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The homotopy of MString and MUh6i at large primes

MARK HOVEY

We use Hopf rings to compute the homotopy rings ��MOh8i and ��MUh6i at
primes > 3 . In this case, the additive structure is well-known, but the ring structure
is not polynomial. Instead, these rings are quotients of polynomial rings by infinite
regular sequences.

55N22; 57R90, 55R45

Introduction

Recall that a String manifold is a Spin manifold M together with a trivialization of the
class usually denoted p1.M /=2; this is a characteristic class, defined only for Spin
manifolds, so that twice it is the usual first Pontrjagin class. The bordism spectrum
of String manifolds is called MString or MOh8i; it is the Thom spectrum of the map
BOh8i �!BO of the 7–connected cover of BO to BO. Similarly, MUh6i is the bordism
spectrum associated with the 5–connected cover BUh6i �! BU of BU .

These spectra have received considerable attention because of their close connection
with both topological modular forms (see Ando, Hopkins and Rezk [1] and Ando,
Hopkins and Strickland [2]), and with string theory (see Witten [13]). In simple terms,
the relation with string theory is explained by the fact that the space of strings LM

on M , also known as the free loop space of M , is Spin, and so should have a Dirac
operator, if and only if M is String.

It is well-known that the only primes p where ��MString and ��MUh6i can have
p–torsion are pD2 and pD3. When p�5, MOh8i.p/ and MUh6i.p/ are coproducts
of suspensions of the Brown–Peterson spectrum BP, and so their homotopy groups
are completely known. However, the ring structure of ��MOh8i.p/ and ��MUh6i.p/
is not known when p � 5. Pengelley and Ravenel worked on this in the 1980’s and
realized that these rings are NOT polynomial rings, but their work has never appeared.

The object of this paper is to compute these homotopy rings. We show that each of
them is a BP�–polynomial algebra divided by an infinite regular sequence, so they are
generalized complete intersection BP�–algebras.
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Along the way, we compute the ring structure of BP�BOh8i and BP�BUh6i for all
primes p � 3. We hope that this will be useful in a more comprehensive attack on
MOh8i at p D 3 than was undertaken by the author and Ravenel [6]. The idea for
p D 3 is that MOh8i.3/ and MUh6i.3/ should be a coproduct of suspensions of BP
and BtmfP, where BtmfP is an amalgam of BP and the topological modular forms
spectrum tmf , analogous to the spectrum BoP of Pengelley [10]. It is possible, and
maybe even likely, that some other summands arise as well, arising from an amalgam
of BP and tmf ^C.˛/, where ˛ 2 �3S is a nontrivial 3–torsion element.

We use the Hopf ring BP�BPh1i� to compute BP�BOh8i, where BPh1i is the Johnson–
Wilson spectrum, closely related to K–theory, whose homotopy is Z.p/Œv1�. However,
we do not pursue a complete description of this Hopf ring. This seems like a good
topic for further work. There has been much previous work on the Hopf rings E�ko�
and E�BPh1i� (which are closely related when p is odd) for various E . Dena
Cowen Morton computes HF2�ko� in [9]. Boardman, Kramer and Wilson compute
K.1/�BPh1i� , among other things, in [3]. Kitchloo, Laures and Wilson compute
K.n/�ko� when p D 2, as well as the completed BP–cohomology of these spaces,
in [7].

Acknowledgements This paper is a long delayed outcome of my collaboration with
Doug Ravenel on [6]. His notes with David Pengelley on MOh8i led to our paper and
have now led to this one. But I would never have finished this computation without
inspirational conversations with Mike Hill.

Notation Throughout we let p be a prime and we use the usual convention that
q D 2p� 2.

1 BP�BPh1i�

In this section, we compute the ring structure of BP�BPh1in when n� 2pC 2 and n

is even. The reason for considering this is that, when p is odd,

BOh8i.p/ Š BPh1i8 �BPh1i12 � � � � �BPh1i2pC2;

as H –spaces (see Hovey and Ravenel [6, Corollary 1.5]). Similarly,

BUh6i.p/ Š BPh1i6 �BPh1i8 � � � � �BPh1i2pC2;

as H –spaces, no matter what p is.

