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ITERATED SPANS AND CLASSICAL TOPOLOGICAL FIELD THEORIES

RUNE HAUGSENG

ABSTRACT. We construct higher categories of iterated spans, possibly equipped with extra
structure in the form of higher-categorical local systems, and classify their fully dualizable
objects. By the Cobordism Hypothesis, these give rise to framed topological quantum field
theories, which are the framed versions of the classical TQFTs considered in the quantiza-
tion programme of Freed-Hopkins-Lurie-Teleman.

Using this machinery, we also construct an (∞, 1)-category of symplectic derived alge-
braic stacks and Lagrangian correspondences and show that all its objects are dualizable.
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1. INTRODUCTION

In this paper our main goal is to construct a fundamental family of higher categories,
namely the symmetric monoidal (∞, n)-categories Spann(C) of iterated spans in an (∞, 1)-
category (or ∞-category) C with finite limits, and to classify the fully dualizable objects
in these (∞, n)-categories. Via the Cobordism Hypothesis, these objects correspond to
the framed extended topological quantum field theories (TQFTs) valued in the (∞, n)-
categories Spann(C), which can be interpreted as a simple model for classical topological
field theories.

We also construct variants of these (∞, n)-categories where the spans are equipped with
extra structure in the form of local systems, and classify their fully dualizable objects. The
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corresponding TQFTs are those proposed as classical field theories in the quantization
programme outlined by Freed, Hopkins, Lurie, and Teleman [FHLT10].

Finally, we apply our machinery in the context of shifted symplectic structures on de-
rived algebraic stacks, as developed by Pantev, Toën, Vaquié, and Vezzosi [PTVV13], to
construct (∞, 1)-categories of n-shifted symplectic derived stacks with the morphisms
given by Lagrangian correspondences; we also show that here all objects are dualizable
(and thus determine framed 1-dimensional TQFTs).

Before we describe our results in more detail and discuss how they relate to extended
TQFTs, we will first look at the analogous classical field theories in the simpler setting of
non-extended TQFTs.

1.1. Topological Quantum Field Theories and Spans. Topological quantum field theories (or
TQFTs) originated in physics as a particularly simple class of quantum field theories. They
were first formalized mathematically by Atiyah [Ati88] in the late 1980s, and have been
the subject of much research over the past two decades. A sketch of Atiyah’s definition
goes as follows:

Definition 1.1. Let Cobn be the category with objects closed (n − 1)-dimensional man-
ifolds and morphisms diffeomorphism classes of n-dimensional cobordisms, i.e. a mor-
phism from M to N is an n-manifold X with an identification of ∂X with M∐N; composi-
tion of morphisms is given by gluing along the boundary, and the disjoint union of mani-
folds makes this a symmetric monoidal category. If C is another symmetric monoidal cat-
egory, a C-valued n-dimensional topological quantum field theory is a symmetric monoidal
functor Cobn → C.

Reflecting the linearity of quantum mechanics, in examples C is typically a category of
“linear” objects, for example complex vector spaces or chain complexes of these.

Ideas from physics suggest that one should be able to produce interesting examples of
TQFTs as quantizations of classical topological field theories — this proposal goes back at
least to [Fre94]. In a very simple picture of a classical field theory we assign to a manifold
M a collection F(M) of fields on M, which will typically be some form of stack. If K is a
cobordism from M to M′, we can restrict the fields on K to the boundary, giving a span

F(K)

F(M) F(M′).

s t

Moreover, these fields should be local: if K is obtained from cobordisms K1 and K2 by
gluing them along a common boundary N, giving a field on K should be the same as
giving fields on K1 and K2 that agree on N. In other words, the stack F(K) should be the
pullback F(K1)×F(N) F(K2). In this case the cobordism K is the composite of K1 and K2

in Cobn, so we want F to be a functor from Cobn to a category where the morphisms are
spans and the composition is given by taking pullbacks.

More precisely, if C is any category with finite limits, we would like to define a category
Span(C) where the objects are the objects of C and the morphisms from X to Y are spans

A

X Y
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in C. If X ← A → Y and Y ← B → Z are two spans, their composite should be given by
the pullback

A×Y B

A B

X Y Z.

However, taking pullbacks in this way is not strictly associative, only associative up to
canonical isomorphisms, so to get a category we are forced to take morphisms in Span(C)
to be isomorphism classes of spans. The Cartesian product in C then gives Span(C) a
natural symmetric monoidal structure, and we can think of a classical field theory as a
TQFT valued in Span(C) for some C.

A quantization of such a classical field theory, which is supposed to be analogous to the
path integral of quantum field theory, would then assign some algebraic object to the stack
F(M), for example the value of some cohomology theory E∗F(M), and to the span

F(M)
s
←− F(K)

t
−→ F(M′)

a push-pull composite t∗s
∗ : E∗F(M)→ E∗F(K)→ E∗F(M′), where the pushforward t∗ is

thought of as integrating over the fibres of t.

1.2. Extended TQFTs and Iterated Spans. Although relatively easy to define, Atiyah’s
notion of TQFTs suffers from a number of defects, and recently much work has focused
on the more sophisticated notion of extended topological quantum field theories. This was
first formulated in terms of n-categories by Baez and Dolan [BD95], building on earlier
work by a number of mathematicians, including Lawrence [Law93] and Freed [Fre94].
Roughly speaking, an n-category is a structure that has objects, morphisms between ob-
jects, 2-morphisms between morphisms, and so on up to n-morphisms. For the defi-
nition of Baez and Dolan we want to consider an n-category Bordn whose objects are
compact 0-manifolds, with morphisms given by 1-dimensional cobordisms between 0-
manifolds, and in general i-morphisms for i = 1, . . . , n given by i-dimensional cobor-
disms between manifolds with corners, taking diffeomorphism classes of these for the n-
morphisms. Given such a symmetric monoidal n-category Bordn, with the tensor product
again given by taking disjoint unions, an n-dimensional extended TQFT valued in a sym-
metric monoidal n-category C should be a symmetric monoidal functor Bordn → C.

We would like to define an extended analogue of the classical topological field theories
we considered above. For example, if we have an n-manifold K whose boundary ∂K is a
manifold with corners, i.e. we have a decomposition of ∂K as M ∪A∐B N where M and N
are both (n− 1)-manifolds with boundary the (n− 2)-manifold A∐ B, then by restricting
the fields on K we get a span of spans

F(K)

F(M) F(N)

F(A) F(B),
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so we want to have such 2-fold spans as 2-morphisms in the target. More precisely, if C is
a category with finite limits we’d like to construct a 2-category where the objects are the
objects of C, the 1-morphisms are spans in C, and the 2-morphisms from X ← A → Y to
X ← B→ Y are given by (isomorphism classes of) 2-fold spans, i.e. diagrams of the form

J

A B

X Y.

We can think of this 2-fold span as a span in the slice category C/X×Y (whose objects
are themselves spans from X to Y), which suggests that the general target for a classical
extended TQFT should be an n-category Spann(C) where an i-morphism between ob-
jects X and Y is inductively defined to be an (i − 1)-morphism in Spann−1(C/X×Y). This
n-category should also have a symmetric monoidal structure induced by the Cartesian
product in C.

To give precise definitions of both of the n-categories Bordn and Spann(C) we need to
consider weak n-categories: as is typically the case for interesting structures that we want to
organize as n-categories, the composition of (higher) morphisms is not strictly associative,
only associative up to a coherent choice of (specified) invertible higher morphisms. Un-
fortunately, although the notion of weak n-categories intuitively makes sense, making it
precise becomes increasingly intractable as n increases. For our n-categories we also want
symmetric monoidal structures, which introduces additional complications — a complete
definition of Bord2 as a symmetric monoidal 2-category has been given by Schommer-
Pries [SP14], but for larger n it seems that an appropriate notion of symmetric monoidal
n-category has not even been defined.

We will therefore instead work with (∞, n)-categories. In the same way as n-categories
these have i-morphisms for i = 1, . . . , n, but in addition they have invertible i-morphisms
for i > n. This might seem an even more complicated notion to rigorously formalize
than that of n-categories, but it turns out that by using homotopy theory we can set up
notions of (∞, n)-category that are quite easy to work with in practice, such as the iterated
complete Segal spaces of Barwick [Bar05] (which is the model we will make use of in
this paper) and the complete Θn-spaces of Rezk [Rez10]. Heuristically, the advantage of
working with (∞, n)-categories is that we can often avoid dealing with coherence issues
by not making any choices, e.g. of compositions, and instead only need to check that the
space of possible choices is contractible.

Our first main result gives a construction of (∞, n)-categories of iterated spans with the
properties we discussed above:

Theorem 1.2. Suppose C is an ∞-category (i.e. (∞, 1)-category) with finite limits. Then there
exists an (∞, n)-category Spann(C) such that:

(i) The objects of Spann(C) are the objects of C.
(ii) The 1-morphisms of Spann(C) are spans in C.

(iii) For X and Y ∈ C, the (∞, n− 1)-category of maps from X to Y in Spann(C) is Spann−1(C/X×Y).
(iv) The (∞, n)-category Spann(C) has a natural symmetric monoidal structure induced by the

Cartesian product in C.



ITERATED SPANS AND CLASSICAL TOPOLOGICAL FIELD THEORIES 5

We’ll construct these (∞, n)-categories (in the form of n-fold Segal spaces) in §5 and
prove that they are complete in §8, where we also identify their mapping (∞, n − 1)-
categories, and we construct the symmetric monoidal structure in §12. The definition we
consider generalizes that of Barwick [Bar13a] in the case n = 1.

Note that even if C is an ordinary category, the ∞-category Span1(C) will still have
invertible 2-morphisms, given by isomorphisms of spans — since composing spans by
taking pullbacks is well-defined up to a canonical choice of such an invertible 2-morphism,
we do not have to take isomorphism classes at the top level.

We would like to consider these (∞, n)-categories as targets for extended TQFTs, with
these also reformulated using the language of (∞, n)-categories. Such a definition was
introduced by Lurie, and a sketch of it goes as follows:

Definition 1.3. Let Bordn be the (∞, n)-category whose objects are closed 0-manifolds and
whose i-morphisms for i ≤ n are i-dimensional cobordisms between (i − 1)-manifolds
with corners, with (n + 1)-morphisms being diffeomorphisms of such cobordisms, (n +
2)-morphisms smooth homotopies of such diffeomorphisms, and so on. The disjoint union
of manifolds gives this a symmetric monoidal structure, and if C is a symmetric monoidal
(∞, n)-category, a C-valued n-dimensional extended topological quantum field theory is a sym-
metric monoidal functor Bordn → C.

In [Lur09c] Lurie sketches a definition of the symmetric monoidal (∞, n)-categories
Bordn, and a complete construction has recently been carried out in full detail by Calaque
and Scheimbauer [CS15].

Baez and Dolan conjectured that framed extended TQFTs (where we consider cobor-
disms that are equipped with a framing of their tangent bundle) valued in any symmetric
monoidal n-category C are classified by the fully dualizable objects in C. (Being fully dual-
izable is an inductively defined algebraic notion; in the case n = 1 it reduces to the usual
notion of dualizability for an object in a symmetric monoidal ∞-category. We will review
the general definition below in §11.) This conjecture is known as the Cobordism Hypothesis.
In [Lur09c], Lurie introduced the natural generalization of the Cobordism Hypothesis to
(∞, n)-categorical framed extended TQFTs, and gave a detailed sketch of a proof thereof.

Our second main result gives a description of the fully dualizable objects of the (∞, n)-
categories Spann(C), and thus, via the Cobordism Hypothesis, a classification of the framed
extended TQFTs with this target:

Theorem 1.4. Suppose C is an ∞-category with finite limits. Then all objects of the (∞, n)-
category Spann(C) are fully dualizable with respect to the natural symmetric monoidal structure
induced by the Cartesian product in C.

We’ll show this in section §12. In fact, we’ll show that these (∞, n)-categories have duals
in the sense of [Lur09c], meaning that all the objects are dualizable and all i-morphisms
have left and right adjoints for all i < n.

1.3. Iterated Spans with Local Systems. In [FHLT10], Freed, Hopkins, Lurie, and Tele-
man discuss extended TQFTs valued in (∞, n)-categories where the higher morphisms are
iterated spans of spaces equipped with local systems. If C is an ∞-category (regarded as a
complete Segal space) and X is a space, a C-valued local system on X is just a functor X → C,
or equivalently a map of spaces X → C0, where C0 is the space of objects in C. If we have a
span of spaces X ← A → Y, we may consider a more elaborate notion of local system on
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this span, namely a map of spans

A C1

Y C0

X C0

where C1 is the space of morphisms in C and the two maps C1 → C0 are the source and
target projections. Moreover, we can use the composition map in C to compose such spans:
given spans X ← A → Y and Y ← B → Z over C0 ← C1 → C0, their composite is given
by X ← A×Y B→ Z with the maps from X and Z to C0 as before, but now equipped with
the composite map

A×Y B→ C1×C0
C1 → C1,

where the second map is the composition in C. We can also use the map C0 → C1 that
assigns to objects their identity maps to get identity maps for objects X → C0, so from
the ∞-category C we should get a new ∞-category where the objects are spaces with C-
valued local systems and the morphisms are given by spans with local systems in this
sense. Increasing the category number, from an (∞, n)-category C we would expect to
get an (∞, n)-category where the k-morphisms are k-fold spans of spaces, equipped with
a map to the k-fold span obtained from the source and target maps from the space of k-
morphisms in C to the spaces of i-morphisms for all i < k. Our third main result is a
construction of such (∞, n)-categories:

Theorem 1.5. Suppose C is an (∞, n)-category. Then there is an (∞, n)-category Spann(S;C)
where the k-morphisms are k-fold spans of spaces with local systems in C.

We’ll construct these (∞, n)-categories in the form of n-fold Segal spaces in §6 and prove
that they are complete in §9.

These are the (∞, n)-categories considered as targets for classical topological field theo-
ries by Freed, Hopkins, Lurie, and Teleman, who propose that for good choices of C there
should be a symmetric monoidal linearization functor from Spann(S;C), or at least from
the subcategory of spans of π-finite spaces, to C. We will not construct any such lineariza-
tions here, but in §13 we do describe (via the Cobordism Hypothesis) the framed extended
TQFTs with values in these (∞, n)-categories:

Theorem 1.6. Suppose C is a symmetric monoidal (∞, n)-category. Then Spann(S;C) inherits a
natural symmetric monoidal structure. Moreover, if C has duals, then so does Spann(S;C).

We’ll also prove analogous results when S is replaced by an arbitrary ∞-topos X, with
C an (∞, n)-category internal to X.

1.4. Lagrangian Correspondences. To get a bit closer to the notion of a (non-extended)
classical field theory as considered in physics within the framework of TQFTs, we would
like to assign to a closed manifold M a stack of fields F(M) equipped with a symplec-
tic structure. The span F(M) ← F(X) → F(N) assigned to a cobordism X from M to
N should then be a Lagrangian correspondence, i.e. a Lagrangian morphism from F(X) to

F(M)× F(N), where F(N) is F(N) equipped with the negative of its symplectic form. In
[PTVV13] Pantev, Toën, Vaquié and Vezzosi introduce a theory of symplectic structures on
derived algebraic stacks and Lagrangian morphisms between them. The final main contri-
bution in this paper is to make use of this to construct ∞-categories of symplectic derived
stacks and Lagrangian correspondences:
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Theorem 1.7. The n-symplectic derived Artin stacks locally of finite presentation and the La-
grangian correspondences between them determine a subcategory Lagn

(∞,1) of Span1(dStk;A2
cl[n]),

where dStk is the ∞-topos of derived stacks over a base field k and A2
cl[n] is the derived stack of n-

shifted closed 2-forms. Moreover, the ∞-category Lagn
(∞,1) inherits a symmetric monoidal structure

from Span1(dStk;A2
cl[n]) with respect to which all n-symplectic derived Artin stacks are dualiz-

able.

We will prove this in §14. This result partly generalizes results of Calaque [Cal15]
from the level of 1-categories to ∞-categories. Note that the ∞-category Lagn

(∞,1) can

be viewed as a derived algebro-geometric version of Weinstein’s symplectic “category”
[Wei81, Wei82].

In a sequel to this paper, joint with Damien Calaque and Claudia Scheimbauer, we will
extend this by introducing a definition of iterated Lagrangian correspondences and using
this to construct (∞, n)-categories of symplectic derived stacks.

1.5. Related Work. The classical TQFTs considered in this paper have previously been
discussed by a number of authors; particularly inspirational were the accounts of Freed,
Hopkins, Lurie, and Teleman [FHLT10] and of Calaque [Cal15].

The construction of the ∞-category of spans in an ∞-category we use is due to Bar-
wick, who has made extensive use of this and variants of it [Bar13a, Bar17, BGS16]. In
unpublished work, Barwick has also given an alternative definition of higher categories of
iterated spans, in the setting of Rezk’s Θn-spaces.

In their work [DK12] on 2-Segal spaces, Dyckerhoff and Kapranov introduce an alter-
native construction of an (∞, 2)-category of spans. I have also been informed that Lurie
has given a construction of the (∞, 2)-category of 2-fold spans in the setting of scaled sim-
plicial sets, though this is not currently publicly available.

The idea that the (∞, n)-category of iterated spans could most easily be constructed as
that underlying an n-uple ∞-category I gained from the definition sketched by Schreiber in
[Sch13, §3.9.14.2]. Schreiber and collaborators have also extensively studied quantization
by linearizing iterated spans of stacks, for example in [Sch14a,Sch14b] and [Sch13, §3.9.14];
they consider not necessarily topological quantum field theories valued in iterated spans
in a cohesive ∞-topos under the name local prequantum field theories. Nuiten [Nui13] has
also recently studied the quantization of these.

