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In a previous note [11], two of us promised to describe the

natural map (induced by EG + pt)
: + ; +
(1) £1 (SG)G + F(EG ,sG)C = F(8c",5) = p(rgh

‘in nonequivariant terms. Here SG is the sphere G-snectrum and

(kG)G denotes the G-fixed point spectrum associated to a (~spec-
trum kG. In section 1, following up and reinteroreting ideas of
Adams, Gunawardena, and Miller, we shall aeneralize the situation

and describe the natural map
(2) e Dgs(e,m*C - F(e6",58(6,m™)¢ - FBc",r"snM)

in npnéquivariant terms for a finite group G and a compact Lie
- aroup I. Here B(G,M) is the classifving G-space for principal
% (G,H)—bundles and Zz denotes the suspension G-spectrum functor.
- (The equivalence follows from [11l; Lemma 12];: see Rerarks 7 below
. for its hypotheses.) More precisely, we shall specify an equiva- 7 :
lence from a wedge of spectra ZwBWp+ for certain aroups Wp  to
" the domain of € and shall show that the composite of ¢ and
this equivalence is the wedge sum of appropriate composites of
transfer and classifvina maps. The reader is referred to Lashof
[5] for a good discussion of (G,M)~-bundles and to [8] for a com-
Prehensive study of G-spectra and the equivariant stable category.
- Tée complerioh conjecture for a G-gspectrum kG asks if

£ 1 kG(pt) -+ kG(EG) induces an isomorphism upon completion in the
I(G)-adic topology, where I (G) is the augmentation ideal of the
Burnside rina A(G); see [11] for discussion. The Segal conjec-

ture is the completion conjecture for § In section 2, we shall

a-
i Prove the following result,

THEOREM A. If the Segal conjecture holds for all finite aroups
G, then the dom?letion conjecture holds for the G-spectra

+ .y | :
EEB(G,H) for all finite grouss G and II.

It would be of interest to know whether or not this result 7
' ' : . © 1982 American Mathematical Saciety
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166 : L.G. LEWIS, J.P. MAY, AND'J.Eﬂ McCLURE®

remains valid for general compact-Lig groups T,

By the results of [11], it suffices to nrove the thearer for
p-groups G, and in this case the conclusion is equivalent to
the assertion that the mans £ of (2) induce equivalences upon
completion at . Given our nonequivariant interpretation of
these maps, +he conclusion is an cbseryvation, suggested to us by
GunaWardena and also noticed by Segal, when I 1is also a p—groun.

Indeed, by an argument that is entirely symmetrical in G and T,
one sees that if e in (1} induces an eguivalence upon combletion
at p for all grouns T - and G x.F, where T 1is a subauotient
of M, then ¢ in (2) induces an equivalence upon completion at
p for all pairs (G,I'}.

The passage'ffom p~groups T to general finite aroups 1 is
based on the following equivariant aeneralization of a standard
result about transfer. Define a G-cover to be a G-map 7: E + B
which is also a finite cover. A G-gover T has an associated

equivariant transfer map T: E?B+ - Z:E+ [gl.

THEQREM B, Let G be a p-group and let w: F » 3 be a G-cover

whose fibre has cardinality prime to p, Then the composite
' 5 AT

+ +
ZOJB T ‘ZwE [&] ):ooB-}-
G G G
induces an equivalence upon localization at p, hence E;B+ is

[e4]

p-locally a wedge summand of ZGE+.

COROLLARY ¢. Let G be a p=aroup and let A be a p-Sylow sub-

group of a finite group M. Then Z?B(G,H)+ is p-locallv a wedge ‘;

summand of ¥ B @,m7t.

There is an implied splitting of localized G-fixed voint speg-
tra, a fact that is not at all obvious from our nonequivariant
description of the latter. We are-very grateful to Georae Glauber-
man for proving a result in finite group theory for us that made
clear that such a splittinq was plausible; see Remark 14.