Since BP�BPh1in is a free BP�–module for n�2pC2 (see the discussion immediately
preceding and immediately following Theorem 1.2), we have the following proposition.
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Proposition 1.1 The natural map

BP�BPh1i8˝BP� � � � ˝BP� BP�BPh1i2pC2 �! BP�BOh8i;

where there is one tensor factor in each dimension divisible by 4 in the indicated range,
is an isomorphism for p odd. Similarly, the natural map

BP�BPh1i6˝BP� � � � ˝BP� BP�BPh1i2pC2 �! BP�BUh6i;

where there is one tensor factor in each even dimension in the indicated range, is an
isomorphism for all p .

From [12, Section 5], we know that BPh1in is a factor of BPn for n � 2pC 2. For
n< 2pC 2, this is true as H –spaces, but not when nD 2pC 2. From [11], we know
that BP�BPn is a polynomial algebra over BP� .

We will need explicit generators for the part of this polynomial algebra that maps
nontrivially to BP�BPh1i2pC2 . The complex orientation gives a map CP1 �! BP2 .
The image under this map of (a consistent choice of) the generator in dimension 2i will
be denoted bi 2 BP2iBP2 , as will its image in BP�BPh1i2 . The only indecomposable
bi are the b.i/D bpi . We also have a map S0 �! BP�q corresponding to the homotopy
class v1 . The image of the generator under this map will be denoted Œv1� 2 BP0BP�q ,
as will its image in BP0BPh1i�q . Similarly, we have elements Œvi

1
� 2 BP0BPh1i�qi .

We can then take circle and star products of these elements in the Hopf rings BP�BP�
and BP�BPh1i� . Recall that the circle product corresponds to the ring spectrum
structure and defines a map

BP�BPm˝BP�BPn �! BP�BPnCm

and similarly for BPh1i� . The star product is just the loop space multiplication in
BP�BPn . Ravenel and Wilson then show that BP�BPh1in is generated as an algebra
over BP� by elements of the form

Œvi
1� ı b

ıj0

.0/
ı b
ıj1

.1/
ı � � �

such that
2
X

k

jk � qi D n:

and if i > 0, then jk < p for all k . This element is in degree 2.
P

k jkpk/.

In particular, suppose n� q D 2p� 2. Then jk < p for all k . Let ˛.m/ denote the
sum of the digits in the p–adic expansion of m. Then for every positive dimension 2m
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with ˛.m/� n=2 .mod p� 1/, there is a unique generator

x2m D Œv
i
1� ı b

ıj0

.0/
ı b
ıj1

.1/
ı � � � ı b

ıjk

.k/
;

where mD
P

jip
i is the p–adic expansion of m, and i D .˛.m/� n=2/=.p� 1/. It

is useful to note that m� ˛.m/ .mod p � 1/, so actually we have one generator in
each positive even dimension that is congruent to n .mod q/.

When nD 2p , we have similar generators x2m , but this time we have the additional
condition that ˛.m/> 1. Thus we lose the expected generator x2pk , but this is replaced
by y2pkC1 D b

ıp

.k/
. We therefore still have one generator in each positive dimension

2m with 2m� 2 .mod q/ except in dimension 2.

We know from [12, Corollary 5.1] that, for n < 2pC 2, the p–local homology of
BPh1in is an evenly-graded, torsion-free, polynomial algebra with one generator in
each dimension corresponding to snvk

1
for k � 0. Therefore, the Atiyah–Hirzebruch

spectral sequence collapses, and the same is true for BP�BPh1in . We thus recover the
following theorem.

Theorem 1.2 If n is even and n < 2p , then BP�BPh1in is the polynomial algebra
on the generators x2m constructed above, where 2m� n .mod q/. If nD 2p , then
BP�BPh1in is the polynomial algebra on the generators x2m , where 2m� 2 .mod q/

and ˛.m/ > 1, together with the generators y2pkC1 for k � 0.

When n D 2pC 2, the situation is more complicated. It is still the case that all the
generators are in even dimensions � 4 .mod q/ (and greater than 4). However, there
are two generators in some dimensions. In more detail, we have similar generators
x2m when 2m� 4 .mod q/, but only when ˛.m/ > 2. When ˛.m/D 2, there are
generators of the form ti;j D b

ıp

.i/
ıb.j/ in dimension 2.piC1Cpj /. These generators

come in distinct varieties. There are the generators w4pi D ti�1;i for i � 1, which are
the only generators in their dimension. There are the generators

y2.piCpj / D tj�1;i D b.i/ ı b
ıp

.j�1/

for 0� i < j and the generators

z2.piCpj / D ti�1;j D b
ıp

.i�1/
ı bj

when 0< i < j . For convenience, we take z2.1Cpj / D 0 for j > 0.