Analogues of the higher categories we construct here have previously been defined in
low dimensions: a weak double category of 2-fold spans in a category was constructed by
Morton [Mor09], and a monoidal 3-category of spans in a 2-category was constructed by
Hoffnung [Hof13], with the dualizability of its objects subsequently proved by Stay [Sta16].
In the 1-categorical setting, a construction of weak n-fold categories of iterated cospans in
a category has been carried out by Grandis [Gra07].

Morton has also studied extended TQFTs valued in 2-fold spans of groupoids [Mor11]
and 2-fold spans of groupoids equipped with U(1)-valued cocycles [Mor15], and has con-
structed linearization functors to linear categories (or 2-vector spaces) in both cases.

Finally, the (∞, n)-categories Spann(S;C) appear in Lurie’s work on the cobordism hy-
pothesis [Lur09c], under the name Famn(C), but only a sketch of a definition is given
there.

1.6. Overview. We begin by reviewing some background on ∞-categories in §2. We then
briefly recall Rezk’s theory of (complete) Segal spaces in §3 and its relationship to that of ∞-
categories, before introducing the model of (∞, n)-categories we will use, namely iterated
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Segal spaces, in §4. Then we construct the (∞, n)-category Spann(C) of iterated spans
in an ∞-category C as an n-fold Segal space in §5, and the (∞, n)-category Spann(X;D)
of iterated spans in an ∞-topos X equipped with local systems in an (∞, n)-category D

internal to X in §6.
Next, we recall the definition of a complete n-fold Segal space (and its generalization to

a general ∞-topos) and prove some technical results about these in §7. We then show that
the n-fold Segal space Spann(C) is complete in §8 and that Spann(X;D) is complete in §9.

In §11 we discuss the notion of (symmetric) monoidal (∞, n)-categories in the form
they will appear later (and prove these are equivalent to the definitions found in [Lur17]),
before we review the notions of duals and adjoints in (∞, n)-categories in §11, where we
also generalize these to (∞, n)-categories internal to an ∞-topos. Then in §12 we prove
that Spann(C) is symmetric monoidal and that all its objects are fully dualizable, and in
§13 we show the same holds for Spann(X;D) provided D is a symmetric monoidal (∞, n)-
category in X with duals.

Finally, in §14 we construct an ∞-category of symplectic derived algebraic stacks and
Lagrangian correspondences, and prove that all of its objects are dualizable.

1.7. Acknowledgments. I first learned about ∞-categories of spans from conversations
with Clark Barwick back in 2010. The present work was inspired by a number of dis-
cussions during my visit to the MSRI programme on algebraic topology in the spring of
2014, in particular with Hiro Tanaka and Owen Gwilliam. I also thank Oren Ben-Bassat,
Damien Calaque, Theo Johnson-Freyd, Gregor Schaumann, Claudia Scheimbauer, Chris
Schommer-Pries, and Peter Teichner for helpful comments.

2. BACKGROUND AND NOTATION

In this section we will describe our perspective on ∞-categories and recall some key
constructions we’ll make use of later on, in the hope that this will make the paper easier
to follow for readers who are not intimately familiar with the literature on ∞-categories.
(For more background on ∞-categories, we recommend Groth’s expository article [Gro15]
and Rezk’s lecture notes [Rez17].) At the end, we also describe some of our notational
conventions.

2.1. ∞-Categories. As we mentioned above, the basic idea of an ∞-category is that this
should be a structure that has objects and i-morphisms between (i − 1)-morphisms for
i = 1, 2, . . ., where these are all invertible for i > 1. Moreover, the composition of mor-
phisms should not be strictly associative, but only associative up to a compatible choice
of invertible higher morphisms. If we insist on making explicit choices of composites and
of the invertible higher morphisms specifying the associativity data, we get a theory that
is essentially intractable, if we can make sense of it at all. A key idea in the homotopical
approaches to ∞-categories is that it is better to not make any choices, but instead consider
the space of all possible choices, which is contractible.

By far the best-developed implementation of this idea is that of quasicategories. A qua-
sicategory is simply a simplicial set satisfying the right lifting property for the inner horn
inclusions Λn

k →֒ ∆n (0 < k < n). The quasicategories are the fibrant objects in a model

structure on simplicial sets, due to Joyal; we will write SetJ
∆

for this model category. Qua-
sicategories were first introduced by Boardman and Vogt [BV73] under the name restricted
Kan complexes, and their theory has later been very extensively developed by Joyal [Joy08]
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and Lurie [Lur09a, Lur17], to the extent that most basic notions in category theory have
analogues for quasicategories, generally behaving “as you would expect”.

Let us warn the reader that, when working in some quasicategory C, we will use the
same vocabulary for these quasicategorical notions as we would use if C were a category.
Thus if we speak of a commutative diagram in C of shape I we mean a functor of quasicat-
egories (i.e. map of simplicial sets) I → C, even if I is (the nerve of) an ordinary category
— note that in the latter case such a diagram includes the choice of homotopies in all com-
muting triangles and so on for higher simplices. Thus if we say we have a commutative
square

A B

C D

in C, this implicitly includes the data of a homotopy between the two composite maps
A→ D.

A key advantage of the quasicategorical model is that many important constructions
have simple combinatorial incarnations. For example, if C is a quasicategory then for any
simplicial set the internal Hom of simplicial sets CK is a quasicategory ([Lur09a, Corollary
2.3.2.5]) — this represents the ∞-category of functors from the ∞-category generated by K
(given by a fibrant replacement in the Joyal model structure) to C. To emphasize this, we
will usually denote the internal Hom by Fun(K,C) when C is a quasicategory.

It will be very convenient to apply the quasicategorical viewpoint also to ∞-categories
themselves, i.e. we will think of them as living in a quasicategory Cat∞ (which can be ob-
tained as the coherent nerve of a simplicial category of quasicategories) rather than in the

model category SetJ
∆

of simplicial sets with the Joyal model structure. This is a precise ver-
sion of the somewhat vague idea of working with ∞-categories “model-independently”.
For most of the paper this will allow us to avoid referring explicitly to the implementation
of ∞-categories as simplicial sets; this typically lets us make definitions and constructions
that are more conceptual, thereby hopefully making it easier for the reader to see what is
actually going on.

On a few occasions we will, however, need to make constructions in the model category

SetJ
∆

. To avoid confusion we will always be very explicit about this: we will refer to objects

of Cat∞ as ∞-categories and fibrant objects of SetJ
∆

as quasicategories, and say things like
“let C ∈ Set∆ be a quasicategory representing the ∞-category C”. Note also that, since
ordinary categories form a full subcategory of Cat∞, we will not distinguish notationally
between a category C and its image in Cat∞ — on the other hand, when we think of it as

living in SetJ
∆

via its nerve NC we will explicitly indicate this.
In fact, though it may seem slightly perverse at first sight, it is pleasant to take this to the

next level: we want to be able to work with the ∞-category (rather than the quasicategory)
of ∞-categories, so we take Cat∞ to be the ∞-category represented by the quasicategory Cat∞.
(Here we are implicitly passing to a larger Grothendieck universe of sets.)

If C is an ∞-category, we write Map
C
(x, y) for the space of maps from x to y in C. Using

the quasicategory model there are a variety of (weakly equivalent) ways to describe these
mapping spaces as simplicial sets; see [DS11] for an extensive discussion and comparisons.
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We will now briefly review some key concepts from the theory of ∞-categories that
we will make repeated use of in this paper. We will mainly describe them from our ∞-
categorical perspective, but we will also mention how they can be implemented via qua-
sicategories.

2.2. ∞-Groupoids. Just as a groupoid is a category where all the morphisms are invert-
ible, an ∞-groupoid is an ∞-category all of whose morphisms are invertible. Grothendieck’s
Homotopy Hypothesis asserts that ∞-groupoids are equivalent to homotopy types. For the
homotopical approaches to higher categories that we are concerned with here, this idea is
taken as a starting point for the theory; in the case of quasicategories, ∞-groupoids cor-
respond to those quasicategories that are Kan complexes,which are of course a well-known

model for homotopy types. (Moreover, the weak equivalences in SetJ
∆

restrict to the usual
weak equivalences between Kan complexes.) Given this equivalence, we will often refer
to ∞-groupoids as just spaces.

We write S for the ∞-category of ∞-groupoids or spaces. As a quasicategory, this is
modelled by the coherent nerve N(Set◦∆) of the simplicial category Set◦∆ of Kan complexes
(which is the full subcategory spanned by the Kan complexes in the simplicial category
Set∆ of simplicial sets).

Definition 2.1. The fully faithful inclusion S →֒ Cat∞ has both a left and a right adjoint.
We write ι for the right adjoint, which takes an ∞-category to its underlying ∞-groupoid
(obtained by forgetting the non-invertible morphisms) and ‖–‖ for the left adjoint, ob-
tained by inverting all the morphisms in an ∞-category.

Remark 2.2. If C is a quasicategory representing an ∞-category C, then the ∞-groupoid
‖C‖ is represented by any Kan complex that is a fibrant replacement for the simplicial set
C in the usual Kan-Quillen model structure on Set∆.

Definition 2.3. If C is an ∞-category, we say that C is weakly contractible if the space ‖C‖ is
contractible.

We call a functor Cop → S a presheaf on C, and write P(C) for the ∞-category Fun(Cop, S)
of presheaves.

2.3. Joins and Slice ∞-Categories. We’ll frequently make use of slice ∞-categories, which
can be defined as follows:

Definition 2.4. If C is an ∞-category and x is an object of C, then the overcategory C/x is
defined by the pullback square

C/x Fun([1],C)

{x} C,

ev1
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where ev1 is the functor given by evaluation at 1 ∈ [1]. Similarly, if p : I → C is a functor,
we define C/p by the pullback square

C/p Fun([1]× I,C)

C× {p} Fun(I,C)× Fun(I,C).

(ev0, ev1)

const× ∗

Undercategories are of course also defined analogously.

By the universal property of pullbacks, for any ∞-categoryD we have a pullback square

Fun(D,C/p) Fun(D ⋆ I,C)

{p} Fun(I,C),

where the join D ⋆ I is defined as follows:

Definition 2.5. If C and D are ∞-categories, their join C ⋆D is defined by the pushout

C∐C×D×{0} C×D× [1]∐C×D×{1}D.

in Cat∞. The cones C⊳ and C⊲ are then defined as [0] ⋆ C and C ⋆ [0], respectively.

If C is a quasicategory representing C, the functor ev1 : Fun([1],C) → C can be repre-
sented by ev1 : Fun(∆1,C) → C. This is a fibration in the Joyal model structure (combine
[Lur09a, Corollary 2.4.7.12] with [Lur09a, Corollary 2.4.6.5]) and so if we define (using the

notation of [Lur09a, §4.2.1]) the simplicial set C/x by the pullback

C/x Fun(∆1,C)

{x} C,

ev1

then this is a homotopy pullback square. Thus the quasicategoryC/x represents C/x. More-
over, this has the universal property that for any simplicial set K, we have a pullback
square

Fun(K,C/x) Fun(K ⋄ ∆0,C)

{x} C,

where for simplicial sets K and L, the simplicial set K ⋄ L is defined as the pushout

K ∐K×L×{0} K× L× ∆1 ∐K×L×{1} L.

Since this is a homotopy pushout in the Joyal model structure, if C and D are quasicate-
gories representing ∞-categories C and D, then the simplicial set C ⋄D represents C ⋆D.
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However, the simplicial set C ⋄D is generally not a quasicategory. It is therefore often
convenient to use instead an alternative model for the join by using the join of simplicial sets
(see [Lur09a, Definition 1.2.8.1]), which we also denote using ⋆: if C and D are quasicat-
egories, the join C ⋆D is a quasicategory by [Lur09a, Proposition 1.2.8.3] and the natural
map C ⋄D→ C ⋆D is a weak equivalence by [Lur09a, Proposition 4.2.1.2]. (In other words,
C ⋆D is a fibrant replacement for C ⋄D in the Joyal model structure.)

We can use this model for the join to get an alternative quasicategory representing C/x,
by replacing K ⋄ ∆0 by K ⋆ ∆0 in the pullback square above. The resulting quasicategory

is denoted C/x in [Lur09a]. There is a natural map C/x → C/x (induced by the natural
inclusion K ⋄ ∆0 → K ⋆ ∆0) and this is a weak equivalence in the Joyal model structure
by [Lur09a, Proposition 4.2.1.5]. An analogous discussion applies, of course, to quasicate-

gories C/p and C/p as well as to the dual notions for undercategories.

2.4. Cartesian and CoCartesian Fibrations. Cartesian fibrations are the ∞-categorical ana-
logue of Grothendieck fibrations; in both cases they are characterized by the existence of
Cartesian morphisms:

Definition 2.6. If F : E → B is a functor of ∞-categories, we say a morphism f̄ : x → y in
E with image f : a → b in B is F-Cartesian if for every z ∈ E over c ∈ B the commutative
square

Map
E
(z, x) Map

E
(z, y)

Map
B
(c, a) Map

B
(c, b)

f̄∗

f∗

is Cartesian. Equivalently (since the mapping space Map
E
(z, x) is the fibre at z of the

forgetful functor C/x → C) f is F-Cartesian if the commutative square

E/x E/y

B/a B/b

is Cartesian. We say F is a Cartesian fibration if for every morphism f : a → b in B and
every y ∈ E with F(y) ≃ b there exists an F-Cartesian morphism f̄ : y→ x with F( f̄ ) ≃ f .
The notions of coCartesian morphisms and coCartesian fibrations are defined dually, i.e. F
is a coCartesian fibration if and only if Fop is a Cartesian fibration.

Remark 2.7. It can be shown that if p : E → B is an inner fibration (meaning p has the
right lifting property for the inner horn inclusions Λn

k →֒ ∆n) representing a functor of
∞-categories F : E → B, then F is a Cartesian fibration in our sense if and only if p is a
Cartesian fibration in the sense of [Lur09a, Definition 2.4.2.1]. This is not entirely obvious
— see [MG15] for a detailed proof. To avoid confusion we will use the term (co)Cartesian
inner fibration for a (co)Cartesian fibration of simplicial sets in Lurie’s sense.
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Grothendieck proved (in [Gro63]) that Grothendieck opfibrations over a category C
correspond to (pseudo)functors from C to the category of categories. Lurie’s straighten-
ing equivalence from [Lur09a, §3.2] establishes an analogous equivalence between Carte-
sian fibrations over an ∞-category C and functors from Cop to the ∞-category Cat∞ of ∞-

categories. If we let CatCart
∞/C denote the subcategory of Cat∞/C whose objects are the Carte-

sian fibrations and whose morphisms are the maps that preserve Cartesian morphisms,
then this gives the following statement in our language:

Theorem 2.8 (Lurie). There is an equivalence of ∞-categories CatCart
∞/C ≃ Fun(Cop, Cat∞).

This is extremely useful, as it is in practice impossible to “write down” functors to Cat∞,
whereas we can much more easily describe (co)Cartesian fibrations, e.g. by manipulating
preexisting fibrations.

Remark 2.9. In ordinary category theory, the Grothendieck fibration associated to a func-
tor is given by the Grothendieck construction, which can be identified with the lax col-
imit (a certain weighted colimit) of the functor. In the ∞-categorical setting, the functor
Fun(Cop, Cat∞) → Cat∞ that takes a functor to the source of the associated Cartesian fi-
bration can also be identified with the lax colimit, by [GHN17, Corollary 7.6].

2.5. Left and Right Fibrations. An important special case of Cartesian fibrations are those
whose fibres are spaces (as opposed to general ∞-categories); these are called right fibra-
tions. Dually, coCartesian fibrations whose fibres are spaces are called left fibrations. Right
fibrations can also be characterized as those functors E → B such that every morphism in
E is Cartesian.

Remark 2.10. The terms left and right fibrations are motivated by the incarnations of these
concepts on the level of quasicategories: If p : E → B is an inner fibration representing
a functor of ∞-categories F : E → B, then F is a right fibration if and only if p satisfies
a very simple condition: p must have the right lifting property with respect to the horn
inclusions Λn

k →֒ ∆n for 0 < k ≤ n. Similarly, F is a left fibration if and only if p has the
right lifting property with respect to the horn inclusions where 0 ≤ k < n.

An easier version of Lurie’s straightening equivalence for Cartesian fibrations gives an
equivalence of ∞-categories

CatRFib
∞/C ≃ Fun(Cop, S)

where CatRFib
∞/C is the full subcategory of Cat∞/C spanned by the right fibrations.

2.6. Cofinal and Coinitial Functors. We will often need to know that objects defined as
(co)limits over diagrams of different, but related, shapes are equivalent. Just as in ordinary
category theory, the notion of cofinal functors (and the dual notion of coinitial functors) is
a very useful tool for proving such statements.

Definition 2.11. A functor F : A→ B of ∞-categories is cofinal if for every diagram p : B→
C, the induced functor Cp/ → Cp◦F/ is an equivalence. Dually, F is coinitial if Fop : Aop →
Bop is cofinal, i.e. the functor C/p → C/p◦F is an equivalence for every p.

Since a colimit of p is the same thing as a final object in Cp/, we see that if F is cofinal
then p has a colimit if and only if p ◦ F has a colimit, and these colimits are necessarily
given by the same object in C.

The key criterion for cofinality is [Lur09a, Theorem 4.1.3.1]:

Theorem 2.12 ([Lur09a, Theorem 4.1.3.1]). A functor F : A → B is cofinal if and only if for
every b ∈ B the slice ∞-category Ab/ := A×B Bb/ is weakly contractible.
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2.7. ∞-Topoi. Just as a (Grothendieck) topos is a category that abstracts some key prop-
erties of the category of sets, an ∞-topos is an ∞-category with key properties of the ∞-
category S of spaces. A terse definition is that ∞-topoi are the ∞-categories that arise as
left exact accessible localizations (meaning the localization functor preserves finite limits
and sufficiently compact objects) of presheaf ∞-categories Fun(Cop, S) where C is a small
∞-category with finite limits; see [Lur09a, Theorem 6.1.0.6, Proposition 6.1.5.3] for several
equivalent characterizations.

