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Abstract

A quasi-category X is a simplicial set satisfying the restricted Kan conditions of Boardman
and Vogt. It has an associated homotopy category hoX . We show that X is a Kan complex
i6 hoX is a groupoid. The result plays an important role in the theory of quasi-categories (in
preparation). Here we make an application to the theory of initial objects in quasi-categories.
We brie;y discuss the notions of limits and colimits in quasi-categories.
c© 2002 Published by Elsevier Science B.V.

1. Quasi-categories

We =rst recall a few basic concepts of the theory of simplicial sets [5]. The simpli-
cial category � has for objects the non-empty ordinals [n] = {0; : : : ; n} and for arrows
the order preserving maps [m] → [n]. It is standard to denote by di the injection
[n−1] → [n] omitting i∈ [n] and to denote by si the surjection [n] → [n−1] repeating
i∈ [n − 1]. A simplicial set is a contravariant functor X :� → Sets; it is standard to
denote X ([n]) by Xn; an element x∈Xn is an n-simplex of X . The fundamental simplex
�[n] is the representable functor �(−; [n]). The category S of simplicial sets is the
category [�o; Sets] of functors �o → Sets and natural transformations. We shall use the
Yoneda lemma to identify a simplex x∈Xn with the corresponding map �[n] → X in
S; in particular, we shall identify a map f : [m] → [n] in � with a map �[m] → �[n] in
S; if x∈Xn the simplex X (f)(x)∈Xm will be denoted as the composite xf :�[m] →
�[n] → X . We shall say that a subfunctor A ⊆ X is a simplicial subset of X .

Let X be a simplicial set. If a; b∈X0 and f∈X1 we shall often write f : a → b to
indicate that a=fd1 and b=fd0; we shall denote by X1(a; b) the set of arrows a → b
in X1; the degenerate arrow as0 will be denoted as a unit 1a : a → a.
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Let ! be the automorphism of � which reverses the order relation on each ordinal.
If f : [n] → [m] then the map !(f)=[n] → [m] is given by !(f)(i)=m−f(n−i). The
opposite X o of a simplicial set X is obtained by composing the contravariant functor
X :� → Sets with ! :� → �. It is convenient to distinguish between the elements of
X and X o by writing xo ∈X o for each element x∈X , with the convention that xoo = x.
If f : a → b is an arrow in X then fo : bo → ao is an arrow in X o.

If i∈ [n] and n¿ 0 the face @i�[n] ⊂ �[n] is the image of the map di : [n − 1] →
[n]. The simplicial (n− 1)-sphere @�[n] ⊂ �[n] is the union the faces @i�[n], with the
convention that @�[0] = ∅. If n¿ 0 and k ∈ [n] the horn �k [n] ⊂ �[n] is the union of
the faces @i�[n] containing the vertex k. We shall say that the horn �k [n] is inner if
0¡k¡n, otherwise we shall say that it is outer.

Let X be a simplicial set. If n¿ 0 a simplicial (n − 1)-sphere in X is a map
x : @�[n] → X ; it is determined by the sequence (x0; : : : ; xn) of its faces xi = xdi; a
0ller for x is a map �[n] → X extending x. If n¿ 1 we shall say that x : @�[n] → X
commutes if it can be =lled. A horn in X is a map x :�k [n] → X where n¿ 0; it
is determined by a lacunary sequence of faces (x0; : : : ; xk−1; ∗; xk+1; : : : ; xn); a 0ller for
x is a map �[n] → X extending x. The horn x :�k [n] → X is inner if 0¡k¡n,
otherwise it is outer.

Let Cat be the category of small categories. We have � ⊂ Cat since an ordinal is a
category and since an order preserving map is a functor. The nerve NC of a category
C ∈Cat is the simplicial set [n] 
→ Cat([n]; C). The nerve functor N :Cat → S is
full and faithful and it has a left adjoint cat :S → Cat. We shall say that cat X is
the fundamental category of a simplicial set X . Here is a quick description of cat X .
Let FX be the category freely generated by the 1-skeleton of X viewed as a graph
with units. Then cat X is the quotient FX= ≡ by the congruence generated by the basic
relations gf ≡ h, one for each commuting 1-sphere (g; h; f) in X . The fundamental
groupoid  1X is obtained by inverting freely every arrow in cat X .

Recall that a simplicial set X is a Kan complex if every horn �k [n] → X (n¿ 1; 06
k6 n) can be =lled.

De�nition 1.1. We shall say that a simplicial set X is a quasi-category (q-category)
if every inner horn �k [n] → X (0¡k¡n) can be =lled.

The concept of quasi-category was introduced by Boardman and Vogt in their work
on homotopy invariant algebraic structures [1]. It is sometime called a weak Kan com-
plex in the literature [8]. The purpose of our name is to stress the analogy with cate-
gories. Most concepts and results of category theory can be extended to quasi-categories
[7]. Quasi-categories are special cases of weak !-categories: exactly those having
only invertible cells in dimensions ¿ 1. The nerve of a category is a quasi-category.
The opposite of a quasi-category is a quasi-category. A map f :X → Y between
quasi-categories is a map of simplicial sets. The category of quasi-categories is a full
subcategory of the category of simplicial sets. It contains Cat as a full subcategory.