The second author wishes to thank Frank Adarg, Jeremy Guna-

wardena, and Haynes Miller for discussions of the Seqgal conjecture,

Dick Lashof for discussions of classifyving G-swaces, and Georae

Glauberman and Daniel Frohardt for backaround information about

finite grouvs.
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§1, THE SPLITTING OF ZZB{G,H)+

Our nonequivariant description of €& will be based on the

following general splitting theorem for stable G-homotopy groups.
Let BEG be a contractible free left G-space; for a left G~space

write EGxCY‘ for the orbit space (EGxY)/G. For H<C G, Ilet
;NH denote the normalizer of H din G and let WH = NU/H.
iTHEOREM 1. For a G-space ¥, let &y be the composite homomor-

;phism of stable homotopy groups displayed in the following dia-

- gram:
- ; H, ¢ G 4 t G H
ﬂ*(EWHxWHY ) —2— n*(EWHxWHY ) —fﬂ ﬂ*(GxNH(EWHxY )
i
EHl l #
€
G ® G G
My (¥Y) e—— ﬂ*((GxNHEWH)xY) 2 ﬂ*(GxNH(EWHxY))
Here ¢ is induced by the unit map 8§ = (SG)G and T is the
equivariant transfer associated to the natural G-cover
‘ H H _ H
e GXNH(EWHXY y -+ EWHXNHY = EWHXWHY
with fibre G/H; 1 and e are the evident inclusion and projec-
tion. Define
- . H G
E= L Eyt I My (BWHX.Y") + m (Y),

(#) (H}
where the sum runs over ohe group H from each conjugacy class
() of subgroups of G. Then £ is an isomorphism.

EBQQE;' Such.a splitting is given by Segal [14], Kosﬁiowski (41,
and tom Dieck [l], but the present description of the splitting
We derive it from tom

abbreviate

map is not explicit in the literature.

Dieck's proof and diagram chasing. Thus fix H,

N = NI and W = WH, and consider the following commutative
diagram:
H 4 ‘ .G H
m*(EWxWX | > 1y (BWx Y)
Ci \\\\i 299//// T
W w
n:(EwaYE) b, ﬂﬂ(EWXNYH) 4, vE(G/Nx(EWxNYH))
Tl lT , 1T ’
v
NT(EWXYH) — HE(EWXYH) L, wf(GXN(EWXYH))
r . ) \
L b
7 £ L d

oY) el S ((ex BN xY) & m (Gx (BWXY) )



168 L.G. LEWIS, J.P. MAY, AND J.E. McCLURE

Here the p are restriction homomoxphisms and the w are exten-
sion of aroup isomorphisms due to Wwirthruller [12]; see also [8],
where wp = T, Tp = p1, and Wl = Tw are nroven. By the tran-
sitivity of transfer [8], the right vertical comnosite tetr is the
transfer .referred to in the statement. By [11, Lewma 161, the
left vertical composite Teg is an 1somorphlsm. Tom Nieck [1]
proved that the sum over () of the dotted arrow composites

e.liwp 15 an 1somotphlsm.

REMARK 2. Except that w requires reinterpretation and is no
longer an isomorphism, the diagram in the proof commutes and tom

. Dieck's result remalns valid for aeneral comnact Lie dgroumrs 6.

However, [11, Lemma 16] fails in this generality, hence so does .

the conclusion of the theorem. In fact, the left vertical com-
posite 1tof is an isomorphism.if‘-hH is finite, but the transfer
here is zero if WH is not finite (see e.qg. [8]1). The logic B
becomes clear if one takes Y to bhe a point. Here ﬂG(pt) is
the Burnside ring and is thus the Free Abelian ogroup with one
generator for each (H) such that WH is finite. However,

'ﬁf(pt) is the direct sum over all (H) of the groups ﬁEH(ﬁWH),

the (H) with WH infinite coﬁtfibuting only to the nositive

dimensicnal homotoéopy aroups. Ponsiﬂeratidn of the completion con-
jecture here requires consideration of all (H), while the O0-
dimensional Segal conjecture requires ‘consideration onlv of thoese

{HY with WH finite.

s e

R

Wlth the understandings that our diagram chases will be of ;j

interest only when WI is finite, that subgroups are to be cloqed N

"
and homomorphisms continuous,; and that G~covers are to be inter- .
preted as G-equivariant bundles, we can allow both G and I to

be arbitrarv compact Lie aroups until otherwise specified. N
+d

We need some notations to Qescribe YH when Y = B(G,@).