The key examples of ∞-topoi are ∞-categories of presheaves P(C) (where C has finite
limits) and ∞-categories of sheaves of spaces on topological spaces, or more generally on
sites. The latter are important in the context of derived algebraic geometry.

Remark 2.13. At a number of points below we will prove results for a general ∞-topos X,
as the proofs are no more work once certain definitions have been set up. This is motivated
by the possibility of applications in derived algebraic geometry, but apart from in §14 we
do not make use of this generality in this paper. The reader should therefore feel free to
assume that X is just the ∞-category S of spaces, and to omit the parts of §7 and §11 where
certain results and constructions are generalized from spaces to an arbitrary ∞-topos.

2.8. Notation. We generally reuse the notation and terminology used by Lurie in [Lur09a,
Lur09c, Lur17]. We note the following conventions, some of which differ slightly from
those of Lurie:

• � is the simplicial indexing category, with objects the non-empty finite totally ordered
sets [n] := {0, 1, . . . , n} and morphisms order-preserving functions between them.

• For [n] ∈ � we will abbreviate (�/[n])
op to �

op

/[n]
, and for I ∈ �k we will abbreviate

(�k
/I)

op to�
k,op
/I .

• If C is an ∞-category, we write ιC for the interior or underlying space of C, i.e. the largest
subspace of C that is a Kan complex.
• If f : C → D is left adjoint to a functor g : D → C, we will refer to the adjunction as

f ⊣ g.
• We make use of Grothendieck universes to avoid having to deal with set-theoretical

size issues: we fix three nested universes and refer to their elements as small, large,
and very large sets, respectively. If we have ∞-categories of small and large versions
of the same objects, we will distinguish the large version with a circumflex: thus S

is the (large) ∞-category of small spaces and Ŝ is the (very large) ∞-category of large

spaces; similarly Cat∞ is the ∞-category of small ∞-categories and Ĉat∞ that of large
∞-categories.

3. SEGAL SPACES

In this section we review the description of ∞-categories as complete Segal spaces. This
was introduced by Rezk in [Rez01], though we will discuss it from an ∞-categorical per-
spective rather than the model-categorical one used by Rezk.

Definition 3.1. Suppose C is an ∞-category with finite limits. A category object in C is a
simplicial object C• : �op → C such that the natural maps

Cn → C1×C0
· · · ×C0

C1,

induced by the maps σi : [0] → [n] sending 0 to i and ρi : [1] → [n] sending 0 to i− 1 and 1
to i, are equivalences in C for all n. We write Cat(C) for the full subcategory of Fun(�op,C)
spanned by the category objects.
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Definition 3.2. A Segal space is a category object in the ∞-category S of spaces. We write
Seg(S) for the ∞-category of Segal spaces.

A category object in Set is the same thing as an ordinary category. Similarly, a Segal
space X describes the algebraic structure of an ∞-category: We think of the space X0 as
the space of objects and X1 as the space of morphisms; the two face maps X1 ⇒ X0 assign
the source and target object to each morphism, and the degeneracy s0 : X0 → X1 assigns
an identity morphism to every object. Then Xn ≃ X1 ×X0

· · · ×X0
X1 is the space of com-

posable sequences of n morphisms, and the face map d1 : [1] → [2] gives a composition

X1 ×X0
X1

∼
←− X2

d1−→ X1.

The remaining data in X• gives the homotopy-coherent associativity data for this compo-
sition and its compatibility with the identity maps.

However, although category objects in Set are categories, isomorphisms in the category
Cat(Set) do not give the right notion of equivalence of categories: to describe the correct
homotopy theory of categories we must invert the fully faithful and essentially surjective
functors. If done in an ∞-categorical (or at least 2-categorical) setting, this produces the
(2,1)-category of categories, functors, and natural isomorphisms. An equivalence here,
in the 2-categorical sense, is precisely an equivalence of categories. The same phenome-
non occurs for ∞-categories: Segal spaces encode the algebraic structure of composition
and units in ∞-categories, but the right notion of equivalence between ∞-categories corre-
sponds to the (non-algebraic) notion of fully faithful and essentially surjective morphisms
of Segal spaces, in the following sense:

Definition 3.3. Let En denote the contractible groupoid with n objects and a unique mor-
phism between any pair of objects; we can regard this as a Segal space by thinking of it as
a category object in sets and applying the inclusion Set →֒ S. For X ∈ Seg(S) we define a
simplicial space by ι•X := MapSeg(S)(E

•, X); we write ιX for the colimit of this simplicial

diagram — this is the classifying space of equivalences in X. We say a morphism f : X → Y
is fully faithful and essentially surjective if

(1) The map ιX → ιY is an equivalence of spaces.
(2) The diagram

X1 Y1

X0 × X0 Y0 ×Y0,

with the vertical maps coming from the two maps [0] → [1], is a pullback square.

To get the correct ∞-category of ∞-categories we need to localize the ∞-category Seg(S)
at the fully faithful and essentially surjective morphisms. The main result of [Rez01] is
that this localization is given by the full subcategory of the complete Segal spaces:

Definition 3.4. A Segal space X is complete if the natural map X0 → ιX is an equivalence.

Theorem 3.5 (Rezk, [Rez01, Theorem 7.7]). Let CSS(S) denote the full subcategory of Seg(S)
spanned by the complete Segal spaces. Then the inclusion CSS(S) →֒ Seg(S) has a left adjoint,
which exhibits CSS(S) as the localization of Seg(S) at the fully faithful and essentially surjective
morphisms.
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Rezk also proves some alternative characterizations of complete objects, which we recall
for use later on:

Theorem 3.6 (Rezk). Let X be a Segal space. There are two obvious inclusions [1] → E1 which
induce maps Map(E1, X)→ X1. We write Xeq for the subspace of C1 consisting of the components

in the image of either of these maps (they are the same since E1 has an autoequivalence that swaps
the two). Then the map Map(E1, X)→ Xeq is an equivalence, and the following are equivalent:

(i) X is complete.
(ii) The simplicial space ι•X is constant.

(iii) The map X0 → Xeq induced by the degeneracy map s0 is an equivalence.

(iv) The map X0 → Map(E1, X) induced by composition with either of the maps [0] → E1 is an
equivalence.

Proof. This is Theorem 6.2 and Proposition 6.4 of [Rez01]. �

By analogy with the case of ordinary categories, we would expect that the ∞-category
CSS(S) is equivalent to Cat∞. This is indeed true, as was proved by Joyal and Tierney:

Theorem 3.7 (Joyal-Tierney [JT07]). The functor � → Cat∞ given by the usual inclusion of
ordered sets into categories induces, via the Yoneda embedding, a functor Cat∞ → P(�) :=
Fun(�op, S). This is fully faithful and its essential image consists precisely of the complete Segal

spaces. In other words it restricts to an equivalence Cat∞
∼
−→ CSS(S).

It will be useful to introduce a reformulation of the definition of a category object. To
give this we must first introduce some notation:

Definition 3.8. A map φ : [n] → [m] is inert if φ is the inclusion of a subinterval, i.e. we
have φ(i) = φ(0) + i for all i. We write �int for the subcategory of � containing only the

inert maps. Let Cell1 denote the full subcategory of�int spanned by the objects [0] and [1],
i.e. the category

[0] ⇒ [1].

For [n] ∈ � we write Cell1
/[n] for the category Cell1 ×

�int (�int)/[n] of inert maps from [0]

and [1] to [n].

Remark 3.9. This is a special case of the general notion of an inert map defined by Bar-
wick [Bar13b] in the context of operator categories, which can be viewed as settings for
different kinds of algebraic structures.

Remark 3.10. The category Cell1
/[n] can be depicted as

{0} {1} · · · {n− 1} {n}

{0, 1} {1, 2} · · · {n− 1, n}

Lemma 3.11. Let C be an ∞-category with finite limits. A simplicial object X : �op → C is a
category object if and only if its restriction X|

�

op
int

is the right Kan extension of its restriction to

Cell1,op, or in other words, if j denotes the inclusion Cell1,op → �

op
int, the unit map

X|
�

op
int
→ j∗ j

∗X|
�

op
int

of the right Kan extension adjunction j∗ ⊣ j∗ is an equivalence.
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Proof. The functor X|
�

op
int

is the right Kan extension of its restriction to Cell1,op if and only

if for every object [n] ∈ �
op
int the natural map

X([n]) → lim
([i]→[n])∈(Cell1/[n])

op
X([i])

is an equivalence. But from the definition of Cell1 we see that this is precisely the limit that
appears in the definition of a Segal space. �

4. ITERATED SEGAL SPACES

In this section we briefly review the model for (∞, n)-categories we use in this paper:
the iterated Segal spaces of Barwick [Bar05]. Following [Lur09b] we’ll state the basic defi-
nitions using the language of ∞-categories.

Definition 4.1. An n-fold category object in an ∞-category C is inductively defined to be a
category object in the ∞-category of (n − 1)-fold category objects. We write Catn(C) :=

Cat(Catn−1(C)) for the ∞-category of n-fold category objects in C. We refer to an n-fold
category object in S as an n-uple Segal space.

Remark 4.2. The term n-uple Segal space is motivated by the observation that 2-uple (or
double) Segal spaces encode the algebraic structure of double ∞-categories, i.e. category
objects in Cat∞. More generally, n-uple Segal spaces can be considered as a model for n-
uple ∞-categories, i.e. internal ∞-categories in internal ∞-categories in . . . in ∞-categories.

Remark 4.3. Unwinding the definition, we see that an n-uple Segal space D : (�op)×n → S

consists of the data of:

• a space D0,...,0 of objects
• spaces D1,0,...,0, . . . , D0,...,0,1 of n different kinds of 1-morphism, each with a source and

target in D0,...,0,
• spaces D1,1,0,...,0, etc., of “commutative squares” between any two kinds of 1-morphism,
• spaces D1,1,1,0,...,0, etc., of “commutative cubes” between any three kinds of 1-morphism,
• . . .
• a space D1,1,...,1 of “commutative n-cubes”,

together with units (from the degeneracies in (�op)×n) and coherently homotopy-associative
composition laws (from the face maps) for all these different types of maps.

We can view the algebraic structure of an (∞, n)-category as given by the same kind of
data, except that there is only one type of 1-morphism, etc., so we require certain spaces
to be “degenerate”, i.e. equivalent to the space D0,...,0 via a degeneracy. This leads to Bar-
wick’s definition of an n-fold Segal object in an ∞-category:

Definition 4.4. Suppose C is an ∞-category with finite limits. A 1-fold Segal object in C is
just a category object in C. For n > 1 we inductively define an n-fold Segal object in C to be
an n-fold category object D such that

(i) the (n− 1)-fold category object D0,•,...,• is constant,
(ii) the (n− 1)-fold category object Dk,•,...,• is an (n− 1)-fold Segal object for all k.

We write Segn(C) for the full subcategory of Catn(C) spanned by the n-fold Segal objects.
When C is the ∞-category S of spaces, we refer to n-fold Segal objects in S as n-fold Segal
spaces.

Remark 4.5. Unwinding the definition, we see that an n-fold Segal space D consists of
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• a space D0,...,0 of objects,
• a space D1,0,...,0 of 1-morphisms,
• a space D1,1,0,...,0 of 2-morphisms,
• . . .
• a space D1,...,1 of n-morphisms,

together with units and coherently homotopy-associative composition laws for these mor-
phisms.

Remark 4.6. The notion of n-fold Segal spaces describes precisely the algebraic structure we
expect from (∞, n)-categories. Just as in the case of Segal spaces, to get the right homotopy
theory of (∞, n)-categories we must supplement this algebraic structure with the (“non-
algebraic”) notion of fully faithful and essentially surjective functors. Thus the ∞-category
of (∞, n)-categories is obtained from Segn(S) by inverting the fully faithful and essentially
surjective morphisms. As in the case n = 1, this localization can be obtained by restricting
to a full subcategory of complete objects; we will discuss this below in §7.

It will be useful to restate the definition of an n-fold category object non-inductively, via
the analogue of Lemma 3.11. To state this we first need some notation:

Definition 4.7. We say an object I = ([i1], . . . , [ik]) ∈ �
k is a cell if ij = 0 or 1 for all i. We

write Cellk for the full subcategory of �k
int := (�int)×k spanned by the cells, i.e. (Cell1)×k.

For I ∈ �k we write Cellk
/I for the pullback Cellk ×

�

k
int
(�k

int)/I ; if I = ([i1], . . . , [ik]) then

this category is equivalent to Cell1
/[i1]
× · · · ×Cell1

/[ik ]
.

Lemma 4.8. A functor Φ : �k,op → C is a k-fold category object if and only if the restriction

Φ|
�

k,op
int

is the right Kan extension of its restriction to Cellk,op, or in other words, if jk denotes the

inclusion jk : Cellk,op →֒ �

k,op
int , the unit map

Φ|
�

k,op
int

→ jk
∗ j

k,∗Φ|
�

k,op
int

is an equivalence.

Proof. We prove this by induction on n — the case n = 1 being Lemma 3.11. The functor

Φ|
�

k,op
int

is the right Kan extension of its restriction to Cellk,op if and only if for every object

I = ([i1], . . . , [ik]) ∈ �
k,op
int the natural map

Φ(I)→ lim
(C→I)∈(Cellk

/I)
op

Φ(C)

is an equivalence. Since Cellk
/I is the product Cell1

/[i1]
× Cellk−1

/I′ , where I ′ = ([i2], . . . , [ik]),
this limit can (e.g. using [Hau16, Corollary 5.7]) be rewritten as the iterated limit

lim
([j]→[i1])∈(Cell1/[i1]

)op
lim

(J′→I′)∈(Cellk−1
/I ′

)op
Φ([j], J′)).

Taking i1 = 0, 1 (where (Cell1
/[i1]

)op has an initial object) we see by the inductive hypothesis

that the condition holds in these cases if and only if Φ([0], –) and Φ([1], –) are (k− 1)-fold
category objects. Moreover, if the condition holds in these cases we can rewrite the limit
for a general I as

lim
([j]→[i1])∈(Cell1/[i1]

)op
Φ([j], I ′).
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Thus we have that Φ|
�

k,op
int

is the right Kan extension of its restriction to Cellk,op if and only

if Φ([0], –) and Φ([1], –) are (k − 1)-fold category objects, and Φ is a category object in

Fun(�k−1,op,C). Since (k− 1)-fold category objects are closed under limits, this is equiva-
lent to Φ being a k-fold category object in C. �

Definition 4.9. We write Ck for the k-cell, i.e. the generic k-morphism, thought of as an
n-fold Segal space for any n > k. Concretely, it is the representable n-fold simplicial object
represented by ([1], . . . , [1], [0], . . . , [0]) where [1] occurs k times. If D is an n-fold Segal
space, we write Mork(D) for the space Map(Ck,D) of k-morphisms in D, i.e. D1,...,1,0,...,0.
For k = 0 we also write Ob(D) for D0,...,0.

Definition 4.10. Suppose C is an n-fold Segal space. The two face maps [1]→ [0] induce a
map of (n− 1)-fold Segal spaces from C1 to the constant (n− 1)-fold Segal space C0 × C0.
Given two objects X, Y of C, i.e. a point of C0,...,0× C0,...,0, we define the mapping (∞, n− 1)-
category C(X, Y) to be the pullback

C(X, Y) C1

{(X, Y)} C×2
0 .

Since (n − 1)-fold Segal objects are closed under limits in (n− 1)-fold simplicial spaces,
this is again an (n− 1)-fold Segal space.

Definition 4.11. Suppose C is an n-fold Segal object in X. The underlying k-fold Segal object
u(∞,k)C of C is the k-fold simplicial object obtained by restricting C along the inclusion

�

k,op → �

n,op that is [0] in the last n− k components.

Our next goal is to prove that there is a canonical way to extract an n-fold Segal space
from an n-uple Segal space; in the next section we will apply this to construct an n-fold
Segal space of iterated spans from an n-uple Segal space.

Proposition 4.12. Let C be an ∞-category with finite limits. The inclusion Segn(C) →֒ Catn(C)
has a right adjoint Un

Seg : Catn(C)→ Segn(C). (We will usually abbreviate Un
Seg to just USeg and

let the integer n be implicitly determined by the context.)

Remark 4.13. The basic idea, in the case n = 2, is that for X a double category object we
form USegX by taking pullbacks of simplicial objects

(USegX)m,• Xm,•

X
×(m+1)
0,0 X

×(m+1)
0,• ,

where X0,0 denotes the constant simplicial space with this value, the right vertical map
is induced by the inert maps ρi : [1] → [m], and the bottom horizontal map is given by
the degeneracies X0,0 → X0,k. This pullback extracts, for example, precisely the part of
X1,1 that is “constant” or degenerate in the second coordinate, i.e. lies over the image of

the degeneracy X×2
0,0 → X×2

0,1 . We can also think of this as given by a single pullback of
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bisimplicial objects : if, given a simplicial object C•, we write i∗C for the bisimplicial object

given by (i∗C)n,• ≃ C
×(n+1)
• , with the face maps in the first coordinate given by projections

and the degeneracies by diagonal maps, then USegX is given by the pullback of bisimplicial
objects

USegX X

i∗X0,0 i∗X0,•,

where again X0,0 denotes the constant simplicial object with this value. For n-fold category
objects we then want to iterate this procedure.

To make this idea rigorous we first prove a sequence of easy lemmas:

Lemma 4.14. Suppose π : E→ C is a Cartesian fibration and j : C0 → C is a functor with a right
adjoint r : C→ C0. Let

E0 E

C0 C

J

π0 π

j

be a pullback square. Then the functor J has a right adjoint R : E → E0 such that the counit map
JR(X) → X is a π-Cartesian morphism over the counit map jrπ(X) → π(X).