The fundamental category of a quasi-category has a very simple description due
to Boardman and Vogt. Let us write gf ∼ h to indicate that the simplicial 1-sphere
(g; h; f) in X commutes.
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Proposition 1.2 (Boardman and Vogt [1]). Let X be a quasi-category. If a; b∈X0 and
f; g∈X1(a; b) then the four relations f1a ∼ g; g1a ∼ f; 1bf ∼ g and 1bg ∼ f
are equivalent. The common relation f  g; called the homotopy relation; is an
equivalence relation on X1(a; b). Let us put hoX (a; b) = X1(a; b)= . If f∈X1(a; b);
g ∈ X1(b; c) and h∈X1(a; c) then the relation gf ∼ h induces a map

(hoX )(b; c) × (hoX )(a; b) → (hoX )(a; c);

which is the composition law of a category hoX .

The category hoX is homotopy category of X . It is easy to see that there is a
canonical isomorphism hoX = cat X . If f∈X1(a; b); g∈X1(b; c) and h∈X1(a; c) then
the relation gf = h in hoX is equivalent to the relation gf ∼ h.

We shall say that two arrows f : a → b and g : b → a in a quasi-category X are
mutually quasi-inverse if they are mutually inverse in hoX ; this means that we have
gf ∼ 1a and fg ∼ 1b. An arrow having a quasi-inverse is a quasi-isomorphism.

The horn �0[n]⊂�[n] contains the edge (0; 1)⊂ [n] if n¿1. If X is a quasi-category
we shall say that an outer horn x :�0[n] → X (with n¿ 1) is special if the arrow
x(0; 1) is quasi-invertible. Dually, an outer horn x :�n[n] → X is special if the arrow
x(n− 1; n) is quasi-invertible.

Theorem 1.3. Let X be a quasi-category. Then every special outer horn x :�0[n] → X
(resp. x :�n[n] → X ) can be 0lled.

This follows from Theorem 2.2 in the next section. Let us =nish this section by
examining a few consequences.

Corollary 1.4. A quasi-category X is a Kan complex i8 hoX is a groupoid.

Proof. The necessity is obvious. Conversely; if hoX is a groupoid let us show that
every horn x :�k [n] → X with n¿ 1 can be =lled. It is true if 0¡k¡n since X is
a quasi-category; it is true if k = 0 or k = n since every outer horn x :�k [n] → X is
special when hoX is a groupoid.

If C is a category let gr(C) be the groupoid of isomorphisms of C; it is the largest
subgroupoid of C.

Corollary 1.5. Every quasi-category X contains a largest Kan complex k(X ) ⊆ X . A
simplex x :�[n] → X belongs to k(X ) i8 the arrow x(i; j) is quasi-invertible for every
06 i¡ j6 n. We have a canonical isomorphism gr(hoX ) = ho(k(X )).

Proof. For each n¿ 0 let Sn be the set of simplicies x :�[n] → X for which the
arrow x(i; j) is quasi-invertible for every 06 i¡ j6 n. By de=nition S0 = X0. It is
easy to see that the subsets Sn ⊆ Xn de=ne a simplicial subset S ⊆ X and that S
is a quasi-category. But every arrow in S is quasi-invertible in S by de=nition of S.
It follows from Corollary 1.4 that S is a Kan complex. It is clearly the largest Kan
complex of X . The formula gr(hoX ) = ho S is obvious from the de=nition of hoX .
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Let J be the groupoid generated by one isomorphism i : 0 → 1 between two distinct
objects 0 and 1. The nerve N (J ) is an in=nite-dimensional sphere S∞; it is the total
space E(Z2; 1) of the classifying space K(Z2; 1). The free action of Z2 on S∞ is the
antipodal map; it is induced by the automorphism i 
→ i−1 of J . From the inclusion of
categories I ⊂ J we obtain an inclusion of simplicial sets �[1] ⊂ S∞.

Corollary 1.6. Let f∈X1 be an arrow in a quasi-category X. If f is quasi-invertible
then the map f :�[1] → X can be extended to a map S∞ → X .

Proof. The map f :�[1] → X factors through the Kan complex k(X ) ⊆ X since f is
quasi-invertible. But the inclusion �[1] ⊂ S∞ is a weak homotopy equivalence since the
simplicial sets �[1] and S∞ are contractible. It follows that the map f :�[1] → k(X )
can be extended to a map S∞ → k(X ).

2. Fibrations

Recall that a map i :A → B in a category E is said to be left orthogonal to a map
f :X → Y , or that f is said to be right orthogonal to i, if for any pair of arrows
(a; b) making a commutative square

A a−−→ X

i

�
� f

B b−−→ Y

there is a map d :B → X , called a diagonal 0ller, such that di = a and fd = b. We
shall denote the orthogonality relation by i⊥f.