The fact that there are two generators in degrees 2.pi Cpj / for 0< i < j means that
there must be relations between them. Indeed, the p–local cohomology of BPh1i2pC2

is again an evenly graded, torsion-free polynomial algebra with one generator in
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each dimension 2m with ˛.m/ � 2 .mod p � 1/ and m > 2. This means that the
Atiyah–Hirzebruch spectral sequence will again collapse, and BP�BPh1i2pC2 will be
torsion-free and evenly graded, and in fact a free BP�–module, but this time there may
be multiplicative extensions, because the p–local homology will not be polynomial.
However, rationally, it is polynomial on one generator in each degree 2m with m

satisfying the conditions above. Thus, there must be relations involving the generators
y2.piCpj / and z2.piCpj / and p .

In order to find these relations, we work in the Hopf ring S.�/ D BP�BPh1i� . We
have the main relation

b.Œp�BP.s//D Œp�BPh1i.b.s//

of [11]. Here b.s/ D
P

bis
i , but on the right hand side, the sums and products in

Œp�BPh1i.s/ are interpreted as star and circle products respectively. Write the formal
group law for BPh1i as

F.x;y/D xCyC
X

aklx
kyl :

Then, using the fact that Œp�F .x/D
PF

vix
pi

for a p–typical formal group law (and
the Araki generators), we have

Œp�BPh1i.s/D psC v1sp
C

X
akl.ps/k.v1sp/l :

Thus, the main relation isX
bi.Œp�BP.s//

i
D b.s/�p � Œv1� ı b.s/ıp �

Y
Œakl � ı .b.s/

�p/ık ı Œvl
1� ı b.s/ıpl :

To get anything useful out of such a formula, we must neglect almost all of the terms.
To do so, let I.n/ be the augmentation ideal of S.n/D BP�BPh1in , so that I.n/ is
the kernel of

�W S.n/ �! BP�:

Because �.x ıy/D �.x/�.y/, we have I.n/ıS.m/� I.nCm/. It then follows from
the distributive law that I.n/�k ıS.m/� I.nCm/�k .

Lemma 1.3 In BP�BPh1i2 , we have

Œv1� ı b.s/ıp � Œ02� .mod I � I.2/C I.2/�p/:

Here Œ02� is the identity for the star product in BP�BPh1i2 , and I denotes the ideal
.p; v1; v2; : : : / of BP� .
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Proof In view of the main relation, it suffices to show that

b.Œp�BP.s//� b0 D Œ02� .mod I � I.2//; b.s/�p � Œ02� .mod I � I.2/C I.2/�p/;

Œakl � ı .b.s/
�p/ık ı Œvl

1� ı b.s/ıpl
� Œ02� .mod I � I.2/C I.2/�p/:and

Now Œp�BP.s/D psCF v1sp
CF v2sp2

CF � � �

is clearly in I , and each bi except b0 D Œ02� is in I.2/, so

b.Œp�BP.s//� b0 D Œ02� .mod I � I.2//:

On the other hand,

b.s/�p D

�
Œ02�C

X
i>0

bis
i

��p

D Œ02�Cp

�X
i>0

bis
i

�
C

�
p

2

��X
i>0

bis
i

��2
C � � �C

�X
i>0

bis
i

��p
:

Each bi for i > 0 is in I.2/, and p 2 I , so

b.s/�p � Œ02� .mod I � I.2/C I.2/�p/:

Now taking the circle product preserves multiplication by I and the star product, and
moves I.2/ to I.k/ as needed. We also have Œ0k � ıy D �.y/Œ0kCl � for any y 2 S.l/.
Putting all this together gives

Œakl � ı .b.s/
�p/ık ı Œvl

1� ı b.s/ıpl
� Œ02� .mod I � I.2/C I.2/�p/;

as required.