Proof. By [Lur09a, Proposition 3.1.2.1], the functor of ∞-categories Fun(E,E)→ Fun(E,C)
induced by composition with π is a Cartesian fibration, and a morphism α : F → G in
Fun(E,E) is Cartesian if and only if the morphism αx : F(x) → G(x) is π-Cartesian for
every x ∈ E.

Let ǫ : C× [1] → C be the counit natural transformation jr → idC. Then we may choose
a Cartesian morphism ǭ : E× ∆1 → E in Fun(E,E) over ǫ ◦ π : jrπ → π with target idE.
The morphism ǭx is π-Cartesian for every x ∈ E. We let R′ := ǭ|E×{0}. By construction we
then have a commutative diagram

E

E0 E

C0 C,

R′

rπ

R

J

π0
p

π

j

and by the universal property of the pullback E0 there exists a dashed arrow R : E → E0.
By (the dual of) [Lur09a, Proposition 5.2.2.8], to show that R is right adjoint to J it suffices
to show that for all X ∈ E0 and Y ∈ E, the map

MapE0
(X, RY)→ MapE(JX, JRY) → MapE(JX, Y)
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arising from composition with ǭY is an equivalence. Consider the commutative diagram

Map
E0
(X, RY) Map

E
(JX, JRY) Map

E
(JX, Y)

Map
C0
(x, ry) Map

C
(jx, jry) Map

C
(jx, y).

where we write x := π0X, y := πY, and use the identifications π0RY ≃ ry, π JX ≃ jx,
and π JRY ≃ jry. Here the left-hand square is Cartesian since E0 is a pullback, and the
right-hand square is Cartesian since the map ǭY is a π-Cartesian morphism; this means
the composite square is also Cartesian. The composite in the bottom row is an equivalence
as ǫ is the counit for the adjunction j ⊣ r, so this means the composite upper horizontal
map is also an equivalence, as required. �

Lemma 4.15. Let C be an ∞-category with finite limits, and write i for the inclusion {[0]} →֒ �

op.
Then the functor i∗ : Cat(C)→ C given by composition with i is a Cartesian fibration.

Proof. We first observe that the functor i∗ has a right adjoint. The right Kan extension
functor i∗ gives a right adjoint to i∗, considered as a functor from Fun(�op,C) to C. For

C ∈ C the simplicial object i∗C is given by (i∗C)n ≃ C×(n+1), with face maps given by
projections and degeneracies by diagonal maps, and so lies in the full subcategory Cat(C).
Thus i∗ restricts to a right adjoint to i∗ : Cat(C)→ C.

We now apply the criterion of [Hau17, Corollary 5.28]: Since i∗ has a right adjoint, to
see that i∗ is a Cartesian fibration it is enough to check that, given X• ∈ Cat(C), a map
C→ X0, and a pullback square

Y• X•

i∗C i∗X0,

the induced map Y0 → (i∗C)0 → C is an equivalence.
Limits in Cat(C) are computed in Fun(�op,C), and limits in functor ∞-categories are

computed objectwise, so this pullback square gives a pullback square when evaluated at
every object of�op. Thus we in particular have a pullback square

Y0 X0

(i∗C)0 (i∗X0)0

in C. Here the right vertical map is an equivalence, so the left vertical map is also an
equivalence. �

Lemma 4.16.

(i) Suppose f : C ⇄ D : g is an adjunction. Then there is an induced adjunction g∗ : Fun(C,E) ⇄
Fun(D,E) : f ∗ on functor ∞-categories.
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(ii) Suppose C is an ∞-category with an initial object ∅. Then the functor Fun(C,E)→ E given
by evaluation at ∅ is left adjoint to the constant diagram functor E→ Fun(C,E).

Proof. To prove (i), we just choose unit and counit transformations for f ⊣ g; composing
with these gives unit and counit transformations for an adjunction g∗ ⊣ f ∗, since the
adjunction identities can be deduced from the adjunction identities for f ⊣ g. Now (ii) is a
special case of (i), applied to the adjunction {∅}⇄ C. �

Lemma 4.17. Let C be an ∞-category with finite limits. The inclusion Segn(C) →֒ Cat(Segn−1(C))
admits a right adjoint for all n.

Proof. We prove this by applying Lemma 4.14 to the pullback square

Segn(C) Cat(Segn−1(C))

C Segn−1(C),

i∗

c

where c is the constant-diagram functor and i denotes the inclusion {[0]}× (�op)×(n−1) →֒
(�op)×n.

To see that c has a right adjoint, let e denote the inclusion {([0], . . . , [0])} →֒ (�op)×(n−1).
By Lemma 4.16 the functor e∗ : Fun(�n−1,op,C) → C given by evaluation at ([0], . . . , [0])
is right adjoint to the constant-diagram functor c : C → Fun(�n−1,op,C). Since c factors
through Segn−1(C), this restricts to an adjunction

c : C ⇄ Segn−1(C) : e∗.

Moreover, since e∗c is the identity functor on C, the functor c is fully faithful.
It follows from Lemma 4.15 that i∗ is a Cartesian fibration, so the hypotheses of Lemma 4.14

are satisfied, which implies the existence of the required right adjoint Cat(Segn−1(C)) →
Segn(C). �

Lemma 4.18. Suppose C and D are ∞-categories with finite limits, and

F : C ⇄ D : G

is an adjunction such that the left adjoint F preserves finite limits. Then composition with F and G
gives an adjunction

F∗ : Cat(C) ⇄ Cat(D) : G∗.

Proof. Composition with F and G induces an adjunction

F∗ : Fun(�op,C) ⇄ Fun(�op,D) : G∗

by the same argument as in the proof of Lemma 4.16, and since F preserves finite lim-
its both F∗ and G∗ preserve the full subcategories of category objects, giving the desired
restricted adjunction between these. �

Proof of Proposition 4.12. Since the full subcategory Segk(C) of Cat(Segk−1(C)) is closed un-
der finite limits, by combining Lemma 4.17 with Lemma 4.18 it follows that the inclusion

Cati(Segk(C)) →֒ Cati+1(Segk−1(C))

has a right adjoint for all i. Composing these adjoints, we see that the composite inclusion

Segn(C) →֒ Cat(Segn−1(C)) →֒ · · · →֒ Catn(C)
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also has a right adjoint. �

Definition 4.19. Let C be an n-uple Segal space. We refer to USegC as the underlying n-fold
Segal space of C.

Remark 4.20. In the definition of n-fold Segal space, we privileged one of the spaces of
1-morphisms, etc. By making different choices (i.e. by permuting the coordinates in�n,op)
we get n! different n-fold Segal spaces from an n-uple Segal space.

5. THE (∞, k)-CATEGORY OF ITERATED SPANS

In this section we construct the (∞, k)-category Spank(C) of iterated spans in an ∞-
category C with finite limits, in the form of a k-fold Segal space. As we noted in the in-
troduction, we expect the (∞, k − 1)-category of morphisms from X to Y in Spank(C) to
be Spank−1(C/X×Y). To avoid dealing with coherence issues our construction will not be
immediately recognizable as being of this form, but we’ll see below in Proposition 8.3 that
the mapping (∞, k− 1)-categories do indeed admit this inductive description. Moreover,
as the diagrams describing an n-fold span become increasingly complicated as n increases,
it turns out to be much easier to define Spank(C) as the underlying k-fold Segal space of
a k-uple Segal space SPANk(C). This will have all of its k types of 1-morphisms given by
spans in C, and the “commutative squares” are given by diagrams in C of the form

X A Y

C J D

Z B W,

whose shape is given by the product of the diagram shape describing spans; similarly, the
higher “commutative i-cubes” are described by the i-fold product of this shape. Notice
that when we restrict to the underlying k-fold Segal space we consider only those diagrams
of the above form where the maps X ← C → Z and Y ← D → W are all identities, in
which case this diagram is equivalent to a 2-fold span. In fact, since it is no more work
and will be useful in the next section, we’ll construct an n-fold category object SPAN+

k (C)
in Cat∞ — this may be regarded as a (k + 1)-uple ∞-category, from which we may extract
an (∞, k + 1)-category Span+

k (C) extending Spank(C), with (k + 1)-morphisms given by
natural transformations of k-fold span diagrams.

In the case k = 1, the construction we use is due to Barwick [Bar13a], and in general we
consider a simple inductive generalization of Barwick’s definition. We begin by introduc-
ing some notation:

Definition 5.1. Let �n be the partially ordered set with objects pairs (i, j) with 0 ≤ i ≤
j ≤ n, where (i, j) ≤ (i′, j′) if i ≤ i′ and j′ ≤ j. A map of totally ordered sets φ : [n] → [m]
induces a functor�n → �

m by sending (i, j) to (φ(i), φ(j)); we thus get a functor�• : �→
Cat. We will also write �m1,...,mk for the product �m1 × · · · ×�mk , which defines a functor

�

•,...,• : �k → Cat.

Definition 5.2. Let �n denote the full subcategory of �n spanned by those pairs (i, j) such
that j− i ≤ 1. These subcategories are not in general preserved by the functors �(φ) for
φ in �, but they are preserved by the functors arising from inert maps. We thus get a
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functor �• : �int → Cat with a natural transformation i : �• → �

•|
�int . We will also write

�

m1,...,mk for the product�m1 × · · · ×�mk , which defines a functor�•,...,• : �k
int → Cat, with

a natural transformation i : �•,...,• → �

•,...,•|
�

k
int

.

Examples 5.3.

(i) The category �0 = �0 is the trivial one-object category.
(ii) The category �1 = �1 can be depicted as

(0, 0)← (0, 1)→ (1, 1).

(iii) The category �2 can be depicted as

(0, 2)

(0, 1) (1, 2)

(0, 0) (1, 1) (2, 2),

and the subcategory �2 as

(0, 1) (1, 2)

(0, 0) (1, 1) (2, 2).

(iv) The category �3 can be depicted as

(0, 3)

(0, 2) (1, 3)

(0, 1) (1, 2) (2, 3)

(0, 0) (1, 1) (2, 2) (3, 3),

and the subcategory �3 as

(0, 1) (1, 2) (2, 3)

(0, 0) (1, 1) (2, 2) (3, 3).

Remark 5.4. We can think of the object (i, j) ∈ �n as a subinterval (i, i + 1, . . . , j) of the

ordered set [n] ∈ �. This gives a functor �n → �

op

/[n]
that takes (i, j) to the inert map

[j − i] → [n] that sends t ∈ [j − i] to i + t, with a map (i, j) → (i′, j′) sent to the unique
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inert map [j′ − i′]→ [j− i] such that the diagram

[j′ − i′] [j− i]

[n]

commutes. This functor identifies �n with the subcategory �
op

int,/[n]
of inert maps, which

will be useful later. Similarly, restricting the functor to �n, this is identified with the full

subcategory Cell
1,op

/[n]
as defined in Definition 3.8.

Definition 5.5. Suppose C is an ∞-category with finite limits. A functor f : �n1,...,nk → C

is Cartesian if f is a right Kan extension of its restriction to �n1,...,nk along the inclusion
i = in1 ,...,nk

. Equivalently, f is Cartesian if and only if the unit map

f → i∗i
∗ f

is an equivalence, where i∗ : Fun(�n1,...,nk ,C) → Fun(�n1,...,nk ,C) is the functor given by
composition with i, and i∗ denotes its right adjoint, given by right Kan extension. We
denote the full subcategory of the ∞-category Fun(�n1,...,nk ,C) spanned by the Cartesian

functors by FunCart(�n1,...,nk ,C), and its underlying space by MapCart(�n1,...,nk ,C).

We can also formulate this condition inductively:

Lemma 5.6. Suppose C is an ∞-category with finite limits. Then the following are equivalent, for
a functor F : �n1,...,nk → C:

(1) F is Cartesian.
(2) F is a right Kan extension of its restriction to �n1 × �n2,...,nk , and for every I ∈ �

n1 the
restriction FI of F to {I} ×�n2,...,nk is Cartesian.

(3) The functor F̃ : �n1 → Fun(�n2,...,nk ,C) corresponding to F is Cartesian, and for every X ∈
�

n1 the image F̃(X) ∈ Fun(�n2,...,nk ,C) is Cartesian.

Proof. Let F′ denote the restriction of F to �n1 ×�n2,...,nk . We first prove that the following
pair of conditions are equivalent:

(a) F′ is a right Kan extension of its restriction to �n1 ×�n2,...,nk .
(b) For every I ∈ �n1 , the restriction F′I of F′ to {I} ×�n2,...,nk is Cartesian.

Condition (a) says that for every I ∈ �n1 , J ∈ �n2,...,nk the natural map

F(I, J) → lim
X∈(�n1×�n2,...,nk )(I,J)/

F(X)

is an equivalence, whereas (b) says that for every I ∈ �n1 , J ∈ �n2,...,nk the natural map

F(I, J)→ lim
Y∈�

n2,...,nk
J/

F(I, Y)

is an equivalence. But the inclusion {I} ×�n2,...,nk

J/ → �

n1

I/ ×�
n2,...,nk

J/ is coinitial (as coinitial

maps are closed under products by the dual of [Lur09a, Corollary 4.1.1.13]), so these two
limits are canonically equivalent, hence (a) and (b) are indeed equivalent.

Thus condition (2) holds if and only if F is the right Kan extension of its restriction
F′ and F′ is the right Kan extension of its restriction to �n1,...,nk . The transitivity of Kan
extensions implies this is the same as condition (1).
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To see that (2) is equivalent to (3), we are reduced to showing that the following two
conditions are equivalent:

(a’) F is a right Kan extension of its restriction to �n1 ×�n2,...,nk .
(b’) F̃ : �n1 → Fun(�n2,...,nk ,C) is Cartesian.

Here (a’) says that for every I ∈ �n1 and J ∈ �n2,...,nk the natural map

F(I, J) → lim
X∈(�n1×�n2,...,nk )(I,J)/

F(X)

is an equivalence. By the same argument as above, the inclusion �n1

I/ × {J} →֒ (�n1 ×
�

n2,...,nk)(I,J)/ is coinitial, so this is equivalent to F(I, J) being lim
Y∈�

n1
I/

F(Y, J). As limits in

functor ∞-categories are computed objectwise, this is equivalent to (b’), which completes
the proof. �

Remark 5.7. Expanding the definition, in the case k = 1 we see that a functor f : �n →
C is Cartesian if and only if it is obtained by taking iterated pullbacks of the n spans
f1, . . . , fn given by restricting f along the inclusions �(ρi) : �1 → �

n coming from the
maps ρi : [1] → [n] in � that send 0 to i− 1 and 1 to i. In other words, f is Cartesian if and
only if it presents the n-fold composite of these spans as 1-morphisms in our desired ∞-
category of spans. The preceding Lemma then says that, similarly, a functor �n1,...,nk → C

is Cartesian if it presents the appropriate composite of spans in k different directions.

Definition 5.8. Suppose C is an ∞-category with finite limits. Let SPAN
+
k (C)→ �

k,op be a

coCartesian fibration associated to the functor�k,op → Cat∞ given by Fun(�•,...,•,C). Then

we define SPAN+
k (C) to be the full subcategory of SPAN

+
k (C) spanned by the Cartesian

functors �n1,...,nk → C for all n1, . . . , nk.

Our goal is now to prove that SPAN+
k (C)→ �

k,op is the coCartesian fibration associated
to a k-fold category object in Cat∞. We will first show that this is indeed a coCartesian
fibration, which is a consequence of the following result:

Proposition 5.9. Suppose C is an ∞-category with finite limits and F : �m → C is a Cartesian
functor. Then for any map φ : [n]→ [m] in �, the composite functor

φ∗F : �n → �

m → C

is again Cartesian.

Before we give the proof, we first prove the key technical observation we need, which
requires a bit of notation:

Definition 5.10. Suppose φ : [n] → [m] is an injective map in �. Let �m[φ] denote the full
subcategory of �m spanned by the objects I = (i, j) such that either I ∈ �m or I ≥ φ(J) for
some J ∈ �n.

Lemma 5.11.

(i) Suppose φ : [n] → [m] is a surjective map in�. Then for every I ∈ �n, the induced functor
�

n
I/ → �

m
φ(I)/ is coinitial.

(ii) Suppose φ : [n]→ [m] is an injective map in�. Then for every I ∈ �n, the induced functor
�

n
I/ → �

m[φ]φ(I)/ is coinitial.

Proof. If I = (i, j) then the category �n
I/ is equivalent to �n′ where n′ = j− i. If we let φ′

denote the restriction of φ to a map φ′ : [n′] ∼= {i, i+ 1, . . . , j} → {φ(i), φ(i)+ 1, . . . , φ(j)} ∼=
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[m′], where m′ := φ(j)− φ(i), then we also have �m
φ(I)/ ≃ �

m′ in case (i) and �m[φ]φ(I)/ ≃

�

m′ [φ′] in case (ii). Replacing φ by φ′ we may therefore without loss of generality assume
that I = (0, n) and φ(I) = (0, m). Note that for (ii) this implies that�m[φ] consists precisely
of those objects I such that I ≥ φ(J) for some J ∈ �n.

