
ar
X

iv
:1

70
8.

03
01

7v
1 

 [
m

at
h.

A
T

] 
 9

 A
ug

 2
01

7

EQUIVARIANT CHROMATIC LOCALIZATIONS AND

COMMUTATIVITY

MICHAEL A. HILL

Abstract. In this paper, we study the extent to which Bousfield and finite
localizations relative to a thick subcategory of equivariant finite spectra pre-
serve various kinds of highly structured multiplications. Along the way, we
describe some basic, useful results for analyzing categories of acyclics in equi-
variant spectra, and we show that Bousfield localization with respect to an
ordinary spectrum (viewed as an equivariant spectrum with trivial action)
always preserves equivariant commutative ring spectra.

1. Introduction

Bousfield localization is a fundamental tool in modern algebraic topology. The
ability to focus on pieces of the stable homotopy category allows in many cases for
more conceptual or algebraic descriptions and computations. Just as in ordinary
algebra, classical Bousfield localization is always a lax monoidal functor, preserving
commutative ring objects and allowing one to talk about localizations in categories
of modules or algebras.

Bousfield localization plays an equally important role in equivariant homotopy,
but here, the functors need not preserve commutative ring spectra. This was orig-
inally shown by McClure for the Greenlees-May Tate spectrum [15], and in work
with Hopkins, we showed sufficient conditions for when a general Bousfield local-
ization preserves equivariant commutative ring spectra [10]. Moreover, we showed
that Bousfield localization always preserves algebras over a trivial E∞ operad (so
an E∞ operad viewed as a G-equivariant operad by endowing it with a trivial ac-
tion), and in work with Blumberg, we verified that this is sufficient to have a good
symmetric monoidal catgegory of modules [5]. Thus essentially all of the desired
classical properties hold.

For equivariant homotopy, however, we can ask for more. If R is a genuine
equivariant commutative ring spectrum, then the category of R-modules has a
natural G-symmetric monoidal enhancement. More generally, if R is an algebra
over a linear isometries operad, then the category ofR-modules inherits those norms
which the linear isometries operad parameterizes. It is therefore a natural question
to see if a particular Bousfield localization preserves these richer structures.

In this paper, we study Bousfield and finite localizations for equivariant chro-
matic localizations. Using Balmer’s notion of the spectrum of a tensor triangulated
category, Balmer and Sanders determined the prime spectrum of the category of
G-spectra for finite groups G. Coupled with the natural Balmer-Zariski topology
on this spectrum, this provides a complete classification of the thick subcategories
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of finite G-spectra. Associated to any such thick subcategory are corresponding
Bousfield and finite localizations, and these are our primary focus. In particu-
lar, we prove in Theorem 4.8 below sufficient conditions for these localizations to
preserve various operadic algebras.

Along the way, we provide several tools which are helpful in analyzing equivariant
Bousfield localizations. The role of geometric fixed points here cannot be overstated,
as it provides elegant (and surprisingly checkable) reformulations of what it means
for a G-spectrum Z to be acyclic. This has several amusing consequences for the
kinds of spectra which arose in the solution to the Kervaire invariant one problem
which we could not resist including.

Notation and conventions. In all that follows, G will denote a fixed finite group.
In general, the letters H , J and K will be reserved for subgroups of G. Capital
letters close to X in the alphabet will denote G-spaces, while capital letters close
to T will denote G-sets. Spectra will be often denoted with letters like E (or Z
when the role as an acyclic is being stressed).

Category Names and assumptions. We work in the category of genuine G-spectra,
and all of our statements are implicitly homotopical. For concreteness, the reader
is invited to use orthogonal G-spectra, where all the needed homotopical properties
were checked in [9, Appendix B]. The category of genuine G-spectra will be denoted
SpG and the category of spectra will be denoted Sp. For either of these, the full
subcategory of compact objects will be indicated by a subscript “c”.

The category of genuine equivariant commutative ring spectra (the commutative
monoids in one of the good symmetric monoidal model categories of G-spectra) will
be denoted CommG.

The category of finite G-sets and G-equivariant maps will be denoted SetG.

Familiar functors. The geometric fixed points functor will be denoted ΦG.
If H ⊂ G, then i∗H will denote the restriction functor from G-spectra to H-

spectra. The functor ΦH will also be used to denote the composite functor ΦH ◦ i∗H
on genuine G-spectra.