Theorem 1.4 In BP�BPh1i2 , we have

b.0/
X

vis
pi

� p
X

b.i/s
pi

C

X
b
�p

.i/
spiC1

C Œv1� ı

�X
b.i/s

pi

�ıp
C Œv1� ı

X
j¤pi

b
ıp
j spj

.mod I2
� I.2/C I � I.2/�2C I.2/�pC1/:

Proof Note that

Œp�BP.s/� psC v1sp
C v2sp2

C � � � .mod I2/;
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since all the cross-terms in the formal sum will be in I2 . It follows that

b.Œp�BP.s//� Œ02�C b.0/.psC v1sp
C v2sp2

C � � � / .mod I2
� I.2//:

We want to perform a similar computation for the right side of the main relation. We
begin with the larger terms. Using the Hopf ring distributive law as in the proof of
Lemma 1.7 of [6], we find that

Œakl � ı .b.s/
�p/ık ı Œvl

1� ı b.s/ıpl
D .Œakl � ı b.s/ık ı Œvl

1� ı b.s/ıpl/�p
k

:

We know from Lemma 1.3 that

Œv1� ı b.s/ıp � Œ02� .mod I � I.2/C I.2/�p/;

and so
Œakl � ı b.s/ık ı Œvl

1� ı b.s/ıpl
� Œ02� .mod I � I.2/C I.2/�p/

also. Then an easy computation shows that if f � Œ02� .mod I � I.2/C I.2/�p/ then

f �p � Œ02� .mod I2
� I.2/C I � I.2/�2C I.2/�pC1/;

and this is not even the smallest possible ideal we could use.

The term b.s/�p is easily dealt with, since

b.s/�p D

�
Œ02�C

X
i>0

bis
i

��p

D Œ02�Cp

�X
i>0

bis
i

�
C

�
p

2

��X
i>0

bis
i

��2
C � � �C

�X
i>0

bis
i

��p
;

and each bi is in I.2/�2 except the b.i/ . Hence

b.s/�p � Œ02�Cp
X

b.i/s
pi

C

X
b
�p

.i/
spiC1

.mod I � I.2/�2C I.2/�pC1/:

Now consider the term Œv1� ı b.s/ıp . Writing b.s/D Œ02�C
P

i>0 bis
i , and raising to

the p–th circle power, we get

b.s/ıp D Œ02p �C

�X
i>0

bis
i

�ıp
:

The cross-terms go away because we are circling with a Œ0k �. Now in .
P

i>0 bis
i/ıp

we will have terms like b
ıp
j spj and terms like

pcbi1
ı � � � ı bip si1C���Cip ;
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where c depends on which of the ij are equal to each other (pc is a multinomial
coefficient with p as the top number, and we have already taken care of the one case
where such a multinomial coefficient is not divisible by p , when all the ij are equal).
If any of the ij is not a power of p , this latter term is in I � I.2/�2 so we can ignore it.

So we have

b.s/ıp � Œ02p �C

�X
b.i/s

pi

�ıp
C

X
j¤pi

b
ıp
j spj

.mod I2
� I.2/C I � I.2/�2C I.2/�pC1/:

Putting it all together and cancelling the Œ02�, we get the desired result.

Corollary 1.5 In BP�BPh1i2 ,

Œv1� ı b
ıp

.i�1/
� vib.0/�pb.i/� b

�p

.i�1/
.mod I2

� I.2/C I � I.2/�2C I.2/�pC1/

for all i > 0.

Proof Look at the coefficient of spi

in the above theorem.

Corollary 1.6 In BP�BPh1i2pC2 we have the relations

viy2.1Cpj /�vj y2.1Cpi /Cp.z2.piCpj /�y2.piCpj //Cz
p

2.pi�1Cpj�1/
�y

p

2.pi�1Cpj�1/

2 I2
� I.2pC 2/C I � I.2pC 2/�2C I.2pC 2/�pC1

for 0< i < j .

Of course, when i D 1, we have to remember that z2.1Cpj�1/ D 0.