Using (the dual of) [Lur09a, Theorem 4.1.3.1], to prove (i) we must show that for every
J ∈ �m the category�n

/J is weakly contractible. Since the category�m is a partially ordered

set, we can identify this slice category with the full subcategory of �n spanned by the
objects X such that J ≥ φ(X). If J = (j, k), set j′ := max{x : φ(x) ≤ j} and k′ := min{x :
φ(x) ≥ k}; then X = (x, y) satisfies J ≥ φ(X) if and only if x ≤ j′ and k′ ≤ y. The integer
k− j is either 0 or 1. If k− j = 1, then (as φ is surjective) k′ = j′ + 1 and so �n

/J consists of

the single object (j′, j′ + 1). On the other hand, if k = j, then k′ ≤ j′ and �n
/J contains the

objects (k′− 1, k′), (k′, k′), (k′, k′+ 1), . . . , (j′, j′), (j′, j′+ 1). Thus�n
/J is an iterated pushout

[1] ∐[0] [1]∐[0] · · · ∐[0] [1] and hence weakly contractible.
To prove (ii), appealing to [Lur09a, Theorem 4.1.3.1] again we need to show that for

every J ∈ �m[φ] the category �n
/J is weakly contractible. We can again identify this with

the full subcategory of �n spanned by the objects X such that φ(X) ≤ J, i.e. those X =
(x, y) such that φ(x) ≤ j ≤ k ≤ φ(y). Let j′ and k′ be defined as before, then again this
holds if and only if x ≤ j′ and y ≥ k′. Since φ is injective we have j′ ≤ k′, and by definition
of �m[φ] there exists some Y = (a, b) ∈ �n such that φ(Y) ≤ J, which forces k′ ≤ j′ + 1.
Thus (j′, k′) is an object of �n, and by construction it is then terminal in �n

/J . Since any

∞-category with a terminal object is weakly contractible, this completes the proof. �

Proof of Proposition 5.9. We must show that for all I ∈ �n the natural map

(φ∗F)(I)→ lim
X∈�n

/I

(φ∗F)(X)

is an equivalence.
It suffices to check this in the cases where φ is either injective or surjective, since these

classes of maps form a factorization system on�. In the surjective case this map factors as

F(φ(I))→ lim
Y∈�m

/φ(I)

F(Y)→ lim
X∈�n

/I

F(φ(X)).

Here the first map is an equivalence since F is Cartesian, and the second map is an equiv-
alence since the functor �n

/I → �

m
/φ(I) is coinitial by Lemma 5.11(i).

In the injective case, the map factors as

F(φ(I))→ lim
Y∈�m[φ]/φ(I)

F(Y)→ lim
X∈�n

/I

F(φ(X)).

Since F is Cartesian, it is also the right Kan extension of its restriction to �m[φ], since this
full subcategory contains �m. Thus the first map is an equivalence, and the second is an
equivalence by Lemma 5.11(ii). �

Corollary 5.12. The restricted projection SPAN+
k (C)→ �

k,op is a coCartesian fibration.

Proof. Let π denote the projection SPAN
+
k (C) → �

k,op and write π′ for the restricted

projection SPAN+
k (C) → �

k,op. Since SPAN+
k (C) is a full subcategory of SPAN

+
k (C), a

π-coCartesian morphism whose source and target are in SPAN+
k (C) is necessarily π′-

coCartesian. As π is a coCartesian fibration, to see that π′ is one it therefore suffices to
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check that if α→ β is a coCartesian morphism in SPAN
+
k (C) such that α is a Cartesian func-

tor, then β is a Cartesian functor. In other words, given a Cartesian functor α : �n1,...,nk → C

and morphisms φi : [ni] → [mi] in � for i = 1, . . . , k, we must show that the composite
functor (φ1, . . . , φk)

∗α : �m1,...,mk → C is also Cartesian. Using Lemma 5.6 we can check this
iteratively, which means we only need to prove the case k = 1. But this case is precisely
Proposition 5.9. �

Proposition 5.13. The compatible maps �1,�0 → �

n induced by the inert maps [0], [1] → [n]
give a functor �n

Seg := �

1 ∐
�

0 · · · ∐
�

0 �
1 → �

n, where the colimit is formed in Cat∞. This is an

equivalence of ∞-categories.

Proof. We will describe the ∞-categorical colimit �n
Seg as a homotopy colimit in the Joyal

model structure. The object �n in Cat∞ is represented by the nerve N�n in SetJ
∆

, which

is a quasicategory. The morphisms N�0 → N�1 induced by the inclusions [0] → [1]
are levelwise injective, i.e. cofibrations in the Joyal model structure. Therefore the iter-
ated (1-categorical) pushout N�1 ∐N�0 · · · ∐N�0 N�1 is a homotopy colimit and a fibrant
replacement of it represents �n

Seg; it is therefore sufficient to show that the natural map

N�1 ∐N�0 · · · ∐N�0 N�1 → N�n is a weak equivalence in SetJ
∆

. But this is in fact an iso-
morphism of simplicial sets. �

Proposition 5.14. The functor associated to the coCartesian fibration SPAN+
k (C) → �

k,op is a
k-fold category object.

Proof. Unwinding the definitions, we must show that for each ([n1], . . . , [nk]) in �k, the
natural map

FunCart(�n1,...,nk ,C)→ lim
([i1],...,[ik])∈Cell

k,op

/([n1],...,[nk ])

Fun(�i1 ,C)× · · · × Fun(�ik ,C)

is an equivalence. Now using Proposition 5.13 and the fact that products in Cat∞ commute
with colimits, it follows that the target of this map is equivalent to Fun(�n1,...,nk ,C), and
under this equivalence the Segal map corresponds to the map given by composing with

the inclusion �n1,...,nk →֒ �

n1,...,nk . Since this is fully faithful, and FunCart(�n1,...,nk ,C) is
precisely the space of functors that are right Kan extensions along this inclusion, it follows
from [Lur09a, Proposition 4.3.2.15] that our map is an equivalence. �

Definition 5.15. Let SPANk(C) → �

k,op and SPANk(C) → �

k,op be the underlying left

fibrations of the coCartesian fibrations SPAN
+
k (C) and SPAN+

k (C), respectively. These

correspond to the multisimplicial spaces Map(�•,...,•,C) and MapCart(�•,...,•,C), which

are obtained by composing Fun(�•,...,•,C) and FunCart(�•,...,•,C) with the underlying ∞-
groupoid functor ι. Since ι preserves limits, being a right adjoint, the latter is a k-uple Segal
space, which we also denote SPANk(C).

Definition 5.16. We define the (∞, k)-category Spank(C) of iterated spans in C to be the k-fold
Segal space USegSPANk(C) underlying the k-uple Segal space SPANk(C).

Remark 5.17. Using the complete Segal space model for ∞-categories, we may regard
Cat∞ as a full subcategory of Seg(S). We may then regard SPAN+

k (C) as a k-uple Segal

object in Seg(S), i.e. a (k+ 1)-uple Segal space. We let Span+
k (C) be the underlying (k+ 1)-

fold Segal space USegSPAN+(C); this is an (∞, k + 1)-category that extends Spank(C) by
taking morphisms of k-fold spans as (k + 1)-morphisms.
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Remark 5.18. We may regard SPAN+
k (–) as a functor from ∞-categories with finite limits

to k-fold category objects in ∞-categories with finite limits. Moreover, as has been proved
by David Li-Bland [LB15], this functor preserves limits, which means that we can apply
SPAN+

k levelwise to get a functor from m-fold category objects in ∞-categories with finite

limits to (k + m)-fold category objects. We can also iterate the construction SPAN+
1 to

recover SPAN+
k as (SPAN+

1 )
k for k > 1.

6. THE (∞, k)-CATEGORY OF ITERATED SPANS WITH LOCAL SYSTEMS

Our goal in this section is to use the (∞, k)-category Spank(S) to make, for every k-fold
Segal space C, an (∞, k)-category Spank(S;C) of k-fold spans with C-valued local systems.
In fact, our construction works more generally: if X is an ∞-category with finite limits
and C is a k-fold Segal object in X, we will define an (∞, k)-category Spank(X;C) of k-fold
iterated spans in X equipped with C-valued local systems. To define this we will first show

that any k-fold Segal object in X determines a section of the projection SPAN+
k (X)→ �

k,op,
and then use results of Lurie to construct a fibrewise slice category for this section.

Definition 6.1. Let �̂ → �

op be the Grothendieck fibration associated to the functor
�

• : � → Cat. Explicitly, �̂ is the category with objects pairs ([n], (i, j)) with [n] ∈ �
and 0 ≤ i ≤ j ≤ n, and morphisms ([n], (i, j)) → ([m], (i′, j′)) given by a morphism

φ : [m] → [n] in � and a morphism (i, j) → (φ(i′), φ(j′)) in �n. Then the product �̂k →
�

k,op is the Grothendieck fibration associated to the functor �•,...,• : �k → Cat.

By [GHN17, Proposition 7.3], the ∞-category SPAN
+
k (X) has a universal property: for

every functor of ∞-categories C → �

k,op, the ∞-category Fun
�

k,op(C, SPAN
+
k (X)) is natu-

rally equivalent to Fun(C×
�

k,op �̂
k,X). In particular, giving a section �k,op → SPAN

+
k (X)

is equivalent to giving a functor �̂k → X.

Definition 6.2. Let Π : �̂ → �

op denote the functor that sends ([n], (i, j)) to [j − i] and
a map (φ : [m] → [n], (i, j) → (φ(i′), φ(j′))) to the map [j − i] → [j′ − i′] in �op corre-
sponding to the map of ordered sets taking s ∈ [j′ − i′] to φ(i′ + s)− i ∈ [j− i]. We write
Πn : �n → �

op for the restriction of Π to the fibre �n — this takes (i, j) ∈ �n to [j− i] and
a map (i, j)→ (i′, j′) to the (inert) inclusion [j− i] → [j′ − i′] taking s ∈ [j− i] to s + i′ − i.

Thus any map Φ : �k,op → X determines a section sΦ : �k,op → SPAN
+
k (X) via the

functor Φ ◦Πk : �̂k → �

k,op → X.

Lemma 6.3. Suppose we have a fully faithful inclusion φ : I→ J and a commutative triangle

I J

C

φ

f g

such that g is the left Kan extension of f along φ. Given X ∈ J, let I/X denote the fibre product
I×J J/X , let i : I/X → I and j : J/X → J denote the forgetful functors, and let φ/X denote the
induced map I/X → J/X. Then g ◦ j is the left Kan extension of f ◦ i along φ/X.
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Proof. We must show that for any object α : Y → X in J, the object gj(α) is the colimit of
the diagram

I/X ×J/X
(J/X)/α → I/X

i
−→ I

f
−→ C.

But (J/X)/α is equivalent to J/Y, and so I/X ×J/X
(J/X)/α is equivalent to I/Y, and the

diagram is equivalent to the composite I/Y → I
f
−→ C. Since g is the left Kan extension of f ,

we know that gj(α) ≃ g(Y) is the colimit of this diagram, which completes the proof. �

Lemma 6.4. Suppose Φ : �k,op → X is a k-fold category object in X. Then the section sΦ : �k,op →

SPAN
+
k (X) factors through SPAN+

k (X).

Proof. From the proof of [GHN17, Proposition 7.3] it follows that the value of the section

sΦ at I = ([n1], . . . , [nk]) ∈ �
k,op is the composite

�

n1,...,nk
Πn1,...,nk−−−−→ �

k,op Φ
−→ X,

where Πn1,...,nk
denotes the product Πn1

× · · · ×Πnk
. We thus need to check that each of

these functors is Cartesian. But under the identification of �n1,...,nk with �
k,op

int,/([n1],...,[nk])

of Remark 5.4, the functor Πn1,...,nk
corresponds to the forgetful functor �

k,op

int,/([n1],...,[nk])
→

�

k,op. By Lemma 4.8, the restriction of Φ to�
k,op
int is the right Kan extension of its restriction

to Cellk,op, from which it follows by (the dual of) Lemma 6.3 that Πn1,...,nk
is the right Kan

extension of its restriction to �n1,...,nk , since this corresponds to Cell
k,op

/([n1],...,[nk])
under this

identification. �

Lemma 6.5. Suppose f : E→ B is a coCartesian fibration and s : B→ E is a section. Then there
exists an ∞-category E//s and a coCartesian fibration E//s → B with the universal property that
Fun/B(C,E//s) is naturally given by a pullback square

Fun/B(C,E//s) Fun/B(C× [1]∐C×{1} B,E)

{s} Fun/B(B,E).

Proof. Let E → B be a coCartesian inner fibration representing f such that there is a sec-
tion s′ : B → E representing s. Then, following [Lur09a, Definition 4.2.2.1], we define
a simplicial set E//s′ over B by taking Hom/B(K,E//s′) to be defined by the pullback
square

Hom/B(K,E//s′) Hom/B(K× ∆1 ∐K×{1}B,E)

{s′} Hom/B(B,E).

Then the projection E//s′ → B is a coCartesian inner fibration by [Lur09a, Proposition
4.2.2.4]. We define E//s → B to be the morphism in Cat∞ it represents. The defining
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property of the simplicial set Hom/B(K,E//s′) implies that the internal Hom of simplicial
sets Fun/B(K,E//s′) is given by an analogous pullback square

Fun/B(K,E//s′) Fun/B(K × ∆1 ∐K×{1}B,E)

{s′} Fun/B(B,E)

of simplicial sets. Since the inclusion B →֒ K × ∆1 ∐K×{1}B is a cofibration and the Joyal
model structure is enriched in itself (see [Joy08, Theorem 5.13]) the right vertical map here
is a fibration in the Joyal model structure, hence this is a homotopy pullback square; this
gives the pullback squares we want in Cat∞. �

Definition 6.6. Suppose Φ : �k,op → X is a k-fold category object in X. We then define

SPAN+
k (X; Φ)→ �

k,op

to be the coCartesian fibration SPAN+
k (X)//sΦ

→ �

k,op of Lemma 6.5.

Proposition 6.7. Suppose Φ : �k,op → X is a k-fold category object in X. Then the functor

�

k,op → Cat∞ associated to the coCartesian fibration SPAN+
k (X; Φ)→ �

k,op is a k-fold category
object in Cat∞.

Proof. Using the defining property of SPAN+
k (X; Φ) we see that a map from an ∞-category

C to the fibre SPAN+
k (X; Φ)([n1],...,[nk]) is naturally equivalent to a map

C⊲ → SPAN+
k (X)([n1],...,[nk])

that restricts to sΦ([n1], . . . , [nk]) at the cone point. In other words, we have a natural
equivalence

SPAN+
k (X; Φ)([n1],...,[nk]) ≃ (SPAN+

k (X)([n1],...,[nk]))/sΦ([n1],...,[nk])

≃ FunCart(�n1,...,nk ,X)/Φ◦Πn1,...,nk
.

Now on the one hand we have a pullback square

FunCart(�n1,...,nk ,X)/Φ◦Πn1,...,nk
Fun([1], FunCart(�n1,...,nk ,X))

{Φ ◦Πn1,...,nk
} FunCart(�n1,...,nk ,X).

On the other hand, since limits commute, we have a pullback square

lim FunCart(�i1,...,ik ,X)/Φ◦Πi1,...,ik
lim Fun([1], FunCart(�i1,...,ik ,X))

lim{Φ ◦Πi1,...,ik
} lim FunCart(�i1,...,ik ,X),
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where the limit runs over ([i1], . . . , [ik]) ∈ Cell
k,op

/([n1],...,[nk])
. Since Φ ◦ Πn1,...,nk

restricts to

Φ ◦Πi1,...,ik
under the appropriate inclusion, these two squares are equivalent. But then we

get that the natural map

FunCart(�n1,...,nk ,X)/Φ◦Πn1,...,nk
→ lim

([i1],...,[ik])∈Cell
k,op

/([n1],...,[nk ])

FunCart(�i1,...,ik ,X)/Φ◦Πi1,...,ik

is an equivalence, and so SPAN+
k (X; Φ) is a k-fold category object. �

Definition 6.8. Suppose C is a k-fold Segal object in X. We let SPANk(X;C)→ �

k,op denote

the left fibration obtained from the coCartesian fibration SPAN+
k (X;C)→ �

k,op by discard-
ing the non-coCartesian morphisms; this left fibration classifies a k-uple Segal space. The
(∞, k)-category Spank(X;C) of iterated spans in X with local systems valued in C is the underly-
ing k-fold Segal space USegSPANk(X;C) associated to the k-uple Segal space SPANk(X;C).

7. COMPLETE SEGAL OBJECTS IN AN ∞-TOPOS

In §3 we recalled Rezk’s result that the localization of the ∞-category of Segal spaces at
the fully faithful and essentially surjective morphisms is given by the full subcategory of
complete Segal spaces. In this section we begin by reviewing the generalization of this to n-
fold Segal spaces, originally proved by Barwick [Bar05]. We will review the reformulation
of the theory due to Lurie [Lur09b], which allows for an inductive construction of complete
n-fold Segal spaces. Lurie’s version of the theorem also works for n-fold Segal objects in
an arbitary ∞-topos, which describe internal (∞, n)-categories or more concretely sheaves of
(∞, n)-categories on an ∞-topos. We will then prove two completeness criteria we’ll make
use of below: first, we show that completeness of an n-fold Segal object in an ∞-topos X

can be checked on the n-fold Segal spaces of maps from objects of X, and second, we give
an inductive criterion for the completeness of an n-fold Segal space using the (n− 1)-fold
Segal spaces of maps.

We begin by reviewing Lurie’s notion of a distributor. This is a technical definition that
encapsulates the properties needed to make sense of complete Segal objects, which hold
for both an ∞-topos and the ∞-category of complete Segal objects in an ∞-topos (Theo-
rem 7.7). Using distributors thus allows us to give a single definition of complete Segal
objects that can be iterated to give a convenient inductive definition of n-fold complete
Segal objects in an ∞-topos.

Definition 7.1. A distributor consists of an ∞-category Y together with a full subcategory
X such that:

(1) The ∞-categories X and Y are presentable.
(2) The full subcategory X is closed under small limits and colimits in Y.
(3) If Y → X is a morphism in Y such that X ∈ X, then the pullback functor X/X → Y/Y

preserves colimits.

(4) The functor Xop → Ĉat∞ that sends X ∈ X to Y/X (and a morphism X → X′ to the
pullback functor Y/X′ → Y/X) preserves small limits.