Acknowledgements. We thank Tyler Lawson and Andrew Blumberg for careful
readings of interminably many drafts of this short paper. Extra special thanks go
to Paul Balmer for carefully explaining to us on several occasions the construction
and properties of his spectrum and for closely reading an early draft.

2. Equivariant commutativity

2.1. The norm and geometric fixed points. One of the most important tools
developed in the solution of the Kervaire invariant one problem was a homotopically
meaningful norm functor

NG
H : SpH → SpG.

This is a strong symmetric monoidal left Quillen functor, and on equivariant com-
mutative ring spectra, it participates in a Quillen adjunction as the left adjoint to
the forgetful functor:

NG
H : CommH

⇄ CommG : i∗H .
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In particular, for any G-equivariant commutative ring spectrum R, there is a canon-
ical map of G-equivariant commutative ring spectra

NG
H i∗HR → R.

It is the requirement that a localization play nicely with these maps that confounds
equivariant Bousfield localization. From a homotopical point of view, these are
extra structure which we must control the behavior of. In our analysis of various
trivial and chromatic localizations, we will also need to understand the geometric
fixed points of the norm functor. Luckily, this is easily determined by a kind of
generalized diagonal.

Lemma 2.1 ([9, Proposition B.209], [1, Proposition 2.19]). For any K,H ⊂ G and
for any H-spectrum E, the diagonal gives an equivalence of spectra

ΦKNG
HE

≃
−→

∧

g∈K\G/H

ΦKg∩HE.

It is conceptually convenient to also include notation for several other endo-
functors of the category of G-spectra.

Definition 2.2. For any H ⊂ G and for any G-spectrum E, let

NG/H(E) := NG
H i∗HE.

If

T = G/H1 ∐ · · · ∐G/Hn

is a finite G-set, then let

NTE :=
n
∧

i=1

NG/HiE.

Remark 2.3. Although the definition as given involves choices of orbit decomposi-
tions, one can make this coordinate free by defining the T -norm as the symmetric
monoidal pushforward of the constant BGT -shaped diagram with value E, where
BGT is the translation category of T , mirroring the original discussion in [9, Ap-
pendix A.3].

2.2. N∞ operads and algebras. The failure of equivariant Bousfield localiza-
tion to preserve commutative ring spectra should be viewed as a peculiarity of the
monoidal model structure: in genuine G-spectra, the commutative monoids are
have not only a homotopy coherent commutative multiplication (an ordinary E∞

structure) but also coherent norm maps relating the value of the ring at various
subgroups. Classically, this is packaged via a G-E∞ operad. In work with Blum-
berg, we generalized the notion of a G-E∞ operad to cover all kinds of coherently
commutative multiplications with some norms on genuine G-spectra. We briefly
review the relevant details now.

Definition 2.4 ([6, Defintion 3.7]). An N∞ operad is an operad O in G-spaces
such that

(1) The space O0 is G-contractible,
(2) the action of Σn on On is free, and
(3) the space On is a universal space for a family Fn(O) of subgroups of G×Σn

which contains all subgroups of the form H × {e}.



4 MICHAEL A. HILL

There is a purely combinatorial way to package the collection of subgroups which
show up in the families for an N∞ operad, and this is closely connected to the
structure of algebras over the operad. For this, recall that a symmetric monoidal
coefficient system is a contravariant functor from the orbit category of G to the
category of symmetric monoidal categories and strong monoidal functors. The
prototype of such a symmetric monoidal category is Set, for which

Set(G/H) := SetH .

Definition 2.5. An indexing systemO is a full, symmetric monoidal sub-coefficient
system of Set such that

(1) For all orbits G/H , O(G/H) is closed under finite limits, and
(2) if H/K ∈ O(G/H) and T ∈ O(G/K), then H ×K T ∈ O(G/H).

In particular, any indexing system contains all trivial sets and is closed under
passage to subobjects.

Associated to any N∞ operad O is an indexing system O.

Definition 2.6 ([6, Definition 4.3]). Let O be an N∞ operad. Let T be a finite
H-set of cardinality n, classified by a map H → Σn, and let ΓT be the graph of this
homomorphism. Then T is in O(G/H) if and only if OΓT

n ≃ ∗. If T ∈ O(G/H),
then we say that T is admissible.

