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IntrodutionAn ultimate goal is to alulate the homotopy type of automorphism spaes ofompat manifolds M . A promising approah uses the parametrized surgerytheory introdued by Hsiang and Sharpe in [HS76℄. Historially, one studiedthe �ber of map from parametrized surgery to surgery using the involution ononordane theory, see [HJ82b℄ and [Bur78℄. Two step omputations along theselines are, for example, found in [HS76℄, [HJ83℄, [HJ82a℄ and [FH78℄. However,the experts knew that one should try to ombine surgery theory and onordanetheory to get diret omputations of parametrized surgery. Reent advanes inhomotopy theory has made it possible for Weiss and Williams to de�ne this LA-theory, see [WW01℄. Still, LA-theory is not easily omputed, but it is related toalgebrai K-theory via a map alled Ξ, and algebrai K-theory an be studiedvia trae maps into TC or THH , see [Mad94℄.Surgery theory lassi�es manifolds within a given simple homotopy type.A basi ingredient in this theory is the L-groups, whose de�nition dependson the ring Z[π1M ] together with an involution, see [Wal99℄. In onordanetheory, turning a onordane upside down gives an involution on the homo-topy groups of the stabilized onordane spae, C(M). Hather's spetral se-quene, see [Hat78℄ proposition 2.2, has in a stable range an E2-page given by
E2

pq = Hp(Z/2; πqC(M)), and onverges to give information relating surgery the-ory to automorphism spaes at the level of homotopy groups. Weiss and Williamsstrengthen Hather's result to the level of spaes in [WW88℄. In [Vog85℄, Vogellshows that the involution on onordane spaes orresponds to his anonial in-volution on algebrai K-theory of spaes. Also Steiner, [Ste81℄, and Hsiang andJahren,[HJ82b℄, [HJ℄, onsiders involutions on A-theory.The input for LA, K, TC and THH should be a �ring up to homotopy�.We hoose orthogonal ring spetra, as de�ned in [MMSS01℄, to be our modelfor suh rings. Hene, the theories above need to be rede�ned for this setting.Waldhausen's work on algebrai K-theory tells us that S[ΩM ] is the orretring to onsider when relating to onordanes. Geometry, as disussed above,demands an involution on our ring, and Vogell shows that interesting involutionsome from bundles ξ over M . However, it is not immediately lear that suh ξgive involutions on the orthogonal ring spetrum S[ΩM ].The ontribution of this thesis is to onstrut for eah vetor bundle ξ an



orthogonal ring spetrum R, weakly equivalent to S[ΩM ], together with an in-volution on R. On the homotopy groups π∗S[ΩM ] our involution orrespondsto parallel transportation in ξ, and reversing loops in M . The main result istheorem 4.3.26. The orthogonal ring spetrum R with involution is intended asinput for the theories mentioned above. We take a �rst step in this diretion byonsidering the de�nition and a few basi properties of TC(L) and THH(L) forarbitrary orthogonal ring spetra L (with involution). However, in the future theauthor hopes to show that LA(R) will yield information about the automorphismspae of M .Chapter 1 realls from the literature various simpliial tehniques. Muh ofthis should be well known to the reader. The reason the author inluded thismaterial is mainly to point out ertain viewpoints and to introdue notation.In order to get strong results in stable homotopy theory, one an prove theo-rems in a ategory of spetra with symmetri smash produt. We �nd orthogonalspetra partiularly onvenient for our purposes. In hapter 2 we give an expo-sition of the relevant theory and develop the tehniques needed to work withinthis ategory.We study the equivariant homotopy theory of orthogonal spetra for two rea-sons; the de�nition of an operad involves ations of symmetri groups, and THHomes with an S1-ation, or O(2)-ation in the involutive setting. Chapter 3 is anintrodution to equivariant orthogonal spetra and provides the results neessaryfor our appliations.Chapter 4 proves the main theorem. An important ingredient is the onept ofoperads, and we introdue the operad H, whih enodes multipliation togetherwith an anti-ommutative involution. Moreover, we explain the notion of anoperad in orthogonal spetra. The main idea of the proof is to start out witha vetor bundle ξ over our ompat manifold M and then attempt to onstruta related involution on S[ΩM ]. Doing this involves many hoies, in fat thereare orthogonal spetra Dn(j) parameterizing this. Could the olletion Dn be anoperad where S[ΩM ] is its algebra by the parametrization? The answer is yes,and the formulas for the omposition operations of the operad are fored by thealgebra struture. Furthermore, Dn is �up to homotopy� su�iently equal to H.Using May's two-sided bar onstrution, we therefore an replae S[ΩM ] by aweakly equivalent H-algebra. This gives our orthogonal ring spetrum R withinvolution. Unfortunately, the logi demands that we reverse this argument whenwriting out the proof.Chapter 5 ends this thesis. It ontains some theory regarding THH and TCof orthogonal ring spetra with involution.I am very grateful to my advisor Bjørn Jahren for many enlightening disus-sions, and for his onstrutive feedbak during my writing of the manusript.You have always been available, and you have a keen eye for the beauty in math-ematis. Furthermore, I would like to thank Sverre Lunøe-Nielsen, ChristianShlihtkrull, Halvard Fausk, and John Rognes for helpful onversations. The



support from my wife, Tordis Fuskeland, has been very valuable to me. You havearefully proofread the �nal manusript, but the errors that remain are mine.Together with our son, Andreas, you are the most important part of my life.
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Chapter 1Simpliial tehniquesThe theory of simpliial sets and simpliial spaes is lassial. Simpliial setswere �rst de�ned in [EZ50℄. The geometri realization was de�ned in [Mil57℄.Other referenes to simpliial tehniques are [May67℄, [GJ99℄ and [DH01℄. Forthe theory of simpliial spaes see [May72℄, [Seg74℄ and [Mad94℄. This hapterwill reall from the literature the simpliial tehniques whih are relevant tothis thesis. One reason for inluding this material is for ompleteness, but alsoimportant is the viewpoint and the notation.1.1 The ategory ∆ and its relativesDe�nition 1.1.1Let [n] be the ordered set {0 < 1 < . . . < n}. The ategory ∆ has one objet
[n] for eah non-negative integer n, and the morphisms are ordering preservingfuntions φ : [m]→ [n].It is ustomary to let δi : [n− 1]→ [n] be the order preserving funtion thatmisses i, and σi : [n+ 1]→ [n] be the order preserving funtion that hits i twie.The δ's and σ's generate all morphisms in ∆.De�nition 1.1.2A simpliial set is a funtor X• : ∆op → Ens. A simpliial spae is a funtor X• :
∆op → Top. More generally, one an de�ne simpliial objets in any ategory.Observe that simpliial sets an be onsidered as simpliial spaes by givingeah Xn the disrete topology. Hene, in most ases we an do our onstrutionsfor simpliial spaes, the orresponding results for simpliial sets follow impliitly.Given a simpliial spae X•, the following notation and terminology is stan-dard: The spae Xn is alled the n-simplies of X•. δi : [n − 1] → [n] indues amap di : Xn → Xn−1 alled the i'th fae map, and σi : [n + 1]→ [n] indues the
i'th degeneray map, si : Xn → Xn+1. A simplex x in Xn is said to be degenerate1



2 CHAPTER 1. SIMPLICIAL TECHNIQUESif x = six
′ for some i and x′ ∈ Xn−1. We denote by sXn−1 the subspae of Xnonsisting of the degenerate simplies.1.1.1 Geometri realization of simpliial spaesSimpliial spaes are ombinatorial models for topologial spaes, and geometrirealization is the funtor whih turns a simpliial spae into the topologial spaefor whih it is a model. The geometri realization, due to Milnor [Mil57℄, hasseveral good properties, it ommutes with produts and it ommutes with allolimits. See [May67℄ or [DH01℄. Furthermore, every point in the geometri real-ization is uniquely determined as the interior point of a non-degenerate simplex.We give a modern formulation of this result; giving a �ltration for the geometrirealization.Geometri realization of simpliial spaes is de�ned using a funtor ∆ : ∆→

Top. We send [n] to the spae ∆n = {(t0, . . . , tn) ∈ Rn+1 | σiti = 1, ti ≥ 0}. Andwe all ∆n the topologial n-simplex. On morphisms the funtor is de�ned bysending δi : [n− 1]→ [n] to the map
δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1) ,and σi : [n+ 1]→ [n] to

σi(t0, . . . , tn+1) = (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1) .Now we de�ne the geometri realization of a simpliial spae X• as the oend
|X•| =

∫ [n]∈∆

Xn ×∆n .Coends are de�ned in setion IX.5 in [ML98℄. The spae |X•| is isomorphi to thequotient of∐Xn×∆n where we identify (x, φ(t)) with (φ∗x, t) for all morphisms
φ in ∆.Remark 1.1.3In order to have onvenient tehnial properties, one should form the geometrirealization in the ategory of ompatly generated spaes (=weak Hausdor� k-spaes), see [MC69℄. This ensures, for example, that the produt theorem holds.There is also a presimpliial realization, de�ned using only the injetive mor-phisms in ∆. The injetive morphisms are those generated by the δ's. Let i∆denote this subategory. We de�ne the presimpliial realization as the oend

‖X•‖ =

∫ [n]∈i∆

Xn ×∆n .This spae is the quotient of∐Xn×∆n where we identify (x, δi(t)) with (di(x), t)for all δi's.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 3Whereas the geometrial realization, |X•|, has better formal properties, it isoften easier to prove results about the homotopy of the presimpliial realization,
‖X•‖. And we an ompare the two realizations via a natural map

‖X•‖ → |X•| .It is natural to ask when this is a weak homotopy equivalene. This question isanswered by Segal in [Seg74℄ and by May in [May72℄. We follow Segal and de�ne:De�nition 1.1.4A simpliial spae X• is good if for all n and i, the map si : Xn → Xn+1 is alosed o�bration.We refer to our remark 2.1.8 or one of the artiles [Ste67℄ or [Str66℄ for thede�nition of a losed o�bration. Observe that any simpliial set automatiallyis good, sine an injetive map between disrete spaes is a losed o�bration.Now, Segal shows in his proposition A.1(iv) that:Proposition 1.1.5If X• is a good simpliial spae, then the natural map ‖X•‖ → |X•| is a weakequivalene.Let us now desribe the realizations more arefully. We have already men-tioned Milnor's result, that a point in |X•| is uniquely given as the interior pointof a non-degenerate simplex. There is a similar desription for the presimpliialrealization. We now give a modern formulation of these statements:Constrution 1.1.6First we onsider the ase of the presimpliial realization. Reall that ‖X•‖ is thequotient spae formed from ∐
Xn ×∆n by identifying (x, δi(t)) with (dix, t) forall morphisms di. We de�ne a �ltration by letting the q'th spae, Fq‖X•‖, q ≥ 0,be the image of ∐n≤q Xn ×∆n in ‖X•‖. Notie that Fq‖X•‖ is the pushout of

Xq ×∆q ← Xq × ∂∆
q → Fq−1‖X•‖ .Now observe that

colimFq‖X•‖ is equal to ‖X•‖, andeah Xq × ∂∆q → Xq × ∆q is a losed o�bration. It follows that also
Fq−1‖X•‖ → Fq‖X•‖ is a losed o�bration.The last observation explains why the presimpliial realization behaves so wellhomotopially; it is easy to give indutive arguments using the pushout diagramrelating Fq−1‖X•‖ to Fq‖X•‖.



4 CHAPTER 1. SIMPLICIAL TECHNIQUESConstrution 1.1.7Next onsider the geometri realization. Reall that |X•| is the quotient of∐Xn×
∆n where we identify (x, φ(t)) with (φ∗x, t) for all morphisms φ in ∆. We de�ne
Fq|X•|, q ≥ 0, to be the image of ∐n≤q Xn × ∆n. Reall that the degeneratesimplies, sXq−1, are the points in Xq whih are in the image of some map
si : Xq−1 → Xq. Notie that the following diagram is pushout:

Xq × ∂∆q ∪ sXq−1 ×∆q −−−→ Fq−1|X•|

j

y
y

Xq ×∆q −−−→ Fq|X•|

.Here the map j omes from the square
sXq−1 × ∂∆q −−−→ sXq−1 ×∆q

y
y

Xq × ∂∆q −−−→ Xq ×∆q

.By Lillig's union theorem, see [Lil73℄, we have that j is a losed o�brationwhenever sXq−1 ⊂ Xq is a losed o�bration. Now observe that
colimFq|X•| is equal to |X•|, andif eah sXq−1 ⊂ Xq is a losed o�bration, then Xq × ∂∆q ∪ sXq−1 ×∆q →
Xq ×∆q and Fq−1|X•| → Fq|X•| are losed o�brations.The last observation explains why good simpliial spaes behave well with respetto homotopy.These �ltrations are extremely useful when proving results about realizations.We illustrate this by proving a few well known fats:Proposition 1.1.8Let f• : X• → Y• be a map of simpliial spaes suh that eah fq is a weakhomotopy equivalene. Then the indued map

‖f•‖ : ‖X•‖ → ‖Y•‖also is a weak homotopy equivalene.Proof: We use the �ltration from onstrution 1.1.6, and prove indutively that
Fq‖X•‖ → Fq‖Y•‖ is a weak homotopy equivalene. It will follow that ‖f‖ is aweak homotopy equivalene.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 5
F0‖X•‖ = X0 → Y0 = F0‖Y•‖ is a weak homotopy equivalene by assumption.Now onsider the indutive step. We have the diagram

Xq ×∆q j
←−−− Xq × ∂∆q −−−→ Fq−1‖X•‖

fq×id

y fq×id

y
y

Yq ×∆q j′

←−−− Yq × ∂∆
q −−−→ Fq−1‖Y•‖

.Here j and j′ are losed o�brations, while all vertial maps are weak homotopyequivalenes. By proposition A.1.4, the map of the row-wise pushouts,
Fq‖X•‖ → Fq‖Y•‖also is a weak homotopy equivalene. This �nishes the proof. �A straight forward orollary of this proposition together with proposition 1.1.5is:Corollary 1.1.9If f• : X• → Y• is a map between good simpliial spaes and eah fq is a weakhomotopy equivalene, then
|f•| : |X•| → |Y•|also is a weak homotopy equivalene.Let us also prove the produt theorem. Given two simpliial spaes, X• and

Y•, we de�ne their produt X• × Y• to be the simpliial spae with n-simplies
Xn × Yn. We have a natural map η : |X• × Y•| → |X•| × |Y•| de�ned using thenatural projetions from X• × Y• into X• and Y•. The produt theorem statesthat η is a homeomorphism. It is hard to �nd a proof in the literature, whihis of the generality suggested in remark 1.1.3. This is the reason for inluding aproof here:Proposition 1.1.10Sine the geometri realization is formed in the ategory of ompatly generatedspaes, the natural map

η : |X• × Y•| → |X•| × |Y•|is a homeomorphism.Proof: It is well known that η is a ontinuous bijetion, see theorem 2 in [Mil57℄or theorem 11.5 in [May72℄. The hard part is to hek that η−1 is ontinuous.May proves this when �spaes� is the ategory of ompatly generated Hausdor�



6 CHAPTER 1. SIMPLICIAL TECHNIQUESspaes, although his proof for ontinuity of η−1 is not partiularly lear. The au-thor hopes that the argument below will be more understandable, but in essenethe proofs are the same.We use the �ltration of the geometrial realization given in onstrution 1.1.7.The produt |X•| × |Y•| inherits a �ltration given by
Fq(|X•| × |Y•|) =

⋃

m+n=q

Fm|X•| × Fn|Y•| .And by the onstrutions one an see that η restrits to a ontinuous bijetion
Fq|X• × Y•| ∼= Fq(|X•| × |Y•|).A ontinuous bijetion η between ompatly generated spaes is a homeo-morphism, if η−1(K) is ompat whenever K is ompat. This follows from thede�nition of ompatly generated by lemma 2.1 in [MC69℄.We will now try to apply lemma 2.8 in [MC69℄. Suppose that K ⊂ |X•|×|Y•|is a ompat subset. Then K is ontained in Fq(|X•| × |Y•|) for some q. q isnow �xed. Below we will speify Zα's suh that for all α we have ommutativediagrams

∐
p≤q Xp × Yp ×∆p ←−−− Zα ⊂

∐
n,mXn ×∆n × Ym ×∆m

y
yπ

Fq|X• × Y•|
ηq

−−−→ |X•| × |Y•|

.Here the vertial maps are surjetive and ηq is injetive. Furthermore, the targetof the map π has the quotient topology. The Zα's depend on the standardtriangulation of ∆n × ∆m. For given m and n let iα : ∆n+m → ∆n × ∆mbe the inlusion of a maximal topologial simplex in this triangulation. We set
Zα = Xn×Ym×∆n+m, inluded in∐n,mXn×∆n×Ym×∆m via iα. Moreover, viathe appropriate degeneray maps, there are maps Zα → Xp×Yp×∆p, p = n+m,suh that the diagram above ommutes. These maps are expliitly onstrutedin May's proof.Now observe that the olletion of Zα's with n + m ≤ q overs the image of
Fq|X•× Y•|. This olletion is �nite. Thus all onditions of MCord's lemma 2.8are satis�ed. This implies that ηq is an embedding, and onsequently we havethat η−1(K) = η−1

q (K) is ompat. And we are done. �1.1.2 Crossed simpliial ategoriesTehniques involving simpliial sets or simpliial spaes are extremely useful whenworking with topologial spaes. However, if we want to onsider involutions, S1-or O(2)-ations on our spaes, it is handy to replae ∆ by other ategories; ∆T,
∆C and ∆D. We will reall the notion of a rossed simpliial group from [FL91℄.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 7The ategories mentioned above are examples of suh, they will be de�ned belowand we will introdue notation for their morphisms.De�nition 1.1.11A sequene of groups {Gn}, n ≥ 0, is a rossed simpliial group if it is equippedwith the following struture. There is a small ategory ∆G, whih is part of thestruture, suh thatthe objets of ∆G are [n], n ≥ 0,
∆G ontains ∆ as a subategory,the automorphisms of [n] in ∆G is the opposite group of Gn, andany morphism in ∆G([m], [n]) an be uniquely written as a omposite φ◦g,where φ ∈∆([m], [n]) and g ∈ Gop

m .Remark 1.1.12The last axiom implies that for any g ∈ Gn and φ ∈∆([m], [n]) there exist unique
φ∗(g) ∈ Gm and g∗(φ) ∈∆([m], [n]) suh that

g ◦ φ = g∗(φ) ◦ φ∗(g) .The funtor that sends [n] to Gn and φ to φ∗ : Gn → Gm gives G• the strutureof a simpliial set.Unlike [FL91℄, our fous will not be these simpliial sets, but rather the at-egories ∆G and their analogue of simpliial sets and spaes, i.e. funtors from
∆Gop into sets and spaes. We will therefore refer to ∆G as a rossed simpliialategory.Here are the rossed simpliial ategories relevant for this thesis, they aretaken from the examples 2, 4, 5 and 7 in [FL91℄:De�nition 1.1.13De�ne ∆T to be the rossed simpliial ategory with the automorphism groupof [n] yli of order 2. Let ρn be the generator of the automorphism group andput ρnδi = δn−iρn−1 and ρnσi = σn−iρn+1.De�nition 1.1.14Let ∆C be the rossed simpliial ategory where the automorphism group of [n]is yli of order (n+ 1). We name the preferred generator τn, and introdue therelations:

τnδ0 = δn and τnδi = δi−1τn−1, for 1 ≤ i ≤ n, and
τnσ0 = σnτ

2
n+1 and τnσi = σi−1τn+1, for 1 ≤ i ≤ n.



8 CHAPTER 1. SIMPLICIAL TECHNIQUESDe�nition 1.1.15Let ∆D be rossed simpliial ategory where the automorphism group of [n] isthe dihedral group of order 2(n + 1). We name the preferred generators ρn and
τn, where ρ2

n = τn+1
n = id and ρnτn = τ−1

n ρn, and introdue the relations:
ρnδi = δn−iρn−1,

ρnσi = σn−iρn+1,

τnδ0 = δn and τnδi = δi−1τn−1, for 1 ≤ i ≤ n, and
τnσ0 = σnτ

2
n+1 and τnσi = σi−1τn+1, for 1 ≤ i ≤ n.De�nition 1.1.16Let ∆Cr, r ≥ 1, be the rossed simpliial ategory where the automorphismgroup of [n] is yli of order r(n + 1). We name the preferred generator τn,where τ r(n+1)

n = id , and introdue the same relations as in de�nition 1.1.14.De�nition 1.1.17Let ∆Dr, r ≥ 1, be rossed simpliial ategory where the automorphism groupof [n] is the dihedral group of order 2r(n+ 1). We name the preferred generators
ρn and τn, where ρ2

n = τ
r(n+1)
n = id and ρnτn = τ−1

n ρn, and introdue the samerelations as in de�nition 1.1.15.We now give names to these rossed simpliial ategories, and all ∆T, ∆C,
∆D, ∆Cr and ∆Dr the involutive simpliial ategory, the yli ategory, thedihedral ategory, the r-yli ategory and the r-dihedral ategory respetively.Notie that ∆C1 = ∆C and ∆D1 = ∆D. We see that ∆Cr is a subategory of
∆Dr, and that ∆T is a subategory of ∆Dr, for any r ≥ 1.Our reason for introduing rossed simpliial ategories is to study G•-objetsin some ategory C :De�nition 1.1.18Let ∆G be a rossed simpliial ategory and C any ategory. A G•-objet in C isa funtor ∆Gop → C . A G•-map between G•-objets is a natural transformationof funtors.If ∆G is one of the rossed simpliial ategories above and C is Top, theategory of (ompatly generated) spaes, then we all G•-objets for involutivesimpliial spaes, yli spaes, dihedral spaes, r-yli spaes and r-dihedralspaes aordingly, and similarly we replae the word �spaes� by �sets� when
C = Ens , the ategory of sets.Given an r-dihedral spae X• we have the following notation: The map in-dued by δi is denoted by di : Xn → Xn−1 and alled the i'th fae map. The mapindued by σi is denoted si : Xn → Xn+1 and alled the i'th degeneray map.The map indued by ρn is denoted by rn : Xn → Xn and alled the involutiveoperator. And the map indued by τn is denoted by tn : Xn → Xn and alled theyli operator.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 9For an r-yli spae, we use the same notation and terminology, but in thisase there are no involutive operators. Analogously, there are no yli operatorsfor involutive simpliial spaes.1.1.3 Geometri realization of G•-spaesWe now turn toward the geometri realization of G•-spaes. Via the inlusion
j : ∆ → ∆G we assoiate to any G•-spae X• its underlying simpliial spae
j∗X•, whih is given as the omposition ∆op j

−→∆Gop X•−→ Top. And we de�ne:De�nition 1.1.19The geometri realization of a G•-spae X• is the geometri realization of itsunderlying simpliial spae j∗X•.From the artile [FL91℄ we now summarize results about the geometri real-ization of a G•-spae.Theorem 1.1.20Let ∆G be a rossed simpliial ategory, and X• a simpliial spae. We have:The funtor j∗ from G•-spaes to simpliial spaes has a left adjoint, de-noted by FG, and there are projetion maps p1 : |FG(X•)| → |G•| and
p2 : |FG(X•)| → |X•|.The map (p1, p2) : |FG(X•)| → |G•| × |X•| is a homeomorphism.For any simpliial map f• : X• → Y• the following diagrams ommute:

|FGX•|
|FGf•|
−−−→ |FGY•|

p2

y
yp2

|X•|
|f•|
−−−→ |Y•|

and |FGX•|
|FGf•|
−−−→ |FGY•|

p1

y
yp1

|G•| |G•|

.Sine FG is a left adjoint, there are anonial natural transformations µ• :
FG(FG(X•))→ FG(X•) and ι• : X• → FG(X•). And the following diagramsommute:

|FG(FG(X•))|
|µ•|
−−−→ |FG(X•)|

p2

y
yp2

|FG(X•)|
p2
−−−→ |X•|

and |X•|
|ι•|
−−−→ |FGX•|

=

y
yp2

|X•| |X•|

.There is a anonial isomorphism G• ∼= FG(∗) and the omposition |G•| ∼=
|FG(∗)|

p1−→ |G•| is the identity.



10 CHAPTER 1. SIMPLICIAL TECHNIQUESLet 1 denote the point in |G•| determined by the unit in G0. The followingdiagram ommutes:
|X•|

|ι•|
−−−→ |FG(X•)|y

yp1

{1} −−−→ |G•|

.

|G•| is a topologial group.If X• is a G•-spae, then there is an indued ation |G•| × |X•| → |X•|.
(p1, p2) : |FG(X•)| → |G•| × |X•| is an equivariant homeomorphism.For every n there is an inlusion of Gn in |G•| as a disrete subgroup.For a proof see propositions 4.4, 5.1, 5.3 and 5.13 in [FL91℄.Remark 1.1.21Chasing Fiedorowiz and Loday's proof of theorem 1.1.20 above, it is not hardto see that all results are natural with respet to a morphism ∆G → ∆G′ ofrossed simpliial ategories. In partiular we get an indued homomorphism oftopologial groups |G•| → |G′•|. Furthermore, it is possible to onsider shortexat sequenes of rossed simpliial ategories. It is more onvenient to writesuh a sequene in terms of the orresponding rossed simpliial groups. Thesequene

0→ G′′• → G• → G′• → 0is short exat if the evaluation at eah [n] is. Taking the geometri realizationone gets a sequene
|G′′•| → |G•|

f
−→ |G′•| ,whih an extension of topologial groups.Let us now determine what the group |G•| is for our rossed simpliial ate-gories.Example 1.1.22Consider the involutive simpliial ategory, ∆T. The automorphism group, Gop

n ,of [n] in ∆T is isomorphi to Z/2. Reall that G• is a simpliial set, the fae anddegeneray maps are given by the formula in remark 1.1.12. The degeneray map
s0 is always injetive. By ounting the order of Gn, we immediately see that theonly non-degenerate simplies lie in degree 0. Hene, we have that |G•|, in thisase, is the group Z/2. This means that the geometri realization of an involutivesimpliial spae is a topologial spae with involution.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 11Example 1.1.23Next onsider the yli ategory, ∆C. Using the formula from remark 1.1.12,we �nd that the non-degenerate simplies are τ0 ∈ G0 and τ1 ∈ G1. Hene,
|G•| ∼= S1. We now determine the group struture. A theorem by von Neumannsays that any ompat, loally Eulidean topologial group is a Lie group, seetheorem 57 in [Pon39℄. The theory of Lie groups now tells us that the onlytopologial group struture on S1 is the ordinary group struture.Example 1.1.24Now look at the r-yli ategory, ∆Cr. Let G• be the assoiated rossedsimpliial group. To determine |G•| as a topologial spae, we �nd the non-degenerate simplies. The 0-simplies, G0 = Cr, are non-degenerate. Reall fromremark 1.1.12 the formula de�ning the simpliial struture on G•. The relation

τ0σ0 = σ0τ
2
1implies that s0(τ

i
0) = τ 2i

1 . Hene, τ1, τ 3
1 ,. . ., τ 2r−1

1 are the non-degenerate simpliesin G1. Playing with the relations in ∆Cr, we see that there are no more non-degenerate simplies. Furthermore, we have that d0(τ
2i−1
1 ) = τ i−1

0 and d1(τ
2i−1
1 ) =

τ i
0. Hene, |G•| ∼= S1. And S1 has a unique struture as a topologial group.Example 1.1.25Let us now study the r-dihedral ategory, ∆Dr. We an use the de�nition of theategory and the formula from remark 1.1.12 to determine the simpliial strutureon the assoiated simpliial group G•. Finding non-degenerate simplies andalulating the fae maps, we see that

|G•| ∼= S1 × Z/2as topologial spaes. Hene there are two possibilities for the group strutureon |G•|: it is isomorphi either to S1 × Z/2 or O(2). By the last statement oftheorem 1.1.20, |G•| ontains dihedral subgroups. This exludes S1 × Z/2, so
|G•| = O(2).The theorem 1.1.20 above tells us that the geometri realization of a G•-spaehas a |G•| ation. However, it is usually the ase that the ation takes one out ofthe topologial simplex one starts in. In partiular, the q'th spae of the �ltration
Fq|X•| is seldom |G•|-equivariant. In many situations it would be easier if theation stayed inside the topologial simplies and the �ltration had |G•|-ation.We an ahieve this by de�ning the topologial |G•|-simplies aording to therossed simpliial ategory under onsideration.Let ∆G be a rossed simpliial ategory. Consider the representable funtors

∆G(−, [n]) : ∆Gop → Ens .



12 CHAPTER 1. SIMPLICIAL TECHNIQUESDe�nition 1.1.26Let ∆G : ∆G→ Top be the funtor with ∆Gn = |∆G(−, [n])|. The topologial
|G•|-simplies are the spaes ∆Gn, n ≥ 0.Observe that the representable funtor ∆G(−, [n]) is FG(∆(−, [n])), henewe have homeomorphisms ∆Gn = |∆G(−, [n])| ∼= |G•| ×∆n. So the |G•|-ationdoes not take points outside ∆Gn.Using the funtor ∆G• we an now de�ne a geometri realization of G•-spaes
X given by:

|X|∆G =

∫ [n]∈∆G

Xn ×∆Gn .This spae is isomorphi to the quotient of∐Xn×∆Gn where we identify (x, φ(t))with (φ∗x, t) for all morphisms φ in ∆G.Lemma 1.1.27There is a natural homeomorphism |X|∆G
∼= |X| for ∆Gop-spaes X.Proof: Consider the funtor F : (∆×∆G)op × (∆×∆G)→ Top given by

F ([no], [mo], [n], [m]) = Xmo
×∆G(j(no), m)×∆n .We have that ∫ [n]∈∆

F ([n], [mo], [n], [m]) ∼= Xmo
×∆Gmand ∫ [m]∈∆G

F ([no], [m], [n], [m]) ∼= X(j(no))×∆n .The result now follows from the Fubini theorem for oends, see �IX.8 in [ML98℄:oends an be interhanged. �To ahieve full ontrol of the |G•|-ation on |X•|, it su�es to have an expliitdesription of the funtor ∆G•. This desription should speify the map ∆Gn →
∆Gm indued by a morphism φ : [n] → [m] in ∆G. In the ase ∆C, thisdesription is given impliitly in proposition 2.7 in [DHK85℄, and more expliitlyin theorem 3.4 in [Jon87℄. For the r-yli ase a formula is given by lemma 1.6in [BHM93℄, and by formula (2.1.3) in [Mad94℄. In general it is just a questionabout writing out the equivariant homeomorphism (p1, p2) : |FG(∆n

• )| → |G•| ×
|∆n
• | from theorem 1.1.20. Here ∆n

• is the simpliial n-simplex ∆(−, [n]).Expliitly we have in our ases:Example 1.1.28For the involutive simpliial ategory ∆T we de�ne the funtor ∆T • by sending
[n] to Z/2 × ∆n. We write Z/2 multipliatively. The generators of ∆T indue



1.1. THE CATEGORY ∆ AND ITS RELATIVES 13the following maps:
δi(ǫ; t0, . . . , tn) = (ǫ; t0, . . . , ti−1, 0, ti, . . . , tn) ,

σi(ǫ; t0, . . . , tn) = (ǫ; t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn) , and
ρn(ǫ; t0, . . . , tn) = (−ǫ; tn, tn−1, . . . , t1, t0) .Example 1.1.29For the r-yli ategory ∆Cr we de�ne the funtor ∆C•r by sending [n] to

S1 ×∆n. We identify S1 with the quotient R/Z. The generators of ∆Cr induethe following maps:
δi(θ; t0, . . . , tn) = (θ; t0, . . . , ti−1, 0, ti, . . . , tn) ,

σi(θ; t0, . . . , tn) = (θ; t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn) , and
τn(θ; t0, . . . , tn) = (θ −

1

r
t0; t1, t2, . . . , tn, t0) .Example 1.1.30For the r-dihedral ategory ∆Dr we de�ne the funtor ∆D•r by sending [n] to

O(2)×∆n. O(2) is the spae of orthogonal 2× 2-matries. For t ∈ R/Z let R(t)denote the rotation matrix ( cos(2πt) sin(2πt)
− sin(2πt) cos(2πt)

), and let T be the matrix
(

0 1
1 0

). The generators of ∆Dr indue the following maps:
δi(M ; t0, . . . , tn) = (M ; t0, . . . , ti−1, 0, ti, . . . , tn) ,

σi(M ; t0, . . . , tn) = (M ; t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn) ,

τn(M ; t0, . . . , tn) = (MR(−
1

r
t0); t1, t2, . . . , tn, t0) , and

ρn(M ; t0, . . . , tn) = (MT ; tn, tn−1, . . . , t1, t0) .1.1.4 Filtering the geometri realizationSimilar to the onstrutions 1.1.6 and 1.1.7, we now design a �ltration of |X•|,when X• is a G•-spae. This �ltration is |G•|-equivariant.Constrution 1.1.31Let ∆G be a rossed simpliial ategory and X• a G•-spae. The drawbakof using the �ltration above to study |X•| is that Fq|X•| has no |G•| ation.Therefore we de�ne another �ltration FG
q |X•|. Reall that |X•| an be desribedas the quotient of ∐Xn × ∆Gn where we identify (x, φ(t)) with (φ∗x, t) for allmorphisms φ in ∆G. De�ne FG

q |X•| to be the image of ∐n≤q Xn × ∆Gn. Wede�ne the G•-degenerate simplies of Xq to be the subspae sGXq−1 onsisting ofall points whih lie in the image of some map φ∗ : Xq−1 → Xq, φ ∈∆G([q], [q−1]).



14 CHAPTER 1. SIMPLICIAL TECHNIQUESReall that the opposite group of Gq is the automorphisms of [q] in ∆G. Hene
Xq and sXq−1 have Gq ations, while ∆Gq and ∂∆Gq have Gop

q ations. Let
Xq ×Gq

∆Gq denote the quotient of the produt where we have identi�ed (gx, t)with (x, g∗t) for every g in Gq. We now have a pushout diagram
Xq ×Gq

∂∆Gq ∪ sXq−1 ×Gq
∆Gq −−−→ FG

q−1|X•|

i

y
y

Xq ×Gq
∆Gq −−−→ FG

q |X•|

.Remark 1.1.32Here is a warning: In general it is not true that natural mapX0×G0 |G•| → FG
0 |X•|is an homeomorphism, but it is always an equivariant quotient map.1.1.5 Edgewise subdivisionAbove we have seen that both yli and r-yli spaes yield S1-spaes aftergeometri realization. Similarly both dihedral and r-dihedral spaes realize to

O(2)-spaes. So why do we bother with the r-yli and r-dihedral ategories?Observe that neither the S1- nor the O(2)-ation is simpliial. Let C be a �niteyli group. Notie that C embeds as a normal subgroup of both S1 and O(2).The answer to the question is that C-�xed points an be studied simpliiallywhenever the order of C divides r.After making preise the observations above, we shall de�ne the c'th edgewisesubdivision, c ≥ 1. This is a funtor sdc from r-yli spaes to rc-yli spaes,and similarly from r-dihedral spaes to rc-dihedral spaes. The edgewise subdi-visions ome with natural equivariant homeomorphisms Dc : | sdcX•| → |X•|. Inpartiular we an replae a yli spae with an r-yli spae for the purpose ofstudying its restrited Cr-ation.Let C be a �nite yli group C of order c. Reall from example 1.1.30 that
R(t) ∈ O(2) denotes a rotation by 2πt, while T ∈ O(2) is a re�etion. Weidentify C as the normal subgroup of O(2) generated by R(1

c
). Now we onstruthomomorphisms

ρC : O(2)→ O(2)/Cby letting ρC(R(t)) = R( t
c
) and ρC(T ) = T . Observe that ρC is an isomorphism.The restrition of ρC to S1 is the �c-th root map� S1

∼=
−→ S1/C.Two basi fats are: The C-�xed point spae of an O(2)-spae Y is an O(2)/C-spae Y C , and an O(2)/C-spae Z an be viewed as an O(2)-spae ρ∗CZ via theisomorphism ρC .After these preliminaries we show:Proposition 1.1.33Assume that X• is an r-dihedral spae and C a �nite yli group of order c.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 15Assume that c divides r and let cs = r. Eah Xn has a C-ation and XC
• is an s-dihedral spae. Furthermore, there is a natural O(2)-equivariant homeomorphism

ρ∗C |X•|
C ∼= |XC

• | .A similar result holds for r-yli spaes.Proof: The C ation on Xn is given by the map ts(n+1)
n . Observe that all theoperators di, si, tn and rn preserve C-�xed points. Hene, XC

• is an r-dihedralspae. But sine ts(n+1)
n is the identity when restrited to XC

n , we see that XC
•satis�es the identities for an s-dihedral spae.To de�ne the natural O(2)-homeomorphism we use the �ltration from on-strution 1.1.31. Assume indutively that we have an O(2)-homeomorphism

ρ∗CF
∆Dr

n−1 |X•|
C ∼= F∆Ds

n−1 |X
C
• | .Reall that the automorphism group of [n] in ∆Dr is the dihedral group

D2r(n+1) of order 2r(n + 1). If Y is a D2r(n+1)-spae, then we may form theindued O(2)-spae Y ×D2r(n+1)
O(2). It is a basi fat about indued O(2)-spaesand C-�xed points, ompare lemma 3.8.2, that

(
Y ×D2r(n+1)

O(2)
)C
∼= Y C ×D2r(n+1)/C O(2)/C .For the indution step we inspet the n-simplies, and alulate:

ρ∗C

(
Xn ×D2r(n+1)

∆Dn
r

)C
∼= ρ∗C

(
(Xn ×∆n)×D2r(n+1)

O(2)
)C

∼= ρ∗C

(
(Xn ×∆n)C ×D2r(n+1)/C O(2)/C

)

∼= (Xn ×∆n)C ×D2s(n+1)
ρ−1

C (O(2)/C)

∼= (XC
n ×∆n)×D2s(n+1)

O(2)

∼= Xn ×D2s(n+1)
∆Dn

s .Similarly, we have an O(2)-equivariant homeomorphism for the degenerate points.And these O(2)-homeomorphisms �t into a diagram
ρ∗

C

(
Xn ×D2r(n+1)

∆Dn
r

)C
←ρ∗

C

(
Xn ×D2r(n+1)

∂∆Dn
r ∪ sXn−1 ×D2r(n+1)

∆Dn
r

)C
→ρ∗

C
F∆Dr

n−1 |X•|C

∼=

y ∼=

y
y∼=

Xn ×D2s(n+1)
∆Dn

s ← XC
n ×D2s(n+1)

∂∆Dn
s ∪ sXC

n−1 ×D2s(n+1)
∆Dn

s → F∆Ds
n−1 |X

C
• |

.By onstrution 1.1.31 we see that the map of the row-wise pushouts is F∆Ds
n |XC

• |
∼=

ρ∗CF
∆Dr
n |X•|

C .The statement for r-yli spaes is proved similarly. �



16 CHAPTER 1. SIMPLICIAL TECHNIQUESWe now de�ne the edgewise subdivision funtor sdc : ∆Drc → ∆Dr. Theidea behind sdc is to send the ordered set [q] to the disjoint union of c opies of
[q]:

sdc[q] = [q]∐ · · · ∐ [q] = [c(q + 1)− 1] .This yields the following formulas for sdc of the generators in the dihedral ase:
sdc(δi) = δi+(c−1)(q+1) · · · δi+(q+1)δi ,

sdc(σi) = σiσi+(q+2) · · ·σi+(c−1)(q+2) ,

sdc(τq) = τc(q+1)−1 , and
sdc(ρq) = ρc(q+1)−1 .Observe that sdc restrits to funtors ∆Crc → ∆Cr, ∆T→∆T and ∆→ ∆.De�nition 1.1.34Let X• be an r-dihedral spae. Its c'th edgewise subdivision, sdcX• is the om-position ∆Dop

rc
sdc−→ ∆Dop

r
X•−→ Top. Similarly, we also de�ne the c'th edgewisesubdivision of r-yli, involutive simpliial and simpliial spaes.To ompare the geometri realization of sdcX• and X•, we �rst de�ne adiagonal map from the topologial rc-dihedral q-simplex ∆Dq

rc to the topologial
r-dihedral (c(q + 1)− 1)-simplex ∆Dq

r . This map is given by
(M ; t0, . . . , tq) 7→ (M ;

1

c
t0, . . . ,

1

c
tq,

1

c
t0, . . . ,

1

c
tq, . . . ,

1

c
t0, . . . ,

1

c
tq) .This map isO(2)-equivariant. Varying q, we get a natural transformation∆D•rc →

∆D•r◦sdc. Using a trik with oends we de�ne a naturalO(2)-mapDc : | sdcX•| →
|X•|. Consider

∫ [p]∈∆Drc
∫ [q]∈∆Dr

Xq ×∆Dr(sdc[p], [q])×∆Dp
rc .Observe that the evaluation

∫ [q]∈∆Dr

Xq ×∆Dr(sdc[p], [q])→ (sdcX)pis a homeomorphism. (The identity in ∆Dr(sdc[p], sdc[p]) gives an inverse map.)It follows that the double oend above equals
∫ [p]∈∆Drc

(sdcX)p ×∆Dp
rc = | sdcX•| .On the other hand, by the Fubini theorem for oends, we an onsider the oendover [p] ∈ ∆Drc �rst. Via the diagonal map given above, we get a natural
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O(2)-map
∫ [q]∈∆Dr

∫ [p]∈∆Drc

Xq ×∆Dr(sdc[p], [q])×∆Dp
rc

∼=

∫ [q]∈∆Dr

Xq ×

(∫ [p]∈∆Drc

∆Dr(sdc[p], [q])×∆Dp
rc

)diagonal
−−−−→

∫ [q]∈∆Dr

Xq ×

(∫ [p]∈∆Drc

∆Dr(sdc[p], [q])×∆Dsdc[p]
r

)evaluate
−−−−→

∫ [q]∈∆Dr

Xq ×∆Dq
r

= |X•| .Putting this together we see that the diagonal map on topologial simplies givesa natural O(2)-map
Dc : | sdc X•| → |X•| .Similarly, for the yli, the involutive simpliial and the simpliial ategories wehave a natural S1-map, Z/2-map and map respetively.Proposition 1.1.35Let X• be an r-dihedral spae, an r-yli spae, an involutive simpliial spaeor a simpliial spae. In all ases, the (equivariant) map Dc : | sdcX•| → |X•| isa homeomorphism.Proof: Reall that we an ompute the geometri realization either over therossed simpliial ategory or over ∆. Beause both methods yield the samespae, lemma 1.1.27, it is enough to inspet the map in the simpliial ase.The proof for simpliial sets, lemma 1.1 in [BHM93℄ applies also to the aseof simpliial spaes: One �rst heks by expliit omputation that Dc is a home-omorphism when X• is the simpliial 1-simplex ∆(−, [1]). It follows that Dc alsois a homeomorphism for produts ∆(−, [1])×q. Then it holds for the simpliial

q-simplex beause of the retration ∆(−, [q])
i
−→ ∆(−, [1])×q r

−→ ∆(−, [q]). Let
ηq denote the inverse of Dc : | sdc ∆(−, [q])| → |∆(−, [q])|. For general simpliial



18 CHAPTER 1. SIMPLICIAL TECHNIQUESspaes X• we now de�ne the inverse as follows:
|X•| =

∫ [q]∈∆

Xq ×∆q

=

∫ [q]∈∆

Xq × |∆(−, [q])|

id×ηq
−−−→

∫ [q]∈∆

Xq × | sdc ∆(−, [q])|

=

∫ [q]∈∆

Xq ×

(∫ [p]∈∆

∆(sdc[p], [q])×∆p

)

=

∫ [q]∈∆ ∫ [p]∈∆

Xq ×∆(sdc[p], [q])×∆p

= | sdc X•| .

�1.2 Homotopy olimits over topologial ategoriesIn this short setion we will de�ne the homotopy olimit of a ontinuous fun-tor over a topologial ategory. Also, we give a ondition on F suh that
hocolimC F → BC is a λ-quasi o�bration.Assume that C is a small topologial ategory; we have a disrete set ofobjets, while for eah pair of objets, a, b ∈ C , we have a topologial spae
C (a, b) of morphisms from a to b. For ontinuous funtors F : C → Top wewould like to de�ne a homotopy olimit.De�nition 1.2.1We de�ne hocolimC F as the realization of a simpliial spae. Its q-simplies are

Xq =
∐

a0,...,aq∈C

C (aq−1, aq)× · · · × C (a0, a1)× F (a0) .Fae and degeneray maps are given by
di(fq−1, . . . , f0; x) =






(fq−1, . . . , f1; f0(x)) for i = 0,
(fq−1, . . . , fi+1, fi ◦ fi−1, fi−2, . . . , f0; x) for 0 < i < q,
(fq−2, . . . , f0; x) for i = q, and

si(fq−1, . . . , f0; x) = (fq−1, . . . , fi, idai
, fi−1, . . . , f0; x) .
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hocolim is funtorial. If τ : F → F ′ is a natural transformation, then there isan indued map

hocolim
C

F → hocolim
C

F ′ .Furthermore, if j : D → C is a funtor, then there is an indued map
hocolim

D
j∗F → hocolim

C
F ,where j∗f is the omposite f ◦ F : D → Top.Proposition 1.2.2If τ : j0 → j1 is a natural transformation between ontinuous funtors D → C ,then there is a simpliial homotopy between

hocolim
D

j∗0F
(j0)∗
−−→ hocolim

C
Fand

hocolim
D

j∗0F
τ∗−→ hocolim

D
j∗1F

(j1)∗
−−→ hocolim

C
Ffor any ontinuous funtor F : C → Top.Proof: We de�ne a simpliial homotopy. It is given by maps

hi :
∐

D(bq−1, bq)× · · · ×D(b0, b1)× F (j0(b0))

→
∐

C (aq, aq+1)× C (aq−1, aq)× · · · × C (a0, a1)× F (a0)for 0 ≤ i ≤ q. To de�ne the hi's we onsider the diagram in C :
j0(b0)

j0(f0)
−−−→ j0(b1)

j0(f1)
−−−→ · · ·

j0(fq−1)
−−−−−→ j0(bq)

τb0

y τb1

y · · ·
yτbq

j1(b0)
j1(f0)
−−−→ j1(b1)

j1(f1)
−−−→ · · ·

j1(fq−1)
−−−−−→ j1(bq)

.

hi is now given by the formula:
hi(fq−1, . . . , f0; x) = (j1(fq−1), . . . , j1(fi), τbi

, j0(fi−1), . . . , j0(f0); x) .It is easily heked that this is the required simpliial homotopy. �We now de�ne λ-quasi �brations:De�nition 1.2.3A map p : E → B is a λ-quasi �bration if for any b ∈ B the indued map
πi(E, p

−1(b)) → πi(B, b) is an isomorphism for 0 ≤ i < λ and a surjetion for
i = λ.



20 CHAPTER 1. SIMPLICIAL TECHNIQUESProposition 1.2.4Consider the diagram:
E2

F
←−−− E0 −−−→ E1

p2

y
yp0

yp1

B2
f

←−−− B0
i

−−−→ B1

.Assume that the pi's are λ-quasi �brations with p−1
i (b) path-onneted for all iand b ∈ Bi. If i is a o�bration, the right square pullbak, and p−1

0 (b)→ p−1
2 (f(b))

λ-onneted for all b ∈ B0, then the indued map of pushouts p : E → B is a
λ-quasi �bration.Proof: We an assume that f is a o�bration, if not one an replae B2 by themapping ylinder Mf , and E2 by the pullbak r∗E2 over the retration r : Mf →
B2. Moreover, we an assume that F is a o�bration, if not we an replae E2by MF . Using that f is injetive it follows that MF → B2 is a λ-quasi �bration.Now ompare the long exat sequenes of homotopy groups for the triples
(E1, E0, p

−1
0 (b)) and (B1, B0, b), where b ∈ B0. Sine p−1

0 (b) = p−1
1 (b), rememberthat the right square is pullbak, and using that p0 and p1 are λ-quasi �brations,we get that πi(E1, E0) → πi(B1, B0) is an isomorphism for 0 ≤ i < λ andsurjetive for i = λ.Regarding the onnetedness of πi(E2, p

−1
0 (b)) → πi(B2, b), we reason as fol-lows: Sine p−1

0 (b) → p−1
2 (f(b)) is λ-onneted, we get that πi(p

−1
2 (f(b)), p−1

0 (b))is the trivial group when i ≤ λ. Now onsider the long exat sequene of ho-motopy groups for (E2, p
−1
2 (f(b)), p−1

0 (b)). The homomorphism πi(E2, p
−1
0 (b)) →

πi(E2, p
−1
2 (f(b))) is an isomorphism for i < λ and surjetive for i = λ. Using that

p2 is a λ-quasi �bration, the omposed map
πi(E2, p

−1
0 (b))→ πi(E2, p

−1
2 (f(b)))→ πi(B2, b)is also an isomorphism for i < λ and surjetive for i = λ.Comparing the long exat sequenes of homotopy groups for (E2, E0, p

−1
0 (b))and (B2, B0, b), we see that πi(E2, E0) → πi(B2, B0) is an isomorphism for 0 ≤

i < λ and surjetive for i = λ.Sine the maps under onsideration are o�brations, the Mayer-Vietoris prop-erty for homotopy groups holds as stated in [Hat02℄ proposition 4K.1. Therefore,we have that πi(E,E1) → πi(B,B1) is an isomorphism for i ≤ λ and surjetivefor i = λ. The same is also true for πi(E,E2)→ πi(B,B2).At last we an hek whether p : E → B is a λ-quasi �bration. If b ∈ B2we ompare the long exat sequenes of homotopy groups for (E,E2, p
−1(b)) and

(B,B2, b). By the �ve lemma we see that πi(E, p
−1(b)) → πi(B, b) is an isomor-phism for i ≤ λ and surjetive for i = λ. When b ∈ B1 r B0, we ompare long
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−1(b)) and (B,B1, b). The sameonlusion holds. �Observe that for any funtor F : C → Top there is a natural map

hocolim
C

F → BC .Here BC is the bar onstrution (=geometri realization of the nerve). In someases, this map is a λ-quasi �bration:Proposition 1.2.5If the indued map F (a) → F (b) is λ-onneted for all morphisms of C , C iswell-pointed and all F (a)'s are path-onneted, then
hocolim

C
F → BCis a λ-quasi �bration.Proof: As above letX• denote the simpliial spae whose realization is hocolimC F .Now ompare the presimpliial realization with the geometri realization:

F (a0) −−−→ ‖X•‖ −−−→ ‖B•C ‖

=

y
y≃

y≃

F (a0) −−−→ |X•| −−−→ |B•C |

.Here F (a0) is the �ber over some point b in ‖B•C ‖. The �ber over b's image in
|B•C | is idential. This an be seen by inspeting the de�nition of the degeneraymaps.Sine C is well-pointed, it follows thatX• and B•C are good simpliial spaes.Hene, the vertial maps are weak equivalenes. Therefore it is enough to showthat ‖X•‖ → ‖B•C ‖ is a λ-quasi �bration.Following Quillen, we now onsider the skeletal �ltration of the presimpliialrealization.

Fq−1‖X•‖ ←−−− Xq × ∂∆q −−−→ Xq ×∆q

y
y

y

Fq−1‖B•C ‖ ←−−− BqC × ∂∆
q −−−→ BqC ×∆q

.This diagram satis�es the onditions of proposition 1.2.4, so the map of pushouts
Fq‖X•‖ → Fq‖B•C ‖ is a λ-quasi �bration.Now the result follows sine the diret limit of λ-quasi �brations is a λ-quasi�bration. �
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Chapter 2
Orthogonal spetra
This hapter will introdue the relevant results about orthogonal spetra. Themain referene for these results is the artile [MMSS01℄. The aim of that artileis to ompare di�erent onstrutions of a ategory of spetra with an assoiativeand ommutative smash produt. Their theorem 0.1 says that the ategoriesof N -spetra, symmetri spetra, orthogonal spetra, and W -spaes are Quillenequivalent. However, the aim of this thesis is to study involutions on ertain ringspetra related to geometry of manifolds, see hapter 4. Therefore we are freeto hoose the ategory of spetra most onvenient for our purposes. This is theategory of orthogonal spetra, and we will fous on how to work within thisategory.Below we will give an exposition of the theory of orthogonal spetra. Allrelevant de�nitions are inluded here. For ompleteness we also reprove some ofthe results of [MMSS01℄. However, there are also new results here: We introduel-o�brations, de�nition 2.1.7, in order to study simpliial orthogonal spetra,propositions 2.5.2 and 2.5.3. We onsider indued funtors, orollary 2.3.15.And we onstrut o�brant and �brant replaement funtors with additionalproperties, theorem 2.2.13 and theorem 2.6.1 respetively.We use the onvention that topologial spaes mean ompatly generatedspaes (=weak Hausdor� k-spaes). This ategory satis�es Steenrod's onvenienttehnial properties as de�ned in [Ste67℄. In addition the ategory is losed underthe operation of passing to the quotient X/A of any losed pair (X,A), and underthe operation of taking the union of an expanding sequene of losed subspaes.We refer to �2 of [MC69℄ for the de�nition and further properties of ompatlygenerated spaes. We let Top denote this ategory, and Top∗ based ompatlygenerated spaes. 23



24 CHAPTER 2. ORTHOGONAL SPECTRA2.1 Basi de�nitionsIn this setion we will de�ne the ategory of orthogonal spetra, I S . It is a topo-logial ategory. To de�ne I S we introdue the topologial ategory I of �nitedimensional real inner produt spaes and linear isometri isomorphisms. Themorphism spaes I (V,W ) are empty when V and W have di�erent dimensions,and homeomorphi to the orthogonal group O(n) when n = dimV = dimW .Diret sum gives I the struture of a symmetri monoidal ategory, and one-point-ompati�ation gives a funtor S from I to ompatly generated spaes.De�nition 2.1.1The ategory I S of orthogonal spetra has as its objets ontinuous funtors
L from I to based ompatly generated spaes together with maps σ : L(V ) ∧
SW → L(V ⊕W ), natural in V and W , suh that the omposite

L(V ) ∼= L(V ) ∧ S0 σ
−→ L(V ⊕ 0) ∼= L(V )is the identity and σ is assoiative in the sense that the following diagram om-mutes

L(U) ∧ SV ∧ SW σ∧id
−−−→ L(U ⊕ V ) ∧ SW

∼=

y
yσ

L(U) ∧ SV⊕W σ
−−−→ L(U ⊕ V ⊕W )

.A map of orthogonal spetra is a natural transformation f : K → L of funtorssuh that the following diagram ommutes
K(V ) ∧ SW σ

−−−→ K(V ⊕W )

fV ∧id

y
yfV ⊕W

L(V ) ∧ SW σ
−−−→ L(V ⊕W )

.We all σ the right assembly map. There is also a unique left assembly σ̄orresponding to σ via the symmetry of ∧ and ⊕.There are several interesting examples of orthogonal spetra. First observethat the funtor S is an example by letting σ : SV ∧SW → SV⊕W be the naturalhomeomorphism. We all S the sphere spetrum. For based topologial spaes
X the suspension spetrum is de�ned by V 7→ X ∧SV . We an also de�ne Thomspetra by letting TO(V ), for an n-dimensional V , be the Thom spae of thetautologial n-plane bundle over the Grassmannian of n-planes in V ⊕ V .2.1.1 Shift desuspension funtorsThere is a shift desuspension funtor FV from based ompatly generated spaesto I S for any V . It is de�ned by the formula

(FVA)(W ) = I (V ⊕Rd,W )+ ∧O(d) (A ∧ Sd) ,



2.1. BASIC DEFINITIONS 25where A is a based spae and d = dimW − dim V . We let (FVA)(W ) = ∗ for
dimW < dimV . The right assembly σ : (FVA)(W ) ∧ SU → (FVA)(W ⊕ U) isde�ned by hoosing an isomorphism g : Rd′ ∼= U , and is well de�ned sine wedivide out by O(d+ d′) in the de�nition of (FVA)(W ⊕ U).

FV is left adjoint to the evaluation at level V :
I S (FVA,L) ∼= Top∗(A,L(V )) ,for all V , A and L.2.1.2 Notions of equivaleneFor orthogonal spetra there are two di�erent notions of equivalene:De�nition 2.1.2A map f : K → L of orthogonal spetra is a level equivalene if for every V themap fV : K(V )→ L(V ) is a weak equivalene.To de�ne the other kind of equivalene we make use of a forgetful funtor Ufrom I S to prespetra. (The theory of prespetra an be found in hapter IIof [Rud98℄.) The n'th spae of UL is L(Rn) and the suspension map sn : (UL)n∧

S1 → (UL)n+1 omes from the right assembly by identifying Rn ⊕ R with Rn+1.Reall that the homotopy groups of a prespetrum X is de�ned as
πq(X) = colim

n
πq+n(Xn) .We now de�ne:De�nition 2.1.3A map f : K → L of orthogonal spetra is a π∗-isomorphism if the underlyingmap of prespetra Uf : UK → UL indues an isomorphism on all homotopygroups.A level equivalene K → L indues an isomorphism πq+n(UK)n → πq+n(UL)nfor all q and n, thus we have:Lemma 2.1.4Any level equivalene is a π∗-isomorphism.We also have a notion of Ω-spetra:De�nition 2.1.5An orthogonal spetrum E is an Ω-spetrum if the adjoint of σ,

E(V )→ ΩWE(V ⊕W ) ,is a weak equivalene for all V and W .



26 CHAPTER 2. ORTHOGONAL SPECTRANotie that E is an Ω-spetrum if and only if UE is an Ω-prespetrum.Remark 2.1.6For general diagram spetra, and symmetri spetra in partiular, there is a thirdnotion of equivalene, namely stable equivalene. Let [L,E] denote the set ofmaps in the level homotopy ategory. If L is o�brant (see setion 2.2 below for ade�nition of o�brant), then [L,E] is isomorphi to the set of path omponents ofthe topologial spae I S (L,E). We say that f : K → L is a stable equivaleneif f ∗ : [L,E]→ [K,E] is a bijetion for all Ω-spetra E. However, for orthogonalspetra there is no di�erene between π∗-isomorphisms and stable equivalenes.See proposition 8.7 in [MMSS01℄.2.1.3 l-o�brationsThere are many onditions on maps i : A → L that ould be taken as thede�nition of some kind of o�bration of orthogonal spetra. In setion 2.2 belowwe are going to study q-o�brations. They depend on ellular tehniques; this isa strong ondition. However, in this setion we will onsider a very weak way ofde�ning a notion of o�brany:De�nition 2.1.7A map i : A→ L of orthogonal spetra is an l-o�bration if for every V the map
A(V )→ L(V )is an unbased losed o�bration of topologial spaes. We all L well-pointed if

∗ → L is an l-o�bration.Remark 2.1.8Reall that any unbased o�bration of topologial spaes is a homeomorphismonto its image (Theorem 1 in [Str66℄). Therefore, we an always assume withoutloss of generality that any unbased losed o�bration is an inlusion of a losedsubspae. Furthermore, if i : A ⊆ X is the inlusion of a subspae, then thefollowing are equivalent ways to de�ne that i is a o�bration:For any map f : X → Y and any homotopy F̄ : A× I → Y with F̄ (a, 0) =
fi(a) for all a ∈ A, there exists a homotopy F : X × I → Y suh that Frestrits to F̄ on A× I and F (x, 0) = f(x) for all x ∈ X.The subspae X × 0 ∪A× I is a retrat of X × I. (Theorem 2 in [Str68℄.)There exists a ontinuous funtion φ : X → I and a homotopy H : X×I →
X suh that A ⊆ φ−1(0), H(x, 0) = x for all x ∈ X, H(a, t) = a for all
a ∈ A and t ∈ I, and H(x, t) ∈ A whenever t > φ(x). (Lemma 4 in [Str68℄.)



2.1. BASIC DEFINITIONS 27Notie that the subspae topology on X × 0 ∪ A × I does not always oinideswith the mapping ylinder topology, but in two important ases these topologiesare idential: 1) If A is a losed subspae of X, or 2) if A ⊆ X is a o�bration.Let us now look at some properties of l-o�brations of orthogonal spetra:Proposition 2.1.9If we are given a map i between sequenes of l-o�brations A0 → A1 → · · · and
L0 → L1 → · · · and eah im : Am → Lm is a π∗-iso, then the indued map ofolimits i : A→ L is also a π∗-iso.Proof: Sine spheres Sq and disks Dq+1 are ompat, we have

πqA(V ) = colim
m

πqAm(V ) ,and similar for L. Thus
πqA = colim

n,m
πq+nAm(Rn)

∼=
−→ colim

n,m
πq+nLm(Rn) = πqLis an isomorphism beause eah im : Am → Lm is a π∗-iso. �From the ategory of spaes we immediately inherit union and gluing theoremsfor l-o�brations:Proposition 2.1.10If A→ L, B → L and A∩B → L are l-o�brations and A∪B → L an inlusion,then A ∪ B → L is also an l-o�bration.Proof: Notie that intersetion and union are level-wise onstrutions onorthogonal spetra. Now the result follows diretly from the de�nition of l-o�bration and Lillig's union theorem [Lil73℄. �Proposition 2.1.11If we have a diagram

B ←−−− A
i1−−−→ L

f2

y f0

y
yf1

B′ ←−−− A′
i2−−−→ L′of orthogonal spetra, where i1, i2, f0, f1 and f2 are l-o�brations and the rightsquare is pullbak, then the map of the row-wise pushouts is an l-o�bration.



28 CHAPTER 2. ORTHOGONAL SPECTRAProof: Pushouts and pullbaks are level-wise onstrutions, therefore the resultfollows from proposition 2.5 in [Lew82℄. �If X is a based spae and L an orthogonal spetrum, then we may form thefuntion spetrum
F (X,L)level-wise. To be preise we let F (X,L)(V ) be the spae of based maps X →

L(V ). This is again an orthogonal spetrum, see example 2.1.17. We now apply
F (X,−) to an l-o�bration:Proposition 2.1.12If C is a ompat based spae, and i : A → L is an l-o�bration of orthogonalspetra, then

F (C,A)→ F (C,L)is also an l-o�bration.Proof: Fix V . Then we have H : L(V ) × I → L(V ) and φ : L(V ) → Isatisfying Strøm's riterion. De�ne H̄ : F (C,L(V )) × I → F (C,L(V )) and
φ̄ : F (C,L(V ))→ I by

H̄(f, t)(c) = H(f(c), t) and φ̄(f) = sup
c∈C

φf(c) ,for f : C → L(V ) and t ∈ I. Then (H̄, φ̄) shows that F (C,A)(V )→ F (C,L)(V )is a o�bration. �Remark 2.1.13One an de�ne h-o�brations as the maps i : A→ L having the homotopy exten-sion property, see �5 in [MMSS01℄. These should behave more or less like basedo�brations of spaes. Therefore, we run into problems if we try to prove unionand gluing theorems for h-o�brations without introduing extra onditions.2.1.4 A symmetri monoidal smash produtThe main advantage of orthogonal spetra ompared to prespetra is the existeneof a symmetri monoidal smash produt. To de�ne this we follow [MMSS01℄.De�ne the ategory of I -spaes, I Top∗, to be funtors I → Top∗. It is atopologial ategory, the morphisms being the spae of natural transformations.Before de�ning ∧ on I S , we de�ne the smash produt, ∧̃, of I -spaes. Thisis given by
(X∧̃Y )(V ) =

∨

d1,d2

I (Rd1 ⊕Rd2 , V )+ ∧O(d1)×O(d2) (X(Rd1) ∧ Y (Rd2)) .



2.1. BASIC DEFINITIONS 29If L and K are orthogonal spetra, notie that the assembly indues a map of
I -spaes σ : L∧̃S → L, and similarly the left assembly indues σ̄ : S∧̃K → K.We now de�ne the smash produt, L∧K, of orthogonal spetra by the oequalizerdiagram of I -spaes:

L∧̃S∧̃K
σ∧id

⇉
id∧σ̄

L∧̃K → L ∧K .Coequalizers in I Top∗ are formed level-wise. Reall that Top∗ is the ategoryof ompatly generated spaes. It is oomplete, and hene the topology of
(L∧K)(V ) is given as a oequalizer in this ategory. As explained in [MMSS01℄,the smash produt is symmetri monoidal.Having the smash produt we de�ne the � produt of maps:De�nition 2.1.14Let f : A → L and g : B → K be maps of orthogonal spetra, then we de�ne
f�g as the map

f�g : A ∧K ∪ L ∧B → L ∧K .We also have internal funtion objets. Again we start by de�ning the internalfuntion objet, F̃ (−,−), on I -spaes. This is given by
F̃ (X, Y )(V ) = I Top∗(X, Y (V ⊕−)) .And we have an adjuntion for I -spaes X, Y and Z:

I Top∗(X∧̃Y, Z) ∼= I Top∗(X, F̃ (Y, Z)) .If L and K are orthogonal spetra, the assembly indues a map σ∗ : F̃ (L,K)→
F̃ (L∧̃S,K). By the adjuntion above there is an evaluationmap ǫ : F̃ (L,K)∧̃L→
K. Now onsider the omposite

F̃ (L,K)∧̃L∧̃S
ǫ∧̃id
−−→ K∧̃S

σ
−→ K ,let ω be its adjoint. De�ne the internal funtion spetrum, F (L,K), by theequalizer diagram of I -spaes:

F (L,K)→ F̃ (L,K)
σ∗

⇉
ω
F̃ (L∧̃S,K) .We immediately get an adjuntion for orthogonal spetra L, K, X:

I S (L ∧K,X) ∼= I S (L, F (K,X)) .Lemma 2.1.15There is an adjuntion for the internal hom objets:
F (X ∧ Y, Z) ∼= F (X,F (Y, Z))for X, Y and Z orthogonal spetra.



