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1. Introduction 

Let "f be a complete and cocomplete locally-small symmetric monoidal closed 
category, with tensor product ® ,  unit ob j ec t / ,  and internal-hom [ . ,  • ]. By cate- 
gory, functor, and natural transformation we mean ~r-category, 'f-functor, and ~f- 

natural transformation, unless the context indicates otherwise. For a small category 
~/we write ~ for the functor category [~/op f ] ,  and y : ~ / - *  ~ / f o r  the Yoneda 

embedding sending A to ~ / ( - ,A) .  
It is well known (see [9, Theorem 4.51]) that,  for a cocomplete ~', the cocon- 

tinuous functors ~,~/-* Y are precisely the left adjoint ones; and that composition 
with y gives an equivalence between the category of such functors and the category 
of all functors .~/~ ~. Since ~ is cocomplete, we may express this by saying that 

y : ~ - ~  ~ /  exhibits ~ /  as the free cocompletion of .~/. This result is particularly 

classical in the case f =  Set  of ordinary categories and the case ' f =  Ab of additive 
categories; here Set and Ab denote as usual the categories of  small sets and small 
abelian groups. 

It was observed by Day in [2] that  each monoidal structure on .~/ induces a 
monoidal biclosed structure on ~ / ,  called the convolution of  the structures on .~/ 

and on f - this structure being symmetric monoidal closed if the monoidal struc- 
ture on ~ is symmetric. Moreover y : ~/-~ ~ d  is now a strong monoidalfunctor, in 
the sense that it preserves the monoidal  structure to within coherent isomorphisms. 

Let us call a monoidal category Y, with tensor p r o d u c t . ,  monoidally cocomplete 
if Y is cocomplete and all the endofunctors C * - and - • D of  ~ are cocontinuous; 
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which latter is surely the case if the monoidal  structure on ~ is biclosed. The central 

observation of the present article is that y :.~¢--'.0~d, for a monoidal ~/, exhibits 
Day 's  convolution .0~ as the free monoidal cocompletion of~/: in the sense that, 
for a monoidally-cocomplete gJ, composition with y gives an equivalence between 
the category of cocontinuous monoidal functors ¢ : ~.~/~ gJ and the category of all 
monoidal  functors O :.x/~ gJ. Moreover O is strong monoidal  exactly when the cor- 
responding • is strong monoidal;  and a monoidal  O : ~¢--* T is left adjoint as a 
monoidal functor precisely when it is cocontinuous and strong monoidal.  There is 
also the analogous result for symmetric monoidal  categories and symmetric 
monoidal  functors. 

Taking gJ to be the convolution ~.~¢' for some monoidal ~ '  clearly leads to a no- 
tion of  monoidal module (or monoidalprofunctor) .~--'.~', and a monoidal version 
of the Morita theorems. We do not pursue these themes below, but we do apply our 
central result to calculate in one case the group of isomorphism classes of monoidal 
auto-equivalences of .~z/ (which, following [1], we may well call the monoidal 

Picard group o f  ~) .  
The case we examine is that where ~ /  is the monoidal  category ~ of graded 

abelian groups; the Picard group turns out to have two elements, the non-identity 
one sending X to Y where Yp = X_p. It is well known (see [4, Chapter IV, Section 
6]) that f9 admits exactly two different symmetries c and c', given by c(x®y) =y ®x 
and by C'(X@y)=(-1)Pqy(~x, where x ~ X p  and ye Yq. Since neither element of 

the monoidal  Picard group sends c to c', we have the conclusion that these two sym- 
metric monoidal  closed structures on ~q are not only different, but in fact not iso- 

morphic and not even equivalent. 