Remark. In the terminology of Quillen [11] the orthogonality relation i⊥f is expressed
by saying that i has the left lifting property with respect to f; or that f has the right
lifting property with respect to i. Our terminology is taken from Freyd and Kelly [4];
although these authors ask for uniqueness of the diagonal =ller.

Recall that a map of simplicial sets is a trivial 0bration if it is right orthogonal
to the inclusions @�[n] ⊂ �[n](n¿ 0). A trivial =bration is right orthogonal to every
monomorphism by a classical result [5]. Recall that a map of simplicial sets is a Kan
0bration if it is right orthogonal to the horn inclusions �k [n] ⊂ �[n](n¿ 0; 06 k6 n).
This motivates the following de=nition:

De�nition 2.1. We shall say that a map of simplicial sets f :X → Y is mid 0brant if
it is right orthogonal to the horn inclusions �k [n] ⊂ �[n] with 0¡k¡n; we shall say
that f is right 0brant (resp. left 0brant) if it is right orthogonal to the horn inclusions
�k [n] ⊂ �[n] with 0¡k6 n (resp. 06 k ¡n).

A simplicial set X is a quasi-category i6 the map X → 1 is mid =brant. A map
f :X → Y is left =brant i6 the opposite map fo :X o → Y o is right =brant. A map
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which is both left and right =brant is a Kan =bration. The class of mid (resp. left,
right) =brations is closed under composition and base change.

Theorem 2.2. Let f :X → Y be a mid 0bration between quasi-categories and suppose
that we have a commutative square

�0[n] h−−→ X�
� f

�[n] −−→ Y

where n¿ 1. If the arrow h(0; 1) is quasi-invertible then the square has a diagonal
0ller.

It is obvious that Theorem 2.2 implies Theorem 1.3. We shall see in the next section
that Theorem 2.2 follows Theorem 3.4. The proof of Theorem 3.4 will be given after
Corollary 3.10. The =nal argument will use the following concepts.

Recall that a functor p :C → D is said to be quasi-0brant if for every object b∈C
and every isomorphism f∈D with target p(b) there is an isomorphism g∈C with
target b such that p(g) = f.

De�nition 2.3. We shall say that a map p :X → Y between quasi-categories is
quasi-0brant if it is mid =brant and for any vertex b∈X and any quasi-isomorphism
f∈Y with target p(b) there exists a quasi-isomorphism g∈X with target b such that
p(g) = f.

Proposition 2.4. Let p :X → Y be a mid-0bration between quasi-categories. Then p
is quasi-0brant i8 the functor ho(p) : hoX → ho Y is quasi-0brant.

Proof. The implication ⇒ is clear. Let us prove the implication ⇐. Let b∈X0 and let
f∈Y1 be a quasi-isomorphism with target p(b). Then there is a quasi-isomorphism
u∈X1 with target b such that p(u)  f since the functor ho(p) is quasi-=brant. There
is then a triangle t ∈Y2 with boundary (1p(b); f; p(u)). Consider the commutative square

�2[2] h−−→ Y�
� p

�[2] t−−→ X

where h is the horn (1b;?; u). It has a diagonal =ller s :�[2] → Y since p is mid-=brant.
If v = sd1 then we have p(v) = f and v  u. The arrow v is quasi-invertible since
v  u and u is quasi-invertible.

It is easy to see that a functor p :C → D is quasi-=brant i6 the functor po :Co → Do

is quasi-=brant.

Corollary 2.5. A map p :X → Y between quasi-categories is quasi-0brant i8 the
opposite map po :X o → Y o is quasi-0brant.
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We shall say that a functor p :C → D is conservative if it re;ects isomorphisms,
that is, if the invertibility of p(f)∈D implies the invertibility of f for every arrow
f∈C.

De�nition 2.6. We shall say that a map p :X → Y between quasi-categories is con-
servative if the functor ho(p) : hoX → ho Y is conservative.

Proposition 2.7. Let p :X →Y be a right (resp. left) 0bration between quasi-categories.
Then p is quasi-0brant and conservative.

Proof. By Corollary 2.5 it suKces to consider the case of a right =bration p :X → Y .
Let us =rst verify that p is a conservative functor. Let f∈X1(a; b) and let us suppose
that p(f) is invertible in ho Y . Then we have p(f)u=1pb in ho Y for some u :p(b) →
p(a). Hence; there exists a triangle t ∈Y2 with boundary (p(f); 1pb; u). Consider the
commutative square

�2[2] h−−→ Y�
� p

�[2] t−−→ X

where h is the horn (f; 1b;?). It has a diagonal =ller s :�[2] → Y since p is right
=brant. If g= sd2 then we have fg= 1b in hoX and this means that g is right inverse
to f in hoX . To prove that f is invertible in hoX it suKces to show that g has
itself a right inverse in hoX . But p(g) = u is invertible in hoX and we can repeat the
argument with g instead of f; showing that g has a right inverse in hoX . It follows
that f is invertible in hoX . This proves that p is a conservative functor. Let us now
see that p is quasi-=brant. It is mid-=brant since it is right =brant. Let b∈X and let
f∈Y be a quasi-isomorphism with target p(b). Then there exists an arrow g∈Y with
target b such that p(g) =f since p is right =brant. The arrow g is quasi-invertible by
the =rst part since f is quasi-invertible.