30 CHAPTER 2. ORTHOGONAL SPECTRAProof: Assume �rst that X, Y and Z are I -spaes. Then we hek by thede�nitions that
F̃ (X∧̃Y, Z)(V ) ∼= F̃ (X, F̃ (Y, Z))(V )for all V .By the oequalizer de�ning ∧ and the equalizer de�ning F (−,−), the adjun-tion also holds for internal hom objets in I S . �2.1.5 The external viewpointWe have presented the symmetri monoidal ategory I S of orthogonal spetra.The formal properties are nie, but when we atually want to do onstrutionsthings usually are a bit harder. For example it is not easy to de�ne a map

L ∧K → X diretly using the de�nition of L ∧K. Therefore it is useful to havealternative viewpoints.Orthogonal spetra may be desribed as diagram spaes, see II.4 in [MM02℄and �23 in [MMSS01℄: There is a topologial ategory J suh that ontinu-ous funtors J → Top∗ orresponds to orthogonal spetra. The objets of Jare the same as the objets of I , �nite dimensional real inner produt spaes
V . Let E (V,W ) be the spae of linear isometries V →֒ W . And let E(V,W )onsist of pairs (f, w) where f : V → W is a linear isometry and w ∈ W isorthogonal to f(V ). E(V,W ) is a vetor bundle over E (V,W ), and we de�ne thespae of morphisms J (V,W ) to be the Thom spae of E(V,W ). (First apply�ber-wise one-point-ompati�ation to E(V,W ), then identify the points at∞.)Composition

◦ : J (W,U) ∧J (V,W )→J (V, U)is de�ned by the formula (g, u)◦(f, w) = (g◦f, g(w)+u). The identity of V in Jis represented by (idV , 0). Diret sum gives J a symmetri monoidal struture:Here
⊕ : J (V,W ) ∧J (V ′,W ′)→J (V ⊕ V,W ⊕W ′)is de�ned by (f, w)⊕ (f ′, w′) = (f ⊕ f ′, (w,w′)). Observe that when V ⊆W , wehave the identi�ation:

J (V,W ) ∼= O(W )+ ∧O(W−V ) S
W−V .Theorem 2.1.16The ategory I S of orthogonal spetra is isomorphi to the ategory of J -spaes as symmetri monoidal ategories.Proof: This is the speial ase R = S of theorem 2.2 in [MMSS01℄. Given an



2.1. BASIC DEFINITIONS 31orthogonal spetrum L, the orresponding J -spae L′ is de�ned by
L′(V ) = L(V )and the map L′(V )→ L′(W ) indued by (f, w) is the omposition

L′(V ) = L(V )
x 7→(x,w)
−−−−−→ L(V )∧SW−f(V ) σ

−→ L(V⊕(W−f(V ))) ∼= L(W ) = L′(W ) .

�Example 2.1.17 (Level-wise onstrutions)Given a ontinuous endofuntor F on Top∗, we may apply this level-wise to anorthogonal spetrum L. This yields a new orthogonal spetrum F (L). To seethis we view L as a funtor J → Top∗ and onsider the omposition
J

L
−→ Top∗

F
−→ Top∗ .Examples of suh endofuntors are: Based loops Ω(−), suspension Σ(−), funtionspaes F (X,−), the Barratt-Eles funtor Γ+(−).Example 2.1.18 (External desription of the smash produt)Given J -spaes K and L we have an external smash produt ∧̄. This produesa funtor J ×J → Top∗ de�ned by

(K∧̄L)(V1, V2) = K(V1) ∧ L(V2) .Reall that ⊕ is a funtor J ×J → J . Left Kan extension, see setion X.4in [ML98℄, of K∧̄L along ⊕ gives an internal produt. Theorem 2.1.16 saysthat this internal produt is equal to K ∧ L de�ned above. Adjuntion for leftKan extensions now says that for orthogonal spetra K, L and X there is ahomeomorphism betweenthe spae of natural transformations (K∧̄L)(V1, V2)→ X(V1 ⊕ V2)where V1, V2 ∈J andthe spae of maps of orthogonal spetra K ∧ L→ X .This adjuntion is useful when de�ning maps K ∧L→ X. All we have to dois to provide maps
K(V1) ∧ L(V2)→ X(V1 ⊕ V2)for all V1 and V2 suh that the following diagrams ommute

SW ∧K(V1) ∧ L(V2) −−−→ SW ∧X(V1 ⊕ V2)

σ̄∧idL

y
yσ̄

K(W ⊕ V1) ∧ L(V2) −−−→ X(W ⊕ V1 ⊕ V2)
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K(V1) ∧ L(V2) ∧ SW −−−→ X(V1 ⊕ V2) ∧ SW

idK∧σ

y
yσ

K(V1) ∧ L(V2 ⊕W ) −−−→ X(V1 ⊕ V2 ⊕W )for all V1, V2 and W .2.1.6 Orthogonal ring spetra; S-algebrasHaving a symmetri smash produt ∧ of orthogonal spetra we de�ne orthogonalring spetra, also alled S-algebras, as follows:De�nition 2.1.19An orthogonal ring spetrum, or S-algebra, is an orthogonal spetrum L togetherwith maps η : S → L and µ : L ∧ L → L suh that the following diagramsommute:
S ∧ L

S is the unit for ∧
−−−−−−−−−−→ L

η∧id

y
y=

L ∧ L
µ

−−−→ L

,

L ∧ S
S is the unit for ∧
−−−−−−−−−−→ L

id∧η

y
y=

L ∧ L
µ

−−−→ Land
L ∧ L ∧ L

µ∧id
−−−→ L ∧ L

id∧µ

y
yµ

L ∧ L
µ

−−−→ L

.De�nition 2.1.20An involution on an orthogonal ring spetrum is a map ι : L→ L suh that thefollowing diagram ommutes:
L ∧ L

ι∧ι
−−−→ L ∧ L

twist
−−−→ L ∧ L

µ

y
yµ

L
ι

−−−→ L L

.Remark 2.1.21We an externalize the de�nition of an orthogonal ring spetrum. What we thenget is a ontinuous funtor L : I → Top∗ together with natural transformations
η : SV → L(V ) and µ : L(V ) ∧ L(W )→ L(V ⊕W )



2.2. CELLULAR TECHNIQUES; Q-COFIBRATIONS 33satisfying ertain onditions. L has involution if we in addition have ι : L(V )→
L(V ). We often all an orthogonal ring spetrum an I -FSP when we view itexternally.2.2 Cellular tehniques; q-o�brationsAording to [MMSS01℄ the q-o�brations are the retrats of relative ellularmaps. Let us therefore see what a relative ellular map is: We start by de�ningour set of ells.De�nition 2.2.1Let FI be the set of all maps FRmSn−1

+ → FRmDn
+, where m ≥ 0 and n ≥ 0.We think about FRmDn

+ as a ell with boundary FRmSn−1
+ . In the ase n = 0the boundary is ∗.Remark 2.2.2 (Symmetries of ells)If we inspet a ell FRmSn−1

+ → FRmDn
+, we see that it has internal symmetries.We will partiularly be interested in two di�erent ations. First we have an ationof the permutation group Σn. It ats on Rn by permuting the fators. Anypermutation preserves the subspaes Dn and Sn−1. Therefore, σ ∈ Σn indues amap of pairs

σ∗ : (Dn
+, S

n−1
+ )→ (Dn

+, S
n−1
+ ) .Applying the shift desuspension funtor FRm(−) we get self-maps of the ell

FRmSn−1
+ → FRmDn

+. We denote this map by F (σ).There is also another ation. Σm ats on Rm by permuting the fators. Thesemaps are isometries, so for any spae A a permutation σ ∈ Σm indues a map
Fσ : FRmA→ FRmAnatural in A. This gives another ation on FRmSn−1

+ → FRmDn
+.De�nition 2.2.3A map i : A→ L of orthogonal spetra is relative FI-ellular if:

i(A) is a subspetrum of L.There is a set C of subspetra Lα suh that eah Lα ontains i(A) and⋃
α∈C Lα = L.

C is partially ordered by inlusion. We write β ≤ α if Lβ ⊆ Lα. And forall α the set Pα = {β ∈ C | β < α} is �nite.



34 CHAPTER 2. ORTHOGONAL SPECTRAFor every α ∈ C there is a pushout diagram
FRmSn−1

+ −−−→ FRmDn
+y

y
⋃

β<α Lβ −−−→ Lα

.Reall that in the ategory of orthogonal spetra pushouts are formed level-wise. If α is minimal, then the union ⋃β<α Lβ is indexed over the empty set. Ifthis is the ase we interpret the union as i(A). C is the set of ells in the givenrelative ellular deomposition of i : A → L, and β < α if the ell β is attahedprior to α. Observe that we allow some redundany in this de�nition, sine wedo not insist that the map FRmSn−1
+ →

⋃
β<α Lβ meets eah Lβ non-trivially.Remark 2.2.4There is also a notion of relative CW-orthogonal spetra: What we do is to puton the extra ondition that the ells are attahed to ells of lower dimension only.The dimension of a ell FRmDn

+ is n − m. In other words: A relative FI-ellstruture of i : A→ L is CW if the map dim : C → Z is stritly inreasing.De�nition 2.2.5A map i : A→ L is a q-o�bration if it is a retrat of a relative FI-ellular map.We all L o�brant if ∗ → L is a q-o�bration.This de�nition says that there exists a relative FI-ellular map B → K anda diagram
A −−−→ B −−−→ A

i

y
y

yi

L −−−→ K −−−→ Lsuh that the horizontal ompositions are the identity. Now observe that there isno loss of generality if we assume that B = A. This follows from the elementaryfat that relative FI-ellular maps are losed under obase hange.Observe that all q-o�brations are both l-o�brations and h-o�brations.Remark 2.2.6Alternatively one ould de�ne q-o�brations as the maps whih has the left liftingproperty with respet to all level ayli �brations. See �6 in [MMSS01℄. Reallthat a level ayli �bration f : E → B is by de�nition a map suh that for eah
V the map fV : E(V )→ B(V ) is both a weak equivalene and a Serre �bration.Here is an example of an orthogonal spetrum whih is not o�brant:



2.2. CELLULAR TECHNIQUES; Q-COFIBRATIONS 35Example 2.2.7Let S ′ be the orthogonal spetrum given by
S ′(V ) =

{
SV if dimV > 0, and
∗ if dimV = 0.This is a subspetrum of S, and the assembly maps are inherited. We will nowshow that S ′ is not o�brant.Assume that S ′ is o�brant. For ontradition we now onstrut a level ayli�bration f : E → B and a diagram
∗ −−−→ Ey

y

S ′ −−−→ Bsuh that no lifting S ′ → E exists. Hene, S ′ annot be o�brant.Consider the map
p : S∞+ ∧ S

1 → S1given by ollapsing S∞ to a point. This is a weak equivalene sine S∞ is on-tratible. The map p is involutive. Here Z/2 ats on S1 by re�eting the irleaross a line, and Z/2 ats freely on S∞. The smash produt is given the diagonalation. However p is not a �bration, so we use the standard trik: Let Ep be the
Z/2-spae of pairs (x, γ), where x ∈ S∞+ ∧ S

1 and γ is a path in S1 suh that
p(x) = γ(0). The natural map

(x, γ) 7→ γ(1) : Ep → S1is again a weak equivalene. Taking Z/2-�xed points we see that
∗ = (Ep)

Z/2 → (S1)Z/2 = S0 .Now de�ne the level ayli �bration E → B of orthogonal spetra by
E(V ) =

{
I (R1, V ) ∧O(1) Ep if dimV = 1,
∗ otherwise,and

B(V ) =

{
I (R1, V ) ∧O(1) S

1 if dimV = 1, and
∗ otherwise.There is a map S ′ → B de�ned by letting the evaluation on level R1 be theidentity. If S ′ is o�brant, there exists a lift to E and at level R1 we have
S ′(R1)→ E(R1)→ B(R1)



36 CHAPTER 2. ORTHOGONAL SPECTRAwhere the omposite is a Z/2-equivariant homeomorphism. Taking Z/2-�xedpoints we get
S0 → ∗ → S0 ,and sine the omposition annot be a homeomorphism, this yields the ontra-dition.For topologial spaes we know that a ompat subset of a CW -omplex onlymeets �nitely many ells. The same is true for relative FI-ellular orthogonalspetra, as the following lemma shows:Lemma 2.2.8If K is a ompat spae, i : A → L a relative FI-ellular map of orthogonalspetra and f : K → L(Rm) a map, then there exists a �nite set of ells P suhthat f fators through ⋃α∈P Lα(Rm).Proof: We say that K meets a ell α non-trivially if there exists a point x in

K suh that f(x) ∈ Lα(Rm), but f(x) 6∈ Lβ(Rm) for any β < α. We have toprove that K only meets �nitely many ells non-trivially. For a ontraditionassume that S = {x1, x2, . . .} is a ountable subset of K suh that eah xi meetsa distint ell non-trivially. Then we an show that f(S) ∩ Lα(Rm) is losed forall α by indution on the number of elements in Pα. The indution step uses thepushout diagram in de�nition 2.2.3. Sine L has the topology of colimα∈C Lα,it follows that f(S) is losed in L(Rm). The same argument shows that anysubset of f(S) also is losed. Hene f(K) ontains an in�nite disrete set. Thisontradits ompatness of K.Let P be the set of ells whih K meets non-trivially. �We have the following reformulation of ellularity.Proposition 2.2.9A map j : A→ L of orthogonal spetra is relative FI-ellular if and only if thereexists a sequene L0 → L1 → · · · of orthogonal spetra suh that:
A = L0.
L = colimi Li and j equals the natural map L0 → colimi Li.For eah i there is a pushout diagram

∨
α∈Ci

FVα
Snα−1

+ −−−→
∨

α∈Ci
FVα

Dnα
+y

y

Li −−−→ Li+1

.Here Ci is the set of ells attahed to Li.



2.2. CELLULAR TECHNIQUES; Q-COFIBRATIONS 37Proof: Assume that j is relative FI-ellular. Let Ci be a olletion of subsetsof C suh thatthe set of indexes i is the non-negative natural numbers,the Ci's are disjoint, and ⋃∞i=0Ci = C,if α ∈ Ci and β < α then β ∈ Ck for some k < i.For example, we ould let Ci be the set of all ells α suh that Pα ontains exatly
i elements.We set L0 = A, and let Li+1 be the union of all Lα when α runs through
C0 ∪ C1 ∪ · · · ∪ Ci. Then ⋃α∈C Lα = L and j : A → L is the natural map
L0 → colimi Li. To get the pushout diagram of the proposition, onsider thefuntor D from C0 ∪ C1 ∪ · · · ∪ Ci to pushout diagrams whih sends α ∈ Ci to

FRmαSnα−1
+ −−−→ FRmαDnα

+y
y

⋃
β<α Lβ −−−→ Lα

,and α ∈ C0 ∪ C1 ∪ · · · ∪ Ci−1 to
∗ −−−→ ∗y

y

Lα −−−→ Lα

.If β < α, then we learly have a map of pushout diagrams D(β) → D(α).Taking the olimit yields the desired diagram, and this is a pushout, sine formingpushouts ommutes with forming olimits.Now assume that j satis�es the properties of the proposition. We will indu-tively onstrut relative FI-ell strutures on Li+1 with ells C0 ∪ · · · ∪ Ci, suhthat Li is a subomplex. To start the indution we regard A =
−→ L0 as a relative

FI-ell omplex with the set of ells being the empty set. Assume that Li alreadyhas been given a relative FI-ellular struture. The set of ells in Li+1 should be
C0 ∪ · · · ∪ Ci, but we need to extend the partial ordering from C0 ∪ · · · ∪ Ci−1.We do this by speifying subspetra Lα for all α in Ci. Reall that for eah suh
α we have a diagram

FVα
Snα−1

+ −−−→ FVα
Dnα

+y
y

Li −−−→ Li+1

.



38 CHAPTER 2. ORTHOGONAL SPECTRALook at the attahing map Snα−1
+ → Li(Vα). By lemma 2.2.8 this map fatorsthrough ⋃β∈P Lβ(Vα) for some �nite subset P of C0 ∪ · · · ∪ Ci−1. De�ne Lα bythe pushout diagram

FVα
Snα−1

+ −−−→ FVα
Dnα

+y
y

⋃
β∈P Lβ −−−→ Li+1

.Here the Lβ 's are already de�ned sine β is a ell in Li.Letting i go to ∞ we get a relative FI-ellular struture for j : A→ L. �2.2.1 The smash produt of relative ellular mapsAssume that A → L and B → K are relative FI-ellular maps. We will nowdesribe the relative FI-ellular struture of L ∧B ∪ A ∧K → L ∧K.We will need a tehnial lemma:Lemma 2.2.10Consider a diagram of spaes:
B0 ←−−− A0 −−−→ X0y

y
y

B1 ←−−− A1 −−−→ X1

.Let Y0 and Y1 be the pushout of the top and bottom row respetively. Then thediagram
A1 ∪A0 X0 −−−→ X1y

y

B1 ∪B0 Y0 −−−→ Y1is pushout.Here we use the notation B ∪AX for the pushout of B ← A→ B, even whenneither of the two maps are injetive.Proof: To see this, take a look at the diagram
A1 −−−→ A1 ∪A0 X0 −−−→ X1y

y
y

B1 −−−→ B1 ∪B0 Y0 −−−→ Y1

.By the observation that B1 ∪B0 Y0 = B1 ∪B0 (B0 ∪A0 X0) = B1 ∪A0 X0 =
B1 ∪A1 (A1 ∪A0 X0), we get that the left square is pushout. Sine the outer



2.2. CELLULAR TECHNIQUES; Q-COFIBRATIONS 39square is pushout, it now follows by anellation that the right square also is. �Lemma 2.2.11Assume that
A0

i0−−−→ L0y
y

A1 −−−→ L1

and B0
j0−−−→ K0y

y

B1 −−−→ K1are pushout squares of orthogonal spetra, where i0 and j0 are l-o�brations.Then the diagram
A0 ∧K0 ∪ L0 ∧ B0 −−−→ L0 ∧K0y

y

A1 ∧K1 ∪ L1 ∧ B1 −−−→ L1 ∧K1is also pushout.Using the � produt, de�nition 2.1.14, we an say that the bottom diagramis the row-wise � of the upper diagrams.Proof: It is enough to prove the result in the ase where B1 = B0 and K1 = K0.Sine the funtor −∧X preserve pushout diagrams for any orthogonal spe-trum X, we have that the row-wise pushout of
A1 ∧ B0 ←−−− A0 ∧B0 −−−→ L0 ∧ B0y

y
y

A1 ∧K0 ←−−− A0 ∧K0 −−−→ L0 ∧K0is L1∧B0 → L1∧K0. Sine the property of being a pushout diagram is level-wise,we an apply lemma 2.2.10. Thus we get that
A0 ∧K0 ∪ L0 ∧ B0 −−−→ L0 ∧K0y

y

A1 ∧K0 ∪ L1 ∧ B0 −−−→ L1 ∧K0is pushout. This ompletes the proof. �Proposition 2.2.12Assume that i : A → L and j : B → K are relative FI-ellular maps. Then
i�j : L ∧B ∪A ∧K → L ∧K is also relative FI-ellular.



40 CHAPTER 2. ORTHOGONAL SPECTRAProof: We will desribe the relative FI-ellular struture of i�j. Let C and Dbe the sets of ells of i and j respetively. The set of ells for i�j will be C ×D,and we de�ne (L ∧K)(α1,α2) to be
L ∧ B ∪ Lα1 ∧Kα2 ∪ A ∧K .Observe that P(α1,α2) = Pα1 × Pα2 ∪ {α1} × Pα2 ∪ Pα1 × {α2}, thus it is �nite. Itis lear that ⋃C×D(L ∧K)(α1,α2) = L ∧K. It remains to show that for eah ell

(α1, α2) there are pushout diagrams:
FVα1⊕Vα2

S
nα1+nα2−1
+ −−−→ FVα1⊕Vα2

D
nα1+nα2
+y

y
⋃

(β1,β2)∈P(α1,α2)
(L ∧K)(β1,β2) −−−→ (L ∧K)(α1,α2)

.To see this, apply lemma 2.2.11 to the diagrams:
FVα1

S
nα1−1
+ −−−→ FVα1

D
nα1
+y

y
⋃

β1∈Pα1
Lβ1 −−−→ Lα1

and FVα2
S

nα2−1
+ −−−→ FVα2

D
nα2
+y

y
⋃

β2∈Pα2
Kβ2 −−−→ Kα2

.Then apply (L∧B ∪A∧K)∪(Lα1∧B∪A∧Kα2 )− to the lower map. This onludesthe proof. �2.2.2 Co�brant replaement funtorNow we shall introdue a o�brant replaement funtor. Among other uses,we want to apply this funtor to orthogonal ring spetra with involution to geto�brant orthogonal ring spetra with involution. Therefore we want the funtorto be lax skew-symmetri with respet to ∧. See appendix A.2 for de�nitions of(symmetri) (o)monoidal ategories and lax/strong (symmetri) (o)monoidalfuntors. Skew-symmetry will be de�ned below. Our struture theorem is:Theorem 2.2.13There is an endofuntor Γ on orthogonal spetra having the following properties:
ΓL is o�brant for all L.If K → L is the inlusion of a subspetrum, then ΓK → ΓL is a q-o�bration.
Γ omes with a natural level-wise ayli �bration γL : ΓL→ L.
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Γ omes with a natural transformation φL,K : ΓL ∧ ΓK → Γ(L ∧K).
Γ omes with an involution ι : ΓL→ ΓL, and ι2 = id .There is a anonial level-wise ayli q-o�bration λ : S → ΓS.With λ, φ and ι the funtor Γ is lax skew-symmetri monoidal with respetto ∧.
Γ omes with a natural level equivalene ρL,K : Γ(L×K)→ ΓL× ΓK.With γ∗ : Γ∗ → ∗ and ρ the funtor Γ is lax symmetri omonoidal withrespet to ×.Note that φ is not always a π∗-iso. If L and K both are su�iently bad,the smash produt L ∧ K an have homotopy unrelated to L and K. Thus

Γ(L∧K) will have the same bad homotopy, whereas ΓL∧ΓK will have the orrethomotopy. However, if either L orK is o�brant, then φ will be a π∗-isomorphism,sine smashing with a o�brant orthogonal spetrum preserves π∗-isomorphisms,see proposition 2.4.7.Proof: We will break the proof of the struture theorem into several proposi-tions, and the proof will span the rest of this subsetion. However, we �rst showthat the omonoidality with respet to × is a formal onsequene of the otherproperties:To de�ne a map into a ×-produt, it is enough to de�ne one map into eahfator. Γ applied to the projetions gives
Γ(L×K)→ ΓL and Γ(L×K)→ ΓK ,and ρL,K is determined by these maps. It is elementary to see that the rossprodut of two level equivalenes is a level equivalene. Hene, we have thediagram

Γ(L×K)
ρ

−−−→ ΓL× ΓK

γ

y≃ ≃

yγ×γ

L×K L×K

,and it follows that ρ is a level equivalene.We know that × is the ategorial produt on I S , hene lemma A.2.9 im-plies that Γ is lax symmetri omonoidal with respet to ×. �Let us now look at the onstrution of Γ. The idea is to apply Quillen's smallobjet argument, see 7.12 in [DS95℄. We proeed as follows:



42 CHAPTER 2. ORTHOGONAL SPECTRASuppose that p : A → L is a map of orthogonal spetra. We now onstrutan orthogonal spetrum G(p) and a fatorization of p:
A→ G(p)→ L .Let C be the set of all diagrams

FRmSn−1
+

FRm in
−−−−→ FRmDn

+

f

y
yg

A
p

−−−→ L

,where n,m ≥ 0. Now de�ne G(p) by the pushout diagram
∨

α∈C FRmαSnα−1
+ −−−→

∨
α∈C FRmαDnα

+

∨
α∈C fα

y
y∨α∈C gα

A
p

−−−→ G(p)

.By onstrution we see that A is a subspetrum of G(p), and the natural map
G(p)→ L omes from the universal property of the pushout. Observe that G(p)is a funtor; a morphism between maps p1 : A1 → L1 and p2 : A2 → L2 is aommutative diagram

A1
p1−−−→ L1y

y

A2
p2−−−→ L2

.Without a proof we observe that:Lemma 2.2.14There exists a relative FI-ellular struture on the map A→ G(p).To de�ne ΓL we iterate the gluing onstrution. Start with p0 : ∗ → L. Applythe onstrution above and set G1(L) = G(p0) to get a diagram:
∗

j0
−→ G1(L)

p1
−→ L .Iterate to get diagrams

Gi(L)
ji−→ Gi+1(L)

pi+1
−−→ L .De�nition 2.2.15De�ne the q-o�brant replaement of L, ΓL, to be the olimit of the Gi(L)'sonstruted above.



2.2. CELLULAR TECHNIQUES; Q-COFIBRATIONS 43As a olimit of a sequene relative FI-ellular maps starting from ∗, we seethat ΓL is o�brant. Γ is a funtor and the natural transformation γL : ΓL→ Lis indued by the natural maps Gi(L)→ L. Let us now begin to prove the variousstatements of theorem 2.2.13.Proposition 2.2.16If j : K → L is the inlusion of a subspetrum, then ΓK → ΓL is a q-o�bration.Proof: Inspet the gluing onstrution. By indution it is enough to onsidera diagram
B

j0
−−−→ A

p

y
yq

K
j

−−−→ L

,where j0 is a relative FI-ellular. We must show that G(p) ∪B A maps homeo-morphially onto a subomplex of G(q). Compare with proposition 2.4.10.Consider a ell α of G(p):
FRmSn−1

+
FRm in
−−−−→ FRmDn

+

f

y
yg

B
p

−−−→ K

.Composing f with j0 and g with j we get a new diagram β representing a ellin G(q). Sine j0 and j are injetive, we see that di�erent ells α and α′ in G(p)gives di�erent ells β and β ′ in G(q). It follows that
G(p) ∪B A→ G(q)is relative FI-ellular. �It is easy to onstrut the map λ : S → ΓS: The diagram
∗ −−−→ F0D

0
+y

y∼=

∗ −−−→ Sdetermines a ell α of ΓS. We have ΓSα
∼= S, and de�ne λ to be the omposition

S
∼=
−→ ΓSα → ΓS .Proposition 2.2.17

γ : ΓL→ L is a level ayli �bration.



44 CHAPTER 2. ORTHOGONAL SPECTRAProof: Fix some level V = Rm. We have to show that for every diagram
Sn−1 f

−−−→ ΓL(V )y
yγ

Dn −−−→ L(V )there is a lift Dn → ΓL(V ). Sine Sn−1 is ompat there is an i suh that ffators through Gi(L)(V ). Then we get the diagram
Sn−1 f

−−−→ Gi(L)(V )y
ypi

Dn −−−→ L(V )

,but this is exatly what determines a new ell α in G(pi). And we see that Dnlifts into Gi+1(L)(V ). �Constrution 2.2.18Next we onstrut the natural transformation φ : ΓL ∧ ΓK → Γ(L ∧K). Indu-tively we de�ne maps
φi,j : Gi(L) ∧Gj(K)→ Gi+j−1(L ∧K)suh that the following diagrams ommute for all i and j:
Gi(L) ∧Gj(K)

φi,j
−−−→ Gi+j−1(L ∧K)

⊆

y
y⊆

Gi+1(L) ∧Gj(K)
φi+1,j
−−−→ Gi+j(L ∧K)

,

Gi(L) ∧Gj(K)
φi,j
−−−→ Gi+j−1(L ∧K)

⊆

y
y⊆

Gi(L) ∧Gj+1(K)
φi,j+1
−−−→ Gi+j(L ∧K)

and
Gi(L) ∧Gj(K)

φi,j
−−−→ Gi+j−1(L ∧K)y

y

L ∧K L ∧K

.By taking the olimit as both i and j tend to in�nity, we get our natural trans-formation ΓL ∧ ΓK → Γ(L ∧K).



2.2. CELLULAR TECHNIQUES; Q-COFIBRATIONS 45Let Gi(L) be ∗ for i ≤ 0. If i ≤ 0 or j ≤ 0, then φi,j is trivially de�ned. Weonstrut the φ's by indution on i+ j. Let α and β be the diagrams
FRmSn−1

+ −−−→ FRmDn
+

f

y
yg

Gi−1(L) −−−→ L

and FRm′Sn′−1
+ −−−→ FRm′Dn′

+

f ′

y
yg′

Gj−1(K) −−−→ Krespetively. By the onstrution of Gi(L) and Gj(K) there are unique lifts of αand β to diagrams ᾱ and β̄:
FRmSn−1

+ −−−→ FRmDn
+

f

y
yḡ

Gi−1(L) −−−→ Gi(L)

and FRm′Sn′−1
+ −−−→ FRm′Dn′

+

f ′

y
yḡ′

Gj−1(K) −−−→ Gj(K)

.Reall the de�nition of � of two maps, see de�nition 2.1.14. Now onsider thediagram
FRm+m′Sn+n′−1

+ −−−→ FRm+m′Dn+n′

+

f∧ḡ′∪ḡ∧f ′

y
yḡ∧ḡ′

Gi−1(L) ∧Gj(K) ∪Gi(L) ∧Gj−1(K) −−−→ Gi(L) ∧Gj(K)

φi−1,j∪φi,j−1

y
y

Gi+j−2(L ∧K) −−−→ L ∧K

,

where the upper part is row-wise � of ᾱ and β̄. The map φi−1,j ∪ φi,j−1 existsby our indution hypothesis. The outer square is a diagram in C for the gluingonstrution applied to Gi+j−2(L ∧K) → L ∧ K. Call this diagram δ. And bythe ell δ we get a map
Gi(L)α ∧G

j(K)β → Gi+j−1(L ∧K)δ ⊆ Gi+j−1(L ∧K) .Letting α and β run through all ells of Gi(L) and Gj(K) respetively, we getour map
φi,j : Gi(L) ∧Gj(K)→ Gi+j−1(L ∧K) .This �nishes the onstrution of φ : ΓL ∧ ΓK → Γ(L ∧K).Lemma 2.2.19Let A→ L and B → K be maps of orthogonal spetra. Consider diagrams

FRm1S
n1−1
+ −−−→ FRm1D

n1
+y

y

A −−−→ L

and FRm2S
n2−1
+ −−−→ FRm2D

n2
+y

y

B −−−→ K

,



46 CHAPTER 2. ORTHOGONAL SPECTRArepresenting ells alled α and β respetively. We an ompare the ells α�β and
β�α via the twist map L ∧K → K ∧ L. And we havetwist ◦ (α�β) = (β�α) ◦ F (σ)Fρ ,where F (σ) is the ell symmetry permuting oordinates of the (n1 + n2)-disk asindiated by the map Dn1 × Dn2 ∼= Dn2 × Dn1, and Fρ is the ell symmetrypermuting the indexing spaes as indiated by Rm1 ⊕ Rm2 ∼= Rm2 ⊕ Rm1 .Proof: We write out the proof only for the disks. The boundary of the ellsan be treated similarly.Consider the diagram

FRm1+m2D
n1+n2
+

F (σ)Fρ

−−−−→ FRm2+m1D
n2+n1
+

∼=

x
x∼=

FRm1D
n1
+ ∧ FRm2D

n2
+

twist
−−−→ FRm2D

n2
+ ∧ FRm1D

n1
+y

y

L ∧K
twist
−−−→ K ∧ L

.

The bottom part learly ommutes, so it remains to hek that the top part alsodoes. We evaluate at level Rm1+m2 and get:
I (Rm1+m2 , Rm1+m2)+ ∧Dn1+n2

+
σ∗ρ∗

−−−−→ I (Rm2+m1 , Rm1+m2)+ ∧Dn2+n1
+

∼=

x
x∼=

I (Rm1 ⊕ Rm2 , Rm1+m2)+ ∧Dn1
+ ∧Dn2

+
twist
−−−−→ I (Rm2 ⊕ Rm1 , Rm1+m2)+ ∧Dn2

+ ∧Dn1
+

.The map twist swaps both the indexing spaes Rm1 and Rm2 , and the disks Dn1and Dn2. σ∗ is the map Dn1+n2 ∼= Dn2+n1 permuting the fators, while ρ∗ is thelinear map Rm1+m2 ∼= Rm2+m1 applied to the �rst fator of I (Rm1+m2 ,Rm1+m2).The left vertial identi�ation is de�ned via Rm1⊕Rm2 ∼= Rm1+m2 andDn1
+ ∧D

n2
+
∼=

Dn1+n2
+ , and the right vertial identi�ation is given by Rm2⊕Rm1 ∼= Rm2+m1 and

Dn2
+ ∧D

n1
+
∼= Dn2+n1

+ . And we see that the diagram ommutes. �Now we are ready to de�ne skew-symmetry and to show that Γ satis�es this.De�nition 2.2.20A lax monoidal funtor F : M → B is skew-symmetri with respet to a produt
� if there exists a natural transformation ι : F (a) → F (a) with ι2 = id , suhthat the following diagram ommutes:

F (a)�F (b)
ι�ι
−−−→ F (a)�F (b)

γ
−−−→ F (b)�F (a)

φ

y
yφ

F (a�b)
ι

−−−→ F (a�b)
F (γ)
−−−→ F (b�a)

.



2.2. CELLULAR TECHNIQUES; Q-COFIBRATIONS 47We an say that ι measures the failure of F being symmetri. In our ase wehave:Proposition 2.2.21
Γ is a lax skew-symmetri monoidal funtor with respet to ∧.Proof: We begin by onstruting ι. It is a ellular map and an be de�ned onthe gluing onstrution. Let α be the ell

FRmSn−1
+ −−−→ FRmDn

+y
y

A
p

−−−→ Lof G(p). Let τn and τm denote the order reversing permutations in Σn and Σmrespetively. ι : G(p) → G(p) is the map that sends α to the ell F (τn)Fτm
(α).By onstrution of ΓL as the iterated gluing onstrution, we get the naturaltransformation

ι : ΓL→ ΓL .Clearly ι2 = id .Inspeting the onstrution of φ : ΓL ∧ ΓK → Γ(L ∧ K), we see that Γ islax monoidal. In order to hek skew-symmetry, it remains to hek that thefollowing diagram ommutes:
ΓL ∧ ΓK

ι∧ι
−−−→ ΓL ∧ ΓK

twist
−−−→ ΓK ∧ ΓL

φ

y
yφ

Γ(L ∧K)
ι

−−−→ Γ(L ∧K)
Γ(twist)
−−−−→ Γ(K ∧ L)

.By indution on i+ j we prove that
Gi(L) ∧Gj(K)

ι∧ι
−−−→ Gi(L) ∧Gj(K)

twist
−−−→ Gj(K) ∧Gi(L)

φi,j

y
yφj,i

Gi+j−1(L ∧K)
ι

−−−→ Gi+j−1(L ∧K)
Gi+j−1(twist)
−−−−−−−−→ Gi+j−1(K ∧ L)ommutes. Let α and β be the diagrams

FRmSn−1
+ −−−→ FRmDn

+

f

y
yg

Gi−1(L) −−−→ L

and FRm′Sn′−1
+ −−−→ FRm′Dn′

+

f ′

y
yg′

Gj−1(K) −−−→ Krespetively, and let ᾱ and β̄ be liftings as de�ned in the onstrution of φi,j. Bythe previous lemma the diagrams twist◦(ᾱ�β̄) and β̄�ᾱ di�er by the permutation



48 CHAPTER 2. ORTHOGONAL SPECTRAof oordinates σ∗ : Dn+n′ ∼= Dn′+n and the permutation of indexing spae ρ∗ :
Rm+m′ ∼= Rm′+m. Computing with permutations in Σn+n′ we have that

(τn ∐ τn′)σ = στn+n′ .And similarly (τm ∐ τm′)ρ = ρτm+m′ in Σm+m′ . Therefore the diagram
Gi(L)α ∧Gj(K)β

ι
−−−→ Gi(L)F (τn)Fτm (α) ∧G

j(K)F (τn′ )Fτ
m′ (β)

φi,j

y twisty
Gi+j−1(L ∧K) Gj(K)F (τn′ )Fτ

m′ (β) ∧G
i(L)F (τn)Fτm (α)

ι

y
yφj,i

Gi+j−1(L ∧K)
Gi+j−1(twist)
−−−−−−−−→ Gi+j−1(K ∧ L)ommutes. And the result follows. �2.3 BoundednessWhen doing onstrutions with orthogonal spetra, it an be useful to onsiderthose spetra whih are bounded below, or those whih in addition have highlyonneted assembly maps. However ellular orthogonal spetra does not in gen-eral have these properties. An example is ∨∞m=0 FRmS0. But we may approximateany ellular orthogonal spetra by spetra satisfying these properties.Let us begin with some de�nitions:De�nition 2.3.1Let L be an orthogonal spetrum.

L is stritly c-onneted if there exists an integer N suh that L(Rn) is
(n+ c)-onneted for all n ≥ N .We all L stritly onneted if L is stritly (−1)-onneted.
L is stritly bounded below if there exists a c suh that L is stritly c-onneted.We an simplify the de�nition of stritly bounded below:Lemma 2.3.2

L is stritly bounded below if and only if there exists a c suh that L(Rn) is
(n+ c)-onneted for all n.



2.3. BOUNDEDNESS 49Proof: The �if� diretion is obvious. For the �only if� diretion assume that L isstritly c-onneted. Let N be suh that L(Rn) is (n+c)-onneted for all n ≥ N .Now set c′ = min(c,−N). When n ≥ N , the spae L(Rn) is (n + c)-onneted,hene also (n+c′)-onneted. Sine every based spae is (−1)-onneted, we havethat L(Rn) is (n+ c′)-onneted also for n < N . �By the de�nition of the homotopy groups of an orthogonal spetrum we im-mediately get:Proposition 2.3.3Let L be an orthogonal spetrum.If L is stritly c-onneted, then πqL = 0 for q ≤ c.If L is stritly bounded below, then there exists a c suh that πqL = 0 forall q ≤ c.The onverse is not true as the following examples show:Example 2.3.4Let m be an integer and onsider L de�ned by
L(V ) =

{
I (Rn, V )+ ∧ S

n−m if dimV = n ≥ m, and
∗ otherwisewith trivial assembly maps. Assume n ≥ m. By the Freudenthal suspensiontheorem we have that L(Rn) is (n −m − 1)-onneted, and by homology alu-lations we get that L(Rn) is not (n−m)-onneted. Consequently, we have that

L is stritly (−m−1)-onneted, but not stritly (−m)-onneted. However, thehomotopy groups πqL are trivial for all q.Example 2.3.5Let L be given by
L(V ) =

∞∨

m=0

I (Rm, V )+with trivial assembly maps. Then for all n ≥ 0 we have that L(Rn) is not 0-onneted. Hene, there exists no c suh that L(Rn) is (n + c)-onneted for all
n. It follows that L is not stritly bounded below. But sine the assembly mapsare trivial, it follows that πqL = 0 for all q.Lemma 2.3.6If A→ X is an l-o�bration, A, B and X stritly c-onneted orthogonal spetra,then the pushout, Y , of B ← A→ X is also stritly c-onneted.



50 CHAPTER 2. ORTHOGONAL SPECTRAProof: The spaes A(Rn), B(Rn) and X(Rn) all are (n + c)-onneted. Wewant to show that Y (Rn) also is (n+ c)-onneted. Consider the diagram
A(Rn) −−−→ X(Rn)y

y

B(Rn) −−−→ Y (Rn)

.For (n+ c) = −1 and (n+ c) = 0, it is obvious that Y (Rn) is (n+ c)-onneted.Assume (n + c) > 0. Blakers-Massey applies and shows that
πq(X(Rn), A(Rn))→ πq(Y (Rn), B(Rn))is an isomorphism when q < 2(n+ c). By the long exat sequenes in homotopyfor the pairs (X(Rn), A(Rn)) and (Y (Rn), B(Rn)), the result follows. �Corollary 2.3.7Assume A, B and X stritly bounded below. Then the pushout of B ← A→ Xis also stritly bounded below if at least one of the maps is an l-o�bration.Lemma 2.3.8Let L =

∨
α FVα

Aα. If Aα is well-pointed and dimVα ≤ k for all α, then L isstritly (−k − 1)-onneted.Proof: First onsider the ase with only one wedge summand: A = Aα is a well-pointed spae and Vα = Rk. We want to alulate the onnetivity of FRkA(Rn).If n < k, then by de�nition FRkA(Rn) = ∗, so assume that k ≤ n. Then
FRkA(Rn) = O(n)+ ∧O(n−k) (A ∧ Sn−k) ∼= A ∧

(
O(n)+ ∧O(n−k) S

n−k
)

.Now onsider the diagram
O(n− k)y

O(n)× Sn−k

y

O(n)/O(n− k) −−−→ O(n)×O(n−k) S
n−k −−−→ O(n)+ ∧O(n−k) S

n−k

.

Here the vertial sequene is a �bration, and the horizontal sequene a o�bration.Sine O(n− k)→ O(n) is (n− k − 1)-onneted, the long exat sequene of the�bration yields that O(n) ×O(n−k) S
n−k is (n − k − 1)-onneted. Furthermore,



2.3. BOUNDEDNESS 51we know that O(n)/O(n − k) is (n − k − 1)-onneted. Using proposition 4.28in [Hat02℄, we see that O(n)+ ∧O(n−k) S
n−k is also (n− k − 1)-onneted.By Blakers-Massey or CW-approximation, one an prove that for well-pointedspaes X and Y whih are r- and s-onneted respetively, the smash produt

X ∧ Y is (r+ s+ 1)-onneted. Sine any spae is (−1)-onneted, applying thisto A ∧ (O(n)+ ∧O(n−k) S
n−k
) yields that FRkA(Rn) is (n− k − 1)-onneted.Now onsider the wedge

L =
∨

α

FVα
Aα .By the alulation above L(Rn) is a wedge of well-pointed (n− k− 1)-onnetedspaes. Using CW-approximation or Blakers-Massey we an prove that the wedgeof well-pointed l-onneted spaes again is l-onneted. And it follows that L(Rn)is (n− k − 1)-onneted for all n. �For some purposes we need a stronger ondition than stritly bounded below:De�nition 2.3.9An orthogonal spetrum L is meta-stable if it is stritly bounded below and thereexists an integer d suh that σ : L(Rn)∧S1 → L(Rn+1) is (2n+ d)-onneted forall n.Lemma 2.3.10Let K be the pushout of L← A

i
−→ B. Assume that A, B and L are meta-stableorthogonal spetra, that i is an l-o�bration and A is well-pointed. Then K isalso meta-stable.Proof: Consider the diagram

L(Rn) ∧ S1 ←−−− A(Rn) ∧ S1 i
−−−→ B(Rn) ∧ S1

y
y

y

L(Rn+1) ←−−− A(Rn+1)
i

−−−→ B(Rn+1)

.Sine A, B and L are bounded below, we may inrease n until all spaes in the di-agram above are simply onneted. Therefore it is enough to onsider homologywhen alulating onnetedness. Comparing Mayer-Vietoris sequenes for thetwo rows, we get that K(Rn) ∧ S1 → K(Rn+1) is (2n + d)-onneted, assumingthat all three vertial maps in the diagram above also have this onnetedness. �Lemma 2.3.11Let L =
∨

α FVα
Aα. If all Aα are well-pointed and there exists a k suh that

dimVα ≤ k for all α, then L is meta-stable.



52 CHAPTER 2. ORTHOGONAL SPECTRAProof: First we onsider the ase with a single wedge summand. Assumethat n > k. Then we have by lemma 2.3.8 that both FRkA(Rn) ∧ S1 and
FRkA(Rn+1) are simply onneted. Thus we an alulate the onnetivity of
σ : FRkA(Rn) ∧ S1 → FRk(Rn+1) using homology. By the de�nition of FRk themap under onsideration is

O(n)+ ∧O(n−k) (A ∧ Sn−k) ∧ S1 → O(n+ 1)+ ∧O(n−k+1) (A ∧ Sn−k+1) .We see that this map is l-onneted if and only if the map
O(n)+ ∧O(n−k) (A ∧ Sn−k) ∧ S1 ∧ Sk → O(n+ 1)+ ∧O(n−k+1) (A ∧ Sn−k+1) ∧ Skis (l+k)-onneted. Now observe that the O(n−k+1)-ation on (A∧Sn−k+1)∧Skan be extended to a O(n+ 1)-ation, and thus we have
O(n+1)+∧O(n−k+1) (A∧Sn−k+1)∧Sk ∼= O(n+1)/O(n−k+1)+∧ (A∧Sn+1) ,and similarly for the soure spae. Thus we are onsidering the onnetivity of
O(n)/O(n− k)+ ∧ (A ∧ Sn+1)→ O(n+ 1)/O(n− k + 1)+ ∧ (A ∧ Sn+1) .This map is easily seen to be (2n−k)-onneted. And it follows that σ is (2n−2k)-onneted for n > k. An inspetion of the ase n = k shows that FRkA(Rk+1)is 0-onneted, and it follows that σ is 0-onneted. Hene we an take d in thede�nition of meta-stability to be (−2k).In the general ase we observe that the suspension map is the omposition

L(Rn) ∧ S1 ∼=
∨

α

(FVα
Aα(Rn) ∧ S1)

∨
σ
−−→

∨

α

FVα
Aα(Rn+1) .But the wedge of (2n − 2k)-onneted maps are (2n − 2k)-onneted. And itfollows that L is meta-stable. �The following result is a useful property of relative FI-ellularity.Proposition 2.3.12Assume that A → L is a relative FI-ellular map of orthogonal spetra. If Ais stritly bounded below, then there exists a sequene A = L0 → L1 → · · · ofl-o�brations with olimit L, and suh that eah Li is stritly bounded below. If

A is meta-stable, then eah Li an also be assumed meta-stable.Proof: Let C be the poset of ells. For a ell α let mα denote the desuspensiondegree, i.e. the dimension of V in FV S
n−1
+ → FVD

n
+. Now de�ne Ci indutively:Let C0 be those α ∈ C suh that mα = 0 and Pα = ∅.



2.3. BOUNDEDNESS 53Given C0, . . . , Ci−1, let Ci be the ells α not in Ck for any k < i suh that
mα ≤ i and for any β < α there is an l < i suh that β ∈ Cl.Sine eah Pα is �nite, we see that ⋃i Ci = C. Thus, the olletion of Ci's satis�esthe onditions in the proof of proposition 2.2.9. And by the proof we an thenonstrut the sequene A = L0 → L1 → · · · with olimit L, indutively. Li isde�ned by the pushout diagram

∨
α∈Ci

FRmαSnα−1
+ −−−→

∨
α∈Ci

FRmαDnα
+y

y

Li−1 −−−→ Li

.Sine mα ≤ i for all α in Ci, it follows by the lemma 2.3.8 and orollary 2.3.7that eah Li is stritly bounded below. If A in addition is meta-stable, we anuse the lemmas 2.3.10 and 2.3.11 to show that eah Li is meta-stable. �Let us prove the following property of meta-stable orthogonal spetra:Lemma 2.3.13If L is meta-stable and well-pointed, then there exists a onstant e suh that theassembly indues a (2n + k + e)-onneted map
ΩkL(Rn+k)→ Ωk+lL(Rn+k+l)for all n, k and l.Proof: By indution we may redue to the ase where l = 1.Sine L(Rn+k)∧S1 → L(Rn+k+1) is (2n+2k+d)-onneted for some onstant

d independent of n and k, it follows that
Ω
(
L(Rn+k) ∧ S1

)
→ ΩL(Rn+k+1)is (2n + 2k + d− 1)-onneted. There exists a onstant c, also independent of nand k, suh that L(Rn+k) is (n+ k + c)-onneted. By Freudenthal's suspensiontheorem we have that

L(Rn+k)→ Ω
(
L(Rn+k) ∧ S1

)is (2n+2k+2c+1)-onneted. Hene, there exists an e suh that the omposite
L(Rn+k)→ ΩL(Rn+k+1)is (2n+ 2k + e)-onneted. Applying Ωk− we get that

ΩkL(Rn+k)→ Ωk+1L(Rn+k+1)is (2n+ k + e)-onneted. �



54 CHAPTER 2. ORTHOGONAL SPECTRA2.3.1 Indued funtors on orthogonal spetraConsider a ontinuous endofuntor F de�ned on based spaes. We already knowfrom example 2.1.17 that applying F level-wise to an orthogonal spetrum Lyields a new orthogonal spetrum F (L). What an be said about F (L)? Theresults we are looking for will ompare F (L) andG(L) whenever we have a naturaltransformation f : F → G of ontinuous endofuntors.Lemma 2.3.14Assume that there exists an integer d suh that fX : F (X)→ G(X) is (2n + d)-onneted when X is n-onneted and well-pointed. If L is stritly boundedbelow and well-pointed, then L→ F (L) is a π∗-iso.Proof: The natural transformation f indues a map of orthogonal spetra
F (L)→ G(L) .We take the underlying prespetra, and look at the q'th homotopy groups:

πqF (L) = colim
n

πq+nF (L(Rn))→ colim
n

πq+nG(L(Rn)) = πqG(L) .For a �xed q and under the given assumptions on f and L, the map πq+nF (L(Rn))→
πq+nG(L(Rn)) is eventually an isomorphism: There exist integers N and c suhthat L(Rn) is (n + c)-onneted for n ≥ N . Furthermore, there is a d suhthat F (X) → G(X) is (2n + d)-onneted when X is n-onneted. Therefore,
F (L(Rn))→ G(L(Rn)) is (2n+2c+d)-onneted for n ≥ N , so πq+nF (L(Rn))→
πq+nG(L(Rn)) is an iso for n > max(q − 2c− d,N). �However, the ondition we usually want to assume is o�brany, not stritlybounded below. Therefore we use proposition 2.3.12 to transform the lemmaabove.Corollary 2.3.15Let f : F → G be a natural transformation of endofuntors on Top∗. Assumethat there exists an integer d suh that fX is (2n + d)-onneted when X is

n-onneted and well-pointed,
F and G preserves o�brations of spaes, andif X0 → X1 → X2 → · · · is any sequene of o�brations of spaes,then the natural maps colimi F (Xi) → F (colimiXi) and colimiG(Xi) →
G(colimiXi) are weak equivalenes.



2.3. BOUNDEDNESS 55If L is o�brant, then the indued map
F (L)→ G(L)is a π∗-isomorphism.Proof: First suppose that L is FI-ellular. By proposition 2.3.12 there is asequene ∗ = L0 → L1 → of l-o�brations with olimit L suh that eah Li isstritly bounded below. Apply f : F → G to the sequene and ompare:

F (L0) −−−→ F (L1) −−−→ F (L2) −−−→ · · ·y
y

y

G(L0) −−−→ G(L1) −−−→ G(L2) −−−→ · · ·

.All horizontal maps are l-o�brations, while lemma 2.3.14 implies that all vertialmaps are π∗-isomorphisms. It follows that colimi F (Li) → colimiG(Li) is a π∗-iso. By the last assumption, we get that F (L)→ G(L) is a π∗-iso.Now suppose that L is any o�brant orthogonal spetrum. Then L is a re-trat of an FI-ellular orthogonal spetrum K. It follows that F (L) → G(L) isa retrat of a π∗-iso F (K)→ G(K), hene the �rst map is also a π∗-iso. �The tehnique of indued funtors an be extended to multi-funtors Topn
∗ →

Top∗. But instead of giving the most general statement, we will illustrate this byonsidering the example:
iX,Y : X ∨ Y → X × Y , for spaes X and Y .Proposition 2.3.16If L and K are o�brant orthogonal spetra, then L ∨ K → L × K is a π∗-isomorphism.Proof: Observe that iX,Y is (n + m + 1)-onneted if X is n-onneted, Y is

m-onneted and both spaes are well-pointed. Now assume that L and K arewell-pointed and stritly bounded below. Then there exists a c suh that L(Rn)and K(Rn) are (n+ c)-onneted. It follows that
πq+n(L(Rn) ∨K(Rn))→ πq+n(L(Rn)×K(Rn))is an isomorphism when n ≥ q − 2c. Hene L ∨K → L×K is a π∗-iso.To get the result in the general ase, we use proposition 2.3.12 and the fol-lowing observations:

L 7→ L∨K and L 7→ L×K preserves l-o�brations when K is well-pointed,
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(colimi Li) ∨K = colimi(Li ∨K), and
(colimi Li)×K = colimi(Li ×K).First assume that L is o�brant, and K is stritly bounded below and well-pointed. Filtrating L with eah Li being stritly bounded below and well-pointed,we see that L ∨ K → L × K is a π∗-iso. Next, assume that L and K are botho�brant, �ltrate K and use the previous sentene to �nish the proof. �2.4 I S as a model ategoryModel ategories (=losed model ategories) were introdued by Quillen [Qui67℄and [Qui69℄ as an axiomatization of homotopy theory. See also the survey arti-le [DS95℄ or the book [Hir03℄. We will reall the de�nition of a model ategorybelow. Mandell, May, Shwede and Shipley [MMSS01℄ show that the ategoryof orthogonal spetra has several model strutures. We will explain this. Thesetion ends by listing various results onerning the model ategory theory oforthogonal spetra.De�nition 2.4.1A model ategory is a ategory C with three distinguished lasses of maps: weakequivalenes, �brations and o�brations. Eah of these lasses is losed underomposition and ontains all identity maps. A map whih is both a �bration(resp. o�bration) and a weak equivalene is alled an ayli �bration (resp.ayli o�bration). And we have the following axioms:MC1 Finite limits and olimits exist in C .MC2 If A f
−→ B

g
−→ C are omposable maps in C , and if two of the three maps f ,

g and gf are weak equivalenes, then so is the third.MC3 If f is a retrat of g and g is a �bration, o�bration or weak equivalene,then so is f .MC4 Given a ommutative diagram
A

f
−−−→ X

i

y
yp

B
g

−−−→ Y

,then there exists a lift h : B → X suh that hi = f and ph = g in thefollowing two situations: when i is a o�bration and p is an ayli �bration,or when i is an ayli o�bration and p is a �bration.



2.4. I S AS A MODEL CATEGORY 57MC5 Any map f an be fatored in two ways: as f = pi where i is a o�brationand p is an ayli �bration, and as f = pi where i is an ayli o�brationand p is a �bration.A model struture on a ategory C is a model ategory with C as its underlyingategory.Axiom MC4 gives liftings of ertain diagrams. Sine liftings are importantin model ategory theory, we have the following standard terminology: A map
i : A → B has the left lifting property with respet to another map p : X → Yif for any diagram of the same form as the diagram in MC4, there exists a lift
h : B → X suh that hi = f and ph = g. Dually, we say that p : X → Y has theright lifting property with respet to i : A→ B.A basi result about model ategories, proposition 3.13 in [DS95℄, says that
i is a o�bration if and only if it has the left lifting property with respet to allayli �brations. Dually, p is a �bration if and only if it has the right liftingproperty with respet to all ayli o�brations. Hene, when speifying a modelategory it is enough to de�ne the weak equivalenes and either o�brations or�brations. The remaining lass is determined by lifting properties.Model ategories often ome with extra struture. For example we have sim-pliial model ategories, see �II.3 in [GJ99℄. More relevant to us are topologialmodel ategories, see �5 in [MMSS01℄.There are several model strutures on the ategory of orthogonal spetra. The�rst model struture is:De�nition 2.4.2The level model struture on orthogonal spetra is given by setting

f : K → L is a weak equivalene if f is a level equivalene,
f : K → L is a o�bration if f is a q-o�bration (=retrat of relative
FI-ellular map), and
f : K → L is a �bration if for eah level V the map f : K(V )→ L(V ) is aSerre �bration.Theorem 6.5 in [MMSS01℄ says that the level model struture on orthogonalspetra is a model struture. Next we have:De�nition 2.4.3The stable model struture on orthogonal spetra is given by setting
f : K → L is a weak equivalene if f is a π∗-isomorphism,
f : K → L is a o�bration if f is a q-o�bration (=retrat of relative
FI-ellular map), and
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f : K → L is a �bration if f has the right lifting property with respetto the ayli o�brations (=maps whih are both π∗-isomorphisms andq-o�brations).Theorem 9.2 in [MMSS01℄ says that the stable model struture on orthogonalspetra is a model struture.Remark 2.4.4There is also a positive stable model struture on the ategory of orthogonal spe-tra. The weak equivalenes of this model struture are the π∗-isomorphisms.There are fewer o�brations than the previous model strutures, beause inthe positive stable struture one does not allow ells FRmSn−1

+ → FRmDn
+ with

m = 0. The �brations are de�ned via the right lifting property. Theorem 14.2in [MMSS01℄ veri�es that the positive stable model struture is a model struture.The purpose of the positive stable models struture is to study ommutativeorthogonal ring spetra. However, in this thesis we study orthogonal ring spetrawith involution, and they are rarely ommutative. Hene we do not need thepositive stable model struture.We now list misellaneous results:Proposition 2.4.5Consider the diagram
L

i
←−−− A −−−→ K

≃

y
y≃

y≃

L′
i′

←−−− A′ −−−→ K ′where i and i′ are h-o�brations and the vertial maps are π∗-isos. Then the mapof the row-wise pushouts is also a π∗-iso.For a proof see theorem 8.12(iv) in [MMSS01℄. The result also holds when iand i′ are q-o�brations, sine any q-o�bration is an h-o�bration.Proposition 2.4.6The onlusion of proposition 2.4.5 also holds if we assume that i and i′ arel-o�brations instead of h-o�brations.Proof: Apply the o�brant replaement funtor to the diagram of proposi-tion 2.4.5. In the resulting diagram,
ΓL

Γi
←−−− ΓA −−−→ ΓK

≃

y
y≃

y≃

ΓL′
Γi′
←−−− ΓA′ −−−→ ΓK ′

,



2.4. I S AS A MODEL CATEGORY 59we observe that Γi and Γi′ are q-o�brations, by theorem 2.2.13, and the vertialmaps are π∗-isomorphisms. From the proposition above it follows that
ΓL ∪ΓA ΓK → ΓL′ ∪ΓA′ ΓK ′is a π∗-iso. Now inspet the diagram
ΓL

Γi
←−−− ΓA −−−→ ΓK

≃l

y
y≃l

y≃l

L
i

←−−− A −−−→ K

.Here the vertial maps are level-equivalenes. And sine the pushout is formedlevel-wise, we may evaluate at some level V and use the gluing theorem for weakequivalenes between spaes, proposition A.1.4, to onlude that
ΓL ∪ΓA ΓK → L ∪A Kis a level-equivalene. Similarly the map ΓL′ ∪ΓA′ ΓK ′ → L′ ∪A′ K ′ is also alevel-equivalene. Now onsider the ommutative square

ΓL ∪ΓA ΓK
≃l−−−→ L ∪A K

≃

y
y

ΓL′ ∪ΓA′ ΓK ′
≃l−−−→ L′ ∪A′ K ′

.We see that the last map must be a π∗-iso, and we are done. �Proposition 2.4.7If X is o�brant and K → L is a π∗-iso, then also K ∧X → L ∧X is a π∗-iso.For a proof see proposition 12.3 in [MMSS01℄.Proposition 2.4.8If f : A→ L and g : B → K are q-o�brations, then
f�g : A ∧K ∪ L ∧ B → L ∧Kis also a q-o�bration. Furthermore, if f or g is in addition a π∗-iso, then f�g isalso a π∗-iso.The �rst part is a orollary of proposition 2.2.12, this is also lemma 6.6in [MMSS01℄. The last part is the pushout-produt axiom, proposition 12.6in [MMSS01℄.



60 CHAPTER 2. ORTHOGONAL SPECTRAProposition 2.4.9If f : A→ L, g : B → K and g′ : B′ → K ′ are q-o�brations, and A is o�brantand there is a ommutative diagram
B

g
−−−→ K

≃

y
y≃

B′
g′

−−−→ K ′where the vertial maps are π∗-isomorphisms, then the vertial maps in the dia-gram
A ∧K ∪ L ∧ B

f�g
−−−→ L ∧K

≃

y
y≃

A ∧K ′ ∪ L ∧ B′
f�g′

−−−→ L ∧K ′are also π∗-isomorphisms.Proof: Sine L is o�brant, the map L ∧K → L ∧K ′ is a π∗-iso by proposi-tion 2.4.7.Let h be the map A ∧ K ∪ L ∧ B → A ∧K ′ ∪ L ∧ B′. Notie that h is therow-wise pushout of
A ∧K ←−−− A ∧ B −−−→ L ∧ By

y
y

A ∧K ′ ←−−− A ∧B′ −−−→ L ∧B′

.Sine A and L are o�brant, the vertial maps are π∗-isos by proposition 2.4.7.The maps A ∧ B → A ∧ K and A ∧ B′ → A ∧ K ′ are q-o�brant by proposi-tion 2.4.8. Now we apply proposition 2.4.5 and onlude that h also is a π∗-iso. �Proposition 2.4.10Assume that we have a map between two sequenes of orthogonal spetra:
K0 −−−→ K1 −−−→ K2 −−−→ · · ·y

y
y

L0 −−−→ L1 −−−→ L2 −−−→ · · ·

.If K0 → L0 is a q-o�bration, and Ki ∪Ki−1
Li−1 → Li is a q-o�bration for every

i ≥ 0, then
colim

i
Ki → colim

i
Lialso is a q-o�bration. In partiular, the ase where Ki is onstant equal to L0yields that L0 → colimi Li is a q-o�bration if eah Li−1 → Li is.



2.5. SIMPLICIAL ORTHOGONAL SPECTRA 61Proof: This statement holds in all model ategories, we give an abstrat proof.Reall that a map in a model ategory is a o�bration if and only if it has the leftlifting property with respet to ayli �brations, see [DS95℄. Consider a diagram
colimiKi −−−→ Xy

y

colimi Li −−−→ B

,where X → B is an ayli �bration. De�ne f0 : L0 → X to be a lift in
K0 −−−→ Xy

y

L0 −−−→ B

.Indutively, hoose a lift fi : Li → X in the diagram
Ki ∪Ki−1

Li−1 −−−→ Xy
y

Li −−−→ B

.Now observe that colimi fi : colimi Li → X lifts the original left lifting problem. �Lemma 2.4.11The maps FRnSn → S, adjoint to the homeomorphisms Sn → S(Rn), are π∗-isomorphisms for all n ≥ 0.This follows from lemma 8.6 in [MMSS01℄.2.5 Simpliial orthogonal spetraWe need to disuss simpliial orthogonal spetra and we will use the theory ofsimpliial spaes as our guideline. In [Seg74℄ Segal de�nes what it means fora simpliial spae to be good, and shows that good simpliial spaes behaveswell with respet to geometri realization. May has a similar de�nition, proper,in [May72℄. Using Lillig's union theorem [Lil73℄ one an prove that proper andgood are equivalent notions.Let us now de�ne simpliial orthogonal spetra.De�nition 2.5.1A simpliial orthogonal spetrum is a funtor L• : ∆op → I S . It is good if eah
si : Lq → Lq+1 is an l-o�bration.



62 CHAPTER 2. ORTHOGONAL SPECTRAAs usual there is a geometri realization funtor |−| from simpliial orthogonalspetra to I S . A quik de�nition of |L•| is given by a oend:
|L•| =

∫ [q]∈∆

Lq ∧∆q
+ .It is easy to see that | − | is the same as applying the geometri realization ofsimpliial spaes level-wise. We therefore have the formula |L•|(V ) ∼= |L•(V )|.There also is a presimpliial realization, ‖−‖, given by identifying along injetivemaps of ∆ only. As above this onstrution is also level-wise: We have that

‖L•‖(V ) ∼= ‖L•(V )‖.There is a natural map ‖L•‖ → |L•| and we have the following standardresult:Proposition 2.5.2For a good simpliial orthogonal spetrum L•, the natural map ‖L•‖ → |L•| is alevel equivalene.Proof: We evaluate at V and apply the orresponding result for simpliialspaes, proposition A.1(iv) in [Seg74℄. �Our su�ient riterion for |K•| → |L•| to be a π∗-isomorphism, is a bit harderto prove:Proposition 2.5.3Let f : K• → L• be a map of simpliial orthogonal spetra. If K• and L• aregood and the map fq : Kq → Lq is a π∗-isomorphism for any q, then the induedmap |f | : |K•| → |L•| is also a π∗-isomorphism.Proof: By the previous proposition it is enough to prove that ‖f‖ : ‖K•‖ →
‖L•‖ is a π∗-isomorphism.We have a �ltration Fq‖K•‖ of ‖K•‖ by skeleta, and pushout diagrams

Kq ∧ ∂∆
q
+ −−−→ Fq−1‖K•‖y

y

Kq ∧∆q
+ −−−→ Fq‖K•‖for eah q ≥ 1. It an be heked diretly that the left vertial map is anl-o�bration, and onsequently the right vertial map is also an l-o�bration.There is a similar �ltration for ‖L•‖. We ompare the two �ltrations. Byproposition 2.1.9 it is enough to show that eah map Fq‖K•‖ → Fq‖L•‖ is a

π∗-isomorphism. This is proved by indution:
F0‖K•‖ = K0

f0−→ L0 = F0‖L•‖ is a π∗-isomorphism by assumption.