2. Adjunction for monoidal functors 

Let .~¢ be a monoidal category with tensor product *, unit object J, and associa- 
tivity, left-identity, and right-identity isomorphisms a, l, r. Let ,~/' be another such. 
We recall from [4, p. 473] that a monoidalfunctor • :.~¢--*~¢' consists of a functor 
0 : ,~¢--'.~/', a natural t ransformation t~: OA *" #B~C~(A • B), and a map ~0 : j , ~ O j ,  

satisfying the following coherence conditions: 

(OA *' OB) *' OC 

-1 0 . '1  

, B) ," 

• B) • C)  

a' 

Oa 

' OA *' (OB *' ~bC) 

1, '$  

~A ,' O(B , C) 

, • (B • C ) )  

(2.1) 
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J' *' OA ' OA 

0°* ' I Ol 

(bJ , '  OA ~ ~ O(J * A)  

r I 

(2.2) 

OA *' J' ' OA 

1 , ,~0 Or 

OA *' OJ ~ ' O(J * A)  

(2.3) 

A monoidal natural transformation a" • ~ ~" ,~/-'.~/' is just a natural transforma- 

tion a" 0 ~ q~ satisfying 

0A * '~B ' 0 (A * B) 

[ o 
~ A  *' q/B 0 ' ~ ( A  * B) 

¢0  
j ,  , ~ j  

~ J  

(2.4) 

(2.5) 

With the evident definitions of the various compositions [4, p. 474] we obtain a 
2-category Mon of monoidal categories, monoidal functors, and monoidal  natural 

transformations. 
When .~¢ and ~ '  are symmetric monoidal  categories with symmetries c and c', a 

symmetric monoidal functor  q~ : ~/--,,~/' is just a monoidal  one satisfying the extra 

coherence condition 

C I 

~0A , '  0B ' 0B * '0A 

O(A • B) , O(B • A) ¢c 

(2.6) 
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while a symmetric  monoidal natural transformation is just a monoidal one. Thus 
we have the 2-category SMon of symmetric monoidal categories. Whatever we say 
about Mon below applies equally, and for the same reasons, to SMon. 

Lemma 2.1. Given a monoidal • : ~ --,,~', a functor  ~ : ~ ~ ' ,  and an isomorphism 
a: ~---~, there is a unique enrichment o f  ~ to a monoidal  ~:  ~ /~s¢ '  f o r  which a 

is monoidal. 

Proof. The definition of ~ and of ~,0 is forced by (2.4) and (2.5), and the condi- 
tions (2.1)-(2.3) for ~ follow easily. [] 

We call a monoidal (or symmetric monoidal) • : ~¢~5/ '  strong if ¢7 and O ° are 
isomorphisms, so that " ~  preserves the monoidal structure to within coherent iso- 
morphisms". Restricting to such cb gives sub-2-categories StrMon and StrSMon of 
Mon and SMon. 

There are 2-monads D and E on the 2-category ~/-Cat such that Mon and SMon 
are D-AIg and E-AIg in the sense of [8, p. 95]. For the case Y/= Set of ordinary cate- 
gories, this follows from the analysis of multi-variable functorial calculus in [5] and 
[6], and in particular Section 7 of [6]. That it is also the case for a general "~/follows 
from the easy verification that the analysis in Section 2 of  [5] and Sections 2, 3, and 
7 of [6] extends at once to "~/-categories. 

That being so, we have available in Mon and SMon the results of [7, Theorem 
1.5], namely: 

Proposition 2.2. Let ¢ = (¢p, ~, ep °) be a monoidal functor .  In order that • be a left 

adjoint in Mon, it is necessary and sufficient that ~ be a left adjoint in ~/-Cat and 
that • be strong. In fact, i f  rl, e : dp -~ ~ is an adjunction in //-Cat and • is strong, 
there is a unique enrichment o f  ~ to a monoidal ~ (not in general strong) that 

renders rl and  e monoidal, so that rl, e : • --~ ~ in Mon. Hence the monoidal • is an 
equivalence in Mon i f  and only i f  • is strong and 0 is an equivalence in ~/-Cat. The 

same results hold in SMon. [] 

For the reader who does not want to appeal to the long articles [5] and [6], it is 
also easy to give a direct but less elegant proof of Proposition 2.2 along the lines 
of Section 2 of  [7]. 