NOTATTONS 3. Consider a subaroup H of G and a homomornhism

: H -+ . Define the following associated groups:

~ap = {(h,p(h))} =G xT

Np = N{Ap} = {(g,0)|g € NH, cp(h)a_l = p(ghg—l)' for h € H}
Wp = W(Ap) = Np/bp
Mp = {g1(g,d) € Np for some O @ I} € NH
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Vo = Mp/H < WH
1° = {o|op(h) = p(h)o for h € H}

Taking' g = e, we see that P is a normal subgroup of Np with
gquotient Mp . and a normal subgroup of Wp with quotient Ve.

DEFINITION 4. Consider the set- R(H,I) of I-conjugacy classes

of homomorphisms p: H » 1, H € G. Define an action of WH on

"R(H,T) by letting "g(p) be (gp), where g € NH with image
l§ e VI and_whe;e {gp) (h) = p(qdlhg). It is trivial to check
‘that this is well-defined. ' Observe that the isotropy group of

{p) dis vp.

PROPOSITION 5. For any subgroup_ oI of @,

EWHXWHB(G,H)H = || Bwp,
[{p)]

where the union is taken over one p in each WH-orbit [(p)] of
I-conjugacy classes (p) of homomprphisms H + H.

:PROOF. Reecall that a principal (G,N)~bundle p: E + B ig a

- principal IlI-bundle and a G-map such that the actions of G ang
I on E commute. We write the G action on the left and the I
| action on the rxight. Let 'p: E(G,II} » B(G,lI) be a universal
fprincipal (G, ~bundle., According to Lashof [51, p 4is charac~
terized by the assertion that the Ap-fixed point space, E(G,H)p,
* is non-empty and contractible for all H < G and pt H -0, If
;y'e E(G,MP and o € I, then yo is fixed by the o-conjugate
%pc of p. In particular, 1°  acts freely on the contractible
:,space. E(G,H)p, hence we may -set

i = E(c,m) P /1P,

‘It is easily seen that B(G,H)H is the disjoint union over

. (p) € R(H,M) of the spaces BI” and that p_l(BHp) is the dis-
;fjoint union of the E(G,H)pU as po ranges over the distinct
i:n—conjugates of P. Under the natural action of WH on B(G,ﬂjH,
- Vo fixes the space BI? ang

B(G, MY = (LL B = || WHxvaHp.
7 p} - {(p)]

H o
B(G,M) " & || Ewdx, BI",
ey VP

- Therefore

1

EWHXWH
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Let Wp act on EWH via the progectlon Wp » Vp € WH and have
its natural action on g(G, M. It is easxly checked that the
diagonal action of Wp on EWH X E(G,H) is free, and we mnay
therefore set

EWp = EwH x B(G,MP and BWp = EWp/Vp.
The projection p: E(G,H)p + BIP  induces a honmeomorphism

BWp 2 EWHXVDBHD, and this proves the result.
We retain the notations of the proof in the following result.

PROPOSITION 6. -When Y = B(G,N), the restriction Ep of gH to

T,BWp is the composite

T BWD LN nEBWp —_— nggp —mii~¢ HEB(G,H).
Here

Bo = Gxy, (EWH x BIP) = [(G x ) xy EWel/I,

T ig the equivariant transfer associated to the natural G-cover
ny

m: Bp + BWp with fibre ¢/U, and W is the cla551fy1nq G—map

of the natural principal (g,N)-bundle p: Ep + Bp, where

S ; “~Ll, B,
Fo = Gy, (EWH X P BIP) & (G x T) ¥ BHWP.