3. Slice and join

Let �+ be the category of =nite ordinals and order preserving maps. We have � ⊂
�+ and the ordinal 0 = [− 1] is in �+ but not in �. An augmented simplicial set is a
contravariant functor X+ :�+ → Sets; it can be given as a triple X+ =(X; 0; X−1) where
X is a simplicial set, where X−1 is a set, and where 0 is a map :X0 → X−1 called the
augmentation and satisfying 0d0 = 0d1. We shall denote by S+ the category [�+; Sets]
of augmented simplicial sets. From the inclusion i :� ⊂ �+ we obtain by restriction a
functor i∗ :S+ → S; its right adjoint i∗ :S+ → S gives every simplicial set X the
trivial augmentation X0 → 1. We shall view the category S as a full subcategory of
S+ via the functor i∗. Beware that i∗(∅)=[−1] is the augmented simplicial set ∅ → 1
which is non-empty. The category �+ has a monoidal structure �+ ×�+ → �+ given
by the operation of ordinal sum (a; b) 
→ a + b with 0 = [ − 1] as the unit. We have
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[m] + [n] = [m+ 1 + n] for every m; n¿− 1. The join operation is the unique functor

? :S+ ×S+ → S+

cocontinuous in each variable extending the ordinal sum along the Yoneda inclusion
�+ ⊂ S+. By de=nition we have �[m] ? �[n] = �[m + 1 + n] for every m; n¿ − 1.
The join operation de=nes a biclosed monoidal structure on S+ by a general result
[3,9]. The unit object is �[− 1]. The monoidal structure is not symmetric, but there is
a canonical isomorphism (X ? Y )o = Y o ? X o.

Proposition 3.1. For any X; Y ∈S+ and any n¿− 1 we have

(X ? Y )n =
⊔

i+1+j=n

Xi × Yj:

Proof. For simplicity; let us denote the ordinal [n− 1] as n and the set Xn−1 as X (n).
If X; Y ∈S+ then X?Y is the left Kan extension of the functor (p; q) 
→ X (p)×Y (q)
along the functor + :�+ × �+ → �+. Thus;

(X ? Y )(n) = lim→
n→p+q

X (p) × Y (q);

where the colimit is taken over the category En of elements of the functor (p; q) 
→
�+(n; p + q). But every arrow f : n → p + q is of the form f = u + v : i + j → p + q
for a unique pair of arrows (u; v)∈�+ × �+ where i = f−1(p) and j = f−1(q). This
means that the set of decompositions n = i + j is initial in the category En. Thus;

lim→
n→p+q

X (p) × Y (q) =
⊔

i+j=n

X (i) × Y (j):

In particular, we have (X?Y )−1 =X−1 ×Y−1. It follows that X?Y is trivially aug-
mented when X and Y are trivially augmented; there is thus an induced join operation
on the subcategory S ⊂ S+. It follows from Proposition 3.1 that for X; Y ∈S we
have a natural inclusion X �Y ⊆ X?Y . Notice that X?∅=∅?X =X for X ∈S since
[ − 1] is the unit objects in S+. It follows that the functor X ? (−) :S → S is not
concontinuous. Hence, the join operation does not de=ne a closed monoidal structure
on S even if it does on S+. The simplicial set X ? 1 (resp. 1 ? X ) is the inductive
cone (resp. the projective cone) on X . We have �[n] ? 1 = �[n + 1] = 1 ? �[n] for
every n¿ 0. In particular, 1 ? 1 is the simplicial interval �[1] = I .

If T and X are simplicial sets then we have T =∅?T ⊆ X?T . Fixing T we obtain
a functor (−)?T :S → T \S which is associates to X ∈S the inclusion T ⊆ X?T .

Proposition 3.2. The functor (−) ? T :S → T \S has a right adjoint.

Proof. It suKces to show that the functor F(−)=(−)?T :S → T \S is cocontinuous.
It sends the initial object ∅∈S to the initial object 1T :T → T of T \S. It thus suKces
to show that F preserves the colimit of non-empty diagrams. This can be seen directly
from Proposition 3.1. Here is another proof of the result. It is obvious that the forgetful
functor U :T \ S → S and the inclusion functor J :S ⊂ S+ preserve colimits
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of non-empty diagrams. Observe also that both U and J are conservative functors.
We can thus prove that F preserves colimits of non-empty diagrams by showing that
the composite functor JUF has the same property. But we have JUF = HJ where
H = (−) ? T :S+ → S+. The result follows since the functor H is cocontinuous by
de=nition of the join operation.