2.5. SIMPLICIAL ORTHOGONAL SPECTRA 63For the indution step we onsider the diagram
Kq ∧∆q

+ ←−−− Kq ∧ ∂∆
q
+ −−−→ Fq−1‖K•‖y

y
y

Lq ∧∆q
+ ←−−− Lq ∧ ∂∆

q
+ −−−→ Fq−1‖L•‖

.Here the �rst two vertial maps are π∗-isomorphisms by proposition 2.4.7, andthe last vertial map is a π∗-iso by indution. By the gluing lemma, proposi-tion 2.4.6, we get that Fq‖K•‖ → Fq‖L•‖ is a π∗-iso. �An important feature of simpliial sets and simpliial spaes is that realizationommutes with produts. This also holds for simpliial orthogonal spetra:Lemma 2.5.4The ategory of simpliial orthogonal spetra, sI S , is symmetri monoidalunder the produt sending K• and L• to [q] 7→ Kq∧Lq. And geometri realizationis strong symmetri monoidal. In partiular there is a natural isomorphism
|K•| ∧ |L•| → |K• ∧ L•| .Proof: It is lear that sI S is symmetri monoidal, with unit [q] 7→ S. Tohek that | − | is strong symmetri monoidal, we �rst hek the orrespondingstatement for the geometri realization of simpliial I -spaes. Here the produtis ∧̃. Let V be a �nite dimensional real vetor spae, and evaluate. We have:

(|K•|∧̃|L•|) (V ) ∼= I (Rd ⊕Rd′ , V )+ ∧O(d)×O(d′) (|K•(R
d)| ∧ |L•(R

d′)|)and
|K•∧̃L•|(V ) ∼= |I (Rd ⊕ Rd′, V )+ ∧O(d)×O(d′) (K•(R

d) ∧ L•(R
d′))| .Sine realization is a strong symmetri monoidal funtor from simpliial spaesto spaes, these formulas imply that | − | is strong symmetri monoidal on sim-pliial I -spaes. Now the result also follows for simpliial orthogonal spetra byinspeting the oequalizer de�nition of ∧. We have

|K•|∧̃|S|∧̃|L•|⇉|K•|∧̃|L•|→|K•| ∧ |L•|

∼=

y ∼=

y
y

|K•∧̃S∧̃L•| ⇉ |K•∧̃L•| → |K• ∧ L•|

,and it follows that the last map is an isomorphism. �



64 CHAPTER 2. ORTHOGONAL SPECTRA2.6 The �brant replaement funtor QWe will need the underlying in�nite loop spae of an orthogonal spetrum in orderto de�ne ĜL and onsequently alsoK-theory. Getting the underlying in�nite loopspae is a two step proess. First there is a funtor, whih we will all Q, thattries to turn orthogonal spetra into Ω-spetra. To get the underlying in�niteloop spae of L, one then piks out the 0'th spae of QL.The lassial idea for onstruting QL is to take the homotopy olimit of
ΩnL(Rn⊕−) as n grows to in�nity. This onstrution would give the orret ho-motopy, at least when L is suitably nie, but the monoidal properties with respetto ∧ are bad. Bökstedt solved this problem by instead onsidering a homotopyolimit over the ategory of �nite sets and injetions. See the proof of lemma 2.3.7in [Mad94℄. When n lives in this ategory the funtor n 7→ ΩnL(Rn ⊕ −) hasmonoidal properties, and onsequently also its homotopy olimit. However, forthe purpose of onstruting a �brant replaement funtor of orthogonal spetrawith monoidal properties, it is more natural to let the indexing ategory be �nitedimensional real inner produt spaes and isometri embeddings.When reading the proof of proposition 8.8 in [MMSS01℄ or the proof of theo-rem 3.1.11 in [HSS00℄, one an get the impression that the onstrution indiatedabove does not yield a �brant replaement funtor. But their problem is loselytied to symmetri spetra, rather than with the onstrution. In that ategoryof spetra it is not true that the FI-ells are meta-stable. For example onsiderthe symmetri spetrum F1S

1, see example 3.1.10 in [HSS00℄.We now state the struture theorem for Q:Theorem 2.6.1There is an endofuntor Q on orthogonal spetra having the following properties:
QL is an Ω-spetrum if L is well-pointed.
Q preserves l-o�brations of well-pointed orthogonal spetra.
Q ommutes with sequential olimits.If K → L is a π∗-isomorphism and L and K are well-pointed, then QK →
QL is a level-equivalene.There is a natural inlusion ηL : L→ QL, this is a π∗-iso if L is well-pointed.There is a natural map µL,K : QL∧QK → Q(L∧K) suh that µL,K ◦ (ηL∧
ηK) = ηL∧K .With ηS and µ the funtor Q is lax monoidal with respet to ∧.



2.6. THE FIBRANT REPLACEMENT FUNCTOR Q 65There is a natural transformation ιL : QL→ QL suh that ι2 = id , ιη = η,
ι is level equivalent to id when L is well-pointed and the following diagramommutes:

QL ∧QK
ι∧ι
−−−→ QL ∧QK

twist
−−−→ QK ∧QLy

y

Q(L ∧K)
ι

−−−→ Q(L ∧K)
twist
−−−→ Q(K ∧ L)

.There is a natural map αL,K : QL × QK → Q(L × K), this is a levelequivalene if L and K are well-pointed.With η∗ and α the funtor Q is lax monoidal with respet to ×.Remark 2.6.2Warning: Q is not symmetri. That would lead to a ontradition: The 0'thspae of QS would then be a ommutative topologial monoid with unit andzero elements, and have the homotopy type of Ω∞Σ∞S0. By a result of Moore,[Moo58℄, this would imply that the path omponent of the unit of Ω∞Σ∞S0 hasthe homotopy type of a ross produt of Eilenberg-MaLane spaes. This is nottrue.The fat that Q is not symmetri is the preise point where the ategory oforthogonal spetra fails to be a �onvenient ategory of spetra� as de�ned byLewis, [Lew91℄.Our theorem above is therefore the best possible result regarding the �brantreplaement funtor: It is lax skew-symmetri monoidal, and the involution ι ishomotopi to id .Let us now look into the onstrution of QL. First we let E be the topologialategory of the �nite dimensional real inner produt spaes Rn, n ≥ 0, andisometri embeddings. Given an orthogonal spetrum L, we have a ontinuousfuntor from E to I S given by
W 7→ ΩWL(W ⊕−) .For morphisms in E from W to U we de�ne the map

E (W,U)+ ∧ ΩWL(W ⊕ V )→ ΩUL(U ⊕ V )as follows: Assume f : W → U is an isometri embedding and α : SW →
L(W ⊕ V ) represent a point in ΩWL(W ⊕ V ). Let d be the odimension of W in
U . Now onsider the omposition

SU ∼= Sd ∧ SW id∧α
−−−→ Sd ∧ L(W ⊕ V )

σ̄
−→ L(Rd ⊕W ⊕ V ) ∼= L(U ⊕ V ) ,



66 CHAPTER 2. ORTHOGONAL SPECTRAwhere the �rst and last map is indued by f , and σ̄ is the left assembly. Thisomposition represents a point in ΩUL(U ⊕ V ).We have hosen to work with the Eulidean spaes Rn, n ≥ 0, instead of all�nite dimensional real inner produt spaes. The reason is that we would like totake a �homotopy olimit� over E . Therefore, the objets should be a set. De�ne
Q•L to be the simpliial orthogonal spetrum given by
QqL(V ) =

∨

n0,...,nq≥0

E (Rnq−1 ,Rnq)+ ∧ · · · ∧ E (Rn0,Rn1)+ ∧ Ωn0L(Rn0 ⊕ V ) .The fae and degeneray maps are given by
di(fq−1, . . . , f0;α) =






(fq−1, . . . , f1; f0(α)) for i = 0,
(fq−1, . . . , fi+1, fi ◦ fi−1, fi−2, . . . , f0;α) for 0 < i < q,
(fq−2, . . . , f0;α) for i = q, and

si(fq−1, . . . , f0;α) = (fq−1, . . . , fi, idRni , fi−1, . . . , f0;α) .We now de�ne:De�nition 2.6.3The funtor Q is an endofuntor on orthogonal spetra, given on L as the geo-metri realization of Q•L.Clearly there is a natural inlusion ηL : L → QL. This omes from theinlusion of L(V ) as the wedge summand of Q0L(V ) =
∨

n0≥0 Ωn0L(Rn0 ⊕ V )orresponding to n0 = 0.Lemma 2.6.4If L is well-pointed, then Q•L is a good simpliial orthogonal spetrum.Proof: The spae E (Rn,Rn) is well-pointed at idRn, it is even a smooth man-ifold. By assumption Ωn0L(Rn0 ⊕ V ) is well-pointed. By applying the smashprodut theorem for well-pointed o�brations in Top∗, proposition 12 in [Str72℄,we get that eah si is an l-o�bration. �Lemma 2.6.5
Q preserves level equivalenes between well-pointed orthogonal spetra.Proof: If K → L is a level equivalene, it follows that ΩnK(Rn ⊕ V ) →
ΩnL(Rn ⊕ V ) is a weak equivalene for all n and V . Hene in eah simpliialdegree q the map

Qq(K)(V )→ Qq(L)(V )is a weak equivalene. The result follows sine both Q•K and Q•L are good. �



2.6. THE FIBRANT REPLACEMENT FUNCTOR Q 67Proposition 2.6.6
Q ommutes with sequential olimits.Proof: Let L0 → L1 → L2 → · · · be a sequene of orthogonal spetra witholimit L = colimi Li. Colimits ommute with geometri realization, thus it isenough to show that

colim
i

QqLi = QqLfor every simpliial degree q. Sequential olimits are level-wise onstrutions, soit is enough to hek that the olimit of QqL0(V ) → QqL1(V ) → · · · is QqL(V )for eah V . We now inspet the de�nition of Qq − (V ). Colimits ommute withwedge, but in general an arbitrary olimit does not ommute with smash prod-uts. However, sequential olimits (of based spaes) ommute with the funtor
X 7→ A ∧X, where A is some �xed spae. Therefore it is enough to show that

colim
i

Ωn0Li(R
n0 ⊕ V ) = Ωn0L(Rn0 ⊕ V )for �xed n0 and V . This is true sine the olimit is sequential and Sn0 ompat. �Proposition 2.6.7

Q preserves l-o�brations of well-pointed orthogonal spetra.Proof: We start with an l-o�bration A→ L of well-pointed orthogonal spetra.By proposition 2.1.12 the map
ΩnA(Rn ⊕ V )→ ΩnL(Rn ⊕ V )is a losed o�bration of well-pointed spaes for all n and V . By the smash prod-ut theorem for well-pointed o�brations of spaes (proposition 12 in [Str72℄) itfollows that QqA→ QqL is an l-o�bration of well-pointed orthogonal spetra forevery q. Both Q•A and Q•L are good, and by the gluing theorem for l-o�brationsand the �ltration of the geometri realization it now follows that QA → QL isan l-o�bration. �Lemma 2.6.8The lassifying spae BE is ontratible.Proof: Diret sum indues a map ⊕ : BE ×BE → BE . Sine there is a naturaltransformation from the projetion E ×E → E onto the �rst fator to the diretsum, we get a homotopy between ⊕ and the projetion pr 1 : BE × BE → BE .Similarly we get a homotopy ⊕ ≃ pr 2.



68 CHAPTER 2. ORTHOGONAL SPECTRANow hoose a basepoint ∗ in BE and onsider the omposition of the inlusion
i : BE × ∗ → BE × BEwith pr 1, ⊕ and pr 2. We get homotopies

id = pr 1 ◦ i ≃ ⊕ ◦ i ≃ pr 2 ◦ i = ∗ .Thus BE is ontratible. �We will now start proving that ηL is a π∗-iso when L is well-pointed. Theproof is divided into three parts: First we show the result for meta-stable well-pointed L. Next we �lter any o�brant L as the olimit of orthogonal spetra ofthe �rst type. At last we use o�brant approximation to prove the general ase.Lemma 2.6.9If L is meta-stable and well-pointed, then η : L→ QL is a π∗-isomorphism.Proof: Evaluating at a level V we land in topologial spaes. Here we alsohave unbased homotopy olimits. Let Q̃L(V ) be the geometri realization of thesimpliial spae with q-simplexes given by:
Q̃L(V )q =

∐

n0,...,nq≥0

E (Rnq−1,Rnq)× · · · × E (Rn0 ,Rn1)× Ωn0L(Rn0 ⊕ V ) .Consider the diagram
L(V )y

BE −−−→ Q̃L(V ) −−−→ QL(V )y

BE

.

By lemma 2.3.13 and proposition 1.2.5, there exists a onstant d suh that
Q̃L(Rn) → BE is a (2n + d)-quasi �bration. But BE is ontratible, thereforethe map L(Rn)→ Q̃L(Rn) is (2n+ d− 1)-onneted.The horizontal part is a o�bration sequene. Now we use orollary A.1.8 andthat BE is ontratible to see that

πi(Q̃L(Rn))→ πi(QL(Rn))is an isomorphism for all i.



2.6. THE FIBRANT REPLACEMENT FUNCTOR Q 69Putting things together we see that there exists a onstant c suh that
L(Rn)→ QL(Rn)is (2n+ c)-onneted. And it follows that L→ QL is a π∗-iso. �Remark 2.6.10In the proof above we ompared an unbased homotopy olimit over a topologialategory, Q̃L(V ), with the orresponding based homotopy olimit, QL(V ). Inthe more elementary ase where the ategory is disrete, there is a general resultdue to E. Dror Farjoun that ompares unbased and based homotopy olimits, seeproposition 18.8.4 in [Hir03℄.Lemma 2.6.11If L is o�brant, then the natural map L→ QL is a π∗-iso.Proof: We �rst prove this when L is ellular. By proposition 2.3.12, there existsa sequene L0 → L1 → · · · of orthogonal spetra with olimit L suh that eah

Li is meta-stable and well-pointed, while the maps Li → Li+1 are l-o�brations.Applying Q to this sequene we get
L0 −−−→ L1 −−−→ · · · −−−→ L

≃

y ≃

y
y

QL0 −−−→ QL1 −−−→ · · · −−−→ QL

.The vertial maps Li → QLi are π∗-isomorphism by lemma 2.6.9. Sine bothsequenes onsist of l-o�brations, it follows that L→ QL also is a π∗-iso.For the general ase we use that a o�brant L is a retrat of some L′ whihis ellular. It follows that L→ QL is a retrat of L′ → QL′. Thus L→ QL is a
π∗-iso. �Proposition 2.6.12If L is well-pointed, then the natural map L→ QL is a π∗-iso.Proof: Consider the diagram

ΓL −−−→ QΓLy
y

L −−−→ QL

.



70 CHAPTER 2. ORTHOGONAL SPECTRAThe top map is a π∗-iso by the previous lemma. The left map is a level equivaleneby theorem 2.2.13. Sine Q preserves level equivalenes between well-pointed or-thogonal spetra, lemma 2.6.5, the right map is also a level equivalene. It followsthat the bottom map also is a π∗-iso. �Let Ek be the full subategory of E having objets Rn for n ≥ k. We willompare QL with the homotopy olimit of ΩnL(Rn ⊕ −) over this subategory.Let QkL be the geometri realization of the simpliial orthogonal spetrum whose
q-simplexes are:
Qk

qL(V ) =
∨

n0,...,nq≥k

E (Rn0 ,Rn1)+ ∧ · · · ∧ E (Rnq−1 ,Rnq)+ ∧ Ωn0L(V ⊕ Rn0) .Lemma 2.6.13The inlusion QkL→ QL is a level equivalene for all k.Proof: We will show that the funtor (Rk ⊕ −) : E → Ek indues a map f :
QL → QkL whih is a homotopy inverse to incl. First onsider the omposition
incl ◦f : QL → QL. This map is indued by Rn 7→ Rk ⊕ Rn, onsidered as anendofuntor on E . But we have a natural transformation τ : idE → (Rk ⊕ −)whih inludes Rn as the last n-oordinates of Rk+n. By proposition 1.2.2, whihalso holds in the based ase sine the formulas for the simpliial homotopy stillwork, we get a homotopy between idQL and incl ◦f : QL→ QL indued by τ .The opposite omposition, f ◦ incl is also indued by (Rk ⊕−) onsidered asan endofuntor on Ek, and the same natural transformation gives a homotopy
f ◦ incl ≃ idQkL. �Lemma 2.6.14The lassifying spae BEk is ontratible.Proof: The proof is similar to that of lemma 2.6.8. Notie that also in thisase there are natural transformations from the projetions Ek × Ek → Ek to thediret sum. �Lemma 2.6.15If L is meta-stable and well-pointed, then QL is an Ω-spetrum.Proof: To prove this we have to show that QL(Rn) → ΩQL(Rn+1) is a weakequivalene for all n. Fix n. Observe that by lemma 2.6.13 it is enough to showthat for any λ there is a k suh that

QkL(Rn)→ ΩQkL(Rn+1)



2.6. THE FIBRANT REPLACEMENT FUNCTOR Q 71is λ-onneted.As in the proof of lemma 2.6.9 we have unbased homotopy limits Q̃kL(V )when V is �xed. From the diagram
ΩkL(V ⊕ Rk)y

BEk −−−→ Q̃kL(V ) −−−→ QkL(V )y

BEkwe estimate the onnetivity of the mapΩkL(Rn+k)→ QkL(Rn). By lemma 2.3.13and proposition 1.2.5 and the fat that BEk is ontratible, there exists a onstant
d suh that

ΩkL(Rn+k)→ ˜QkL(Rn)is (2n + k + d)-onneted. Using that the horizontal part is a o�ber sequeneand that BEk is ontratible, it follows by orollary A.1.8 that
˜QkL(Rn)→ QkL(Rn)is a weak equivalene. Thus there exists a d suh that for all n and k the map

ΩkL(Rn+k)→ QkL(Rn)is (2n+ k + d)-onneted. Now inspet the diagram
ΩkL(Rn+k) −−−→ Ωk+1L(Rn+k+1)y

y

QkL(Rn) −−−→ ΩQkL(Rn+1)

.There is a onstant c suh that the map on the top and the two vertial mapsare (2n + k + c)-onneted. Thus we an, by inreasing k, ensure that the mapon the bottom is λ-onneted for any �xed n. �Lemma 2.6.16If L is o�brant, then QL is an Ω-spetrum.Proof: First assume that L is ellular. By proposition 2.3.12, there exists asequene L0 → L1 → · · · with olimit L suh that eah Li is a meta-stable well-pointed orthogonal spetrum, and eah map Li → Li+1 is an l-o�bration. By the



72 CHAPTER 2. ORTHOGONAL SPECTRAproposition above we see that QL is the olimit of a sequene QL0 → QL1 → · · ·of Ω-spetra where the maps are l-o�brations. Now we have
QL(V ) ∼= colim

i
QLi(V )

≃
−→ colim

i
ΩQLi(V ⊕ R) ∼= ΩQL(V ⊕ R) .The map in the middle is a weak equivalene sine eah QLi(V )→ ΩQLi(V ⊕R)is, and both olimits are sequential over unbased losed o�brations. The lastmap is a homeomorphism sine the olimit system is sequential and S1 is ompat.General o�brant L are retrats of some ellular L′. Thus QL is the retrat ofsome Ω-spetrum QL′. But then the map QL(V )→ ΩQL(V ⊕R) is a retrat of

QL′(V )→ ΩQL′(V ⊕R), and the former map must be a weak equivalene sinethe latter already is. �Proposition 2.6.17If L is well-pointed, then QL is an Ω-spetrum.Proof: Consider the level equivalene
QΓL→ QL .Sine ΓL is o�brant, we know that QΓL is an Ω-spetrum. It is an elementaryfat that a well-pointed orthogonal spetrum level equivalent to an Ω-spetrumis itself an Ω-spetrum. �Corollary 2.6.18If f : L → K is a π∗-iso between well-pointed orthogonal spetra, then Qf :

QL→ QK is a level equivalene.Proof: This follows sine a π∗-iso between Ω-spetra is a level equivalene.See [MMSS01℄ lemma 8.11. �We will now desribe the monoidal struture of Q with respet to ∧. To dothis, we �rst de�ne maps of orthogonal spetra
µ : ΩnL(Rn ⊕−) ∧ ΩmK(Rm ⊕−)→ Ωn+m(L ∧K)(Rn+m ⊕−) ,natural for L and K in I S and Rn and Rm in E . We take the external viewpointof the smash produt, and let the map

µ : ΩnL(Rn ⊕ V ) ∧ ΩmK(Rm ⊕W )→ Ωn+m(L ∧K)(Rn+m ⊕ V ⊕W )be given by sending the point represented by α : Sn → L(Rn⊕ V ) and β : Sm →
K(Rm ⊕W ) to the point represented by the omposition
Sn+m α∧β

−−−→ L(Rn⊕V )∧K(Rm⊕W )→ (L∧K)(Rn⊕V ⊕Rm⊕W ) ∼= (L∧K)(Rn+m⊕V ⊕W ) .



2.6. THE FIBRANT REPLACEMENT FUNCTOR Q 73To see that µ is a map of orthogonal spetra, we should hek that it ommuteswith left and right assembly. Let us inspet the ase of the right assembly. Sinethe identity on L ∧K is a spetrum map, the external viewpoint gives that
L(V ) ∧K(W ) ∧ SU −−−→ (L ∧K)(V ⊕W ) ∧ SU

id∧σ

y
yσ

L(V ) ∧K(W ⊕ U) −−−→ (L ∧K)(V ⊕W ⊕ U)ommutes. Using this fat, it is easily heked by hasing that the followingdiagram also ommutes:
ΩnL(Rn ⊕ V ) ∧ ΩmK(Rm ⊕W ) ∧ SU −−−−→ Ωn+m(L ∧K)(Rn+m ⊕ V ⊕W ) ∧ SU

id∧σ

y
yσ

ΩnL(Rn ⊕ V ) ∧ ΩmK(Rm ⊕W ⊕ U) −−−−→ Ωn+m(L ∧K)(Rn+m ⊕ V ⊕W ⊕ U)

.The other ase is done similarly. We onlude that µ is a map of orthogonalspetra.Naturality in E ×E means that the map from ΩnL(Rn⊕V )∧ΩmK(Rm⊕W )indued by linear isometries f : Rn → Rn′ and g : Rm → Rm′ orresponds to themap from Ωn+m(L∧K)(Rn+m⊕ V ⊕W ) indued by f ⊕ g. It is enough to hekthis when g is the identity on Rm. Let d be the odimension of f and α and βas above. It all boils down to the ommutativity of the following diagram:
Sn′+m ∼= Sd ∧ Sn+m

id∧α∧β

y

Sd ∧ L(Rn ⊕ V ) ∧K(Rm ⊕W ) −−−→ Sd ∧ (L ∧K)(Rn ⊕ V ⊕ Rm ⊕W )

σ̄∧id

y
yσ̄

L(Rd ⊕ Rn ⊕ V ) ∧K(Rm ⊕W ) −−−→ (L ∧K)(Rd ⊕Rn ⊕ V ⊕Rm ⊕W )

∼=

y

(L ∧K)(Rn′+m ⊕ V ⊕W )

.

Proposition 2.6.19
µ indues a natural transformation QL∧QK → Q(L∧K) and Q beomes a laxmonoidal funtor with respet to ∧. In addition we have µL,K ◦ (ηL∧ηK) = ηL∧K .Proof: Inspeting the de�nition of Q•L, we see that µ together with diret sum
E (Rn,Rn′

)× E (Rm,Rm′

)→ E (Rn+m,Rn′+m′

) give a simpliial map
Q•L ∧Q•K → Q•(L ∧K) .



74 CHAPTER 2. ORTHOGONAL SPECTRAThe geometri realization gives the natural transformationQL∧QK → Q(L∧K).Assoiativity follows from assoiativity of ⊕ on E and µ on ΩnL(Rn ⊕−).The natural inlusion for the sphere spetrum, ηS : S ⊆ QS, satis�es left andright unity: To see this one observes that µ : ΩnL(Rn ⊕−) ∧ ΩmK(Rm ⊕ −) →
Ωn+m(L∧K)(Rn+m⊕−) is equal to the right assembly if m = 0 and K = S, andequal to the left assembly if n = 0 and L = S. This gives left and right unity for
µ. To get form here to Q we use in addition the unit of E .To hek the last formula of the proposition, we observe that µ = id when
n = m = 0. �Reall from remark 2.6.2 that Q annot be symmetri. However we have:Proposition 2.6.20
Q is skew-symmetri. This means that there is a natural transformation ι : QL→
QL suh that ι2 = id and the diagram

QL ∧QK
ι∧ι
−−−→ QL ∧QK

twist
−−−→ QK ∧QLy

y

Q(L ∧K)
ι

−−−→ Q(L ∧K)
twist
−−−→ Q(K ∧ L)ommutes. Furthermore, ιη = η and ι is level equivalent to the identity when Lis well-pointed.Proof: Let rn : Rn → Rn be the isometries whih reverses the standard basis.Conjugating an isometri embedding Rn → Rm with rn and rm gives a funtor

conj : E → E .Let G denote the funtor E → I S given by Rn 7→ ΩnL(Rn ⊕ −). We nowonstrut a natural transformation ι from G to G ◦ conj by sending a point α in
ΩnL(V ⊕ Rn) to ι(α) de�ned by the ommutativity of

Sn α
−−−→ L(V ⊕Rn)

Srn

y
yL(idV ⊕rn)

Sn ι(α)
−−−→ L(V ⊕Rn)

.This natural transformation gives a map of simpliial spaes:
Q•L

ι
−→ Q•L .Taking the geometri realization we get the natural transformation we are lookingfor. It is easily seen that ι2 = id .



2.6. THE FIBRANT REPLACEMENT FUNCTOR Q 75To get the ommutativity of the main diagram of the proposition, we observethat for maps α : Sn → L(V ⊕ Rn) and β : Sm → K(W ⊕ Rm) we have thattwist ◦ ι(α ∧ β) = ι(β) ∧ ι(α)as maps Sn+m → (K ∧ L)(V ⊕ W ⊕ Rn+m). Here twist is the isomorphism
L ∧K ∼= K ∧ L.To see that ι is level equivalent to the identity, we inspet the diagram

L L

η

y
yη

QL
ι

−−−→ QL

.Commutativity follows sine r0 = id on R0. When L is well-pointed, both vertialmaps are π∗-isomorphisms, so we see that ι indues the identity on homotopygroups. But QL is an Ω-spetrum, therefore it follows that ι also indues theidentity
πqQL(V )→ πqQL(V )for all levels V and q ≥ 0. �Proposition 2.6.21There is a natural map αL,K : QL×QK → Q(L×K), this is a level equivaleneif L and K are well-pointed. With η∗ and α the funtor Q is lax monoidal withrespet to ×.Proof: α is de�ned similarly to µ. Given (β1, β2) ∈ ΩnL(Rn⊕V )×ΩmK(Rm⊕V )we an suspend β1 to a point in Ωn+mL(Rn+m⊕V ) using the inlusion i1 : Rn →

Rn ⊕ Rm = Rn+m and suspend β2 to a point in Ωn+mK(Rn+m ⊕ V ) using theinlusion i2 : Rm → Rn⊕Rm = Rn+m. This gives a point in Ωn+m(L×K)(Rn+m⊕
V ) by the anonial homeomorphism

Ωn+mL(Rn+m ⊕ V )× Ωn+mK(Rn+m ⊕ V ) ∼= Ωn+m(L×K)(Rn+m ⊕ V ) .This natural transformation
ΩnL(Rn ⊕ V )× ΩmK(Rm ⊕ V )→ Ωn+m(L×K)(Rn+m ⊕ V )together with diret sum on E indue the natural map

αL,K : QL×QK → Q(L×K) .This learly satis�es assoiativity and unity with respet to η∗ : ∗ → Q∗.



76 CHAPTER 2. ORTHOGONAL SPECTRAFor all L and K, we have a ommutative diagram
L×K L×K

ηL×ηK

y
yηL×K

QL×QK
αL,K
−−−→ Q(L×K)

.If L and K are well-pointed, then the vertial maps are π∗-isomorphisms. Andit follows that αL,K also is a π∗-iso. But QL × QK and Q(L × K) are both
Ω-spetra, hene αL,K is a level equivalene. �



Chapter 3Equivariane for orthogonal spetraWe now give an exposition of the theory of equivariant orthogonal spetra. Muhof the material presented here an also be found in [MM02℄. However, there aresome new results. The author would like to point out three novelties: We intro-due new types of ells, indued- and orbit- ells, and provide a lax symmetriorbit o�brant replaement funtor Γ̃, see theorem 3.9.1. The seond new resultis a formula for the geometri �xed points of indued G-spetra, see proposi-tion 3.8.10. We also introdue a diagonal map for the iterated smash produts
L∧q of an orthogonal spetrum L, see de�nition 3.10.4. When L is o�brant,the diagonal map is an isomorphism into the geometri �xed points, see proposi-tion 3.10.7.In this hapter G will be a ompat Lie group, but for some arguments werestrit to the ase where G is a �nite, disrete group. Genuine equivarianemeans to allow any G-representation when indexing our spetrum. Naive equiv-ariane means to allow trivial representations only. However, lemma 3.2.1 pro-vides hange of universe funtors, and they are equivalenes of ategories. Hene,there is only one ategory of orthogonal G-spetra. This ategory hasmany model strutures, and these model strutures do depend on the hoie of a
G-universe. So the modi�ers �genuine� and �naive� apply to notions suh as weakequivalenes, ellularity, model strutures, geometri �xed points et.3.1 PreliminariesLet us now introdue the relevant terminology and notation for G-ategories.This material an also be found in hapter II �1 of [MM02℄, but is inluded herefor the onveniene of the reader.A topologial G-ategory is a ategory CG suh that its hom sets CG(C,D) arebased topologial G-spaes, and omposition

◦ : CG(D,E) ∧ CG(C,D)→ CG(C,E)77



78 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAis a ontinuous G-map. We think about the elements of CG(C,D) as the non-equivariant maps C → D, and we all them the arrows of CG. Observe that
idC ∈ CG(C,C) is �xed by the G-ation; this is easily dedued from the fat thatthe omposition ◦ is G-equivariant.Given a topologial G-ategory CG, we an form a topologial ategory GC .This ategory has the same objets, but the hom sets are given by taking G-�xedpoints:

GC (C,D) = CG(C,D)G .Hene GC (C,D) is a based topologial spae, and omposition is ontinuous. Wethink about the elements of GC (C,D) as the G-equivariant maps C → D, andwe all them G-maps.If we ever enounter a situation where the G-spaes of arrows, CG(D,E), aregiven as unbased G-spaes, we impliitly add disjoint G-�xed basepoints.Example 3.1.1We let TopG∗ denote the topologial G-ategory of ompatly generated G-spaes(=weak Hausdor� k-spaes with G-ation) and non-equivariant maps. G ats onthe spae TopG∗(X, Y ) of arrows X → Y by onjugation. Written out expliitly,the element g ∈ G sends a map f : X → Y to the omposition gfg−1. The
G-maps from X to Y are the G-�xed points

GTop∗(X, Y ) = TopG∗(X, Y )G .A ontinuous G-funtor F : CG → DG between topologial G-ategories is afuntor F suh that
F : CG(C,D)→ DG(F (C), F (D))is a ontinuous G-equivariant map of based G-spaes. It follows that F induesa funtor GC → GD .A natural G-transformation α : F1 → F2 between ontinuous G-funtors

CG → DG onsists of G-maps α : F1(C)→ F2(C) for every objet C in CG suhthat the diagrams
F1(C)

F1(f)
−−−→ F1(D)

α

y
yα

F2(C)
F2(f)
−−−→ F2(D)ommute in DG for all f ∈ CG(C,D).Now we begin de�ning orthogonal G-spetra. The �rst thing we have to do isto somehow speify the G-representations we will allow for indexing. We preferthe notion of a good olletion, but one ould also talk about G-universes. Afterthat, we de�ne the topologial G-ategories IG. And IG-spaes will relate toorthogonal G-spetra, just as I-spaes relate to orthogonal spetra.



3.1. PRELIMINARIES 79De�nition 3.1.2Let V be a olletion of �nite dimensional real G-inner produt spaes. We all
V a good olletion if it ontains the trivial representations and is losed underdiret sum. V is alled a very good olletion if it in addition to being a goodolletion, is losed under passage to subrepresentations.A G-universe U is a sum of ountably many opies of eah real G-inner prod-ut spaes in some set of irreduible representations of G that inludes the trivialrepresentation. U is omplete if it ontains all irreduible representations. U istrivial if it ontains only trivial representations. Observe that there is a orre-spondene between very good olletions and universes. Given U one an de�ne aolletion V (U) onsisting of all G-representations isomorphi to a �nite dimen-sional sub G-inner produt spae of U . Given a very good olletion V one anpik one representative for every isomorphism lass of irreduible representationsontained in V . This set of irreduible representations generate a G-universe.De�nition 3.1.3Let V be a good olletion of G-representations. De�ne I V

G to be the (unbased)topologial G-ategory whose objets are those of V and whose arrows (=non-equivariant maps) are the linear isometri isomorphisms. G ats on the spae
I V

G (V,W ) of arrows V → W by onjugation. Let GI V be the topologialategory with the same objets, but with G-maps V → W as morphisms. Wehave
GI V (V,W ) = I V

G (V,W )G .Remark 3.1.4We will usually omit the olletion V from the notation. Thus we write IGinstead of I V
G . Mostly we will be interested in the ase where V = A ℓℓ isthe olletion of all G-representations. The other extreme ase is V = triv, theolletion ontaining only the trivial G-representations. We shall see below thatup to equivalene of ategories the hoie of V does not matter. However, itplays an important role for model strutures on GI S .De�nition 3.1.5An IG-spae is a ontinuous G-funtor X : IG → TopG∗. Let IGTop∗ bethe topologial G-ategory of IG-spaes and arrows the non-equivariant natu-ral transformations X → Y . G ats on IGTop∗(X, Y ) by onjugation. We de�ne

GI Top∗ to be the topologial ategory with the same objets and naturalG-maps
X → Y as morphisms. We have

GI Top∗(X, Y ) = IGTop∗(X, Y )G .It is not obvious how to de�ne a topology on IGTop∗(X, Y ). Here is how todo it. First hoose a skeleton sk IG of IG. (A skeleton sk C for a ategory C isde�ned as a full subategory suh that eah objet in C is isomorphi to a unique



80 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAobjet in sk C .) Observe that sk IG is small. Given IG-spaes X and Y , we anonsider the produt of the funtion spaes F (X(V ), Y (V )) over V ∈ sk IG. Now
IGTop∗(X, Y ) lies as a subset inside∏V ∈skIG

F (X(V ), Y (V )), and we give it thesubspae topology.Here is an example of an IG-spae:Example 3.1.6Let S be the funtor IG → TopG∗ sending the G-representation V to SV , theone-point-ompati�ation of V .We now de�ne orthogonal G-spetra:De�nition 3.1.7An orthogonal G-spetrum L is an IG-spae L together with a natural G-map
σ : L(V )∧SW → L(V ⊕W ) suh that unit and assoiativity diagrams ommute.These diagrams are idential to those found in de�nition 2.1.1. Let IGS denotethe topologial G-ategory of orthogonal G-spetra and arrows f : L → K thatommute with σ. In general f is non-equivariant, and G ats on IGS (L,K) byonjugation. Let GI S be the topologial ategory of orthogonal G-spetra and
G-maps. We have

GI S (L,K) = IGS (L,K)G .Observe that S is an orthogonal G-spetrum. We all S the sphere spetrum.Similar to the desription of orthogonal spetra given by theorem 2.1.16, wenow de�ne topologial G-ategories JG suh that JG-spaes are the same asorthogonal G-spetra. This is also done in hapter II �4 of [MM02℄.De�nition 3.1.8Let V be some good olletion of G-representations. The objets of J V
G are thesame as the objets of I V

G , the �nite dimensional G-representations V ontainedin V . Let E (V,W ) be the G-spae of (non-equivariant) linear isometries V →֒ W .
G ats on E (V,W ) by onjugation. And de�ne E(V,W ) to be the G-spae ofpairs (f, w) where f : V →W is a linear isometry and w ∈W is orthogonal to thelinear subspae f(V ). E(V,W ) is a vetor bundle over E (V,W ), and we de�nethe G-spae of morphisms J V

G (V,W ) to be the Thom spae of E(V,W ). (Firstapply �ber-wise one-point ompati�ation to E(V,W ), then identify the pointsat ∞.) The G-ation on J V
G (V,W ) is expliitly given as follows; an element

g ∈ G sends the pair (f, w) to (gfg−1, g(w)). Composition
◦ : J V

G (W,U) ∧J V
G (V,W )→J V

G (V, U)is de�ned by the formula (h, u) ◦ (f, w) = (h ◦ f, h(w) + u). The identity of Vin J V
G is represented by (idV , 0). Diret sum gives J V

G a symmetri monoidalstruture:
⊕ : J V

G (V,W ) ∧J V
G (V ′,W ′)→J V

G (V ⊕ V,W ⊕W ′)



3.2. CHANGE OF UNIVERSE FUNCTORS 81is de�ned by (f, w)⊕ (f ′, w′) = (f ⊕ f ′, (w,w′)).Observe that when V ⊆W we have the identi�ation:
J V

G (V,W ) ∼= O(W )+ ∧O(W−V ) S
W−V .As usual we let GJ V denote the G-�xed ategory of J V

G . The two ategorieshas the same objets and
GJ V (V,W ) = J V

G (V,W )G .We follow the onvention from remark 3.1.4 and omit the olletion V from thenotation, thus writing JG and GJ .
JG-spaes are de�ned as ontinuous G-funtors JG → TopG∗. We have anexternal smash produt sending a pair of JG-spaes to a JG ×JG-spae. The(internal) smash produt of JG-spaes is given as the left Kan extension along ⊕of the external smash produt. Similar to theorem 2.1.16 we have the followingresult:Theorem 3.1.9The symmetri monoidal ategory of orthogonal G-spetra is isomorphi to thesymmetri monoidal ategory of JG-spaes.This is theorem II.4.3 in [MM02℄. For a proof mimi �23 in [MMSS01℄.3.1.1 Shift desuspension funtorsThe equivariant shift desuspension funtors FV : TopG∗ → IGS are de�ned forall G-representations V . For based G-spaes A, the orthogonal G-spetrum FVAis given at level W by

(FVA)(W ) = JG(V,W ) ∧A .Observe that FV is the left adjoint to evaluation at level V . We have:
IGS (FVA,L) ∼= TopG∗(A,L(V ))for all V , A and L.3.2 Change of universe funtorsReading the de�nition it seems that the ategories IGS and GI S depend onthe hoie of a good olletion V of G-representations. As we soon shall see, up toanonial equivalene of ategories this hoie does not matter. Therefore, it is ourpoint of view that the notion of an orthogonalG-spetrum is well-de�ned, withoutany modi�er determining a hoie of V . �Naive� and �genuine� are examples



82 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAof suh modi�ers. However, these modi�ers will later play an important role,for example when onsidering extra struture on IGS and when onstrutingassoiated funtors.The key lemma is:Lemma 3.2.1Let V ∈ V be a G-representation and n = dim V . For an orthogonal G-spetrum
L the evaluation G-map

IG(Rn, V )+ ∧ L(Rn)→ L(V )indues a G-homeomorphism
α : IG(Rn, V )+ ∧O(n) L(Rn)→ L(V ) .Proof: This is lemma V.1.1 in [MM02℄. The proof is illustrative, so we inludeit here: The evaluation is a G-map sine L is a G-funtor. The O(n)-ation on

IG(Rn, V )+ and L(Rn) ommutes with the G-ation, hene the α is a G-map.Choose any linear isomorphism f : Rn → V . We get the inverse to α by sending
y ∈ L(V ) to the point represented by (f, L(f−1)(y)). �De�nition 3.2.2Let V and V ′ be good olletions of G-representations. We de�ne the G-funtor
ItrivV : I triv

G S → I V
G S by letting

(ItrivV L)(V ) = IG(Rn, V )+ ∧O(n) L(Rn) , where n = dimV .In addition there are forgetful funtors IV ′triv : I V ′

G S → I triv
G S . And we de�ne

IV ′

V as the omposite
I V ′

G S
IV

′triv−−→ I triv
G S

Itriv
V−−→ I V

G S .Theorem 3.2.3
IV ′

V is an isomorphism between the ategories I V ′

G S and I V
G S .Proof: It is enough to hek that ItrivV is an isomorphism of ategories. Itsinverse is the forgetful funtor IVtriv. And by the de�nition of the former it iseasily seen that ItrivV ◦ IVtriv is naturally isomorphi to the identity funtor on

I triv
G S . Lemma 3.2.1 above provides a natural isomorphism

IVtriv ◦ ItrivV
∼= id .This �nishes the proof. �



3.3. NOTIONS OF EQUIVALENCE 833.3 Notions of equivaleneUnlike the ategory of orthogonal spetra, I S , where we onsidered just twonotions of equivalene, namely level equivalenes and π∗-isomorphisms, we willin the equivariant ase de�ne many di�erent lasses of weak equivalenes. Thereason for this phenomenon is three hoies in�uening our de�nition. These arethe hoie of level-wise versus stable,the hoie of a family F of subgroups of G, andthe hoie of a good olletion V of G-representations.Of ourse, not all possible sets of hoies are equally interesting. We shall pointout a few interesting examples. Often one has a partiular appliation of thetheory in mind when onsidering a notion of equivalene. For example, we willde�ne ylotomi π∗-isomorphisms below, in order to study THH and TC oforthogonal ring spetra (with involution) in hapter 5.A family of subgroups of G is de�ned as a olletion F of H ⊆ G losed underpassage to onjugates and subgroups.Let us begin by onsidering the level-wise ases.De�nition 3.3.1Let f : L→ K be a map of orthogonal G-spetra. We say that f is a level-wise
(F ,V )-equivalene if for every H ∈ F and V ∈ V the map

L(V )H → K(V )His a weak equivalene of topologial spaes.We now de�ne homotopy groups. In non-equivariant homotopy theory wehave one homotopy group for every q ∈ Z, whereas in equivariant homotopytheory we index our homotopy groups by an integer q and a subgroup H of G.For orthogonal G-spetra the homotopy groups also depend on the hoie of agood olletion V .De�nition 3.3.2Let U be a G-universe assoiated to V . The homotopy groups are de�ned by
πH

q L =

{
colimV⊂U πq(Ω

V L(V ))H if q ≥ 0, and
colimRq⊆V⊂U π0(Ω

V−Rq

L(V ))H if q ≤ 0.Remark 3.3.3Observe that for �xed H the homotopy group πH
q L does not really depend onwhih G-representations V ontains, but rather on the H-representations appear-ing as the restrition of some V in V . To see this, assume that φ : V →W is an
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H-linear isometri isometry. The diagram

SV f
−−−→ L(V )

φ∗

y∼= ∼=

yL(φ)

SW g
−−−→ L(W )gives a homeomorphism between the (non-equivariant) spaes (ΩVL(V )

)H and(
ΩVL(V )

)H , de�ned by sending f to the unique g making the diagram ommute.Stable notions of equivalene are now de�ned as follows:De�nition 3.3.4Let f : L→ K be a map of orthogonal G-spetra. We say that f is an (F ,V )-
π∗-isomorphism if for every H ∈ F and q ∈ Z the map

πH
q L→ πH

q Kis an isomorphism.We now have overwhelmingly many notions of equivalene for orthogonal G-spetra. Let us now give names to the extreme ases and some other interestingexamples.De�nition 3.3.5The naive level-equivalenes are the level-wise (A ℓℓ, triv)-equivalenes, the gen-uine level-equivalenes are the level-wise (A ℓℓ,A ℓℓ)-equivalenes, the naive π∗-isomorphisms are the (A ℓℓ, triv)-π∗-isomorphism, and the genuine π∗-isomorphismsare the (A ℓℓ,A ℓℓ)-π∗-isomorphism.Here the familyA ℓℓ is the olletion of all subgroups ofG, triv is the olletionof the trivial G-representations, and the good olletion A ℓℓ is the olletion ofall G-representations.Remark 3.3.6Clearly every genuine level-equivalene is a naive level-equivalene. Furthermoregenuine π∗-isomorphisms are naive π∗-isomorphisms by theorem V.1.7 in [MM02℄.Beause of lemma 3.2.1 it is tempting to think that the onverse statements alsomust be true. However this is not the ase. The reason in the level-ase, isthat the H-�xed points of IG(Rn, V )+ ∧O(n) L(Rn) is generally not equal to
IG(Rn, V )+ ∧O(n) L(Rn)H .If the Lie group G is S1 or O(2) we de�ne:De�nition 3.3.7Let F be the family of �nite yli subgroups of S1. The ylotomi π∗-isomorphismsare the (F ,A ℓℓ)-π∗-isomorphisms.



3.4. CELLULAR ORTHOGONAL G-SPECTRA 85By the inlusion S1 ⊂ O(2), the family F is also a family of subgroups of
O(2).

Ω-spetra in the equivariant setting are given as follows:De�nition 3.3.8An orthogonal G-spetrum L is an Ω-G-spetrum if all maps
L(V )H →

(
ΩWL(V ⊕W )

)Hare weak equivalenes of spaes. Here V and W are G-representations, and H alosed subgroup of G.3.4 Cellular orthogonal G-spetraIn this setion we reall the notion of an F V IG-ell from [MM02℄, we also introduenew types of ells, namely indued G-ells and orbit G-ells.De�nition 3.4.1Given a good olletion V of G-representations. Choose a skeleton sk I V
G for

I V
G . The F V IG-ells is the set of all maps

FV

(
Sn−1 ×G/H

)
+
→ FV

(
Dn−1 ×G/H

)
+

,where n ≥ 0, V ∈ sk IG and H is a losed subgroup of G.The two extreme ases are:De�nition 3.4.2The naive FIG-ells are the F trivIG-ells; we allow only trivial G-representations
V . The genuine FIG-ells are the FA ℓℓIG-ells; we allow all G-representations.Remark 3.4.3To what degree does the equivariant struture of the orthogonal G-spetrum
FV (Dn ×G/H)+ depend on the representation V ?Assume that H is trivial. Choose a (non-equivariant) isometri isomorphism
φ : Rm → V . Evaluating FV (Dn ×G)+ at some level W we get

JG(V,W ) ∧ (Dn ×G)+ .Represent a point by a triple (f, x, g). We have a map into JG(Rm,W )∧ (Dn×
G)+ given by sending (f, x, g) to (fgφ, x, g). And it is easily heked that thismap is a G-map. Hene we have a G-isomorphism of orthogonal G-spetra

FV (Dn ×G)+
∼= FRm(Dn ×G)+ .Now assume that H is non-trivial. Whenever we have an H-linear isometriisomorphism φ : U → V , then FV (Dn×G)+ and FU(Dn×G)+ are G-isomorphi.



86 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAThe isomorphism is de�ned by sending (f, x, [g]) to (fgφg−1, x, [g]). The H-linearity of φ ensures that this map does not depend on hoie of g representingthe lass [g] ∈ G/H .Up to G-isomorphism, the orthogonal G-spetrum FV (Dn ×G/H)+ dependsonly on V as an H-representation.In our appliations we will need even more general ells. Therefore we de�ne:De�nition 3.4.4For any losed subgroup H of G, let A ℓℓH be the olletion of all �nite dimen-sional H-representations. Choose skeletons sk I A ℓℓH

H for all I A ℓℓH

H . De�ne theset of indued G-ells to be the set IndG FI of all maps
(
FV S

n−1
+

)
∧H G+ →

(
FVD

n
+

)
∧H G+ ,where n ≥ 0, H is a losed subgroup of G, and V is a �nite dimensional H-representation in sk I VH

H .The funtor − ∧H G+ assigns to an H-spae its indued G-spae. It alsotakes orthogonal H-spetra to orthogonal G-spetra. For preise de�nitions seesetion 3.8 below.Remark 3.4.5If V is the restrition of a G-representation, then (FVD
n
+

)
∧H G+

∼= FV (Dn
+ ∧

G/H+). This shows that all genuine FIG-ells are indued G-ells.In order to get a symmetri o�brant replaement funtor we will onsider aneven nastier kind of ells. In this ase we restrit ourselves to �nite G. The ellsare de�ned as follows:De�nition 3.4.6Let H be any �nite group, and let VH be the olletion of all �nite dimensional
H-representations. Choose skeletons sk I VH

H for all I VH

H . De�ne the set of orbit
G-ells to be the set OrbG FI of all maps

(
FV S

n−1
+ ∧G+

)
/H →

(
FVD

n
+ ∧G+

)
/H ,where n ≥ 0, V is a �nite dimensional H-representation in sk I VH

H , H atstrivially on Sn−1 and Dn, and the ation of H on G is given via a group homo-morphism H → G.Remark 3.4.7If H is a subgroup of G ating on G via the inlusion, then we have the followingidenti�ation: (
FVD

n
+ ∧G+

)
/H ∼=

(
FVD

n
+

)
∧H G+ .Thus we see that any indued G-ell is an orbit G-ell.



3.4. CELLULAR ORTHOGONAL G-SPECTRA 87In order to bring things more down to earth, we will now write out expliitlywhat an orbit G-ell looks like at some level W .Example 3.4.8Let φ : H → G denote the group homomorphism. Let W be a G-representation.We are now going to evaluate FVD
n
+ ∧ G+ at level W and speify the G and Hations. By de�nition of the shift desuspension we have

(
FVD

n
+ ∧G+

)
(W ) = J (V,W ) ∧Dn

+ ∧G+ .Reall that a non-basepoint in J (V,W ) onsists of an isometri embedding
f : V → W and a w ∈ W orthogonal to f . Thus a tuple (f, w, x, g) represents apoint in the spae above. An h ∈ H gives an isometry h : V → V , and h sends fto the omposition fh−1. Via φ the element h ats on g by sending g to gφ(h).Dividing out by H we see that

(fh−1, w, x, g) and (f, w, x, gφ(h))are identi�ed in (FVD
n
+ ∧G+

)
/H(W ). Furthermore, on this spae we have anation of G. Let γ be an element in G. It ats from the left by sending (f, w, x, g)to (γf, γ(w), x, γg).This example also shows the reason for the name �orbit G-ell�. Contrary toall other types of ells, the ation of O(W ) on the W 'th level of the orbit ell isnot neessarily free. And non-free ations have more than one type of orbits.Remark 3.4.9Notie the following redundany in the de�nition of the orbitG-ell (FVD

n
+ ∧G+

)
/H :If there is a kernel K of the map H → G×O(V ), then we have the identi�ation

(
FVD

n
+ ∧G+

)
/H ∼=

(
FVD

n
+ ∧G+

)
/J ,where J is the quotient H/K.Example 3.4.10Consider the orbit G-ells when G is the trivial group. They have the form

(
FV S

n−1
+

)
/H →

(
FVD

n
+

)
/H .If V is a non-trivial H-representation, then this orbit ell is not isomorphi toany FI-ell.Now we are ready to de�ne the various types of relative G-equivariant ellularmaps.De�nition 3.4.11Let K be either the set of F V IG-ells for some good olletion, the set of indued

G-ells, or the set of orbit G-ells. A map i : A → L of orthogonal G-spetra isrelative K-ellular if:
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i(A) is a sub-G-spetrum of L.There is a set C of sub-G-spetra Lα suh that eah Lα ontains i(A) and⋃

α∈C Lα = L.
C is partially ordered by inlusion. We write β ≤ α if Lβ ⊆ Lα. And forall α the set Pα = {β ∈ C | β < α} is �nite.For every α ∈ C there is pushout diagram with G-equivariant maps:

∂E
i

−−−→ Ey
y

⋃
β<α Lβ −−−→ Lα

,where ∂E i
−→ E is a ell in K.Corresponding to the di�erent kinds of relative ellular maps we have q-o�brations. The naive q-o�brations are the retrats of relative FItrivG -ellularmaps, the genuine q-o�brations are the retrats of relative FIA ℓℓ

G -ellular maps,the indued q-o�brations are the retrats of relative IndG FI-ellular maps, andthe orbit q-o�brations are the retrats of relative OrbG FI-ellular maps.Remark 3.4.12Observe that naive q-o�brations are genuine q-o�brations, that genuine q-o�brations are indued q-o�brations, and that indued q-o�brations are orbitq-o�brations. All these kinds of q-o�brations are both l- and h-o�brations.3.5 Model strutures on GI SA justi�ed question is what ombinations of o�brations and equivalenes givemodel strutures on GI S . In this subsetion we shall brie�y omment this byrealling some results from [MM02℄. But �rst we reall the notion of a ompatlygenerated model ategory, see de�nition 5.9 in [MMSS01℄:Roughly speaking a model ategory A is ompatly generated if there existsets of maps I and J in A , whih an be used in the small objet argument, andsuh that the �brations in A are the maps whih satisfy the right lifting propertywith respet to all maps in J and the ayli �brations are the maps whih satisfythe right lifting property with respet to all maps in I. The maps in I are alledthe generating o�brations and the maps in J are alled the generating aylio�brations.Here are our model ategories:



3.6. CATEGORICAL FIXED POINTS 89The naive level-wise model struture on GI S has naive level-equivalenesas weak equivalenes and naive q-o�brations as o�brations. See theo-rem III.2.4 in [MM02℄.The genuine level-wise model struture onGI S has genuine level-equivalenesas weak equivalenes and genuine q-o�brations as o�brations. Again seetheorem III.2.4 in [MM02℄.The naive stable model struture on GI S has naive π∗-isomorphismsas weak equivalenes and naive q-o�brations as o�brations. See theo-rem III.4.2 in [MM02℄.The genuine stable model struture on GI S has genuine π∗-isomorphismsas weak equivalenes and genuine q-o�brations as o�brations. The �brantobjets are the Ω-G-spetra. Again see theorem III.4.2 in [MM02℄.Let F be a family of subgroups of G. The stable F -model struture has
(F ,A ℓℓ)-π∗-isomorphisms as weak equivalenes. The generating o�bra-tions are those genuine G-ells FV (Dn × G/H)+ where H ∈ F . See theo-rem IV.6.5 in [MM02℄.In partiular there is a stable ylotomi model struture on orthogonal S1-andO(2)-spetra. The weak equivalenes are the ylotomi π∗-isomorphisms,and the o�brations are onstruted allowing only the ells FV (Dn×G/H)+where H ⊂ S1 (⊂ O(2)) is �nite yli.All these model strutures are ompatly generated.Remark 3.5.1Indued G-ells and orbit G-ells are introdued in this thesis. And it is beyondthe sope of this work to �nd model strutures on GI S where the o�bra-tions are generated by these lasses of ells. However, if suh model struturesexist, they probably have better properties. For the ase with orbit G-ells,theorem 3.9.1 gives a hint about this.3.6 Categorial �xed pointsLet H be a losed subgroup of G. In this setion we will desribe how to takethe H-�xed points of an orthogonal G-spetrum. The basi properties of thisonstrution is given in proposition 3.6.2. We will also de�ne the notion of a freeorthogonal G-spetrum, and state some elementary observations.De�nition 3.6.1Assume that L is an orthogonal G-spetrum and N a losed normal subgroup of

G. Let J be the quotient G/N . The ategorial N-�xed point spetrum LN is



90 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAgiven by
LN(Rn) = L(Rn)N ,for trivial representations Rn. Clearly LN is an orthogonal spetrum. Notiethat LN has a J-ation. By the appropriate hange of universe funtor we de�ne

LN (V ) for any J-representation V . Thus LN is an orthogonal J-spetrum.More generally we ould de�ne LH for any losed subgroup H of G by �rstrestriting L to an orthogonal NH-spetrum. Here NH denotes the normalizerof H in G. Taking the H-�xed point spetrum LH we get an orthogonal WH =
NH/H-spetrum.Again let N be a losed normal subgroup of G, and let ǫ : G→ J = G/N bethe quotient map. We shall now speify a right adjoint ǫ∗ to the funtor (−)N .Given an orthogonal J-spetrum K, we de�ne the orthogonal G-spetrum ǫ∗Kby giving K(Rn) the N-trivial G-ation. We have

(ǫ∗K)(Rn) = ǫ∗(K(Rn)) .We extend (ǫ∗K)(V ) to all G-representations V by the appropriate hange ofuniverse funtor.The main properties of the ategorial �xed points an now be summarizedin the following proposition:Proposition 3.6.2Let L be an orthogonal G-spetrum and K an orthogonal J-spetrum. There isa natural isomorphism
GI S (ǫ∗K,L) ∼= JI S (K,LN) .Furthermore, if V is a G-representation and A a based G-spae, then we havethat

(FVA)N =

{
FV (AN ) if V is an N-trivial G-representation, and
∗ otherwise.The funtor (−)N preserves naive and genuine q-o�brations, it also preservesayli naive q-o�brations, but not ayli genuine q-o�brations.For a proof see the propositions V.3.5 and V.3.10 in [MM02℄.We now de�ne what a free orthogonal G-spetrum is:De�nition 3.6.3Assume that L is an orthogonal G-spetrum. We say that L is free if L(V )H = ∗for all non-trivial losed subgroups H of G and all G-representations V .



3.6. CATEGORICAL FIXED POINTS 91Observe that if L is free, then the ategorial H-�xed point spetrum LH istrivial for all H 6= {1}. However, the onverse of this statement is not true. Itis possible for an orthogonal G-spetrum to have L(Rm)H = ∗ for all Rm and
H 6= {1}, but L(V )H 6= ∗ for some non-trivial G-representation V and H 6= {1}.For examples of suh L, onsider the orbit G-ells.Remark 3.6.4We now make some elementary observations: Let L be an orthogonalG-spetrum.Assume that L is both free and naive FIG-ellular. Then all ells ourringare of the form FRm(Dn ×G)+.Assume that L is both free and genuine FIG-ellular. The all ells ourringare of the form FV (Dn ×G)+, where V is some G-representation, but dueto remark 3.4.3 it an always be assumed that V is trivial. Hene, L isatually naive FIG-ellular.Assume that L is both free and IndG FI-ellular. An indued ell (FVD

n
+

)
∧H

G+ have non-trivial H �xed points, so unless H is trivial L annot be free.Reall that V was an H-representation. Thus V = Rm for some m sine
H = {1}. Hene, all ells of L are of the form FRm(Dn ×G)+. This showsthat L atually is naive FIG-ellular.Assume that L is both free and OrbG FI-ellular. Then group homomor-phism H → G of a ell in L must be trivial, and all ells an thus be writtenas (

FVD
n
+ ∧G+

)
/H ∼=

(
FVD

n
+

)
/H ∧G+for some H-representation V .We end this setion by a simple, but important observation.Proposition 3.6.5If f : L→ K is a naive level-equivalene between free orthogonal G-spetra, then

f is also a genuine level-equivalene.Proof: Let V be a G-representation and H a subgroup of G. We must hekthat fH : L(V )H → K(V )H is a weak equivalene of spaes. There are twoases to onsider. Assume �rst that H is the trivial group. Sine f is a naivelevel-equivalene, the map
L(V )H = L(V ) ∼= L(Rm)

f
−→ K(Rm) ∼= K(V ) = K(V )His a weak equivalene of spaes. Here m = dimV , and the identi�ations L(V ) ∼=

L(Rm) and K(V ) ∼= K(Rm) are non-equivariant.



92 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAThe other ase is when H is non-trivial. Then by freeness, both L(V )H and
K(V )H are equal to the trivial orthogonal spetrum ∗. Thus it is a tautologythat

fH : L(V )H → K(V )His a weak equivalene of spaes. �3.7 Geometrial �xed pointsWe now de�ne the geometri �xed point funtor, and give the relevant results.This funtor ertainly depends on the hoie of a olletion V ofG-representations.In fat, if V = triv, then the geometri �xed points are equal to the ategorial�xed points. However, we are going to use the onvention that for the purposeof taking geometri �xed points if not otherwise spei�ed, then V is understoodto be the olletion A ℓℓ of all G-representations.We follow the exposition given in hapter V �4 of [MM02℄ losely, and beginwith some ategorial preliminaries.Let E denote the short exat sequene,
0→ N → G

ǫ
−→ J → 0 ,of Lie groups. Here N is a losed normal subgroup of G. We now de�ne atopologial J-ategory JE as follows: The objets are the G-representations Vontained in our olletion V . The morphisms from V to W are the N-�xedpoints of JG(V,W ). This means that a non-basepoint arrow of JE(V,W ) anbe represented by a pair (f, w), where f is an N-linear isometry V → W and wis a point in WN orthogonal to f(V N). Observe that JE = GJ when N = G,

JE = JG when N is trivial, and JE = J triv
J when V = triv.Let φ : JE → JJ denote the J-funtor whih sends the G-representation

V to the J-representation V N , and the arrow (f, w) ∈ JE(V,W ) to (fN , w) ∈
JJ(V N ,WN). We think about φ as the N -�xed point funtor.Let ν : JJ → JE be the J-funtor whih sends the J-representation V tothe G-representation ǫ∗V , and the arrow (f, w) ∈ JJ(V,W ) maps to (f, w) ∈
JE(ǫ∗V, ǫ∗W ). We think about ν as the pullbak along ǫ : G→ J .Observe that φ ◦ ν = id : JJ →JJ .De�nition 3.7.1Let JETop∗ denote the ategory of JE-spaes, namely ontinuous J-funtors
JE → TopJ∗. The funtors φ and ν indue forgetful funtors denoted by

Uφ : JJTop∗ →JETop∗ and Uν : JETop∗ →JJTop∗respetively. Left Kan extension along φ and ν gives prolongation funtors
Pφ : JETop∗ →JJTop∗ and Pν : JJTop∗ →JETop∗



3.8. INDUCED ORTHOGONAL G-SPECTRA 93left adjoint to Uφ and Uν respetively. We have Uν ◦ Uφ = id and Pφ ◦ Pν
∼= id .De�nition 3.7.2Let FixN : JGTop∗ →JETop∗ be the funtor sending an orthogonalG-spetrum

L to the JE-spae FixN L given by
(FixN L)(V ) = L(V )Nand with evaluation J-maps

(FixN L)(V )∧JE(V,W ) = L(V )N∧JG(V,W )N evN

−−→ L(W )N = (FixN L)(W ) .Here the maps ev : L(V ) ∧JG(V,W ) → L(W ) are the evaluation G-map of
L. De�ne the geometri �xed point funtor ΦN : JGTop∗ → JJTop∗ to be theomposition Pφ ◦ FixN .Constrution 3.7.3There is a natural J-map from the ategorial �xed points to the geometrial �xedpoints. This map LN → ΦNL is de�ned as follows: Observe that LN = Uν FixN L.The adjuntion between Uφ and Pφ has a unit η : id → Uφ ◦Pφ. And the natural
J-map above is onstruted as the omposition

LN = Uν FixN L
Uνη
−−→ UνUφPφ FixN L = Pφ FixN L = ΦNL .In order to ompute with the geometri �xed points we have the followingproposition:Proposition 3.7.4For a G-representation V in V and a based G-spae A, we have

ΦN (FVA) ∼= FV NAN .Furthermore, if K is the pushout of B ← A
i
−→ L in the ategory of orthogonal G-spetra and i is a losed inlusion, then ΦNK is the pushout of ΦNB ← ΦNA→

ΦNL. The funtor ΦN preserves q-o�brations and ayli q-o�brations.For a proof see proposition V.4.5 in [MM02℄.3.8 Indued orthogonal G-spetraIn this setion we will de�ne the notion of an indued G-spetrum, see de�ni-tion 3.8.4. The main topi is to study the geometri �xed points of indued
G-spetra. Our main result is proposition 3.8.10. There is an annoying onditionin this proposition, but so far no ounterexample has been found.



94 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRA3.8.1 Basi fats about indued G-spaesLet H be a subgroup of G, and N a normal subgroup of G whih is ontained in
H . All subgroups are losed, and i : H → G denotes the inlusion. We will �rstde�ne orthogonal G-spetra indued from orthogonal H-spetra. To do this weneed some basi fats about equivariant spaes.The setup for the groups ourring in this subsetion an be expressed by twoshort exat sequenes. We have

0 −−−→ N −−−→ H −−−→ J0 −−−→ 0

=

y i

y
yi1

0 −−−→ N −−−→ G −−−→ J −−−→ 0

.We denote the �rst sequene by E0 and the seond sequene by E. Let j : E0 → Ebe the map of sequenes given by the diagram above.Assume that X is a based G-spae and Y a based H-spae. By forgettingpart of the G-ation on X we get the H-spae i∗X. Observe that i∗ is a funtorfrom based G-spae to based H-spaes. This funtor has both a left and a rightadjoint. The right adjoint of i∗ is the oindued G-spae, and is given by theformula FH(G+, Y ), where FH denotes the spae of based H-maps. However, wewill not meet oindued G-spaes in this thesis. Therefore we do not write outthis side of the theory. The left adjoint is de�ned by sending Y to the based
G-spae

Y ∧H G+ .This is the quotient spae of Y ∧G+ where (hy, g) is identi�ed with (y, gh) for all
h ∈ H . An element γ ∈ G sends (y, g) to (y, γg). We all Y ∧H G+ the indued
G-spae.A basi lemma for indued spaes is:Lemma 3.8.1Giving smash produts the diagonal ation, there is a natural G-homeomorphism

X ∧ (Y ∧H G+) ∼= (i∗X ∧ Y ) ∧H G+ .In partiular, X ∧ (G/H)+
∼= (i∗X) ∧H G+.Proof: A point (x; y, g) inX∧(Y ∧HG+) is sent to (g−1x, y; g) in (i∗X∧Y )∧HG+.