If X ⊆ Y is a distributor, an X-Segal object in Y is a Segal object C : �op → Y such that C0 ∈ X.
We write Seg

X
(Y) for the full subcategory of Seg(Y) spanned by the X-Segal objects.

Remark 7.2. It follows from [Lur09a, Theorem 6.1.3.9] that if X is an ∞-topos, then the
tautological inclusion X ⊆ X is a distributor.
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Definition 7.3. Write Gpd(X) for the full subcategory of Seg(X) spanned by the groupoid
objects, i.e. the simplicial objects X such that for every partition [n] = S ∪ S′ where S ∩ S′

consists of a single element, the diagram

X([n]) X(S)

X(S′) X(S ∩ S′)

is a pullback square. Let X ⊆ Y be a distributor, and let Λ : Y→ X denote the right adjoint
to the inclusion X →֒ Y. The inclusion Gpd(X) →֒ Seg(X) →֒ Seg(Y) admits a right adjoint
ι : Seg(Y)→ Gpd(X), which is the composite of the functor Λ : Seg(Y)→ Seg(X) induced
by Λ, and the functor ι : Seg(X) → Gpd(X) right adjoint to the inclusion, which exists by
[Lur09b, Proposition 1.1.14].

Definition 7.4. We say an X-Segal object F : �op → Y is complete if the groupoid object
ιF is constant, and write CSSX(Y) for the full subcategory of Seg

X
(Y) spanned by the

complete X-Segal objects. The inclusion CSSX(Y) →֒ Seg
X
(Y) admits a left adjoint by

[Lur09a, Lemma 5.5.4.17].

Definition 7.5. Let X ⊆ Y be a distributor, and suppose f : C → D is a morphism in
Seg

X
(Y). We say that f is fully faithful and essentially surjective if:

(1) The map |Gpd(C)| → |Gpd(D)| is an equivalence in the ∞-topos X.
(2) The diagram

C1 D1

C0 × C0 D0 ×D0

is a pullback square in Y.

Theorem 7.6 ([Lur09b, Theorem 1.2.13]). Let X ⊆ Y be a distributor. Then the left adjoint

LX⊆Y : SegX(Y)→ CSSX(Y)

exhibits CSSX(Y) as the localization of Seg
X
(Y) with respect to the fully faithful and essentially

surjective morphisms.

Theorem 7.7 ([Lur09b, Proposition 1.3.2]). Suppose X ⊆ Y is a distributor. Then so is X ⊆
CSSX(Y), where we regard X as a full subcategory of CSSX(Y) via the diagonal embedding c∗ : X→
Fun(�op,X).

We can therefore inductively define distributors X ⊆ CSSn
X(Y) := CSSX(CSSn−1

X (Y)); we
refer to the objects of CSSn

X(Y) as complete n-fold X-Segal objects in Y.

Definition 7.8. Let X be an ∞-topos. We write CSSn(X) for CSSn
X(X), which we may regard

as a full subcategory of Segn(X). The inclusion CSSn(X) →֒ Segn(X) has a left adjoint
Ln,X : Segn(X)→ CSSn(X), obtained inductively as the composite

Segn(X)
Seg

X
(Ln−1,X)

−−−−−−−→ Seg
X
(CSSn−1(X))

L
X⊆CSSn−1(X)
−−−−−−−→ CSSn(X).
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Remark 7.9. The ∞-category CSSn(X) can be identified with the ∞-category of sheaves
on X valued in the ∞-category CSSn(S) of complete n-fold Segal spaces (in other words,
sheaves of (∞, n)-categories).

We now prove the useful fact that the completion functor preserves certain fibre prod-
ucts:

Lemma 7.10.

(i) Let X ⊆ Y be a distributor. For X ∈ X, write c∗X for the constant diagram �

op → Y with
value X; this is an X-Segal object. The localization LX⊆Y : Seg

X
(Y) → CSSX(Y) preserves

fibre products over c∗X where X ∈ X; in particular, LX⊆Y preserves products.
(ii) Let X be an ∞-topos. Then the localization Ln,X : Segn(X)→ CSSn(X) preserves products.

Proof. Since the inclusion CSSX(Y) →֒ Seg
X
(Y) is a right adjoint, it preserves limits. Thus

we must show that if C and D are X-Segal objects of Y over c∗X, then the natural map
LX⊆Y(C×c∗X D) → LX⊆Y(C)×c∗X LX⊆Y(D) in Seg

X
(Y) is an equivalence. By Theorem 7.6,

this is equivalent to proving that the map C×c∗X D→ LX⊆Y(C)×c∗X LX⊆Y(D) is fully faith-
ful and essentially surjective. Condition (1) in the definition holds since pullbacks over X
preserve colimits in the ∞-topos X, and the colimit in question is sifted, and condition (2)
holds since limits commute. This proves (i); then (ii) follows inductively as the functor
Ln,X is a composite of functors constructed from the functors in (i). �

As a consequence, we have:

Lemma 7.11. The Cartesian product in CSSn(X) preserves colimits separately in each variable.

Proof. Colimits in CSSn(X) are computed by applying the localization L to the colimit of
the same diagram in Segn(X). Thus the result follows by combining Lemma 7.10 with the
observation that the product preserves colimits in each variable in Segn(X). �

This lets us define internal Homs in complete Segal objects:

Definition 7.12. We denote the internal Hom in CSSn(X) of morphisms from C to D by

DC. If X ∈ X we abbreviate Dc∗X by DX . We also write MAP(C,D) for the object of X
that represents the functor MapCSSn(X)(C × c∗(–),D) : X → S. Equivalently, this is just

(DC)0,...,0.

We now wish to prove a useful criterion for completeness of n-fold Segal objects in an
∞-topos:

Proposition 7.13. Suppose X is an ∞-topos and C• is a Segal object in X. Then C• is complete if
and only if the Segal spaces Map

X
(X,C•) are complete for all X ∈ X.

For the proof it is convenient to first consider functoriality of complete Segal objects in
maps of distributors. The usual notion of a map between ∞-topoi is that of a geometric
morphism: an adjunction where the left adjoint preserves finite limits. The ∞-categories of
complete Segal objects are functorial with respect to a slightly more general class of maps:

Definition 7.14. Let X and Y be ∞-topoi. A pseudo-geometric morphism from X to Y is a
functor f∗ : X→ Y such that f∗ admits a left adjoint f ∗ which preserves pullbacks.

Definition 7.15. Let X ⊆ Y and X′ ⊆ Y′ be distributors. A pseudo-geometric morphism from
Y to Y′ is a functor G : Y→ Y′ such that:

(1) G takes X to X′.
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(2) G has a left adjoint F : Y′ → Y.
(3) F takes X′ to X.
(4) If φ : ∆1×∆1 → Y′ is a pullback diagram such that φ(1, 1) ∈ X′, then F(φ) is a pullback

diagram in Y.

Remark 7.16. It is clear that a pseudo-geometric morphism of ∞-topoi as above is also a
pseudo-geometric morphism of distributors.

Proposition 7.17.

(i) Let X ⊆ Y and X′ ⊆ Y′ be distributors. Suppose G : Y→ Y′ is a pseudo-geometric morphism
of distributors with left adjoint F. Then composition with F and G induces an adjunction

LF∗ : CSSX′(Y
′) ⇄ CSSX(Y) : G∗,

and this is also a pseudo-geometric morphism.
(ii) Suppose f ∗ : X′ ⇄ X : f∗ is a pseudo-geometric morphism of ∞-topoi. Then the functors

given by composition with f ∗ and f∗ induce an adjunction

Ln,X( f ∗)∗ : CSSn(X′) ⇄ CSSn(X) : ( f∗)∗.

Proof. By Lemma 4.16 we have an adjunction

F∗ : Fun(�op,Y′) ⇄ Fun(�op,Y) : G∗.

It is clear from the definition of a pseudo-geometric morphism that F∗ and G∗ preserve X′-
and X-Segal objects, respectively, so there is an induced adjunction

F∗ : Seg
X′
(Y′) ⇄ Seg

X
(Y) : G∗.

We have a commutative diagram of left adjoints

Gpd(X′) Gpd(X)

Seg
X′
(Y′) Seg

X
(Y),

F∗

F∗

where the vertical morphisms denote the obvious inclusions, hence the corresponding di-
agram of right adjoints also commutes, giving an equivalence G∗(Gpd(C)) ≃ Gpd(G∗C).
It follows that G∗ preserves complete Segal objects, hence there is an induced adjunction

LX⊆YF∗ : CSSX′(Y
′) ⇄ CSSX(Y) : G∗.

To complete the proof of (i), we must show that this is a pseudo-geometric morphism.
The functors LX⊆YF∗ and G∗ preserve constant simplicial objects valued in X and X′, so it
remains to show that, given a pullback diagram

C×X D C

D c∗X

in CSSX′(Y
′), where c∗X is the constant simplicial object with value X ∈ X′, its image

under LX⊆YF∗ is also a pullback. Since limits in CSSX′(Y
′) are computed in Seg

X′
(Y′), and
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these in turn are computed objectwise, it follows that F∗ takes this to a pullback diagram
in Seg

X
(Y). Now applying Lemma 7.10 we conclude that the image of this under LX⊆Y is

also a pullback. This completes the proof of (i), and (ii) is just a special case of (i) obtained
by induction. �

Proof of Proposition 7.13. Let r∗ : S→ X denote the unique colimit-preserving functor such
that r∗(∗) is a terminal object of X, and let r∗ := Map

X
(∗, –) be its right adjoint. By [Lur09a,

Proposition 6.3.4.1], the adjunction r∗ ⊣ r∗ is a geometric morphism. It is clear that for any
X ∈ X the functor Map

X
(X, –) has a left adjoint given by X × r∗(–), and this preserves

pullbacks since r∗ preserves finite limits. Thus the adjunction X × r∗(–) ⊣ Map
X
(X, –)

is a pseudo-geometric morphism of ∞-topoi, and so by the proof of Proposition 7.17 we
have an equivalence Map

X
(X, Gpd(C•)) ≃ Gpd(Map

X
(X,C•)). By the Yoneda Lemma

the simplicial object Gpd(C•) is constant if and only if MapX(X, Gpd(C•)) is constant for
all X ∈ X, so C• is complete if and only if Gpd(Map

X
(X,C•)) is constant for all X ∈ X, i.e.

if and only if Map
X
(X,C•) is complete for all X ∈ X. �

The remainder of this section is devoted to proving the following inductive character-
ization of completeness for n-fold Segal spaces, which we will make use of in the next
section:

Theorem 7.18. Suppose C is an n-fold Segal space. Then the following are equivalent:

(i) C is complete.
(ii) The Segal space C•,0,...,0 is complete, and the (n− 1)-fold Segal spaces C(x, y) are complete

for all objects x, y in C.

Remark 7.19. As a consequence of this, we get the expected inductive characterization of
the fully faithful and essentially surjective morphisms in Segn(S), i.e. the morphisms that
are inverted by the localization to CSSn(S): They are precisely the morphisms f : C → C′

that are essentially surjective, in the sense that the underlying morphism of 1-fold Segal
spaces is essentially surjective, and locally fully faithful and essentially surjective, in the
sense that for each pair of objects x, y ∈ C the induced morphism C(x, y)→ C′( f x, f y) is a
fully faithful and essentially surjective functor of (n− 1)-fold Segal spaces.

For convenience, we make the following inductive definition:

Definition 7.20. Let C be an n-fold Segal space. We say that C is pseudo-complete if

(1) the Segal space C•,0,...,0 is complete,
(2) the (n− 1)-fold Segal spaces C(X, Y) are pseudo-complete for all objects X, Y in C.

Our goal is then to show that an n-fold Segal space is complete if and only if it is pseudo-
complete. Before we give the proof we need to make a number of observations:

Lemma 7.21. Let X ⊆ Y be a distributor, and suppose C ∈ Seg
X
(CSSn−1

X (Y)). Then C is in
CSSn

X(Y) if and only if the Segal object C•,0,...,0 in Seg
X
(Y) is complete.

Proof. The inclusion functor SegX →֒ Seg
X
(CSSn−1

X (Y)) factors through the inclusion

Seg
X
(Y) →֒ Seg

X
(CSSn−1

X (Y))

induced by the functor Y → CSSn−1
X (Y) that sends an object of Y to the constant (n− 1)-

simplicial object with that value. Thus the right adjoint Seg
X

CSSn−1
X (Y) → Seg(X) is the

composite of the right adjoint Seg
X

CSSn−1
X (Y)→ Seg

X
(Y), which is induced by evaluation

at the initial object ([0], . . . , [0]) ∈ �n−1,op, and the localization Seg
X
(Y) → Seg(X). In
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particular, the groupoid object Gpd(C) is equivalent to Gpd(C•,0,...,0) and so C is complete
if and only if C•,0,...,0 is. �

Lemma 7.22. Let C be an n-fold Segal space. Then the following are equivalent:

(i) C is complete.
(ii) The Segal space C•,0,...,0 is complete, and the (n− 1)-fold Segal space C1,•,...,• is complete.

Proof. By Lemma 7.21 we know that C is complete if and only if C•,0,...,0 is complete and
the (n− 1)-fold Segal spaces Cn,•,...,• are complete for each n. But C0,•,...,• is constant and
so obviously complete, and thus for n > 1 the Segal condition implies that Cn,•,...,• is
complete if C1,•,...,• is complete, since complete Segal objects are closed under limits in the
∞-category of presheaves. �

Remark 7.23. Applying Lemma 7.22 inductively, we see that an n-fold Segal space C is
complete if and only if the n Segal spaces C•,0,...,0,C1,•,0,...,0, . . . ,C1,...,1,• are all complete; this
is the definition of completeness used in [BSP11]. An alternative proof that this agrees
with the definition of completeness we gave above is found in [JFS17, Lemma 2.8].

Lemma 7.24. Suppose given an n-fold Segal space C together with a map π : C→ X where X is a
constant Segal space, and for x ∈ X let Cx denote the n-fold Segal space that is the fibre of π at x.
Then for any two objects c, d ∈ C there is a map C(c, d)→ Ωπ(c),π(d)X whose fibres are of the form

Cπ(c)(c, d′), where d′ is the image of d in Cπ(c) under the equivalence Cπ(c) ≃ Cπ(d) determined by

the path from π(c) to π(d).

Proof. The map π gives a commutative square

C1 X

Ob(C)×2 X×2

so taking fibres over a point (c, d) ∈ Ob(C)×2 we get a map C(c, d) → Ω(πc,πd)X. If πc
and πd are not in the same component then both spaces are empty and we are done.
Otherwise we want to identify the fibre of this map at a point p ∈ Ω(πc,πd)X. Consider the
commutative diagram

C(c, d)p C(c, d) C1

∗ Ω(πc,πd)X Y X

∗ Ob(C)×2 X×2,

p

∆
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where all four squares are pullbacks (and Y is defined as the pullback of X → X×2 and
Ob(C)×2 → X×2). Thus we have a commutative diagram

C(c, d)p C1

∗ Y

X,

where the top square is a pullback. Taking fibres at the given point of X (which we may
identify with πc) we can factor this diagram as

C(c, d)p (Cπc)1 C1

∗ (Cπc)
×2
0 Y

∗ X,

where the two right-hand squares are pullbacks. Then as the top composite square is a
pullback, so is the top left square. Thus we have identified C(c, d)p with a mapping space
in Cπc, as required. �

Lemma 7.25. Let π : C → X be a map of n-fold Segal spaces, where X is constant. Suppose the
fibres Cx are pseudo-complete for each x ∈ X. Then C is also pseudo-complete.

Proof. We prove this by induction on n. The map π induces a commutative diagram

Map(E1,C•,0,...,0) C0,...,0

X

where the map on fibres at x ∈ X is Map(E1, (Cx)•,0,...,0) → (Cx)0,...,0 as Map(E1, –) com-
mutes with limits. This map is an equivalence for all x, since Cx is pseudo-complete, hence
the horizontal map in the triangle is also an equivalence and thus C•,0,...,0 is complete.

Now given objects c, d ∈ C, by Lemma 7.24 there is a map C(c, d) → Ωπ(c),π(d)X whose

fibres are mapping (n − 1)-fold Segal spaces in Cπ(c). By assumption these are pseudo-

complete, hence by the inductive hypothesis C(c, d) is pseudo-complete for all c, d. This
completes the proof. �

Proof of Theorem 7.18. We will show, by induction on n, that an n-fold Segal space is com-
plete if and only if it is pseudo-complete. For n = 1 the two notions coincide, so there
is nothing to prove. Suppose we have shown that they agree for n < k, and let C be a
k-fold Segal space. By Lemma 7.22 C is complete if and only if C•,0,...,0 is complete and the
(k− 1)-fold Segal space C1 is complete. Since by assumption the notions of complete and
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pseudo-complete (k − 1)-fold Segal spaces coincide, it remains to show that C1 is com-
plete if and only if the fibres C(c, d) at (c, d) ∈ Ob(C)×2 are all complete. One direction
follows from applying Lemma 7.25 to the map C1 → Ob(C)×2, and the other follows since
complete (k− 1)-fold Segal spaces are closed under limits in (k− 1)-fold Segal spaces. �

8. COMPLETENESS FOR ITERATED SPANS

In this section we will prove that the n-fold Segal spaces Spann(C) that we constructed
above are always complete. We first consider the case n = 1, which is due to Barwick:

Proposition 8.1 ([Bar17, Proposition 3.4]). Let C be an ∞-category with finite limits. Then the
Segal space Span1(C) is complete.

For completeness we include a slightly different proof than that of Barwick, based on
the following observation:

Lemma 8.2. A span X
f
←− A

g
−→ Y in C is an equivalence in Span1(C) if and only if the maps f

and g are equivalences.