The right adjoint to the functor (−) ? T :S → T \ S takes a map t :T → X to
a simplicial set that we shall denote X=t, or more simply by X=T when the context
is clear. A map S → X=T is equivalent to a map S ? T → X extending t along the
inclusion T ⊆ S ? T . In particular, a simplex �[n] → X=T is the same thing as a map
�[n] ? T → X extending t. If t : S ? T → X then we have a canonical isomorphism
X=(S ? T ) = (X=T )=S. Dually, the functor T ? (−) :S → T \ S has a right adjoint
(t :T → X ) 
→ t\X =T \X . A simplex �[n] → T \X is a map T?�[n] → X extending
t. By duality we have (T \X )o =X o=T o. If t : S?T → X then (S?T )\X =T \ (S \X );
there is also a simplicial set S \X=T =(S \X )=T =S \ (X=T ); a simplex �[n] → S \X=T
is the same thing as a map S ? �[n] ? T → X extending t.

Remark. An augmented simplicial set X is canonically the coproduct X =
⊔

i∈I X (i)
in S+ of a family (X (i): i∈ I) of simplicial sets. If Y =

⊔
j∈J Y (j) is the canonical

decomposition of another augmented simplicial set then

X ? Y =
⊔

(i; j)∈I×J
X (i) ? Y (j):

A map X → Y is given by a pair (4;f) where 4 : I → J and where f = (fi: i∈ I)
is a family of maps fi :X (i) → Y (4i). Let [X;−] be the right adjoint to the functor
X ? (−) :S+ → S+. The canonical decomposition of the augmented simplicial set
[X; Y ] is given by

[X; Y ] =
⊔

(4;f) : X→Y

∏

i∈I
X (i) \ Y (4i);

where (4;f) is a pair as above and where X (i) \ Y (4i) = fi \ Y (4i). In particular; if
X and Y are simplicial sets then we have

[X; Y ] =
⊔

t : X→Y

t \ Y:

The formula illustrates the fact that [X; Y ] is augmented by the set of maps X → Y .

Lemma 3.3. We have

(@�[m] ?�[n]) ∪ (�[m] ? @�[n]) = @�[m + 1 + n];

(�k [m] ?�[n]) ∪ (�[m] ? @�[n]) = �k [m + 1 + n];

(@�[m] ?�[n]) ∪ (�[m] ?�k [n]) = �m+1+k [m + 1 + n]:
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Proof. The face @i�[m + n + 1] is contained in @�[m] ? �[n] if 06 i6m and in
�[m] ? @�[n] if m + 16 i6m + 1 + n. In the =rst case we have @i�[m + n + 1] =
@i�[m] ? �[n] and in the second case we have @i�[m + n + 1] = �[m] ? @i−m−1�[n].
The =rst formula follows. The other formulas are proved similarly.

Theorem 3.4. Let f :X → Y be a mid-0bration between quasi-categories and suppose
that we have a commutative square

({0}? T ) ∪ (�[1] ? S) h−−→ X�
� f

�[1] ? T −−−−−−−−→ Y:

If the arrow h(0; 1) is quasi-invertible then the square has a diagonal 0ller.

The result will be proved after Corollary 3.10. Let us now see that it implies Theo-
rem 2.2. By the second formula of Lemma 3.3 we have

(�0[1] ?�[m]) ∪ (�[1] ? @�[m]) = �0[m + 2]

since {0} =�0[1]. It follows that the commutative square of Theorem 2.2 can written
as the following commutative square:

(�[1] ? S) ∪ ({0}? T ) h−−→ X�
� f

�[1] ? T −−−−−−−−→ Y:

where n=m+ 2; S =@�[m] and T =�[m]. The arrow h(0; 1) is quasi-invertible by the
hypothesis of Theorem 2.2. It follows from Theorem 3.4 that the square has a diagonal
=ller.

Theorem 3.4 will be proved after Corollary 3.10. The proof is based on a few
intermediate results. The =rst of which is of a very general in nature.

If E is a category let us denote by EI the category of arrows in E. Recall that an
object u of EI is a map u :A0 → A1 in the category E, and that an arrow u → v from
u :A0 → A1 to v :B0 → B1 is a commutative square

A0
f0−−→ B0

u

�
� v

A1
f1−−→ B1

in the category E. Suppose now that we have two categories D and E, two pairs of
adjoint functors

Fi :D ↔ E: Gi (i = 0; 1)

together with a pair of adjoint natural transformations 6 :F0 → F1 and 7 :G1 → G0.
Suppose, moreover, that the category E admits pushouts and that D admits pullbacks.
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For f :A → B in D and g :X → Y in E there are commutative squares

F0(A) 6A−−→ F1(A)

F0(f)

�
� F1(f)

F0(B) 6B−−→ F1(B)

G1(X )
7X−−→ G0(X )

G1(g)

�
� G0(g)

G1(Y )
7Y−−→ G0(Y )

and hence maps

F(f) :F0(B) �F0(A) F1(A) → F1(B) and G(g) :G1(X ) → G1(Y ) ×G0(Y ) G0(X ):

This de=nes a pair of functors F :DI → EI and G :EI → DI .

Lemma 3.5. The functor F is left adjoint to the functor G. The orthogonality relation
F(f)⊥g; for f∈D and g∈E; is equivalent to the orthogonality relation f⊥G(g).