This construction gives an equivalence of categories, so we will henceforth ignore
the distinction between an N∞ operad and an indexing system.

Theorem 2.7. The assignment O 7→ O gives a fully-faithful embedding of the
homotopy category of N∞ operads into the poset of indexing systems [6, Theorem
3.24] which is essentially surjective [16], [7, Corollary IV], [8, Section 4].

Since the poset of indexing systems has an initial object Otr consisting of the
indexing system of sets with a trivial action, there is a homotopy initial N∞ operad.
This is just an ordinary, non-equivariant E∞ operad viewed as a G-operad by
endowing it with a trivial G-action. Thus any O-algebra has a canonical coherently
commutative multiplication, since it is an algebra over a trivial E∞ operad. The
role of the indexing system here is to parameterize the additional norms present in
an O-algebra.

Theorem 2.8 ([6, Lemma 6.6]). If H/K is an admissible H-set for O, and R is
an O-algebra in spectra, then we have a contractible space of maps

NH
K i∗KR → i∗HR.

3. Equivariant Bousfield classes

3.1. Equivariant localizing subcategories.

Definition 3.1. If E is a G-spectrum, let ZG
E denote the category of E-acyclics:

the full subcategory of SpG consisting of all Z such that E ∧ Z is equivariantly
contractible.

If we are working non-equivariantly, then the acyclics will be denoted simply ZE

with no superscript.

Since geometric fixed points detect weak equivalences and are strong symmetric
monoidal, this gives another, conceptually simpler way to understand membership
in ZE .
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Proposition 3.2. A G-spectrum Z is a G-equivariant E-acyclic spectrum if and
only if for all H ⊂ G, ΦH(Z) is non-equivariant ΦH(E)-acyclic spectrum:

ZG
E =

⋂

H⊂G

(

ΦH
)−1

(ZΦHE).

Proof. A genuine G-spectrum E′ is equivariantly contractible if and only if for all
H ⊂ G, ΦH(E′) is contractible. Thus if E is a fixed G-spectrum and Z is any other
G-spectrum, then E ∧ Z is contractible if and only if for all H ⊂ G,

ΦH(E ∧ Z) ≃ ΦH(E) ∧ ΦH(Z) ≃ ∗. �

The category of E-acyclics is also an equivariant subcategory in that it is closed
under restriction and induction.

Proposition 3.3. For all H ⊂ G, we have natural inclusions

i∗HZG
E ⊂ ZH

i∗
H
E and G+ ∧H ZH

i∗
H
E ⊂ ZG

E .

Proof. The first inclusion is obvious, since i∗H is a strong symmetric monoidal func-
tor. For the second, let X be in Zi∗

H
E . The Frobenius relation

(

G+ ∧H X
)

∧ E ≃ G+ ∧H (X ∧ i∗HE)

then shows that G+ ∧H X is E-acyclic. �

Corollary 3.4. For all H ⊂ G and Z ∈ ZG
E , we have

G/H+ ∧ Z ∈ ZG
E .

3.2. Application: acyclics for Kervaire spectra. Proposition 3.2 gives a way
to readily determine the acyclics for the kinds of chromatic spectra which arose in
the proof of the Kervaire invariant one problem. In particular, we can determine
the acyclics for any of the spectra which arise as particular localizations of the
norms of the Landweber-Araki Real bordism spectrum MUR.

Recall from [9, Section 5.4.2] that if G = C2n , then there are classes

r̄Gi ∈ π(2i−1)ρ2
NC2n

C2
MUR

such that

ΦC2n

(

NC2n

C2
MUR

[

(NC2n

C2
r̄i)

−1
]

)

is contractible [9, Proposition 5.50].

Proposition 3.5. Let G = C2n . Let D̄ be any class in πmρ2n
NC2n

C2
MUR such that

for all C2 ⊂ H ⊂ G, there is a jH such that NC2n

C2
rHjH divides D̄. Finally, let M be

any module over the commutative ring spectrum NC2n

C2
MUR[D̄

−1]. Then

ZG
M =

(

i∗{e}
)−1

Zi∗
{e}

M .