Proof. It is clear that a span is an equivalence if both the maps in it are equivalences, so it

remains to prove the converse. Suppose Y
h
←− B

k
−→ X is an inverse, then since composing

gives the identity we have a diagram

X

A B

X Y X,

f ′ k′

f g h k

where the composites f f ′ : X → A → X and kk′ : X → B → X are equivalent to idX.
Composing in the other order we similarly have maps h′ : Y → B and g′ : Y → A such
that hh′ : Y → B → Y and gg′ : Y → A → Y are equivalent to idY. Now taking a double
composite in Span1(C) we get a commutative diagram

A

X Y

A B A

X Y X Y.

f ′′ g′′

f ′ k′ h′ g′

f g h k f g

Since the composite is the original span X
f
←− A

g
−→ Y, the composite along the left edge is

the original map f : A → X. But since the composite f f ′ ≃ idX, this means that f ′′ ≃ f ,
and similarly g′′ ≃ g. But then since compositions are formed by taking pullbacks, we
have a diagram

A X A

Y B Y,

f

g

f ′

k′ g

h′ h
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where both squares are Cartesian. The composite square is also Cartesian, and so as hh′ ≃
idY, we have f ′ f ≃ idA. Thus f ′ is a two-sided inverse of f , hence f is an equivalence.
Similarly, we get g′g ≃ idA and so g is also an equivalence. �

Proof of Proposition 8.1. By Theorem 3.6 the space of equivalences in Span1(C) consists of

the components of the space Span1(C)1 ≃ Map(�1,C) that correspond to equivalences.
But by Lemma 8.2 these are precisely the diagrams that land in the underlying ∞-groupoid
ιC of C, so the space in question is Map(�1, ιC). This is equivalent to the space of maps
to ιC from the ∞-groupoid ‖�1‖ obtained by inverting the morphisms in �1. This is con-
tractible, so the space of equivalences is equivalent to ιC ≃ Span1(C)0 as required. �

To extend this to iterated spans, we first identify the mapping (∞, n− 1)-categories in
Spann(C):

Proposition 8.3. Let C be an ∞-category with finite limits. If X and Y are objects of C, then
the (k − 1)-fold Segal space Spank(C)(X, Y) of maps from X to Y in Spank(C) is equivalent to
Spank−1(C/X×Y).

For the proof we need a simple observation:

Lemma 8.4. Suppose X and Y are objects of an ∞-category C that have a product X × Y. Then
for any ∞-category K there is a natural pullback square

Map(K,C/X×Y) Map(�1 ×K,C)

{(cX , cY)} Map(�0 ×K,C)×2,

where cX and cY denote the functors constant at X and Y.

Proof. Since X × Y is a product, the ∞-category C/X×Y is equivalent to C/p where p is the

diagram {0, 1} → C sending 0 to X and 1 to Y. The ∞-category C/p has the universal
property that for all ∞-categories K there are natural pullback squares

Map(K,C/p) Map(K ⋆ {0, 1},C)

{(X, Y)} Map({0, 1},C).

There is an evident equivalence between �1 and {0, 1}⊳ , i.e. ∗ ∐{0,1}×{0} {0, 1} × [1], and
since products in Cat∞ preserve colimits this gives an equivalence

K×�1 ≃ K∐K×{0,1}×{0}K× {0, 1} × [1].

Moreover, the ∞-category K ⋆ {0, 1} is equivalent to the pushout (in Cat∞)

K∐K×{0,1}×{0}K× {0, 1} × [1]∐K×{0,1}×{1} {0, 1},
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thus we get a pullback square

Map(K ⋆ {0, 1},C) Map(K×�1,C)

Map({0, 1},C) Map(K× {0, 1},C).

Putting these two pullback squares together then completes the proof. �

Proof of Proposition 8.3. By Lemma 8.4 we have natural pullback squares

SPANk−1(C/X×Y)[n1],...,[nk−1] SPANk(C)[1],[n1],...,[nk−1]

{(cX , cY)} SPANk(C)
×2
[0],[n1],...,[nk−1]

.

Using Lemma 5.6 we see that this restricts to a pullback square

SPANk−1(C/X×Y)[n1],...,[nk−1] SPANk(C)[1],[n1],...,[nk−1]

{(cX , cY)} SPANk(C)
×2
[0],[n1],...,[nk−1]

,

since a functor to C/X×Y is Cartesian if and only if its composite with C/X×Y → C is Carte-
sian, as this forgetful functor detects pullbacks. Thus we have a pullback square of (k− 1)-
uple Segal spaces

SPANk−1(C/X×Y) SPANk(C)1

{(X, Y)} SPANk(C)
×2
0 .

The functor Uk−1
Seg is a right adjoint, so applying it we get a pullback square

Spank−1(C/X×Y) Uk−1
Seg (SPANk(C)1)

{(X, Y)} Uk−1
Seg (SPANk(C)0)×2.
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On the other hand, our constuction of Uk
Seg gives us a pullback square

Spank(C)1 Uk−1
Seg (SPANk(C)1)

Spank(C)
×2
0 Uk−1

Seg (SPANk(C)0)×2.

The map {(X, Y)} → Uk−1
Seg SPANk(C)

×2
0 factors through the constant (k − 1)-simplicial

object Spank(C)
×2
0 , so we get a commutative diagram

Spank−1(C/X×Y) Spank(C)1 Uk−1
Seg (SPANk(C)1)

{(X, Y)} Spank(C)
×2
0 Uk−1

Seg SPANk(C)
×2
0

where the right-hand square and the composite square are both Cartesian. Then the left-
hand square is also Cartesian, which completes the proof. �

Corollary 8.5. Let C be an ∞-category with finite limits. Then the n-fold Segal space Spann(C)
is complete.

Proof. We prove this by induction on n. The case n = 1 is Proposition 8.1. Suppose the
result holds for all n < k. By Theorem 7.18 to show that Spank(C) is complete it suffices
to prove that the Segal space Spank(C)•,0,...,0 is complete, and the (n− 1)-fold Segal spaces
Spank(C)(X, Y) are complete for all X, Y in C. But Spank(C)•,0,...,0 is equivalent to Span1(C),
which we know is complete, and by Proposition 8.3 we can identify Spank(C)(X, Y) with
Spank−1(C/X×Y), which is complete by the inductive hypothesis. �

9. COMPLETENESS FOR ITERATED SPANS WITH LOCAL SYSTEMS

In this section we will show that that the k-fold Segal space Spank(X;C) is complete,
provided X is an ∞-topos and C is a complete k-fold Segal object in X. We first consider
the case k = 1, which follows from the following observation:

Lemma 9.1. Let X be an ∞-topos and C a Segal object in X. Then there is an equivalence

Span1(X;C)eq ≃ ∐
X∈π0X

Map
X
(X,C)eq.

Proof. By definition, Span1(X;C)eq is the subspace of Span1(X;C)1 ≃ ιFun(�1,C)/sC([1])

consisting of those components that correspond to equivalences. The forgetful functor
Span1(X;C) → Span1(X) induces a map Span1(X;C)eq → Span1(X)eq, so by Proposi-
tion 8.1 the underlying span of an equivalence is trivial. We may thus identify Span1(X;C)eq

with a collection of components in ∐X∈π0(X) Map
X
(X,C1). It is moreover immediate from

the definition of composition in Span1(X;C) that a map X → C1 has an inverse when
viewed as a morphism in Span1(X;C) if and only if it has one when viewed as a mor-
phism in Map

X
(X,C•), which completes the proof. �

Proposition 9.2. Suppose X is an ∞-topos and C is a complete Segal object in X. Then Span1(X;C)
is a complete Segal space.
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Proof. By Theorem 3.6 it suffices to show that the degeneracy map

Span(X;C)0 → Span(X;C)eq

is an equivalence. By Lemma 9.1 we may identify this with the map

∐
X

Map(X,C0)→∐
X

Map(X,C)eq.

But by Proposition 7.13 the Segal spaces Map(X,C) are complete since C is complete, and
by Theorem 3.6 it follows that for each X the map Map(X,C0)→ Map(X,C)eq is an equiv-
alence. �

To extend this to iterated Segal spaces, we first identify the mapping (∞, k− 1)-categories
of Spank(X;C):

Proposition 9.3. Suppose C is a k-fold Segal object in X, and that ξ : X → C0,...,0 and η : Y →
C0,...,0 are objects of Spank(X;C). Then the (k − 1)-fold Segal space Spank(X;C)(ξ, η) of maps
from ξ to η in Spank(X;C) is equivalent to Spank−1(X;Cξ,η), where Cξ,η is the (k− 1)-fold Segal
object given by the pullback square

Cξ,η C1

X ×Y C×2
0 .

ξ × η

To prove this, we first make the following observations:

Lemma 9.4. For any ∞-categories A and B, the natural map

(A⊳ ×B∐A×B A×B⊳)⊳ → A⊳ ×B⊳

is an equivalence.

Proof. Suppose A and B are quasicategories representing the ∞-categories A and B. Then
the pushout of simplicial sets

A⊳ ×B∐A×B A×B⊳

is a homotopy pushout in SetJ
∆

, since the maps are cofibrations. It therefore suffices to
prove that the natural map

(A⊳ ×B∐A×B A×B⊳)⊳ → A⊳ ×B⊳

is a weak equivalence in the Joyal model structure. In fact, we will show that this map
is an isomorphism for all simplicial sets A and B. Since both sides preserve colimits in A

and B, it suffices to consider the case A = ∆n, B = ∆m. Thus, as (∆n)⊳ ∼= ∆n+1, we must
show that the map

(∆n+1× ∆m ∐∆n×∆m ∆n × ∆m+1)⊳ → ∆n+1 × ∆m+1

is an isomorphism for all n, m. Now ∆n+1 × ∆m+1 is the nerve of the category [n + 1] ×
[m + 1], which is the join (of categories) [0] ⋆ C, where C is the subcategory spanned by all
objects except (0, 0). The nerve functor takes the join of categories to the join of simplicial
sets, so it follows that ∆n+1 × ∆m+1 ∼= (NC)⊳. Moreover, the simplicial set NC is the
subcomplex of ∆n+1 × ∆m+1 containing only the simplices that do not have (0, 0) as a
vertex, which we can identify with ∆n+1 × ∆m ∐∆n×∆m ∆n × ∆m+1. �
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Lemma 9.5. Let A be an ∞-category, and suppose given a functor µ : A× [1] ∐A×{1} A
⊳ → C

with limit X ∈ C. Then there is a natural pullback diagram

C/X Fun(A⊳,C)/α

{ν} Fun(A,C)/β,

where α := µ|A⊳ , β := µ|A×{1}, and ν is the object corresponding to µ|A×[1].

Proof. Since X is the limit of µ, the ∞-category C/X is equivalent to C/µ. And as

(A× [1] ∐A A⊳)⊳ ≃ A⊳ × [1]

by Lemma 9.4, the ∞-category C/µ fits in a natural pullback square

C/µ Fun(A⊳ × [1],C)

{µ} Fun(A× [1]∐A×{1} A
⊳,C).

Now consider the commutative diagram

C/µ Fun(A⊳,C)/α Fun(A⊳ × [1],C)

{ν} Fun(A,C)/β Fun(A× [1]∐A×{1} A
⊳,C) Fun(A× [1],C)

{β} Fun(A⊳,C) Fun(A,C).

Here the bottom right square and bottom composite squares are pullbacks, hence so is the
bottom left square. Then, as the composite square in the middle column is a pullback,
the top right square is a pullback. Finally, as the top composite square is a pullback, this
implies the top left square is a pullback, as required. �

Proof of Proposition 9.3. Using Lemma 9.5, we have natural pullback diagrams

Fun(�n1,...,nk−1,X)/sCξ ,η
(n1,...,nk−1) Fun(�1,n1,...,nk−1,X)/sC(1,n1,...,nk−1)

{(cξ , cη)} Fun(�0,n1,...,nk−1,X)×2
/sC(0,n1,...,nk−1)

.
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It now follows using Lemma 5.6 that these restrict to pullback diagrams

FunCart(�n1,...,nk−1,X)/sCξ ,η
(n1,...,nk−1) FunCart(�1,n1,...,nk−1,X)/sC(1,n1,...,nk−1)

{(cξ , cη)} FunCart(�0,n1,...,nk−1,X)×2
/sC(0,n1,...,nk−1)

.

The functor ι, which takes the underlying space of an ∞-category, is a right adjoint and
hence preserves limits; applying it we therefore get, by naturality, a pullback square of
(k− 1)-uple Segal spaces

SPANk−1(X;Cξ,η) SPANk(X;C)1

{(ξ, η)} SPANk(X;C)×2
0 .

Now applying the right adjoint Uk−1
Seg we get from this a pullback square

Spank−1(X;Cξ,η) Uk−1
Seg (SPANk(X;C)1)

{(ξ, η)} Uk−1
Seg (SPANk(X;C)0)×2.

As in the proof of Proposition 8.3 we can now combine this with a pullback square we get

from the construction of Uk
Seg, to get a pullback square

Spank−1(X;Cξ,η) Spank(X;C)1

{(cξ , cη)} Spank(X;C)×2
0 ,

as required. �

Remark 9.6. In particular, if X ≃ Y ≃ ∗, so that ξ and η are determined by two objects x
and y of C, then Spank(X;C)(ξ, η) ≃ Spank−1(X;C(x, y)).

Corollary 9.7. Suppose X is an ∞-topos and C is a complete k-fold Segal object in X. Then
Spank(X;C) is a complete k-fold Segal space.

Proof. The case k = 1 is Proposition 9.2; we will prove the general case by induction on k.
Suppose we know the result for k-fold Segal objects for all k < n. By Theorem 7.18 to show
that Spann(X;C) is complete it suffices to prove that the Segal space Spann(X;C)•,0,...,0 is
complete, and the (n− 1)-fold Segal spaces Spann(X;C)(ξ, η) are complete for all ξ, η. But
Spann(X;C)•,0,...,0 is equivalent to Span1(X;C•,0,...,0), which we know is complete, and by
Proposition 9.3 we can identify Spann(X;C)(ξ, η) with Spann−1(X;Cξ,η). The (n− 1)-fold
Segal object Cξ,η is complete since complete (n− 1)-fold Segal objects in X are closed under
pullback, so Spann−1(X;Cξ,η) is complete by the inductive hypothesis. �
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10. SYMMETRIC MONOIDAL STRUCTURES ON ITERATED SEGAL SPACES

In this section we introduce (n-fold) monoids in ∞-categories, with a special case being
(n-fold) monoidal structures on iterated Segal spaces. In the limit, we use these to give a
definition of ∞-fold monoids and ∞-fold monoidal structures, which is the form in which
symmetric monoidal structures will show up below. We then show that n-fold monoids
are the same thing as En-algebras (i.e. algebras for the ∞-operad corresponding to the little
n-disc operad) and ∞-fold monoids are commutative algebras, as defined in [Lur17]; for
this we assume the reader has some familiarity with the formalism of ∞-operads, but this
discussion can easily be skipped as it is not needed in the rest of the paper.

Definition 10.1. SupposeC is an ∞-category with finite products. An (associative) monoid in
C is a simplicial object A• : �op → C such that the Segal maps An → ∏

n
i=1 A1 (induced by

the inert maps ρi : {i − 1, i} → [n]) are equivalences for all n = 0, 1, . . .. We write Mon(C)
for the full subcategory of Fun(�op,C) spanned by the monoids. If C is the ∞-category
Segk(X) or CSSk(X) we refer to monoids as monoidal k-fold (complete) Segal objects.

Definition 10.2. We inductively define an n-fold monoid in C to be an (n− 1)-fold monoid in
Mon(C). Unwinding this definition, we see that an n-fold monoid is a functor A : �n,op →
C such that the natural maps

At1,...,tn →
t1

∏
i1=1

· · ·
tn

∏
in=1

A1,...,1

are equivalences for all t1, . . . , tn. We write Monn(C) := Monn−1(Mon(C)) for the ∞-
category of n-fold monoids in C. If C is the ∞-category Segk(X) or CSSk(X) we refer to
n-fold monoids as n-monoidal k-fold (complete) Segal spaces.

Remark 10.3. Since the localization functor Segk(X) → CSSk(X) preserves products by
Lemma 7.10, the completion of an n-monoidal k-fold Segal space is an n-monoidal k-fold
complete Segal space.

Definition 10.4. We define the ∞-category Mon∞(C) of ∞-fold monoids in C as the limit of
the sequence

· · · → Monn(C)→ Monn−1(C)→ · · ·Mon(C)→ C,

where the functors are given by evaluation at [1] in the first factor of�n,op. Thus an ∞-fold
monoid in C is a sequence (A0, A1, . . .) where An is an n-fold monoid, such that An−1 ≃
An([1], –, . . . , –) for each n. If C is the ∞-category Segk(X) or CSSk(X) we refer to ∞-fold
monoids as ∞-monoidal k-fold (complete) Segal objects.

Remark 10.5. An associative monoid in C is the same thing as a category object X in C such
that X0 ≃ ∗. Because of this, we can extract a monoid ΩpX from a pointed category object,

i.e. a category object X equipped with a map p : ∗ → X (or equivalently a map p : ∗ → X0)1:
Let i denote the inclusion {[0]} →֒ �

op; then the functor i∗ : Fun(�op,C) → C, given
by evaluation at [0], has a left adjoint i! and a right adjoint i∗, given by left and right
Kan extension along i. From the formula for right Kan extensions we see i∗C is given by

(i∗C)n ≃ C×(n+1) with face maps being projections and degeneracies diagonal maps. The

1This has been changed from the published version, which has an incorrect construction of ΩpX
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map p : ∗ → X0 induces a map i∗p : ∗ ≃ i∗∗ → i∗X0, and so we can take the pullback

ΩpX X

∗ i∗X0

in category objects. We think of the monoid ΩpX as the monoid of endomorphisms of the
object p of X.