Proof. A map f → G(g) is equivalent to a triple (a; b; c) of arrows a :A → G1X;
b :B → G0X and c :B → G1Y =tting in a commutative diagram.

By the adjointness, the map a :A → G1X corresponds to a map a′ :F1A → X ,
the map b :B → G0X to a map b′ :F0B → X and the map c :B → G1Y to a map
c′ :F1B → Y . The triple of maps (a′; b′; c′) =ts into a commutative diagram

and this de=nes a map F(f) → g. The adjointness F � G follows. A diagonal =ller for
the square f → G(g) is the same thing as a map d :B → G1X =tting commutatively
into the =rst diagram. By adjointness it corresponds to a map d′ :F1B → X =tting
commutatively into the second diagram, but this is the same thing as a diagonal =ller
for the square F(f) → g.

It is easy to see from Proposition 3.1 that the functor X ? (−) preserve monomor-
phisms, and moreover that if A ⊆ B and S ⊆ T then we have (A?T )∩ (B?S)=A?S
where the intersection is taken in B ? T . It follows that the square

A ? S −−−−−−−−→A ? T�
�

B ? S −−→ (A ? T ) ∪ (B ? S)

is a pushout where the union is taken in B ? T .
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From an inclusion j : S ⊆ T and maps t :T → X and f :X → Y we obtain a
commutative square

X=T −−→ Y=T�
�

X=S −−→ Y=S

and hence a map p :X=T → X=S×Y=S Y=T where X=S=X=tj; Y=T=Y=ft and Y=S=Y=ftj.
We shall call p the projection.

Lemma 3.6. For i :A ⊆ B and j : S ⊆ T consider the inclusion u: (A ? T ) ∪ (B ?
S) ⊆ B ? T . If f :X → Y then there is a canonical bijection between the following
commutative squares:

(A ? T ) ∪ (B ? S) −−→ X

u

�
� f

B ? T −−−−−−−−→ Y

A −−−−−−−−→X=T

i

�
� p

B −−→ Y=T ×Y=S X=S

where the 0rst square is in S and the second in T=S; the structure map T → X
by which the object X=T in the second square is obtained is the composite T ⊆
(A ? T ) ∪ (B ? S) → X . If one of the squares has a diagonal 0ller then so has the
other.

Proof. We shall use Lemma 3.5 with the functors F0; F1 :S → T=S given by F1(A)=
A ? T; F0(A) = (A ? S) ∪ T ⊆ A ? T; and the natural transformation 6 :F0 → F1

obtained from the inclusion (A?S)∪T ⊆ A?T . If i :A ⊆ B then F(i) is the inclusion
u : (A ? T ) ∪ (B ? S) ⊆ B ? T . We have Fi � Gi for (i = 0; 1) where the functors
Gi :T \S → S are given by G1(X )=X=T and G0(X )=X=S for t :T → X . The natural
transformation 7 :G1 → G0 is the map X=T → X=S obtained from the inclusion S ⊆ T .
If f :X → Y then G(f) is the projection p :X=T → X=S ×Y=S Y=T . If we =x t :T → X
then Lemma 3.5 shows that there is a canonical bijection between the maps u → f in
(T=S)I and the maps i → p in SI . The result follows.

Remark. Lemma 3.6 can be proved by working in S+ and by using techniques
developed for studying monoidal closed Quillen structures as in [6].

Lemma 3.7. Let f :X → Y be a mid-0bration. If t :�[n] → X and 06 k ¡n then
the projection

p :X=�[n] → X=�k [n] ×Y=�k [n] Y=�[n]

is a trivial 0bration.

Proof. We have to show that p is right orthogonal to every inclusion @�[m] ⊂ �[m].
By Lemma 3.6 it suKces to show that every commutative square

(�[m] ?�k [n]) ∪ (@�[m] ?�[n])−−→ X

u

�
� f

�[m] ?�[n] −−−−−−−−−−→ Y
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has a diagonal =ller. But u is the inclusion �k+m+1[m + n + 1] ⊂ �[m + n + 1]
by Lemma 3.3. Hence; the square has a diagonal =ller since f is mid =brant and
0¡m + k + 1¡m + n + 1.

Theorem 3.8. Let f :X → Y be a mid-0bration. If S ⊆ T and t :T → X then the
projection

p :X=T → X=S ×Y=S Y=T

is right 0brant.

Proof. We have to show that p is right orthogonal to every inclusion �k [n] ⊂ �[n]
with 0¡k6 n. By Lemma 3.6 it suKces to show that every commutative square

(�k [n] ? T ) ∪ (�[n] ? S) −−→ X

u

�
� f

(�[n] ? T ) −−−−−−−−→ Y

has a diagonal =ller. By a dual of Lemma 3.6 this is equivalent to showing that every
commutative square

S −−−−−−−−−−→ �[n] \ X�
� q

T −−−−→�k [n] \ X ×�k [n]\Y �[n] \ Y
has a diagonal =ller. But q is a trivial =bration by the dual of Lemma 3.7 since
0¡k6 n. The result follows since a trivial =bration is right orthogonal to every
monomorphism.