3. Separately cocontinuous functors 

We need a generalization to functors of several variables of Theorem 4.51 of [9], 
referred to in the introduction, on ~ ¢  as the free cocompletion of ~¢. Since the 
number of variables is irrelevant, our describing the two-variable form here will 
serve to remind the reader of  the details of  the original one-variable result. 
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We use ® for the tensor product X ®  C of an X of ¢/and a C of the cocomplete 
~/, defined by g~(X® C, D) = [X, g'(C, D)], as well as for the tensor product in "~/; and 
for X, Y in '¢/ and C in ~, we write X ®  Y® C for either of X ®  (Y® C) and 
(X® Y) ® C, which are canonically isomorphic. Similarly for other colimits such as 
coends; we suppose some definite choice made, without fruitlessly specifying which 
one of the canonically isomorphic choices. 

We consider small categories ~/ and ~, with their Yoneda embeddings 
y:.d--".~/ and y :  ~ ~ ,  and a cocomplete category ~. We call a functor 
0: ~ ®  ~ ~ ~ separately cocontinuous if all the partial functors ~(P, - )  : .~.~ ~ 
and ~(- ,  Q) : ~ ¢ - '  ~ are cocontinuous; such functors 0, with the natural transfor- 
mations between them, form an (ordinary) category SCoc(~¢® ~.~, T). Since 
and ~ are small, the functor category [~¢®~, T] exists as a g-category; but we 
shall be content to consider its underlying ordinary category [ J ®  ~, T]0 (which, to 
use the full names for once for clarity, consists of the ~/-functors ~/® ~--, ~ and 
the ~Cnatural transformations between these). 

Composition with y ® y  : ~¢® ~ ~ ~ ¢ ®  ~ gives a functor 

R : S C o c ( ~ ®  ~ ,  ~ ) ~  [ ~ ®  ~, ~]0, 

the letter R suggesting 'restriction to the representables'. We define a functor 
L : [.#® ~, ~]o--* SCoc(.~.~® .c.p~, g~) by 

IA e.%Be .~ 
L(O)(P, Q)= PA ®QB®O(A,B), (3.1) 

where 0 :~/® M--* ~, p :  ~/op__, .//, and Q: ~ op__, z. (That (3.1) defines L(O) not-on- 
ly on objects, but as a functor - that is, a ¢/-functor - is clear from Section 3.3 of 
[9], when we recall that PA, for instance, is a value of the evaluation ¢/-functor 
~/®~/op ~ .¢.) That L(O) is indeed separately cocontinuous is immediate from the 
fact that colimits commute with colimits. The letter L is to suggest 'repeated left Kan 
extension'. Indeed, in the one-variable case where SCoc( .~/® ~ ,  ~') is replaced by 
the category Coc(~¢, ~') of cocontinuous functors ~/--+ ~, the corresponding for- 
mula for L:[~,  ~]0--+Coc(~¢, ~), namely 

I A e.r/ 
L(O)(P)= PA®OA, (3.2) 

exhibits L(O) as the left Kan extension Lany 0 of 0 along y, in view of [9, (4.31)]. 
Taking P and Q to be yA" and yB" in (3.1) and using the Yoneda isomorphism 

I A,~ zC(A,A') ® ~(B,B')®O(A,B)=O(A;B')  

gives a natural isomorphism 

rio : RLO= O. (3.3) 

On the other hand we have, for any P in ~ / a n d  Q in ~'~, the Yoneda isomor- 
phisms 
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P-- l A PA ®yA, O-~ I s QB®yB,  

so that if O~ : N~@ ~ - - - '  ~ is separately cocontinuous we have 

I 
A ,  B 

¢)(P,Q)-- PA@QB®4)O,A, yB), 

giving a natural isomorphism 

ee~ : ¢= LR¢. (3.4) 

From (3.1) we get 

~(L(O)(P'Q)'C)~IA [PA'Is ~'(QB®O(A,B),C)] 