Proof. The conditions ensure that all non-trivial geometric fixed points of M are
contractible. The result then follows from Proposition 3.2. �

Corollary 3.6. If M is a wedge of spectra Mi, each of which is a module over
NC2n

C2
MUR[D̄

−1
i ] for some D̄i as in Proposition 3.5, then

ZG
M =

(

i∗{e}
)−1

Zi∗
{e}

M .
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We deduce an immediate application to the Real MoravaK-theories and Johnson-
Wilson theories introduced by Hu-Kriz and studied extensively by Kitchloo-Wilson
[12], [14].

Corollary 3.7. The equivariant Bousfield classes of ER(n) and KR(0)∨· · ·∨KR(n)
agree.

Proof. By Corollary 3.6, the Bousfield class of KR(0) ∨ · · · ∨KR(n) is determined
by the underlying spectrum:

i∗e
(

KR(0) ∨ · · · ∨KR(n)
)

≃ K(0) ∨ · · · ∨K(n).

Similarly, a direct application of Proposition 3.5 shows that the Bousfield class of
ER(n) is also determined by the underlying spectrum, which is E(n). The result is
now classical. �

3.3. Localizations of O-algebras. Since the smash product is associative, we
know that ZG

E is always a tensor ideal of SpG. In particular, it is a non-unital sym-
metric monoidal subcategory of SpG. This gives another way to interpret Proposi-
tion 3.3.

Proposition 3.8. For any G-spectrum E, the assignment

G/H 7→ ZE(G/H) := ZH
i∗HE ⊂ SpH

defines a non-unital symmetric monoidal sub-coefficient system of Sp.

This reformulation allows us to most easily state the sufficient conditions for a
localization to preserve O-algebra structures for an N∞ operad O. The sufficiency
of the following theorem was proved in [10]; the thesis of White built upon this in
a more general context and also showed necessity as well [17, 18].

Theorem 3.9 ([10, Theorem 7.3], [18, Section 5]). Let O be an N∞ operad, and
let L be a Bousfield localization on G-spectra. If for every subgroup H ⊂ G and for
every admissible T ∈ O(G/H) the category of acyclics is closed under NT then L
preserves O-algebras.

In this paper, we are also concerned with finite localizations (which are always
known to be smashing). Here, the same result holds; the proof is identical.

Theorem 3.10. Let O be an N∞ operad, and let V be a thick subcategory of SpG.
If for every H ⊂ G and for every admissible T ∈ O(G/H), NT restricts to an

endofunctor of V, then the finite localization Lf
V preserves O-algebras.

Proposition 3.11. If V is the thick subcategory generated by an object E, then the
conditions of Theorem 3.10 are met provided NT (E) ∈ V for all admissible T .

Proof. This is essentially [9, Proposition B.170]. In short, the norms commute with
sifted colimits, and there is a formula for describing the norm of a cofiber in terms
of the norms of the pieces. This reduces checking for a general object in the thick
subcategory to checking for the generator. �

Since categories of acyclics are always non-unital symmetric monoidal subcate-
gories, and since the equivariant thick subcategories are tensor ideals, we conclude
that these localizations always preserve at least the trivial E∞-structure.

Corollary 3.12. If L is any Bousfield or finite localization on G-spectra, then L
preserves trivial E∞ algebras.
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Although this is less structured than we might like, it is enough structure to
guarantee good, symmetric monoidal category of modules.

Corollary 3.13 ([5, Theorem 1.1]). Let O be an N∞ operad. If R is an O-algebra in
G-spectra, and if L is any Bousfield or finite localization, then there is a symmetric
monoidal category of L(R)-modules.

The richer structure in a general O-algebra translates to a richer structure on
the category of modules for an O-algebra R.

Corollary 3.14 ([5, Section 5.2]). Let O be an N∞ operad of the homotopy type of
the linear isometries operad for a G-universe U . If R is an O-algebra in G-spectra,
and if L is any Bousfield or finite localization which preserves O-algebras, then
there is an O-symmetric monoidal category of L(R)-modules.

Remark 3.15. There is also a very exciting ∞-categorical approach to the norm
functors and various kinds of G-symmetric monoidal enhancements which arise
in equivariant homotopy theory due to ongoing work of Barwick, Dotto, Glasman,
Nardin, and Shah [4]. This will elegantly remove the “linear isometries” hypothesis,
giving O-symmetric monoidal categories of modules over any O-algebra.