Corollary 3.9. If X is a quasi-category then so is X=T for any map T → X . More-
over; the projection X=T → X=S is a right 0bration for any inclusion of simplicial sets
S ⊆ T .

Proof. The projection X=T → X=S is right =brant by Theorem 3.8 applied to the case
Y = 1. This proves the second statement. In particular; it shows that the projection
X=T → X is right =brant if we put S = ∅; it is thus mid =brant and it follows that X=T
is a quasi-category since X is a quasi-category.

Corollary 3.10. Let f :X → Y be a map between quasi-categories. Then the simpli-
cial set X=S ×Y=S Y=T is a quasi-category and the projection p1 :X=S ×Y=S Y=T → X=S
is a right 0bration for any inclusion of simplicial sets S ⊆ T .

Proof. Consider the pullback square

X=S ×Y=S Y=T −−−−→ Y=T

p1

�
� q

X=S−−−−−−−−→ Y=S:
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The map q is a right =bration by Corollary 3.9. It follows that p1 is a right =bration.
This proves the second statement. But X=S is a quasi-category by Corollary 1. Thus;
X=S×Y=S Y=T is a quasi-category since p1 is mid =brant. This proves the =rst statement.

We can now prove Theorem 3.4. By Lemma 3.6 we obtain an adjoint square

{0} −−−−−−−−→ X=T�
� p

�[1] i−−→ X=S ×Y=S Y=T:

It suKces to show that this adjoint square has a diagonal =ller. The result will follows
from Corollary 2.5 if we show that p is a quasi-=bration between quasi-categories
and moreover that i(0; 1) is quasi-invertible. The domain and codomain of p are
quasi-categories by Corollaries 3.9 and 3.10. But p is a right =bration by Theorem 3.8.
It follows from Proposition 2.7 that p is quasi-=brant. It remains to show that the arrow
i(0; 1) is quasi-invertible. For this it suKces to show that the map kp1 :X=S×Y=S Y=T →
X is conservative since the arrow kp1i(0; 1) = h(0; 1) is quasi-invertible by hypothesis.
By Proposition 2.7 it suKces to show that kp1 is a right =bration. But the projec-
tion k :X=S → X is a right =bration by Corollary 3.9; hence, so is the composite
kp1 :X=S ×Y=S Y=T → X since p1 is a right =bration by Corollary 3.10.

4. Application to the theory of initial objects

De�nition 4.1. Let X be a quasi-category. We shall say that a vertex a∈X is initial
i6 every simplicial sphere x : @�[n] → X (n¿ 0) with a = x(0) can be =lled.

Dually, a vertex a∈X is terminal if the vertex ao ∈X o is initial.

Proposition 4.2. Let X be a quasi-category and let a∈X be a vertex. Then the
following conditions are equivalent:
(a) a is initial;
(b) the projection a \ X → X is a trivial 0bration;
(c) the projection a \ X → X has a sections s :X → a \ X such that s(a) = 1a; and
(d) the inclusion X ⊂ 1?X has a retraction r : 1?X → X such that r(1? a) = 1a.

Proof. (a) ⇔ (b) Let us use the decomposition @�[n+ 1] = (1? @�[n]) ∪ (∅?�[n]).
By Lemma 3.6 there is a bijection between the maps x : @�[n + 1]→X with x(0) = a
and the commutative squares

@�[n] −−→ a \ X�
�

�[n] −−→ X:
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The square has a diagonal =ller i6 x can be =lled. (b ⇒ c) The commutative square
1

1a−−→ a \ X
a

�
�

X 1X−−→ X

has a diagonal =ller s :X → a \X since the projection a \X → X is a trivial =bration.
(c ⇒ d) By adjointness the map s :X → a \ X corresponds to a map r : 1 ? X → X
such that r(1) = a. Moreover; r is a retraction since s is a section and we have
r(1 ? a) = 1a since we have s(a) = 1a. (d ⇒ a) Let x : @�[n] → X be a simplicial
sphere such that x(0) = a. The map y = r(1 ? x) : 1 ? @�[n] → 1 ? X → X extends
x and we have y(1 ? 0) = r(1 ? a) = 1a. But 1 ? @�[n] = �0[n + 1] and the arrow
y(0; 1) = y(1? 0) = 1a is quasi-invertible since it is a unit. It follows by Theorem 1.3
that y has a =ller z :�[n + 1] → X . The face zd0 then =lls x.

Proposition 4.3. The arrow 1a is an initial vertex of a \ X .

Proof. Let x : @�[n] → a \ X be a simplicial sphere such that x(0) = 1a where n¿ 0.
The map x corresponds by adjointness to a map y : 1 ? @�[n] → X . But we have
1 ? @�[n] = �0[n + 1] and the arrow y(0; 1) = x(0) = 1a is quasi-invertible since it is
a unit. By Theorem 1.3 y has a =ller z :�[n + 1] → X . The simplex w :�[n] → a \ X
corresponding to z by adjointness =lls x.

