simplicial based G-spaces A q and all q ≥ 0, then the
natural map

|Z(A q)| −→ Z(|A q|)

is a G-homeomorphism.

Proof. For a bisimplicial G-space, realizing first in one direction and then the other
gives a space that is G-homeomorphic to the one obtained by realizing in the op-
posite order. Let A q be a simplicial GW -space. Then Z(Ap) = |q 7→ Zq(Ap)|,
so

|Z(A q)| = |p 7→ |q 7→ Zq(Ap)||.

By the assumption on Zq,

Z(|A q|) = |q 7→ Zq(|p 7→ Ap|)| ∼= |q 7→ |p 7→ Zq(Ap)||.

The result follows. �

Proof of Proposition 9.13. We first prove that Y commutes with realization. Let
A• be a simplicial GW -space. In view of Lemma 9.21, it suffices to prove that the
natural map

|Yq(A•)| −→ Yq(|A•|)

is a G-homeomorphism for all q ≥ 0. Using the description of Yq in Remark 3.6
and the commutation of realization with products and half-smash products, this
follows from the definition of Y .

Now assume that A q is a Reedy cofibrant simplicial G-space. We must prove
that Y (A q) is Reedy cofibrant. Let Y = B((−)•,F , X); the proof in the case
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Y = B((−)•,FG,PX) is the same. By Lemma 1.9, it suffices to show that all of
the degeneracy maps

Si : B((An−1)
•,F , X)

B((si)
•,id,id)

−−−−−−−−−→ B((An)
•,F , X),

are G-cofibrations. Using a shorthand notation, the maps Si are geometric realiza-
tions of maps of Reedy cofibrant simplicial G-spaces that are given on q-simplices
by the G-cofibrations

(si)
nq ∧ (id) :

∨

n0,...,nq

(An−1)
nq ∧ (−) −→

∨

n0,...,nq

(An)
nq ∧ (−).

By Theorem 1.11, the Si are therefore G-cofibrations. �

9.4. The proof that the wedge axiom holds. We must prove Proposition 9.12,
which says that the WG-G-space Y satisfies the wedge axiom.

Proof of Proposition 9.12. We write the proof for Y (A) = B(A•,FG,PX), where
X is F•-special. The proof for Y (A) = B(A•,F , X), where X is (naively) special,
is essentially the same, but simpler since it is simpler to keep track of equivariance
in that case. For convenience of notation, we write a, b, c, d, e, f for based finite
G-sets, that is objects of FG. We write X(a) for the value of PX on a and Aa for
the based G-space TG(a,A), with G acting by conjugation.

Recall from §3.1 thatB(A•,FG,PX) = B×(A•,FG,PX)/B×(∗,FG,PX), where
B× is the usual categorical bar construction defined using the cartesian product.
Since the map

B×(A•,FG,PX) −→ B(A•,FG,PX)

of (3.4) is aG-equivalence, it suffices to prove the result for Y (A) = B×(A•,FG,PX)
instead.24

To do so, we shall construct a G-homotopy commutative diagram of G-spaces

(9.22) Z(A,B)

F

xxrrr
rr
rr
rr
r

Q

''◆◆
◆◆

◆◆
◆◆

◆◆
◆

Y (A ∨B)
P

// Y (A) × Y (B)

in which F and Q are weak G-equivalences and P is the canonical map induced by
the projections πA : A ∨B −→ A and πB : A ∨B −→ B. This will prove that P is
a weak G-equivalence.

In this section, we abbreviate notation by writing C (A; X) for the category inter-
nal to GU whose nerve is B×

q
(A,FG,PX) and whose classifying G-space is there-

fore Y (A). Recall from §3.1 that the object and morphism G-spaces of C (A;X)
are ∐

a

Aa ×X(a)

and ∐

a,c

Ac ×FG(a, c)×X(a).

Its source and target G-maps S and T are induced from the evaluation maps of
the contravariant GT -functor A• and the covariant GT -functor X from FG to

24It is irrelevant here that the new Y is not a WG-G-space since it is not a GT -functor, as
discussed in §3.1.
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TG. The identity and composition G-maps I and C are induced from identity
morphisms and composition in FG.

Analogously, we define Z(A,B) to be the classifying G-space of the category
internal to GU C (A,B;X) whose nerve is the simplicial bar construction

B×
q
(A• ×B⋆;FG ×FG; (PX)(• ∨ ⋆)).

Its object and morphism G-spaces are
∐

a,b

(Aa ×Bb)×X(a ∨ b)

and ∐

a,b,c,d

(Ac ×Bd)×FG(a, c)×FG(b, d)×X(a ∨ b).