3.4. Pushfowards and localization. There is an interesting family of localiza-
tions which always preserves all of the desired multiplicative structure: localizations
with respect to an ordinary ring spectrum viewed as a G-spectrum with a trivial
action. We begin with a classical observation.

Proposition 3.16. If R → S is a map of ring spectra, then

ZR ⊂ ZS ⊂ Sp.

Proposition 3.17. If E is a ring spectrum, then for any sub-conjugate K ⊂ H,
we have

ZEH ⊂ ZEK ⊂ Sp.

Proof. For any subgroup H , there is a map of equivariant ring spectra

E → MapH(G+, i
∗
HE).

Applying fixed points gives a map of ring spectra EG → EH , giving the result. �

Corollary 3.18. The assignment of G/H to the Bousfield class of EH is a con-
travariant functor from the orbit category to the Bousfield lattice of spectra.

The fixed point functor is a categorical right adjoint, with left adjoint the “push-
foward”.

Definition 3.19. Let i∗ denote the push-forward functor

i∗ : Sp → SpG,

which is the left-adjoint to the G-fixed points functor.

While in general it is very difficult to determine the fixed points of a smash
product, when one of the factors is in the image of the pushforward, we can readily
do so. In particular, we can simply move the fixed points past the smash product
in this case.
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Proposition 3.20 ([13]). If K is a spectrum and E is a G-spectrum, then we have
a natural equivalence of spectra

(K ∧ E)G ≃ K ∧ EG.

In particular,
(i∗K)G ≃ K ∧ (S0)G.

Corollary 3.21. For any subgroup H of G, for any ordinary spectrum K, and for
any G-spectrum E,

ΦH(i∗K ∧ E) ≃ K ∧ ΦH(E).

Combined with Proposition 3.2, this gives another way to understand the acyclics
for i∗E.

Proposition 3.22. A G-spectrum Z is i∗E-acyclic if and only if for all H ⊂ G,
ΦH(Z) is E-acyclic:

ZG
i∗E =

⋂

H⊂G

(

ΦH
)−1

(ZE).

Proposition 3.22 gives a readily checkable collection of criteria for acyclicity. In
particular, since the geometric fixed points of the norm is well-understood, this
quickly gives the following.

Theorem 3.23. If E is any non-equivariant spectrum, then Li∗E and the associated

Lf
i∗E

preserve G-equivariant commutative rings.

Proof. Theorems 3.9 and 3.10 show that a sufficient condition for Li∗E or Lf
i∗E

to
preserve commutative rings is for the category of acyclics to be closed under all
norms. In other words, we need to show that if Z ∈ Zi∗E(G/H), and H ⊂ K ⊂ G,
then

NK
H Z ∈ Zi∗E(G/K).

G plays no role in this, since i∗K(i∗E) = i∗E, so it suffices to check this for K = G.
Proposition 3.22 then shows that it suffices to show that if Z is an H-acylic, then
for all subgroups K of G, we have

ΦK
(

NG
HZ

)

∈ ZE .

Lemma 2.1 shows that we have an equivalence

ΦK
(

NG
HZ

)

≃
∧

g∈K\G/H

ΦKg∩HZ.

Proposition 3.22 then tells us again that since Z is an H-acyclic for i∗E, we know
that for all subgroups J of H that ΦJ(Z) is E-acyclic. In particular, for any K and
any double coset, we know ΦKg∩HZ is E-acyclic, giving the result. �

This gives us a nice selection of equivariant chromatic types that preserve com-
mutative ring spectra.

Corollary 3.24. If V is any type n-spectrum that is not type (n+1) (at some prime

p if n > 0), then the finite chromatic localization Lf
i∗V

preserves commutative ring
spectra.