�We will now see how the N-�xed point funtor ommutes with the induedspae funtor. Reall that J = G/N and J0 = H/N . Note that XN is a J-spaeand Y N is a J0-spae. We have:



3.8. INDUCED ORTHOGONAL G-SPECTRA 95Lemma 3.8.2There is a natural J-homeomorphism
(Y ∧H G+)N ∼= Y N ∧J0 J+ .Proof: We onstrut map both ways and end the proof by observing that theyare inverses to eah other. Assume that (y, g) is a point in (Y ∧H G+)N . For all

n ∈ N we have
(y, g) = (y, ng) = (y, gn′) = (n′y, g) ,where n′ = g−1ng ∈ N . Thus y = n′y. Sine onjugating with g is anautomorphism of N , we see that y is an N-�xed point. We therefore send

(y, g) ∈ (Y ∧H G+)N to (y, [g]) ∈ Y N ∧J0 J+.Given a point (y, [g]) in Y N ∧J0 J+, we hoose an element g ∈ G representingthe lass [g] ∈ J = G/N . We laim that the map sending (y, [g]) to (y, g) ∈
(Y ∧H G+)N is well-de�ned. Suppose that g′ ∈ G was another hoie of elementrepresenting [g], then

(y, g′) = (y, gg−1g′) = (g−1g′y, g) = (y, g) .The last equality follows sine g−1g′ ∈ N and y ∈ Y N . Obviously, the two mapsare inverses to eah other. �3.8.2 �Change� funtors for equivariant orthogonal spetraand JE-spaesNow onsider the ase of equivariant orthogonal spetra. First we de�ne thehange of group funtor, then we look at its adjoints and at last we determinehow the left adjoint, the indued spetra, interat with the geometri �xed pointfuntors. The inlusion i : H → G indues a hange of group funtor fromorthogonal G-spetra to orthogonal H-spetra. Assume that K is an orthogonal
G-spetrum, and L an orthogonal H-spetrum.De�nition 3.8.3The hange of group funtor is de�ned by letting i∗K be the orthogonal H-spetrum given by (i∗K)(i∗V ) = i∗K(V ) for G-representations V . We extend
i∗K to H-representations W not of the form i∗V , by the hange of universefuntor.The right adjoint of i∗, the oindued orthogonal G-spetrum funtor, is de-�ned at level V as FH(G+, L)(V ) = FH(G+, L(i∗V )), where FH is the spae ofbased H-maps. For further details, see proposition V.2.4 in [MM02℄.We now look at indued orthogonal G-spetra. The de�nition an be foundin proposition V.2.3 in [MM02℄, but we inlude it here for the onveniene of thereader.



96 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRADe�nition 3.8.4The indued orthogonal G-spetrum, L ∧H G+, is given by (L ∧H G+)(V ) =
L(i∗V ) ∧H G+ for G-representations V .How to de�ne the evaluation H-maps will be disussed below in the moregeneral setting of indued JE spaes. See remark 3.8.9.Let us now build the theory for �hange� funtors for JE-spaes. Unlikethe ase of equivariant orthogonal spetra, the hange of universe funtors willnot always be equivalenes of ategories. This subtle di�erene fores us to beextremely areful regarding universes. We begin with an example:Example 3.8.5A key ingredient in the proof of lemma 3.2.1, was that for any good olletion Vof G-representations and any V ∈ V , there is a trivial G-representation Rn suhthat Rn and V were isomorphi in the ategory J V

G . The analogous statementfor JE is in general not true:Let E be the sequene 0 → C2 → S1 → S1/C2 → 0, and let V be theolletion of all S1-representations. Identify S1 with the unit irle in C andonsider the representation C, where S1 ats by multipliation. Any C2-linearisometry from a trivial S1-representation Rn into C must map C2-�xed pointsonto C2-�xed points. Sine CC2 = 0, there is no isomorphism in J V
E between Cand some trivial representation.Therefore, the forgetful funtor from J V

E -spaes to J triv
E -spaes annot bean isomorphism of ategories.De�nition 3.8.6Let E be a short exat sequene of ompat Lie groups. Assume that V ⊆ V ′are two good olletions of G-representations. Then we have a forgetful funtor

U : J V ′

E Top∗ → J V
E Top∗. By left Kan extension, we de�ne a prolongationfuntor

P : J V
E Top∗ →J V ′

E Top∗left adjoint to U. These are the hange of universe funtors for JE-spaes.Let us now look at the hange of sequene. As above we onsider a diagram
0 −−−→ N −−−→ H −−−→ J0 −−−→ 0

=

y i

y
yi1

0 −−−→ N −−−→ G −−−→ J −−−→ 0

.This diagram is a map j : E0 → E of short exat sequenes. Let V be a goodolletion of G-representations. Now let i∗V be de�ned as the olletion of H-representations i∗V , whih are the restrition of some V ∈ V . And we de�ne:



3.8. INDUCED ORTHOGONAL G-SPECTRA 97De�nition 3.8.7The hange of sequene funtor
j∗ : J V

E Top∗ →J i∗V
E0
Top∗is given by sending the J V

E -spae X to the J i∗V
E0

-spae given by
(j∗X)(i∗V ) = i∗1X(V )for H-representations i∗V being the restrition of a G-representation V in V .The hange of group funtor for equivariant orthogonal spetra had both leftand right adjoints. These were the indued and oindued spetra. Analogouslywe now de�ne indued and oindued JE-spaes. Sine the oindued JE-spaes will not be used later in the thesis, we only sketh the de�nition: Given a

J i∗V
E0

-spae Y we let the oindued J V
E -spae FJ0(J+, Y ) be given by

FJ0(J+, Y )(V ) = FJ0(J+, Y (i∗V )) .The indued JE-spaes are de�ned as follows:De�nition 3.8.8Let Y be a J i∗V
E0

-spae, then the indued J V
E -spae Y ∧J0 J+ is given by

(Y ∧J0 J+)(V ) = Y (i∗V ) ∧J0 J+for G-representations V in V . The evaluation J-maps are given by
J V

E (V,W ) ∧ (Y ∧J0 J+)(V ) = JG(V,W )N ∧ (Y (i∗V ) ∧J0 J+)

∼=
(
i∗1JG(V,W )N ∧ Y (i∗V )

)
∧J0 J+

∼=
(
JH(i∗V, i∗W )N ∧ Y (i∗V )

)
∧J0 J+

→ Y (i∗W ) ∧J0 J+ = (Y ∧J0 J+)(W )for G-representations V and W in V .Here we have used the G-homeomorphism X ∧ (Y ∧H G+) ∼= (i∗X ∧Y )∧H G+from lemma 3.8.1, and the evaluation JE0(i
∗V, i∗W )∧Y (i∗V )→ Y (i∗W ) for the

J i∗V
E0

-spae Y .Remark 3.8.9If N is trivial, then JE = JG. Hene, the last part of the de�nition above tellsus how to de�ne the evaluation G-maps for the indued orthogonal G-spetrumfuntor.



98 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRA3.8.3 Geometri �xed points and indued spetraWe will now onsider how the geometri N-�xed point funtors interat withindued orthogonal G-spetra. In order to prove the result we have to make anassumption relating representations of N and G. The author has not found anyounterexample to the ondition.As before we onsider the diagram
0 −−−→ N −−−→ H −−−→ J0 −−−→ 0

=

y i

y
yi1

0 −−−→ N −−−→ G −−−→ J −−−→ 0

.

E0 is the �rst short exat sequene and E the seond. Let j : E0 → E be themap of sequenes given by the diagram.Proposition 3.8.10Let j : E0 → E be as above. Suppose that for any N-representation W thereexists a G-representation V and an N-linear isometri embedding W → V suhthatWN = V N . Then for orthogonalH-spetra L there is a natural isomorphism
(ΦNL) ∧J0 J+

∼= ΦN(L ∧H G+) .Remark 3.8.11It is enough to hek the assumption for non-trivial irreduible N-representations
W . The ondition ertainly holds whenever the quotient group J = G/N is �nite.Beause in this ase one an take V to be the indued G-representation of W .If one �xes the ompat Lie group G, one an try to list normal subgroupsand their representations and then hek expliitly if the ondition holds. Tohek that the assumption holds in the ases G = S1 and G = O(2), is an easyexerise left to the reader.The proof of the proposition is to hek ommutativity of the following dia-gram:

JHTop∗
FixN

−−−→ J W
E0
Top∗

Pφ0−−−→ JJ0Top∗

=

y U

y
y=

JHTop∗ J i∗V
E0
Top∗

Pi∗V

φ0−−−→ JJ0Top∗

−∧HG+

y −∧J0
J+

y
y−∧J0

J+

JGTop∗
FixN

−−−→ J V
E Top∗

Pφ
−−−→ JJTop∗

.

Here V denotes the olletion of all G-representations, while W are all H-representations. We have not spei�ed universes for the ategories of orthogonal
H-, G-, J0- and J-spetra. This is sine the hange of universe is an isomorphism



3.8. INDUCED ORTHOGONAL G-SPECTRA 99for these ases, and we an hange universe whenever needed. The funtors FixNare de�ned with respet to genuine equivariane. Similarly, the prolongationfuntors Pφ0 and Pφ, given in de�nition 3.7.1, use all representations. However,the prolongation funtor Pi∗V
φ0

is de�ned using only those representations beingrestritions from J and G.We prove three lemmas, eah heking ommutativity of one of the squares.Let us start with the hardest:Lemma 3.8.12Suppose that for any N-representation W there exists a G-representation V andan N-linear isometri embedding W → V suh that WN = V N . Let Y be a
J W

E0
-spae. Then we have a natural isomorphism

Pi∗V
φ0

UY ∼= Pφ0Y .Proof: Sine Pi∗V
φ0

and Pφ0 are left adjoints, while U is a right adjoint, the proofof this lemma annot be abstrat ategory theory. By hange of universe fororthogonal J0-spetra it is enough to hek that we have a natural isomorphismwhen evaluating at the trivial J0-representations Rn. We begin by writing outboth sides evaluated at Rn expliitly. We have
(
Pi∗V

φ0
UY
)
(Rn) =

∫ i∗V ∈i∗V

JJ0((i
∗V )N ,Rn) ∧ Y (i∗V )and

(Pφ0Y ) (Rn) =

∫ W∈W

JJ0(W
N ,Rn) ∧ Y (W ) .Reall that i∗V are theH-representations of the form i∗V for someG-representation

V , while W are all H-representations. Sine i∗V ⊂ W , we learly have a naturalmap
Pi∗V

φ0
UY → Pφ0Y .Now we show that this map is surjetive. Pik a point in (Pφ0Y )(Rn). It is repre-sented by a pair ((f, u), y) in JJ0(W

N ,Rn)∧Y (W ) for someH-representationW .By the assumption, we an hoose aG-representation V together with anN-linearisometri embedding g : W → V suh thatWN ∼= V N . What we have is an arrow
(g, 0) in JE0(W, i

∗V ). This arrow is a relation in (Pφ0Y )(Rn) between the pointwe piked and the point ((f(gN)−1, u), (g, 0)(y)) in JJ0((i
∗V )N ,Rn) ∧ Y (i∗V ).This new point is in the image of (Pi∗V

φ0
UY )(Rn).To show injetivity we onsider a generating relation in (Pφ0Y )(Rn) between

((f1, u1), y1) in JJ0(W
N
1 ,R

n)∧Y (W1) and ((f2, u2), y2) in JJ0(W
N
2 ,R

n)∧Y (W2).By the argument above we an hoose liftings of these points to (Pi∗V
φ0

UY )(Rn).And the proof is ompleted by showing that the lifted points are related in
(Pi∗V

φ0
UY )(Rn).



100 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAA generating relation in (Pφ0Y )(Rn) is spei�ed by a triple
((f, u), (h, w), y) ∈JJ0(W

N
2 ,R

n) ∧JE0(W1,W2) ∧ Y (W1) .Here f : WN
2 → Rn is an isometri embedding, u a point in Rn orthogonalto f(WN

2 ), h : W1 → W2 an N-linear isometri embedding, w a point in WN
2orthogonal to h(WN

1 ) and y a point in Y (W1). This generating relation identi�esthe point
((f1, u1), y1) =

(
(fhN , u+ f(w)), y

) in JJ0(W
N
1 ,R

n) ∧ Y (W1)and
((f2, u2), y2) = ((f, u), (h, w)(y)) in JJ0(W

N
2 ,R

n) ∧ Y (W2) .Liftings of these points to (Pi∗V
φ0

UY )(Rn) are given by G-representations V1 and
V2, and N-linear isometri embeddings g1 : W1 → V1 and g2 : W2 → V2 suh that
WN

1 = V N
1 and WN

2 = V N
2 . The lifting of the �rst point is given by

(
(f1(g

N
1 )−1, u1), (g1, 0)(y1)

) in JJ0((i
∗V1)

N ,Rn) ∧ Y (i∗V1)and similarly for the seond point. Unfortunately, we annot automatially om-plete the diagram
W1

h
−−−→ W2

g1

y
yg2

V1 V2by an arrow at the bottom. However, we an form the H-representation i∗V1⊕W1

i∗V2, and by the assumption there exists a G-representation V together with an
N-linear isometri embedding i∗V1⊕W1 i

∗V2 → V , suh that their N-�xed pointsagree. Now we have N -linear isometri embeddings h1 : V1 → V and h2 : V2 → V .Putting these maps into the diagram above we get a ommutative pentagon. Alsoobserve that V N = V N
2 = WN

2 . Thus we have the arrow (h2, 0) in JE0(i
∗V2, i

∗V )and the arrow (h1, w) in JE0(i
∗V1, i

∗V ).By (h2, 0) we have a relation in (Pi∗V
φ0

UY )(Rn) between the seond lifting,
(
(f2(g

N
2 )−1, u2), (g2, 0)(y2)

) in JJ0((i
∗V2)

N ,Rn) ∧ Y (i∗V2) ,and
(
(f2(g

N
2 )−1(hN

2 )−1, u2), (h2, 0)(g2, 0)(y2)
) in JJ0((i

∗V )N ,Rn) ∧ Y (i∗V ) .Now look at the generating relation in (Pi∗V
φ0

UY )(Rn) spei�ed by
(
(f2(g

N
2 )−1(hN

2 )−1, u2), (h1, w), (g1, 0)(y1)
)in JJ0((i

∗V )N ,Rn) ∧JE0(i
∗V1, i

∗V ) ∧ Y (i∗V1) .



3.8. INDUCED ORTHOGONAL G-SPECTRA 101This relation identi�es
(
(f2(g

N
2 )−1(hN

2 )−1hN
1 , u2 + f2(g

N
2 )−1(hN

2 )−1(w)), (g1, 0)(y1)
)

=
(
(f1(g

N
1 )−1, u1), (g1, 0)(y1)

)in JJ0((i
∗V1)

N ,Rn) ∧ Y (i∗V1) with
(
(f2(g

N
2 )−1(hN

2 )−1, u2), (h1, w)(g1, 0)(y1)
)

=
(
(f2(g

N
2 )−1(hN

2 )−1, u2), (h2, 0)(g2, 0)(y2)
)in JJ0((i

∗V )N ,Rn)∧Y (i∗V ). Thus we have a relation in (Pi∗V
φ0

UY )(Rn) betweenthe two lifted points. This ompletes the proof of the lemma. �The two other lemmas are easy:Lemma 3.8.13Let L be an orthogonal H-spetrum. We have a natural isomorphism
(U FixN L) ∧J0 J+

∼= FixN(L ∧H G+)of J V
E -spaes.Proof: Let V be a G-representation. We evaluate both sides of the naturalisomorphism at V . The left side at level V beomes:

(
(U FixN L) ∧J0 J+

)
(V ) = (FixN L)(i∗V ) ∧J0 J+

= L(i∗V )N ∧J0 J+ .And the right side at level V beomes:
FixN(L ∧H G+)(V ) = ((L ∧H G+)(V ))N

= (L(i∗V ) ∧H G+)N .From lemma 3.8.2 we reall the natural homeomorphism (Y ∧HG+)N ∼= Y N∧J0J+for H-spaes Y . Setting Y = L(i∗V ) we get
(
(U FixN L) ∧J0 J+

)
(V ) ∼= FixN (L ∧H G+)(V ) .To hek the fat that the evaluation J-mapsJE(V,W )∧

(
(U FixN L) ∧J0 J+

)
(V )→(

(U FixN L) ∧J0 J+

)
(W ) and JE(V,W ) ∧ FixN(L ∧H G+)(V ) → FixN(L ∧H

G+)(W ) agree is left as an exerise to the reader. �



102 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRALemma 3.8.14The diagram
J i∗V

E0
Top∗

Pi∗V

φ0−−−→ JJ0Top∗

−∧J0
J+

y
y−∧J0

J+

J V
E Top∗

Pφ
−−−→ JJTop∗ommutes.Proof: It is enough to hek ommutativity of the orresponding diagram ofright adjoints:

J i∗V
E0
Top∗

Ui∗V

φ0←−−− JJ0Top∗

j∗
x

xi∗1

J V
E Top∗

Uφ
←−−− JJTop∗

.Let L be an orthogonal J-spetrum and V a G-representation. Now ompare
Ui∗V

φ0
i∗1L and j∗UφL at the level i∗V . We have:

(Ui∗V
φ0
i∗1L)(i∗V ) = (i∗1L)

(
(i∗V )N

)

= (i∗1L)
(
i∗1(V

N)
)

= i∗1
(
L(V N)

)

= i∗1 ((UφL)(V ))

= (j∗UφL)(i∗V ) .Again we leave to the reader to hek that the evaluation J0-maps agree. �Together the three lemmas above prove proposition 3.8.10.3.9 A symmetri o�brant replaement funtorIn this setion we mainly work with non-equivariant orthogonal spetra. Reallthe de�nition of the o�brant replaement funtor Γ, see theorem 2.2.13. Dueto lemma 2.2.19 there are two obstrutions to symmetry of Γ. The obstrutionsare that the twists of the disks, Dn1 × Dn2 ∼= Dn2 × Dn1, and the twists of theindexing spaes, Rm1 ⊕ Rm2 ∼= Rm2 ⊕ Rm1 , are not the identity maps. If we areontent with getting orbit ells instead of naive ells, then we an divide out bythese twists when performing the small objet argument. We will explain this indetail below, thus onstruting a symmetri funtor Γ̃. The setion ends with asubsetion ontaining various results onerning this funtor and equivariane.Our theorem says:



3.9. A SYMMETRIC COFIBRANT REPLACEMENT FUNCTOR 103Theorem 3.9.1There is an endofuntor Γ̃ on orthogonal spetra having the following properties:
Γ̃L is orbit o�brant for all L.If K → L is the inlusion of a subspetrum, then Γ̃K → Γ̃L is an orbitq-o�bration.
Γ̃ omes with a natural level-wise ayli �bration Γ̃L→ L.There is a natural quotient map ΓL→ Γ̃L.There is a symmetri natural transformation φ : Γ̃L∧ Γ̃K → Γ̃(L∧K) anda anonial map S → Γ̃S.To prove this, we begin with the onstrution of Γ̃:Constrution 3.9.2We modify the small objet argument. The basi step is to introdue a newgluing onstrution.Suppose that p : A→ L is a map of orthogonal spetra. Let Cn,m be the setof all diagrams

FRmSn−1
+

FRm in
−−−−→ FRmDn

+

f

y
yg

A
p

−−−→ L

.Reall that the orthogonal spetrum G(p) was de�ned as the pushout of
A

f
←−
∨

FRmSn−1
+

FRm in
−−−→

∨
FRmDn

+ ,where the wedge runs over all diagrams in Cn,m with n,m ≥ 0.Reall from remark 2.2.2 that Σn and Σm both at on a ell FRmSn−1
+ →

FRmDn
+ in Cn,m. A permutation σ ∈ Σn gives a map σ : Dn → Dn, and σ ats ondiagrams α of Cn,m by omposing fα and gα with F (σ). A permutation ρ ∈ Σmgives an isometry ρ : Rm → Rm, and ρ ats on diagrams α of Cn,m by omposing

fα and gα with Fρ. Altogether we get an ation of Σn × Σm on Gn,m(p). Divideout by this ation and de�ne G̃(p) as the union over all quotients:
G̃(p) =

⋃

n,m

Gn,m(p)/Σn × Σm .Now we proeed as before and de�ne Γ̃L by iterating the gluing onstrution
G̃(p). Start with ∗ p0

−→ L, de�ne G̃1(L) = G̃(p0), and let p1 be the anonial map
G̃1(L)→ L. Indutively we get Gi−1(L) ⊆ G̃i = G̃(pi−1)

pi−→ L.



104 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRADe�nition 3.9.3The orbit o�brant replaement funtor Γ̃ is de�ned for L ∈ I S as the olimitof the G̃i(L)'s.We now begin to prove the statements in theorem 3.9.1. As a �rst result wejustify the name �orbit o�brant replaement funtor� by showing:Proposition 3.9.4
Γ̃L is orbit o�brant for any orthogonal spetrum L.Proof: It is enough to onsider the natural inlusion j of gluing onstrution
A

j
−→ G̃(p), and show that this map is a relative orbit q-o�bration.Let α be a ell in Cn,m. There is a subgroup Hα of Σn × Σm of symmetries�xing the diagram

FRmSn−1
+

FRm in
−−−−→ FRmDn

+

f

y
yg

A
p

−−−→ Lorresponding to α. Observe that G̃(p) also an be desribed as the pushout of
A

f
←−
∨

α

(
FRmSn−1

+

)
/Hα →

∨

α

(
FRmDn

+

)
/Hα ,where α runs through one representative for every Σn×Σm orbit of Cn,m, n,m ≥ 0.By Illman's theorem [Ill83℄ we may triangulate FRmDn

+ evaluated at Rm as a �nite
O(m)×Hα-CW-omplex. All O(m)-orbits are free. Divide out by the Hα-ation.This desribes (FRmSn−1

+

)
/Hα →

∨
α

(
FRmDn

+

)
/Hα as a relative orbit ellularmap. Hene A j

−→ G̃(p) is also relative orbit ellular. �Sine G̃(p) is a quotient of G(p) it follows that Γ̃L is a quotient of ΓL. Theanonial map S → Γ̃S is onstruted just as before. To prove the next twostatements of the theorem, namely that Γ̃ takes inlusions to orbit q-o�brations,and that the natural map Γ̃L → L is a level-wise ayli �bration, we just opythe proofs of the propositions 2.2.16 and 2.2.17 respetively.What now remains is to de�ne the natural map φ : Γ̃L ∧ Γ̃K → Γ̃(L ∧ K),and show that it is symmetri.Constrution 3.9.5The onstrution is similar to onstrution 2.2.18. We inspet the G̃i(L)'s andthe G̃j(K)'s and de�ne indutively maps
φi,j : G̃i(L) ∧ G̃j(K)→ G̃i+j−1(L ∧K)



3.9. A SYMMETRIC COFIBRANT REPLACEMENT FUNCTOR 105suh that diagrams similar to those in onstrution 2.2.18 ommute. By takingthe olimit as both i and j tend to in�nity, we get our natural transformation
Γ̃L ∧ Γ̃K → Γ̃(L ∧K).We proeed by indution on i + j. Assume that α and β are the ells givenby the diagrams

FRmSn−1
+ −−−→ FRmDn

+

f

y
yg

Gi−1(L) −−−→ L

and FRm′Sn′−1
+ −−−→ FRm′Dn′

+

f ′

y
yg′

Gj−1(K) −−−→ K

.By the onstrution of G̃i(L) and G̃j(K) there are unique lifts of α and β todiagrams ᾱ and β̄:
FRmSn−1

+ −−−→ FRmDn
+

f

y
yḡ

G̃i−1(L) −−−→ G̃i(L)

and FRm′Sn′−1
+ −−−→ FRm′Dn′

+

f ′

y
yḡ′

G̃j−1(K) −−−→ G̃j(K)

.As in the old onstrution, we see that ᾱ�β̄ together with the map
G̃i−1(L) ∧ G̃j(K) ∪ G̃i(L) ∧ G̃j−1(K)

φi−1,j∪φi,j−1
−−−−−−−−→ G̃i+j−2(L ∧K)determines a ell δ in Gi+j−1(L ∧ K). Let Hα be the subgroup of Σn × Σmthat preserves α, Hβ the analogous subgroup for β, and Hδ the subgroup of

Σn+n′×Σm+m′ that preserves δ. Now observe thatHα∐Hβ then must be ontainedin Hδ. This ensures that all relations in G̃i(L) ∧ G̃j(K) also give relations in
G̃i+j−1(L ∧K). Hene, φi,j is well-de�ned.We �nish the proof of theorem 3.9.1 by showing:Proposition 3.9.6The natural transformation φ : Γ̃L ∧ Γ̃K → Γ̃(L ∧K) is symmetri.Proof: Comparing Γ with Γ̃ we see that there is a ommutative diagram

ΓL ∧ ΓK
φ

−−−→ Γ(L ∧K)y
y

Γ̃L ∧ Γ̃K
φ

−−−→ Γ̃(L ∧K)

,where the vertial maps are quotient maps. Proposition 2.2.21 says that Γ isskew-symmetri, with ι : ΓL → ΓL measuring the failure of symmetry. Reallthat ι was de�ned by �ipping both the disks Dn and the indexing spaes Rm



106 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAof the ells in ΓL. Similarly we an de�ne ι for Γ̃L. And the proof of propo-sition 2.2.21 works also in this ase, and yields that Γ̃ is skew-symmetri. Butwhen onstrution Γ̃ we divided out by all permutations of oordinates on both
Dn and Rm. This shows that ι = id for Γ̃L. Hene, symmetry follows. �

3.9.1 Equivariant features of Γ and Γ̃For orthogonal G-spetra we have de�ned many di�erent notions of o�brany.In eah ase one ould ask for a o�brant replaement funtor. For the ategoryof orthogonal spetra we onstruted suh a funtor Γ in theorem 2.2.13. We alsohave the orbit o�brant replaement funtor Γ̃ de�ned above. It seems unlikelythat these funtors an be used in the equivariant setting, but by some mirale
ΓL and Γ̃L are naive o�brant and orbit o�brant respetively, and the naturalmaps ΓL→ L and Γ̃L→ L are naive level-equivalenes. The author thinks it isunlikely that these maps are genuine level-equivalenes.In order to apply the funtors Γ and Γ̃ to orthogonal G-spetra, we assumethat G is a �nite and disrete group. By indexing our orthogonal G-spetra Lby trivial representations only, we see that suh L are the same as orthogonalspetra with G-ation, i.e. funtors G → I S . Hene applying Γ or Γ̃ to Lyields a new orthogonal spetrum with G-ation. We an ask whether or not ΓLand Γ̃L are o�brant (for one of the G-equivariant notions of o�brany).We disuss the funtor Γ �rst. And we have:Proposition 3.9.7Assume that G is a �nite group. Let L be an orthogonal G-spetrum, then ΓLis naive G-ellular.Proof: By indution it is enough to onsider the gluing onstrution. Supposethat p : A→ L is a G-equivariant map between orthogonal G-spetra. We mustonstrut a relative FIG-ellular struture on A→ G(p).Reall that C denotes the set of all diagrams

FRmSn−1
+ −−−→ FRmDn

+y
y

A
p

−−−→ L

,where n,m ≥ 0. Let α be a diagram in C, and let Hα be the subgroup of Gonsisting of those elements g whih preserve the ell α. We an now desribe



3.9. A SYMMETRIC COFIBRANT REPLACEMENT FUNCTOR 107the gluing onstrution G(p) equivariantly by the pushout diagram
∨
FRmSn−1

+ ∧ (G/Hα)+ −−−→
∨
FRmDn

+ ∧ (G/Hα)+y
y

A −−−→ G(p)

,where the wedge runs through one representative α for eah G-orbit in C. Thisimplies that A→ G(p) is a relative naive FIG-ellular map. �Lemma 3.9.8Let L be an orthogonal G-spetrum and H a subgroup of G, then
(ΓL)H(Rm) = Γ(LH)(Rm) ,for all Rm.Proof: To see this we inspet the gluing onstrution for a map p : A→ L. Let

α be a diagram in C. The result follows from the observation that the diagram
FRmSn−1

+ −−−→ FRmDn
+

f

y
yg

A
p

−−−→ Lis �xed by H if and only if f and g map into AH and LH respetively. �Corollary 3.9.9Let L be an orthogonal G-spetrum. The map ΓL → L indues a weak equiva-lene
(ΓL)H(Rm)→ LH(Rm)for all Rm and H . Consequently, the map ΓL → L is a naive G-equivariantlevel-equivalene.This orollary says that Γ is a o�brant replaement funtor for the naivemodel struture on GI S . But in general a naive level-equivalene is not agenuine level-equivalene, see remark 3.3.6.We now turn to the ase of the orbit o�brant replaement funtor Γ̃, andshow orresponding results:Proposition 3.9.10Assume that G is a �nite group. Let L be an orthogonal G-spetrum, then Γ̃Lis orbit G-ellular.



108 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAProof: It is enough to onsider the gluing onstrution G̃(p) for a G-equivariantmap p : A→ L between orthogonal G-spetra, and we must onstrut a relative
OrbG FI-ellular struture on A→ G̃(p).Reall that for �xed n and m, the set Cn,m onsists of all non-trivial diagrams

FRmSn−1
+ −−−→ FRmDn

+y
y

A
p

−−−→ L

.Observe that the group G×Σn ×Σm ats on C ′n,m. Let α be a diagram in C ′n,m,and let Hα be the subgroup of G×Σn×Σm onsisting of those elements (g, σ, ρ)whih preserve the ell α. We an now desribe the gluing onstrution G̃(p)equivariantly by the pushout diagram
∨(

FRmSn−1
+ ∧G+

)
/Hα −−−→

∨(
FRmDn

+ ∧G+

)
/Hαy

y

A −−−→ G̃(p)

,where the wedge runs through all n and m and one representative α for eah
G× Σn × Σm-orbit in C ′n,m.We now appeal to Illman's theorem [Ill83℄ in order to show that eah map

(
FRmSn−1

+ ∧G+

)
/Hα →

(
FRmDn

+ ∧G+

)
/Hαis relative OrbG FI-ellular. To see this onsider (FRmDn

+ ∧G+

)
(Rm) as an

(O(m)×Hα)-spae and triangulate to desribe it as an (O(m)×Hα)-CW-omplex.Dividing by Hα we get that the map above is orbit G-ellular. This implies that
A→ G̃(p) is a relative OrbG FI-ellular map. And the result follows. �We have:Proposition 3.9.11For all orthogonal G-spetra L the map Γ̃L→ L is a naive level-equivalene.Proof: It is enough to show that for all G-equivariant diagrams

(Sn−1 ×G/H)+ −−−→ Γ̃L(Rm)y
y

(Dn ×G/H)+ −−−→ L(Rm)



3.10. THE DIAGONAL MAP 109there is a lift (Dn × G/H)+ → Γ̃L(Rm). Sine Sn−1 is ompat and G �nite,the map on the top fators through some G̃i(L)(Rm). Restriting the left side tosome element of G/H we now get the diagram
Sn−1

+ −−−→ G̃i(L)(Rm)y
y

Dn
+ −−−→ L(Rm)

.Observe that the ation of H preserves this diagram. And by onstrution of
G̃i+1(L) we ertainly have a lift Dn

+ → G̃i+1(L)(Rm). This lift is H-equivariant.Now a basi adjuntion gives a G-equivariant lift
(Dn ×G/H)+ → G̃i+1(L)(Rm) ⊂ Γ̃L(Rm)solving the �rst lifting problem. �This proposition shows that Γ̃ is an orbit o�brant replaement funtor forthe naive G-equivariant model struture on GI S .3.10 The diagonal mapWe onsider the diagonal map in two ases, without and with involution. Foran FI-ellular orthogonal spetra L (without involution), we desribe a Cq-equivariant ell struture on the iterated smash produt L∧q. This uses theindued ells, see de�nition 3.4.4. After this we onstrut the diagonal map

L∧q → ΦCr(L∧rq). It is de�ned for arbitrary L, but if L is o�brant, then thediagonal map is an isomorphism. The proof uses the equivariant ell struture.In the seond subsetion, we repeat this for orthogonal spetra L with invo-lution. Reall that D2q denotes the dihedral group of order 2q. In the involutivease the diagonal map L∧q → ΦCr(L∧rq) is D2q-equivariant, and an isomorphismwhen L is genuine Z/2-equivariantly o�brant.3.10.1 Without involutionLet L be an orthogonal spetrum. Consider the iterated smash produt L∧q.Sine ∧ is symmetri, we get a Σq ation on L∧q by permuting fators. In ourappliations we will only onsider ations of yli groups, so for simpliity werestrit our attention to the ation of Cq on L∧q.Now assume that L is FI-ellular. The following result desribes an indued
Cq-ellular struture on L∧q:



110 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAProposition 3.10.1Let C be the partially ordered set of ells for an FI-ellular orthogonal spetrum
L. The q-fold produt C×q has a Cq ation, and let D be the set of Cq-orbits.The Cq-equivariant struture on L∧q is given as follows:For eah [α] inD there is a subspetrum (L∧q)[α] of L∧q, and⋃[α]∈D(L∧q)[α] =

L∧q.
D is partially ordered by inlusion. We write [β] ≤ [α] if (L∧q)[β] ⊆ (L∧q)[α].And for all [α] the set P[α] = {[β] ∈ D | [β] < [α]} is �nite.For every [α] ∈ D there is pushout diagram with Cq-equivariant maps:

(
FRmsSns−1

+

)
∧Cs

(Cq)+ −−−→
(
FRmsDns

+

)
∧Cs

(Cq)+y
y

⋃
[β]<[α](L

∧q)[β] −−−→ (L∧q)[α]

,where Cs is a subgroup of Cq, and Cs ats on Rms, Sns−1 and Dns bypermuting the oordinates.Moreover, eah (FRmsSns−1
+

)
∧Cs

(Cq)+ →
(
FRmsDns

+

)
∧Cs

(Cq)+ an be subdi-vided as a relative IndCqFI-ellular map. Hene, L∧q is an indued o�brantorthogonal Cq-spetrum.Proof: Reall from proposition 2.2.12 that L∧q has an FI-ellular struturewith C×q as its set of ells. An α = (α1, . . . , αq) ∈ C×q represents an orbit [α]in D and we de�ne (L∧q)[α] to be
⋃

ρ∈Cq

Lαρ(1)
∧ · · · ∧ Lαρ(q)

.Clearly, ⋃[α]∈D(L∧q)[α] = L∧q.Assume that (L∧q)[β] ⊆ (L∧q)[α] for someα = (α1, . . . , αq) and β = (β1, . . . , βq).Then eah Lβi
must be ontained in some Lαj

. Sine there are only �nitely many
δ ∈ C suh that Lδ ⊂ Lαj

, it follows that eah P[α] is �nite.Consider some α = (α1, . . . , αq) in C×q, and let Cs be the subgroup of Cqating trivially on α. To be more expliit: Let s be the greatest integer dividing
q, where t = q

s
, suh that αi = αj whenever i ≡ j modulo t. We now see that Csats trivially on the q-tuple (α1, . . . , αq). By the FI-ellular struture on L thereis a pushout diagram

FRmiS
ni−1
+ −−−→ FRmiD

ni
+y

y
⋃

β<αi
Lβ −−−→ Lαi



3.10. THE DIAGONAL MAP 111for every αi. Smashing these diagrams together, as in lemma 2.2.11, we get apushout diagram
FRm1+···+mqS

n1+···+nq−1
+ −−−→ FRm1+···+mqD

n1+···+nq

+y
y

⋃
β<αLβ1 ∧ · · · ∧ Lβq

−−−→ Lα1 ∧ · · · ∧ Lαq

,where the maps are Cs-equivariant. Cq ats on suh diagrams, and taking theunion over all diagrams in the Cq-orbit of our α, we get a pushout diagram
(
FRm1+···+mqS

n1+···+nq−1
+

)
∧Cs

(Cq)+ −−−→
(
FRm1+···+mqD

n1+···+nq

+

)
∧Cs

(Cq)+
y

y
⋃

[β]<[α](L
∧q)[β] −−−→ (L∧q)[α]

.Sine mi = mj and ni = nj whenever i ≡ j modulo t, we see that Cs atson Rm1+···+mq , Sn1+···+nq−1 and Dn1+···+nq by permuting oordinates. Now put
m = m1 + · · ·+mt and n = n1 + · · ·+ nt.The last statement of the proposition follows by applying Illman's equivarianttriangulation theorem for �nite groups, see [Ill78℄, to produe a Cs-triangulationof Dns. �Remark 3.10.2Assume that S → L is a relative FI-ellular map. Reall the notation sL∧q−1 forthe subspetrum

S ∧ L∧q−1 ∪ L ∧ S ∧ L∧q−2 ∪ · · · ∪ L∧q−1 ∧ S ⊆ L∧q .The proposition above immediately gives a Cq-equivariant desription of sL∧q−1.It is the sub-Cq-spetrum of L∧q built using only those [α] in D with at least one
αi equal to the ell of S.Next we onstrut the diagonal map. Let L be any orthogonal spetrum.As above the q-fold smash produt L∧q is an orthogonal Cq-spetrum via theation that ylially permutes the fators. Similarly L∧rq is an orthogonal Crq-spetrum. The diagonal will be a map L∧q → ΦCr(L∧rq). This exists for allpositive numbers r and q.Constrution 3.10.3Let E be the short exat sequene 0→ Cr → Crq → Cq → 0. Reall the de�nitionof the ategory JE. Let i : J reg

E →JE be the full subategory whose objetsare diret sums of regular Crq-representations. For an inner produt spae U , wehave that U⊕rq is an objet of J reg
E . First we onstrut a Cq-map

L∧q(U⊕q)→ FixCr(L∧rq)(U⊕rq) .



112 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAUsing oends we an express the smash produt L∧q(U⊕q) as
∫ d1,...,dq

J (Rd1 ⊕ · · · ⊕ Rdq , U⊕q) ∧ L(Rd1) ∧ · · · ∧ L(Rdq) .A point in this spae is given by (f, u; x1, . . . , xq), where f : Rd1 ⊕ · · ·Rdq → U⊕qis an isometri embedding, u is a point in U⊕q orthogonal to f , and xi lies in
L(Rdi). To desribe the Cq-ation, we let a : U⊕q → U⊕q be the map whihsends (u1, . . . , uq) to (uq, u1, . . . , uq−1), and we de�ne b : Rd1 ⊕ · · · ⊕ Rdq →
Rdq ⊕ Rd1 ⊕ · · · ⊕ Rdq−1 similarly. The preferred generator of Cq then ats bysending

(f, u; x1, . . . , xq) to (afb−1, au; xq, x1, . . . , xq−1) .Analogously, we have that L∧rq(U⊕rq) is equal to the oend
∫ d1,...,drq

J (Rd1 ⊕ · · · ⊕ Rdrq , U⊕rq) ∧ L(Rd1) ∧ · · · ∧ L(Rdrq) .To de�ne the diagonal map, take a point
(f, u; x1, . . . , xq) in J (Rd1 ⊕ · · · ⊕ Rdq , U⊕q) ∧ L(Rd1) ∧ · · · ∧ L(Rdq)and map it to

(
f⊕r, (u, . . . , u); (x1, . . . , xq), (x1, . . . , xq), . . . , (x1, . . . , xq)

)in
J ((Rd1 ⊕· · ·⊕Rdq )⊕· · ·⊕ (Rd1 ⊕· · ·⊕Rdq ), U⊕rq)∧ (L(Rd1 )∧ · · ·∧L(Rdq ))∧ · · ·∧ (L(Rd1 )∧ · · ·∧L(Rdq )) .We easily see that the image is a Cr-�xed point, and that the diagonal map is
Cq-equivariant. The Cq-map, as onstruted above, an be rewritten as a naturaltransformation

UiUφL
∧q → Ui FixCr(L∧rq)of J reg

E -spaes, where Ui is the forgetful funtor from J reg
E -spaes to JE-spaes,and Uφ denotes the funtor given in the de�nition of geometrial �xed points, seede�nition 3.7.1. By left Kan extension, we have a left adjoint Pi to Ui, and theounit of this adjuntion is a natural transformation PiUi → id . Reall that Pφdenotes the left adjoint to Uφ.De�nition 3.10.4The diagonal map L∧q → ΦCr(L∧rq) is de�ned as the omposition

L∧q → PφPiUi FixCr(L∧rq)→ Pφ FixCr(L∧rq) = ΦCr(L∧rq) ,where the �rst map omes from the onstrution above, and the seond map isindued by the ounit PiUi → id .



3.10. THE DIAGONAL MAP 113Remark 3.10.5Assume that S → L is the inlusion of a subspetrum. Considering the restritionof the diagonal map to sL∧q−1, we get a diagram
sL∧q−1 −−−→ ΦCr

(srL∧rq−r)

⊆

y
y⊆

L∧q −−−→ ΦCr(L∧rq)

,where srL∧rq−r is the subspetrum of L∧rq given as
srL∧rq−r =

⋃

i

L∧i−1 ∧ S ∧ L∧q−1 ∧ S ∧ L∧q−1 ∧ S ∧ · · · ∧ S ∧ L∧q−i .The existene of this diagram follows from inspetion of the onstrution.Example 3.10.6Let us inspet the diagonal map in the ase L = FVA. Then
L∧q = FV ⊕q(A∧q) and L∧rq = FV ⊕rq(A∧rq) .Computing the geometri Cr-�xed points of the last orthogonal spetrum, we getby the formula in proposition 3.7.4 that

ΦCr(L∧rq) = F(V ⊕rq)Cr (A∧rq)Cr = FV ⊕q(A∧q) = L∧q .Inspeting de�nitions, we see that the diagonal map is an isomorphism in thisase.More generally we have:Proposition 3.10.7If L is a o�brant orthogonal spetrum, then the diagonal map L∧q → ΦCr(L∧rq)is a Cq-equivariant isomorphism.It is enough to prove the result in the ase where L is FI-ellular. Themain idea is to use the equivariant desription of the iterated produts, given inproposition 3.10.1. But in order to apply this desription we have to omputethe geometri �xed points of indued ells.Lemma 3.10.8Let H be a subgroup and N a normal subgroup of a ompat Lie group G.Suppose that for any N-representation W there exists a G-representation U andan N-linear isometri embedding W → U suh that WN = UN . Assume that Vis an H-representation and A a based H-spae. Then we have:
ΦN ((FVA) ∧H G+) ∼=





(FV NAN ) ∧J0 J+

if N is a subgroup of Hwith J0 = H/N , J = G/N , and
∗ otherwise.



114 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAProof: Assume �rst that N is ontained in H . Then proposition 3.8.10 applies,and we have
ΦN ((FVA) ∧H G+) ∼=

(
ΦN (FVA)

)
∧J0 J+ .Furthermore, proposition 3.7.4 yields that

(
ΦN (FVA)

)
∧J0 J+

∼= (FV NAN) ∧J0 J+ .Next assume that N is not ontained in H . The following is an elementaryfat: If X is a based H-spae, then the indued G-spae, X ∧H G+, has no non-trivial N-�xed points. It follows that FixN ((FVA) ∧H G+) = ∗. Consequently,also ΦN ((FVA) ∧H G+) = ∗. �By remark 3.8.11 the ondition is always true for �nite G. We are now readyto prove the proposition:Proof: Let L be an FI-ellular orthogonal spetrum with ells C. We now applyproposition 3.10.1. Let D be the Cq-orbits of C×q and let D′ be the Crq-orbits of
C×rq. Let ǫ∗ be the map C×q → C×rq given by

ǫ∗(α1, α2, . . . , αq) = (α1, α2, . . . , αq, α1, α2, . . . , αq, . . . , α1, α2, . . . , αq) .The q-tuple (α1, α2, . . . , αq) is repeated r times. Passing to orbits we get a map
ǫ∗ : D → D′.Now we laim that:

ΦCr(L∧rq) =
⋃

[β]∈D

ΦCr(L∧rq)[ǫ∗β] .To prove this laim, we show by indution on the number of elements in P[α] that
ΦCr(L∧rq)[α] =

⋃

[ǫ∗β]<[α]

ΦCr(L∧rq)[ǫ∗β] .There are two ases to onsider when proving the indution step: If [α] = [ǫ∗β]for some [β] in D, then the indution hypothesis is trivially true. The other aseis when [α] is not of the form [ǫ∗β] for any [β] in D. We onsider the diagram
⋃

[δ]<[α]

ΦCr(L∧rq)[δ] ←ΦCr
(
(FRmsSns−1

+ ) ∧Cs
(Crq)+

)
→ΦCr

(
(FRmsDns

+ ) ∧Cs
(Crq)+

)

=

y
y=

y=

⋃
[ǫ∗β]<[α]

ΦCr(L∧rq)[ǫ∗β]← ∗ → ∗

.The left vertial map is an equality by indution. Sine [α] is not of the form
[ǫ∗β], if follows that Cr is not a subgroup of Cs, and hene lemma 3.10.8 implies



3.10. THE DIAGONAL MAP 115that the two other vertial maps also are equalities. By proposition 3.10.1, thepushout of the top row is ΦCr(L∧rq)[α]. This �nishes the proof of the laim.Our next laim is that the restrition of the diagonal map to (L∧q)[α] gives anisomorphism
(L∧q)[α]

∼=
−→ ΦCr(L∧rq)[ǫ∗α]for all [α] in D. We prove the laim by indution on the number of elements in

P[α]. Consider the diagram
⋃

[β]<[α]

(L∧q)[β] ←
(
FRmsSns−1

+

)
∧Cs

(Cq)+ →
(
FRmsDns

+

)
∧Cs

(Cq)+

y
y

y
⋃

[β]<[α]

ΦCr (L∧rq)[ǫ∗β]←ΦCr
(
(FRmrsSnrs−1

+ ) ∧Crs
(Crq)+

)
→ΦCr

(
(FRmrsDnrs

+ ) ∧Crs
(Crq)+

)
.Here the vertial maps are instanes of the diagonal map. The row on the topomes from the Cq-equivariant desription of (L∧q)[α], while the bottom row is

ΦCr applied to the Crq-equivariant desription of (L∧rq)[ǫ∗α]. By indution and theprevious laim, the left vertial map is an isomorphism. Sine Cr is a subgroup of
Crs, lemma 3.10.8 implies that the two other vertial maps also are isomorphisms.Taking the row-wise pushouts proves our laim, see proposition 3.10.1.Clearly, the two laims together prove the proposition. �Remark 3.10.9By the proof above, we see that the diagonal map restrited to sL∧q−1 is anisomorphism

sL∧q−1 ∼= ΦCr

(srL∧rq−r) .3.10.2 With involutionThe dihedral group D2q has generators x and y, and relations xq = y2 = 1 and
xy = yx−1. Let L be an orthogonal Z/2-spetrum, the involution is determinedby a map ι : L → L. Now we an extend the Cq-ation on L∧q to a D2q-ationby letting y at by

L ∧ L ∧ · · · ∧ L
reverse
−−−−→ L ∧ · · · ∧ L ∧ L

ι∧···∧ι∧ι
−−−−−→ L ∧ · · · ∧ L ∧ L .Assume that L is genuine FIZ/2-ellular with C as its set of Z/2-ells. Thenthe dihedral group D2q ats on C×q, x ats by permuting fators ylially, while

y sends a q-tuple (α1, α2, . . . , αq) to (αq, . . . , α2, α1). Now L∧q gets an indued
D2q-ellular struture by an argument similar to proposition 3.10.1.Next we onstrut the diagonal map for L with involution. The diagonal willbe a D2q-map L∧q → ΦCr(L∧rq).



116 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAConstrution 3.10.10Let E be the short exat sequene 0 → Cr → D2rq → D2q → 0. Let i :
J reg

E → JE be the full subategory whose objets are diret sums of regular
D2rq-representations. For eah inner produt spae U , we get an objet U⊕2rq of
J reg

E . Let Ui be the forgetful funtor from J reg
E -spaes to JE-spaes, and byleft Kan extension, we de�ne Pi.As before we onstrut a D2q-map

UiUφL
∧q → Ui FixCr(L∧rq)of J reg

E -spaes. This map is given on level U⊕2rq as a natural D2q-equivarianttransformation
L∧q(U⊕2q)→ FixCr(L∧2rq)(U⊕2rq) .To de�ne this, we expliitly write out both sides using oends. Piking a pointon the left side,

(f, u; x1, . . . , xq) in J (Rd1 ⊕ · · · ⊕ Rdq , U⊕q) ∧ L(Rd1) ∧ · · · ∧ L(Rdq)we map it to
(
f⊕r, (u, . . . , u); (x1, . . . , xq), (x1, . . . , xq), . . . , (x1, . . . , xq)

)in
J ((Rd1 ⊕· · ·⊕Rdq )⊕· · ·⊕ (Rd1 ⊕· · ·⊕Rdq ), U⊕rq)∧ (L(Rd1 )∧ · · ·∧L(Rdq ))∧ · · ·∧ (L(Rd1 )∧ · · ·∧L(Rdq )) .Again it is easily seen that the image is a Cr-�xed point, and that the diagonalmap is D2q-equivariant.De�nition 3.10.11The diagonal map for L with involution, L∧q → ΦCr(L∧rq), is de�ned as theomposition

L∧q → PφPiUi FixCr(L∧rq)→ Pφ FixCr(L∧rq) = ΦCr(L∧rq) ,where the �rst map omes from the onstrution above, and the seond map isindued by the ounit PiUi → id .Assume that L is genuine FIZ/2-ellular. Using expliit indued D2q- and
D2rq-ellular strutures on L∧q and L∧rq respetively, we prove the following resultan argument similar to the proof of proposition 3.10.7:Proposition 3.10.12If L is a o�brant orthogonal Z/2-spetrum, then the diagonal map L∧q →
ΦCr(L∧rq) is a D2q-equivariant isomorphism.Further details are omitted.



3.11. MISCELLANEOUS RESULTS 1173.11 Misellaneous resultsIn this setion we list or show various results whih will be used later in the thesis.3.11.1 About orbit q-o�brations of orthogonal spetraProposition 3.11.1Assume that i : A → L and j : B → K are orbit q-o�brations of (non-equivariant) orthogonal spetra, then also
i�j : L ∧B ∪ A ∧K → L ∧Kis an orbit q-o�bration.Proof: We an assume that i and j are relative OrbFI-ellular maps. We willapply the method used when proving proposition 2.2.12. In that proof we useonly one non-formal property about the set of ells, namely that the � produtof two ells yields a new ell. One this property has been heked for orbit ells,the present result follows.Consider two (non-equivariant) orbit ells:

(
FV1S

n1−1
+

)
/H1 →

(
FV1D

n1
+

)
/H1 and (

FV2S
n2−1
+

)
/H2 →

(
FV2D

n2
+

)
/H2 .Here V1 and V2 are H1- and H2-representations respetively. Let V = V1 ⊕ V2 bethe H1 ×H2-representation de�ned by letting H1 at trivially on V2, and H2 attrivially on V1. And � of the ells above an now be written as

(
FV (Dn1 × Sn2−1 ∪ Sn1−1 ×Dn2)+

)
/(H1×H2)→ (FV (Dn1 ×Dn2)+) /(H1×H2) .This is again an orbit ell. �Proposition 3.11.2Assume that L is an orbit o�brant orthogonal spetrum and X → Y a level-equivalene of orthogonal spetra, then also

L ∧X → L ∧ Yis a level-equivalene.Proof: There is no loss of generality by assuming that L is OrbFI-ellular. Byanalogy with proposition 2.2.9, there exists a sequene ∗ = L0 → L1 → L2 → · · ·suh that L is its olimit and eah Li+i is the pushout of a diagram
Li ←

∨(
FV S

n−1
+

)
/H →

∨(
FVD

n
+

)
/H .



118 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAHene, eah Li → Li+1 is an h-o�bration. Smashing the sequene with X → Y ,we get
L0 ∧X −−−→ L1 ∧X −−−→ L2 ∧X −−−→ · · ·y

y
y

L0 ∧ Y −−−→ L1 ∧ Y −−−→ L2 ∧ Y −−−→ · · ·

.The horizontal maps are again h-o�brations, by lemma 12.2 in [MMSS01℄.Hene, it is enough to show that eah Li ∧ X → Li ∧ Y is a level-equivalene.Proeeding indutively, what we have to show is that
(FVA) /H ∧X → (FVA) /H ∧ Yis a level-equivalene when A is a sphere or a disk and H and V arbitrary. Byremark 3.4.9, we an always assume that H → O(V ) is injetive. Then the state-ment above is a onsequene of lemma 3.11.3 below. And we are done moduloproving the lemma. �Inspired by lemma 15.5 in [MMSS01℄ we prove:Lemma 3.11.3Let A be a based CW-omplex, H a �nite group, V an H-representation and

X any orthogonal spetrum. Assume that H → O(V ) is injetive. Then thequotient map
(EH+ ∧H FVA) ∧X → (FVA) /H ∧Xis a level-equivalene. Consequently, the funtor (FVA) /H ∧ − preserves level-equivalenes.Proof: We evaluate both sides of the quotient map at some level Rm. In orderto write things out we hoose a linear isometry V → Rm. Then we have

((FVA) ∧X) (Rm) ∼= O(m)+ ∧O(Rm−V ) (A ∧X(Rm − V )) ,and
((EH+ ∧ FVA) ∧X) (Rm) ∼= O(m)+ ∧O(Rm−V ) (EH+ ∧A ∧X(Rm − V )) .The quotient EH×O(m)→ O(m) is an (H×O(Rm−V ))-equivariant homotopyequivalene sine O(m) is a free (H×O(Rm−V ))-spae that an be triangulatedas a �nite (H ×O(Rm − V ))-CW-omplex by [Ill83℄.We ompare the desription above via the quotient map EH×O(m)→ O(m).Dividing out by the H-ation, we get a weak equivalene
(
O(m)+ ∧O(Rm−V ) (EH+ ∧ A ∧X(Rm − V ))

)
/H

→
(
O(m)+ ∧O(Rm−V ) (A ∧X(Rm − V ))

)
/H .



3.11. MISCELLANEOUS RESULTS 119And the result follows. �Analogous to proposition 2.4.10 we have the following proposition for orbitq-o�brations:Proposition 3.11.4Assume that we have a map between two sequenes of orthogonal spetra:
K0 −−−→ K1 −−−→ K2 −−−→ · · ·y

y
y

L0 −−−→ L1 −−−→ L2 −−−→ · · ·

.If K0 → L0 is an orbit q-o�bration, and Ki ∪Ki−1
Li−1 → Li is an orbit q-o�bration for every i ≥ 0, then

colim
i

Ki → colim
i

Liis also an orbit q-o�bration.Proof: If orbit q-o�brations were the o�brations of a model struture on
I S , then the formal proof given for proposition 2.4.10 would apply. Lakingsuh a model struture we give a diret proof.Observe that the following diagram is pushout for all n:

Ln ∪Kn
Kn+1 −−−→ Ln ∪Kn

colimKiy
y

Ln+1 −−−→ Ln+1 ∪Kn+1 colimKi

.The left vertial map is an orbit q-o�bration by assumption, hene the rightvertial map is also an orbit q-o�bration. We thus get a sequene
colimKi → L0 ∪K0 colimKi → L1 ∪K1 colimKi → · · · → colimLiof orbit q-o�brations. An elementary argument, similar to the last part of theproof of proposition 2.2.9, shows that given a sequene X0 → X1 → X2 → · · ·of orbit q-o�brations maps, the indued map X0 → colimXi is also an orbitq-o�bration. Applied to our situation we see that colimiKi → colimi Li is anorbit q-o�bration. �



120 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRA3.11.2 About the small objet argumentThe small objet argument, see [DS95℄ or [Hir03℄, is the most ommon way toprodue both o�brant and �brant replaement funtors in a model ategory. Wehave already used this onstrution when de�ning our funtor Γ. In general wehave proposition 10.5.16 in [Hir03℄ whih says:Proposition 3.11.5If C is a oomplete ategory and I a set of maps in C that permits the smallobjet argument, then there is a funtorial fatorization of every map in C intoa relative I-ell omplex followed by a map having the right lifting property withrespet to any map in I.So given I, we get a funtor taking a map f : X → Y in C to a fatorization
X

jI−→ QI(f)
pI−→ Y .And QI is de�ned as the olimit of a sequene X = Q0

I(f)→ Q1
I(f)→ Q2

I(f)→
· · · , where eah step is a gluing onstrution.We now ompare the small objet arguments in two di�erent ategories:Lemma 3.11.6Assume that F : C → D is a funtor between oomplete ategories. Let I and
J be sets of maps in C and D respetively, and suppose that they permit thesmall objet argument. If F takes I into J , then there is a funtorial diagram

F (X)
F (jI)
−−−→ F (QI(f))

F (pI)
−−−→ F (Y )

=

y
y

y=

F (X)
jJ−−−→ QJ(F (f))

pJ−−−→ F (Y )for every map f : X → Y in C .Proof: Assume by indution that we have a sequene
F (X)→ F (Qi

I(f))→ Qi
J(F (f))→ F (Y ) .Now onsider one I-ell in Qi+1

I (f) relative to Qi
I(f). Suh ells are determinedby a diagram

A −−−→ By
y

Qi
I(f) −−−→ Y

,



3.11. MISCELLANEOUS RESULTS 121where A→ B is a map in I. Now apply F to this diagram, and use the indutionhypothesis to form
F (A) −−−→ F (B)y

y

F (Qi
I(f)) −−−→ F (Y )y

y=

Qi
J(F (f)) −−−→ F (Y )

.

Comparing the pushout of the upper square with the pushout of the outer square,we get the sequene
F (X)→ F (Qi+1

I (f))→ Qi+1
J (F (f))→ F (Y ) .

�Example 3.11.7A �brant replaement funtor QG for the ategory of orthogonal G-spetra anbe onstruted by applying the small objet argument to a set of maps K alledthe generating ayli q-o�brations. See de�nition III.4.6 in [MM02℄. By propo-sition 3.7.4 ΦN takes K to the generating ayli q-o�brations of orthogonal
G/N-spetra. Hene, there is a natural transformation

ΦNQGL→ QG/NΦNLfor orthogonal G-spetra L.3.11.3 About geometri �xed pointsWe reall orollary V.4.6 and proposition V.4.7 in [MM02℄, and enhane the lastresult to also over a new ase:Proposition 3.11.8For based G-spaes A, the geometri N-�xed points of the suspension spetrumare given by
ΦNF0A ∼= F0A

N .For orthogonal G-spetra K and L, there is a natural J-map
α : ΦNK ∧ ΦNL→ ΦN (K ∧ L)of orthogonal J-spetra, and α is an isomorphism if K and L are o�brant.Furthermore, α is also an isomorphism if K is a suspension spetrum and L isarbitrary.



122 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAProof: The �rst parts are ited from the referene. To show the last part, wedo an expliit alulation. Assume that K = F0A, where A is a based G-spae.We then have
FixN(F0A ∧ L) ∼= FixN(A ∧ L) ∼= AN ∧ (FixN L) ∼= F0A

N ∧ (FixN L) .Here F0 on the left is the suspension from G-spaes to orthogonal G-spetra,while F0 on the right is the suspension from G-spaes to JE-spaes. Sine Pφ isstrong symmetri monoidal, see I.2.14 in [MM02℄, we get that
ΦN (F0A ∧ L) = Pφ FixN(F0A ∧ L) ∼= PφF0A

N ∧ Pφ(FixN L) = F0A
N ∧ ΦNL .This ompletes the proof. �Geometri �xed points an be used in order to reognize G-equivariant π∗-isomorphisms:Proposition 3.11.9Assume that F is a family of normal subgroups of G. Let f : K → L be a mapof orthogonal G-spetra. The following statements are equivalent:

f is an (F ,A ℓℓ)-π∗-isomorphism.
f indues isomorphisms πN

q K → πN
q L for all q and N ∈ F .

ΦNf : ΦNK → ΦNL is non-equivariantly a π∗-isomorphism for all N ∈ F .Compare this result to theorem 4.7 in [GM95℄.Proof: The �rst two statements are equivalent by de�nition. Sine ompatLie groups have the desending hain property, we an do indution on the sizeof F .Let us show that the last statement implies the seond. Let F be some familyof normal subgroups of G. Assume that we are given a map f : K → L suhthat ΦHf : ΦHK → ΦHL is non-equivariantly a π∗-isomorphism for all H ∈ F .Let N be any normal subgroup of F . What we want to hek is that f induesisomorphisms πN
∗ K → πN

∗ L.Let F [N ] be the family of subgroups of G that do not ontain N . Observethat the intersetion F ∩ F [N ] is a family properly ontained in F . By theindution hypothesis, we get that f indues isomorphisms πH
∗ K → πH

∗ L for all
H ∈ F ∩ F [N ]. Observe that the family F ∩ F [N ] onsists of all propersubgroups of N .Reall the notion of a universal F [N ]-spae. It is a G-CW-omplex EF [N ]suh that EF [N ]H ≃ ∗ for H ∈ F [N ] and EF [N ]H = ∅ for H 6∈ F [N ].Furthermore, ẼF [N ] is de�ned as the o�ber of the map EF [N ]+ → S0.



3.12. CYCLIC AND DIHEDRAL ORTHOGONAL SPECTRA 123Let us now restrit G-ations to N-ations. Observe that the restrition of
EF [N ] is a universal F ∩F [N ]-spae. We already know that f : K → L is an
F ∩F [N ]-equivalene. And proposition IV.6.7 in [MM02℄ now implies that

f ∧ id : K ∧ EF [N ]+ → L ∧EF [N ]+is a π∗-isomorphism of orthogonal N-spetra.Let Q denote a �brant replaement funtor for the genuine model strutureon orthogonal G-spetra. Consider the diagram
Q(K ∧ EF [N ]+)N −−−→ Q(K)N −−−→ Q(K ∧ ẼF [N ])N

y
y

y

Q(L ∧ EF [N ]+)N −−−→ Q(L)N −−−→ Q(L ∧ ẼF [N ])Nof non-equivariant orthogonal spetra. We have just shown that the left vertialmap is a π∗-isomorphism. By proposition V.4.17 in [MM02℄, the orthogonalspetrum Q(K ∧ ẼF [N ])N is naturally π∗-isomorphi to ΦNK. By statementthree, we get that
ΦNK ≃ Q(K ∧ ẼF [N ])N → Q(L ∧ ẼF [N ])N ≃ ΦNLis a π∗-isomorphism. Now it follows by long exat sequenes of homotopy groups,that

πN
∗ (K) ∼= π∗Q(K)N → π∗Q(L)N ∼= πN

∗ Lis an isomorphism.To show that the seond statement implies the last statement, one uses theabove argument bakward. �Remark 3.11.10The reason for assuming that F onsists of normal subgroups is that geometri
N-�xed points of orthogonal G-spetra, have been de�ned only for normal N .Hene, proposition V.4.17 in [MM02℄ supplies the homotopy equivalene

Q(K ∧ ẼF [N ])N ∼= ΦNKin this ase only.3.12 Cyli and dihedral orthogonal spetraIn this short setion we will de�ne omment on how the geometri realization ofinvolutive simpliial, yli and dihedral orthogonal spetra beomes equivariantorthogonal spetra.



124 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAExample 3.12.1First onsider an involutive simpliial orthogonal spetrum. This is a funtor L• :
∆Top → I S . Taking the geometri realization level-wise, we get an orthogonalspetrum |L•| with Z/2-ation. By hange of universe, see lemma 3.2.1, we anevaluate this spetrum at any Z/2-representation V .Example 3.12.2For an r-yli orthogonal spetrum L• the geometri realization |L•| has an S1-ation. Using the hange of universe funtor, see lemma 3.2.1, we an evaluateat any S1-representation V getting an S1-spae

|L•|(V ) .Example 3.12.3Similarly, if L• is an r-dihedral orthogonal spetrum, then using lemma 3.2.1, wesee that
|L•|(V )is well de�ned for any O(2)-representation V .