Proof Let J.2pC 2/ denote the ideal I2 � I.2pC 2/C I � I.2pC 2/�2C I.2pC

2/�pC1 . Take 0< i < j , and apply the corollary above to .Œv1� ı b
ıp

.i�1/
/ ı b

ıp

.j�1/
and

to .Œv1� ı b
ıp

.j�1/
/ ı b

ıp

.i�1/
. We get

vib.0/ ı b
ıp

.j�1/
�pb.i/ ı b

ıp

.j�1/
� b
�p

.i�1/
ı b
ıp

.j�1/

� vj b.0/ ı b
ıp

.i�1/
�pb.j/ ı b

ıp

.i�1/
� b
�p

.j�1/
ı b
ıp

.i�1/
.mod J.2pC 2//:

Looking back at the definition of the generators, this means

viy2.1Cpj /� vj y2.1Cpi /Cp.z2.piCpj /�y2.piCpj //

C b
�p

.j�1/
ı b
ıp

.i�1/
� b
�p

.i�1/
ı b
ıp

.j�1/
2 J.2pC 2/:
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Now, recall the consequence

a�p
k

ı b.i/ D .a ı b.i�k//
�pk

of the Hopf ring distributive law, derived just above [6, Lemma 1.7], where a�p
k

ıb.i/D

0 if i < k . Applying this gives us

b
�p

.j�1/
ı b
ıp

.i�1/
D .b.j�1/ ı b

ıp

.i�2/
/�p D z

p

2.pi�1Cpj�1/
:

Note that this is still true if i D 1 because we have defined z2.1Cpj�1/ D 0. Similarly,

b
�p

.i�1/
ı b
ıp

.j�1/
D .bi�1 ı b

ıp
j�2

/�p D y
p

2.pi�1Cpj�1/
:

This corollary gives us relations rij for 0< i < j in R, the polynomial algebra over
BP� on the x2m for ˛.m/� 2 .mod p� 1/ and ˛.m/ > 2, the w4pi for i > 0, the
y2.piCpj / for 0� i < j , and the z2.piCpj / for 0< i < j , which must be satisfied in
BP�BPh1i2pC2 . Let b denote the ideal of R generated by the rij . Then we have a
surjection f W R=b! BP�BPh1i2pC2 . The generators of b are in the right dimensions
for f to be an isomorphism, so the following theorem comes as no surprise.

Theorem 1.7 The map above

R=b
f
�! BP�BPh1i2pC2

is an isomorphism of BP�–algebras.

Proof Let K denote the kernel of f , so we have a short exact sequence of BP�–
modules

0 �!K �!R=b
f
�! BP�BPh1i2pC2 �! 0:

We want to show that K is 0. Note that R is a finitely generated (p–local) abelian
group in each degree, so K will be as well. Since K is also bounded below, it will
suffice to show that K has no generators. That is, it will suffice to show that

K=IK DK˝BP� Fp D 0:

Indeed, if n is the smallest degree in which Kn ¤ 0, then .K=IK/n DKn=pKn , so
if this is 0 then Kn must also be.

Since BP�BPh1i2pC2 is a free BP�–module, the short exact sequence above splits.
Thus it remains exact upon tensoring with Fp . Also, BP�BPh1i2pC2 ˝BP� Fp Š

H�BPh1i2pC2 , again because BP�BPh1i2pC2 is free. We are then reduced to showing
that the surjection

R=b˝BP� Fp

xf
�!H�BPh1i2pC2

is an isomorphism.
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Now R=b˝BP� Fp Š
xR=.rij / where R is the polynomial algebra over Fp on the

same generators as R, and if 0< i < j , then

rij � z
p

2.pi�1Cpj�1/
�y

p

2.pi�1Cpj�1/
.mod J pC1/:

Here J denotes the augmentation ideal of xR. Replace the generator y2.piCpj / by
y0

2.piCpj /
D z2.piCpj / � y2.piCpj / . Then xR=.rij / is spanned by all monomials in

the generators such that the exponent of each y0
2.piCpj /

is less than p . This has the
same Poincaré series as the polynomial algebra over Fp on the generators x2m , w4pi ,
z2.piCpj / for 0< i < j , and generators a2.1Cpj / for j > 0. That is, xR=rij has the
same Poincaré series as a polynomial algebra on one generator in each dimension 2m

with ˛.m/� 2 .mod p�1/. This is the same Poincaré series as that of H�BPh1i2pC2

given in [12] just after Corollary 5.1. Thus our surjection must be an isomorphism.