= "~'#(P' .Is g'(QB®O(-,B), C)), 

showing that L(O)(-, Q) has a right adjoint; similarly each L(O)(P, - )  has a right ad- 
joint. So we have the following result, which is at least implicit in Day's thesis [3]: 

Proposition 3.1. In the circumstances above, R: S C o c ( ~ / ®  @M, ~)--, [~/® ~, ~]0 
and L : [~/® ~, ~]0 ~ SCoc(.~,~/® ~ ,  ~) are mutually inverse equivalences. More- 
over ~ : . ~  ® ~:~ ~ ~" is separately cocontinuous precisely when each ¢(P, -)  and 
each ~(-,  Q) is a left adjoint. [] 

We may note that, as in the original Theorem 4.51 of [9], SCoc(~.z/® ~ ,  ~) has 
a natural "c-category structure, and that we in fact have an equivalence of this with 
the ~'-category [,~/® ~, T]. We do not go to the pains of showing this here, since 
our main result below is concerned with monoidal ¢-functors ~---, ~, and these do 
not form a e-category. 

4. The convolution monoidal biclosed structure 

What Day showed in [2] is that every monoidal biclosed structure on ~ d  arises 
from an essentially unique promonoidal structure on ~/, of which a monoidal struc- 
ture is a special case. We recall Day's construction only in this monoidal case, 
writing o for the tensor product on ~ / a n d  K for the unit object. For the various 
isomorphisms involved in any monoidal category we shall use the letters a, l, r (and 
c where appropriate), undecorated, in the sense of Section 2 above. 

We define the tensor product * : ~ ®  .~s¢~ ~ / t o  be the image under L of the 
composite 

(4.1) 
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so that by (3.1) the explicit definition of • is 

I 
A, B 

P • Q =  P A  ® Q B  ® , # ( - ,  A o B). (4.2) 

The natural isomorphism r/of (3.3) here becomes a natural isomorphism 

.~ : y A  , y B  ~ y ( A  o B). (4.3) 

We take the unit object J of .~# to be 

J = y K = . d ( - , K ) ,  (4.4) 

and we set 

yO= 1 : J ~ y K .  (4.5) 

Since * is separately cocontinuous, so  are the three-variable functors ( P ,  Q) • S 
and P *  (Q * S). It follows from the three-variable version of Proposition 3.1 that 
to give a natural isomorphism a : (P  • Q) • S - ,  P • (Q • S) is exactly to give its restric- 
tion a : (yA * yB)  , yC--* y A  • ( yB  * y C )  to the representables, which we define by 

a 

O'A • yB)  • y C  , y A  • (yB • y C )  

'"1 ['" 
y ( A  o B) • y C  y A  • y ( B  o C). 

'1 1' 
y ( ( A  o B ) o C )  , y ( A  o ( B o C ) )  

ya 

(4.6) 

Similarly we define a natural isomorphism r : P ,  J - - ,P  by giving its value on repre- 
sentables as 

yA*J 

yA*yK 
P 

r ,yA 

[, r 
, y ( A  o K )  

(4.7) 

and define l : J , P - , P  correspondingly. If the monoidal structure on .~¢ is sym- 
nletric, we define c : P ,  Q ~  Q ,  P by giving it on representables as 
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y A  * y B  ' y B  * y A  

'] 1' 
y(A o B) , y(B o A) 

yc 

(4.8) 

It remains to verify the coherence conditions [9, (1.1) and (1.2); with (1.14)-(1.16) 
in the symmetric case] for the a,/, r (and c where appropriate) of ~s¢. The pentagon 
condition for a, for example, requires the equality of two natural transformations 
((P • Q) • S) • T--, P • (Q • (S • T)). Since the domain and the codomain here are co- 
continuous in each variable, it follows from the four-variable version of Proposition 
3.1 that it suffices to prove the equality when P, Q, S, T are representables; and this 
follows at once from (4.6). Similar arguments, using (4.6)-(4.8), establish the re- 
maining coherence conditions. 