Here S and T are induced from the evaluation maps ofA•×B⋆, and the composite
of ∨ : FG × FG −→ FG with the evaluation maps of PX . Again, identity and
composition maps are induced from identity morphisms and composition in FG.

Using categories, functors, and natural transformations to mean these notions
internal toGU in what follows, we shall define functors giving the following diagram
of categories and shall prove that it is commutative up to natural transformation.

(9.23) C (A,B;X)

F

ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

Q

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

C (A ∨B;X)
P

// C (A;X)× C (B;X)

Passing to classifying G-spaces, this will give the diagram (9.22).
To define F and Q, it is convenient to write elements of Aa as based maps

µ : a −→ A, with G acting by conjugation on maps. The functor F sends an object
(µ, ν, x) to (µ ∨ ν, x) and sends a morphism (µ, ν, φ, ψ, x) to (µ ∨ ν, φ ∨ ψ, x). The
functor Q sends an object (µ, ν, x) to (µ, xa)× (ν, xb) where xa and xb are obtained
from x ∈ X(a∨ b) by using the G-maps induced by the projections πa : a∨ b −→ a
and πb : a∨ b −→ b. It sends a morphism (µ, ν, φ, ψ, x) to the morphism (µ, φ, xa)×
(ν, ψ, xb). As in (9.22), P is induced by the projections πA and πB. Noting that
πa and πb are G-fixed morphisms of FG and that πA ◦ (µ ∨ ν) = µ ◦ πa and
πB ◦ (µ ∨ ν) = ν ◦ πb, we see that the morphisms

(µ, πa, x)× (ν, πb, x) : (πA ◦ (µ ∨ ν), x)× (πB ◦ (µ ∨ ν), x) −→ (µ, xa)× (ν, xb)

give a natural transformation P ◦ F −→ Q in diagram (9.23) that induces a G-
homotopy P ◦ F −→ Q in diagram (9.22).

While Q need not be an equivalence of categories of any sort, we see from the
assumption that PX is special and our use of the projections πa and πb that Q
gives a level weak equivalence of simplicial G-spaces on passage to nerves. Reedy
cofibrancy of the bar constructions then implies that the induced map Q in (9.22)
is a weak equivalence of classifying G-spaces. To complete the proof, we shall
construct a functor F−1 : C (A∨B;X) −→ C (A,B;X) and natural transformations
Id −→ F−1 ◦F and Id −→ F ◦F−1. Passing to classifying G-spaces, this will imply
that F in (9.22) is a G-homotopy equivalence.
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For ω : f −→ A∨B, define ωA = πA◦ω and ωB = πB ◦ω. Define σω : f −→ f∨f ,
called the splitting of ω, by

σω(j) =





j in the first copy of f if ω(j) ∈ A \ ∗

j in the second copy of f if ω(j) ∈ B \ ∗

∗ if ω(j) = ∗

Observe that ω factors as the composite

f
σω //f ∨ f

ωA∨ωB//A ∨B.

Define F−1 on objects by

F−1(ω, x) = (ωA, ωB, (σω)∗(x)).

For a morphism (ω, φ, x), ω : f −→ A ∨B, φ : e −→ f , and x ∈ X(e), observe that

(ω ◦ φ)A = ωA ◦ φ and (ω ◦ φ)B = ωB ◦ φ.

Define F−1 on morphisms by

F−1(ω, φ, x) = (ωA, ωB, φ, φ, (σω◦φ)∗(x).

A check of definitions using the commutative diagram

e
φ //

σω◦φ

��

f

σω

��

ω // A ∨B

e ∨ e
φ∨φ

// f ∨ f

ωA∨ωB

::✈✈✈✈✈✈✈✈✈✈

shows that S◦F−1 = F−1◦S and T ◦F−1 = F−1◦T , and F−1 is clearly compatible
with composition and identities. It is easily checked that F−1 is continuous on
object and morphism G-spaces, but equivariance is a little more subtle. We first
claim that σg·ω = g · σω. Since (g · ω)(j) = gω(g−1j),

σg·ω(j) =





j in the first copy of f if gω(g−1j) ∈ A \ ∗

j in the second copy of f if gω(g−1j) ∈ B \ ∗

∗ if gω(g−1j) = ∗.

On the other hand, using the definition of σω and the fact that gg−1 = 1,

g · σω(j) = gσω(g
−1j) =





j in the first copy of f if ω(g−1j) ∈ A \ ∗

j in the second copy of f if ω(g−1j) ∈ B \ ∗

g∗ = ∗ if ω(g−1j) = ∗.