Chapter 4Operads in orthogonal spetra andinvolutionWe begin this hapter by studying operads and orthogonal spetra. Traditionallyan operad onsists of topologial spaes together with omposition operations. Inthe book [MSS02℄ the de�nition of an operad is extended by replaing topologialspaes by objets in a symmetri monoidal ategory. We reall this de�nitionbelow in full generality, but our main fous will be operads in orthogonal spetra.One usually designs an operad in order to study its algebras. Classially,we have the operads (in topologial spaes) N and M, whose algebras are theommutative and the assoiative monoids respetively. We will here introduean operad H having assoiative monoids with involution as its algebras. Viasuspension these results extend to orthogonal spetra. In partiular an H-algebrain orthogonal spetra is an orthogonal ring spetrum with involution.In setion 4.2 we develop, along the lines of [May72℄, the theory of the two-sided bar onstrution. Under the hypothesis that P and Q are su�iently �equalup to homotopy�, we an use this onstrution to replae a P-algebra by a weaklyequivalent Q-algebra. This is made preise in remark 4.2.20.In setion 4.3 we study a geometrially interesting involution ι on the homo-topy groups π∗S[ΩM ]. The main result of the thesis, theorem 4.3.26, says thatthere exists an orthogonal ring spetrum R with involution whih represents ιon π∗S[ΩM ]. The proof uses the mahinery of operads. We design an operad
Dn in orthogonal spetra whih has S[ΩM ] as an algebra. The result follows byshowing that Dn is su�iently equal to H.4.1 Operads in I SWe will now begin looking at operads in orthogonal spetra. May's original def-inition [May77℄ desribes the omposition as a many-variable operation. Thisan be replaed by a olletion of two-variable ompositions. Using this view-125



126 CHAPTER 4. OPERADS IN I S AND INVOLUTIONpoint, one greatly redues the omplexity of the desription of assoiativity. Thisdesription is due to Gerstenhaber and Markl, see [MSS02℄.Let Σ be the ategory with objets the �nite sets n = {1, 2, . . . , n} for everynon-negative integer n and bijetions as morphisms. Here 0 is the empty set.Thus there is no morphism n→ m for n 6= m, while the endomorphisms of n anbe identi�ed with the symmetri group Σn. Therefore, we all Σ the symmetrigroupoid.There are omposition operations
◦i : Σm × Σn → Σm+n−1for n ≥ 0 and 1 ≤ i ≤ m. These are de�ned in the appendix. Let me reallthe �box�-model here: For i and permutations ρ ∈ Σm and υ ∈ Σn we put boxesaround the integers from 1 to m+ n− 1 as follows:

1 , . . . , i− 1 , i, i+ 1, . . . , i+ n− 1 , i+ n , . . . , m+ n− 1 .We now use ρ to permute the boxes, while we use υ to permute the elements in the
i'th box. Removing the boxes one gets the permutation ρ ◦i υ. This operationgives the symmetri groupoid the struture of a disrete operad. We all thisoperadM.There is an alternative desription of the omposition operations using per-mutation matries. Reall that the permutation matrix of ρ ∈ Σm is the unique
m×m-matrix A suh that

Aei = eρ(i) for all i.Here ei is the i'th unit vetor in Rm. This embeds Σm as a losed subgroupof O(m). A matrix in the image is alled a permutation matrix, and these areexatly those matries suh that every olumn and every row ontain only 0's,exept for one entry whih has value 1.Let A be the permutation matrix of ρ ∈ Σm and B the permutation matrixfor ν ∈ Σn. We now want to desribe the permutation matrix for ρ ◦i ν. We havea blok deomposition of A as



A11 0 A13

0 1 0
A31 0 A33



 ,where 1 lies in the ρ(i)'th row and the i'th olumn. Now form the (m+ n− 1)×
(m+ n− 1)-matrix 


A11 0 A13

0 B 0
A31 0 A33



 .This is the permutation matrix for ρ ◦i ν.



4.1. OPERADS IN I S 127In the ase n = 0 we interpret B as the 0× 0-matrix. Thus the operation ◦ideletes the i'th olumn and the ρ(i)'th row from the matrix A.Now we are ready to de�ne operads in orthogonal spetra.De�nition 4.1.1Let (C ,∧, S) be a symmetri monoidal ategory. An operad in C is a funtor
P : Σ→ C with P(0) = S together with omposition operations

◦i : P(m) ∧ P(n)→ P(m+ n− 1)de�ned for integers m, n and i suh that n ≥ 0 and 1 ≤ i ≤ m, satisfying thefollowing axioms:i) Assoiativity: For the iterated ompositions of P(m) ∧ P(n) ∧ P(p), thefollowing assoiativity holds:
◦i(◦j ∧ id) =






◦j+p−1(◦i ∧ id)(id ∧ π) for 1 ≤ i < j,
◦j(id ∧ ◦i−j+1) for j ≤ i < j + n, and
◦j(◦i−n+1 ∧ id)(id ∧ π) for j + n ≤ i.Here π : P(n) ∧ P(p)→ P(p) ∧ P(n) is the symmetry transposition for ∧.ii) Equivariane: Sine P is a funtor from Σ, eah P(m) has an ation of

Σm. We write this ation on the right, and for ρ ∈ Σm and υ ∈ Σn thefollowing diagram ommutes:
P(m) ∧ P(n)

◦ρ(i)
−−−→ P(m+ n− 1)

(−.ρ)∧(−.υ)

y
y−.(ρ◦iυ)

P(m) ∧ P(n)
◦i−−−→ P(m+ n− 1)

.iii) Unity: There is a map 1 : P(0) → P(1) suh that the following diagramsommute for all 1 ≤ i ≤ m

P(m) ∧ P(0)
=
−−−→ P(m) ∧ S

id∧1

y
y∼=

P(m) ∧ P(1)
◦i−−−→ P(m)

and S ∧ P(m)
∼=
−−−→ P(m)

1∧id

y
y=

P(1) ∧ P(m)
◦1−−−→ P(m)The following types of operads are relevant for our appliations:De�nition 4.1.2We get disrete operads by putting the symmetri monoidal ategory of setswith ross produt and unit ∗, into the de�nition above.



128 CHAPTER 4. OPERADS IN I S AND INVOLUTIONWe get operads in topologial spaes by putting the symmetri monoidalategory of spaes with ross produt and unit ∗, into the de�nition above.We get operads in orthogonal spetra by putting (I S ,∧, S), the symmetrimonoidal ategory of orthogonal spetra, into the de�nition above.Remark 4.1.3The de�nition above is equivalent to May's �multi-operation� de�nition of anoperad. We onstrut the multi-operation
γ : P(k) ∧ P(j1) ∧ · · · ∧ P(jk)→ P(j) , where j = j1 + · · ·+ jk,as the omposition

γ = ◦jk−1+···+j1+1(◦jk−2+···+j1+1 ∧ id) · · · (◦j1+1 ∧ id ∧ · · · ∧ id)(◦1 ∧ id ∧ · · · ∧ id) .To go the other way one uses the unit and de�nes ◦i = γ(−; 1, . . . , 1,−, 1, . . . , 1).Proposition 4.1.4If F is a lax symmetri monoidal funtor and P an operad, then FP is also anoperad.Proof: FP is learly a funtor de�ned on the symmetri groupoid, but werede�ne FP(0) to be S. We de�ne the omposition operations for FP as themaps
FP(m) ∧ FP(n)→ F (P(m) ∧ P(n))

F (◦i)
−−−→ FP(m+ n− 1) .Proving assoiativity for FP uses assoiativity and symmetry for F , and equiv-ariane holds sine the multipliation for F is a natural transformation. The map

1 : FP(0)→ FP(1) is de�ned as the omposition
FP(0) = S → FS

F (1)
−−→ FP(1) .And unity for FP follows from the unity of F and P. �Example 4.1.5The funtor embedding sets in Top as the disrete spaes, is lax symmetrimonoidal, hene we may onsider every disrete operad as an operad in topo-logial spaes.Example 4.1.6 (Suspension operads)The funtor sending a spae X to the orthogonal spetrum

F0(X+) given at level V by F0(X+)(V ) = X+ ∧ S
V



4.1. OPERADS IN I S 129is symmetri monoidal. Here F0 is the shift desuspension funtor. If C is anoperad in topologial spaes, then we may onstrut a suspension operad in or-thogonal spetra by omposing with X 7→ F0(X+). Usually we will denote thisoperad in orthogonal spetra simply by C, instead of F0(C+). And we will all anoperad in orthogonal spetra disrete if it is the suspension of a disrete operadin topologial spaes.Let us give names to two operads in orthogonal spetra.We de�ne N (m)(V ) = SV for all m and V . The operations ◦i are in thisase just the anonial map S ∧ S → S.De�ne M to be the suspension of the disrete operad m 7→ Σm. Theoperations ◦i are then equal to the suspension of the operations Σm×Σn →
Σm+n−1 de�ned above.We will now de�ne an operad geared toward anti-ommutative involutions.The hyperotahedral group H(n) is the group of rigid symmetries of a ube in

Rn. If we let the ube be [−1, 1]n, we an identify H(n) as a losed subgroup of
O(n). The matries in the image are those suh that every row and every olumnhave 0's in all exept one entry, and this entry is 1 or −1.We use the matrix desription to desribe the omposition operations. Firstlet Tn be the n× n-matrix

Tn =




0 · · · 0 −1
0 · · · −1 0... ···

... ...
−1 · · · 0 0


 .Now de�ne ◦i : H(m) ×H(n) → H(m+ n− 1) as follows. Let A be an m ×m-matrix desribing an element in H(m), and let B be a matrix in H(n). There isa blok deomposition of A as




A11 0 A13

0 a 0
A31 0 A33



 ,where a is 1 or −1 and lies in the i'th olumn of A. Now de�ne the (m + n −
1)× (m+ n− 1)-matrix C to be




A11 0 A13

0 B 0
A31 0 A33



 if a = 1,and 


A11 0 A13

0 TnB 0
A31 0 A33



 if a = −1.



130 CHAPTER 4. OPERADS IN I S AND INVOLUTIONThen C is the matrix of A ◦i B in H(m+ n− 1).Proposition 4.1.7
H is a disrete operad.Proof: The right ation of σ ∈ Σn on H(n) is given by multipliation ofmatries. If A is a matrix in H and B is the permutation matrix of σ, then σsends A to AB. And the unit in H(1) is the identity matrix in O(1).Using the �matrix�-model it is easy to verify all three axioms. �Remark 4.1.8In this remark we desribe H(n) as (Z/2)n ⋊ Σn, and give a formula for ◦i.Write (Z/2) multipliatively, denote elements of (Z/2)n by x = (x1, x2, . . . , xn),and embed (Z/2)n in O(n) as the n× n-matries having 1 or −1 on the diagonaland 0 elsewhere. Identifying Σn with the permutation matries we see that H(n)is atually the produt of (Z/2)n and Σn inside O(n). (Z/2)n is normal in H(n)and (Z/2)n ∩ Σn = {I}, thus H(n) is a semi-diret produt (Z/2)n ⋊ Σn. Here
Σn ats by permutation of fators on (Z/2)n.It is possible to treat n 7→ (Z/2)n as a non-equivariant operad. The ompo-sition operations are given by
(x1, . . . , xm)◦i(y1, . . . , yn) =

{
(x1, . . . , xi−1, y1, . . . , yn, xi+1, . . . , xm) if xi = 1, and
(x1, . . . , xi−1,−yn, . . . ,−y1, xi+1, . . . , xm) if xi = −1.We now introdue the following onvention: τn without an argument denotes theorder reversing permutation in Σn, while τn with an argument denotes the grouphomomorphism Z/2→ Σn sending −1 to the order reversing permutation. Hene

τn(−1) = τn, while τn(1) = id . Now we an give a formula for the ompositionoperations ofH in terms of the ◦'s of n 7→ (Z/2)n and (n 7→ Σn) =M. Inspetingthe �matrix�-model we get
(x, ρ) ◦i (y, υ) = (x ◦ρ(i) y, ρ ◦i (τn(xρ(i))υ))for x ∈ (Z/2)m, ρ ∈ Σm, y ∈ (Z/2)n and υ ∈ Σn.Example 4.1.9Via suspension the operad H indues an operad in orthogonal spetra. Thisindued operad will also be alled H.Here is another example of a lax symmetri monoidal funtor applied to op-erads in orthogonal spetra.Example 4.1.10Reall the o�brant replaement funtor Γ̃ from theorem 3.9.1. We have shownthat Γ̃ is lax symmetri monoidal. Hene, for any operad P in orthogonal spetra



4.1. OPERADS IN I S 131we get an operad Γ̃P. The natural map Γ̃L → L indues a map of operads
Γ̃P → P. The nie thing about this new operad is that eah Γ̃P(m) is Σm-equivariantly naive orbit o�brant.However, it is hard to say anything about the genuine homotopy of Γ̃P, evenin the ase where P is Σ-free.The idea behind an operad is that P(n) an parametrize n-fold multipliationson an objet L. If we have suh a parametrization, we all L a P-algebra. Thepreise de�nition is:De�nition 4.1.11Let P be an operad in the symmetri monoidal ategory (C ,∧, S). A P-algebrais an objet L in C together with operations

θm : P(m) ∧ L∧m → Lsuh that the following axioms holds:i) θ ats: For all n ≥ 0 and 1 ≤ i ≤ m the following diagram ommutes:
P(m) ∧ P(n) ∧ L∧(m+n−1) P(m) ∧ P(n) ∧ L∧(m+n−1)shu�ey y◦i

P(m) ∧ L∧(i−1) ∧ P(n) ∧ L∧n ∧ L∧(m−i) P(m+ n− 1) ∧ L∧(m+n−1)

id∧θn∧id

y
yθm+n−1

P(m) ∧ L∧m θm−−−→ L

.

ii) Triviality of the unit: The diagram
P(0) ∧ L S ∧ L

1∧id

y
y∼=

P(1) ∧ L
θ1−−−→ Lommutes.iii) Equivariane: The group Σm ats from the left on P(m) and ats fromthe right on L∧m by permutation of the fators. θm is equivariant in thesense that the diagram

P(m) ∧ L∧m ρ∧id
−−−→ P(m) ∧ L∧m

id∧ρ

y
yθm

P(m) ∧ L∧m θm−−−→ Lommutes for every ρ ∈ Σm.



132 CHAPTER 4. OPERADS IN I S AND INVOLUTIONRemark 4.1.12
θ0 is a map P(0) = S → L, and we all this map the unit of L.Let us look at an example:Example 4.1.13In this example we onsider the disrete operad H in the ategory of sets. Whenonsidering the ategory of sets, remember that �∧� in the de�nition above isthe ross produt, and S is the set {1}. We now want to reognize the lass of
H-algebras as a more familiar type of mathematial objets.Assume thatX is anH-algebra. Let 1 inX denote the image of θ0 : {1} → X.Now de�ne µ : X ×X → X and ι : X → X by

µ(x, y) = θ2

((
1 0
0 1

)
, x, y

)
, and

ι(x) = θ1
((
−1
)
, x
)

.Let us now do some alulations. First we have that
µ(µ(x, y), z) = θ2

((
1 0
0 1

)
, θ2

((
1 0
0 1

)
, x, y

)
, z

)

= θ3

((
1 0
0 1

)
◦1

(
1 0
0 1

)
, x, y, z

)

= θ3








1 0 0
0 1 0
0 0 1



 , x, y, z



 .

Similarly, we an show that µ(x, µ(y, z)) = θ3








1 0 0
0 1 0
0 0 1



 , x, y, z



. Hene, µis an assoiative operation on X. Furthermore, we have:
µ(1, x) = θ2

((
1 0
0 1

)
, θ0(1), x

)

= θ1

((
1 0
0 1

)
◦1
()
, x

)

= θ1 (1, x)

= x ,and by the same methods one also alulates that µ(x, 1) = x. This shows that
1 is a two-sided unit for µ. Hene, X is a monoid with unit. Let us now look at



4.1. OPERADS IN I S 133the operation ι. We have:
ι(ι(x)) = θ1

((
−1
)
, θ1
((
−1
)
, x
))

= θ1
((
−1
)
◦1
(
−1
)
, x
)

= θ1 (1, x)

= x .The interation of µ and ι an be omputed as follows: First we have
ι(µ(x, y)) = θ1

((
−1
)
, θ2

((
1 0
0 1

)
, x, y

))

= θ2

((
−1
)
◦1

(
1 0
0 1

)
, x, y

)

= θ2

((
0 −1
−1 0

)
, x, y

)
,and seondly we alulate that

µ(ι(y), ι(x)) = θ2

((
1 0
0 1

)
, θ1
((
−1
)
, y
)
, θ1
((
−1
)
, x
))

= θ2

((
1 0
0 1

)
◦1
(
−1
)
, y, θ1

((
−1
)
, x
))

= θ2

((
−1 0
0 1

)
, y, θ1

((
−1
)
, x
))

= θ2

((
−1 0
0 1

)
◦2
(
−1
)
, y, x

)

= θ2

((
−1 0
0 −1

)
, y, x

)

= θ2

((
0 −1
−1 0

)
, x, y

)
.In the last step we used the equivariane axiom for H-algebras. What we haveseen is that ι2(x) = x and ι(µ(x, y)) = µ(ι(y), ι(x)). We say that ι is an involutionon the monoid X whih anti-ommutes with the multipliation.It an be shown that there are no more relations for a general H-algebra.Hene, we reognize X as a monoid with unit and anti-ommutative involution.Proposition 4.1.14If F is a lax symmetri monoidal funtor and L a P-algebra, then FL is an

FP-algebra.Proof: We de�ne the operations θ′m for FL. For m ≥ 1 we de�ne θ′m as the



134 CHAPTER 4. OPERADS IN I S AND INVOLUTIONomposition
FP(m) ∧ (FL)∧m → F (P(m) ∧ L∧m)

Fθm−−→ FL .For m = 0 we use the unit of F to de�ne θ′0:
FP(0) = S → FS

Fθ0−−→ FL .It is an exerise to hek the FP-algebra axioms for FL. Notie in partiularthat we need symmetry of F to prove both assoiativity and equivariane. �We onlude this setion by the following important observation:Proposition 4.1.15There are 1-1 orrespondenes between
M-algebras in I S and orthogonal ring spetra,
N -algebras in I S and ommutative orthogonal ring spetra, and
H-algebras in I S and orthogonal ring spetra with involution.Proof: When P is the suspension of a disrete operad, we may identify P(n) ∧

L∧n with a wedge sum ∨
L∧nindexed over the non-base points in P(n)(0).Given an M-algebra L, the map θ0 : S → L is the unit. To get the multi-pliation we restrit θ2 to the wedge summand orresponding to id ∈ Σ2. Themap on the other summand orresponds to µ ◦ π, where π exhanges the fatorsof L ∧ L. Assoiativity omes from omparing µ ◦ (id ∧ µ) and µ ◦ (µ ∧ id) to θ3restrited the summand orresponding to id ∈ Σ3.Conversely, given an orthogonal ring spetrum L, it beomes an M-algebraby de�ning θn on the wedge summand orresponding to id ∈ Σn to be the mul-tipliation map L∧n → L, and extend to the other summands by equivariane.If L is an N -algebra, we get that N (2) ∧ L ∧ L = L ∧ L, and set µ = θ2.Commutativity follows from the Σ2-equivariane of θ2.Conversely, given a ommutative orthogonal ring spetrum L, it beomes an

N -algebra by de�ning θn on N (n) ∧ L∧n = L∧n by multipliation. It is wellde�ned beause of ommutativity.If L is an H-algebra, we let multipliation be θ2 restrited to the summanddetermined by the matrix (1 0
0 1

), and the involution ι : L→ L is de�ned to be



4.2. OPERADS AND THE TWO SIDED BAR CONSTRUCTION 135
θ1 restrited to the summand orresponding to the matrix (−1

). The alulationthat (−1
)
◦1
(
−1
)

=
(
1
) implies that ι2 = id , and

((
1 0
0 1

)
◦1
(
−1
))
◦2
(
−1
)

=

(
−1 0
0 −1

)
=
(
−1
)
◦1

(
0 1
1 0

)implies that ι is an anti-homomorphism. This is analogous to the alulation inexample 4.1.13.Conversely, given an orthogonal ring spetrum L with involution, it beomesan H-algebra as follows: De�ne θn on the wedge summand orresponding to thematrix 


x1 0 · · · 0
0 x2 · · · 0... ... . . . ...
0 0 · · · xn


as the omposition

L∧n = L ∧ L ∧ · · · ∧ L
ι(x1)∧ι(x2)∧···∧ι(xn)
−−−−−−−−−−−−→ L ∧ L ∧ · · · ∧ L

multipliation
−−−−−−−→ L .Here ι(x) denotes the involution ι if x = −1, while ι(1) = id , the identity of L.We extend to all of H(n) by Σn-equivariane. �4.2 Operads and the two sided bar onstrution4.2.1 Operads and monadsWe now follow the theory as presented in May's book [May72℄. Our goal isto hek that the basi results also hold for operads in a symmetri monoidalategory (C ,∧, S) provided that C has all small olimits. In partiular the theoryof this subsetion applies to orthogonal spetra.Assume that P is an operad in C and that L is an objet in C whih omeswith a hosen map S → L. Let I denote Bökstedts ategory. This ategory hasobjets the �nite sets n for n ≥ 0. The morphisms are the injetive funtions.Notie that Σ is a subategory of I. For any morphism ρ : n′ → n in I we havemaps

id ∧ ρ∗ : P(n) ∧ L∧n′

→ P(n) ∧ L∧nand
ρ∗ ∧ id : P(n) ∧ L∧n′

→ P(n′) ∧ L∧n′

.The �rst map omes from shu�ing fators aording to ρ, and inserting S → Lfor those fators in L∧n orresponding to points in n, not in the image of ρ. Theseond map omes from the identi�ation of S with P(0), n− n′ times, and then



136 CHAPTER 4. OPERADS IN I S AND INVOLUTIONusing the appropriate omposition operations to redue from P(n) ∧ P(0)∧n−n′to P(n′).De�nition 4.2.1We de�ne PL to be the oequalizer of
∨

ρ:n′→n

P(n) ∧ L∧n′

⇉
∨

n

P(n) ∧ L∧n .Remark 4.2.2Observe that PL also an be desribed as the oend
∫ n∈I

P(n) ∧ L∧n .By S ↓ C we mean the ategory of objets in C under S. We want to show that
P is a monad in this ategory. Reall that a monad M in a ategory C onsistsof a funtorM : C → C together with natural transformations µ : M2 → M and
η : id →M suh that η is a left and right unit for µ, and µ is assoiative.Proposition 4.2.3For any operad P in C , P is a monad in S ↓ C .Proof: Using the unit of P we have a map

L ∼= S ∧ L→ P(1) ∧ L ⊂
∨

m

P(m) ∧ L∧m → PL .This is the natural transformation η. Sine L is under S, PL is also an objet in
S ↓ C via the omposition S → L

η
−→ PL.To onstrut the multipliation µ : PPL → PL we will use the ompositionoperations of P. Reall the de�nition of May's multioperation γ : P(m)∧P(n1)∧

· · · ∧ P(nm)→ P(n1 + · · ·+ nm) as the omposition of ◦'s, see remark 4.1.3. Wenow de�ne µ̃ as the omposition
P(m) ∧ (P(n1) ∧ L

∧n′
1) ∧ · · · ∧ (P(nm) ∧ L∧n′

m)shu�e
−−−→ P(m) ∧ P(n1) ∧ · · · ∧ P(nm) ∧ L∧n′

1 ∧ · · · ∧ L∧n′
m

γ∧id
−−→ P(n1 + n2 + · · ·+ nm) ∧ L∧(n

′
1+n′

2+···+n′
m) .Notie that µ̃ is natural for nj ∈ Iop and for n′j ∈ I. Thus we have an induedmap

P(m) ∧ (PL)∧m → PL .



4.2. OPERADS AND THE TWO SIDED BAR CONSTRUCTION 137Given ρ : m′ →m, it is an exerise to hek that the diagram
P(m) ∧ (PL)∧m′ id∧ρ∗

−−−→ P(m) ∧ (PL)∧m

ρ∗∧id

y
y

P(m′) ∧ (PL)∧m′

−−−→ PLommutes. And we get our monad multipliation
µ : PPL→ PL .Clearly η is a left and right unit. Assoiativity of µ follows from assoiativityrules for the omposition operations ◦j . �If M is a monad in a ategory C , then we reall that an M-algebra is anobjet L of C together with a map θ : ML → L, suh that θµ = θM(θ) and

θηL = idL. See hapter VI in [ML98℄.Proposition 4.2.4There is a natural one-to-one orrespondene between P-algebras and P -algebras.Proof: Given a P -algebra L, we de�ne the P-algebra maps θm as the omposi-tions
P(m) ∧ L∧m → PL

θ
−→ L .Conversely, if L is a P-algebra, we hek that the following diagram ommutes

P(m) ∧ L∧m′ id∧ρ∗
−−−→ P(m) ∧ L∧m

ρ∗∧id

y
yθm

P(m′) ∧ L∧m′ θm′

−−−→ PLfor all ρ : m′ → m in I. Thus we have an indued map PL → L, and we takethis as a de�nition of θ. �Corollary 4.2.5
PL is a P-algebra, and for any map f : K → L in C , the indued map Pf :
PK → PL is a map of P-algebras.Proof: The multipliation µ : PPL → PL gives PL a P-algebra struture.And naturality implies that Pf : PK → PL is a P-algebra morphism. �Let M be a monad in C . Reall from May [May72℄ that an M-funtor isa funtor F with the same soure as M together with a natural transformation
λ : FM → F , suh that λFη is the identity and λFµ = λλ.



138 CHAPTER 4. OPERADS IN I S AND INVOLUTIONProposition 4.2.6If α : P → Q is a map of operads, then Q is a P -funtor.Proof: By funtorality of the onstrution of P form P it is lear that α induesa morphism of monads P → Q.Now let αL denote the natural transformation PL→ QL, and de�ne λ to bethe omposition
QPL

QαL−−→ QQL
µ′

−→ QL .Here µ′ is the multipliation for Q. The properties of a P -funtor are easily ver-i�ed. �4.2.2 Homotopy theory of operads and their algebrasHaving treated the ategorial theory of operads and monads we now turn to-ward homotopy theory. Berger and Moerdijk, [BM03℄, de�ne model strutureon operads in monoidal model ategories. Their approah requires a symmetrimonoidal �brant replaement funtor. See their theorem 3.1. We are interestedin orthogonal spetra, but this ategory does not possess suh a funtor, see ourremark 2.6.2. Also see example 4.6.4 in [BM03℄. However, we do not need amodel struture on operads in orthogonal spetra. Diret methods are su�ient.Suppose given notions of o�bration and weak equivalene for orthogonalspetra. Let α : P → Q be a map of operads in orthogonal spetra, and f : K →
L a map of orthogonal spetra under S. We ask:When is η : L→ PL a o�bration?When is Pf : PK → PL a o�bration?If eah α : P(j) → Q(j) is a weak equivalene when is also PL → QL aweak equivalene?If f is a weak equivalene, when is Pf : PK → PL also a weak equivalene?Remark 4.2.7The author originally wanted to address these questions for arbitrary operads P.In this setting, the funtor Γ̃ of theorem 3.9.1 should be the o�brant replaementfuntor for operads. Proposition 3.9.10 would ensure that Γ̃P had Σ-equivariane.However, as lemma 4.2.8 below shows, one must be able to analyze the smashprodut over Σj . But getting results about X ∧Σj

Y when X and Y are Σj-equivariantly orbit o�brant, turned out to be too di�ult. Therefore the authorhad to impose a very restritive ondition on the operads. Further details aboutthis ondition an be found below. Still the ases of main interest, the operads
Dn, �ts into this restritive framework beause of theorem 4.3.11.



4.2. OPERADS AND THE TWO SIDED BAR CONSTRUCTION 139A milder hypothesis that ould work is to assume Σj-freeness of P(j). Butfor our appliations the striter ondition is su�ient.We will answer the questions by giving su�ient riteria in the propositionsbelow. Central in all arguments is a �ltration of PL. It is given by de�ning FjPLto be the oequalizer of
∨

ρ:n′→n

n≤j

P(n) ∧ L∧n′

⇉

j∨

n=0

P(n) ∧ L∧n .By F0PL we will understand the sphere spetrum S, and S = F0PL → PL isthe unit of PL. As oends we an write
FjPL =

∫ n≤j

P(n) ∧ L∧n .Lemma 4.2.8
F1PL = P(1) ∧ L, for j ≥ 2 there are pushout squares

P(j) ∧Σj
sL∧j−1 −−−→ Fj−1PLy

y

P(j) ∧Σj
L∧j −−−→ FjPLand colimj FjPL = PL.Here sL∧j−1 is an abbreviation for (S∧L∧j−1)∪(L∧S∧L∧j−2)∪· · ·∪(L∧j−1∧S).The proof that follows is ategorial, so this lemma holds for any symmetrimonoidal ategory whih has small olimits.Proof: To see that PL = colimj FjPL we onsider the diagram

· · · −−−→
∨

ρ:n→m

m≤j−1

P(m) ∧ L∧n −−−→
∨

ρ:n→m

m≤j

P(m) ∧ L∧n −−−→ · · ·

� �

· · · −−−→
∨j−1

m=0 P(m) ∧ L∧m −−−→
∨j

m=0P(m) ∧ L∧m −−−→ · · ·and use that taking olimits and taking oequalizers ommute.To see that the diagram is pushout we will use a trik involving oends. Wenow �x j. Suppose that m and n′ are objets in Bökstedts ategory I, we thenhave a pushout square of based sets
{θ : m→ n

′ , where m < n′ = j}+→{θ : m→ n
′ , where m < j and n′ ≤ j}+y

y

{θ : m→ n
′ , where m ≤ n′ = j}+→{θ : m→ n

′ , where m ≤ j and n′ ≤ j}+

.



140 CHAPTER 4. OPERADS IN I S AND INVOLUTIONHere the θ's are injetive maps. We interpret the sets on the left to be ∗ if n′ 6= j,and all sets are ∗ if n′ > j. The subsript + means that we have added an extrabasepoint. Varying m ∈ Iop and n′ ∈ I we see that the olletion of these sets isa funtor Iop × I → Ens∗.Now smash the diagram above with P(n) on the left and L∧m′ on the right.We get a pushout diagram
P(n) ∧ {m

θ
−→ n

′ | m < n′ = j}+ ∧ L∧m′

→P(n) ∧ {m
θ
−→ n

′ | m < j, n′ ≤ j}+ ∧ L∧m′

y
y

P(n) ∧ {m
θ
−→ n

′ | m ≤ n′ = j}+ ∧ L∧m′

→ P(n) ∧ {m
θ
−→ n

′ | m, n′ ≤ j}+ ∧ L∧m′of funtors Iop×Iop×I×I → I S . Pushouts and oends ommute, so applyingthe iterated oend to the diagram yields a pushout. We alulate the orners ofthe resulting diagram by �rst taking the oend over n ∈ I, then over m ∈ I. Wehave:
∫ m ∫ n

P(n) ∧ {θ : m→ n | m < n = j}+ ∧ L
∧m

=

∫ m

P(j) ∧ {θ : m→ j | m < j}+ ∧ L
∧m

= P(j) ∧Σj
sL∧j−1 ,

∫ m ∫ n

P(n) ∧ {θ : m→ n | m ≤ n = j}+ ∧ L
∧m

=

∫ m

P(j) ∧ {θ : m→ j | m ≤ j}+ ∧ L
∧m

= P(j) ∧Σj
L∧j ,

∫ m ∫ n

P(n) ∧ {θ : m→ n | m < j and n ≤ j}+ ∧ L
∧m

=

∫ m

P(m) ∧ T (m < j) ∧ L∧m

=

∫ n<j

P(n) ∧ L∧n

= Fj−1PL and
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∫ m ∫ n

P(n) ∧ {θ : m→ n | m ≤ j and n ≤ j}+ ∧ L
∧m

=

∫ m

P(m) ∧ T (m ≤ j) ∧ L∧m

=

∫ n≤j

P(n) ∧ L∧n

= FjPL .Here T (m < j) is the funtor sending m to S0 if m < j and to ∗ if m ≥ j. And
T (m ≤ j) is de�ned similarly.Thus the alulations show that the resulting diagram, whih must be apushout by onstrution, is equal to

P(j) ∧Σj
sL∧j−1 −−−→ Fj−1PLy

y

P(j) ∧Σj
L∧j −−−→ FjPL

.This onludes the proof. �From now on we will only onsider operads in orthogonal spetra. In orderto prove the propositions we will only work with those operads P suh thateah P(j) an be written equivariantly as X ∧ (Σj)+ for some (non-equivariant)orthogonal spetrum X.Proposition 4.2.9If S → P(1) and S → L are orbit q-o�brations, and eah P(j) an be writtenequivariantly as a produt X ∧ (Σj)+ with X being an orbit o�brant (non-equivariant) orthogonal spetrum, then the unit η : L → PL is an orbit q-o�bration.Proof: First �x j ≥ 2. By proposition 3.11.1 sL∧(j−1) → L∧j is an orbitq-o�bration. Applying P(j) ∧Σj
− we get

P(j) ∧Σj
sL∧(j−1) = X ∧ sL∧(j−1) → X ∧ L∧j = P(j) ∧Σj

L∧j ,for some orbit o�brant X depending on j. Using proposition 3.11.1 again, thismap is an orbit q-o�bration.Orbit q-o�brations are stable under obase hange. In the �ltration for PLwe now have that eah Fj−1PL → FjPL is an orbit q-o�bration for j ≥ 2.Observe that also L→ P(1) ∧ L = F1PL is an orbit q-o�bration.We now have a sequene of orbit q-o�brations and by proposition 3.11.4 wehave that
η : L→ colim

j
FjPL = PL



142 CHAPTER 4. OPERADS IN I S AND INVOLUTIONis an orbit q-o�bration. �Proposition 4.2.10Let f : K → L be a map under S. If f and S → K are orbit q-o�brations andeah P(j) an be written equivariantly as a produt X ∧ (Σj)+ with X being anorbit o�brant (non-equivariant) orthogonal spetrum, then Pf : PK → PL isalso an orbit q-o�bration.Proof: By proposition 3.11.4 we must show that
F1PK = P(1) ∧K → P(1) ∧ L = F1PLis an orbit q-o�bration, and that for every j ≥ 2 the map

FjPK ∪Fj−1PK Fj−1PL→ FjPLalso is an orbit q-o�bration. The �rst statement follows diretly from the as-sumptions together with proposition 3.11.1. The seond statement is proved asfollows:Fix some j ≥ 2 and onsider the diagram
sK∧(j−1) −−−→ K∧j

y
y

sL∧(j−1) −−−→ L∧j

.Observe that
K∧j ∪sK∧(j−1) sL∧(j−1) = K ∧ L∧j−1 ∪ L ∧K ∧ L∧j−2 ∪ · · · ∪ L∧j−1 ∧K .By proposition 3.11.1 the anonial map

K∧j ∪sK∧(j−1) sL∧(j−1) → L∧jis an orbit q-o�bration. Sine P(j) = X ∧ (Σj)+ for some orbit o�brant X, thefuntor P(j)∧Σj
− takes orbit q-o�brations to orbit q-o�brations, see proposi-tion 3.11.1. It follows that the map

P(j) ∧Σj
K∧j ∪P(j)∧Σj

sK∧(j−1) P(j) ∧Σj
sL∧(j−1) → P(j) ∧Σj

L∧jis an orbit q-o�bration. Now take a look at the diagram
Fj−1PK ←−−− P(j) ∧Σj

sK∧(j−1) −−−→ P(j) ∧Σj
K∧j

y
y

y

Fj−1PL ←−−− P(j) ∧Σj
sL∧(j−1) −−−→ P(j) ∧Σj

L∧j

.



4.2. OPERADS AND THE TWO SIDED BAR CONSTRUCTION 143Apply lemma 2.2.10 and use that orbit q-o�brations are stable under obasehange to onlude that
FjPK ∪Fj−1PK Fj−1PL→ FjPLis an orbit q-o�bration. �Proposition 4.2.11If for eah j the map α : P(j)→ Q(j) an be written equivariantly as a produt

X∧(Σj)+ → Y ∧(Σj)+ where X → Y is a π∗-isomorphism between orbit o�brantorthogonal spetra, and S → L is an orbit q-o�bration, then PL → QL is a
π∗-isomorphism.Proof: Sine eah P(j) is a produt X ∧ (Σj)+ where X is orbit o�brant, the�rst part of the proof of proposition 4.2.9 shows that eah map

Fj−1PL→ FjPLis an orbit q-o�bration. Similarly we have that eah Fj−1QL → FjQL also isan orbit q-o�bration. Observe that any orbit q-o�bration is an l-o�bration.Hene by proposition 2.1.9 it is enough to show that eah FjPL → FjQL is a
π∗-isomorphism.Fix j ≥ 1. We now perform a little trik using the o�brant replaementfuntor Γ: Let K be sL∧(j−1) or L∧j . In the argument that follows K ould infat be any orthogonal Σj-spetrum. The diagram

P(j) ∧Σj
ΓK

≃
−−−→ Q(j) ∧Σj

ΓK

≃

y
y≃

P(j) ∧Σj
K −−−→ Q(j) ∧Σj

Kan be written as
X ∧ ΓK

≃
−−−→ Y ∧ ΓK

≃

y
y≃

X ∧K −−−→ Y ∧Kfor some orbit o�brant X and Y . Sine ΓK → K is a level-equivalene, propo-sition 3.11.2 implies that the vertial maps are level-equivalenes. The map atthe top is a π∗-iso by proposition 2.4.7. Thus the two maps
P(j) ∧Σj

sL∧(j−1) → Q(j) ∧Σj
sL∧(j−1) and P(j) ∧Σj

L∧j → Q(j) ∧Σj
L∧jare π∗-isomorphisms.



144 CHAPTER 4. OPERADS IN I S AND INVOLUTIONNow we prove by indution that FjPL → FjQL is a π∗-iso. For j = 1 thisfollows diretly from the argument above sine F1PL = P(1) ∧ L and F1QL =
Q(1) ∧ L. For the indution step we onsider the diagram

Fj−1PL ←−−− P(j) ∧Σj
sL∧(j−1) i

−−−→ P(j) ∧Σj
L∧j

y
y

y

Fj−1QL ←−−− Q(j) ∧Σj
sL∧(j−1) i′

−−−→ Q(j) ∧Σj
L∧j

.The vertial maps are π∗-isos and the maps marked i and i′ are l-o�brations.By proposition 2.4.6 we get that the row-wise pushout, FjPL→ FjQL, is againa π∗-iso. �Proposition 4.2.12If eah P(j) an be written equivariantly as a produt X ∧ (Σj)+ with X beingan orbit o�brant (non-equivariant) orthogonal spetrum, and the maps S → Land S → K are orbit q-o�brations, and f : L→ K a π∗-isomorphism under S,then the map PL→ PK is also a π∗-isomorphism.Proof: It is enough to show that eah FjPL→ FjPK is a π∗-iso. This followsfrom proposition 2.1.9.We have F1PL = P(1) ∧ L and F1PK = P(1) ∧K, so applying the trik ofthe previous proof to the diagram
P(1) ∧ ΓL −−−→ P(1) ∧ ΓKy

y

P(1) ∧ L −−−→ P(1) ∧Kwe see that the natural map F1PL→ F1PK is a π∗-iso.Let cL∧j denote the o�ber of sL∧j−1 → L∧j . This map is an orbit o�brationby proposition 3.11.1, hene also an l-o�bration. This implies that cL∧j has thehomotopy type of the homotopy o�ber. Similarly we an de�ne cK∧j .Observe that proposition 2.4.9 also holds for orbit q-o�brations. To see thisnotie that its proof is formal. In the orbit o�brant ase, we an use proposi-tion 3.11.2 instead of proposition 2.4.7, and proposition 3.11.1 instead of propo-sition 2.4.8. By indution on j and using that the onlusion of proposition 2.4.9for the indution step, we prove that the map
cL∧j → cK∧jis a π∗-isomorphism.



4.2. OPERADS AND THE TWO SIDED BAR CONSTRUCTION 145We now laim that the map P(j) ∧Σj
cL∧j → P(j) ∧Σj

cK∧j is a π∗-iso. Tohek the laim, reall that P(j) = X ∧ (Σj)+, where X is orbit o�brant. Nowinspet the diagram
ΓX ∧ ΓcL∧j ≃

−−−→ ΓX ∧ ΓcK∧j

≃

y
y≃

X ∧ ΓcL∧j −−−→ X ∧ ΓcK∧j

≃

y
y≃

P(j) ∧Σj
cL∧j X ∧ cL∧j −−−→ X ∧ ΓcK∧j P(j) ∧Σj

cK∧j

.

The propositions 3.11.2 and 2.4.7 show that the maps marked with ≃ are π∗-isos.The laim follows.Now inspet the map between o�ber sequenes given by the �ltration:
Fj−1PL −−−→ FjPL −−−→ P(j) ∧Σj

cL∧j

y
y

y

Fj−1PK −−−→ FjPK −−−→ P(j) ∧Σj
cK∧j

.The �rst map is a π∗-iso by indution, while the last map is a π∗-iso by the ar-gument above. It follows that the middle vertial map also is a π∗-iso. �4.2.3 Operads and simpliial objetsWe are now going to disuss how a monad P indued by an operad extends tosimpliial orthogonal spetra. Reall that a simpliial orthogonal spetrum is afuntor
L• : ∆op → I S .But P has domain orthogonal spetra under the sphere spetrum, so we annotform the omposition PL• unless we demand that L• has a hosen lifting to asimpliial objet in S ↓ I S . Lukily this is not a restritive ondition; a funtor

∆op → (S ↓ I S ) is equivalent to a simpliial orthogonal spetrum L• togetherwith a hosen map S → L0.Geometri realization of a simpliial objet in S ↓ I S yields an orthogonalspetrum under S. And we ask if P and | − | ommutes:Proposition 4.2.13Let L• be a simpliial objet in S ↓ I S and P any operad in orthogonal spetra,then there is a natural isomorphism
ν : |PL•| → P |L•| ,



146 CHAPTER 4. OPERADS IN I S AND INVOLUTIONsuh that the following two diagrams ommute:
|L•|

|η|
−−−→ |PL•|

=

y
yν

|L•|
η

−−−→ P |L•|

and |PPL•|
Pν ν
−−−→ PP |L•|

|µ|

y
yµ

|PL•|
ν

−−−→ P |L•|

.Proof: We use the �ltration of P and onstrut ν : |FjPL•| → FjP |L•| byindution. For j = 1 we let
|F1PL•| = |P(1) ∧ L•| → P(1) ∧ |L•| = F1P |L•|be the natural isomorphism given by lemma 2.5.4. For the indutive step weonsider the diagram

|P(j) ∧Σj
L∧j
• | ←−−− |P(j) ∧Σj

sL∧j−1
• | −−−→ |Fj−1PL•|y

y
y

P(j) ∧Σj
|L•|∧j ←−−− P(j) ∧Σj

s|L•|∧j−1 −−−→ Fj−1P |L•|

.The �rst two vertial maps are isomorphisms by lemma 2.5.4, while the last is anisomorphism by indution. It follows that the map between the pushouts also isan isomorphism.Sine ν : |PL•| → P |L•| is a olimit of isomorphisms, it is itself an isomor-phism.To see that ν is unital we just observe from the onstrution above that thefollowing diagram ommutes:
|L•|

|η|
−−−→ |F1PL•| −−−→ |PL•|

=

y
y

yν

|L•|
η

−−−→ F1P |L•| −−−→ P |L•|

.At last we want to hek that ν ◦ |µ| is equal to µ ◦ Pν ◦ ν. Sine the naturalmap ∨j P(j)∧K∧j → PK is surjetive for any orthogonal spetrum K under S,it is enough to hek that the following diagram ommutes:
∣∣∣
∨

j P(j) ∧
(∨

k P(k) ∧ L∧k
•

)∧j
∣∣∣ −−−→

∨
j P(j) ∧

(∨
k P(k) ∧ |L•|∧k

)∧j

y
y

∣∣∣
∨

j P(j) ∧ L∧j
•

∣∣∣ −−−→
∨

j P(j) ∧ |L•|∧j

.To do this reall the stepwise de�nition of µ, use that wedge and geometri real-ization ommute and lemma 2.5.4. This �nishes the proof. �



4.2. OPERADS AND THE TWO SIDED BAR CONSTRUCTION 147Corollary 4.2.14Let P be an operad in orthogonal spetra. The geometri realization is a funtorfrom simpliial P -algebras to P -algebras.Proof: A simpliial P -algebra is a funtor
L• : ∆op → {P -algebras} .Its geometri realization is de�ned by realizing the underlying simpliial orthog-onal spetrum. We de�ne θ for |L•| as the omposition
P |L•|

ν
←−
∼=
|PL•| → |L•| .Here the last map uses the P -algebra struture of eah Lq. Using the two diagramsin the proposition above, we easily see that this is a P -algebra.Funtorality follows from naturality of ν. �4.2.4 The bar onstrutionWe are now going to reall the de�nition of May's two-sided bar onstrution.In [May72℄ May uses this bar onstrution in relation with operads in topologialspaes. In this subsetion we will prove his results for operads in orthogonalspetra. Due to remark 4.2.7 we will not onsider arbitrary operads, but onlythose P suh that eah P(j) an be written equivariantly as a produt X ∧ (σj)+for some orbit o�brant X. We are partiularly interested in improving a P-algebra to a homotopy equivalentQ-algebra, when given a map of operads P → Qsuh that eah P(j)→ Q(j) an be written equivariantly as the produt of a π∗-iso X → Y and (Σj)+.De�nition 4.2.15Let C be a monad, F a C-funtor andX a C-algebra, then we de�ne Bq(F,C,X) =

FCqX. We have fae and degeneray operators given by
d0 = λ, λ : FCqX → FCq−1X ,

di = FCi−1µ, µ : Cq−i+1X → Cq−iX for 0 < i < q,

dq = FCq−1θ, θ : CX → X and
si = FCiη, η : Cq−iX → Cq−i+1X .And we de�ne B(F,C,X) as the geometri realization of B•(F,C,X).We now speify the situation we are interested in. Let P be an operad inorthogonal spetra, and L a P-algebra. In addition let α : P → Q be a map ofoperads. Now assume that:



148 CHAPTER 4. OPERADS IN I S AND INVOLUTIONthe unit S → L is an orbit q-o�bration,the unit S → P(1) is an orbit q-o�bration and eah P(j) an be writtenequivariantly as a produt X ∧ (Σj)+ with X being an orbit o�brant (non-equivariant) orthogonal spetrum,the unit S → Q(1) is an orbit q-o�bration and eah Q(j) an be writtenequivariantly as a produt Y ∧ (Σj)+ with Y being an orbit o�brant (non-equivariant) orthogonal spetrum, andeah α : P(j) → Q(j) an be written equivariantly as a produt X ∧
(Σj)+ → Y ∧ (Σj)+ where X → Y is a π∗-isomorphism.These are standing assumptions for the rest of this subsetion.In order to do alulations with the bar onstrutions we should know that

[q] 7→ QP qL is good.Lemma 4.2.16Under the assumptions above [q] 7→ QP qL is good.Proof: The i'th degeneray operator is de�ned as
si = QP iη ,where η : P q−iL→ P q−i+1L ,for 0 ≤ i ≤ q. We will hek that si is an orbit q-o�bration.We use proposition 4.2.9 and proposition 4.2.10. By simultaneous indutionwe prove that the unit S → P jL and η : P jL → P j+1L are orbit q-o�brations.Sine both P and Q preserves orbit q-o�brations this implies that si = QP iη isan orbit q-o�bration. �Lemma 4.2.17

B(Q,P, L) is a Q-algebra.Proof: By orollary 4.2.14 it is enough to show that [q] 7→ QP qL is a simpliial
Q-algebra.For a given q the Q-algebra struture map θ : QQP qL → QP qL is de�nedas the multipliation µ′ of Q. By naturality of µ′ we easily see that the si's for
0 ≤ i ≤ q and the di's for 1 ≤ i ≤ q are Q-algebra morphisms. They are allde�ned as Qf for suitable f 's. Only d0 requires more heking. Reall that d0 isde�ned to be λ : QP qL→ QP q−1L, but λ = µ′Qα and assoiativity of µ′ impliesthat d0 is a Q-algebra morphism. �



4.2. OPERADS AND THE TWO SIDED BAR CONSTRUCTION 149Proposition 4.2.18Sine L is P -algebra, the evaluation B(P, P, L)→ L is a map of P -algebras anda π∗-isomorphism.Proof: De�ne
fq : PP qL→ Lto be the iterated omposition

PP qL
dq
−→ P qL

dq−1
−−→ P q−1L→ · · · → PL

θ
−→ L .This de�nes a simpliial map from [q] 7→ PP qL to the onstant simpliial orthog-onal spetrum [q] 7→ L. Its realization is the evaluation B(P, P, L)→ L. Sine Lis a P -algebra the following diagram ommutes for all q:

PPP qL
Pfq

−−−→ PL

µ

y
yθ

PP qL
fq

−−−→ L

,thus the olletion fq is a map of simpliial P -algebras, and by orollary 4.2.14it follows that B(P, P, L)→ L is also a P -algebra map.Using the unit η : L → PL we de�ne a oretration for the evaluation map.On the level of q-simplies it is de�ned by
sq
0η : L→ PP qL .Be warned that L→ B(P, P, L) is not a P -algebra map.The omposition L → B(P, P, L) → L is learly the identity. Composing inthe opposite order we get B(P, P, L)→ L→ B(P, P, L) and the resulting map isthe realization of

sq
0ηfq : PP qL→ PP qL .Now it is easy to see that the maps hi : PP qL→ PP q+1L for 0 ≤ i ≤ q, de�nedby

hi = si
0ηd

i
0 : PP qL→ PP q+1L ,give a simpliial homotopy between sq

0ηfq and the identity. Thus B(P, P, L)→ Lis a π∗-isomorphism. �Proposition 4.2.19Under the assumptions above the map B(P, P, L)→ B(Q,P, L) indued by α isboth a π∗-isomorphism and a map of P -algebras.



150 CHAPTER 4. OPERADS IN I S AND INVOLUTIONProof: By indutive use of proposition 4.2.9 the map S → P qL is an orbitq-o�bration for every q. By proposition 4.2.11 it follows that PP qL→ QP qL isa π∗-isomorphism for all q. The simpliial orthogonal spetra [q] 7→ PP qL and
[q] 7→ QP qL both are good by lemma 4.2.16, hene B(P, P, L)→ B(Q,P, L) is a
π∗-iso.The last laim is easily heked: α indues a P -algebra struture on QP qL,and the map (

[q] 7→ PP qL
)
→
(
[q] 7→ QP qL

)is a map of simpliial P -algebras. We now appeal to orollary 4.2.14. �Remark 4.2.20Together the two propositions 4.2.18 and 4.2.19 give a proedure for replaing a
P -algebra by a P -equivalent Q-algebra. We have

B(Q,P, L)← B(P, P, L)→ L .Here both maps are P -algebra maps and π∗-isomorphisms. In addition the �rst
P -algebra is also a Q-algebra. Moreover, the following proposition shows that
B(Q,P, L) is unique up to π∗-isomorphism of Q-algebras.Proposition 4.2.21In addition to the assumptions above assume that S → L′ and S → A are orbitq-o�brations. If A ← L′ → L are π∗-isomorphisms of P -algebras, with A a
Q-algebra, then there are π∗-isomorphisms

A← B(Q,P, L′)→ B(Q,P, L)of Q-algebras.Proof: By funtorality of the two-sided bar onstrution we have maps
B(Q,P, L)← B(Q,P, L′)→ B(Q,P,A)→ B(Q,Q,A)→ A .All these maps are easily seen to be maps of Q-algebras. By proposition 4.2.18the last map is a π∗-iso.By proposition 4.2.12 and orollary 4.2.14 the �rst two maps are π∗-isomorphisms.Combining the propositions 4.2.11 and 4.2.12, we prove by indution thateah

QP qA→ Qq+1Ais a π∗-iso. Hene by orollary 4.2.14 also the map B(Q,P,A)→ B(Q,Q,A) is a
π∗-iso. �



4.3. INVOLUTION OPERADS ON S[ΩM ] 1514.3 Involution operads on S[ΩM ]The main onern of the previous setions has been to set up a theory for operadsin orthogonal spetra. Let M be a ompat manifold and ξ a vetor bundle over
M . In this setion we will apply this theory to onstrut involutions, dependingon ξ, on orthogonal ring spetra R, whih are π∗-isomorphi to S[ΩM ]. Thus Rand S[ΩM ] have idential homotopy groups, and we want the involution on R tooinide with the involution ι on π∗S[ΩM ], where ι is given as follows:De�nition 4.3.1Assume that ξ is an n-vetor bundle. A lass in πqS[ΩM ] is represented by amap

α : Sq+k → ΩM+ ∧ S
k .Parallel transportation in ξ along loops in M gives a homomorphism

P : ΩM → GL(Rn) .Using P , we de�ne a map P̄ : Sn ∧ ΩM+ → ΩM+ ∧ S
n by sending (v, γ) to

(γ̄, P (γ)(v)). We have transported v along γ and reversed the loop. The involu-tion ι is now de�ned by sending the lass of α to the lass of the omposition
Sn ∧ Sq+k id∧α

−−−→ Sn ∧ ΩM+ ∧ S
k P̄∧id
−−−→ ΩM+ ∧ S

k+n .The strategy now is to onstrut operads Dn in orthogonal spetra, subse-tion 4.3.1, for positive integers n. When n is the �ber dimension of ξ, we show insubsetion 4.3.2 that S[ΩM ] is a Dn-algebra. The next step, subsetion 4.3.3, isto show that Dn and H are �homotopy equivalent� operads. In subsetion 4.3.4we bring everything together and state and prove the main theorem.4.3.1 The onstrutionHere we will design operads Dn in orthogonal spetra for every positive integer n.Their purpose is to enode the involution on S[ΩM ] given by an n-dimensionalvetor bundle ξ over a manifold M . In subsetion 4.3.2 below we will see that
S[ΩM ] is a Dn-algebra. The main result of this subsetion is:Theorem 4.3.2
Dn, as onstruted below, is an operad in orthogonal spetra. And there is a mapof operads Dn → H.The proof will be given at the end of this subsetion, before that we have toonstrut the operad. We will also provide an orbit o�brant replaement for Dn,see theorem 4.3.11 below.Our �rst aim is to de�ne for eah j orthogonal Σj-spetra Dn(j). But beforereahing this aim we have to introdue the topologial groups Dn(j;V ). Here V



152 CHAPTER 4. OPERADS IN I S AND INVOLUTIONis a �nite dimensional real inner produt spae. We write the group operationof Dn(j;V ) multipliatively, 1 is the unit, and we de�ne this group by speifyinggenerators and relations. The generators have the form (φ, r), where φ : Rn →֒ Vis an isometri embedding and 1 ≤ r ≤ j an integer. Notie that the generatorsform a topologial spae. There are two lasses of relations. These are:i) Canellation of repeated pairs: For all φ and r we set
(φ, r)(φ, r) = 1ii) Orthogonal pairs ommute: Whenever φ ⊥ ψ and r 6= r′, we set

(φ, r)(ψ, r′) = (ψ, r′)(φ, r) .There is an inreasing �ltration of Dn(j;V ). Let FmDn(j;V ) be the subset of allelements represented by words with m or fewer letters. As a topologial spae
FmDn(j;V ) is a quotient of ∐m

i=0X
×i, where X is the spae of generators. Andthe groupDn(j;V ) has the topology of the union (=olimit topology). Notie thatan isometri embedding V → V ′ indues a homomorphismDn(j;V )→ Dn(j;V ′).We are now ready to de�ne Dn(j).De�nition 4.3.3Let Dn(j) be the orthogonal Σj-spetrum given by the formula

Dn(j)(V ) = (Dn(j;V )× Σj)+ ∧ S
V .The right assembly, σ : Dn(j)(V ) ∧ SW → Dn(j)(V ⊕W ), is indued by thenatural isometri embedding V → V ⊕W . Let (x, ρ, v) be a point in (Dn(j;V )×

Σj)+ ∧ SV and ν ∈ Σj . Then the right Σj-ation Dn(j)(V )× Σj → Dn(j)(V ) issimply given by
((x, ρ, v), ν) 7→ (x, ρν, v) .Lemma 4.3.4Eah Dn(j) an be written equivariantly as a produt X ∧ (Σj)+, where X is a(non-equivariant) orthogonal spetrum.Proof: Let X(V ) = Dn(j;V )+ ∧ SV . �Now reall the de�nition of the operad H. Here we use the desription givenin remark 4.1.8. And we onsider H to be an operad in orthogonal spetra viasuspension, see example 4.1.6. We will now de�ne for eah j a map

Dn(j)→ H(j) .



4.3. INVOLUTION OPERADS ON S[ΩM ] 153After de�ning the operad struture on Dn we will see that the olletion of thesemaps de�nes a map of operads. We begin the onstrution by de�ning group ho-momorphisms p : Dn(j;V ) → (Z/2)j. Reall that we write Z/2 multipliatively.The maps p are given on generators by
p(φ, r) = (1, . . . , 1,−1, 1, . . . , 1) ,where the −1 lies in the r'th fator. The map above is now de�ned as
Dn(j)(V )=(Dn(j;V )× Σj)+ ∧ SV

(p×id)+∧id

y

H(j)(V ) = ((Z/2)j × Σj)+ ∧ SV

.The onstrution of omposition operations on Dn is quite abstrat. Letme therefore suggest to the reader to take a look at how the ation of Dn on
S[ΩM ] is de�ned, see the �rst part of subsetion 4.3.2, before proeeding withthe details given here. The ation has been the author's guideline when de�ningthe omposition operation. How to de�ne the operad struture on Dn is foredby the formulas for the ation. So keeping the main geometrial idea behind theation in mind, will probably help the reader to understand this subsetion.Assume for a moment that we an de�ne non-Σ-equivariant omposition op-erations ◦i : Dn(j;V )×Dn(k;W )→ Dn(j+ k− 1;V ⊕W ). Using these our nextgoal is to de�ne omposition operations on the produt Dn(j;V )×Σj . There willbe a twist by p in the de�nition of ◦i on the produt. Write pi(x) for the i'th fa-tor of p(x). Let (x, ρ) and (y, υ) be elements in Dn(j;V )×Σj and Dn(k;W )×Σkrespetively, then the formula is

(x, ρ) ◦i (y, υ) = (x ◦ρ(i) y, ρ ◦i (τk(pρ(i)(x))υ)) .Here τk denotes the group homomorphism Z/2 → Σk whih sends −1 to theorder reversing permutation. Compare this formula with the formula de�ning Hin remark 4.1.8.Details: We annot postpone the details any more. To de�ne the ompositionoperations
◦i : Dn(j;V )×Dn(k;W )→ Dn(j + k − 1;V ⊕W )we �rst de�ne a homomorphism ci : Dn(k;W ) → Dn(j + k − 1;V ⊕W ). Nextwe de�ne a left ation, ⊢i, depending on i, of Dn(j;V ) on Dn(j + k− 1;V ⊕W ).Then ◦i is given by the formula

x ◦i y = x ⊢i ci(y) .



154 CHAPTER 4. OPERADS IN I S AND INVOLUTIONLet i1 : V → V ⊕W and i2 : W → V ⊕W be the natural inlusions. ci is de�nedon generators of Dn(k;W ) by
ci(φ, r) = (i2φ, r + i− 1) .To de�ne ⊢i, we �rst introdue an automorphism, z 7→ z̄ of Dn(j+k−1;V ⊕W ).This automorphism depends on i and is de�ned on generators by

(φ, r) 7→






(φ, r) for r < i,
(φ, k + 2i− r − 1) for i ≤ r < k + i, and
(φ, r) for k + i ≤ r.For a generator (φ, r) in Dn(j;V ) and an element z ∈ Dn(j + k − 1;V ⊕W ) wenow de�ne ⊢i by

(φ, r) ⊢i z =






(i1φ, r)z for r < i,
(i1φ, i+ k − 1) · · · (i1φ, i)z̄ for r = i, and
(i1φ, r + k − 1)z for r > i.To prove formulas ontaining the omposition operators we often do indutionon the length of a word in theDn(−;−) groups. We also need some basi formulas.These are:Lemma 4.3.5Let x be a word and (φ, r) a generator of Dn(j;V ), let y be a word and (ψ, r′) agenerator of Dn(k;W ), and let z be a word in Dn(j + k − 1;V ⊕W ). We have:i) 1 ◦i 1 = 1,ii) x ⊢i z = (x ◦i 1)z if pi(x) = 1,iii) x ⊢i z = (x ◦i 1)z̄ if pi(x) = −1,iv) (x(φ, r)) ◦i 1 = (x ◦i 1)(φ, r) if r < i,v) (x(φ, r)) ◦i 1 = (x ◦i 1)(φ, i+ k − 1) · · · (φ, i) if r = i and pi(x) = 1,vi) (x(φ, r)) ◦i 1 = (x ◦i 1)(φ, i) · · · (φ, i+ k − 1) if r = i and pi(x) = −1,vii) (x(φ, r)) ◦i 1 = (x ◦i 1)(φ, r + k − 1) if r > i,viii) x ◦i (y(ψ, r′)) = (x ◦i y)(ψ, r

′ + i− 1) if pi(x) = 1,ix) x ◦i (y(ψ, r′)) = (x ◦i y)(ψ, k + i− r′) if pi(x) = −1,x) (x(φ, r)) ◦i y = (x ◦i y)(φ, r) if r < i, and



4.3. INVOLUTION OPERADS ON S[ΩM ] 155xi) (x(φ, r)) ◦i y = (x ◦i y)(φ, r + k − 1) if r > i.Observe that we have omitted the anonial inlusions i1 and i2 from the notation.Proof: All formulas are heked by inspeting the de�nition of ◦i. To illustratethe tehniques involved we write out the proofs for vi) and x).vi): We have
(x(φ, r)) ◦i 1 = x ⊢i ((φ, i) ⊢i 1)

= x ⊢i

(
(φ, i+ k − 1) · · · (φ, i)

)

= (x ◦i 1)(φ, i+ k − 1) · · · (φ, i)

= (x ◦i 1)(φ, i) · · · (φ, i+ k − 1) .Here we have used iii) and that ⊢i is a group ation.x): Observe that (φ, r)ci(y) = ci(y)(φ, r) by the �orthogonal pairs ommute�relation in Dn(j+k−1;V ⊕W ). Assume that pi(x) = 1, so that ii) applies. Nowwe have:
(x(φ, r)) ◦i y = x ⊢i

(
(φ, r) ⊢i ci(y)

)

=
(
x ◦i 1

)(
(φ, r)ci(y)

)

= (x ◦i 1)ci(y)(φ, r)

=
(
x ⊢i ci(y))(φ, r)

= (x ◦i y)(φ, r) .If pi(x) = −1 we use iii) instead of ii) in the above alulation. �We have the following proposition telling us how p and ◦ interat:Proposition 4.3.6Let x ∈ Dn(j;V ) and y ∈ Dn(k;W ). Then
ph(x ◦i y) =






ph(x) for h < i,
ph−i+1(y) for i ≤ h < i+ k and pi(x) = 1,
−pi+k−h(y) for i ≤ h < i+ k and pi(x) = −1, and
ph−k+1(x) for i+ k ≤ h.In the ase i ≤ h < i + k we an rewrite the formula as ph(x ◦i y) = pi(x) ·

pτk(pi(x))(h−i+1)(y).Proof: The ases h < i and i+ k ≤ h follow immediately from the de�nitions.



156 CHAPTER 4. OPERADS IN I S AND INVOLUTIONAssume that i ≤ h < i+ k. The proof proeeds by indution on the length of x.If x = 1, then pi(x) = 1 and we have
ph(x ◦i y) = ph(1 ◦i y) = ph(ci(y)) = ph−i+1(y) .Now let x = (φ, r)x′ and assume that the formula is true for x′. There aresix ases to onsider. For r we have three possibilities r < i, r = i or r > i, and

pi(x
′) an be 1 or −1. We hek two ases arefully, and leave the four others tothe reader.If r < i and pi(x

′) = −1, then also pi(x) = −1. The left side of the formulabeomes
ph(((φ, r)x

′) ◦i y) = ph((φ, r)(x
′ ◦i y)) = ph((φ, r)) · ph(x

′ ◦i y) = ph(x
′ ◦i y) ,while the right side is −pi+k−h(y). Thus the formula holds by the indutionhypothesis.If r = 1 and pi(x

′) = 1, then pi(x) = pi((φ, i)x
′) = pi(φ, i) · pi(x

′) = (−1) · 1 =
−1. Observe that by the de�nition of the involution z 7→ z̄ onDn(j+k−1;V ⊕W )we have ph(z̄) = pk+2i−h−1(z). Calulating the left side of the formula we get
ph(((φ, i)x

′) ◦i y) = ph((φ, i+ k − 1) · · · (φ, i)(x′ ◦i y)) = −pk+2i−h−1(x
′ ◦i y) ,and the right side is −pi+k−h(y). The indution hypothesis says that pi(x

′) = 1and thus pk+2i−h−1(x
′ ◦i y) = pi+k−h(y) sine i ≤ k+2i−h−1 < i+k. Thereforethe formula is true for x. �We now dedue the arithmeti rules for the omposition operators onDn(−;−).Proposition 4.3.7Let x ∈ Dn(j;V ), y ∈ Dn(k;W ) and z ∈ Dn(l;U). The following assoiativityformula holds:

(x ◦i y) ◦h z =






(x ◦h z) ◦i+l−1 y for h < i,
x ◦i (y ◦h−i+1 z) for i ≤ h < i+ k and pi(x) = 1,
x ◦i (y ◦i+k−h z) for i ≤ h < i+ k and pi(x) = −1, and
(x ◦h−k+1 z) ◦i y for i+ k ≤ h.Proof: To omplete this proof we have to do indution three times. Lukily wean redue the number of ases using the following observation: Suppose that wealready have proved the �rst ase of the formula, (x◦i y)◦h z = (x◦h z)◦i+l−1 y for

h < i, then by inserting x = x′, y = z′, z = y′, l = k′, h = i′ and i = h′ − k′ + 1we immediately get that
(x′ ◦h′−k′+1 z

′) ◦i′ y
′ = (x′ ◦i′ y

′) ◦h′ z′ for i′ < h′ − k′ + 1.And this is the last ase. Hene we need only to prove the �rst three ases.