Observing that (4.6)-(4.8) are instances of (2.1)-(2.3) and (2.6), we have: 

Proposition 4.1. For a small monoidal [symmetric monoidal] .~¢ = (.~/, o,K), t he ,  
and J of(4.2) and (4.4), along with the isomorphisms a, l, r [and c] defined as above, 
constitute a monoidal biclosed [symmetric monoidal closed] structure on ~.~; and 
Y=O',.v, 1) :.~/-* ,cPs¢ is a strong monoidal [symmetric monoidai] functor. [] 

As we said in the introduction, this structure on ~ / i s  called the convolution of 
the monoidal structure on ~ / a n d  the symmetric monoidal closed structure on ¢/. 

5. The universal property of the convolution monoidal structure 

Recall from the introduction that a monoidal (7;, . ' ,  J ' )  is said to be monoidally 
cocomplete if g" is cocomplete and . ' :  g~® g'---, ~ is separately cocontinuous - the 
latter being certainly the case if ( ~, , ' ,  J ' )  is biclosed; and observe that the convolu- 
tion . ~ / o f  Proposition 4.1 is monoidally cocomplete. For such a ~ and a small 
monoidal (.,/, o,K) we write MonCoc(~a', ~)  for the (ordinary) category of cocon- 
tinuous monoidal functors ~ :  ~ / - - ,  ~ (meaning those for which ¢ : ~ ¢ ~  ~ is 
cocontinuous) and of all monoidal natural transformations between these; with 
StrMonCoc(~s¢, g') for the full subcategory given by those ~ that are strong 
monoidal. Our main result is the following: 

Theorem 5.1. For a small monoidal ~¢ and a monoidally-cocomplete ~, the (or- 
dinary) functor R: M o n C o e ( ~ ,  ~)-~Mon(~¢, ~) given by composition with the 
Y: sd--, ~sd o f  Proposition 4.1 is an equivalence o f  categories, which restricts to an 
equivalence StrMonCoe(~¢, ~)--  StrMon(~¢, ~). 
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Moreover, the objects o f  StrMonCoc( ,~ ,  ~) are exactly those monoidal functors 
,~/--, ~ which are left adjoints in Mon. The corresponding results are true in the 

symmetric monoidal case. 

proof. We give the proof in the general monoidal case, the modifications needed 

in the symmetric monoidal case being trivial. 
We first show that R is fully faithful. Let the monoidal functors ~, ~ :  ~ - - - ,  g~ 

be cocontinuous, and let ,8 : ~Y--, ~Y  be a monoidal natural transformation. We 
are to show that there is a unique monoidal natural ot : ~--* ~u with a Y = ft. By the 
one-variable case of Proposition 3.1, there is a unique a :  ~--'~U with ay= 
ft. ~y---, ~,y; and it remains to show that a is monoidal - that is, that a satisfies (2.4) 

and (2.5). 
Because of the separate cocontinuity of * and *' and the cocontinuity of 0 and 

~, the domain and the codomain of (2.4) are separately cocontinuous, so that by 
Proposition 3.1 it suffices to establish the commutativity of the restriction of (2.4) 
to the representables, which is the left square of 

(pyA *" (pyB 

ayA ." ctyB 

gtyA *' g/yB 

' O(YA * yB) , ~py(A o B) 

a(yA*yB) l [°tY(A°B) 

, q / ( y A  • y S )  , ~ y ( A  o B)  

(5.1) 

whose right square commutes by naturality. Since )7 is invertible, it suffices to prove 
the commutativity of the exterior of (5.1); but this is just (2.4) for the monoidal 
//=ay. Again, since y0=  l : J - ~ y K ,  the diagram (2.5) for a is exactly (2.5) for 
~=ay. 