PROQF, Notice that wm: Bp + BWp is a restriction of
H H
T GXNH(EWH x B(G,M)"} + EWHXWHB(G,H)
and that the following squares are pullbacks:
Gpr(EWpr"anp) 2y Gxgy (BWHXE (G, 1)) 2(GXyyy EWH) XE (G, ) —— E (G, T

0 i : 5 €
Gpr(EWHXBH Yy — GXNH(EWHXB(G:H)):(GXNHEWH)XB(G,H) s B(G,T)

The vertical arrows are all induced by p. The conclusion follows

by a simple diagram chase.

REMARKS 7. (i) When p: H + 1 is the trivial homomorphism,

M =1 and Wp = WwH x R. In particular, with H = e, uwe see
that B{G,I) = BI as a nonequlvarlant space and, with H= G, we
see that there is an inclusien  g: B ~ B(G, H) whose composite
with'thé inclusion of B(G,H)G in B(G,I) is a noneguivariant

hpmotopy equivalence. It follows that ZZB(G,H)+ is a split G-
spectrum in the sense of [11, Remarks 11} with splitting map
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g2 27BIT = s aBlT 05, (590 (n(e,m ™G

e
» gse,mhyC.
The unlabeled arrow is an instance of the natural map

.G G
(ko) A X G
(which need not be an equivalence; see (8]).
(ii) Up to G-homotopy, B{(G,I) is a product - preserving functor
of . If T 4is Abelian, this implies that B(G,H) is a Hopf

+ (kG/\X}G for G-spectra k and based G-spaces X

 G-space, In fact, for any compact Lie group G, the topological
Abelian G-group F(EG+, BI) is here a model for B(G,):; see Lashof,
May, and Segal [6]. From thié, we easily deduce that
EZB(G,H)+ is a split ring G—spéctrgm and thus that [11, Propo-
sition 15] applies (its finite generation and 1iml vanishing
‘hypotheses also being easy to check).

The various homomorphisms of which the Ey for general Y
and their restrictions Ep for Y = B(G,Il) are composites are
all induced by maps in the stable category, and we also write
E’H and

| gy: IBup’ > [x7B(c,m )¢

for the resulting composite maps. Thus the wedge sum of the Ep
is an equivalence (for G finite)
. '+ oo
(3) g VoV m"mwet > 0B(e,n 6.
(H) {(m)] ?
We can now compute the composite of £ and the map & of (2) in

nonequivariant terms.

THEOREM 8. The adjoint of sogp is the following composite:

0

27BGT A 2B & 3% (Be x Bup)t Ly 1¥mp LM, p@npt.

Here Bp = EGXGEQ, T 1is the transfer associated to the natural
cover Bp -+ BG X BWp, and u is the classifying map of the

Ny
natural principal -bundle p: Ep ~ Bp, where Ep = EGXGEp.

PROOF: Passage to orbits over G gives maps of covers

’ M
EG x Ep > Ep
;?\\aEG x %pr n 1wsijlﬂ Bp
;I_xw /(‘H . l/
EG x BWp ' “xl_ > BG x BWp

in which the top rectangle is a map of principal II-bundles. With




172 L.G. LEWIS, J.P. MAY, AND J.E. McCLURE

¢ acting trivially on the right hand triangle, we may view these
as maps of G-covers in which the top rectangle is a map of prin-
cipal (G,I)~-bundles. By the naturality of the equivariant trans-—
fer and its behavior on products, this implies the following
commutative diagram of G-spectra:

N (1)

: +
EGY A EZBWDJ’ 3 z‘g(EG x pwp) " s 5,(BG X BWD)

lth b’ r
. 5o :
G

+ ooy o v + w +
EG A EGBp EG(EG x Bp) - EGBp

[1H

Direct inspection of definitions shows that the noneguivariant
transfer of a cover w: E + B and the equivariant transfer of m

regarded as a G-trivial G-cover are related by the commutative

diagram
st —E— (BN G
I e
ipt — s (XZE+)G

With these preliminaries, we turn to the proof. By Proposition 6.
and the definition of € in [11], we see that the following dia-
gram of spectra must be shown to commute:

LB 201 (2 pet) , pepgt,5”Bnt) EQLQ—-—?F(BG+,EZB(G,H)+

] IS0 e

o G
(ZGBWp+)g AE wet) [sz(G,n)+]G Fle, 1), pat,ite,m™C

)G

At the top right, we have used that F(X,EG) = F(X,E)G for a

space X and G-spectrum E, F{X,E) being the function G—spebtrugﬁ
the equality is immediate from the definitions in [8]. The com— ..
posite of F(ﬂ,l)G and ¥(l,r) is an equivalence by [11, Lemma -
12} and, by definition, € is the composite of E(e,l) and the
inverse of this equivalence. The fixed point spectrum functor --d
from G-spectra to spectra has a left adjoint, which we shall h
denote by ¢. It may be viewed as assigning trivial G action to
a spectrum. (This is not strictly accurate since passage to :
fixed point spectra involVés.neglect of indexing representations,

hence ¢ must regurrect such indexing; see [8B].} Moreover, ¢

commutes with smash products. On passage to adjoints, the outer

rectangle of-the'previous‘diagram'transforms to the outer vart

i S5 i S A e
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.Qf the following diagram of G-spectra; the maps % are adjoint

to ¢ and are eguivalences.

EGTA 0x"mwet AL, et A e Buet = 02" (Boxme) T T 0x”Bp”
ny v u ' o o0
“Cl 1:@[ cl : cl@z\
pet A rBpT AL, BGTA TTBWT = 1h(Bexmwe) T S ZhBpt ex”BR”
G _ G g T L G
— R i oo Ay
lA’fl et Lam o gH 4
e L, (1xu) I (exl} -

v s ) i ) 0
6" A B ts 5o (EGxBp) " Y mexB(G,Mm) ERSHIRS YT O

=

The parts of the diagram involving transfer maps have already been
observed to commute and the parts involving clagsifying maps com-

mute in wview of the first diagram of the proof.

REMARKS 9. (i) Everythina we have done so far is valid for G
finite and I any compact Lie group; compare Remark 2.

(ii) Unraveling notations, we see that

Ep = EGxG{(GXH)X EWp]

Np
and Bp = Ep/Il. There are alternative descriptions, such as

Ep =z (GxII/Ap) Xq p, (BGXEWR)

Wp being regarded as the group of automorphisms of the transitive
(GxII) -set GxIl/Ap.
(iii) To specialize to the situation of the ordinary Segal con-

jecture, let NI be the trivial group and write

'CH'= EGXG(GXNHEWH) = EGXNHEWH.

(Thus CH = Ep = Bp for the trivial homomorphism p.) Here
is just the trivial map CH - pt, hence Zmu+: EwCH+ + & 1s the
unit 1 € WO(CH) of the stable cohomotopy ring of CH. We con-
clude that .e£+f is the sum over (H) of the adjoints

[2¢]
:"gwn” » v(et,s) = n(ech)

of the elements T(l) € ﬂO(BGXBWH).

(iv) With the description in (iii), the work of Lin, Gunawardena,

and Ravenel shows that e¢F induces an equivalence upon completion

at p when G is a cyclic p-group. See Gunawardena [2,1.5.3]

and the appendix by Miller to Ravenel's paper [13]. When G 1s
an elementary Abelian 2-group, unpublished work.of Adams, Guna-

'wardena, and Miller gives the same conclusion. Of course, by

Theorem 8 and the results of [11], we are entitléd to conclude the

s e R

RN
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equivariant Fform of the Segal conjecture for all finite groups all
of whose p-Sylow subgroups are either cyclic or, if p = 2, ele-
mentary Abelian. Maunder's papexr [10] is devoted to a different
proof of this passage from the noneguivariant to the equivariant

version of the Segal conjecture in the special case G = Zz.