Theorem 1.8 The sequence .rij / is a regular sequence in any order, and hence
BP�BPh1i2pC2 is a (non-Noetherian) complete intersection ring.

We remind the reader that a complete intersection ring is a regular local ring divided
by a regular sequence. The word “regular” usually implies Noetherian, but in fact a
general commutative ring is called regular if every finitely generated ideal has finite
projective dimension [5]. The ring R of Theorem 1.7 is then a regular coherent local
ring, and BP�BPh1i2pC2 is the quotient of R by an infinitely long regular sequence.

Proof Fix n. Let An be the polynomial algebra over Z.p/Œv1; : : : ; vn� on all the
generators of BP�BPh1i2pC2 of dimension � 2.pn�1Cpn/. This will include one
generator in each dimension with ˛.m/� 2 .mod p � 1/ and m > 2, plus an extra
generator in each dimension 2.piCpj / with 0< i < j � n. Now we consider An=a,
where a is the ideal generated by the

�
n
2

�
relations rij for 0 < i < j � n. We will

prove these rij are a regular sequence in An in any order. Since n is arbitrary, this
will complete the proof.

By Theorem 17.4 of [8], it suffices to show that the Krull dimension of An=a is the
Krull dimension of A minus

�
n
2

�
, since An is a Cohen–Macaulay local ring. This

also proves that the order of the rij is irrelevant. Note that if we invert p , we can
use the relation rij to solve for y2.piCpj / in terms of z2.piCpj / and lower degree
terms, because of the form of rij . (Note that the only terms in rij that can possibly
involve y2.piCpj / are of the form pky2.piCpj / for k � 1). Hence p�1.An=a/ is
a polynomial ring over Q on all of the generators of An except the y2.piCpj / , and
therefore has Krull dimension

�
n
2

�
C1 less than the Krull dimension of A (we also lost

the prime ideal .p/, hence the additional 1).
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Let s denote the Krull dimension of p�1.An=a/. We must show that the Krull
dimension of p�1An is sC 1. Of course, the primes of p�1.An=a/ are in one-to-
one correspondence with the primes of An=a that do not contain p . We therefore
have a chain p0 � � � � � ps of prime ideals in An=a which do not contain p . Since
p�1.An=a/ is local, there is a unique prime ideal ps maximal among those which do
not contain p . In fact, ps is the ideal generated by the positive degree elements of An ,
and An=ps D Z.p/ . Letting psC1 be the maximal ideal, we get a saturated chain of
prime ideals p0 � � � � � psC1 . In a general Noetherian ring B , it is quite possible for
two saturated chains of prime ideals to have different lengths, but this cannot happen in
a finitely generated algebra over Z.p/ , because Z.p/ , and all Cohen–Macaulay rings,
are universally catenary [4, Corollary 18.10].

2 MOh8i and MUh6i at large primes

In this section, we compute the homotopy rings ��MOh8i.p/ and ��MUh6i.p/ for
p � 5.

If p is odd, there is a natural map

f W MOh8i �!MSO �! BP

of ring spectra. Similarly, for all p , there is a natural map

f W MUh6i �!MU �! BP

of ring spectra.

Lemma 2.1 If p � 5, the induced map BP�MOh8i �! BP�BP is surjective, and
similarly for MUh6i.

Proof Both sides are locally finite free BP�–modules, and if we mod out by the
maximal ideal I we get the map

HFp�MOh8i �!HFp�BP

which is onto by Rosen’s theorem [6, Theorem 1.1]. We now use the standard technique
to prove that f� is surjective, by induction on the degree. It is certainly surjective in
degree 0, so suppose it is surjective in all degrees < k , and x is in BPkBP. Then we
can find a y in BPkMOh8i such that f�y � x .mod I/, and then we can modify y

using the fact that f� is onto in lower degrees to find a z such that f�z � x .mod p/.
We then have a map of finitely generated free Z.p/–modules that is surjective after we
mod out by p . Such a map is easily seen to be surjective.
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Now, for each i , choose a generator ui in BP2.pi�1/MOh8i mapping to the generator
ti of BP�BP. Note that all the tensor factors BP�BPh1in of BP�MOh8i must map to 0

in BP�BP except BP�BPh1iq for dimensional reasons (and since p � 5, BP�BPh1iq
is a tensor factor of BP�MOh8i). Therefore, ui lies in the tensor factor BP�BPh1iq ,
where, since it is indecomposable, it is congruent to the generator x2.pi�1/ modulo
decomposables. Similar considerations apply to MUh6i.