Observing that gz ∈ A \ ∗ if and only if z ∈ A \ ∗ and similarly for B, we see that
these agree, proving the claim. Since πA is a G-map, we also have

g · ωA = g · (πA ◦ ω) = gπAωg
−1 = πAgωg

−1 = πA ◦ g · ω = (g · ω)A,

and similarly for B. Putting these together gives

F−1(g · (ω, x)) = F−1(g · ω, gx) =
(
(g · ω)A, (g · ω)B, (σg·ω)∗(gx)

)

=
(
g · ωA, g · ωB, (g · σω)∗(gx)

)
.

Since the evaluation map FG(a, b) ∧X(a) −→ X(b) is a G-map, this is equal to
(
g · ωA, g · ωB, g · ((σω)∗x)

)
= g · F−1(ω, x).
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This shows that F−1 is a G-map on objects. Following the same argument and
using that g · (ω ◦ φ) = (g · ω) ◦ (g · φ), we see that F−1 is a G-map on morphisms.

Now consider the composite F ◦ F−1. It sends the object (ω, x) in C (A ∨B;X)
to the object (ωA ∨ ωB, (σω)∗x). Here (ωA ∨ ωB, σω, x) is a morphism from (ω, x)
to (ωA ∨ωB , (σω)∗x). We claim that this morphism is the component at (ω, x) of a
natural transformation Id −→ F ◦F−1. These morphisms clearly give a continuous
map from the object G-space of C (A ∨ B;X) to its morphism G-space, and it is
not hard to check naturality using the diagram just above. To show equivariance,
if g ∈ G then

g · (ωA ∨ ωB, σω , x) = (g · (ωA ∨ ωB), g · σω, gx) = ((g · ω)A ∨ (g · ω)B, σg·ω , gx),

which is precisely the component at g · (ω, x) = (gω, gx).
The composite F−1 ◦ F sends an object (µ, ν, x) in C (A,B;X) to the object

(πA ◦ (µ ∨ ν), πB ◦ (µ ∨ ν), (σµ∨ν )∗x) = (µ ◦ πa, ν ◦ πb, (σµ∨ν)∗x).

Note that σµ∨ν is given by σ̃µ ∨ σ̃ν , where σ̃µ : a −→ a ∨ b is the inclusion, except
that if µ(j) = ∗, then σ̃µ(j) = ∗, and similarly for σ̃ν : b −→ a ∨ b. Here

(
πA ◦ (µ ∨ ν), πB ◦ (µ ∨ ν), σ̃µ, σ̃ν , x

)

is a morphism in C (A,B;X) from (µ, ν, x) to
(
πA ◦ (µ∨ ν), πB ◦ (µ∨ ν), (σµ∨ν)∗x

)
.

To see that the source of this morphism is as claimed, observe that µ ◦ πa ◦ σ̃µ = µ
since πa ◦ σ̃µ = id except on those j such that µ(j) = ∗, and similarly for ν. The
naturality follows from the equations

σ̃µ ◦ φ = (φ ∨ ψ) ◦ σ̃µ◦φ and σ̃ν ◦ ψ = (φ ∨ ψ) ◦ σ̃ν◦ψ ,

which are easily checked. The continuity of the assignment is also easily verified.
For g ∈ G, a verification similar to that for F ◦ F−1 shows that g acting on the
component of our natural transformation at (µ, ν, x) is the component of the trans-
formation at g · (µ, ν, x) = (gµ, gν, gx). �

10. Appendix: Levelwise realization of G-cofibrations

In this section we prove Theorem 1.11. We will need the following two stan-
dard results about G-cofibrations. Recall that we are working in the category of
compactly generated weak Hausdorff spaces, so all cofibrations are closed inclu-
sions. Throughout this section we use the convention of identifying the domain of
a cofibration with its image.

Proposition 10.1. Consider the following diagram in G-spaces.

A //

i

��

α

  ❆
❆❆

❆❆
❆❆

C

��

γ

  ❆
❆❆

❆❆
❆❆

❆

A′ //

i′

��

C′

��

B //

β   ❆
❆❆

❆❆
❆❆

D

  ❆
❆❆

❆❆
❆❆

B′ // D′



EQUIVARIANT INFINITE LOOP SPACE THEORY, I. THE SPACE LEVEL STORY 91

Assume that the front and back faces are pushouts, α, β, γ, i and i′ are G-
cofibrations, and A′ ∩ B = A (as subsets of B′). Then the map D −→ D′ is
also a G-cofibration.