To prove R an equivalence it remains to show that any monoidal O:  ~ g~ is iso- 
morphic in Mon to ¢~ Y for some cocontinuous monoidal q~ : ~ ¢ ~  ft. Taking ~ to 
be the L(O) of (3.1), we have by (3.3) the isomorphism/7 :Oy-~O. There is in fact 
exactly one enrichment of ~ to a monoidal ¢~ for which/7 is a monoidal natural iso- 
morphism ¢~Y----O. For the conditions (2.4) and (2.5) for/7 are 

(pyA ," qbyB , ¢~(yA • yB) , qby(A o B) 

1 
0,4 *" OB ' O(A o B) 0 

(5.2) 
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~0 1 
0J J'  ' OyK 

(5.3) 

OK 

and since r /and y are invertible, (5.3) fixes 0 °, while (5.2) fixes the restriction of 
to the representables - which suffices by Proposition 3.1 to give a unique 

~:  0 P * '  0Q -~ 0 (P*  Q), because the domain and codomain of ¢7 are separately co- 

continuous. 
We have to verify (2.1)-(2.3) for ~ ;  we indicate the argument for (2.1). Since the 

domain and codomain of (2.1) are separately cocontinuous, it suffices to verify the 
commutativity of the restriction of (2.1) to the representables. If we paste this 
restriction to 0 of (4.6), it suffices since )7 is invertible to prove the commutativity 
of the exterior of the resulting diagram. This diagram, however, transforms at once 
using the naturality of ~ into the diagram (2.1) for • Y; and @ Y is a monoidal func- 

tot by Lemma 2.1. 
This concludes the proof that R is an equivalence. As for its restriction to strong 

monoidal functors, ~Y  is strong monoidal when • is, since Y is strong monoidal; 
so we have only to verify that the • we constructed from O using (5.2) and (5.3) 
is strong when O is. But then 0 ° is invertible by (5.3), while the restriction of 
to the representables is invertible by (5.2), so that ~ itself is invertible by Proposition 

3.1. 
The assertion in the theorem about the • : ,~z¢--, gJ that are left adjoints in Mon 

follows at once from Proposition 2.2 and the one-variable version of Proposition 

3.1. [] 

6. Graded abelian groups 

We now take ~/= Ab, and remind the reader that in this case, in accordance with 
our general convention, the 'categories' and 'functors' of our results above are addi- 
tive categories and additive functors, except where it has been made clear that or- 
dinary categories and functors are intended. Since, however, authors rarely dis- 
tinguish an additive category ~ from its underlying ordinary category ~0, we shall 
no longer rely solely on this convention in what follows, but spell out the distinc- 
tions where necessary. 

We write W for the free additive category on the discrete ordinary category Z of 
integers - so that ~¢ has the integers as objects and has ~¢(n, n) = Z, while W(m, n) =0 
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(the zero group) for m ~: n. To give an additive functor 0 from .~¢ into an additive 

category 7o ~ is just  to give an ordinary functor - also called 0 - from Z into %, and 
thus to give objects O(n)= On o f  ~ indexed by n e Z; the value of 0 on the map  
k e ~/(n, n )=  Z is of  course k- 1, where 1 : On--" On is the identity. A natural transfor- 
mation a" 0 ~ 0 ' : ~ / ~  ~ is just a family an" On~O'~ of maps; so that [.~/, ~] is the 
additive category of graded ~-objects, where 'graded' means 'Z-graded'. 

In particular, since 5~/°p= 5~¢/, the category ,cPs¢ = [~¢,op, Ab] is the additive category 
of graded abelian groups. A typical object P of ~ has components Pn ~ Ab, 

while a typical map f :  P--, Q has components fn : Pn --* Qn. The Yoneda embedding 

y:.~¢--, .#~¢= ~ sends n to Yn where 

(Y,,)n = Z, (Yn),,, = 0 for m ,  n. (6.1) 

In the one-variable version of Proposition 3.1, the equivalence R :Coc (~ ,  ~J)---, 
[.~/, c6J]0 sends ~ to Sy, where (q~Y)n = q~(Yn), while the formula (3.2) for the inverse 