Proposition 2.2 For p � 5, the map

gW HFp�MOh8i
 
�! P�˝HFp�MOh8i �! P�˝HFp�MOh8i=.u1;u2; : : : /

is an isomorphism of comodule algebras, where  denotes the coaction map, and the
coaction on the right is all in the P� tensor factor. There is a similar isomorphism for
MUh6i.

Of course, ui 2HFp�MOh8i is just the image of ui 2 BP�MOh8i.

Proof Coassociativity implies that g is a map of comodule algebras. Both sides
have the same Poincaré series, as follows from the fact that the ui are polynomial
generators of HFp�MOh8i. So it suffices to show that the given map is surjective, for
which it is sufficient to prove it is surjective on indecomposables. There is a basis of
the indecomposables of the right-hand side consisting of the �i ˝ 1 and the 1˝ x ,
where �i is the conjugate of the usual generator �i and x runs through a basis for
the indecomposables of HFp�MOh8i that are not multiples of one of the ui (each
ui is the only indecomposable in its dimension, up to Fp multiples). Now, for any
x 2HFp�MOh8i, examination of the commutative diagram

HFp�MOh8i
 

����! P�˝HFp�MOh8i

f�

??y ??yf�˝1

HFp�BPD P� ����!
 

P�˝P�

shows that g.x/D f�.x/˝ 1C 1˝ xx modulo decomposables in P�˝HFp�MOh8i,
where xx is the image of x in HFp�MOh8i=.u1;u2; : : : /.

In particular, g.ui/D f�.ui/˝1D �i˝1 modulo decomposables, since the reduction
of ti in HFp�BP D P� is �i . On the other hand, if x is an indecomposable that is
not a multiple of the ui , then f�x is decomposable, since x must be in a dimension
where there are no indecomposables in P� , and so g.x/D 1˝ xx . Thus g is surjective
on indecomposables, as required.
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This proposition then allows us to prove a similar result for BP–homology.

Theorem 2.3 For p � 5, the map

gW BP�MOh8i
 
�! BP�BP˝BP� BP�MOh8i �! BP�BP˝BP� BP�MOh8i=.u1;u2; : : : /

is an isomorphism of comodule algebras, where  denotes the coaction map and the
coaction on the right side is all in the BP�BP tensor factor. The analogous result holds
for MUh6i.

Proof Again, coassociativity implies that g is a map of comodule algebras. In each
dimension, both sides are finitely generated free Z.p/–modules. It therefore suffices to
show that the map in question is surjective. Using an argument similar to that of Lemma
2.1, it suffices to prove that this map is surjective after taking the quotient of both sides
by the maximal ideal I . On the left hand side, this quotient is HFp�MOh8i. On the
right-hand side, we have to use the fact that I is an invariant ideal. Let J D .u1;u2; : : : /

for convenience of notation. This gives

.BP�BP˝BP�BP�MOh8i=J /=I

Š BP�=I ˝BP� BP�BP˝BP� BP�MOh8i=J

Š BP�=I ˝BP� BP�BP˝BP� BP�=I ˝BP� BP�MOh8i=I

ŠHFp�BP˝BP�MOh8i=.I;J /Š P�˝HFp�MOh8i=J:

The preceding proposition now shows that the map g=I is surjective.

The Adams–Novikov spectral sequence then gives us the following theorem.

Theorem 2.4 For p � 5, there is an isomorphism of rings

��MOh8i.p/ Š BP�MOh8i=.u1;u2; : : : /

Š BP�BPh1i8˝BP� BP�BPh1i12

˝BP� � � � ˝BP� BP�BPh1iq=.u1; : : : /˝BP� BP�BPh1iqC4:

A similar theorem holds for ��MUh6i.p/ , except there are tensor factors in every even
degree.

Proof The preceding proposition tells us that the E2 term of the Adams–Novikov
spectral sequence converging to ��MOh8i.p/ is BP�MOh8i=.u1;u2; : : : /, concen-
trated in filtration 0. So the spectral sequence collapses with no possible extensions,
either additive or multiplicative.
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