These equivariant chromatic types are the first one considers, as they are lifted
directly from the unstable information. Work of Balmer and Sanders describes all
of the thick subcategories equivariantly, and we turn now to understanding which
of their localizations preserve O-algebras.
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4. Equivariant thick subcategories

4.1. The Balmer-Sanders’ Classification. The equivariant thick subcategories
of SpGc have been classified by Balmer-Sanders using Balmer’s notion of the spec-
trum of a tensor triangulated category [3], where again SpGc is the full subcategory
of compact objects in G-spectra. The Balmer spectrum of a tensor triangulated
category should be thought of as an extension of the classical Zariski spectrum to
a context which formally looks like the derived category of modules over a ring [2].
Balmer describes a notion of a “prime” tensor triangulated ideal, and these form
the points in his Zariski spectrum. Out of this space, one can recover the thick
subcategories of the (essentially small) tensor triangulated category.

The heart of the Balmer-Sanders result is that the geometric fixed points func-
tors, being a tensor triangulated functor, induces maps

Spec(ΦH) : Spec(Spc) → Spec(SpGc )

for all subgroups H ⊂ G. The “Thick subcategory theorem” of Hopkins-Smith
determines all of the prime ideals in Spc.

Definition 4.1. Let p be a prime. For each 0 ≤ m < ∞, let K(m, p) denote a
Morava K-theory of height m at the prime p. Finally, for m ≥ 1, define a full
subcategory of finite spectra by

Cm,p := {X | K(m− 1, p)∗(X) = 0}.

Theorem 4.2 ([11]). The prime ideals in Sp are given by Cm,p for all primes p
and all natural numbers m ≥ 1. Their inclusions and intersections are as follows:

(1) For all primes p and q, C1,p = C1,q, which is the category of torsion finite
spectra.

(2) If m < m′, then Cm′,p ⊂ Cm,p.
(3) If p and q are distinct primes and m and n are greater than one, then Cm,p

is not contained in Cm′,q.

Definition 4.3 ([3, Definition 4.1]). For each subgroup H of G, each prime p, and
each natural number m, let

P(H,m, p) :=
(

ΦH
)−1

Cm,p.

Theorem 4.4 ([3, Theorem 4.9]). For any finite group G, the spectrum of SpGc is

Spec(SpGc ) = {P(H,m, p) | H ⊂ G,m ∈ N, p prime}.

Balmer-Sanders also determine the inclusions (up to a small indeterminacy),
hence giving a complete classification of the thick subcategories. These are deter-
mined by the notion of “support” for an element.

Definition 4.5. If X ∈ SpG, then the support of X is the set of prime ideals not
containing X :

Supp(X) = {p|X /∈ p}.

The vanishing locus of X is the complement of the support:

V(X) = Spec(SpG)− Supp(X) = {p|X ∈ p}.

Thick subcategories are determined by the support. Thick subcategories are
equivalent to the condition that their support be a Thomason closed subset.
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Proposition 4.6. Let X and Y be finite G-spectra. Then the thick subcategory
generated by X contains Y if and only if

Supp(Y ) ⊂ Supp(X),

or equivalently
V(X) ⊂ V(Y ).

4.2. Chromatic localizations and structured multiplications.

4.2.1. General results for arbitrary G. We now restrict attention to determining
conditions which guarantee that the Bousfield and finite localizations with respect
to an equivariant thick subcategory preserve O-algebras.

Lemma 4.7. Let X be a thick subcategory of SpGc . Then the norm NH
K preserves

X if for all P(J,m, p) ∈ V(X ) with J ⊂ H, ∃h ∈ H such that

P(Kh ∩ J,m, p) ∈ V(X ).

Proof. By Proposition 4.6, this is equivalent to

V(i∗HX) ⊂ V(NH
K i∗HX).

Thus a sufficient condition is that if K(m, p)∗Φ
JX = 0, then

K(m, p)∗Φ
JNH

K i∗KX = 0.

By Lemma 2.1, we have an isomorphism

K(m, p)∗
(

ΦJNH
K i∗KX

)

∼=

K(m, p)∗





∧

KhJ∈K\H/J

ΦJh∩KX



 ∼=
⊗

KhJ∈K\H/J

K(m, p)∗(Φ
Jh∩KX)

This vanishes if and only if there is an h ∈ H such that P(Jh ∩ H,m, p) is in the
vanishing locus of X , as desired. �

As an immediate corollary, we deduce sufficient conditions for chromatic Bous-
field and finite localizations to preserve O-algebras, by Theorems 3.9 and 3.10.