Proof. The nonequivariant result is [22, Proposition 2.5] and, as pointed out there,
the equivariant proof goes through the same way. �

The following result is given in [7, Proposition A.4.9] and [22, Lemma 3.2.(a)].

Proposition 10.2. Let A0 −→ A1 −→ A2 −→ · · · and B0 −→ B1 −→ B2 −→ · · ·
be diagrams of G-cofibrations and let fi : Ai −→ Bi be a map of diagrams such that
each fi is a G-cofibration. Assume moreover that for every i ≥ 1, Ai−1 = Ai∩Bi−1.
Then the induced map colimiAi −→ colimiBi is a G-cofibration.

The following observation is the key to using these results to prove Theorem 1.11.

Lemma 10.3. Let f q: X q −→ Y q be a map of simplicial G-spaces that is levelwise
injective. Then for all n ≥ 1 and all 0 ≤ i ≤ n− 1,

si(Yn−1) ∩ fn(Xn) = fnsi(Xn−1)

and
LnY ∩ fn(Xn) = fn(LnX).

Proof. For the first statement, one of the inclusions is obvious. For the other in-
clusion, take y = si(y

′) = fn(x). Then y′ = disi(y
′) = difn(x) = fn−1di(x). Thus,

y = sifn−1di(x) = fnsidi(x) ∈ fnsi(Xn−1), as wanted. The second statement is
obtained from the first by taking the union over all i. �

Proposition 10.4. Let X q and Y q be Reedy cofibrant simplicial G-spaces, and let
f q: X q −→ Y q be a level G-cofibration. Then for all n ≥ 1, LnX −→ LnY is a
G-cofibration.

Proof. We proceed by induction on n. Note that when n = 1, L1X = s0X0 which
is homeomorphic to X0, so there is nothing to prove. For n > 1, let k ≤ n− 1. Just
as nonequivariantly, we have a pushout square

(10.5) sk(
⋃k−1
i=0 si(Xn−2))

��

// ⋃k−1
i=0 si(Xn−1)

��
sk(Xn−1) // ⋃k

i=0 si(Xn−1).

We show by induction on n and k that the right vertical map is a G-cofibration.
By the inductive hypothesis for n− 1 and the fact that X q is Reedy cofibrant, we
have that the composite

k−1⋃

i=0

si(Xn−2) −→
k⋃

i=0

si(Xn−2) −→ . . . −→
n−2⋃

i=0

si(Xn−2) = Ln−1X −→ Xn−1

is a G-cofibration. Since sk is a G-homeomorphism onto its image, the left hand
map in the square is a G-cofibration. Therefore, the righthand map in (10.5) is also
a G-cofibration by cobase change.

We apply Proposition 10.1 to the pushout in (10.5) to deduce that the maps

k⋃

i=0

si(Xn−1) −→
k⋃

i=0

si(Yn−1)
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are G-cofibrations. In particular, by induction on n and k, LnX −→ LnY is a
G-cofibration. The required intersection condition follows from Lemma 10.3. �

We are now ready to prove Theorem 1.11.

Proof of Theorem 1.11. Recall from §9.1 that |X q| is the colimit of its filtration
pieces Fp|X |, and that these can be built by the iterated pushout squares (9.2).
Note that all of the vertical maps in diagram (9.2) are G-cofibrations. There is a
similar diagram for |Y q| and a map of diagrams induced by f q. The maps between
the three corners of the upper squares are G-cofibrations. By Proposition 10.1 and
Lemma 10.3, the map between the pushouts of the upper squares is a G-cofibration.

We assume by induction that the map Fp−1|X | −→ Fp−1|Y | is a G-cofibration,
so again we have that all three maps between the corners of the lower pushout
square for X and the one for Y are G-cofibrations. Lemma 10.3 implies again that
the intersection condition necessary to apply Proposition 10.1 holds, and we can
deduce by induction that the map Fp|X | −→ Fp|Y |l is a G-cofibration.

Lastly, we check the intersection condition of Proposition 10.2, namely that
f(Fp|X |) ∩ Fp−1|Y | = f(Fp−1|X |). One inclusion is obvious. To see the other
inclusion, take an element (u, fpx) in f(Fp|X |) \ f(Fp−1|X |) = (∆p \ ∂∆p) ×
fp(Xp \ LpX). Since fp is injective, we can again use Lemma 10.3 to see that
(u, fpx) ∈ FpY \ Fp−1Y . Thus an element in the intersection must be in Fp−1|X |.
By Proposition 10.2, we conclude that the map

|f q| : |X q| −→ |Y q|

is a G-cofibration.
�
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