4.3. INVOLUTION OPERADS ON S[ΩM ] 157First indution: We begin the proof by showing that
(x ◦i 1) ◦h 1 =






(x ◦h 1) ◦i+l−1 1 for h < i,
x ◦i (1 ◦h−i+1 1) for i ≤ h < i+ k and pi(x) = 1, and
x ◦i (1 ◦i+k−h 1) for i ≤ h < i+ k and pi(x) = −1.This is proved by indution on the length of x. Assume that x = x′(φ, r). Toomplete the indution step we need to hek the following ases individually:

h < i and r < h,
h < i, r = h and ph(x

′) = 1,
h < i, r = h and ph(x

′) = −1,
h < i and h < r < i,
h < i, r = i and pi(x

′) = 1,
h < i, r = i and pi(x

′) = −1,
h < i and i < r,
i ≤ h < i+ k, r < i and pi(x

′) = 1,
i ≤ h < i+ k, r < i and pi(x

′) = −1,
i ≤ h < i+ k, r = i and pi(x

′) = 1,
i ≤ h < i+ k, r = i and pi(x

′) = −1,
i ≤ h < i+ k, r > i and pi(x

′) = 1, and
i ≤ h < i+ k, r > i and pi(x

′) = −1.All ases are straight forward to hek using various formulas from lemma 4.3.5.As an illustration we verify two of the ases.For example if r = h < i and ph(x
′) = −1 then

((x′(φ, r)) ◦i 1) ◦h 1 = ((x′ ◦i 1)(φ, h)) ◦h 1

= ((x′ ◦i 1) ◦h 1)(φ, h) · · · (φ, h+ l − 1)

= ((x′ ◦h 1) ◦i+l−1 1)(φ, h) · · · (φ, h+ l − 1)

= ((x′ ◦h 1)(φ, h) · · · (φ, h+ l − 1)) ◦i+l−1 1

= ((x′(φ, r)) ◦h 1) ◦i+l−1 1 .Here we have used the formulas iv) and vi) from lemma 4.3.5 and the indutionhypothesis for the middle step.In the ase i ≤ h < i+ k, r > i and pi(x
′) = 1, we have

((x′(φ, r)) ◦i 1) ◦h 1 = ((x′ ◦i 1)(φ, r + k − 1)) ◦h 1

= ((x′ ◦i 1) ◦h 1)(φ, r + k + l − 2)

= (x′ ◦i (1 ◦h−i+1 1))(φ, r + k + l − 2)

= (x′(φ, r)) ◦i (1 ◦h−i+1 1) .Here we have used the indution hypothesis and formula vii) from lemma 4.3.5.The other ases are left as exerises.



158 CHAPTER 4. OPERADS IN I S AND INVOLUTIONSeond indution: Next we do indution on the length of y to show that
(x ◦i y) ◦h 1 =






(x ◦h 1) ◦i+l−1 y for h < i,
x ◦i (y ◦h−i+1 1) for i ≤ h < i+ k and pi(x) = 1, and
x ◦i (y ◦i+k−h 1) for i ≤ h < i+ k and pi(x) = −1.Observe that for y = 1 we have the formula we proved above. Assume that

y = y′(ψ, r′). Again there are several ases to onsider:
h < i and pi(x) = 1,
h < i and pi(x) = −1,
i ≤ h < i+ k, pi(x) = 1 and r′ < h− i+ 1,
i ≤ h < i+ k, pi(x) = 1, r′ = h− i+ 1 and ph−i+1(y

′) = 1,
i ≤ h < i+ k, pi(x) = 1, r′ = h− i+ 1 and ph−i+1(y

′) = 1,
i ≤ h < i+ k, pi(x) = 1 and r′ > h− i+ 1,
i ≤ h < i+ k, pi(x) = −1 and r′ < i+ k − h,
i ≤ h < i+ k, pi(x) = −1, r′ = i+ k − h and pi+k−h(y

′) = 1,
i ≤ h < i+ k, pi(x) = −1, r′ = i+ k − h and pi+k−h(y

′) = −1, and
i ≤ h < i+ k, pi(x) = −1 and r′ > i+ k − h.For example if h < i and pi(x) = 1, then

(x ◦i (y′(ψ, r′))) ◦h 1 = ((x ◦i y
′)(ψ, k + i− r′)) ◦h 1

= ((x ◦i y
′) ◦h 1)(ψ, k + i− r′)

= ((x ◦h 1) ◦i+l−1 y
′)(ψ, k + i− r′)

= (x ◦h 1) ◦i+l−1 (y′(ψ, r′)) .We have used that pi+l−1(x ◦h 1) = pi(x) = 1, the formulas viii) and vi) from thelemma and the indution hypothesis.Let us hek one more ase. If i ≤ h < i+ k, r′ = i+ k − h, pi(x) = −1 and
pi+k−h(y

′) = 1, then
(x ◦i (y′(ψ, r′))) ◦h 1 = ((x ◦i y

′)(ψ, i+ k − r′)) ◦h 1

= ((x ◦i y
′)(ψ, h)) ◦h 1

= ((x ◦i y
′) ◦h 1)(ψ, h) · · · (ψ, h+ l − 1)

= (x ◦i (y′ ◦i+k−h 1))(ψ, h) · · · (ψ, h+ l − 1)

= x ◦i ((y′ ◦i+k−h 1)(ψ, i+ k − h+ l − 1) · · · (ψ, i+ k − h))

= x ◦i ((y′(ψ, i+ k − h)) ◦i+k−h 1)

= x ◦i ((y′(ψ, r′)) ◦i+k−h 1) .We have used the formulas ix), vi) and v) from the lemma, the indution hypoth-esis and that ph(x ◦i y′) = −1.



4.3. INVOLUTION OPERADS ON S[ΩM ] 159Third indution: At last we use indution on the length of z to prove that
(x ◦i y) ◦h z =






(x ◦h z) ◦i+l−1 y for h < i,
x ◦i (y ◦h−i+1 z) for i ≤ h < i+ k and pi(x) = 1, and
x ◦i (y ◦i+k−h z) for i ≤ h < i+ k and pi(x) = −1.Observe that the previous indution proves this formula in the ase z = 1. Nowassume that z = z′(θ, r′′). These are the ases to onsider:

h < i and ph(x) = 1,
h < i and ph(x) = −1,
i ≤ h < i+ k, pi(x) = 1 and ph−i+1(y) = 1,
i ≤ h < i+ k, pi(x) = 1 and ph−i+1(y) = −1,
i ≤ h < i+ k, pi(x) = −1 and pi+k−h(y) = 1, and
i ≤ h < i+ k, pi(x) = −1 and pi+k−h(y) = −1.We write out two of the ases: If h < i and ph(x) = 1, then

(x ◦i y) ◦h (z′(θ, r′′)) = ((x ◦i y) ◦h z
′)(θ, r′′ + h− 1)

= ((x ◦h z
′) ◦i+l−1 y)(θ, r

′′ + h− 1)

= ((x ◦h z
′)(θ, r′′ + h− 1)) ◦i+l−1 y

= (x ◦h (z′(θ, r′′))) ◦i+l−1 y .We have here used that ph(x◦i y) = ph(x) = 1, the formulas viii) and x) from thelemma and the indution hypothesis.In the ase i ≤ h < i+ k, pi(x) = 1, ph−i+1(y) = −1 we have
(x ◦i y) ◦h (z′(θ, r′′)) = ((x ◦i y) ◦h z

′)(θ, l + h− r′′)

= (x ◦i (y ◦h−i+1 z
′))(θ, l + h− r′′)

= x ◦i ((y ◦h−i+1 z
′)(θ, l + h− i+ 1− r′′))

= x ◦i (y ◦h−i+1 (z′(θ, r′′))) .We have used that ph(x ◦i y) = ph−i+1(y) = −1, the formulas viii) and ix) of thelemma and the indution hypothesis.The heking of all remaining ases is left to the reader. �Reall that our aim is to de�ne omposition operations for the produts
Dn(j;V )× Σj . The formula is

(x, ρ) ◦i (y, υ) = (x ◦ρ(i) y, ρ ◦i (τk(pρ(i)(x))υ)) .And we want to hek assoiativity, equivariane and unity. We begin withequivariane.



160 CHAPTER 4. OPERADS IN I S AND INVOLUTIONLemma 4.3.8Let (x, ρ) ∈ Dn(j;V )× Σj , ρ′ ∈ Σj , (y, υ) ∈ Dn(k;W )× Σk and υ′ ∈ Σk. Thereis a right ation of Σj on Dn(j;V )× Σj de�ned by
(x, ρ).ρ′ = (x, ρρ′)and we have

((x, ρ).ρ′) ◦i ((y, υ).υ′) = ((x, ρ) ◦ρ′(i) (y, υ)).(ρ′ ◦i υ
′) .Proof: This proof is easy. We have:

((x, ρ).ρ′) ◦i ((y, υ).υ′) = (x, ρρ′) ◦i (y, υυ′)

= (x ◦ρρ′(i) y, (ρρ
′) ◦i (τk(pρρ′(i)(x))υυ

′))

= (x ◦ρρ′(i) y, ρ ◦ρ′(i) (τk(pρρ′(i)(x))υ)(ρ′ ◦i υ
′))

= (x ◦ρρ′(i) y, ρ ◦ρ′(i) (τk(pρρ′(i)(x))υ)).(ρ′ ◦i υ
′)

= ((x, ρ) ◦ρ′(i) (y, υ)).(ρ′ ◦i υ
′) .

�Lemma 4.3.9Let (x, ρ) ∈ Dn(j;V ) × Σj , (y, υ) ∈ Dn(k;W ) × Σk and (z, µ) ∈ Dn(l;U) × Σl.The following assoiativity holds for ◦:
((x, ρ)◦i (y, υ))◦h(z, µ) =






((x, ρ) ◦h (z, µ)) ◦i+l−1 (y, υ) for h < i,
(x, ρ) ◦i ((y, υ) ◦h−i+1 (z, µ)) for i ≤ h < i+ k, and
((x, ρ) ◦h−k+1 (z, µ)) ◦i (y, υ) for i+ k ≤ h.Proof: As in the proof of proposition 4.3.7, we observe that the �rst ase ofthis formula implies the last ase. Hene it is enough to hek the �rst two ases.Reall the formula de�ning the omposition operators on Dn(−;−)×Σ−. Wemay rewrite the formula as

(x, ρ) ◦i (y, υ) =

{
(x ◦ρ(i) y, ρ ◦i υ) if pρ(i)(x) = 1, and
(x ◦ρ(i) y, ρ ◦i (τkυ)) if pρ(i)(x) = −1.Here we have used the onvention that τk without an argument denotes theorder reversing permutation in Σk, while τk with an argument denotes the grouphomomorphism Z/2→ Σk sending −1 to the order reversing permutation. Thisformula will be applied many times throughout this proof, both forward andbakward.



4.3. INVOLUTION OPERADS ON S[ΩM ] 161A speial ase for h < i: First we assume that the permutations ρ, υ and µare the identity.
(
(x, id j) ◦i (y, idk)

)
◦h (z, id l) = (x ◦i y, id j ◦i τk(pi(x))) ◦h (z, id l)

= ((x ◦i y) ◦h z, (id j ◦i τk(pi(x))) ◦h τl(ph(x)))

= ((x ◦h z) ◦i+l−1 y, (id j ◦h τl(ph(x))) ◦i+l−1 τk(pi(x)))

= (x ◦h z, id j ◦h τl(ph(x))) ◦i+l−1 (y, idk)

=
(
(x, id j) ◦h (z, id l)

)
◦h (y, idk) .In addition to the formula we have used the assoiativity for the ompositionoperators, proposition 4.3.7 for Dn(−;−) and lemma A.3.5 for ◦ of the per-mutations, and the alulations: id j ◦i τk(pi(x))(h) = h, ph(x ◦i y) = ph(x),

id j ◦h τl(ph(x))(i+ l − 1) = i+ l − 1 and pi+l−1(x ◦h z) = pi(x).A speial ase for i ≤ h < i+ k: Also here we let the permutations ρ, υ and
µ be the identity. If pi(x) = 1 and ph−i+1(y) = 1, then

(
(x, id j) ◦i (y, idk)

)
◦h (z, id l) = (x ◦i y, id j ◦i idk) ◦h (z, id l)

= ((x ◦i y) ◦h z, (id j ◦i idk) ◦h id l)

= (x ◦i (y ◦h−i+1 z), id j ◦i (idk ◦h−i+1 id l))

= (x, id j) ◦i (y ◦h−i+1 z, id k ◦h−i+1 id l)

= (x, id j) ◦i
(
(y, idk) ◦h−i+1 (z, id l)

)
.If pi(x) = 1 and ph−i+1(y) = −1, then

(
(x, id j) ◦i (y, idk)

)
◦h (z, id l) = (x ◦i y, id j ◦i idk) ◦h (z, id l)

= ((x ◦i y) ◦h z, (id j ◦i idk) ◦h τl)

= (x ◦i (y ◦h−i+1 z), id j ◦i (idk ◦h−i+1 τl))

= (x, id j) ◦i (y ◦h−i+1 z, id k ◦h−i+1 τl)

= (x, id j) ◦i
(
(y, idk) ◦h−i+1 (z, id l)

)
.If pi(x) = −1 and ph−i+1(y) = 1, then

(
(x, id j) ◦i (y, idk)

)
◦h (z, id l) = (x ◦i y, id j ◦i τk) ◦h (z, id l)

= ((x ◦i y) ◦2i+k−h−1 z, (id j ◦i τk) ◦h τl)

= (x ◦i (y ◦h−i+1 z), id j ◦i (τk ◦h−i+1 τl))

= (x ◦i (y ◦h−i+1 z), id j ◦i (τk+l−1(idk ◦h−i+1 id l)))

= (x, id j) ◦i (y ◦h−i+1 z, id k ◦h−i+1 id l)

= (x, id j) ◦i
(
(y, idk) ◦h−i+1 (z, id l)

)
.



162 CHAPTER 4. OPERADS IN I S AND INVOLUTIONIf pi(x) = −1 and ph−i+1(y) = −1, then
(
(x, id j) ◦i (y, idk)

)
◦h (z, id l) = (x ◦i y, id j ◦i τk) ◦h (z, id l)

= ((x ◦i y) ◦2i+k−h−1 z, (id j ◦i τk) ◦h id l)

= (x ◦i (y ◦h−i+1 z), id j ◦i (τk ◦h−i+1 id l))

= (x ◦i (y ◦h−i+1 z), id j ◦i (τk+l−1(idk ◦h−i+1 τl))))

= (x, id j) ◦i (y ◦h−i+1 z, id k ◦h−i+1 τl)

= (x, id j) ◦i
(
(y, idk) ◦h−i+1 (z, id l)

)
.In addition to the formula we have used proposition 4.3.7 and lemma A.3.5, andsome small alulations. Most notably that τk ◦h−i+1 id l = τk+l−1(idk ◦h−i+1 τl).The general ase: Now we will use equivariane to get assoiativity in thease where the permutations ρ, υ and µ are arbitrary. We have:

((x, ρ) ◦i (y, υ)) ◦h (z, µ) =
(
((x, id j) ◦ρ(i) (y, idk)) ◦(ρ◦iυ)(h) (z, id l)

)
.
(
(ρ ◦i υ) ◦h µ

)
,

((x, ρ) ◦h (z, µ)) ◦i+l−1 (y, υ) =
(
((x, id j) ◦ρ(h) (z, id l)) ◦(ρ◦hµ)(i+l−1) (y, idk)

)
.
(
(ρ ◦h µ) ◦i+l−1 υ

)
,

(x, ρ) ◦i ((y, υ) ◦h−i+1 (z, µ)) =
(
(x, id j) ◦ρ(i) ((y, idk) ◦υ(h−i+1) (z, id l))

)
.
(
ρ ◦i (υ ◦h−i+1 µ)

) and
((x, ρ) ◦h−k+1 (z, µ)) ◦i (y, υ) =

(
((x, id j) ◦ρ(h−k+1) (z, id l)) ◦(ρ◦hµ)(i) (y, idk)

)
.
(
(ρ ◦h−k+1 µ) ◦i υ

)
.Using that ◦ is assoiative for permutations, and that assoiativity holds when thepermutations are the identity (the speial ases), we now get the general result. �Lemma 4.3.10

(1, id) is the unit for ◦ on Dn(j;V )× Σj .Proof: This is obvious. Simple alulations show that for all (x, ρ) ∈ Dn(j;W )×
Σj we have

(x, ρ) ◦i (1, id1) = (x, ρ)and
(1, id1) ◦1 (x, ρ) = (x, ρ) .

�We now omplete the proof of theorem 4.3.2:Proof: The main issue is to onstrut the omposition operations, and then toverify the axioms. We already have de�ned
◦i : (Dn(j;V )× Σj)+ ∧ (Dn(k;W )× Σk)+ → (Dn(j + k − 1;V ⊕W )×Σj+k−1)+by the formula

(x, ρ) ◦i (y, υ) = (x ◦ρ(i) y, ρ ◦i (τk(pρ(i)(x))υ)) .



4.3. INVOLUTION OPERADS ON S[ΩM ] 163Reall that Dn(j)(V ) is de�ned as (Dn(j;V ) × Σj)+ ∧ SV . Let ◦̃i : Dn(j)(V ) ∧
Dn(k)(W )→ Dn(j+k−1)(V ⊕W ) be indued by these. We think of ◦̃i as exterioromposition operations. And we hek that they are natural transformations thatoequalizers

Dn(j)∧̃S∧̃Dn(k) ⇉ Dn(j)∧̃Dn(k) .Therefore we have indued maps
◦i : Dn(j) ∧ Dn(k)→ Dn(j + k − 1) .Assoiativity for ◦ onDn follows from assoiativity for ◦ on j 7→ Dn(j;−)×Σj ,likewise for equivariane when we let the right ation of Σj on Dn(j) be induedfrom the right ation of Σj on Dn(j;−)×Σj . The unity axiom follows similarly.To see that the olletion of maps Dn(j) → H(j) de�nes a map of operadsone ompares the formula above and the formula given in remark 4.1.8. Reallthat p denotes the group homomorphism Dn(j;V ) → (Z/2)j, and notie that

p(x ◦i y) = p(x) ◦i p(y) by proposition 4.3.6. �We round up this subsetion by providing an orbit o�brant replaement for
Dn:Theorem 4.3.11There exists an operad in orthogonal spetra, whih we denote by Γ̂Dn, suh thatthere is a map of operads Γ̂Dn → Dn,for eah j the map Γ̂Dn(j)→ Dn(j) is a level-equivalene, andeah Γ̂Dn(j) an be desribed Σj-equivariantly as a produt X ∧ (Σj)+,where X is non-equivariant and orbit o�brant.Proof: We have a non-Σ version D′n of the operad Dn given by

D′n(j)(V ) = Dn(j;V )+ ∧ S
V .In analogy to what we did in the proof above, we have non-Σ omposition op-erations ◦i for D′n indued by the ◦i's on Dn(−;V )+. Observe that Dn(j) ∼=

D′n(j) ∧ (Σj)+. The idea is now to apply the orbit o�brant replaement funtor
Γ̃ to D′n. For the de�nition and the properties of Γ̃, see theorem 3.9.1.We now de�ne the ◦i's for Γ̃D′n as ompositions

Γ̃D′n(j) ∧ Γ̃D′n(k)
φ
−→ Γ̃ (D′n(j) ∧ D′n(k))

Γ̃(◦i)
−−−→ Γ̃D′n(j + k − 1) .Sine Γ̃ is symmetri, these ◦i's for Γ̃D′n will satisfy assoiativity relations anal-ogous to those given in proposition 4.3.7.



164 CHAPTER 4. OPERADS IN I S AND INVOLUTIONNow de�ne Γ̂Dn by
Γ̂Dn(j) = Γ̃D′n(j) ∧ (Σj)+ .We have right Σj ations as usual. And the ◦i's on Γ̂Dn are de�ned by the sameformula as before. Lemma 4.3.8 is formal and the argument yields that ◦i's on

Γ̂Dn are equivariant. Furthermore, the argument of lemma 4.3.9 is also formal,thus ◦i's on Γ̂Dn are also assoiative. Hene Γ̂Dn is an operad in orthogonalspetra.The natural level-equivalene Γ̃L → L from theorem 3.9.1, indues the mapof operads Γ̂Dn → Dn. Clearly for eah j the map Γ̂Dn(j) → Dn(j) is a level-equivalene. And sine Γ̃L is orbit o�brant for any L the last statement follows.
�Remark 4.3.12By the onstrution of Γ̂Dn it is easily seen that there exists a map of operads

f :M→ Γ̂Dn suh that the omposition
M

f
−→ Γ̂Dn → Dn →His the standard inlusion. The identity element in Dn(j;V ) gives an inlusion
S → D′n(j)for every j. Reall that Γ̃ omes with a unit map S → Γ̃S. So we get a map

S → Γ̃D′n(j) .Smashing with (Σj)+ yields
f :M(j)→ Γ̂Dn(j) .4.3.2 The ation of Dn on S[ΩM ]In this subsetion we will onstrut a Dn-algebra struture on the orthogonalspetrum S[ΩM ]. This struture depends on an n-vetor bundle ξ overM . Reallthat by de�nition of S[ΩM ], the V 'th spae is (ΩM)+ ∧ SV . In this subsetionwe will prove the following theorem:Theorem 4.3.13Let M be a ompat smooth manifold and ξ an n-vetor bundle over M , thenthe orthogonal spetrum S[ΩM ] has a Dn-algebra struture whih depends on ξ.



4.3. INVOLUTION OPERADS ON S[ΩM ] 165Before proving this theorem there are some preliminary onsiderations andonstrutions. First we should agree on a suitable model for the loop spae ΩM .See [AH56℄ or subsetion 5.1 in [CM95℄ for the de�nition of �Moore loops�. Wemodify this de�nition slightly to get pieewise smooth �Moore loops�.Let m0 be a base point inM . For tehnial reasons it is important to have anassoiative multipliation (omposition of loops) and that every loop is pieewisesmooth. Here we de�ne suh a spae ΩM as the geometrial realization of asimpliial monoid. A q-simplex is a pieewise smooth map
γ : ∆q × I →Mtogether with a pieewise a�ne map
l : ∆q → [0,∞)suh that γ(t, 0) = γ(t, 1) = m0 for all t ∈ ∆q and whenever l(t) = 0 then

γ(t, s) = m0 for all s ∈ I. Here l(t) is thought of as the �length� of the loop
s 7→ γ(t, s).If we have two q-simplies (γ1, l1) and (γ2, l2) we multiply (ompose) these asfollows: Let l = l1 + l2 and de�ne γ by

γ(t, s) =






γ1(t,
s(l1+l2)

l1
) if s(l1 + l2) < l1,

m0 if s(l1 + l2) = l1, and
γ2(t,

s(l1+l2)−l1
l2

) if s(l1 + l2) > l1.Here we have divided the interval I into two piees, the ratio between theirlengths being l1(t) to l2(t). On the �rst piee we use γ1 and on the seond weuse γ2. Assoiativity of the omposition follows. We will use the notation � forthis operation.Notie that ΩM has the orret homotopy type. Let Ω′M be the geometrialrealization of the simpliial set having q-simplies the pieewise smooth maps
γ : ∆q × I → M suh that γ(t, 0) = γ(t, 1) = m0. Then we an ompare thisspae with ΩM . There is an inlusion

i : Ω′M → ΩMde�ned by setting l onstant equal to 1. And we have a retration
r : ΩM → Ω′Mby forgetting l. Clearly ri = id . And it is possible to onstrut a simpliialhomotopy ir ≃ id . Therefore ΩM ≃ Ω′M . Furthermore, Ω′M is homotopi tothe spae of ontinuous maps (I, {0, 1})→ (M,m0), see hapter 17 in [Mil63℄.There is an involution on ΩM . We write (γ, l) 7→ (γ, l), and it is de�ned bysending γ to the reversed loop,

γ(t, s) = γ(t, 1− s) ,



166 CHAPTER 4. OPERADS IN I S AND INVOLUTIONwhile leaving l unhanged. Notie that the involution is an anti-homomorphism.This means that
(γ1, l1) � (γ2, l2) = (γ2, l2) � (γ1, l1) .We will often simplify the notation for a loop in ΩM , and leave the length lout of the notation.The onstrution of the Dn-algebra struture on S[ΩM ] will use a onnetion

∇ on ξ. We need to take parallel transportation along pieewise smooth loopsin M . However, the hoie of onnetion will not arry any information up tohomotopy.Choose a onnetion ∇ on ξ and an isomorphism Rn ∼= ξm0 . Then paralleltransportation yields a ontinuous map
P : ΩM → GL(Rn)suh that

P (γ1 � γ2) = P (γ2)P (γ1) for all pieewise smooth loops γ1 and γ2, and
P (γ) = P (γ)−1 for all pieewise smooth loops γ.For more about parallel transportation see remark 17.4 in [MT97℄.Given a �nite dimensional real inner produt spae V and an isometri em-bedding φ : Rn → V , we write V as the sum φ(Rn) + V ⊥, where V ⊥ is theorthogonal omplement of φ(Rn) in V . Given a pieewise smooth loop γ in M ,we de�ne the map φ∗(γ) : V → V by using P (γ) on φ(Rn) while leaving V ⊥unhanged. For v = φ(u) + w, u ∈ Rn and w ∈ V ⊥ we have

φ∗(γ)(v) = φ(P (γ)(u)) + w .Let φ and ψ be isometri embeddings of Rn in V , and γ, γ1 and γ2 be pieewisesmooth loops in M , then:
φ∗(γ1 � γ2) = φ∗(γ2)φ

∗(γ1),
φ∗(γ) = φ∗(γ)−1, and
φ∗(γ1)ψ

∗(γ2) = ψ∗(γ2)φ
∗(γ1) if φ ⊥ ψ.Notie that the map (φ, γ) 7→ φ∗(γ) is ontinuous when φ lies in the spae ofisometri embeddings, γ lies in ΩM and the image lies in GL(V ).Next we de�ne an ation of the group Dn(j;V ) on the spae F (SV , SV ) ∧

(ΩM+)∧j. Reall that F (X, Y ) denotes the spae of based maps X → Y .Let (φ, r) be a generator of Dn(j;V ) and (f ; γ1, . . . , γj) a point in F (SV , SV ) ∧
(ΩM+)∧j. Then we de�ne the ation by the formula

(φ, r).(f ; γ1, . . . , γj) = (φ∗(γr) ◦ f ; γ1, . . . , γr−1, γr, γr+1, . . . , γj) .



4.3. INVOLUTION OPERADS ON S[ΩM ] 167It is easily seen that
(φ, r).

(
(φ, r).(f ; γ1, . . . , γj)

)
= (f ; γ1, . . . , γj)and if φ ⊥ ψ and r 6= r′, then

(φ, r).
(
(ψ, r′).(f ; γ1, . . . , γj)

)
= (ψ, r′).

(
(φ, r).(f ; γ1, . . . , γj)

)
.Thus we have a well de�ned group ation.Also Σj ats from the left on the spae F (SV , SV ) ∧ (ΩM+)∧j . This ation isby permutation of the loops. For ρ ∈ Σj we have

ρ.(f ; γ1, . . . , γj) = (f ; γρ−1(1), . . . , γρ−1(j)) .Now de�ne θ̄j : Dn(j)∧(ΩM+)∧j → S[ΩM ] by ommutativity of the followingdiagram:
SV ∧ (Dn(j;V )× Σj)+ ∧ F (SV , SV ) ∧ (ΩM+)∧j→SV ∧ F (SV , SV ) ∧ (ΩM+)∧j

x
y

(Dn(j;V )× Σj)+ ∧ S
V ∧ (ΩM+)∧j → ΩM+ ∧ SV

.The top map ombines the group ations, �rst apply the Σj-ation, then the
Dn(j;V )-ation. The left map is the inlusion at id ∈ F (SV , SV ) and the rightmap evaluates f ∈ F (SV , SV ) on SV and multiplies (omposes) the loops. Themap at the bottom is θ̄j evaluated at V . Clearly θ̄j ommutes with assembliesfor Dn(j) ∧ (ΩM+)∧j and S[ΩM ], and is thus a well de�ned map of orthogonalspetra.Via a series of adjuntions there is for orthogonal spetra L and K and abased spae A, a one-to-one orrespondene between maps L∧A→ K and maps
L ∧ F0A→ K. The adjuntions are:

I S (L ∧A, Y ) ∼= Top∗(A,I S (L,K))
∼= Top∗(A,F (L,K)(0)) ∼= I S (F0A,F (L,K)) ∼= I S (L ∧ F0A,K) .Applied to θ̄j we get our map

θj : Dn(j) ∧ S[ΩM ]∧j → S[ΩM ] .Alternatively, it is possible to give a more expliit desription of θ̄j . Let
x = (φ1, r1) . . . (φs, rs) be a point in Dn(j;V ), ρ ∈ Σj , v ∈ V and (γ1, . . . , γj)loops in ΩM j . We now want to give a formula for θ̄j(x, ρ, v; γ1, . . . , γj). Thepermutation ρ permutes the loops, and eah (φt, rt) reverses the loop at the rt'thposition. Therefore we de�ne δi to be the loop given by

δi =

{
γρ−1(i) if pi(x) = 1, and
γρ−1(i) if pi(x) = −1.



168 CHAPTER 4. OPERADS IN I S AND INVOLUTIONEah (φt, rt) also hanges the vetor v in V by parallel transportation alongthe loop at the rt'th position. But notie that the diretion along the loop inwhih one should perform the parallel transportation, depends on the number ofourrenes of the number rt among rt+1, . . . , rs. Therefore we de�ne the sign ǫtby
ǫt = prt

((φt+1, rt+1) . . . (φs, rs)) .Calulating, we get that
θ̄j(x, ρ, v; γ1, . . . , γj) = (δ1 � · · · � δj, φ

∗
1(γρ−1(r1))

ǫ1 · · ·φ∗s(γρ−1(rs))
ǫs(v)) .Remark 4.3.14To identify the involution we should pay speial attention to the ase where

j = 1. Inspet the map θ̄1 at level V = Rn, and at the points in Dn(1) given by
x = (idRn, 1) and ρ = id . We send (v, γ) to

θ̄1(x, ρ, v; γ) = (γ̄, (idRn)∗(γ)(v)) = (γ̄, P (γ)(v)) .Reall that P (γ) is the parallel transport in ξ along γ. The resulting map
Sn ∧ ΩM+ → ΩM+ ∧ S

nis preisely the map P̄ , whih we use to de�ne the involution ι on π∗S[ΩM ]. Seede�nition 4.3.1.We omplete the proof of theorem 4.3.13 by showing that the maps θj for
j ≥ 0, is a Dn-algebra struture on S[ΩM ].Proof: We have to hek the axioms given in de�nition 4.1.11. Triviality of theunit and equivariane are easily seen to hold. It remains to show that θ ats.Let Z be the spae F (SV⊕W , SV⊕W ) ∧ (ΩM+)∧j+k−1. A point z in Z an bewritten as (f ; γ1, . . . , γj+k−1), where f is an endomorphism of SV⊕W and the γ'sare loops in M . The main ingredient of the proof will be to de�ne several groupations on Z, understand how these interat with eah other and how the ationsrelate to θ and ◦.By A we will denote the ation of Dn(j + k − 1;V ⊕W ) on Z de�ned above.Reall that the formula on generators is
A ((φ, r), (f ; γ1, . . . , γj+k−1)) = (φ∗(γr) ◦ f ; γ1, . . . , γr−1, γr, γr+1, . . . , γj+k−1) .The ation of Σj+k−1 on Z will in this proof be denoted by B and is given by

B (ρ, (f ; γ1, . . . , γj+k−1)) = (f ; γρ−1(1), . . . , γρ−1(j+k−1)) .Depending on i there are ations Ai of Dn(j;V ) on Z. We de�ne the ation
Ai of the generator (φ, r) on z = (f ; γ1, . . . , γj+k−1) by the formula

Ai((φ, r), z) =






(φ∗(γr) ◦ f ; γ1, . . . , γr−1, γr, γr+1, . . . , γj+k−1) if r < i,
(φ∗(δ) ◦ f ; γ1, . . . , γi−1, γi+k−1, . . . , γi, γi+k, . . . , γj+k−1) if r = i, and
(φ∗(γr+k−1) ◦ f ; γ1, . . . , γr+k−2, γr+k−1, γr+k, . . . , γj+k−1) if r > i.



4.3. INVOLUTION OPERADS ON S[ΩM ] 169Here δ is the omposition γi � · · · � γi+k−1. We have impliitly hanged the targetof the isometri embedding φ to be V ⊕W via the anonial map V → V ⊕W .Also depending on i there are ationsBi ofΣj on Z. Let z = (f ; γ1, . . . , γj+k−1)be a point in Z. The ation Bi of ρ ∈ Σj is given by putting boxes around the
γ's as follows:

γ1 , . . . , γi−1 , γi, γi+1, . . . , γi+k−1 , γi+n , . . . , γj+k−1 .And we use ρ to permute the boxes. The ation leaves f unhanged. The resultis alled Bi(ρ, z).De�ne the ation αi of Dn(k;W ) on Z by the formula:
αi((φ, r), z) = (φ∗(γr+i−1) ◦ f ; γ1, . . . , γr+i−2, γr+i−1, γr+i, . . . , γj+k−1) .Here we understand the target of φ to be V ⊕W via the anonial map W →

V ⊕W .The ation βi of Σk on Z is given by permuting the loops γi, . . . , γi+k−1. For
υ ∈ Σk we have

βi(υ, z) = (f ; γ1, . . . , γi−1, γυ−1(1)+i−1, . . . , γυ−1(k)+i−1, γi+k, . . . , γj+k−1) .Reall also the de�nition of ◦i : Dn(j;V )×Dn(k;W )→ Dn(j+k−1;V ⊕W ).We had homomorphisms ci : Dn(k;W )→ Dn(j+k−1;V ⊕W ) given by ci(φ, r) =
(φ, r+ i−1), and ations ⊢i of Dn(j;V ) on Dn(j+k−1;V ⊕W ). For a generator
(φ, r) in Dn(j;V ) and an element y ∈ Dn(j + k − 1;V ⊕W ), ⊢i is given by

(φ, r) ⊢i y =






(φ, r)y for r < i,
(φ, i+ k − 1) · · · (φ, i)ȳ for r = i, and
(φ, r + k − 1)y for r > i,where y 7→ ȳ is an automorphism of Dn(j + k− 1;V ⊕W ) de�ned on generatorsby

(φ, r) 7→






(φ, r) for r < i,
(φ, k + 2i− r − 1) for i ≤ r < k + i, and
(φ, r) for k + i ≤ r.Now if x ∈ Dn(j;V ) and y ∈ Dn(k;W ), then

x ◦i y = x ⊢i ci(y) .Reall that ◦i on (Dn(j;V )× Σj)× (Dn(k;W )× Σk) is de�ned by the formula
(x, ρ) ◦i (y, υ) = (x ◦ρ(i) y, ρ ◦i (τk(pρ(i)(x))υ)) .By E we will denote the map

SV⊕W ∧ F (SV⊕W , SV⊕W ) ∧ (ΩM+)∧(j+k−1) → ΩM+ ∧ S
V⊕W



170 CHAPTER 4. OPERADS IN I S AND INVOLUTIONgiven by evaluating and omposing.Let Z̃ be the spae F (SV , SV ) ∧ F (SW , SW ) ∧ (ΩM+)∧(j+k−1). There is anatural map Z̃ → Z given by taking the smash produt of f1 : SV → SV and
f2 : SW → SW . Observe that the ations Ai, αi, Bi and βi lift to ations Ãi, α̃i,
B̃i and β̃i on Z̃.We have designed α̃i and β̃i suh that they orrespond to smashing the a-tions on F (SW , SW )∧ (ΩM+)∧k in the de�nition of θ̄k with the trivial ations on
F (SV , SV ) ∧ (ΩM+)∧k−1. Up to shu�ing the fator F (SW , SW ), we have that

(idSV ; γ1, . . . , γi−1, y.(idSW ; γi, . . . , γi+k−1), γi+k, . . . , γj+k−1)is equal to
α̃i

(
y, (idSV , idSW ; γ1, . . . , γj+k−1)

)
,and similar for the Σk-ation βi.The ations Ãi and B̃i see the loops γi, . . . , γi+k as one omposed loop. If weby

ei : F (SV , SV ) ∧ F (SW , SW ) ∧ (ΩM+)∧(j+k−1) → F (SV , SV ) ∧ (ΩM+)∧j ∧ SWdenote the map given by evaluating f2 : SW → SW on SW and omposing theloops γi, . . . , γi+k−1, then we observe that
ei is Dn(j;V )-equivariant (the ation on the target is given by smashingthe Dn(j;V )-ation in the de�nition of θ̄j with the trivial ation on SW ),and
ρ.ei(f1, f2; γ1, . . . , γj+k−1) = eρ(i)B̃i

(
ρ, (f1, f2; γ1, . . . , γj+k−1)

) (as usual ρ ∈
Σj ats on the target of ei by permuting the loops).Let (x, ρ, v) be a point in (Dn(j;V )×Σj)+∧SV = Dn(j)(V ), (y, υ, w) a point in

(Dn(k;W )×Σk)+∧SW = Dn(k)(W ) and (γ1, . . . , γj+k−1) loops in (ΩM+)∧(j+k−1).Let z in Z be the point (idSV ⊕W ; γ1, . . . , γj+k−1).By de�nition of the θ̄'s we see that the omposition
Dn(j)(V ) ∧ Dn(k)(W ) ∧ (ΩM+)∧(j+k−1)shu�ey

Dn(j)(V ) ∧ (ΩM+)∧(i−1) ∧ Dn(k)(W ) ∧ (ΩM+)∧j ∧ (ΩM+)∧(j−i)

id∧θ̄k∧id

y

Dn(j)(V ) ∧ (ΩM+)∧j ∧ SW

θ̄j∧idSW

y

ΩM+ ∧ SV⊕W



4.3. INVOLUTION OPERADS ON S[ΩM ] 171evaluated at this point is equal to
E
(
(v, w), Aρ(i)(x,Bi(ρ, αi(y, βi(υ, z))))

)
,and by the formula for ◦i and de�nition of θ̄j+k−1 the omposition

Dn(j)(V ) ∧ Dn(k)(W ) ∧ (ΩM+)∧(j+k−1)

y◦i

Dn(j + k − 1)(V ⊕W ) ∧ (ΩM+)∧(j+k−1)

yθ̄j+k−1

ΩM+ ∧ SV⊕Wevaluated at the same point is
E
(
(v, w),A(x ◦ρ(i) y,B(ρ ◦i (τk(pρ(i)(x))υ), z))

)
.To �nish the proof it is enough to show that

Aρ(i)(x,Bi(ρ, αi(y, βi(υ, z)))) = A(x ◦ρ(i) y,B(ρ ◦i (τk(pρ(i)(x))υ), z)) .And if we an hek the following formulas, then we are done:i) Bi(ρ, αi(y, z)) = αρ(i)(y, Bi(ρ, z)),ii) B(ρ ◦i υ, z) = Bi(ρ, βi(υ, z)),iii) A(x ◦i y,B(id j ◦i τk(pi(x)), z)) = Ai(x, αi(y, z)), andiv) ρ ◦i (τkυ) = (id j ◦ρ(i) τk)(ρ ◦i υ).Here iv) is a speial ase of lemma A.3.4v), while i) and ii) follow diretly fromthe de�nitions. We prove formula iii) by indution on the length of x. Assume�rst that x = 1. In this ase we have to show that
A(1 ◦i y, z) = αi(y, z) .Using that 1 ◦i y = ci(y) and heking the de�nitions we see that this formulaholds.Assume that x = (φ, r)x′. We onsider the ase when r 6= i. Let d be a pointin Dn(j + k − 1;V ⊕W ) and z′ ∈ Z. By the de�nitions of ⊢i, A and Ai we have

A
(
(φ, r) ⊢i d, z

′
)

= Ai

(
(φ, r),A(d, z′)

)
.Setting d = x′ ◦i y and z′ = B(id j ◦i τk(pi(x)), z)) we get

A
(
x ◦i y,B(id j ◦i τk(pi(x)), z))

)
= Ai

(
(φ, r),A(x′ ◦i y,B(id j ◦i τk(pi(x)), z)))

)
.



172 CHAPTER 4. OPERADS IN I S AND INVOLUTIONNotie that pi(x) = pi(x
′). By indution we have that A(x′◦iy,B(id j◦iτk(pi(x

′)), z)) =
Ai(x

′, αi(y, z)). This implies
A(x ◦i y,B(id j ◦i τk(pi(x)), z)) = Ai(x, αi(y, z)) .At last we onsider the ase when x = (φ, r)x′ and r = i. It is su�ient toshow that

A
(
(φ, i) ⊢i d,B(id j ◦i τk, z

′)
)

= Ai

(
(φ, i),A(d, z′)

)
,beause setting d = x′ ◦i y and z′ = B(id j ◦i τk(pi(x

′)), z)) and using indutionyields the formula for x. By de�nition of ⊢i we have
(φ, i) ⊢i d = (φ, i+ k − 1) · · · (φ, i)d̄ .Furthermore, we hek the following formulas diretly:

A(d̄,B(id j ◦i τk, z
′)) = B(id j ◦i τk,A(d, z′)) , and

A
(
(φ, i+ k − 1) · · · (φ, i),B(id j ◦i τk, z

′′)
)

= Ai((φ, i), z
′′) .Now only a simple alulation remains:

A
(
(φ, i) ⊢i d,B(id j ◦i τk, z

′)
)

= A
(
(φ, i+ k − 1) · · · (φ, i)d̄,B(id j ◦i τk, z

′)
)

= A
(
(φ, i+ k − 1) · · · (φ, i),A(d̄,B(id j ◦i τk, z

′))
)

= A
(
(φ, i+ k − 1) · · · (φ, i),B(id j ◦i τk,A(d, z′))

)

= Ai((φ, i),A(d, z′)) .

�4.3.3 Homotopy disreteness of DnIn this subsetion we will ompare Dn toH. Reall that there is a map of operads
Dn → H. This map omes from a homomorphism of groups, p : Dn(j;V ) →
(Z/2)j, whose i'th fator is the �parity� of the number of �letters� of the form
(−, i) in a word x ∈ Dn(j;V ). We get our map of operads by applying the funtor
(−× Σj)+ ∧ S

V to p.Our theorem says:Theorem 4.3.15For eah j the map Dn(j) → H(j) an be written equivariantly as a produt
X ∧ (Σj)+ → Y ∧ (Σj)+ where X → Y is a π∗-isomorphism of (non-equivariant)orthogonal spetra.



4.3. INVOLUTION OPERADS ON S[ΩM ] 173Our �rst aim is to prove the theorem in the speial ase j = 1. The �orthogonalpairs ommute�-relation ofDn(1;V ) is void, therefore it is not too hard to analyzethe orthogonal spetrum Dn(1) diretly.Lemma 4.3.16The map p : Dn(1)→H(1) is a π∗-isomorphism.Reall that there is a forgetful funtor U from orthogonal spetra to prespe-tra. If L is an orthogonal spetrum, then the q'th spae of UL is L(Rq). Byde�nition 2.1.3 a map K → L of orthogonal spetra is a π∗-iso, if the underlyingmap UK → UL is a π∗-iso.We say that a map X → Y of prespetra is an l-o�bration if for every q themap at level q, Xq → Yq is an unbased losed o�bration of topologial spaes.Notie that a map f : K → L between orthogonal spetra is an l-o�bration ifand only if Uf is an l-o�bration between prespetra.Cubial diagrams of spaes and prespetra will play a part in the provingthat p is a π∗-isomorphism. We refer to [Goo92℄ for the theory. We reall thede�nition here: Let T be a �nite set, and P(T ) the partially ordered set of allsubsets of T . Let C be a ategory, usually a ategory of spaes, prespetra ororthogonal spetra. A ubial diagram is a funtor X : P(T ) → C . If T has nelements, then X is an n-ube.Assume that our ategory C omes with a distinguished lass of maps, alledo�brations, and that C has all �nite limits. Following Goodwillie we de�ne Xto be a o�bration ube if for every U ⊂ T the map
colim
V $U

X (V )→ colim
V⊂U

X (V ) = X (U)is a o�bration. The ategories of spaes, prespetra and orthogonal spetrasatisfy the assumptions. We use unbased losed o�brations for the ategory ofspaes and l-o�brations for prespetra and orthogonal spetra. Therefore wehave notions of o�bration ubes of spaes, l-o�bration ubes of prespetra andl-o�bration ubes of orthogonal spetra.For a given ubial diagram X in spaes, prespetra or orthogonal spetra,we are often interested in the map colimV $T X (V ) → X (T ) up to homotopy.However it is often easier to alulate with the homotopy olimit. Therefore weompare these via the anonial map. We have the following result:Proposition 4.3.17If X is a o�bration ube of spaes, then the anonial map
hocolim

V $T
X (V )→ colim

V $T
X (V )is a weak equivalene. Furthermore, if X is an l-o�bration ube of prespetraor orthogonal spetra, then the anonial map is a π∗-isomorphism.



174 CHAPTER 4. OPERADS IN I S AND INVOLUTIONProof: The statement for o�bration ubes of spaes is proposition 1.16 in [Goo92℄.Assume that X is an l-o�bration ube of prespetra. Observe that hocolimand colim are level-wise onstrutions. Hene the q'th spae of hocolimV $T X (V )is hocolimV $T Xq(V ), and similarly for colim. Sine eah Xq is a o�bration ubeof spaes, the result for the ase of spaes implies that the anonial map
hocolim

V $T
X (V )→ colim

V $T
X (V )is a level-equivalene, hene also a π∗-iso.The result for l-o�bration ubes of orthogonal spetra is proved similarly. �Using the de�nition to hek diretly if a given ube is a o�bration ubeor not, is not a very e�ient method. The author has learned the followingreognition riterion from Christian Shlihtkrull. But �rst some notation:If V ⊂ U ⊂ T and U rV ontains exatly one element, then we all V ⊂ Uan edge of T .If U and V are subsets of T suh that U ∩V ⊂ U and U ⊂ U ∪V are edges,then we say that U and V span a 2-fae of T .Proposition 4.3.18Let X be a T -ube of spaes. Ifi) for all edges V ⊂ U of T the map X (V ) → X (U) is an unbased losedo�bration, andii) whenever U and V span a 2-fae of T the square

X (U ∩ V ) −−−→ X (U)y
y

X (V ) −−−→ X (U ∪ V )is pullbak,then X is a o�bration ube. The orresponding results for l-o�bration ubesof prespetra and orthogonal spetra also hold.Proof: Consider ubes in spaes. We assume by indution that the result holdsfor all n-ubes for n < |T |. We must show that the map
bU : colim

V $U
X (V )→X (U)



4.3. INVOLUTION OPERADS ON S[ΩM ] 175is an unbased losed o�bration of spaes. Observe that by the indution hy-pothesis it is enough to show that this holds for bT .The ase n = 1 is trivial, and n = 2 follows diretly from Lillig's uniontheorem [Lil73℄.Choose some t0 ∈ T and let T ′ = T r {t0}. De�ne Y to be the T ′-ube with
Y (U) the pushout of

X (U ∪ {t0})←X (U)→ X (T ′) .Notie that the map bT is equal to the map
b′T ′ : colim

V $T ′

Y (V )→ Y (T ′) .Hene it remains to show that Y satis�es i) and ii).Let V ⊂ U be an edge of T ′. Consider the diagram
X (V ∪ {t0}) ←−−− X (V ) −−−→ X (T ′)y

y
y=

X (U ∪ {t0}) ←−−− X (U) −−−→ X (T ′)

.The left square is pullbak by ii) for X , thus the gluing lemma for unbased losedo�brations, proposition 2.5 in [Lew82℄ applies and yields that Y (V ) → Y (U)is a o�bration.Next assume that U and V span a 2-fae of T ′. By i) for Y we an assumethat Y (U) and Y (V ) are subspaes of Y (U ∪ V ), and we must show that theintersetion of these subspaes is Y (U ∩ V ). Also X (U ∪ {t0}), X (U ∪ {t0})and X (T ′) are subspaes of Y (U ∪ V ) and we have:
Y (U) ∩ Y (V ) = (X (U ∪ {t0}) ∪X (T ′)) ∩ (X (V ∪ {t0}) ∪X (T ′))

= (X (U ∪ {t0}) ∩X (V ∪ {t0})) ∪X (T ′)

= X ((U ∩ V ) ∪ {t0}) ∪X (T ′) = Y (U ∩ V ) .Here we have used ii) for X on the 2-fae spanned by U ∪ {t0} and V ∪ {t0}.The proposition also holds for prespetra and orthogonal spetra by applyingthe result for spaes level-wise. �The prerequisites for proving lemma 4.3.16 are now in plae, and we give itsproof:Proof: It is enough to onsider the map between the underlying prespetra.The main idea of the proof is to �lter Dn(1; Rq) by word length. Let FmDn(1; Rq)be the set of all elements represented by words with m or fewer letters. We relatethe o�ber of Fm−1Dn(1; Rq) ⊂ FmDn(1; Rq) to the Stiefel manifold Vn(Rq) of
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n-frames in Rq: If Vn(Rq)m denotes the m-fold ross produt and sVn(Rq)m−1 thesubspae onsisting of those m-tuples (φ1, . . . , φm) with φr = φr+1 for some r,then the following diagram is pushout

sVn(Rq)m−1 −−−→ Fm−1Dn(1; Rq)y
y

Vn(Rq)m −−−→ FmDn(1; Rq)

.The horizontal maps send an m-tuple (φ1, . . . , φm) to the word (φ1, 1) · · · (φm, 1).Notie that the diagram is natural for isometri embeddings Rq → Rq′. The�ltration of Dn(1; Rq) indues a �ltration of UDn(1) by letting the q'th spae of
FmUDn(1) be FmDn(1; Rq) ∧ Sq.Fix m. Let T be the set {1, 2, . . . , m− 1}. For U ⊆ T de�ne
V m

n (Rq;U) = {(φ1, . . . , φm) |for eah i, φi ∈ Vn(Rq) and for all r 6∈ U , we have φr = φr+1.}This de�nes a T -ube of spaes. Observe that
colim
U$T

V m
n (Rq;U) = sVn(Rq)m−1 .De�ne a ubial diagram, V m

n , of prespetra by de�ning the q'th spae of theprespetrum V m
n (U) to be

V m
n (Rq;U)+ ∧ S

q .For m ≥ 2 we have pushout diagrams of prespetra:
colimU$T V m

n (U) −−−→ Fm−1UDn(1)y
y

V m
n (T ) −−−→ FmUDn(1)

.We now hek that V m
n is an l-o�bration ube. Our intention is to applyproposition 4.3.18. Let U ⊂ U ∪ {r} be an edge of T . Notie that V m

n (Rq;U)is a smooth submanifold of V m
n (Rq;U ∪ {r}). Hene the existene of a tubularneighborhood implies that the inlusion V m

n (Rq;U) → V m
n (Rq;U ∪ {r}) is anunbased losed o�bration. Sine the funtor (−)+∧Sq preserves unbased losedo�brations this proves that ondition i) of the proposition holds for V m

n . The fatthat ondition ii) holds follows nearly diretly from the de�nition of V m
n (Rq,−).By diret omputation we now show that V m

n (U) is π∗-isomorphi to thesphere prespetrum, S, for all U . We de�ne a map V m
n (U) → S by identifying

S0 with {1}+, sending V m
n (Rq;U) to 1 and applying the funtor (−)+ ∧Sq to getthe map at level q:

fq : (V m
n (U))q = V m

n (Rq;U)+ ∧ S
q → Sq .



4.3. INVOLUTION OPERADS ON S[ΩM ] 177The indued map of homotopy groups is
πsV

m
n (U) = colim

q
πq+s(V

m
n (Rq;U)+ ∧ S

q)
colimq πq+s(fq)
−−−−−−−−→ colim

q
πq+sS

q = πsS .We inspet the map in the middle at some �xed q. By the Hurewiz theoremthe �rst non-trivial relative homotopy group of fq is isomorphi to the �rst non-trivial relative homology group. And in homology suspension indues a naturalisomorphism. Therefore we inspet when
H̃s(V

m
n (Rq;U)+)→ H̃s(S

0)is an isomorphism. Sine V m
n (Rq;U) is a ross produt of the Stiefel manifold of

n-frames in Rq, the range for s where πq+s(fq) is an iso learly goes to ∞ when
q inreases.Let S be the T -ube with S (U) onstant equal to the sphere prespetrum.The omputation above showed that there is a map of T -ubes

V m
n → Swhih is a π∗-iso at eah U ⊆ T . Furthermore, both ubes are l-o�bration ubes.Now onsider the diagram

hocolimU$T V m
n (U)

≃
−−−→ colimU$T V m

n (U)

≃

y
y

hocolimU$T S (U)
≃
−−−→ colimU$T S (U)

.The left vertial map is a π∗-iso sine a homotopy olimit of π∗-iso is itself a π∗-iso. The horizontal maps are π∗-isos by proposition 4.3.17. But S is onstant,so colimU$T S (U) is equal to S. Hene the map
colim
U$T

V m
n (U)→ Sis a π∗-iso.Reall that H(1) is the suspension of (Z/2)+. Thus we may identify theprespetrum UH(1) with ∨Z/2 S. We will now onlude the proof by showing,using indution, that for eah m ≥ 1 the map

p : FmUDn(1)→ UH(1) =
∨

Z/2

S = S ∨ Sis a π∗-iso. Observe that F1Dn(1; Rq) is homeomorphi to {1} ∪ Vn(Rq). Thisimplies that S ∨ V 1
n (∅) is isomorphi to F1UDn(1), and the indution hypothesisholds for m = 1.



178 CHAPTER 4. OPERADS IN I S AND INVOLUTIONFor m ≥ 2 we onsider the diagram
V m

n (T )
i

←−−− colimU$T V m
n (U) −−−→ Fm−1UDn(1)y

y
yp

S S
j

−−−→ S ∨ S

.Depending on the parity of m the map j is the inlusion of the odd or even wedgesummand. All vertial maps are π∗-isos and the horizontal maps in the left squareare l-o�brations, hene the map of the row-wise pushouts, p : FmUDn(1)→ S∨S,is again a π∗-iso. �Lemma 4.3.19
UDn(1) is well-pointed.Proof: We use the �ltration FmUDn(1) from the proof of the previous lemma.The q'th spae of F1UDn(1) is

Sq ∨ (Vn(R
q) ∧ Sq) ,hene well-pointed. Furthermore, we have seen that V m

n is an l-o�bration ube.Hene the left vertial map in the pushout diagram
colimU$T V m

n (U) −−−→ Fm−1UDn(1)y
y

V m
n (T ) −−−→ FmUDn(1)is an l-o�bration. It follows that the map
Fm−1UDn(1)→ FmUDn(1)is an l-o�bration for any m. Therefore UDn(1) is well-pointed. �The ategory of prespetra has a major disadvantage, it laks a symmetrimonoidal smash produt. However, for the purpose of alulating in the homo-topy ategory we may, in several di�erent ways, de�ne �handirafted� or naivesmash produts of prespetra.De�nition 4.3.20De�ne the naive smash produt of prespetra X and Y by

(X ∧ Y )2q = Xq ∧ Yq and (X ∧ Y )2q+1 = Xq ∧ Yq ∧ S
1 .The struture maps are evident.



4.3. INVOLUTION OPERADS ON S[ΩM ] 179And we de�ne the j-fold naive smash produt iteratively:
(X1 ∧ · · · ∧Xj) = X1 ∧ (X2 ∧ (X3 · · · ∧ (Xj−1 ∧Xj) · · · )) .�11 in [MMSS01℄ explains the onnetion between the naive smash produt of pre-spetra and the smash produt of orthogonal spetra. Given orthogonal spetra

L and K there is a weak map
φ : UL ∧UK → U(L ∧K) ,and their proposition 11.9 says that φ is a π∗-iso whenever L or K is o�brant.More important for our purposes is a riterion for when the naive smashprodut preserves π∗-isomorphisms:Proposition 4.3.21Assume that X, Y and Z are well-pointed prespetra. If f : Y → Z is a π∗-isomorphism, then the indued map of naive smash produts id ∧ f : X ∧ Y →

X ∧ Z is also a π∗-isomorphism.Proof: We �rst prove the orresponding result for spaes. Let A, B and Cbe well-pointed spaes and f : B → C a weak equivalene. Then onsider thediagram
∗ ←−−− A ∨B

i
−−−→ A× By

y
y

∗ ←−−− A ∨ C
i′

−−−→ A× C

.The vertial maps are weak equivalenes, and i and i′ are o�brations by Steen-rod's produt theorem, see theorem 6.3 in [Ste67℄ or theorem 6 in [Str68℄. Byproposition A.1.4 the map A ∧B → A ∧ C is a weak equivalene.Let A be a based CW-omplex and f : Y → Z a π∗-iso of prespetra. Theo-rem 7.4(i) in [MMSS01℄ says that also id ∧ f : A ∧ Y → A ∧X is a π∗-iso.Assume that B is a well-pointed spae and (A, ∗) a CW-approximation for
(B, ∗), see proposition A.1.2. If Y is a well-pointed prespetrum, then the resultfor spaes implies that

A ∧ Y → B ∧ Yis a level-equivalene, hene also a π∗-iso.Now assume that f is a π∗-iso between well-pointed prespetra, and (A, ∗),
(B, ∗) as above. Consider the diagram

A ∧ Y
≃
−−−→ A ∧ Z

≃

y
y≃

B ∧ Y
idB∧f
−−−→ B ∧ Z

.



180 CHAPTER 4. OPERADS IN I S AND INVOLUTIONIt follows that idB ∧ f is a π∗-iso for any well-pointed spae B.Next onsider the homotopy groups of X ∧ Y . We an rewrite them as:
πs(X ∧ Y ) = colim

q
π2q+s(Xq ∧ Yq) = colim

q
πq+s(Xq ∧ Y ) .Sine Xq is well-pointed, it follows that Xq ∧Y → Xq ∧Z is a π∗-iso. This provesthe result. �Suppose that we want to hek that a map f : X → Y of prespetra is a

π∗-iso. In order to do so, it is enough to give a weak inverse. By a weak inverseto f we mean for eah q a map gq : Yq ∧ Sl → Xq+l where l is some positiveinteger, suh that both gq ◦ (fq ∧ S
l) and fq+l ◦ gq are homotopi to suspensions.Proposition 4.3.22If f : X → Y has a weak inverse, then f is a π∗-isomorphism.Proof: First we hek that f∗ : πsX → πsY is surjetive for all s. A lass in

πsY is represented by some β ∈ πq+sYq and suspends to β ′ ∈ πq+s+l(Yq ∧Sl). Let
α ∈ πq+l+sXq+l be gq(β

′). Sine fq+l ◦ gq is homotopi to the suspension, observethat fq+l(α) ≃ β ′. Thus we see that the lass of α in πsX maps to the lass of βin πsY .To hek that f∗ is injetive, we pik an element of the kernel. It an berepresented by a α ∈ πq+sXq suh that fq(α) is null homotopi in Yq. Suspendthe null homotopy by the appropriate Sl and apply gq. Sine gq ◦ (fq ∧ Sl) ishomotopi to the suspension, we get a null homotopy of α ∧ Sl in Xq+l. �In ontrast to proposition 4.3.21, we do not need that X is well-pointed inorder to draw the onlusion that the naive smash produt funtorX∧− preservesthe property of having weak inverses:Proposition 4.3.23If f : Y → Z has a weak inverse and X is any prespetrum, then id∧f : X∧Y →
X ∧ Z also has a weak inverse.Proof: Let gq : Zq ∧ S

l → Yq+l be the weak inverse of f . We will onstrut aweak inverse h for idX ∧f . Observe that it is enough to de�ne h for even indexes.And we let h2q be the omposition
(X ∧ Z)2q ∧ S

2l ∼= Xq ∧ S
l ∧ Zq ∧ S

l suspension∧gq

−−−−−−−−→ Xq+l ∧ Yq+l = (X ∧ Y )2(q+l) .It is easily seen that h is a weak inverse as laimed. �And the property of having weak inverses is losed under omposition:



4.3. INVOLUTION OPERADS ON S[ΩM ] 181Proposition 4.3.24If f : X → Y and f ′ : Y → Z both have weak inverses, the omposition
f ′f : X → Z has also a weak inverse.Proof: Let g and g′ denote the respetive weak inverses. We de�ne a weakinverse h for f ′f as follows: Assume g′q maps Zq ∧ S

l′ to Yq+l′ and gq+l′ maps
Yq+l′ ∧ Sl to Xq+l′+l, then we let hq be the omposition

Zq ∧ S
l′+l ∼= Zq ∧ S

l′ ∧ Sl g′q∧Sl

−−−→ Yq+l′ ∧ S
l

gq+l′

−−−→ Xq+l′+l .

�Now we introdue the orthogonal spetrum D′n(j). Let the V 'th spae be
Dn(j;V )+ ∧ SV . Notie that

Dn(j) ∼= D′n(j) ∧ (Σj)+ ,and that this splitting orresponds to splitting H(j) as the smash produt of thesuspension of (Z/2)∧j
+ and (Σj)+.Lemma 4.3.25There is a π∗-isomorphism of prespetra (UDn(1))∧j → UD′n(j).Proof: By indution on j we will onstrut the map (UDn(1))∧j → UD′n(j)together with a weak inverse. For j = 1 the map is the identity.Assume that (UDn(1))∧(j−1) → UD′n(j − 1) already is given. Then the map

(UDn(1))∧j → UDn(1) ∧ UD′n(j − 1) has a weak inverse by proposition 4.3.23.By proposition 4.3.24 we are done one we have onstruted a map f : UDn(1)∧
UD′n(j − 1)→ UD′n(j) and a weak inverse.A map out of our naive smash produt is ompletely determined by what itis at the (2q)'th spaes. What we need is a map from Dn(1; Rq)+ ∧ Sq ∧Dn(j −
1; Rq)+∧Sq toDn(j; R2q)+∧S2q. To de�ne it we smash a suitable shu�ing of S1's,
sh : Sq ∧Sq ∼= S2q, with a group homomorphism α : Dn(1; Rq)×Dn(j− 1; Rq)→
Dn(j; R2q).Let iodd : Rq → R2q be the inlusion of the odd oordinates,

iodd(x1, x2, . . . , xq) = (x1, 0, x2, 0, . . . , xq, 0) ,and ieven : Rq → R2q the inlusion of the even oordinates,
ieven(x1, x2, . . . , xq) = (0, x1, 0, x2, . . . , 0, xq) .Our group homomorphism α sends (φ, 1) in Dn(1; Rq) to (ioddφ, 1) in Dn(j; R2q)and (ψ, r) in Dn(j − 1; Rq) to (ievenψ, r + 1) in Dn(j; R2q). By the �orthogonalpairs ommute�-relation in Dn(j; R2q) we have

(ioddφ, 1)(ievenψ, r + 1) = (ievenψ, r + 1)(ioddφ, 1)



182 CHAPTER 4. OPERADS IN I S AND INVOLUTIONsine ioddφ is orthogonal to ievenψ. This shows that the group homomorphism iswell de�ned.If we identify Sq and S2q with one-point-ompati�ations of Rq and R2qrespetively, we an write the shu�ing sh : Sq ∧ Sq ∼= S2q as follows:
(
(v1, v2, . . . , vq), (w1, w2, . . . , wq)

)
7→ (v1, w1, v2, w2, . . . , vq, wq) .This ensures that the maps Dn(1; Rq)+∧S
q∧Dn(j−1; Rq)+∧S

q → Dn(j; R2q)+∧
S2q ommute stritly with the suspensions, and thus we get our map

f : (UDn(1))∧j → UD′n(j) .To onstrut a weak inverse g for f we �rst de�ne a group homomorphism
β : Dn(j; Rq)→ Dn(1; Rq)×Dn(j − 1; Rq) .On generators β is given by
β(φ, r) =

{(
(φ, 1), 1

) if r = 1, and(
1, (φ, r − 1)

) if r > 1.Now de�ne gq as the omposition
(
UD′n(j)

)
q
∧ Sq

= Dn(j; Rq)+ ∧ S
2q β∧sh−1

−−−−→ Dn(1; Rq)+ ∧ S
q ∧Dn(j − 1; Rq)+ ∧ S

q

=
(
UDn(1) ∧UD′n(j − 1)

)
2q

.Let i1 : Rq → R2q be the standard inlusion (embeds Rq as the �rst q oordi-nates). The spae of isometri embeddings of Rq in R2q is onneted, so we anhoose paths from iodd and ieven to i1. Now it is easy to see that the omposition
Dn(1; Rq)×Dn(j − 1; Rq)

α
−→ Dn(j; R2q)

β
−→ Dn(1; R2q)×Dn(j − 1; R2q)is homotopi to the map of Dn(1;−) × Dn(j − 1;−) indued by i1. With theopposite omposition,

Dn(j; Rq)
β
−→ Dn(1; Rq)×Dn(j − 1; Rq)

α
−→ Dn(j; R2q) ,we have to be a bit more areful. On generators this map is given by

βα(φ, r) =

{
(ioddφ, r) if r = 1, and
(ievenφ, r) if r > 1.Let it, t ∈ [0, π

2

] be the homotopy between iodd and ieven given by the formula
it(x1, x2, . . . , xq) =

(
x1 cos t, x1 sin t, x2 cos t, x2 sin t, . . . , xq cos t, xq sin t

)
.Notie that when x and y are orthogonal vetors in Rq, then
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it(x) and it(y) are orthogonal, and
i0(x) and it(y) are orthogonal.De�ne ht : Dn(j; Rq)→ Dn(j; R2q), t ∈ [0, π

2

] on generators by
ht(φ, r) =

{
(ioddφ, r) if r = 1, and
(itφ, r) if r > 1.It is well de�ned, for t = 0 it equals the map indued by iodd and for t = π

2
it is

βα. And using the path from iodd to i1, we an extend ht to a homotopy from
βα to the map Dn(j; Rq)→ Dn(j; R2q) indued by i1.Cheking what happens with the spheres, we see that g2q ◦ (fq ∧ S2q) and
f2q ◦ gq both are homotopi to suspensions. �With the lemmas 4.3.16 and 4.3.25 in plae it is quite easy to prove theo-rem 4.3.15.Proof: Reall the de�nition of the group homomorphism p : Dn(j;V )→ (Z/2)j.Applying (−)+∧SV we get a map of orthogonal spetra D′n(j)→ F0(Z/2)∧j

+ . Here
F0 denotes the 0'th shift desuspension funtor. Notie that this map �ts into adiagram of prespetra

(UDn(1))∧j −−−→ UD′n(j)

p∧j

y
y

(UH(1))∧j UF0(Z/2)∧j
+

.The map at the top is the π∗-iso from lemma 4.3.25, and left map is an iteratednaive smash produt of the π∗-iso p form lemma 4.3.16. Sine both UDn(1) and
UH(1) are well-pointed, it follows from proposition 4.3.21 that the left map isalso a π∗-iso. This implies that D′n(j) → F0(Z/2)∧j

+ is a π∗-iso. Smashing bothsides with (Σj)+, we get that the map
Dn(j)→ H(j) .