L of R becomes 

L ( ~ ) ( P ) =  ~ Pn®On; (6.2) 
nEZ 

similarly, in the two-variable version with ~ =.~/, (3.1) reduces to 

L(O)(P, Q) = ~, Pm® Q,, ® Omn. (6.3) 
m, nEZ 

The discrete ordinary category Z has a monoidal structure (7, o,K) given by 
m o n = m + n and K = 0, the isomorphisms a, l, r being the identities. This extends to 
an evident monoidal  structure (.~/, o, K) on N, so that .~' has a monoidal biclosed 
structure ( ~ , . ,  J ) .  By (4.2) and (6.3), the explicit description of • is 

( P . Q ) n  = • Pp®Qq; (6.4) 
p+q=n  

while by (4.4) we have J=Yo, so that (6.1) gives 

Jo=Z, J , = 0  for n:~0. (6.5) 

The .9:Ym *Yn ~Ym +n of the strong monoidal  Y= 0',)7, 1) of  Proposition 4.1 has, as 
its only non-trivial component, the canonical isomorphism Z ® Z = Z sending 1 ® 1 
to 1. 

The monoidal biclosed structure on the additive ~' is, of course, also a monoidal  
biclosed structure on the underlying ordinary category ~0- Our object is to study 
the monoidal auto-equivalences ¢, of  ~0; but since every equivalence, and even 
every left adjoint,  0 : ~0-" ~0 is automatically an additive functor, it comes to the 
same thing to study the monoidal  auto-equivalences of ~ - which we do using 
Theorem 5.1. 

There is an involutory isomorphism /-/=(rt, r~,tt°): ~ ~ ~ in Mon, where the 
functor n is given by (nP)n=P_~ and (rtf)n=f-n, while r~: n P . n Q ~ z ( P . Q ) i s  
the obvious isomorphism and n o =  1 :J--*J. 
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Theorem 6.1. Every equivalence ~ : ~--, ~ in Mon is isomorphic to the identity or 
to H. 

Proof .  Since an equivalence ~ is certainly a left adjoint, it is by Theorem 5.1 deter- 
mined to within isomorphism by the strong monoidal functor O = • Y: ,~¢~ (¢. 

Write T and S for 01 and 0_ 1- We have/7:01 * 0_ l ---- 0x + (_ 1) = 00 and 0 ° : J ~  00, so 
that T ,  S =- J ;  giving 

7". ® S_.--Z, (6.6) 
n~Z 

T.®Sm_.=O for m e 0 .  (6.7) 
n~Z 

Since Z is indecomposable in Ab, it follows from (6.6) that 

Tk®S_k-~Z for some k e Z ,  (6.8) 

T . ® S _ . = O  for n~:k. (6.9) 

It is well known that abelian groups A and B with A ® B = Z must each be isomor- 
phic to Z; a simple proof is as follows. There exist a e A and b ~ B with a ® b ¢ 0. The 
homomorphism - ® b  :A --,A ® B = Z  being non-zero, its image is a subgroup of 7 
isomorphic to 7, so that A contains the projective Z as a direct summand;  and simi- 

larly for B. I f A  ~ Z ~ C  and B = Z ~ D ,  we have Z=A ® B = Z ~ C ~ ) D ~ ( C ® D ) ,  
giving C=D = 0 since Z is indecomposable. 

Accordingly (6.8) gives T k = S_k = Z, whereupon (6.7) gives T. = S_. = 0 for n ¢ k. 

So T=y  k and S=Y_k. The isomorphisms/7:  0m * 0.---Om+. and O°:J = 0 o now give 

0, ~- Y,k. (6.10) 

By the one-variable version of Proposition 3.1, and the formula (6.2), we have 
@P = ~., P, ® Ynk, giving 

(@P)n~P,e. (6.11) 

If @ is to be an equivalence, it must be essentially surjective on objects; so that, 
in view of (6.11), we must have k = + l .  If  k = - l ,  we can replace qi by qV/; so we 
may  suppose that k = 1, whereupon (6.10) becomes 

O,=_y,. (6.12) 

To complete the proof of the theorem we must show that, given (6.12), we have 
O--- Yin  Mon, so that q ~ l  by Theorem 5.1. By Lemma 2.1, we may as well take 
the isomorphism (6.12) to be an equality. 