Theorem 4.8. The Bousfield and finite localizations with respect to a thick subcate-
gory X preserve O algebras if for all H/K ∈ O(G/H) and for all P(J,m, p) ∈ V(X )
with J ⊂ H, ∃h ∈ H such that

P(Kh ∩ J,m, p) ∈ V(X ).

4.2.2. Application: the p-local cases for G = Cpn . When G is a cyclic group of order
a power of a fixed prime p, then we can reduce the conditions from Theorem 4.8 to
a collection of inequalities. These, together with the inclusions determined and con-
jectured by Balmer-Sanders, greatly cuts down the number of possible localizations
which preserve commutative rings.

For simplicity, we restrict attention to the p-local subcategory. Localized at
primes q 6= p, the category of Cpn spectra splits, and the problem essentially be-
comes algebra. This splitting is in general not a splitting of G-symmetric monoidal
categories, however, so it is not immediately clear how to couple this with the
localization results above. Ongoing work of Böhme exactly addresses this point.

For G = Cpn , a p-local thick subcategory is completely determined by a finite
collection of extended natural numbers (so a natural number or infinity).
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Definition 4.9. Let X be a p-local thick subcategory of Sp
Cpn

c . For each 0 ≤ k ≤ n,
let

ℓk = max
{

ℓ|P(Cpk , ℓ, p) ∈ V(X )
}

provided this set is non-empty, and if for no ℓ is P(Cpk , ℓ, p) in the vanishing locus

of X , then let ℓk = −1. Denote this sequence of extended integers by ~ℓ(X ).

Conversely, given a sequence ~ℓ = (ℓ0, . . . , ℓn), let X~ℓ be defined by

V(X~ℓ) =

n
⋃

i=0

ℓi
⋃

j=0

{P(Cpi , j, p)},

where if ℓi = −1, then that union is empty.

By definition, if X is a p-local thick subcategory of Sp
Cpn

c , then

X = X~ℓ(X ).

However, not every sequence of integers works to give thick subcategories (as there
is an implicit closure condition here). The Balmer-Sanders closure results give some
loose conditions.

Theorem 4.10. For all 0 ≤ i ≤ n− 1, if X~ℓ is a p-local thick subcategory, then we
have inequalities

ℓi ≤ ℓi+1 + 1.

Balmer-Sanders leave open if we can refine any of these further (for example,
having inequalities like ℓ0 ≤ ℓ2 + 1), but leave this open as their “logp-conjecture”
([3, Conjecture 8.7]). We will not need anything more than these coarse bounds;
any refinements would simply further restrict the kinds of thick subcategories which
produce commutative ring spectra.

Applying the analysis for Theorem 4.8, we deduce the following.

Lemma 4.11. Let X be a p-local, thick subcategory of Sp
Cpn

c . The norm N
C

pj

C
pk

preserves X if

ℓk ≥ ℓk+1, . . . , ℓj.

Proof. Since every subgroup is normal and the subgroups are nested, this is an
immediate application of Lemma 4.7. �

Putting this all together gives a condition for chromatic localizations to preserve
commutative ring spectra.

Corollary 4.12. Let X be a p-local, thick subcategory of Sp
Cpn

c . Then the finite
and Bousfield localizations nullifying X preserve commutative ring spectra if for all
0 ≤ i ≤ n− 1,

ℓi+1 ≤ ℓi ≤ ℓi+1 + 1.

The case that the sequence is constant is one we have already studied: these are
the thick subcategories generated by the pushforward for a type (n + 1)-complex.
The other cases are new.

When n = 1, there is even less to check. In this case, we have only 2 extended
integers.
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Corollary 4.13. For Cp, the only chromatic localizations which preserve commu-
tative ring spectra are

LX(n,n)
and LX(n+1,n)

for all n.

As a final corollary, the finite localizations by construction are smashing. Thus
all of these results can be restated in terms of certain structured multiplications on
the localized sphere spectrum.

Corollary 4.14. For G = Cpn , let ~ℓ denote a sequence of extended integers such
that for all 0 ≤ i ≤ n, we have

ℓi+1 ≤ ℓi ≤ ℓi+1 + 1,

and assume that the Balmer-Sanders “logp-conjecture” holds. Then the chromati-
cally localized spheres

Lf
X~ℓ
S0

are Cp-equivariant commutative ring spectra.
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