�4.3.4 The main theoremThe following result is the main theorem of this thesis. It provides an orthogonalring spetrum with involution assoiated to a stable vetor bundle over a man-ifold. The homotopy type of the underlying orthogonal ring spetrum dependsonly on the manifold.



184 CHAPTER 4. OPERADS IN I S AND INVOLUTIONTheorem 4.3.26Let M be a manifold and ξ an n-vetor bundle over M . There exists an orthog-onal ring spetrum R with an involution depending on ξ, suh that R is weaklyhomotopi in the ategory of orthogonal ring spetra to S[ΩM ], and the involu-tion on R orresponds to ι on homotopy groups. Furthermore, up to homotopythe involution on R depends only on the stable lass of ξ.Here ι is the involution on π∗S[ΩM ] given in de�nition 4.3.1.Proof: By theorem 4.3.13 there is a Dn-algebra struture on S[ΩM ], and bytheorem 4.3.15 there is a map of operads Dn → H suh that for eah j the map
Dn(j)→ H(j) an be written equivariantly as a produt X ∧ (Σj)+ → Y ∧ (Σj)+whereX → Y is a π∗-isomorphism. This means that we almost have the neessaryrequirements for applying the replaement proedure desribed in remark 4.2.20.However, we do not know that

S → Dn(1) is an orbit q-o�bration, andeah Dn(j) an be written equivariantly as a produt X ∧ (Σj)+ with Xbeing an orbit o�brant (non-equivariant) orthogonal spetrum.Instead of attempting to prove this, we use the orbit o�brant replaement Γ̂Dnfrom theorem 4.3.11. Pulling bak by the map of operads Γ̂Dn → Dn we see that
S[ΩM ] is also a Γ̂Dn-algebra. Moreover, the omposition Γ̂Dn → Dn → H is amap of operads, and evaluated at the j'th objets it deomposes as a produt
X ∧ (Σj)+ → Y ∧ (Σj)+ → Z ∧ (Σj)+, where X → Y → Z are π∗-isos. Sine S →
Dn(1) is an inlusion, it follows by theorem 3.9.1 and the onstrution of Γ̂Dn(1)in theorem 4.3.11 that S → Γ̂Dn(1) is an orbit q-o�bration. Furthermore, eah
Γ̂Dn(j) an be desribed Σj-equivariantly as a produt X ∧ (Σj)+, where X isorbit o�brant.Now onsider the replaement proedure:

B(H, Γ̂Dn, S[ΩM ])← B(Γ̂Dn, Γ̂Dn, S[ΩM ])→ S[ΩM ] .We de�ne R to be B(H, Γ̂Dn, S[ΩM ]). By the onsiderations above all maps are
π∗-isos. To show that R is homotopi to S[ΩM ] in the ategory of orthogonal ringspetra, we prove that the three maps above all are morphisms in the ategoryof orthogonal ring spetra.Reall that by remark 4.3.12 we have a map of operadsM→ Γ̂Dn. Hene wehave a restrition funtor from the ategory of Γ̂Dn-algebras to the ategory of
M-algebra. Consequently, the Γ̂Dn-algebra map B(Γ̂Dn, Γ̂Dn, S[ΩM ])→ S[ΩM ]is also a map ofM-algebras, i.e. a map of orthogonal ring spetra.Similarly we see that the map B(H, Γ̂Dn, S[ΩM ])← B(Γ̂Dn, Γ̂Dn, S[ΩM ]) isa map in the ategory of orthogonal ring spetra, sine also this map is a map of
Γ̂Dn-algebras.



4.3. INVOLUTION OPERADS ON S[ΩM ] 185We now show that the involution only depends on the stable lass of ξ. Ob-serve that standard inlusion i : Rn → Rn+1 indues group homomorphisms
Dn+1(j;V )→ Dn(j;V )by sending a generator (φ, r), where φ : Rn+1 → V is an isometri embedding, to

(φ ◦ i, r). These group homomorphisms give rise to a map of operads α : Dn+1 →
Dn. And by inspetion of the onstrution in theorem 4.3.11, we have a lifting
α̂ : Γ̂Dn+1 → Γ̂Dn Now notie that the pullbak of the Dn-algebra strutureon S[ΩM ] assoiated to ξ is the Dn+1-algebra struture on S[ΩM ] assoiatedto ξ ⊕ ε1. Here ε1 denotes the trivial line bundle over M . Therefore we geta Γ̂Dn+1-algebra map B(Γ̂Dn+1, Γ̂Dn+1, S[ΩM ]) → B(H, Γ̂Dn, S[ΩM ]). Feedingthe diagram

B(H, Γ̂Dn, S[ΩM ])← B(Γ̂Dn+1, Γ̂Dn+1,ΓS[ΩM ])→ S[ΩM ]into proposition 4.2.21, we get an equivalene of H-algebras between
B(H, Γ̂Dn, S[ΩM ]) and B(H, Γ̂Dn+1, S[ΩM ]) .The �rst orthogonal ring spetrum has the involution assoiated to ξ, while theseond has the involution assoiated to ξ ⊕ ε1. Hene up to homotopy the invo-lution only depends on the stable lass of ξ.We now hek that the involution does not depend on the hoie of onnetion.Let ∇0 and ∇1 be two onnetions on ξ. Let ξ × I be the vetor bundle over

M × I indued from ξ via the projetion M × I → M . And let ∇′0 and ∇′1 bethe indued onnetions. We an de�ne the linear ombination
∇ = t∇′1 + (1− t)∇′0 ,where t is the oordinate of I. We see that ∇ is a onnetion on ξ × I. Andpulling ∇ bak over the two inlusions i0, i1 : M → M × I yields ∇0 and ∇1respetively.The inlusion i0 indues a map of Dn-algebras
S[ΩM ]→ S[Ω(M × I)] .And we an therefore form the diagram

B(H, Γ̂Dn, S[Ω(M × I)])← B(Γ̂Dn, Γ̂Dn, S[ΩM ])→ S[ΩM ] .Putting this into proposition 4.2.21, we get an equivalene of H-algebras betweenthe orthogonal ring spetrum with involution assoiated to the onnetion ∇0 on
ξ and the orthogonal ring spetrum with involution assoiated to the onnetion
∇ on ξ × I. A similar onsideration is also true for i1 and the onnetion ∇1.



186 CHAPTER 4. OPERADS IN I S AND INVOLUTIONHene the hoie of onnetion is irrelevant up to homotopy of orthogonal ringspetra with involution.To show that the involution on R oinides with ι on π∗S[ΩM ]:We �rst onstrut a ommutative square
FRnSn λ

−−−→ S

f

y
yi

Γ̂Dn(1)
p

−−−→ H(1)

.The top map, λ, is the adjoint to the identity Sn = S(Rn). By lemma 2.4.11
λ is a π∗-iso. p omes from the map of operads Dn → H, and the map i isindued from the inlusion of the matrix (−1

) in 0'th spae of H(1). Thus themap i : S →H(1) represents the involution.To onstrut f reall that Dn(1)(Rn) = Dn(1; Rn)+ ∧ S
n. The pair (idRn , 1)represents a point in Dn(1; Rn), and we get a map Sn → Dn(1)(Rn) by sending vto ((idRn , 1), v

). By adjointness we now get a map of orthogonal spetra FRnSn →
Dn(1), and sine FRnSn is o�brant, we an lift to a map

f : FRnSn → Γ̂Dn(1) .Reall from the proof of proposition 4.1.15 that for an H-algebra L the invo-lution is the omposition
L ∼= S ∧ L

i∧id
−−→ H(1) ∧ L

θ1−→ L .Analogously, for a Γ̂Dn-algebra L we an onsider the omposition
FRnSn ∧ L

f∧id
−−→ Γ̂Dn(1) ∧ L

θ1−→ L .Now inspet the diagram
S ∧ B(H, Γ̂Dn, S[ΩM ])

involution
−−−−−→ B(H, Γ̂Dn, S[ΩM ])

λ∧id

x
x=

FRnSn ∧ B(H, Γ̂Dn, S[ΩM ]) −−−→ B(H, Γ̂Dn, S[ΩM ])x
x

FRnSn ∧B(Γ̂Dn, Γ̂Dn, S[ΩM ]) −−−→ B(Γ̂Dn, Γ̂Dn, S[ΩM ])y
y

FRnSn ∧ S[ΩM ] −−−→ S[ΩM ]

.

The horizontal maps, exept the �rst, are de�ned via Γ̂Dn-algebra strutures on
B(H, Γ̂Dn, S[ΩM ]), B(Γ̂Dn, Γ̂Dn, S[ΩM ]) and S[ΩM ] respetively. Observe that



4.3. INVOLUTION OPERADS ON S[ΩM ] 187all vertial maps are π∗-isomorphisms. The map at the top is the involution on
R = B(H, Γ̂Dn, S[ΩM ]). The bottom map is determined by what happens atlevel Rn. Evaluating at this level we get a map

(FRnSn ∧ S[ΩM ])(Rn) = Sn ∧ ΩM+ → ΩM+ ∧ S
n = (S[ΩM ])(Rn) .By de�nition of f above, this is the map onsidered in remark 4.3.14, and by theremark it indues the involution ι, see de�nition 4.3.1, on the homotopy groupsof S[ΩM ]. �We end this hapter with the following onjeture:Conjeture 4.3.27Suppose that ξ1 and ξ2 are vetor bundles over M with the same underlyingstable spherial bundle. Let R1 and R2 be the orthogonal ring spetra withinvolution orresponding to these vetor bundles. Then there exists an orthogonalring spetrum R with involution and maps R1

f1←− R
f2−→ R2 in the ategory oforthogonal ring spetra with involution, suh that on the underlying orthogonalspetra both f1 and f2 are π∗-isomorphisms.Informally, the onjeture says that up to homotopy of R the involution de-pends only on the stable lass of the underlying spherial bundle of ξ.The motivation for this onjeture omes from the involution on A-theory.For a spherial �bration ξ over X Vogell de�nes in �2 of [Vog85℄ an involution τξon A(X). This involution is well de�ned up to homotopy. More reently Weissand Williams have de�ned an involution on A(X) via Waldhausen ategories withSpanier-Whitehead duality, see example 1.A.9 in [WW98℄ and �4.1 in [WW01℄.Like Vogell, their involution depends on a spherial �bration over X.Morally, the K-theory of our orthogonal ring spetrum R with involution ιshould be weakly homotopy equivalent to A(X) when X = M , K(R) should havean involution indued by ι, and this involution should agree with the involutionsde�ned by Vogell, Weiss and Williams. If so, the involution onK(R) depends onlyon a stable spherial �bration, and it is natural to believe that the to homotopyof R the involution has the same kind of dependene.To prove the onjeture one should start with a geometri model for the spae

Gn of self-homotopy equivalenes of Sn. Via a �onnetion� an n-spherial bundle
ξ overM orresponds to a map P : ΩM → Gn. But is this map a homomorphismof monoids? Even if it is, the lak of strit inverses in Gn prevents us from sendingthe reversed loop, γ̄ to P (γ)−1. This auses trouble with the �anellation ofrepeated pairs�-relation of Dn. Therefore, one should blow up the operad Dn tohandle this lak of struture on Gn. After de�ning this huge operad, it shouldbe possible to prove the onjeture in roughly the same way we have provedtheorem 4.3.26.
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Chapter 5
THH and TC for orthogonal ringspetra with involutionTheorem 4.3.26 gives us an orthogonal ring spetrum with involution. The inten-sion behind is to de�ne and alulate its L-theory, LA-theory, K-theory, topo-logial yli homology and its topologial Hohshild homology. These theoriesshould be related via trae maps. Using surgery, the LA-theory should provideinformation about the homotopy type of the automorphism spae of our mani-fold, see [WW01℄. From L-theory there is a map Ξ into the Tate onstrution on
K-theory, see �11 in [WW98℄. Furthermore, from K-theory there are trae mapsinto TC and THH , see [Mad94℄.However, developing all of the above theory in the setting of orthogonal spe-tra, is far beyond the sope of this thesis. In this hapter we shall onsider thede�nition of TC and THH and a few basi properties. We follow the frame-work of well known theory, but there are some details worth pointing out: Inproposition 5.1.5 below, we observe that it is easy to reognize ylotomi π∗-isomorphisms between ylotomi spetra. Theorem 5.2.5 shows that our modelfor THH of a o�brant orthogonal ring spetrum is a ylotomi spetrum in avery strong sense; the ylotomi struture maps rC : ρ∗CΦCTHH(L) ∼= THH(L)are isomorphisms. Due to the involution, it is important to use a model for
(n×n)-matries whih is losed under transposition. Suh a model is introduedin de�nition 5.3.1.Important referenes for the theory of THH and TC in other settings in-ludes [BHM93℄, [Mad94℄, [DM96℄, [HM97℄, [Sh98℄ and [Shi00℄.5.1 Cylotomi orthogonal spetra and TCThe purpose of this setion is to de�ne TC of a ylotomi spetrum T . We willde�ne ylotomi spetra as ertain orthogonal S1-spetra together with someextra struture. For the involutive ase T lies in the ategory of orthogonal189
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O(2)-spetra. Beause orthogonal S1- and O(2)-spetra have so many modelstrutures, one an easily beome onfused about whih type of weak equivalenesthat are the orret ones to onsider. Therefore, we will start this setion byquikly listing the model strutures to be used in the ontext of TC and THH .We end the setion with a result, proposition 5.1.11, whih tells us that ourhoies of model ategories were right.Orthogonal spetra: We use the stable model struture, see de�nition 2.4.3.The weak equivalenes f : K → L are the π∗-isomorphisms. The �brant orthog-onal spetra are the Ω-spetra.This model struture is topologial, see theorem 9.2 in [MMSS01℄. Via thefuntor Sing• from topologial spaes to simpliial sets, it an be shown thatevery topologial model ategory is a simpliial model ategory. Hene, we havehomotopy limits in I S , and homotopy invariane holds, see theorem 18.5.3 ii)in [Hir03℄:Proposition 5.1.1Let C be a small ategory. If f : K → L is a map of C -diagrams in I S , andeah f : K(c)→ L(c) is a π∗-isomorphism between Ω-spetra, then
f∗ : holim

C
K → holim

C
Lis also a π∗-isomorphism between Ω-spetra.Orthogonal Z/2-spetra: An orthogonal Z/2-spetrum has an underlying or-thogonal spetrum. We are interested in the model struture where the weakequivalenes are the Z/2-maps whih are π∗-isomorphisms between the underly-ing orthogonal spetra. Considering an orthogonal Z/2-spetrum as an orthogo-nal spetrum with Z/2-ation, we see that funtorial onstrutions on orthogonalspetra lift to onstrutions on orthogonal Z/2-spetra. For example, proposi-tion 5.1.1 holds in this setting.Orthogonal S1-spetra: We are interested in the ylotomi π∗-isomorphisms.They are given in de�nition 3.3.7. These are the maps f : K → L suh that findues an isomorphism πC

∗ K → πC
∗ L for all �nite subgroups C of S1.For some onstrutions we must hange our orthogonal S1-spetrum into an

Ω-S1-spetrum (=genuine �brant orthogonal S1-spetrum), see de�nition 3.3.8.To ahieve this, we use the �brant replaement funtor oming from the stablegenuine model struture on orthogonal S1-spetra. This funtor is onstrutedby the small objet argument, and we denote it by Qcy.Reall the geometri �xed point funtor ΦC , given in de�nition 3.7.2. For a�nite subgroup C of S1 it takes orthogonal S1-spetra L to orthogonal S1/C-spetra ΦCL. Using the group isomorphism ρC : S1 → S1/C, we pull bak andget a new orthogonal S1-spetrum ρ∗CΦCL.



5.1. CYCLOTOMIC ORTHOGONAL SPECTRA AND TC 191By proposition 3.7.4 the funtor ρ∗CΦC preserves the lass of generating gen-uine ayli q-o�brations. Hene, lemma 3.11.6 yields:Lemma 5.1.2There is a natural transformation ρ∗CΦCQcy → Qcyρ∗CΦC suh that the followingdiagram ommutes for all orthogonal S1-spetra L:
ρ∗CΦCL ρ∗CΦCLy

y

ρ∗CΦCQcyL −−−→ Qcyρ∗CΦCL

.Orthogonal O(2)-spetra: Again, we are interested in the ylotomi π∗-isomorphisms, see de�nition 3.3.7. We have a �brant replaement funtor, Qcy,onstruted by the small objet argument in the stable genuine model struture.Thus QcyL is an Ω-O(2)-spetrum, for any orthogonal O(2)-spetrum L. Let Cbe a �nite normal subgroup of O(2). Similar to the ase above, we have geometri
C-�xed point funtors, ΦC , and group isomorphisms ρC : O(2) ∼= O(2)/C. Weonsider the omposition ρ∗CΦC . Also in the ase of an orthogonal O(2)-spetrum
L lemma 5.1.2 holds.We are now ready to de�ne ylotomi spetra in the setting of orthogonalspetra. Compare this de�nition with de�nition 2.2 in [HM97℄. Furthermore, weintrodue the notion of an ylotomi spetrum with involution.De�nition 5.1.3A ylotomi spetrum is an orthogonal S1-spetrum T together with a ylotomi
π∗-isomorphism

rC : ρ∗CΦCT → Tfor every �nite subgroup C of S1 suh that for any pair of �nite subgroups thefollowing diagram ommutes
ρ∗Cr

ΦCrρ∗Cs
ΦCsT ρ∗Crs

ΦCrsT

ρ∗
Cr

ΦCr rCs

y
yrCrs

ρ∗Cr
ΦCr

rCr−−−→ T

.A map of ylotomi spetra is a map of orthogonal S1-spetra whih ommuteswith the rC 's.De�nition 5.1.4A ylotomi spetrum with involution is an orthogonalO(2)-spetrum T togetherwith a ylotomi π∗-isomorphism
rC : ρ∗CΦCT → T



192 CHAPTER 5. THH AND TCfor every �nite subgroup C of S1 ⊂ O(2) suh that the diagram in de�nition 5.1.3ommutes for every pair of suh subgroups. A map of ylotomi spetra withinvolution is a map of orthogonal O(2)-spetra whih ommutes with the rC 's.Beause of the maps rC , it is easy to hek when a map between ylotomispetra is a ylotomi π∗-isomorphism:Proposition 5.1.5A map f : T1 → T2 between ylotomi spetra (with involution) is a ylotomi
π∗-isomorphism if and only if it is non-equivariantly a π∗-isomorphism.Proof: By de�nition, all ylotomi π∗-isomorphisms are non-equivariant π∗-isomorphisms.Assume that f : T1 → T2 is non-equivariantly a π∗-isomorphism. Let C be a�nite normal subgroup of S1 (or O(2)), and onsider the diagram

ρ∗CΦCT1
rC−−−→ T1

ρ∗CΦCf

y
yf

ρ∗CΦCT2
rC−−−→ T2

.Sine the rC 's are ylotomi π∗-isos, it follows that ΦCf is non-equivariantlya π∗-isomorphism. Using proposition 3.11.9 we reognize f as a ylotomi π∗-isomorphism. �Remark 5.1.6The key ingredient in the proof of proposition 3.11.9 was a homotopy o�bersequene
Qcy(L ∧ EF+)C → Qcy(L)C → ΦCL ,where F is a spei� family of subgroups, and L an orthogonal S1- (or O(2)-) spetrum. This sequene is a generalization of the �fundamental o�brationsequene�, see formula 2.4.6 in [Mad94℄, or theorem 2.2 in [HM97℄.In order to de�ne TC(T ) we introdue the ategory I. It has the naturalnumbers, {1, 2, 3, . . .}, as its objets, and the set of all morphisms in I is generatedby two lasses of morphisms Rr : rm→ m and Fr : rm→ m, m ≥ 1, subjet tothe relations

R1 = F1 = idn ,

RrRs = Rrs ,

FrFs = Frs ,

RrFs = FsRr .



5.1. CYCLOTOMIC ORTHOGONAL SPECTRA AND TC 193Given a ylotomi spetrum T we now onstrut a funtor I → I S bysending n to the ategorial Cn-�xed points TCn. The map Fr : TCn → TCmis given by inlusion of ategorial �xed points. To onstrut Rr we reall thatthere is a natural map TC → ΦCT , see onstrution 3.7.3. We de�ne Rr as theomposition
TCn = (TCr)Cm → (ΦCrT )Cm rCr−−→ TCm .De�nition 5.1.7The topologial yli homology of T , TC(T ), is the orthogonal spetrum de�nedas

TC(T ) = holim
n∈I

TCn .Lemma 5.1.8If T is a ylotomi spetrum with involution, then TC(T ) is an orthogonal Z/2-spetrum.Proof: The dihedral group of order 2n is the subgroup of O(2) spanned by
Cn and the matrix (0 1

1 0

). Sine T is an orthogonal O(2)-spetrum, we anrestrit the ation getting an orthogonal D2n-spetrum. Taking ategorial Cn-�xed points, we get an Z/2 = D2n/Cn ation on eah TCn. Clearly, both Fr and
Rr beome Z/2-maps. �Remark 5.1.9If T is not an Ω-G-spetrum, G = S1 or O(2), then the C-�xed points, TC , mighthave the wrong homotopy groups. See warning V.3.6 in [MM02℄. Hene, oneshould apply Qcy to T before alulating TC.Proposition 5.1.10The �brant replaement funtor Qcy preserves ylotomi spetra.Proof: By onstrution Qcy omes with a natural ayli q-o�bration T →
QcyT . By lemma 5.1.2 there is a natural transformation ρ∗CΦCQcyT → Qcyρ∗CΦCT .And the following diagram ommutes:

ρ∗CΦCT ρ∗CΦCT
rC−−−→
≃

T

≃

y
y

y≃

ρ∗CΦCQcyT −−−→ Qcyρ∗CΦCT
QcyrC−−−→ QcyT

.The left vertial map is a genuine π∗-isomorphism sine ρ∗CΦC preserves ayliq-o�brations. We take the omposition of the two bottom maps as the de�nition



194 CHAPTER 5. THH AND TCof rC for QcyT . It is automatially a ylotomi π∗-isomorphism sine rC is. �Proposition 5.1.11If a ylotomi map f : T1 → T2 is a ylotomi π∗-isomorphism between Ω-
G-spetra, G = S1 or O(2), then the indued map TC(T1) → TC(T2) is a
π∗-isomorphism.Proof: Due to homotopy invariane of homotopy limits, see proposition 5.1.1,it is enough to show that for eah n the map

TCn

1 → TCn

2is a π∗-iso between Ω-spetra.It follows diretly from the de�nitions that the ategorial H-�xed points ofan Ω-G-spetrum is an Ω-spetrum. Hene, TCn

1 and TCn

2 are Ω-spetra.Furthermore,
π∗T

Cn

1 = πCn
∗ T1

∼=
−→ πCn

∗ T2 = π∗T
Cn

2 .Here the map in the middle is an isomorphism sine T1 → T2 is a ylotomi
π∗-isomorphism. �Remark 5.1.12Let F be the family of �nite normal subgroups of S1 or O(2). One an de�nethe notion of an Ω-F -spetrum. All statements above probably remain true ifreplaing Ω-G-spetra, G = S1 or O(2), by Ω-F -spetra. Furthermore, one anprobably show that these spetra are the �brant objets of the stable ylotomimodel struture on GI S .5.2 Topologial Hohshild homologySine the time when Bökstedt de�ned THH based on an idea of Goodwillie,the tehnology of spetra has evolved so muh that we now an use Goodwillie'sidea as de�nition, see [Shi00℄. What is needed is a symmetri smash produtfor spetra. We write out the de�nition for the ategory of orthogonal spe-tra. Furthermore, we show that THH(L) is a ylotomi spetrum, when L iso�brant.We also onsider the involutive ase.De�nition 5.2.1Let L be an orthogonal ring spetrum. De�ne THH•(L) to be the simpliialorthogonal spetrum with q-simplies

THHq(L) = L∧(q+1) = L ∧ L ∧ · · · ∧ L ,



5.2. TOPOLOGICAL HOCHSCHILD HOMOLOGY 195and fae and degeneray maps given by
di =

{
id∧i

L ∧ µ ∧ id
∧(q−i−1)
L for 0 ≤ i < q,

µ ∧ id
∧(q−1)
L ◦ πL∧q,L for i = q,and

si = id
∧(i+1)
L ∧ η ∧ id

∧(q−i)
L .We de�ne THH(L) to be the geometrial realization of THH•(L).To larify the de�nition of dq we write it as the omposition

L∧(q+1) = (L∧q)∧L
twist
−−→ L∧(L∧q) = L∧L∧(L∧(q−1))

µ∧id
−−→ L∧(L∧(q−1)) = L∧q .Remark 5.2.2If the unit of the orthogonal ring spetrum, η : S → L, is not a q-o�bration, thenthere is no reason to expet the homotopy of L and the homotopy of THH(L) tobe related to eah other. Hene, we will often restrit attention to suh orthogonalring spetra, and we all them o�brant.Given an arbitrary orthogonal ring spetrum L, it an often be heked di-retly that the unit η : S → L is a losed inlusion. If this is the ase, then wemay apply the o�brant replaement funtor Γ from theorem 2.2.13, to produea new orthogonal ring spetrum ΓL, whih is o�brant.This replaement proedure also works when L omes with an involution. Wemust then de�ne the involution on ΓL as the omposed map

ΓL
ιL−→ ΓL

Γι
−→ ΓL .Here the �rst ι omes from theorem 2.2.13, while the seond ι is the involutionon L, see de�nition 2.1.20. Beause Γ is a skew-symmetri funtor, it followsthat ΓL is an orthogonal ring spetrum with involution. Furthermore, ΓL is

Z/2-equivariantly o�brant by proposition 3.9.7.We now speify S1- and O(2)-ations on THH(L).Proposition 5.2.3
THH•(L) is a yli orthogonal spetrum. If L has involution, then THH•(L) isdihedral.Proof: We de�ne the yli operator tq : L∧(q+1) → L∧(q+1) as

L∧(q+1) = (L∧q) ∧ L
twist
−−→ L ∧ (L∧q) = L∧(q+1) .If L has involution ι : L→ L, we an de�ne the involutive operator rq : L∧(q+1) →

L∧(q+1) as
L∧(q+1) ι∧(q+1)

−−−−→ L∧(q+1) permute
−−−−→ L∧(q+1) .



196 CHAPTER 5. THH AND TCThe arrow labeled �permute� permutes the order of the fators in the smash prod-ut as follows: We label the fators from 0'th to q'th. The 0'th fator maps tothe 0'th fator, while the i'th fator, i > 0, maps to the (q + 1− i)'th fator. �Corollary 5.2.4
THH(L) is an orthogonal S1-spetrum. If L has involution, then THH(L) is anorthogonal O(2)-spetrum.We now show:Theorem 5.2.5Let L be an orthogonal ring spetrum (with involution).i) If S → L is a q-o�bration, then there is an S1-isomorphism

rC : ρ∗CΦCTHH(L) ∼= THH(L)for every �nite subgroup C of S1, and THH(L) is a ylotomi spetrum.When L has involution the isomorphism is O(2)-equivariant, and in thisase THH(L) is a ylotomi spetrum with involution.ii) If L → K is a π∗-isomorphism between o�brant orthogonal ring spetra(with involution), then
THH(L)→ THH(K)is a ylotomi π∗-isomorphism.Before giving a proof, let us de�ne topologial yli homology:De�nition 5.2.6The topologial yli homology of a o�brant orthogonal ring spetrum L (withinvolution) is de�ned as TC(THH(L)). We abbreviate this notation, and write

TC(L).Proof:Part i): We �rst onsider the ase of orthogonal ring spetra L without involu-tion. It is su�ient to prove the statement in the ase where S → L is a relative
FI-ellular map. Let C be the �nite subgroup of S1 of order r. We will nowonstrut the isomorphism rC of genuine orthogonal S1-spetra

ρ∗CΦCTHH(L) ∼= THH(L) .By de�nition, THH(L) is the geometri realization of a yli orthogonal spe-trum THH•(L). Edgewise subdivision gives an S1-isomorphism |THH•(L)| ∼=
| sdC THH•(L)|. We will onstrut rC by omputing ρ∗CΦC | sdC THH•(L)|.



5.2. TOPOLOGICAL HOCHSCHILD HOMOLOGY 197The geometri realization is level-wise, so we an use the �ltration of thegeometri realization of r-yli spaes given in onstrution 1.1.31. By indutionwe shall prove that
ρ∗CΦCF∆Cr

q | sdC THH•(L)| ∼= F∆C
q |THH•(L)|for all q ≥ 0. Letting q go to in�nity, this statement yields part i) of the theorem.To prove the indution step we begin with a few alulations. The q-simpliesof sdC THH•(L) are L∧rq. Here r is the order of C. We now have

ρ∗CΦC
(
L∧rq ∧Crq

∆Cq
r +

)
∼= ρ∗CΦC

(
(L∧rq ∧∆q

+) ∧Crq
S1

+

)

∼= ρ∗C
(
(ΦC(L∧rq) ∧∆q

+) ∧Cq
S1/C+

)

∼= (ΦC(L∧rq) ∧∆q
+) ∧Cq

S1
+

∼= ΦC(L∧rq) ∧Cq
∆Cq

+

∼= L∧q ∧Cq
∆Cq

+ .In this alulation we have used the following fats:The topologial r-yli q-simplex, ∆Cq
r is de�ned as ∆q × S1.

ΦC(K ∧A) = (ΦCK)∧AC , when K is an orthogonal S1-spetrum and A abased S1-spae, see proposition 3.11.8.
ΦC(K∧Crq

S1
+) ∼= (ΦCK)∧Cq

S1/C+, whenK is an orthogonal Crq-spetrum,see proposition 3.8.10.The diagonal map L∧q ∼= ΦCL∧rq is an isomorphism for o�brant orthogonalspetra L, see proposition 3.10.7.Reall from remark 3.10.5 the notation srL∧rq−r for the orthogonalCrq-spetrum
srL∧rq−r =

⋃

i

L∧i−1 ∧ S ∧ L∧q−1 ∧ S ∧ L∧q−1 ∧ S ∧ · · · ∧ S ∧ L∧q−i .Observe that the degenerate q-simplies of sdC THH•(L) are exatly srL∧rq−r.By a alulation similar to that above, we get
ρ∗CΦC

(
srL∧rq−r ∧Crq

∆Cq
r +

)
∼= sL∧q−1 ∧Cq

∆Cq
+ .Restriting to the boundary of the topologial r-yli q-simplex, ∂∆Cq

r , weget
ρ∗CΦC

(
L∧rq ∧Crq

∂∆Cq
r +

)
∼= L∧q ∧Cq

∂∆Cq
+ and

ρ∗CΦC
(
srL∧rq−r ∧Crq

∂∆Cq
r +

)
∼= sL∧q−1 ∧Cq

∂∆Cq
+ .



198 CHAPTER 5. THH AND TCConsider the diagram
srL∧rq−r ∧Crq

∂∆Cq
r + −−−→ L∧rq ∧Crq

∂∆Cq
r +y

y

srL∧rq−r ∧Crq
∆Cq

r + −−−→ L∧rq ∧Crq
∆Cq

r +

.As an orthogonal spetrum L∧rq∧Crq
∆Cq

r + has an FI-ellular struture suh thatthe three other orthogonal spetra are FI-ellular subspetra. It follows that themap
L∧rq ∧Crq

∂∆Cq
r + ∪srL∧rq−r∧Crq∂∆Cq

r +
srL∧rq−r ∧Crq

∆Cq
r + → L∧rq ∧Crq

∆Cq
r +is a losed inlusion. Now onsider the diagram

L∧rq∧Crq
∆Cq

r + ← L∧rq∧Crq
∂∆Cq

r +∪s
rL∧rq−r∧Crq

∆Cq
r + → F∆Cr

q | sdC THH•(L)| .Sine the left map is a losed inlusion, it follows by proposition 3.7.4 that ρ∗CΦCof the pushout is the pushout of ρ∗CΦC applied to the diagram. At last we lookat the following diagram:
ρ∗CΦC

(
L∧rq ∧Crq

∆Cq
r +

)
∼= L∧q ∧Cq

∆Cq
+x

x

ρ∗CΦC
(
L∧rq ∧Crq

∂∆Cq
r + ∪ srL∧rq−r ∧Crq

∆Cq
r +

)
∼=L∧q ∧Cq

∂∆Cq
+ ∪ sL∧q−1 ∧Cq

∆Cq
+y

y

ρ∗CΦCF∆Cr

q−1 | sdC THH•(L)| ∼= F∆C
q−1 |THH•(L)|

.

By the alulations above, the top and the middle horizontal maps are isomor-phisms. By the indution hypothesis, the bottom horizontal map is an isomor-phism. It follows that the map of olumn-wise pushouts,
ρ∗CΦCF∆Cr

q | sdC THH•(L)| ∼= F∆C
q |THH•(L)| ,is an isomorphism.Now assume that L is an orthogonal ring spetrum with involution. We provethat THH(L) is a ylotomi spetrum with involution by an argument similarto that above. Edgewise subdivision works also in the dihedral ase, and weonstrut the O(2)-isomorphism

rC : ρ∗CΦCTHH(L) ∼= THH(L)by indution over the O(2)-equivariant �ltration for the geometri realization of
r-dihedral spaes provided by onstrution 1.1.31. Sine the diagonal map isdihedral for L with involution, see proposition 3.10.12, the rest of the argumentworks exatly as before.



5.3. MATRICES OVER AN ORTHOGONAL RING SPECTRUM 199Part ii): By proposition 5.1.5, it is enough to show that the indued map
THH(L)→ THH(K) is non-equivariantly a π∗-isomorphism. Sine both S → Land S → K are q-o�brations, it follows that THH•(L) and THH•(K) aregood simpliial orthogonal spetra. It remains to show that the indued map
THH•(L)→ THH•(K) is a π∗-iso in eah simpliial degree, see proposition 2.5.3.We an fator the map THHq(L) = L∧(q+1) → K∧(q+1) = THHq(K) as

L∧(q+1) → L∧q ∧K → L∧(q−1) ∧K∧2 → · · · → L ∧K∧q → K∧(q+1) .The smash produt of o�brant orthogonal spetra is o�brant by proposition 2.4.8,and smashing with o�brant orthogonal spetra preserves π∗-isomorphisms, seeproposition 2.4.7. Hene, eah map in the sequene above is a π∗-isomorphism.The result follows. �5.3 Matries over an orthogonal ring spetrumAn important ingredient when onstruting a trae map from K-theory to THHor TC, is the de�nition of a matrix ring. Sine we fous on orthogonal ring spetrawith involution, we need a onstrution whih is involutive. In ordinary linearalgebra we have suh an involution, namely the onjugate transposed matrix.However, if we onsider the ustomary de�nition of the matrix-FSP, Mn(L) =
F (n+,n+∧L), we see that transposition is not well-de�ned. Hene a modi�ationof the de�nition is required.The purpose of this setion is to provide a onstrution of (n × n)-matriesfor orthogonal ring spetra L, whih also works when L has involution. Let memake a list of our hopes and needs regarding the onstrution:

Mn should be an endofuntor on orthogonal spetra.Up to π∗-isomorphism ∨n2 L, Mn(L) and L×n2 should be the same, at leastwhen L is o�brant.We want a matrix multipliationMn(L) ∧Mn(L)→Mn(L).Diret sum of matries should give a funtorMn1(L)×Mn2(L)→ Mn1+n2(L).For L with involution taking the transposed involuted matrix should be aninvolution on Mn(L).We want a trae map from Mn(L) to some additive model for L.Reall the onept of indued funtors on orthogonal spetra, see subse-tion 2.3.1. We �rst de�ne a ontinuous endofuntor on Top∗, whih we also willdenote by Mn. Then we de�ne Mn on orthogonal spetra as the indued funtor.



200 CHAPTER 5. THH AND TCDe�nition 5.3.1For a based spae X let Mn(X) be the subspae of X×n2 onsisting for thosematries where eah row ontains at most one element di�erent from ∗ and eaholumn ontains at most one element di�erent form ∗.Using formulas we may write Mn(X) as
Mn(X) = {(xi j) ∈ X

×n2

|if xi0 j0 6= ∗, then xi0 j = ∗ and xi j0 = ∗ for all i 6= i0 and j 6= j0.}It is lear that Mn is a ontinuous funtor. Sine Mn(∗) = ∗, there is aanonial right assembly
σX,Y : Mn(X) ∧ Y →Mn(X ∧ Y ) ,see page 208 in [Mad94℄. In our ase we an easily write down a formula for

σ: Let (xi j) be a matrix in Mn(X) and y a point in Y , then σ((xi j), y) is thematrix (zi j) in Mn(X ∧ Y ), where zi j = (xi j , y) ∈ X ∧ Y . Similarly, there is aleft assembly σ̄.We now desribe the struture of the funtor Mn:Lemma 5.3.2There are natural transformations
1X : X → Mn(X) ,

µX,Y : Mn(X) ∧Mn(Y )→Mn(X ∧ Y ) , and
ιX : Mn(X)→Mn(X) ,suh thatthe omposition Mn(X) ∧ Y

id∧1Y−−−→ Mn(X) ∧Mn(Y )
µX,Y

−−−→ Mn(X ∧ Y ) isequal to the right assembly,the omposition X ∧Mn(Y )
1X∧id−−−→ Mn(X) ∧Mn(Y )

µX,Y
−−−→ Mn(X ∧ Y ) isequal to the left assembly,

µ is assoiative,
ι2 = id , and
ι anti-ommutes with µ, this means that the following diagram ommutes:
Mn(X) ∧Mn(Y )

ιX∧ιY−−−−→ Mn(X) ∧Mn(Y )
twist
−−−→ Mn(Y ) ∧Mn(X)

µX,Y

y
yµY,X

Mn(X ∧ Y )
ιX∧Y−−−→ Mn(X ∧ Y )

Mn(twist)
−−−−−→ Mn(Y ∧X)

.



5.3. MATRICES OVER AN ORTHOGONAL RING SPECTRUM 201Another way to phrase this lemma is to say thatMn is an FSP with involution.Proof: The unit 1X : X →Mn(X) is de�ned by sending x ∈ X to the (n× n)-matrix 


x ∗ · · · ∗
∗ x · · · ∗... ... . . . ...
∗ ∗ · · · x


 ,whih has x on the diagonal and ∗ elsewhere. Multipliation µX,Y : Mn(X) ∧

Mn(Y )→Mn(X ∧ Y ) is given as ordinary matrix multipliation. Expliitly thisis given by sending (xi j) and (yi j) to (zi j), where
zi j =

{
(xi k, yk j) if k is suh that xi k 6= ∗ and yk j 6= ∗,
∗ otherwise.By diret omputation it is easily seen that µ ◦ (1 ∧ id) and µ ◦ (id ∧ 1) are theleft and right assemblies respetively. And easy alulations also show that µ isassoiative.We de�ne the involution ι by transposition. ιX(xi j) is (x′i j), where x′i j = xj i.Clearly, ι2 = id . To hek that ι anti-ommutes with µ, we take matries (xi j) and

(yi j) inMn(X) andMn(Y ) respetively. Let (zi j) be the matrix of µ(ι(yi j), ι(xi j))and (z′i j) = ι(µ((xi j), (yi j))). Calulating we see that
zi j =

{
(yk i, xj k) if k is suh that xj k 6= ∗ and yk i 6= ∗,
∗ otherwise,and

z′i j =

{
(xj k, yk i) if k is suh that xj k 6= ∗ and yk i 6= ∗,
∗ otherwise.And we see that the diagram ommutes. �Corollary 5.3.3If L is an orthogonal ring spetrum L, then Mn(L) is also an orthogonal ringspetrum, and if L has involution, then Mn(L) has an indued involution.Proof: We use the external desription of the smash produt, example 2.1.18.The unit for Mn(L) is de�ned as the omposition

SV → L(V )
1L(V )
−−−→Mn(L(V )) .



202 CHAPTER 5. THH AND TCThe multipliation for Mn(L), de�ned externally, is given by
Mn(L(V1)) ∧Mn(L(V2))

µL(V1),L(V2)

−−−−−−−−→Mn(L(V1) ∧ L(V2))
Mn(multipliation)
−−−−−−−−−−−−→Mn(L(V1 ⊕ V2)) .And in the ase L has involution, the indued involution on Mn(L) is given by

Mn(L(V ))
ιL(V )
−−−→ Mn(L(V ))

Mn(involution)
−−−−−−−−→Mn(L(V )) .The struture of Mn desribed in lemma 5.3.2 ensures that Mn(L) is an orthog-onal ring spetrum (with involution). �Example 5.3.4 (Diret sum)The diret sum Mn1(L) ×Mn2(L) → Mn1+n2(L) is easily de�ned. First observethat diret sum Mn1(X)×Mn2(X) → Mn1+n2(X) is de�ned for based spaes Xby the ordinary diret sum of matries. Applying the onept of indued funtorswe get the diret sum for matries of orthogonal ring spetra.Next we want to ompare the weak homotopy type of Mn(L) to ∨n2 L and

L×n2 . We learly have maps
∨

n2

L→Mn(L)→ L×n2

,and when L is o�brant, the omposition is a π∗-iso by proposition 2.3.16. Ourstrategy is to use orollary 2.3.15 to show that the �rst map also is a π∗-iso, giventhat L is o�brant.The third ondition in orollary 2.3.15 demands that the funtors must om-mute with olimit over sequenes of o�brations. We hek this for the funtorsabove. Assume that X0 → X1 → X2 → · · · is a sequene of o�brations ofspaes, and X is the olimit. Clearly we have that colimi (
∨

n2 Xi) =
∨

n2 X. (Wean desribe the wedge as a olimit, and interhanging olimits does not a�etthe result.) Theorem 10.3 in [Ste67℄ also holds for the ategory of ompatlygenerated spaes de�ned in [MC69℄. Therefore, we also have
colim

i

(
X×n2

i

)
= X×n2

.What we really are saying is that two a priori di�erent topologies on the same setatually oinide. It is easy to see that colimiMn(Xi) is equal to Mn(X) as sets.But the topology of colimiMn(Xi) is the subspae topology from colimi

(
X×n2

i

),whileMn(X) has the subspae topology from X×n2. However, the equality aboveimplies that
colim

i
Mn(Xi) = Mn(X)as topologial spaes (=ompatly generated spaes).The following proposition heks the seond ondition for Mn(−).



5.3. MATRICES OVER AN ORTHOGONAL RING SPECTRUM 203Proposition 5.3.5If A → X is an unbased losed o�bration of spaes, then Mn(A) → Mn(X) isalso an unbased losed o�bration.Proof: Represent the o�bration A → X by a homotopy H : X × I → X and
φ : X → I, see remark 2.1.8. De�ne H̄ : Mn(X)× I →Mn(X) by

H̄((xi j), t) = (H(xi j, t)) ,and φ̄ : Mn(X)→ I by
φ̄(xi j) = sup

i,j
φ(xi j) .Clearly, H̄ is a homotopy rel Mn(A) with H̄(−, 0) = idMn(X), and Mn(A) ⊆

φ̄−1(0). Assume that t > φ̄(xi j), then for eah i and j we have t > φ(xi j) andthus H(xi j , t) ∈ A. It follows that H̄((xi j), t) ∈Mn(A).This shows that H̄ and φ̄ represent Mn(A)→ Mn(X) as an unbased o�bra-tion. �We immediately get the following two orollaries:Corollary 5.3.6The indued funtor Mn on orthogonal spetra preserves l-o�brations.Corollary 5.3.7If L is a well-pointed orthogonal spetrum, then also Mn(L) is well-pointed.Remark 5.3.8Observe that we do not laim thatMn(L) is o�brant. If we want a o�brant ver-sion, then we just apply the o�brant replaement funtor Γ from theorem 2.2.13.Furthermore, whenever the unit η : S → L of an orthogonal ring spetrum is anl-o�bration, we have that S → Mn(L) is an l-o�bration and S → ΓMn(L) is aq-o�bration.To ompare Mn(X) and ∨n2 X up to homotopy, we now provide a �ltration.De�ne Mk
n(X) to be the subspae of Mn(X) onsisting of those matries with atmost k elements di�erent form ∗. It is easily seen that M1

n(X) is equal to ∨n2 X,while Mn
n (X) equals Mn(X). The key lemma for analyzing this �ltrations is:Lemma 5.3.9For well-pointed X there is a natural o�ber sequene

Mk−1
n (X)→Mk

n(X)→
∨

A

X∧k ,where the wedge is indexed over a �nite set A.



204 CHAPTER 5. THH AND TCProof: Let A be the set of maps, f , from {1, . . . , k} to {1, . . . , n}2 suh thatboth
pr 1 ◦ f : {1, . . . , k} → {1, . . . , n}is stritly inreasing and
pr 2 ◦ f : {1, . . . , k} → {1, . . . , n}is injetive. For eah suh f we onstrut a map f∗ : X×k →Mk

n(X) by
(x1, . . . , xk) 7→ (yi j) where yi j =

{
xl if f(l) = (i, j) and
∗ otherwise.Let sX×k−1 be the subspae of X×k onsisting of the tuples (x1, . . . , xk) where atleast one xl = ∗. By Steenrod's produt theorem for o�brations we know that(by indution) sX×k−1 → X×k is a o�bration. Also observe that the image of

sX×k−1 in Mk
n(X) under f∗ atually lies in Mk−1

n (X). Furthermore the diagram
∐

A sX
×k−1 −−−→

∐
AX

×k

f∗

y
yf∗

Mk−1
n (X) −−−→ Mk

n(X)is pushout. The lemma follows by the observation that ∨AX
∧k is the o�ber ofthe top row. �By ounting one an hek that A ontains (n

k

)2
k! elements.Using the �ltration we prove the following result regarding the onnetivityof the map ∨n2 X → Mn(X):Proposition 5.3.10If X is r-onneted and well-pointed, then the map ∨n2 X → Mn(X) is 2r-onneted.Proof: We prove by indution on r and k that Mk
n(X) is r-onneted and themap

Mk−1
n (X)→ Mk

n(X) , k ≥ 2 ,is 2r-onneted when X is r-onneted.For k = 1 observe that M1
n(X) =

∨
n2 X. Therefore M1

n(X) is r-onnetedwhenever X is.For r = −1 there is nothing to prove. For r = 0 we will give a diretargument that shows that all Mk
n(X) are 0-onneted. Consequently, the maps
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Mk−1

n (X)→Mk
n(X) are all 0-onneted. Let (xi j) be a matrix in Mk

n(X). Sine
X is path-onneted, we an for eah xi j hoose a path γi j from xi j to ∗. When
xi j = ∗, we let the path be onstant. Then

t 7→
(
γi j(t)

)will be a path from (xi j) to the base point in Mk
n(X). Hene this spae is alsopath-onneted.Let r ≥ 1 and k ≥ 2 and assume that the indution hypothesis holds forsmaller r and k. By lemma 5.3.9 above, the map

Mk−1
n (X)→ Mk

n(X)is an unbased losed o�bration with o�ber ∨AX
∧k. And it follows from propo-sition A.1.9 that this o�ber is at least (2r + 1)-onneted. The indution hy-pothesis says that Mk−1

n (X) is r-onneted and the pair (Mk
n(X),Mk−1

n (X)) is
(2r − 2)-onneted. We now apply proposition A.1.6 and get that

πq(M
k
n(X),Mk−1

n (X))→ πq(
∨

A

X∧k)is an isomorphism for q < 3r − 1. If r > 1, we immediately get that the map
Mk−1

n (X)→Mk
n(X) is 2r-onneted and Mk

n(X) is r-onneted.If r = 1, the statement above only says that the map Mk−1
n (X) → Mk

n(X)is 1-onneted. But in this ase we an apply the proposition again with theimproved input that the pair (Mk
n(X),Mk−1

n (X)) is 1-onneted. And we getthat also π2(M
k
n(X),Mk−1

n (X)) → π2(
∨

AX
∧k) = 0 is an isomorphism. Thus

Mk−1
n (X)→Mk

n(X) is atually 2-onneted and Mk
n(X) is 1-onneted. �Corollary 5.3.11If L is a o�brant orthogonal spetrum, then∨n2 L→ Mn(L) is a π∗-isomorphism.Proof: The onsiderations and results above verify the onditions of orol-lary 2.3.15. Hene, the map of indued funtors is a π∗-isomorphism. �5.4 Cross produt formula for THHIn this setion we will derive a ross produt formula for THH . Unfortunately,our result, proposition 5.4.3 below, is not as strong as we would like. The authorsuggests two ways to improve the onlusion, see remark 5.4.7. We begin thesetion by disussing the ross produt of orthogonal ring spetra.



206 CHAPTER 5. THH AND TCLemma 5.4.1If L and K are orthogonal ring spetra, then L × K is also an orthogonal ringspetra. If L and K have involutions, then also L×K omes with an involution.The projetions are maps of orthogonal ring spetra (with involution).Proof: Observe that maps into a ategorial produt L×K orrespond to pairsof maps, one into eah fator. In other words, for any orthogonal spetrum Xthere is a homeomorphism
I S (X,L×K) ∼= I S (X,L)×I S (X,K) .When L and K are orthogonal ring spetra, we de�ne the unit for L × K asthe map determined by ηL : S → L and ηK : S → K. The multipliation isdetermined by the two maps
(L×K) ∧ (L×K)

prL∧prL−−−−−→ L ∧ L
µL−→ L and

(L×K) ∧ (L×K)
prK∧prK−−−−−→ K ∧K

µK−−→ K .In ase L and K have involutions, we de�ne an involution on L×K by the map
ιL × ιK .To hek that L × K is an orthogonal ring spetrum (with involution), oneneeds to see that ertain diagrams ommute. This is an easy omputation, doneby projeting the diagrams to L and K, where they ommute by assumption. �However, it is not lear that the ross produt of o�brant orthogonal ringspetra is o�brant. So we provide a o�brant replaement:Lemma 5.4.2If L is an orthogonal ring spetrum and η : S → L is a losed inlusion, then
ΓL is a o�brant orthogonal ring spetrum. ΓL is involutive whenever L hasinvolution. The natural map ΓL→ L is a map of orthogonal ring spetra (withinvolution).Proof: The unit is de�ned as the omposition

S → ΓS
Γη
−→ ΓL ,the multipliation is given by

ΓL ∧ ΓL
⊆
−→ Γ(L ∧ L)

Γµ
−→ ΓL ,and the involution is the omposition

ΓL
ιL−→ ΓL

Γι
−→ ΓL ,



5.4. CROSS PRODUCT FORMULA FOR THH 207where the �rst map omes from the natural transformation ι : Γ → Γ, and theseond map is Γ applied to the involution on L.Commutativity of the required diagrams follows sine Γ is lax symmetrimonoidal. S → ΓL is a q-o�bration sine S → ΓS is a q-o�bration and Γapplied to the losed inlusion η : S → L is a q-o�bration. �We now state or ross produt formula:Proposition 5.4.3Assume that L and K are o�brant orthogonal ring spetra (with involution).The S1-map (O(2)-map)
THH(Γ(L×K))→ THH(L)× THH(K)indued by the projetions Γ(L×K)→ L and Γ(L×K)→ K is non-equivariantlya π∗-isomorphism.We will show this by omparing both THH•(Γ(L × K)) and THH•(L) ×

THH•(K) to a third yli (dihedral) orthogonal spetrum, alled T•(L,K). To-gether orollary 5.4.5 and lemma 5.4.6 below prove the proposition.We begin by de�ning T•(L,K). Let the q-simplies be the ×-produt of all
(q + 1)-fold ∧-produts where eah fator is either L or K. Let us write upexpliitly what we get for small q:
T0(L,K) = L×K

T1(L,K) = (L ∧ L)× (L ∧K)× (K ∧ L)× (K ∧K)

T2(L,K) = (L ∧ L ∧ L)× (L ∧ L ∧K)× (L ∧K ∧ L)× (L ∧K ∧K)

× (K ∧ L ∧ L)× (K ∧ L ∧K)× (K ∧K ∧ L)× (K ∧K ∧K) .We de�ne the yli (dihedral) struture by onsidering eah ×-fator separately.Consider a fator X0∧X1∧· · ·∧Xq, where eah Xi is L or K. The fae operator
di for i < q tries to multiply Xi and Xi+1. We de�ne
di : X0 ∧ · · · ∧Xq →






X0 ∧ · · · ∧Xi−1 ∧ L ∧Xi+2 ∧ · · · ∧Xq if Xi = Xi+1 = L,
X0 ∧ · · · ∧Xi−1 ∧K ∧Xi+2 ∧ · · · ∧Xq if Xi = Xi+1 = K, and
∗ otherwise.Here the map is indued by µL in the �rst ase and µK in the seond. To de�ne

dq we try to multiply Xq with X0, using µL if Xq = X0 = L, µK if Xq = X0 = Kand mapping to ∗ otherwise. The degeneray map is given by
si : X0∧· · ·∧Xq → (X0∧· · ·∧Xi∧L∧Xi+1∧· · ·∧Xq)×(X0∧· · ·∧Xi∧K∧Xi+1∧· · ·∧Xq)using ηL into the �rst fator and ηK into the seond. The yli operator permutesthe fators:

tq : X0 ∧ · · · ∧Xq → Xq ∧X0 ∧ · · · ∧Xq−1 .



208 CHAPTER 5. THH AND TCIf L and K ome with involutions, we an de�ne the involutive operator byapplying ι to eah Xi an then permute:
rq : X0 ∧ · · · ∧Xq

ι∧···∧ι
−−−→ X0 ∧ · · · ∧Xq

permute
−−−−→ X0 ∧Xq ∧ · · · ∧X1 .There is a map

pr : T•(L,K)→ THH•(L)× THH•(K)de�ned on fators by
X0 ∧ · · · ∧Xq →






L∧(q+1) = THHq(L) if X0 = · · · = Xq = L,
K∧(q+1) = THHq(K) if X0 = · · · = Xq = K, and
∗ otherwise.In the opposite diretion we have the inlusion

incl : THH•(L)× THH•(K)→ T•(L,K) .Lemma 5.4.4The map pr is yli (dihedral), incl is presimpliial, pr incl = id , while incl pr ≃
id via a presimpliial homotopy.Proof: The �rst three statements are obvious. To prove the last statement wede�ne a presimpliial homotopy on fators as follows:
hi : X0∧· · ·∧Xq →






X0 ∧ · · · ∧Xi ∧ L ∧Xi+1 ∧ · · · ∧Xq if X0 = · · · = Xi = L,
X0 ∧ · · · ∧Xi ∧K ∧Xi+1 ∧ · · · ∧Xq if X0 = · · · = Xi = K, and
∗ otherwise.Here L is inserted using ηL in the �rst ase, in the seond ase K is inserted using

ηK . We see that
d0h0 = id and dq+1hq = incl pr .Assume i < j, then dihj and hj−1di are ∗ if not X0 = · · · = Xj. When X0 = · · · =

Xj, it is easy to hek that dihj = hj−1di. Similarly, one shows that dihj = hjdi−1for i > j + 1. At last we hek that on the fator X0 ∧ · · · ∧Xq we have
dihi =

{
id if X0 = · · · = Xi, and
∗ otherwise,and also

dihi−1 =

{
id if X0 = · · · = Xi, and
∗ otherwise.Thus we have a presimpliial homotopy. �



5.4. CROSS PRODUCT FORMULA FOR THH 209Corollary 5.4.5Assume that L and K are o�brant orthogonal ring spetra (with involution).Then there is an S1-map (O(2)-map) pr : |T•(L,K)| → THH(L) × THH(K),whih is non-equivariantly a π∗-isomorphism.Proof: Sine L and K are o�brant, it follows that T•(L,K) and THH•(L) ×
THH•(K) are good. The result now follows from the lemma above, proposi-tion 2.5.2, and the fat that a presimpliial homotopy indues a homotopy onpresimpliial realization. �Next, we ompare THH•(Γ(L×K)) and T•(L,K). There is a yli (dihedral)map f : THH•(Γ(L×K))→ T•(L,K) de�ned as follows: Fix a simpliial degree
q and onsider the fator X0 ∧ · · · ∧Xq of Tq(L,K). Let pi be the omposition

Γ(L×K)→ L×K
pr
−→ Xi .Here pr denotes the projetion to the �rst fator, it is L×K → L if Xi = L and

L×K → K if Xi = K. Now we map THHq(Γ(L×K)) into X0 ∧ · · · ∧Xq by
THHq(Γ(L×K)) = Γ(L×K)∧(q+1) = Γ(L×K)∧· · ·∧Γ(L×K)

p0∧···∧pq
−−−−−−→ X0∧· · ·∧Xq .Our map fq is determined by the olletion of all suh maps when X0 ∧ · · · ∧Xqruns through all fators of Tq(L,K).Lemma 5.4.6Assume that L and K are o�brant orthogonal ring spetra (with involution).The geometri realization of f• is an S1-map (O(2)-map) f : THH(Γ(L×K))→

|T•(L,K)|, whih is non-equivariantly a π∗-isomorphism.Proof: We have that THH•(Γ(L × K)) and T•(L,K) are both good yli(dihedral) orthogonal spetra. Hene by proposition 2.5.3, it is su�ient to provethat in eah simpliial degree
fq : THHq(Γ(L×K))→ Tq(L,K)is non-equivariantly a π∗-isomorphism. The lue to prove this is to replae × by

∨. Consider the diagram
Γ(L ∨K) ∧ · · · ∧ Γ(L ∨K) −−−→

∨
X0 ∧ · · · ∧Xqy

y

Γ(L×K) ∧ · · · ∧ Γ(L×K)
fq

−−−→
∏
X0 ∧ · · · ∧Xq

.The lower left orner is THHq(Γ(L×K)), the lower right orner is Tq(L,K), andthe map at the bottom is fq.



210 CHAPTER 5. THH AND TCLook at the left vertial map. Sine L and K are o�brant, we have that
L∨K → L×K is a π∗-iso, see proposition 2.3.16. Γ preserves π∗-isomorphisms,and Γ(L ∨K) and Γ(L ×K) are both o�brant. Reall that the smash produtof a π∗-iso with a o�brant orthogonal spetrum yields a new π∗-iso. From theseonsiderations it follows that the left vertial map is a π∗-iso.The right vertial map is also a π∗-iso. This follows from the fat that eah
X0 ∧ · · · ∧ Xq is o�brant and the fat that wedge and ×-produts of o�brantorthogonal spetra are π∗-isomorphi.To see that the top map is a π∗-iso, we deompose it as

Γ(L ∨K) ∧ · · · ∧ Γ(L ∨K)→ (L ∨K)∧(q+1) →
∨

X0 ∧ · · · ∧Xq .The �rst map is a π∗-iso sine Γ(L ∨K) → L ∨K is a π∗-iso between o�brantorthogonal spetra. Distributivity of ∨ over ∧ shows that the seond map is anisomorphism of orthogonal spetra.Commutativity of the diagram implies that fq also is a π∗-iso. �Remark 5.4.7The onlusion of the ross produt formula we just have derived, proposition 5.4.3above, is too weak. Due to proposition 5.1.11, we would like our map
f : THH(Γ(L×K))→ THH(L)× THH(K)to be a ylotomi π∗-isomorphism between ylotomi spetra. We know onlythat f is non-equivariantly a π∗-isomorphism, and we do not know that THH(L)×

THH(K) is a ylotomi spetrum. These two problems are losely onneted:If we an show that THH(L) × THH(K) is a ylotomi spetrum, thenproposition 5.1.5 would imply that f is a ylotomi π∗-isomorphism.There are good andidates for the ylotomi struture maps rC on THH(L)×
THH(K), but we do not know that these maps are ylotomi π∗-isomorphisms.If we knew that f was a ylotomi π∗-isomorphism, then we ould showthat the rC 's also are ylotomi π∗-isomorphisms.In both approahes we should allow ourselves to take o�brant or �brant replae-ments. To study the �rst approah, one should give a more expliit desriptionof a ylotomi spetrum. Lemma 2.2 in [HM97℄ an be the inspiration for suh adesription. To study the seond approah, one ould try to transfer MCarthy'sonept of a speial homotopy to the setting of yli orthogonal spetra. Analo-gies of propositions 1.5.12 and 1.6.15 in [DM96℄ should then show that f is aylotomi π∗-isomorphism.



5.5. THE BARRATT-ECCLES FUNCTOR 2115.5 The Barratt-Eles funtorWhen trying to de�ne a trae map Mn(L)→ L one enounters the problem thatthere is a priori no notion of addition on L, i.e. one annot add two points in
L(V ) and get a new point. We will use the Barratt-Eles funtor Γ+, see [BE74℄,to solve this problem. In the next setion we will onstrut a trae map from
THH(ΓMn(L)). As a target for this trae we now introdue a new model for
THH(L), alled THH+(L). The onstrution uses Γ+. This is an idea due toChristian Shlihtkrull, see [Sh98℄. The main result of this setion is proposi-tion 5.5.10, but this result is not as strong as hoped for, see remark 5.5.11.Let G be a disrete group. Reall that E•G is the simpliial G-spae given by

EqG = Gq+1where
di(g0, . . . , gq) = (g0, . . . , gi−1, gi+1, . . . , gq) ,

si(g0, . . . , gq) = (g0, . . . , gi, gi, . . . , gq) and
(g0, . . . , gq).g = (g0g, . . . , gqg) .Let EG be the geometri realization.Write n for the set {1, 2, . . . , n}. Let M (m,n) be the set of all stritly in-reasing funtions from m to n. Given a permutation σ ∈ Σn and α ∈M (m,n),then there is a unique funtion in M (m,n) whih has the same image as theomposition σα. Denote this by σ∗(α).De�nition 5.5.1For α ∈M (m,n) de�ne the restrition map α∗ : Σn → Σm by ommutativity ofthe diagram

m
α

−−−→ n

α∗(σ)

y
yσ

m
σ∗(α)
−−−→ n

.On the Cartesian produt Xn we have a right ation of Σn given by
(x1, . . . , xn).σ = (xσ(1), . . . , xσ(n)) ,and given α ∈M (m,n) we have an indued map α∗ : Xn → Xm de�ned by theformula
α∗(x1, . . . , xn) = (xα(1), . . . , xα(m)) .We say that α is entire for (x1, . . . , xn) if i 6∈ α(m) implies xi = ∗.Consider the equivalene relation on

∐

m≥0

E•Σm ×X
mgiven by



212 CHAPTER 5. THH AND TC(a) (c,x) ∼ (c.σ,x.σ) for c ∈ E•Σm, x ∈ Xm and σ ∈ Σm.(b) (c,x) ∼ (α∗c, α∗x) if c ∈ E•Σm, x ∈ Xm and α ∈M (m,n) is entire for x.De�nition 5.5.2Let Γ+
• (X) be (

∐
m≥0E•Σm ×Xm)/ ∼, and Γ+(X) it's geometrial realization.Proposition 5.5.3

Γ+
• (X) is a dihedral spae.Proof: We must de�ne the yli and involutive operators. Let

tq[(σ0, . . . , σq); (x1, . . . , xm)] = [(σq, σ0, . . . , σq−1); (x1, . . . , xm)]and
rq[(σ0, . . . , σq); (x1, . . . , xm)] = [(σq, σq−1, . . . , σ1, σ0); (x1, . . . , xm)] .