This being done, the isomorphism O: On * Ore'-* O, +m is necessarily the multiple of 
Y:Y ,  *Ym~Yn+m by some 6,m that is +1, while O°:J--'.Oo is e :y0~Y0 where e=+l. 
The conditions (2.1)-(2.3) for O to be a monoidal functor now reduce to 

6rim 6. +,7, k = 6ink 6., m + k, (6.13) 
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gone = 1 = ~nOt. (6.14) 

We are to exhibit a monoidal  natural isomorphism a :  Y--,~9; if an :Yn--*On is ~o n 
times the identity map of  Yn, where Qn = + 1, the conditions (2.4) and (2.5) for ot to 
be monoidal become (since y 0 =  1 by (4.5)) 

¢~nmQn~Om : ~Om + n ,  (6.15) 

~o0 = e. (6.16) 

We define G0 by (6.16) and, writing Yn for tin l, we set 

~o~ = 1, (6.17) 

~n=YlY2"..yn_l for n_>2, (6.18) 

Q_n=e(y_lY_2""y_n) -1 for n > l .  (6.19) 

It remains to verify (6.15). 
We first observe that,  for all n, we have 

OnYn =On+ 1; (6.20) 

this follows from (6.17)-(6.19), since ~,0e= 1 by (6.14). Next, we put k =  1 in (6.13), 

getting 

¢~n, m + 1 ~m = ¢~nrn ~m + n " (6.21) 

It follows at once from (6.20) and (6.21) that  (~nm#n~m/~Ora+n is unaltered when m 
is replaced by m +  1. So it suffices to verify (6.15) for m = 0 ;  but then it is true by 
(6.14). [] 

7. The two symmetries 

Retaining the notation of  Section 6, we now consider the two symmetries on ~ 
referred to in the introduction above. The discrete monoidal ordinary category Z has 
a symmetry c given by the identity map m + n ~ m + n, which gives a symmetry c on 
the additive monoidal .¢, and hence a symmetry c on ~9, where c : P • Q ~ Q • P maps 
the summand Pp(~Qq in (6.4) to the summand Qq(~Pp of (Q*P)n by sending 

x ® y  to y ® x .  We write .~¢ and ~ for these symmetric monoidal categories. 
The monoidal .~/has another symmetry c', not induced by a symmetry on Z, given 

by C'nm=(-1)nme.z/(n+m,n+m); which gives a symmetry c'  on ~, now sending 
x~y6Pp@Qq to  (--1)Pqy(~x; we write .~¢' and ~," for the symmetric monoidal 
categories given by the monoidal ~¢ and f9 with this second symmetry.  It is shown 
in [4, Chapter  IV, Section 6] that ~" - and indeed the underlying monoidal ~0 - 
has only these two symmetries. 

Although these two symmetries are different,  it is a priori possible that they be 
isomorphic, in the sense that there is an isomorphism ~ : ~--, fg' in SMon; or in the 
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even stronger sense that there is such an isomorphism with ~ the identity. Failing 
this, it is a priori  possible that they be at least equivalent,  in the sense that there is 
an equivalence ~"  ~q---' .~q' in SMon. However we in fact have: 

Theorem 7.1. There is no equivalence q~" ~'--, fg~' in SMon. 

Proof. Any such equivalence • is an equivalence in Mon and therefore, by 
Theorem 6.1, isomorphic in Mon to 1 or H. It is clear from (2.4) and (2.6) that, 
if • and ~u are isomorphic monoidal functors between symmetric monoidal cate- 
gories, ~ is a symmetric monoidal functor if • is symmetric. Since neither 1 nor 
H is symmetric monoidal as a functor ~ ~9', the result follows. [] 
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