2. THE PROOFS OF THEOREMS A AND B
By definition, BWp is just BW{Ap) for the subgroup Ap
of GxH. Thus [ZEB(G,H)+]G is a wedge summand. of (SGxH)GXH.
It is simple group thecretical bookkeeping to identify the com-

plementary wedge suwamand,

PROPOSITION 10, There is an identification

veEBWkt = VOV v =%BueT,

(K) (A}Y (H) [(p)]
where the wedge on the left is taken over one K in each conju~
gacy class of subgroups of GxII and the wedge on the right is
taken over one A in each conjugacy class of subgroups of T,
cne H in each conjugacy class of subgroups of G, and ocne p
in each WH-orbit of WA-conjugacy classes of homomorphisms H -+ WA.

Therefore (for & finite)

y GXII Y [ZZB(G,WA)+]G.

(g, =
GxII (A)

PROOF. The second statement will follow from the equivalences of
(3). For the first statement, associate A < I, H < G, and
p: H+ WA to a subgroup K € GxII by
A= {xl(e,N) e K}
H = {h|(h,0) € K for some o € I},

and, with the observation that o @ NA if (h,0) € K,
p(h) = oA, where (h,o}) 8 K,

Conversely, associate a subgroup K < GxII to a triple (A,H,p)
by

K = {(h,d)lh €H and o @ p(h)},
where the cosets p(h) .are régarded as subsets of 1. It is
easily checked that these are inverse bijective correspondences

such that X runs over a set of conjugacy class representatives

as (A,H,p) wuns over a set of representatives as in the state-
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:ment. Another easy check shows that
NK = {(g,0)|g € N0, o € NA, op(n)o™ = plghg™)}.
Visibly the quotient homomorphism NA -+ WA induces an isomorphism

WK = NK/K + Np/Ap = Wp.

REMARK.ll. What really seems to be going on here is that there
ig an equivalence of G-spectra
Il - o0 4
(Saxy) =V EGB(G,WA) .
{A) . ,
¢ The second author has an outline proof which, if correct, will

{. appear in [3] since it depends on equivariant infinite loop space

theory for the construction of a map.

i * We use the previous proposition to relate the maps ¢ of (1)
! and (2). Henceforward, G and I are both to be finite.

i PROPOSITION 12. The following diagram commutes:

e v g s vored s
I (n) (A) 0

1
F((Bexl)¥,8) = F(BST,F(BI",5)) F(sc, (s ™)

 1H]

F(l,e)

PROOF. By Theorems 1 and 8, the following commutative diagram
impliés the result upon passage to adjoints. Let K correspond
te (A,H,p} as in the previous proof.
+ % . ; e
BIT Az” (BaxBWP) — £” (BGxBIxBWK) *

Tl | r

Bitaz"Bet = 1" mIxBe)t o IT(EmeEn) T 5 2ok’
[} o ) oo ny oo
1AZ ul z (lxu)l L (1><u)1 lz Y
[¢4]
B AL BWAT & 27 (BuxBWA) T T Pcat M g

Here CA = Bl WA and Y: Ep » EWA covers u. The bottom
middle square commutes by the naturality of transfer. We easily
obtain a homeomorphism EHXNAEp g CK from

Ep = EGXG[(GXWA)prEWp], CRK = (EGXEH)HNKEWK,

and Wp z WK. The bottom right square .commutes trivially and the
top rectangle commutes by the transitivity of transfer.
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0f course, wW{e) =1 while all other WA are proper sub-
quotients of I. ™o prove Theorem A when G and I are p-
groups, We€ proceed by induction on the order of M. Upon com-
pleting the diagram of the previous proposition at p, we £ind
in this case that the segal conjecture for the groups I and
¢xll and the completion conjecture for the G-spectra ZZB(G,WA)+,
A# e, implies the completion conjecture for ZZB(G,H)+'

Because of the different topologieé‘involved, this argument
fails hopelessly wheﬁ ¢ and I are not p-groups. We use the
following cbservation to prove Theorem A when G is but I is

not a p-group.