We shall say that a simplicial subset U ⊆ X is full if every simplex �[n] → X
having all its vertices in U belongs to U . For every subset S ⊆ X0 there is a unique
full simplicial subset U ⊆ X such that U0 = S; we shall say that U is spanned by S.

Proposition 4.4. The full simplicial subset spanned by the initial vertices of a quasi-
category X is a contractible Kan complex if non-empty. Every vertex a∈X which is
quasi-isomorphic to an initial vertex is initial. If a vertex a∈X0 is initial in X then
it is initial in hoX ; the converse is true if X admits at least one initial vertex.

Proof. The =rst statement is obvious since every simplicial sphere x : @�[n] → X with
x(0) an initial vertex can be =lled. Let us prove the third statement. If a∈X0 is initial
in X let us show that it is initial in hoX . We have X1(a; b) �= ∅ for every b∈X0

since the 0-sphere (b; a) : @�[1] → X can be =lled by the initiality of a. Moreover; if
f; g : a → b then we have f  g since the 1-sphere (f; g; 1a) : @�[2] → X can be =lled
for the same reason. Thus; (hoX )(a; b) = 1 for every b∈X0 and this shows that a is
initial in hoX . Let us prove the fourth statement. Suppose that X has an initial vertex
a∈X0 and let us show that every b∈X0 which is initial in hoX is also initial in X .
Observe that every arrow a → b is quasi-invertible since a is initial in hoX by what
we just proved. Let x : @�[n] → X be a simplicial sphere with x(0) = b. It follows
from Proposition 4.2(d) that the map x′= r(1?x) : 1?@�[n] → X extends x and that
x′(1)=a. But 1?@�[n]=�0[n+1] and the arrow x′(0; 1) : a → b is quasi-invertible by
the observation above. It follows by Theorem 1.3 that x′ :�0[n + 1] → X has a =ller
z :�[n+1] → X . The face zd0 :�[n] → X then =lls x. This proves the fourth statement.
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The second statement follows since every vertex a∈X which is quasi-isomorphic to
an initial vertex b∈X must be initial in hoX since b is initial in hoX by the =rst part
of the proof.

We conclude this paper by discussing the notions of limits and colimits in quasi-
categories. The classical notions are based on the concepts of initial and terminal object
[10]. The same is true in the context of quasi-categories. The notions introduced here
are equivalent to the concepts of homotopy limits and colimits of Bous=eld and Kan
[2]. See [7] for a complete theory.

A diagram in a quasi-category X is just a map d :T → X where T is a simplicial
set. A projective cone on d is a map d′ : 1 ? T → X extending d; by adjointness d′

is equivalent to a vertex 1 → X=T ; we shall say that d′ is exact if the corresponding
vertex 1 → X=T is terminal in X=T .

De�nition 4.5. We shall say that a diagram d :T → X has a limit if the quasi-category
X=T has at least one initial vertex; in which case a limit limT←

d is the vertex d′(1) of

an exact projective cone d′ : 1 ? T → X extending d. The concept of colimit limT→
d

is de=ned dually by using the initial vertices of T \ X and coexact inductive cones
instead.

Remark. It would be more precise to de=ne a limit of d :T → X as an exact projective
cone d′ : 1?T → X extending d. We are conforming to the common usage of exhibiting
the vertex d′(1) while leaving the cone d′ in the shadow. A particular choice of an
exact cone d′ : 1 ? T → X always stands behind a given choice of limT←

d.

Let d :T → X be a diagram in a quasi-category X . Let K ⊆ X=T be the full
simplicial subset of X=T spanned by the terminal objects of X=T . The simplicial set
K parametrises all exact projective cones with base d. By composing the inclusion
K ⊆ X=T with the projection X=T → X we obtain a map K → X ; it associates to
a cone d′ ∈K its vertex d′(1). Let us put K = Proj(d). A diagram d has a limit i6
Proj(d) �= ∅.

Proposition 4.6. Let d :T → X be a diagram in a quasi-category X. If d has a
limit then Proj(d) is a contractible Kan complex and the map Proj(d) → X is a
quasi-0bration.

Proof. The simplicial subset Proj(d) = K ⊆ X=T is a contractible Kan complex by
Proposition 4.4. The inclusion K ⊆ X=T is mid =brant since it is full; it is also
quasi-=brant since every vertex of X=T which is quasi-isomorphic to a vertex in K
belongs to K by Proposition 4.4. But the projection X=T → X is quasi-=brant by
Proposition 2.7 and Corollary 3.9. It follows by composing K ⊆ X=T → X that the
map Proj(d) → X is quasi-=brant.

The simplicial set Proj(d) parametrises all exact projective cone based on d. The
fact that it is a contractible Kan complex if non-empty means that the limit of d is
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homotopy unique when it exists. The fact that the map Proj(d) → X is a quasi-=brant
implies that if a∈X is quasi-isomorphic to a limit of d then it is also a limit of d.
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