�Proposition 5.5.4
Γ+(X) is a monoid with unit, the operation is ommutative up to homotopy andthe monoid is free.Proof: A proof of this result an be found in [BE74℄, orollary 3.10 and propo-sition 3.11. However in their proofs X is a based simpliial set. But the de�nitionoinides with the one given here when X is a disrete based set. Therefore, thestatements about the algebrai struture of Γ+(X) follow by applying Barrattand Eles' proofs to X's underlying disrete set Xδ. Hene, Γ+(X) is a freemonoid with unit. Cheking homotopy ommutativity an be done as in the ref-erene, but in order to familiarize ourselves with the operation we write out theargument for homotopy ommutativity here:We write + for the operation. To start we need a homomorphismΣm1×Σm2 →
Σm1+m2 . We all this homomorphism ∐ and it is de�ned by

(σ ∐ ρ)(j) =

{
σ(j) if j ≤ m1, and
ρ(j −m1) +m1 if j > m1.Now given [(σ0, . . . , σq); (x1, . . . , xm1)] and [(ρ0, . . . , ρq); (y1, . . . , ym2)] in Γ+

q (X)we de�ne their sum as:
[(σ0 ∐ ρ0, . . . , σq ∐ ρq); (x1, . . . , xm1 , y1, . . . , ym2)] .



5.5. THE BARRATT-ECCLES FUNCTOR 213This de�nes a simpliial map Γ+
• (X)× Γ+

• (X)→ Γ+
• (X), and we de�ne + to beits geometri realization.To get homotopy ommutativity we de�ne a simpliial homotopy hi : Γ+

q (X)×
Γ+

q (X)→ Γ+
q+1(X), i = 0, . . . , q. Let τ ∈ Σm1+m2 be the permutation de�ned by

τ(j) =

{
j +m2 if j ≤ m1, and
j −m1 if j > m1.Notie that τ(σ ∐ ρ)τ−1 = ρ ∐ σ. Now we de�ne hi by:

hi([(σ0, . . . , σq); (x1, . . . , xm1)], [(ρ0, . . . , ρq); (y1, . . . , ym2)]) =

[(τσ0 ∐ ρ0, . . . , τσi ∐ ρi, σi ∐ ρi, . . . , σq ∐ ρq); (x1, . . . , xm1 , y1, . . . , ym2)] .This is a simpliial homotopy between x+ y and y + x. �Proposition 5.5.5If i : A→ X is an unbased o�bration of based topologial spaes, then Γ+(A)→
Γ+(X) is also an unbased o�bration.Proof: Sine i is a o�bration, it is an inlusion and we view A as a subspaeof X. By Strøm's riterion there are maps H : X × I → X and φ : X → I with
A ⊂ φ−1(0), H(x, 0) = x for all x ∈ X, H(a, t) = a for all a ∈ A and t ∈ I and
H(x, t) ∈ A when φ(x) > t. Now de�ne Hm : Xm × I → I and φm : Xm → I by
Hm(x1, . . . , xm, t) = (H(x1, t), . . . ,H(xm, t)) and φm(x1, . . . , xm) = max

i
φ(xi) .

Hm and φm satis�es Strøm's riterion. In addition they are Σm-equivariant andif α : m→ n is entire for (x1, . . . , xm), then
α∗Hn(x1, . . . , xn, t) = Hm(α∗(x1, . . . , xn), t) and φn(x1, . . . , xn) = φmα∗(x1, . . . , xn) .Therefore, we get indued maps

H ′q : (Γ+
q (X))× I → Γ+

q (X) and φ′q : Γ+
q (X)→ Ishowing that Γ+

• (A)→ Γ+
• (X) is a o�bration in eah simpliial degree. Moreoverthe H ′q's and the φ′q's respet the fae and degeneray maps. Thus by geometrirealization we get maps H ′ : Γ+(X)× I → Γ+(X) and φ′ : Γ+(X)→ I, showingthat Γ+(A)→ Γ+(X) is a o�bration. �Proposition 5.5.6If X is an n-onneted well-pointed spae, then the map X → Γ+(X) is (2n+1)-onneted.



214 CHAPTER 5. THH AND TCProof: First we observe from the de�nition of si : Γ+
q (X) → Γ+

q+1(X) that alldegeneray maps are o�brations. Hene, Γ+
• (X) is a good simpliial spae forall X. It follows that Γ+(−) preserves weak equivalenes.By the natural weak equivalene | Sing•X| → X, we see that it is su�ientto prove the result when X is a simpliial set. Assume that X is n-onneted.If n = −1, there is nothing to prove. Therefore onsider n ≥ 0. Lemma 4.8in [BE74℄ (see also orollary 5.4) says that X → Γ+(X) is (2n+ 1)-onneted. �Corollary 5.5.7We may apply Γ+(−) level-wise to an orthogonal spetrum L. If L is o�brant,then the natural map

L→ Γ+(L)is a π∗-iso.Proof: The propositions 5.5.6 and 5.5.5 verify the onditions required to applyorollary 2.3.15. �We now de�ne the model THH+(L):De�nition 5.5.8Assume that L is an orthogonal ring spetrum (with involution). We de�ne
THH+(L) to be the geometri realization of the biyli (bidihedral) orthogonalspetrum Γ+

• (THH•(L)).A biyli orthogonal spetrum is a funtor (∆C×∆C)op → I S . Restrit-ing via the diagonal ∆C → ∆C × ∆C we get a yli orthogonal spetrum,whose geometri realization is an orthogonal S1-spetrum. Analogously, in thebidihedral ase the geometri realization has O(2)-ation.Remark 5.5.9Observe that THH+(L) inherits an addition from Γ+. Fixing a simpliial degree
p and a level V , we have an assoiative operation

+ : Γ+(THHp(L)(V ))× Γ+(THHp(L)(V ))→ Γ+(THHp(L)(V ))by proposition 5.5.4. Taking geometri realization in the p diretion, we getaddition
+ : THH+(L)× THH+(L)→ THH+(L) .Proposition 5.5.10Assume that L is a o�brant orthogonal ring spetrum (with involution). Thenthe natural S1-map (O(2)-map) THH(L) → THH+(L) is non-equivariantly a

π∗-isomorphism.



5.6. MORITA EQUIVALENCE 215Proof: Forgetting about the ation, we an onsider THH+(L) as the geometrirealization of the bisimpliial orthogonal spetrum Γ+
• (THH•(L)). It is lassialthat the two geometri realizations

∣∣[q] 7→ Γ+
q (THHq(L))

∣∣ and ∣∣∣[p] 7→
∣∣[q] 7→ Γ+

q (THHp(L))
∣∣
∣∣∣are homeomorphi. Notie that both THH•(L) and Γ+(THH•(L)) are goodsimpliial orthogonal spetra. Sine THH•(L) is o�brant in eah simpliialdegree, orollary 5.5.7 says that

THHp(L)→
∣∣[q] 7→ Γ+

q (THHp(L))
∣∣ = Γ+(THHp(L))is a π∗-isomorphism for all p. Furthermore, proposition 2.5.3 yields that the map

THH(L) = |[p] 7→ THHp(L)| −→
∣∣∣[p] 7→

∣∣[q] 7→ Γ+
q (THHp(L))

∣∣
∣∣∣ ∼= THH+(L)is also a π∗-isomorphism. �Remark 5.5.11Again, our result is weaker than what we hoped for, namely that the naturalmap THH(L) → THH+(L) would be a ylotomi π∗-isomorphism betweenylotomi spetra. As before, there are two strategies for improving the result:Either we ould show that THH+(L) is a ylotomi spetrum, or we ould showthat the natural map is a ylotomi π∗-isomorphism. In any ase, the other partthen should follow formally. Compare with remark 5.4.7.5.6 Morita equivaleneIn this setion we show Morita equivalene for THH . We adopt an approah byChristian Shlihtkrull, see theorem 3.6 in [Sh98℄, to the setting of orthogonalring spetra (with involution). In order to arry out the proof, we view orthogonalspetra as J -spaes and do our onstrutions externally. Unfortunately, ourresult is not as strong as we would like, see remark 5.6.2.Let us start by stating the result, the proof spans the following subsetions:Proposition 5.6.1Assume that L is a o�brant orthogonal ring spetrum (with involution). Thenthere is a natural S1-map (O(2)-map)

Tr : THH(ΓMn(L))→ THH+(L) ,



216 CHAPTER 5. THH AND TCwhih is non-equivariantly a π∗-isomorphism. Furthermore, we have a ommuta-tive diagram
THH(Γ(Mn1 ×Mn2)(L))

(Tr ◦pr1,Tr ◦pr2)
−−−−−−−−−→ THH+(L)× THH+(L)

⊕

y
y+

THH(ΓMn1+n2(L))
Tr
−−−→ THH+(L)of orthogonal S1-spetra (orthogonal O(2)-spetra).Remark 5.6.2The result above is not as strong as we ould hope for. We have not shownthat Tr is a ylotomi π∗-isomorphism, and we do not know that THH+(L) isa ylotomi spetrum. Again, it is probable that proving one of these wisheswould yield the other as an easy orollary. See also the remarks 5.4.7 and 5.5.11.5.6.1 InternalizingReall that orthogonal spetra an be desribed as diagram spaes over a topo-logial ategory J , see theorem 2.1.16. Furthermore, the ategory J has asymmetri operation, namely diret sum ⊕. Using left Kan extension, see the-orem X.4.1 in [ML98℄, we an therefore lift onstrutions on based topologialspaes to onstrutions on orthogonal spetra. To be more preise: Let J q+1Top∗denote the ategory of ontinuous funtors J q+1 → Top∗. Assume that F is aontinuous funtor Topq+1

∗ → Top∗. If we are given orthogonal spetra L0, L1,
. . ., Lq, we an onsider these as funtors J → Top∗ and take the omposition

J q+1 L0×L1×...×Lq

−−−−−−−−→ Topq+1
∗

F
−→ Top∗ .This is an objet in J q+1Top∗. The iterated diret sum is a funtor J q+1 →J ,and left Kan extension is a funtor P : J q+1Top∗ →J Top∗ = I S . P thereforeturns the above omposition into a funtor

J → Top∗ ,i.e. a new orthogonal spetrum. This proess of internalizing is natural withrespet to natural transformations of funtors Topq+1
∗ → Top∗.Let us look at some examples:Example 5.6.3If F is given by

F (X0, . . . , Xq) = X0 ∧ · · · ∧Xq ,then it follows from the de�nition of smash produt of orthogonal spetra thatthe left Kan extension of
F (L0, . . . , Lq) is L0 ∧ · · · ∧ Lq .



5.6. MORITA EQUIVALENCE 217Example 5.6.4If F is given by
F (X0, . . . , Xq) = Mn(X0) ∧ · · · ∧Mn(Xq) ,then the left Kan extension of
F (L0, . . . , Lq) is Mn(L0) ∧ · · · ∧Mn(Lq) .Example 5.6.5Suppose that F is given by

F (X0, . . . , Xq) = Γ+(X0 ∧ · · · ∧Xq) .Let G(L0, . . . , Lq) be the left Kan extension of (F (L0, . . . , Lq)). We observe that
G(L0, . . . , Lq) is an orthogonal spetrum, and there is a natural map

G(L0, . . . , Lq)→ Γ+(L0 ∧ · · · ∧ Lq) .To see how the map is de�ned, notie that the adjoint of the identity of L0∧· · ·∧Lqis a natural transformation
L0(V0) ∧ · · · ∧ L

q(Vq)→ (L0 ∧ · · · ∧ Lq)(V0 ⊕ · · · ⊕ Vq) .Apply the funtor Γ+(−) to get a natural transformation
F (L0(V0), . . . , L

q(Vq))→ Γ+(L0 ∧ · · · ∧ Lq)(V0 ⊕ · · · ⊕ Vq) .Its adjoint is the natural map we seek.5.6.2 Dihedral struture on funtors Topq+1
∗ → Top∗In this subsetion we study two olletions of funtors Topq+1

∗ → Top∗, q ≥ 0,these are
(X0, . . . , Xq) 7→ Mn(X0)∧· · ·∧Mn(Xq) and (X0, . . . , Xq) 7→ Γ+

q (X0∧. . .∧Xq) .A dihedral struture for suh a olletion onsists of natural transformations di,
si, tq and rq satisfying the dihedral identities. For Mn(X0) ∧ · · · ∧Mn(Xq) wehave:
di : Mn(X0) ∧ · · · ∧Mn(Xq)→Mn(X0) ∧ · · · ∧Mn(Xi ∧Xi+1) ∧ · · · ∧Mn(Xq) , if i < q,
dq : Mn(X0) ∧ · · · ∧Mn(Xq)→Mn(Xq ∧X0) ∧Mn(X1) ∧ · · · ∧Mn(Xq−1) ,

si : Mn(X0) ∧ · · · ∧Mn(Xq)→Mn(X0) ∧ · · · ∧Mn(Xi) ∧Mn(S0) ∧Mn(Xi+1) ∧ · · · ∧Mn(Xq) ,

tq : Mn(X0) ∧ · · · ∧Mn(Xq)→Mn(Xq) ∧Mn(X0) ∧Mn(X1) ∧ · · · ∧Mn(Xq−1) , and
rq : Mn(X0) ∧ · · · ∧Mn(Xq)→Mn(X0) ∧Mn(Xq) ∧Mn(Xq−1) ∧ · · · ∧Mn(X1) .



218 CHAPTER 5. THH AND TCHere the di's are de�ned using the multipliation forMn, the si's are de�ned usingthe unit in Mn(S0), yli operators tq are given by permuting the fators andthe involutive operators rq are de�ned using the transposition on Mn togetherwith the order reversing permutation of the last q fators.For Γ+
q (X0 ∧ · · · ∧Xq) we have:

di : Γ+
q (X0 ∧ · · · ∧Xq)→ Γ+

q−1(X0 ∧ · · · ∧ (Xi ∧Xi+1) ∧ · · · ∧Xq) , if i < q,
dq : Γ+

q (X0 ∧ · · · ∧Xq)→ Γ+
q−1((Xq ∧X0) ∧X1 ∧ · · · ∧Xq−1) ,

si : Γ+
q (X0 ∧ · · · ∧Xq)→ Γ+

q+1(X0 ∧ · · · ∧Xi ∧ S0 ∧Xi+1 ∧ · · · ∧Xq) ,

tq : Γ+
q (X0 ∧ · · · ∧Xq)→ Γ+

q (Xq ∧X0 ∧X1 ∧ · · · ∧Xq−1) , and
rq : Γ+

q (X0 ∧ · · · ∧Xq)→ Γ+
q (X0 ∧Xq ∧Xq−1 ∧ · · · ∧X1) .And the dihedral struture is diretly inherited from Γ+

• (−).The purpose of suh dihedral olletions of funtors is to onstrut yli(dihedral) orthogonal spetra using left Kan extension. Our result is:Proposition 5.6.6Assume that L is an orthogonal ring spetrum (with involution). Given a olle-tion of funtors Fq : Topq+1
∗ → Top∗ with natural transformations di, si, tq and

rq satisfying the dihedral identities, then the proess of internalizing using L inall fators yields a yli (dihedral) orthogonal spetrum. This onstrution isnatural in {Fq}.Applying this proposition toMn(X0)∧· · ·∧Mn(Xq) we get preisely THH•(Mn(L)).In the ase Γ+
q (X0 ∧ · · · ∧Xq) we get a yli (dihedral) orthogonal spetrum Y•,and by example 5.6.5 a map of yli (dihedral) orthogonal spetra

Yq → Γ+
q (THHq(L)) .We end the subsetion by proving the proposition.Proof: Let Xq be the left Kan extension of Fq(L, . . . , L). We will show that X•is a yli orthogonal spetrum, and that X• is dihedral whenever L omes withan involution.By de�nition of the left Kan extension there is a homeomorphism betweenthe spae ofontinuous natural transformations Fq(L(V0), . . . , L(Vq))→ K(V0 ⊕ · · · ⊕ Vq)and the spae of orthogonal spetrum maps Xq → Kfor any orthogonal spetrum K. This is adjointness. In partiular there is anadjoint to the identity map of Xq, this means that we have a anonial map:

cq : Fq(L(V0), . . . , L(Vq))→ Xq(V0 ⊕ · · · ⊕ Vq)



5.6. MORITA EQUIVALENCE 219for all q. Now observe that all we have to do in order to de�ne a map Xq → Xpis to speify a natural transformation
Fq(L(V0), . . . , L(Vq))→ Xp(V0 ⊕ · · · ⊕ Vq) .This is how we are going to de�ne the yli operators dX

i , sX
i and tXi of X•.Reall that an orthogonal ring spetrum is the same as an I -FSP, see re-mark 2.1.21. Using this external desription we have unit η : S0 → L(0) andmultipliation µ : L(V ) ∧ L(W )→ L(V ⊕W ). If L has involution, we also havea natural transformation ι : L(V )→ L(V ).Fae maps of X• are given as follows: For i < q we onsider the omposition

Fq(L(V0), . . . , L(Vq))
di−→ Fq−1(L(V0), . . . , L(Vi−1), L(Vi) ∧ L(Vi+1), L(Vi+2), . . . , L(Vq))
µ∗

−→ Fq−1(L(V0), . . . , L(Vi−1), L(Vi ⊕ Vi+1), L(Vi+2), . . . , L(Vq))
cq−1
−−−→ Xq−1(V0 ⊕ · · · ⊕ Vq) ,and let the adjoint be dX

i : Xq → Xq−1. In the ase i = q we have:
Fq(L(V0), . . . , L(Vq))

dq
−→ Fq−1(L(Vq) ∧ L(V0), L(V1), . . . , L(Vq−1))
µ∗
−→ Fq−1(L(Vq ⊕ V0), L(V1), . . . , L(Vq−1))
cq−1
−−−→ Xq−1(Vq ⊕ V0 ⊕ · · · ⊕ Vq−1)permute Vi's
−−−−−−−−→ Xq−1(V0 ⊕ · · · ⊕ Vq) ,and let this de�ne dX

q : Xq → Xq−1. For degeneray maps we onsider theomposition:
Fq(L(V0), . . . , L(Vq))

si−→ Fq+1(L(V0), . . . , L(Vi), S
0, L(Vi+1), . . . , L(Vq))

η∗
−→ Fq+1(L(V0), . . . , L(Vi), L(0), L(Vi+1), . . . , L(Vq))
cq+1
−−−→ Xq+1(V0 ⊕ · · · ⊕ Vi ⊕ 0⊕ Vi+1 ⊕ · · · ⊕ Vq)

0 is the unit for ⊕
−−−−−−−−−−−→ Xq+1(V0 ⊕ · · · ⊕ Vq) ,and we de�ne sX

i : Xq → Xq+1 to be its adjoint. The yli operator tXq : Xq → Xqis de�ned as the adjoint of the omposition
Fq(L(V0), . . . , L(Vq))

tq
−→ Fq(L(Vq), L(V0), . . . , L(Vq−1))
cq
−→ Xq(Vq ⊕ V0 ⊕ · · · ⊕ Vq−1)permute Vi's−−−−−−−−→ Xq(V0 ⊕ · · · ⊕ Vq) .Now assume that L has an involution ι : L→ L, then we an give X• dihedralstruture by de�ning the involutive operator rX

q : Xq → Xq to be the adjoint of
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Fq(L(V0), . . . , L(Vq))

rq
−→ Fq(L(V0), L(Vq), . . . , L(V1))

F (ι,...,ι)
−−−−−→ Fq(L(V0), L(Vq), . . . , L(V1))
cq
−→ Xq(V0 ⊕ Vq ⊕ · · · ⊕ V1)permute Vi's
−−−−−−−−→ Xq(V0 ⊕ · · · ⊕ Vq) .We are now supposed to verify a long list of identities involving the operators

dX
i , sX

i and tXi , and in the ase where L has involution there are even moreidentities. We will skip this painful task with one exeption: We will prove thedihedral identity
dX

i r
X
q = rX

q−1d
X
q−iin the ase 0 < i < q. This ase will illustrate the tehniques used when provingthe other yli and dihedral identities. Moreover, we will also see how the anti-ommutativity of the involution plays a role.By adjointness and the de�nitions we observe that dX

i r
X
q is the adjoint of

Fq(L(V0), . . . , L(Vq))
rq

−→ Fq(L(V0), L(Vq), . . . , L(V1))

F (ι,...,ι)
−−−−−→ Fq(L(V0), L(Vq), . . . , L(V1))

di−→ Fq−1(L(V0), L(Vq), . . . , L(Vq−i+2), L(Vq−i+1) ∧ L(Vq−i), L(Vq−i−1), . . . , L(V1))
µ∗

−→ Fq−1(L(V0), L(Vq), . . . , L(Vq−i+2), L(Vq−i+1 ⊕ Vq−i), L(Vq−i−1), . . . , L(V1))
cq−1
−−−→ Xq−1(V0 ⊕ Vq ⊕ · · · ⊕ V1)permute
−−−−−→ Xq−1(V0 ⊕ · · · ⊕ Vq) ,and rX

q−1d
X
q−i is the adjoint of

Fq(L(V0), . . . , L(Vq))
dq−i

−−−→ Fq−1(L(V0), . . . , L(Vq−i−1), L(Vq−i) ∧ L(Vq−i+1), L(Vq−i+2), . . . , L(Vq))
µ∗

−→ Fq−1(L(V0), . . . , L(Vq−i−1), L(Vq−i ⊕ Vq−i+1), L(Vq−i+2), . . . , L(Vq))
rq−1
−−−→ Fq−1(L(V0), L(Vq), . . . , L(Vq−i+2), L(Vq−i ⊕ Vq−i+1), L(Vq−i−1), . . . , L(V1))

F (ι,...,ι)
−−−−−→ Fq−1(L(V0), L(Vq), . . . , L(Vq−i+2), L(Vq−i ⊕ Vq−i+1), L(Vq−i−1), . . . , L(V1))
cq−1
−−−→ Xq−1(V0 ⊕ Vq ⊕ · · · ⊕ Vq−i+2 ⊕ (Vq−i ⊕ Vq−i+1)⊕ Vq−i−1 ⊕ · · · ⊕ V1)permute
−−−−−→ Xq−1(V0 ⊕ · · · ⊕ Vq) .These two ompositions an be ompared and found to be equal using naturalityof di and rq−1 and the fat that
L(V ) ∧ L(W )

ι∧ι
−−−→ L(V ) ∧ L(W )

twist
−−−→ L(W ) ∧ L(V )

µ

y
yµ

L(V ⊕W )
ι

−−−→ L(V ⊕W )
L(twist)
−−−−→ L(W ⊕ V )



5.6. MORITA EQUIVALENCE 221ommutes. �5.6.3 The traeIn this subsetion we will de�ne the trae map
Tr : THH(ΓMnL)→ THH+(L) ,and prove proposition 5.6.1. The de�nition of Tr will use the mahinery developedabove. Below we will onstrut a olletion of natural transformations

Trq : Mn(X0) ∧ · · · ∧Mn(Xq)→ Γ+
q (X0 ∧ . . . ∧Xq)that ommutes with the yli (dihedral) struture. Feeding this into proposi-tion 5.6.6, we get an S1-map (O(2)-map) THH(Mn(L))→ THH+(L). We nowde�ne Tr as the omposition

THH(ΓMn(L))→ THH(Mn(L))→ THH+(L) .Here Γ denotes the o�brant replaement funtor of theorem 2.2.13, and the �rstmap is indued by the natural transformation ΓMn(L)→Mn(L).To de�ne Trq, we would like to send a point ((x0
i j), . . . , (x

q
i j)) in Mn(X0) ∧

· · · ∧Mn(Xq) to a sum of (x0
jq j0, x

1
j0 j1, . . . , x

q
jq−1 jq

) taken in Γ+
q (X0 ∧ . . . ∧ Xq).Here j0, . . . , jq run through 1, 2, . . . , n. Sine Γ+ is not a stritly ommutativemonoid, this raises the question about how one should order the summands.Orderings of n(q+1): An ordering is a bijetion λ : m → n(q+1). If we had tohoose a single ordering, the lexiographial ordering would be the natural hoie.Denote this ordering by λ0. It is de�ned as follows:Assume that (j0, . . . , jq) = λ0(k) and (j′0, . . . , j

′
q) = λ0(l) .Then k < l whenever there exists an 0 ≤ i ≤ q suh that

j0 = j′0, j1 = j′1, . . . , ji−1 = j′i−1, and ji < j′i .However, in our situation we must also take other orderings into aount. Thereason is that we want the trae to ommute with the yli ations. Hene, weonsider what happens when we permute the fators of n(q+1) ylially. Let λsbe the ordering de�ned as:Assume that (j0, . . . , jq) = λs(k) and (j′0, . . . , j
′
q) = λs(l) .Then k < l whenever there exists an s ≤ i ≤ q suh that

js = j′s, js+1 = j′s+1, . . . , ji−1 = j′i−1, and ji < j′i ,or an 0 ≤ i ≤ s− 1 suh that
js = j′s, . . . , jq = j′q, j0 = j′0, . . . , ji−1 = j′i−1, and ji < j′i .



222 CHAPTER 5. THH AND TCDe�nition of Tr: Given ((x0
i j), . . . , (x

q
i j)) in Mn(X0) ∧ · · · ∧Mn(Xq), we arenow ready to write down the formula for the trae: First set

x(j0, . . . , jq) = (x0
jq j0

, x1
j0 j1

, . . . , xq
jq−1 jq

) ∈ X0 ∧ · · · ∧Xq .De�nition 5.6.7Let
Trq((x

0
i j), . . . , (x

q
i j)) = [(λ−1

0 λ0, λ
−1
1 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))] .To prove that Trq is involutive we need some fats about the lexiographialorderings. We let ρ denote the bijetion on n(q+1) de�ned by ρ(j0, . . . , jq) =

(jq, . . . , j0). We also need a tehnial de�nition:De�nition 5.6.8Let β : k→ m be ordering preserving. We say that β is speial if the omposition
k

β
−→m

λ0−→ n(q+1) pr i−→ nis injetive for all i.Our tehnial lemma is:Lemma 5.6.9If β is speial, then β∗(λ−1
q−iρλ0) = β∗(λ−1

i λ0) for all i.Proof: Consider the two diagrams:
k

β
−−−→ m

λ0−−−→ n(q+1) pr i−−−→ n

β∗(λ−1
i λ0)

y λ−1
i λ0

y
y=

y=

k
order preserving
−−−−−−−−−→ m

λi−−−→ n(q+1) pr i−−−→ nand
k

β
−−−→ m

λ0−−−→ n(q+1) pr i−−−→ n

β∗(λ−1
q−i

ρλ0)

y λ−1
q−i

ρλ0

y
yρ

y=

k
order preserving
−−−−−−−−−→ m

λq−i
−−−→ n(q+1)

prq−i
−−−→ n

.The left squares of the �rst and seond diagram de�ne β∗(λ−1
i λ0) and β∗(λ−1

q−iρλ0)respetively. Now notie that the ompositions at the bottom of both diagramsare order preserving, while the maps at the top are the same for both diagrams.Sine there is a unique fatorization of the injetive map
pr i ◦ λ0 ◦ β : k→ n



5.6. MORITA EQUIVALENCE 223as the omposition of a permutation k→ k and an order preserving map k→ n,we get that
β∗(λ−1

q−iρλ0) = β∗(λ−1
i λ0) .

�Lemma 5.6.10
Trq is a dihedral olletion of natural transformations.Proof: We have to verify that Tr• ommutes with the operators di, si, tq and
rq. These operators are spei�ed in subsetion 5.6.2. Let ((x0

a b), . . . , (x
q
a b)) be apoint in Mn(X0) ∧ · · · ∧Mn(Xq).Fae operators: Set ((y0

a b), . . . , (y
q−1
a b )) to be equal to di((x

0
a b), . . . , (x

q
a b)). Thenwe have

ys
a b =






xs
a b if s < i,

(xi
a c(a), x

i+1
c(a), b) if s = i, and

xs
a b if s > i.Here c(a) is a hoie of index suh that xi

a d = ∗ whenever d 6= c(a). De�ne
α : nq → nq+1 by

α(j0, . . . , jq−1) = (j0, . . . , ji−1, c(ji−1), ji, . . . , jq−1) .Let λ′s : m′ → nq be the yled lexiographial orderings on q− 1 fators. De�ne
β : m′ → m to be λ0αλ

′
0. Then one an easily prove that

β∗(λ−1
s λ0) =

{
λ′−1

s λ′0 if s < i, and
λ′−1

s−1λ
′
0 if s > i.Now we see that

Trq−1di((x
0
a b), . . . , (x

q
a b))

= Trq−1((y
0
a b), . . . , (y

q−1
a b ))

= [(λ′
−1
0 λ′0, λ

′−1
1 λ′0, . . . , λ

′−1
q−1λ

′
0);y(λ′0(1)), . . . ,y(λ′0(m

′))]

= [(β∗(λ−1
0 λ0), . . . , β

∗(λ−1
i−1λ0), β

∗(λ−1
i+1λ0), . . . , β

∗(λ−1
q λ0));

β∗(x(λ0(1)), . . . ,x(λ0(m)))]

= [(λ−1
0 λ0, . . . , λ

−1
i−1λ0, λ

−1
i+1λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= di[(λ
−1
0 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= di Trq((x
0
a b), . . . , (x

q
a b)) .



224 CHAPTER 5. THH AND TCDegeneray operators: Set ((y0
a b), . . . , (y

q+1
a b )) to be equal to si((x

0
a b), . . . , (x

q
a b)).Then we have

ys
a b =






xs
a b if s < i,

1 ∈ S0 if s = i and a = b,
∗ ∈ S0 if s = i and a 6= b, and
xs−1

a b if s > i.De�ne α : nq+2 → nq+1 by
α(j0, . . . , jq−1) = (j0, . . . , ji−1, ji, ji, ji+1, . . . , jq) .Let λ′s : m′ → nq+2 be the yled lexiographial orderings on q + 1 fators.De�ne β : m→m′ to be λ′0αλ0. Then one an easily prove that

β∗(λ′
−1
s λ′0) =

{
λ−1

s λ0 if s ≤ i, and
λ−1

s−1λ0 if s > i.Now we see that
Trq+1si((x

0
a b), . . . , (x

q
a b))

= Trq+1((y
0
a b), . . . , (y

q+1
a b ))

= [(λ′
−1
0 λ′0, λ

′−1
1 λ′0, . . . , λ

′−1
q+1λ

′
0);y(λ′0(1)), . . . ,y(λ′0(m

′))]

= [(β∗(λ−1
0 λ0), . . . , β

∗(λ−1
i λ0), β

∗(λ−1
i λ0), . . . , β

∗(λ−1
q λ0));

β∗(x(λ0(1)), . . . ,x(λ0(m)))]

= [(λ−1
0 λ0, . . . , λ

−1
i λ0, λ

−1
i λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= si[(λ
−1
0 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= si Trq((x
0
a b), . . . , (x

q
a b)) .The yli operator: Set ((y0

a b), . . . , (y
q
a b)) to be equal to tq((x0

a b), . . . , (x
q
a b)).Then we have

ys
a b =

{
xq

a b if s = 0, and
xs−1

a b if s > 0.De�ne α : nq+2 → nq+1 by
α(j0, . . . , jq−1) = (jq, j0, . . . , jq−1) .Notie that αλs = λs+1 for s < q and αλq = λ0. Thus
λ−1

s λ0λ
−1
q λ0 =

{
λ−1

q λ0 if s = 0, and
λ−1

s−1λ0 if s > 0.



5.6. MORITA EQUIVALENCE 225Let τ : X0 ∧ · · · ∧ Xq → Xq ∧ X0 ∧ · · · ∧ Xq−1 be the homeomorphism whihpermutes the fators. We have
y(α(j0, . . . , jq)) = τ(x(j0, . . . , jq)) .Now we see that

Trqtq((x
0
a b), . . . , (x

q
a b))

= Trq((y
0
a b), . . . , (y

q
a b))

= [(λ−1
0 λ0, λ

−1
1 λ0, . . . , λ

−1
q λ0);y(λ0(1)), . . . ,y(λ0(m))]

= [(λ−1
0 λ0, λ

−1
1 λ0, . . . , λ

−1
q λ0); τx(λq(1)), . . . , τx(λq(m))]

= [(λ−1
0 λ0, λ

−1
1 λ0, . . . , λ

−1
q λ0); (τx(λ0(1)), . . . , τx(λ0(m))).(λ−1

0 λq)]

= [(λ−1
0 λ0λ

−1
q λ0, λ

−1
1 λ0λ

−1
q λ0, . . . , λ

−1
q λ0λ

−1
q λ0); τx(λ0(1)), . . . , τx(λ0(m))]

= [(λ−1
q λ0, λ

−1
0 λ0, . . . , λ

−1
q−1λ0); τx(λ0(1)), . . . , τx(λ0(m))]

= tq[(λ
−1
0 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= tq Trq((x
0
a b), . . . , (x

q
a b)) .The involutive operator: Set ((y0

a b), . . . , (y
q
a b)) to be equal to rq((x

0
a b), . . . , (x

q
a b)).Then we have

ys
a b =

{
x0

b a if s = 0, and
xq+1−s

b a if s > 0.Reall that ρ : nq+2 → nq+1 was de�ned by
ρ(j0, . . . , jq−1) = (jq, jq−1, . . . , j1, j0) .Reall also the fat that β∗(λ−1

q−sρλ0) = β∗(λ−1
s λ0) if β is speial, see lemma 5.6.9.Let τ : X0 ∧ · · · ∧Xq → Xq ∧Xq−1 ∧ · · · ∧X1 ∧X0 be the homeomorphism whihpermutes the fators. We have

y(ρ(j0, . . . , jq)) = τ(x(j0, . . . , jq)) .Observe that there exists a β : k→m suh that β is entire for (y(λ0(1)), . . . ,y(λ0(m)))and β is speial. This is a onsequene of that eah olumn of a matrix inMn(X)



226 CHAPTER 5. THH AND TContains at most one element di�erent from ∗. Now we see that
Trqrq((x

0
a b), . . . , (x

q
a b))

= Trq((y
0
a b), . . . , (y

q
a b))

= [(λ−1
0 λ0, λ

−1
1 λ0, . . . , λ

−1
q λ0);y(λ0(1)), . . . ,y(λ0(m))]

= [(β∗(λ−1
0 λ0), β

∗(λ−1
1 λ0), . . . , β

∗(λ−1
q λ0)); β

∗(y(λ0(1)), . . . ,y(λ0(m)))]

= [(β∗(λ−1
q ρλ0), β

∗(λ−1
q−1ρλ0), . . . , β

∗(λ−1
0 ρλ0)); β

∗(y(λ0(1)), . . . ,y(λ0(m)))]

= [(λ−1
q ρλ0, λ

−1
q−1ρλ0, . . . , λ

−1
0 ρλ0);y(λ0(1)), . . . ,y(λ0(m))]

= [(λ−1
q ρλ0, λ

−1
q−1ρλ0, . . . , λ

−1
0 ρλ0); τx(ρλ0(1)), . . . ,x(ρλ0(m))]

= [(λ−1
q λ0, λ

−1
q−1λ0, . . . , λ

−1
0 λ0); τx(λ0(1)), . . . ,x(λ0(m))]

= rq[(λ
−1
0 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= rq Trq((x
0
a b), . . . , (x

q
a b)) .

�This lemma shows that Tr : THH(ΓMn(L)) → THH+(L) is an S1-map,or O(2)-map when L omes with an involution. Now the next statement ofproposition 5.6.1 is that Tr : THH(ΓMn(L)) → THH+(L) is non-equivariantlya π∗-isomorphism. Let us now prove this:Proof: We are assuming that L is a o�brant orthogonal ring spetrum (withinvolution). Let Wn be the endofuntor on Top∗ de�ned by X 7→ ∨
n2 X. Wewrite elements of Wn(X) on the form

(a, x, b) where a, b ∈ {1, . . . , n} and x ∈ X.We think about Wn as an �FSP without unit�. Multipliation µ : Wn(X) ∧
Wn(Y )→Wn(X ∧ Y ) is given by

µ((a, x, b); (c, y, d)) =

{
(a, (x, y), d) if b = c, and
∗ otherwise.We have involution given by (a, x, b) 7→ (b, x, a). Furthermore, there is a naturaltransformation fromWn toMn whih respets both multipliation and involution.This natural transformation is given by sending (a, x, b) to the matrix (xi j), where

xa b = x and xi j = ∗ otherwise.
THH•(Wn(L)) is a presimpliial orthogonal spetrum, the q-simplies are

(Wn(L))∧(q+1), and fae maps are given by the usual formulas. Moreover, wehave a natural presimpliial map THH•(Wn(L)) → THH•(Mn(L)). However,we do not know that THH•(Mn(L)) is good as a simpliial orthogonal spetrum.The problem is that Mn(L) might not be o�brant. Therefore we replae Mn(L)by ΓMn(L), and onsider
THH•(ΓWn(L))→ THH•(ΓMn(L)) .



5.6. MORITA EQUIVALENCE 227By proposition 5.3.10 and results about indued funtors, we see that the presim-pliial realization of this map is a π∗-iso. Notie that Wn(L) is a wedge of opiesof L, thus o�brant. Hene, the natural map
THH•(ΓWn(L))→ THH•(Wn(L))is a π∗-iso in eah simpliial degree.There is a trae map Tr : Wn(X0) ∧ · · · ∧Wn(Xq)→ X0 ∧ · · · ∧Xq given by

Tr((a0, x0, b0), . . . , (aq, xq, bq)) =

{
(x0, . . . , xq) if b0 = a1, b1 = a2, . . ., bq = a0, and
∗ otherwise.We get an indued presimpliial map THH•(Wn(L)) → THH•(L), whih �tsinto the diagram

THH•(ΓWn(L))
≃
−−−→ THH•(Wn(L))

Tr
−−−→ THH•(L)

≃

y
y

y≃

THH•(ΓMn(L)) −−−→ THH•(Mn(L))
Tr
−−−→ THH+

• (L)

.We already know that after presimpliial realization the left and right vertialmaps beome π∗-isomorphisms. Hene, it remains only to show that the geometrirealization of the top Tr is also a π∗-isomorphism.To show this we onstrut a presimpliial homotopy inverse: There is a pres-impliial map incl : THH•(L)→ THH•(Wn(L)) de�ned by the natural transfor-mation
X →Wn(X) , whih sends x to (1, x, 1).It is easily seen that Tr ◦ incl is the identity. We omplete the proof by onstrut-ing a presimpliial homotopy from incl ◦Tr to the identity on THH•(Wn(L)).Let the natural transformations

hi : Wn(X0)∧· · ·∧Wn(Xq)→Wn(X0)∧· · ·∧Wn(Xi)∧Wn(S0)∧Wn(Xi+1)∧· · ·∧Wn(Xq)be given by
hi((a0, x0, b0), . . . , (aq , xq, bq)) =






((a0, x0, 1), . . . , (1, xi, 1), (1, 1, bi), (ai+1, xi+1, bi+1), . . . , (aq , xq, bq))if b0 = a1, b1 = a2, . . ., bi−1 = ai, and
∗ otherwise.We see that

d0h0 = id ,

dihj = hj−1di for i < j,
dihi = dihi−1 ,

dihj = hjdi−1 for i > j + 1, and
dq+1hq = incl Trq .



228 CHAPTER 5. THH AND TCHene, h is a presimpliial homotopy between id and incl ◦Tr. �To �nish the proof of proposition 5.6.1, it remains only to hek that diretsum of matries orresponds to the addition indued by the Barratt-Eles fun-tor, Γ+. To hek this, we �rst onsider the q-simplies via the external viewpoint.The following lemma is the key:Lemma 5.6.11The diagram
(Mn1 ×Mn2 )(X0) ∧ · · · ∧ (Mn1 ×Mn2 )(Xq)

(Tr ◦pr1,Tr ◦pr2)
−−−−−−−−−−−−→ Γ+(X0 ∧ · · · ∧Xq)× Γ+(X0 ∧ · · · ∧Xq)

⊕

y
y+

(Mn1+n2 )(X0) ∧ · · · ∧ (Mn1+n2)(Xq)
Tr

−−−−−→ Γ+(X0 ∧ · · · ∧Xq)ommutes.Proof: Set ((x0
a b), . . . , (x

q
a b)) to be equal to ((y0

a b) ⊕ (z0
a b), . . . , (y

q
a b) ⊕ (zq

a b)).Then we have
xs

a b =






ys
a b if a ≤ n1 and b ≤ n1,
zs
(a−n1) (b−n1) if a > n1 and b > n1, and
∗ otherwise.De�ne α : n1

q+1 ∐ n2
q+1 → (n1 + n2)

q+1 by
α(j0, . . . , jq) =

{
(j0, . . . , jq) for (j0, . . . , jq) ∈ n1

q+1, and
(j0 + n1, . . . , jq + n1) for (j0, . . . , jq) ∈ n2

q+1.Denote by λ1
s, λ2

s and λs the yled lexiographial orderings of n1
q+1, n2

q+1 and
(n1 + n2)

q+1 respetively. De�ne βs to be the unique map suh that the diagrambelow ommutes:
m1 + m2

λ1
s∐λ2

s−−−→ n1
q+1 ∐ n2

q+1

βs

y
yα

m
λs−−−→ (n1 + n2)

q+1

.By the de�nition of α and the λ's we see that βs is order preserving. And fromthe ommutative diagram
m1 + m2

β0
−−−→ m

(λ1
s∐λ2

s)−1(λ1
0∐λ2

0)

y λ−1
s λ0

y

m1 + m2

βs
−−−→ m



5.6. MORITA EQUIVALENCE 229it follows that
β∗0(λ

−1
s λ0) = ((λ1

s)
−1λ1

0)∐ ((λ2
s)
−1λ2

0) .Now we see that
Tr ◦pr 1((y

0
a b)⊕ (z0

a b), . . . , (y
q
a b)⊕ (zq

a b)) + Tr ◦pr 2((y
0
a b)⊕ (z0

a b), . . . , (y
q
a b)⊕ (zq

a b))

= Tr((y0
a b), . . . , (y

q
a b)) + Tr((z0

a b), . . . , (z
q
a b))

= [((λ1)−1
0 λ1

0, . . . , (λ
1)−1

q λ1
0);y(λ1

0(1)), . . . ,y(λ1
0(m1))]

+ [((λ2)−1
0 λ2

0, . . . , (λ
2)−1

q λ2
0); z(λ

2
0(1)), . . . , z(λ

2
0(m2))]

= [(((λ1)−1
0 λ1

0)∐ ((λ2)−1
0 λ2

0), . . . , ((λ
1)−1

q λ1
0)) ∐ ((λ2)−1

q λ2
0));

y(λ1
0(1)), . . . ,y(λ1

0(m1)), z(λ
2
0(1)), . . . , z(λ

2
0(m2))]

= [(β∗0(λ−1
0 λ0), . . . , β

∗
0(λ−1

q λ0));x(λ0β0(1)), . . . ,x(λ0β0(m))]

= [(λ−1
0 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= Tr((x0
a b), . . . , (x

q
a b)) .This onludes the proof of the lemma. �Let us now �nish the proof of proposition 5.6.1:Proof: By internalizing the diagram of the lemma, we get that

(Mn1 ×Mn2)(L)∧(q+1) (Tr ◦pr1,Tr ◦pr2)−−−−−−−−−→ Γ+(L∧(q+1))× Γ+(L∧(q+1))

⊕

y
y+

(Mn1+n2)(L)∧(q+1) Tr
−−−→ Γ+(L∧(q+1))ommutes for any L orthogonal ring spetrum (with involution). We identify theorners with THHq((Mn1×Mn2)(L)), THH+

q (L)×THH+
q (L), THHq((Mn1+n2)(L))and THH+

q (L). Take geometri realization and use the natural transformation
ΓX → X to get the ommutative diagram
THH(Γ(Mn1 ×Mn2)(L))→THH((Mn1 ×Mn2)(L))

(Tr ◦pr1,Tr ◦pr2)
−−−−−−−−−−−→ THH+(L)× THH+(L)

⊕

y ⊕

y
y+

THH(ΓMn1+n2(L)) → THH(Mn1+n2(L))
Tr

−−−−→ THH+(L)

.The outer square is the diagram we are interested in. �
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Appendix AUseful results
A.1 Homotopy theoryLet us �rst reall some results about CW-approximations:Proposition A.1.1For every spaeX there exists a CW-omplex Z and a weak homotopy equivalene
f : Z → X. Furthermore, Z is unique up to homotopy equivalene.See theorem 7.8.1 in [Spa91℄ for a proof. In the relative ase we will use thefollowing:Proposition A.1.2For every o�bration i : A→ X there exists a CW-pair (Z,C) and a ommutativediagram

C −−−→ Z

f0

y
yf

A
i

−−−→ X

,where f and f0 are weak equivalenes. Furthermore, (Z,C) is unique up tohomotopy equivalene.Proof: First hoose a CW-approximation f0 : C → A. Let M be the mappingylinder of f0. Sine i is a o�bration, the map M ∪A X → X indued by theprojetion M → A is a homotopy equivalene. By proposition 4.13 in [Hat02℄there exists a CW-spae Z ontaining C as a subomplex and a weak equivaleneof pairs f ′ : (Z,C) → (M ∪A X,C). Composing with the projetion (M ∪A

X,C)→ (X,A) we get our CW-approximation.Uniqueness follows by applying orollary 4.19 in [Hat02℄ twie, �rst to showthat the hoie of C is unique up to homotopy, then to show that for �xed C the231



232 APPENDIX A. USEFUL RESULTShoie of Z is unique up to homotopy rel C. �In order to e�iently apply CW-approximation we need a gluing theorem forweak equivalenes. The proof is formal one the following lemma is established:Lemma A.1.3Let Y be the pushout of X f
← A

i
→ B, where f is a weak equivalene and i ao�bration. Then g : B → Y is also a weak equivalene.Proof: Sine i is a o�bration, we have that Y is homotopi to the homotopypushout. Hene, both the van Kampen theorem and Mayer-Vietoris sequenesan be applied. By elementary onsiderations it is seen that g indues a bijetionof path omponents. For π1 we onsider eah path-omponent of B separately, sowe may just as well assume that B is path-onneted. If A also is path-onneted,then the van Kampen theorem applies to Y = X ∪B and shows that π1B → π1Yis an isomorphism. When A has more than one path-omponent, we write

A =
⋃

Aα and X =
⋃

Xαwhere all Aα and Xα are path onneted. Then we apply van Kampen to theunion
Y =

⋃
(Xα ∪ B) .Sine eah Xα ∪B is π1-isomorphi to B, it follows that g is a π1-iso.For the higher homotopy groups we use Mayer-Vietoris sequenes and theHurewiz theorem. �Form this lemma it is a formal argument due to Thomas Gunnarsson, see theproof of lemma 8.8 in [GJ99℄, to show the gluing theorem:Proposition A.1.4If we have a ommutative diagram

X ←−−− A
i

−−−→ B

≃

y
y≃

y≃

X ′ ←−−− A′
i′

−−−→ B′where i and i′ are o�brations and the vertial maps are weak equivalenes, thenthe map of pushouts is also a weak equivalene.We have several times used the Blakers-Massey homotopy exision theorem.The following form of the theorem is suitable for our purposes:



A.1. HOMOTOPY THEORY 233Theorem A.1.5Suppose that X is a pointed spae and that A and B are pointed subspaes of
X suh that

X = A ∪ B andthe inlusions A ∩ B → A and A ∩B → B are o�brations.If the pair (A,A ∩ B) is m-onneted and the pair (B,A ∩ B) is n-onneted,
m ≥ 0, n ≥ 0, then the homomorphism indued by the inlusion, namely i∗ :
πq(A,A ∩ B)→ πq(X,B), is an isomorphism for q < m+ n and is surjetive for
q = m+ n.By proposition A.1.4 we an apply CW-approximation. Then the result fol-lows from theorem 4.23 in [Hat02℄. Two useful onsequenes of homotopy exisionare:Proposition A.1.6Suppose thatA→ X is a o�bration, that the pair (X,A) is (r−1)-onneted, andthat the subspae A is (s− 1)-onneted, r ≥ 1, s ≥ 1. Then the homomorphismindued by the quotient map, namely

πq(X,A)→ πq(X/A) ,is an isomorphism for q < r + s− 1 and surjetive for q = r + s− 1.Theorem A.1.7Let X be an (n − 1)-onneted well-pointed spae. Then the suspension map
πq(X) → πq+1(S

1 ∧ X) is an isomorphism for q < 2n − 1 and surjetive for
q = 2n− 1.The last result is known as the Freudenthal suspension theorem. Proofs ofboth results an be found in [Hat02℄. Just observe that his onditions onernCW-pairs instead of o�brations, but the only plaes where he uses these ondi-tions in his proofs, are when applying the Blakers-Massey homotopy extensiontheorem.As a orollary of the proposition we have:Corollary A.1.8If A→ X is a o�bration and A is weakly ontratible, then X → X/A is a weakequivalene.Proof: We an assume that X is path-onneted without loss of generality. Bythe proposition, the maps

πq(X,A)→ πq(X/A)



234 APPENDIX A. USEFUL RESULTSare isomorphisms for all q. Furthermore, the maps πq(X) → πq(X,A) are alsoisomorphisms for all q sine A is weakly ontratible. �Proposition A.1.9If X and Y are well-pointed spaes (r − 1)- and (s − 1)-onneted respetively,then X ∧ Y is (r + s− 1)-onneted.Proof: We an approximate X and Y by CW-omplexes X ′ and Y ′ suh thatall ells exept ∗ has dimension greater than (r − 1) and (s − 1) respetively.By proposition A.1.4 we have a weak equivalene X ′ ∧ Y ′ → X ∧ Y . Sine allells of X ′ ∧ Y ′ have dimension greater than (r + s − 1), the smash produt is
(r + s− 1)-onneted. �A.2 Monoidal ategoriesHere we speify the language used for monoidal ategories. The standard refer-ene is [ML98℄. See also �20 in [MMSS01℄.De�nition A.2.1A monoidal ategory M is a ategory with a bifuntor, � : M ×M →M , a unit
e ∈M and natural isomorphisms

α : a�(b�c) ∼= (a�b)�c ,

λ : e�a ∼= a , and
ρ : a�e ∼= a ,suh that the diagrams (i), (ii) and (iii) ommute.

a�(b�(c�d))
α

−−−→ (a�b)�(c�d)
α

−−−→ ((a�b)�c)�d

id�α

y
xα�id

a�((b�c)�d)
α

−−−→ (a�(b�c))�d

(i)
a�(e�c)

α
−−−→ (a�e)�c

id�λ

y
yρ�id

a�c a�c

(ii)
e�e e�e

λ

y
yρ

e e

(iii)



A.2. MONOIDAL CATEGORIES 235De�nition A.2.2A symmetri monoidal ategory M is a monoidal ategory M with a naturalisomorphism
γ : a�b ∼= b�asuh that γ2 = id and the diagrams (iv) and (v) ommute.
a�e

γ
−−−→ e�a

ρ

y
yλ

a a

(iv)
(a�b)�c

γ
−−−→ c�(a�b)

α
−−−→ (c�a)�b

α

x γ�id

y

a�(b�c)
id�γ
−−−→ a�(c�b)

α
−−−→ (a�c)�b

(v)De�nition A.2.3A funtor F : M → B between monoidal ategories is lax monoidal if there is amap η : eB → F (eM) and a natural transformation
φ : F (a)�F (b)→ F (a�b)suh that the diagrams (vi), (vii) and (viii) ommute.

F (a)�(F (b)�F (c))
id�φ
−−−→ F (a)�F (b�c)

φ
−−−→ F (a�(b�c))

α

y
yF (α)

(F (a)�F (b))�F (c)
φ�id
−−−→ F (a�b)�F (c)

φ
−−−→ F ((a�b)�c)

(vi)
F (a)�eB

ρ
−−−→ F (a)

id�η

y
xF (ρ)

F (a)�F (eM)
φ

−−−→ F (a�eM)

(vii)
eB�F (b)

λ
−−−→ F (b)

η�id

y
xF (λ)

F (eM)�F (b)
φ

−−−→ F (eM�b)

(viii)De�nition A.2.4A funtor F : M → B between monoidal ategories is lax omonoidal if there isa map η : F (eM)→ eB and a natural transformation
φ : F (a�b)→ F (a)�F (b)



236 APPENDIX A. USEFUL RESULTSsuh that the diagrams (ix), (x) and (xi) ommute.
F (a)�(F (b)�F (c))

id�φ
←−−− F (a)�F (b�c)

φ
←−−− F (a�(b�c))

α

y
yF (α)

(F (a)�F (b))�F (c)
φ�id
←−−− F (a�b)�F (c)

φ
←−−− F ((a�b)�c)

(ix)
F (a)�eB

ρ
−−−→ F (a)

id�η

x
xF (ρ)

F (a)�F (eM)
φ

←−−− F (a�eM)

(x)
eB�F (b)

λ
−−−→ F (b)

η�id

x
xF (λ)

F (eM)�F (b)
φ

←−−− F (eM�b)

(xi)De�nition A.2.5A lax monoidal funtor F : M → B between symmetri monoidal ategories islax symmetri monoidal if diagram (xii) ommutes.
F (a)�F (b)

γ
−−−→ F (b)�F (a)

φ

y
yφ

F (a�b)
F (γ)
−−−→ F (b�a)

(xii)De�nition A.2.6A lax omonoidal funtor F : M → B between symmetri monoidal ategories islax symmetri omonoidal if diagram (xiii) ommutes.
F (a�b)

F (γ)
−−−→ F (b�a)

φ

y
yφ

F (a)�F (b)
γ

−−−→ F (b)�F (a)

(xiii)De�nition A.2.7A lax monoidal funtor F : M → B between monoidal ategories is strongmonoidal if η and φ are isomorphisms. F is strong symmetri monoidal if Fis both strong monoidal and lax symmetri monoidal.



A.2. MONOIDAL CATEGORIES 237Remark A.2.8We ould also de�ne strong omonoidal, but this de�nition is redundant sinedemanding that η and φ are isomorphisms, for a lax omonoidal funtor F , wouldimply that F together with η−1 and φ−1 is strong monoidal.Lemma A.2.9If F : M → B is a funtor between symmetri monoidal ategories where �M and
�B are ategorial produts for M and B, then F is lax symmetri omonoidal.Proof: Reall that � on B is a ategorial produt if there are natural trans-formations

a
p1← a�b

p2→ b ,suh that the indued map
B(c, a�b)→ B(c, a)× B(c, b)is a bijetion. Using that λ is an isomorphism, it immediately follows that eB isa terminal objet. We de�ne η : F (eM)→ eB to be the unique map.It is impliitly understood when saying that �� is the ategorial produt�that α, ρ, λ and γ are related to p1 and p2. We require that p1 = ρ when b = eBand p2 = λ when a = eB. Furthermore, the following diagrams must ommute:

a�(b�c)
α

−−−→ (a�b)�c

p1

y
yp1

a
p1
←−−− a�b

,

a�(b�c)
α

−−−→ (a�b)�c

p2

y
yp2

b�c
p2
←−−− c

and
a�(b�c)

α
−−−→ (a�b)�c

p2

y
yp1

b�c
p1
−−−→ b

p2
←−−− a�b

,and γ : a�b→ b�a is the unique map suh that
a

p1
←−−− a�b

p2
−−−→ b

=

y γ

y
y=

a
p2←−−− b�a

p1−−−→ bommute.To de�ne φ we apply F to p1 and p2. Under the bijetion
B(F (a�b), F (a))× B(F (a�b), F (b)) ∼= B(F (a�b), F (a)�F (b))the pair (F (p1), F (p2)) orresponds to φ. It is now an easy exerise to hek thatdiagrams (ix), (x), (xi) and (xiii) ommutes. �



238 APPENDIX A. USEFUL RESULTSRemark A.2.10There is a dual lemma: If �M and �B are ategorial oproduts, then anyfuntor F : M → B is symmetri monoidal.A.3 Arithmetis for May's operad MMay's operad M enodes the struture of a monoid with unit. In this setionwe will derive formulas for the omposition operation for this operad. Note thefollowing fat: The de�nition of the ation ofM on arbitrary monoids fores thede�nition of the ◦i's.We begin by de�ning the spaes ofM. We let
M(j) = Σj ,where Σj denotes the permutation group on the integers 1, 2, . . . , j. When neededwe will write permutations ρ in Σj as 2× j-matries:

ρ =

(
1 2 . . . j
ρ(1) ρ(2) . . . ρ(j)

)
.The way that M enodes the struture of a monoid G with unit is that forevery j there is an ation

θj :M(j)×Gj → G .This is de�ned by sending (ρ; g1, . . . , gj) to the produt gρ−1(1) · · · gρ−1(j).A main part of an operad is the omposition operations ◦i. The idea behindthe ◦i's is that they desribe how to at iteratively. Assume given elements
ρ ∈M(k) and υ ∈M(j). First use

θj(υ;−)to multiply (g1, . . . , gj). Let g′i be the result, and insert it as the i'th fator in
(g′1, . . . , g

′
k). Next multiply using

θk(ρ;−) .Now we an hope that there exists some element µ ∈M(k + j − 1) suh that
θk+j−1(µ; g′1, . . . , g

′
i−1, g1, . . . , gj, g

′
i+1, . . . , g

′
k)is equal to the result of the two step proess above. The omposition operation

◦i is de�ned so that ρ ◦i υ is suh a µ.



A.3. ARITHMETICS FOR MAY'S OPERADM 239De�nition A.3.1Let ρ ∈ Σk and υ ∈ Σj be permutations and 1 ≤ i ≤ k. We de�ne the ompositionoperation
◦i : Σk × Σj → Σk+j−1by the formula

(ρ ◦i υ)(t) =






ρ(t) if t < i and ρ(t) < ρ(i),
ρ(t) + j − 1 if t < i and ρ(t) > ρ(i),
υ(t− i+ 1) + ρ(i)− 1 if i ≤ t < j + i,
ρ(t− j + 1) if j + i ≤ t and ρ(t− j + 1) < ρ(i) and
ρ(t− j + 1) + j − 1 if j + i ≤ t and ρ(t− j + 1) > ρ(i).Example A.3.2We now look at some expliit examples: For instane, if
ρ =

(
1 2 3 4
2 4 1 3

) and υ =

(
1 2 3
3 2 1

)
,then

ρ ◦1 υ =

(
1 2 3 4 5 6
4 3 2 6 1 5

)
,while

ρ ◦3 υ =

(
1 2 3 4 5 6
4 6 3 2 1 3

)
.There is a �box�-model that an be helpful when trying to visualize this op-eration. Given i, ρ and υ, we put boxes around the integers from 1 to k + j − 1as follows:

1 , . . . , i− 1 , i, i+ 1, . . . , i+ j − 1 , i+ j , . . . , k + j − 1 .We now use ρ to permute the boxes, while we use υ to permute the elements inthe i'th box. Removing the boxes one get the permutation ρ ◦i υ.To see that our de�nition of the omposition operation is orret, we provethe following lemma:Lemma A.3.3If g′i = θj(υ; g1, . . . , gj) then
θk(ρ; g

′
1, . . . , g

′
k) = θk+j−1(ρ ◦i υ; g′1, . . . , g

′
i−1, g1, . . . , gj, g

′
i+1, . . . , g

′
k) .Proof: By the de�nition we have that

g′i = θj(υ; g1, . . . , gj) = gυ−1(1) · · · gυ−1(j)
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θk(ρ; g

′
1, . . . , g

′
k) = g′ρ−1(1) · · · g

′
ρ−1(k) .If we let s = ρ(i), then the s'th fator in the last produt is g′ρ−1(s) = g′i and wehave that

θk(ρ; g
′
1, . . . , g

′
k) = g′ρ−1(1) · · · g

′
ρ−1(s−1)gυ−1(1) · · · gυ−1(j)g

′
ρ−1(s+1) · · · g

′
ρ−1(k) .To evaluate θk+j−1(ρ ◦i υ; g′1, . . . , g

′
i−1, g1, . . . , gj, g

′
i+1, . . . , g

′
k) using the de�nitionof θ we need an expliit expression for (ρ ◦i υ)−1. We use the de�nition of ◦i todedue the formula:

(ρ ◦i υ)−1(r) =






ρ−1(r) if ρ−1(r) < i and r < ρ(i),
ρ−1(r) + j − 1 if ρ−1(r) > i and r < ρ(i),
υ−1(r − ρ(i) + 1) + i− 1 if ρ(i) ≤ r < ρ(i) + j,
ρ−1(t− j + 1) if ρ−1(r − j + 1) < i and r − j + 1 > ρ(i) and
ρ−1(t− j + 1) + j − 1 if ρ−1(r − j + 1) > i and r − j + 1 > ρ(i).Now we see that

θk+j−1(ρ ◦i υ; g′1, . . . , g
′
i−1, g1, . . . , gj, g

′
i+1, . . . , g

′
k)

= g′ρ−1(1) · · · g
′
ρ−1(s−1)gυ−1(1) · · · gυ−1(j)g

′
ρ−1(s+1) · · · g

′
ρ−1(k) .This onludes the proof. �Let us now dedue a ouple of formulas telling us how to alulate using theomposition operations:Lemma A.3.4If ρ, ρ′ ∈ Σk and υ, υ′ ∈ Σj , then the following formulas hold:i) ρ ◦i υ = (ρ ◦i id j)(idk ◦i υ).ii) ρ ◦i υ = (idk ◦ρ(i) υ)(ρ ◦i id j).iii) idk ◦i (υυ′) = (idk ◦i υ)(idk ◦i υ′).iv) (ρρ′) ◦i id j = (ρ ◦ρ′(i) id j)(ρ ◦i id j).v) (ρρ′) ◦i (υυ′) = (ρ ◦ρ′(i) υ)(ρ′ ◦i υ′).Proof: To hek i) we pik t and alulate (ρ ◦i id j)(idk ◦i υ)(t). First we have

(idk ◦i υ)(t) =






t if t < i,
υ(t− i+ 1) + i− 1 if i ≤ t < j + i, and
t if t ≥ j + i.



A.3. ARITHMETICS FOR MAY'S OPERADM 241We also have that
(ρ ◦i id j)(t) =






ρ(t) if t < i and ρ(t) < ρ(i),
ρ(t) + j − 1 if t < i and ρ(t) > ρ(i),
t− i+ ρ(i) if i ≤ t < j + i,
ρ(t− j + 1) if j + i ≤ t and ρ(t− j + 1) < ρ(i) and
ρ(t− j + 1) + j − 1 if j + i ≤ t and ρ(t− j + 1) > ρ(i).Putting these together we get that (ρ ◦i id j)(idk ◦i υ)(t) = (ρ ◦i υ)(t).For ii) we use the formulas above to ompute that (idk ◦ρ(i) υ)(ρ ◦i id j)(t) =

(ρ ◦i υ)(t). Let us verify this in the ase i ≤ t < j + i. Then
(idk◦ρ(i)υ)(ρ◦iid j)(t) = (idk◦ρ(i)υ)(t−i+ρ(i)) = υ(t−i+ρ(i)−ρ(i)+1)+ρ(i)−1 = (ρ◦iυ)(t) .The ase iii) is obvious from the formula for (idk ◦i υ)(t). Also the ase iv) iseasy. Now formula v) follows from the other ases:

(ρρ′) ◦i (υυ′)

= ((ρρ′) ◦i id j)(idk ◦i (υυ′))

= (ρ ◦ρ′(i) id j)(ρ
′ ◦i id j)(idk ◦i υ)(idk ◦i υ

′)

= (ρ ◦ρ′(i) id j)(idk ◦ρ′(i) υ)(ρ′ ◦i id j)(idk ◦i υ
′)

= (ρ ◦ρ′(i) υ)(ρ′ ◦i υ
′) .

�We interpret ase v) as a formula for the Σ-equivariane for the operad M.There are also formulas for iterated ompositions. These are:Lemma A.3.5If ρ ∈ Σk, υ ∈ Σj and µ ∈ Σl, theni) (ρ ◦a υ) ◦b µ = (ρ ◦b µ) ◦a+l−1 υ for b < a,ii) (ρ ◦a υ) ◦b µ = ρ ◦a (υ ◦b−a+1 µ) for a ≤ b < a + j, andiii) (ρ ◦a υ) ◦b µ = (ρ ◦b−j+1 µ) ◦a υ for a + j ≤ b.Proof: This is most easily veri�ed using the box model. �
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