LEMMA 13, The following diagram commutes for i: A &It

® o 10 - +.G (g)® e +.G
(rop (e, m 1% —— (2B (G ] & [igBIE,M ]
Le : xe
F(1,% Bi)

ract, 7B’ F(1,0), p(act,t"BA") F(1,2 Bi)ppet,7BIT)

PROOE . Clearly B(e, M /A is a model for B(G,A}, hence we have
a G-cover Bi: B(Gg,A -+ B(G,I with fibre TN/A. The right

gquare is an obvious naturality diagram. The jeft sguare relates

the -equivariant transfer of Bi to the noneguivariant transfer of
Bi: BA -~ BI and commutes by naturality and the third diagram in

the proof of Theorem 8.

Now let G be a p—group,.let A be a p-Sylow subgroup of
I, and complete the diagram of the Lemma at p. The bottom com-
posite is theﬁ clearly an equivalence, and Theorem B will imply
that the top composite is also an equi#alence. 1t follows that
e for I is an eqﬁivalance if e for A is an equivalence,

and this completes the proof of Theorem A,

REMARK 14, Under the hypotheses of the previous paragraph, we may
consider (ZzBi)G as a map

Y, s°pwet » V.V s7BWe .

(m (o)) S (1) [(p)]
se B> A and p: H T and Theorem B implies that this map is a
p-local retraction. Clearly the wedge summand indexed on [{o}]

maps to the wedge summand indexed on - [(ic)], Dbut many [{o)]
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" may map to the same [(p)]. Glauberman has proven that the num—

ber of [(0)] which map to a given [{p)] and are such that
Ww(g) is conjugate to a p- Sylow subgroup of W{p) is prime to
P Thig provides a plausxblllty argument for the cited retrac—

tion property.

Tt remains to prove Theorem B. This is an easy exercise in
the use of the ordinary RO{G)=~ graded cohomology theorles on G-
spectra which we introduced. in [7} and will study in detail in
[21. .

A map f: ¥~ Y of connective_Gwspectra'induces an equiva-

lence upon localization at p if and only if
* L4 *
f HG(Y;M) > HG(X;M}
is an isomorphism for all p¥local Mackey functors M. Compare
[{12], where the analogous G-space level statement is proven.

tet mw: E » B be a G-cover with fibre F and consider the

composite -
18" T ropt —Egjae e N
£ GB o GB
*
If kG' is a ring valued RO(G)- graded cohomology theory and mG

is a k —module valued RO{G)~graded cohomology theory, then

*
£f mG(B) + mG(B) is multlpllcatlon by t(l} € k (B), where

1€ kO(E) is the identity element.

*
For any Mackey’ ‘functor M, H {°-M) is module-valued over
*
HG(.;A), where A& is the Burnsxde ring Green functor, A(G/H) =

A{H}. The same holds for p-local M and the localization ép of

A at P. To prove Theorem B, it sufflces to show that
T(l) € Hg{B;gp) is a unit when G is a p-group and |F| is
prime to P.

By G-CW pprox1matlon and an easy COllmlt argument, we may
assume without loss of generality that . B iz a G-CW complex
with finite 0O-skeleton BO. The inclusion of B0 in B induces
a monomorphism Hg(B;M) +_H8(B0;M) for any M. Our finiteness

0

assumption ensures that Hg(B ;gp) is an integral extension of

‘Hg{BO;gp}. Thus it suffices to prove that (1) € Hg(Bo;gp) is a

unit, where T 1is the transfer associated to the restriction

s ﬂ“l(BO) +-B0.
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Since B0 is a (finite) disjoint.union of orbits G/H,
l(BO) + B0 breaks up lnto a disjoint union of G-covers

(G/H) + G/H with fibre F. It suffices to show that
T(1l) € HG(G/H;gp) = A(H)p
is a unit for each orbit G/H. NOW'.ﬂ—l(G/H) + G/H has the form
Gx ¥ -~ G/H’ for some action of H on F. We may regard F as a

finite H-set and thus as an element of A(H) via thig action. A

check of definitiens shows that TtT(l) =

Since H is a p-group, |F | = |[F] # 0 mod p for K C H.
It follows that the image of F under the natural embedding of
rings x: A{H) _ -+ : X (S} = ISKI for an H~set 8, is5 a

unit. ‘Since x is an integral extension, F 1is a unit in

A(H)P and the proof is complete.
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