Remark 10.6. SupposeX is an ∞-topos. We have a composite functor Mon(X)→ Seg(X)→
CSS(X), where the first functor is the natural inclusion and the second is the localization
functor. Then the induced functor Mon(X) → CSS(X)∗ to pointed complete Segal objects
is fully faithful, and is left adjoint to the functor Ω : CSS(X)∗ → Mon(X) we just defined.
This can be proved by the same argument as for [GH15, Theorem 6.3.2]; we do not recall
this as we will not make any further use of this observation.

Remark 10.7. Similarly, an n-fold monoid is the same thing as an n-fold Segal object X
such that X0,...,0 ≃ X1,0,...,0 ≃ X1,...,1,0 ≃ ∗. We can again use this to extract an n-fold

monoid from a pointed n-fold Segal object (or n-fold category object) (X, p : ∗ → X).2 If
X′ := X•,...,•,0 denotes the underlying (n− 1)-fold Segal object (or n-fold category object),
then we get an n-fold monoid Ωn

pX by taking the pullback

Ωn
pX X

∗ i∗X
′,

where ∗ denotes the terminal n-fold simplicial object and i∗X
′ is obtained by taking the

right Kan extension along i : {[0]} →֒ �

op in the last simplicial coordinate. We think of
Ωn

pX as the n-fold monoid of endomorphisms of the identity (n− 1)-morphism of p. As

in the case n = 1, if X is an ∞-topos it can be shown that Ωn : CSSn(X)∗ → Monn(X) has
a fully faithful left adjoint Bn given by the composite Monn(X) → Segn(X)∗ → CSSn(X)∗
where the second functor is the localization.

Example 10.8. Given an (n+ k)-fold Segal space X and an object p ∈ X0,...,0, we can extract
an n-monoidal k-fold Segal space Ωn

pX.

Definition 10.9. Given a pointed n-fold Segal object (X, p) in C, we can extract a pointed
(n− 1)-fold Segal object by taking the pullback

X′ X1

∗ X×2
0p

2This has been changed from the published version, which has an incorrect construction of Ωn
pX.
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with X′ pointed via the degeneracy by s0 ◦ p. This defines a functor φn : Segn(C)∗ →
Segn−1(C)∗, which restricts to the forgetful functor Monn(C)→ Monn−1(C) we used above.
The (n− 1)-fold Segal object φn(X, p) is the mapping object X(p, p). Let us define Seg∞(C)∗
to be the limit of the sequence of ∞-categories

· · · → Segn(C)∗ → Segn−1(C)∗ → · · · → Seg(C)∗ → C∗.

The objects of Seg∞(C)∗, which we will call infinite delooping sequences, can then be de-

scribed as sequences ((X0, p0), (X1, p1), . . .) such that (Xn, pn) is a pointed n-fold Segal
object, together with equivalences (Xn−1, pn−1) ≃ φn(Xn, pn) for all n. The functors Ωn

we defined above sit in commutative diagrams

Segn(C)∗ Monn(C)

Segn−1(C)∗ Monn−1(C),

Ωn

φn

Ωn−1

and so taking the limit we get a functor Ω∞ : Seg∞(C)∗ → Mon∞(C) that extracts an ∞-fold
monoid from an infinite delooping sequence.

Example 10.10. Given a sequence (Xn, pn) where (Xn, pn) is a pointed (k + n)-fold Segal
space, such that (Xn−1, pn−1) ≃ (Xn(pn, pn), idpn), we can extract an ∞-monoidal k-fold
Segal space as Ω∞

p•X
•.

We now wish to compare our notions of n-fold monoids to En-algebras, where En is the
∞-operad associated to the little n-disc operad. This is a straightforward consequence of
results proved in [Lur17]:

Proposition 10.11. Let C be an ∞-category with finite products, and let C× denote the associated
Cartesian symmetric monoidal ∞-category (see [Lur17, §2.4.1]). Then:

(i) There is a natural equivalence Mon(C) ≃ Alg
E1
(C×).

(ii) For every integer n there is a natural equivalence Monn(C) ≃ Alg
En
(C×); under this equiv-

alence the forgetful map Monn(C)→ Monn−1(C) corresponds to the map induced by a map
of ∞-operads En−1 → En.

(iii) There is a natural equivalence Mon∞(C) ≃ Alg
E∞

(C×), where E∞ denotes the commutative
∞-operad.

Proof. (i) follows by combining [Lur17, Proposition 4.1.2.10], [Lur17, Proposition 2.4.2.5]
and [Lur17, Example 5.1.0.7]. Now we prove (ii) by induction: if it holds for n− 1 we have
an equivalence

Monn(C) ≃ Mon(Monn−1(C)) ≃ Mon(Alg
En−1

(C×)) ≃ Alg
E1
(Alg

En−1
(C×)×).

The universal property of the Boardman-Vogt tensor product (see [Lur17, §2.2.5]) implies
that this is naturally equivalent to Alg

E1⊗En−1
(C). By the Additivity Theorem, [Lur17, The-

orem 5.1.2.2] the tensor product E1 ⊗ En−1 is equivalent to En, so we obtain a natural
equivalence Monn(C) ≃ Alg

En
(C×). Moreover, under this equivalence the forgetful func-

tor Monn(C)→ Monn−1(C) corresponds to the map induced by

En−1 ≃ Triv⊗En−1 → E1 ⊗En−1 ≃ En,
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where Triv→ E1 is the obvious map from the trivial operad corresponding to the forgetful
functor from E1-algebras in C to C.

Taking the limit of the equivalences in (iii) as n goes to ∞, we get an equivalence
Mon∞(C) ≃ limn→∞ Alg

En
(C). Since the functors in the diagram come from maps of ∞-

operads, we can identify the right-hand side with Algcolimn→∞ En
(C). But by [Lur17, Corol-

lary 5.1.1.5] the colimit colimn→∞ En is the commutative ∞-operad E∞. Putting these
equivalences together now gives a natural equivalence Mon∞(C) ≃ Alg

E∞
(C×). �

Given these natural equivalences, we will allow ourselves to refer to n- and ∞-monoidal
(complete) k-fold Segal spaces as En-monoidal and symmetric monoidal (complete) k-fold
Segal spaces.

11. ADJOINTS AND DUALS IN ITERATED SEGAL SPACES

In this section we first review the notions of (∞, k)-categories with adjoints and (sym-
metric) monoidal (∞, k)-categories with duals from [Lur09c], and then extend these no-
tions to (∞, k)-categories internal to an ∞-topos. We begin by recalling some key facts
about adjunctions in (∞, 2)-categories due to Riehl and Verity:

Definition 11.1. Let Adj denote the generic adjunction, i.e. the universal 2-category con-
taining an adjunction between two 1-morphisms. An explicit description of Adj can be
found in [RV16, §4]. We will think of Adj as a 2-fold Segal space via the nerve functor from
2-categories to 2-fold Segal spaces. An adjunction in a (complete) 2-fold Segal space C is
then a map of 2-fold Segal spaces Adj→ C. If C is a complete 2-fold Segal space, we write
Adj(C) := Map(Adj,C) for the space of adjunctions in C.

Theorem 11.2 ([RV16, Theorem 5.3.9]). Every adjunction in the homotopy 2-category of an
(∞, 2)-category extends to an adjunction in the (∞, 2)-category. In particular, a 1-morphism in
an (∞, 2)-category has a (left or right) adjoint if and only if it has one in the homotopy 2-category.

Definition 11.3. More or less keeping the notation of [RV16], among the data defining the
(∞, 2)-category Adj we have:

• two objects + and −,
• 1-morphisms f : − → + (the left adjoint) and g : +→ − (the right adjoint),
• 2-morphisms u : id+ → gf (the unit) and c : fg→ id− (the counit), satisfying the trian-

gle identities.

Theorem 11.4 ([RV16, Theorem 5.4.22]). Suppose C is a complete 2-fold Segal space. The maps f∗

and g∗ : Adj(C)→ Mor1(C) sending an adjunction in C to the left and right adjoint, respectively,
are (-1)-connected, i.e. their fibres are either empty or contractible.

Remark 11.5. The results of Riehl and Verity are proved in the context of categories strictly
enriched in simplicial sets equipped with the Joyal model structure. Reformulating these
theorems in terms of complete 2-fold Segal spaces is justified because these two mod-
els of (∞, 2)-categories are equivalent by the unicity theorem of Barwick and Schommer-
Pries [BSP11]. (An explicit equivalence can also be obtained by combining Theorem 5.9
and Corollary 7.21 of [Hau15].)

Now we recall what it means for an (∞, n)-category to have adjoints:

Definition 11.6. Suppose C is a (complete) n-fold Segal space with n > 1. We say that C
has adjoints for 1-morphisms if every 1-morphism in the homotopy 2-category of C has a left
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and a right adjoint. Equivalently, C has adjoints for 1-morphims if the maps

f∗, g∗ : Adj(u(∞,2)C)→ Mor1(u(∞,2)C)

are both equivalences.

Definition 11.7. Suppose C is a (complete) n-fold Segal space with n > 1. For 1 < k < n
we say that C has adjoints for k-morphisms if for all objects X, Y of C the (n− 1)-fold Segal
space C(X, Y) has adjoints for (k− 1)-morphims. We say that C has adjoints if it has adjoints
for k-morphims for all k = 1, . . . , n− 1.

Remark 11.8. To see that a not necessarily complete n-fold Segal space C has adjoints, it
is not necessary to complete it: Whether C has adjoints for 1-morphisms only depends on
the homotopy 2-category, which is easy to describe without completing C. Moreover, by
[Hau17, Lemma 5.50] the mapping (n − 1)-fold Segal spaces in the completion of C are
the completions of the mapping (n− 1)-fold Segal spaces of C, so by induction we do not
need to complete to see that C has adjoints for k-morphisms also for k > 1.

Definition 11.9. We say that a monoidal n-fold Segal space C⊗ has duals if C has adjoints
when regarded as an (n + 1)-fold Segal space. We also say a symmetric monoidal or Ek-
monoidal n-fold Segal space has duals if the underlying monoidal n-fold Segal space has
duals.

Lemma 11.10. We may regard a space X as an n-fold Segal space for any n by taking the constant
functor with value X. If X is an associative monoid in S (or in other words an A∞-space), then X
has duals if and only if X is grouplike, i.e. under the induced multiplication the monoid π0X is a
group.

Proof. It suffices to check that the homotopy 1-category of X, equipped with the induced
monoidal structure, has duals. But this is just the fundamental 1-groupoid of X, and an
object of a monoidal groupoid has a dual if and only if it has an inverse. �

We now prove a characterization of n-fold Segal spaces with adjoints that will be useful
later:

Proposition 11.11. Suppose C is a complete n-fold Segal space. Then C has adjoints for k-
morphisms for any 2 < k < n if and only if for every map φ : X → Ob(C)×2 in S, the complete
(n− 1)-fold Segal space Cφ, defined by the pullback square

Cφ C1

X C×0 2

in (n− 1)-fold Segal spaces, has adjoints for (k− 1)-morphisms.

The proof depends on the following observation:

Lemma 11.12. Suppose given a morphism of n-fold Segal spaces C → X, where X is constant. If
all the fibres Cx for x ∈ X have adjoints for k-morphisms, then so does C.

Proof. To prove this, we induct on n. For n = 1, there is nothing to prove, so we may
suppose that the statement is true for (n− 1)-fold Segal spaces for all k = 1, . . . , n− 1.
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We first consider the case k = 1. Since Adj(X) ≃ Mor1(X) ≃ X, we have a commutative
diagram

Adj(C) Mor1(C)

X.

Since the functors Adj(–) and Mor1(–) preserve limits, the induced map on fibres over
p ∈ X can be identified with Adj(Cp) → Mor1(Cp). By assumption this is an equivalence
for all p ∈ X, and so Adj(C) → Mor1(C) is also an equivalence, i.e. C has adjoints for
1-morphisms.

For k > 2, we must show that C(c, d) has adjoints for (k − 1)-morphisms for all c, d ∈
Ob(C). But by Lemma 7.24 there is a map C(c, d)→ Ωπ(c),π(d)X whose fibres are mapping

(n − 1)-fold Segal spaces in the fibres of π, and so have adjoints for (k − 1)-morphisms.
The result therefore holds by the inductive hypothesis. �

Proof of Proposition 11.11. One direction is obvious: If Cφ has adjoints for (k− 1)-morphisms
for every map φ, then in particular this is true for the (n− 1)-fold Segal spaces C(x, y) for
all objects x, y, so C has adjoints for k-morphisms.

For the other direction we must show that if C has adjoints for k-morphisms then Cφ has
adjoints for (k − 1)-morphisms for all φ. By Lemma 11.12, to see this it suffices to show
that the fibres of the map Cφ → X have adjoints for (k − 1)-morphisms. But the fibre of
this map at p ∈ X is C(a, b) where φ(p) ≃ (a, b), which by assumption has adjoints for
k-morphisms. �

An advantage of the characterization of Proposition 11.11 is that this has a straightfor-
ward generalization to other ∞-topoi. We introduce this after some preliminary discus-
sion:

Definition 11.13. Suppose X is an ∞-topos, and let

r∗ : S ⇄ X : r∗

denote the unique geometric morphism from the ∞-category of spaces. By Proposition 7.17,
this induces an adjunction

Ln(r
∗)∗ : CSSn(S) ⇄ CSSn(X) : (r∗)∗

If C is a complete 2-fold Segal object in X, then an adjunction in C is a functor (r∗)∗Adj→ C.
We write Adj(C) ∈ X for the mapping object MAP((r∗)∗Adj,C) in X, defined in Def-
inition 7.12. Similarly, if C is a complete k-fold Segal object in X, we write Ob(C) :=
MAP((r∗)∗C0,C) ≃ C0,...,0 and Morn(C) := MAP((r∗)∗Cn,C) for n = 1, . . . , k.

Lemma 11.14. Let C be a complete 2-fold Segal object in an ∞-topos X. Then the morphisms f∗

and g∗ : Adj(C)→ Mor1(C) are (−1)-truncated.

Proof. We must show that for any X ∈ X, the map Map
X
(X, Adj(C))→ Map

X
(X, Mor1(C))

is (−1)-truncated. But there is a natural equivalence

Map
X
(X, Adj(C)) ≃ MapCSS2(X)(X × (r∗)∗Adj,C) ≃ MapCSS2(X)((r

∗)∗Adj,CX)

≃ MapCSS2(S)(Adj, (r∗)∗C
X) ≃ Adj((r∗)∗C

X),
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and similarly Map
X
(X, Mor1(C)) ≃ Mor1((r∗)∗C

X). Thus this follows by applying Theo-

rem 11.4 to the complete 2-fold Segal spaces (r∗)∗CX for all X ∈ X. �

Definition 11.15. Suppose C is a complete n-fold Segal object in X with n > 1. We say that
C has adjoints for 1-morphisms if the maps f∗, g∗ : Adj(u(∞,2)C) → Mor1(u(∞,2)C) are both
equivalences.

Definition 11.16. Suppose C is a complete n-fold Segal object in X with n > 1. For 1 <

k < n we say that C has adjoints for k-morphisms if for all maps φ : X → Ob(C)×2 in X, the
complete (n− 1)-fold Segal object Cφ, defined by the pullback square

Cφ C1

X C×0 2

in (k− 1)-fold Segal objects, has adjoints for (k− 1)-morphisms. We say that C has adjoints
if it has adjoints for k-morphims for all k = 1, . . . , n− 1.

Definition 11.17. If C is a (not necessarily complete) n-fold Segal object in X, we say that
C has adjoints (for k-morphisms) if this is true of the completion LC.

Definition 11.18. We say that a monoidal complete n-fold Segal space C has duals if it has
adjoints when regarded as an (n + 1)-fold Segal space. We also say a symmetric monoidal
or Ek-monoidal complete n-fold Segal object has duals if the underlying monoidal complete
n-fold Segal object has duals.

Proposition 11.19. We may regard an object X ∈ X as a complete n-fold Segal object for any n
by taking the constant functor with value X. If X is an associative monoid in X then X has duals
if and only if X is grouplike, i.e. it is a groupoid object in the sense of Definition 7.3.

Proof. Write C for the associative monoid corresponding to X, regarded as an (n + 1)-fold
Segal object in X. Then by Lemma 11.14, the (n + 1)-fold Segal object C has adjoints for 1-
morphisms if and only if for every Y ∈ X the (n + 1)-fold Segal space (r∗)∗CY has adjoints
for 1-morphisms. Similarly, C is a groupoid object if and only if (r∗)∗CY is a groupoid
object for all Y ∈ X. The result therefore follows from Lemma 11.10. �

12. FULL DUALIZABILITY FOR ITERATED SPANS

In this section we will show that Spank(C) is symmetric monoidal, and that all its objects
are fully dualizable — in fact, we will show that Spank(C) has duals.

Proposition 12.1. Suppose C is an ∞-category with finite limits. Then the (∞, k)-category
Spank(C) is symmetric monoidal.

Proof. By Proposition 8.3 we can identify Spank(C) with the (∞, k)-category Spank+1(C)(∗, ∗)
of endomorphisms of ∗ in Spank+1(C). The sequence (Spank(C), ∗) of pointed k-fold Segal
spaces therefore defines an infinite delooping sequence Span∞+k(C) in k-fold complete Se-
gal spaces. From this we can extract an ∞-fold monoid Ω∞Span∞+k(C) in complete k-fold
Segal spaces. By Proposition 10.11 this is equivalent to a symmetric monoidal structure on
Spank(C). �
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Remark 12.2. In the case k = 1, an explicit construction of this symmetric monoidal struc-
ture can also be found in [BGS16].

Lemma 12.3. Let C be an ∞-category with finite limits. For all k ≥ 2, the 1-morphisms in
Spank(C) have adjoints.

Proof. It suffices to check this in the homotopy 2-category of Spank(C). A 1-morphism
φ : A→ B in Spank(C) is a span

X

A B.

We will show that the reversed span φ̄ given by

X

B A

is a right adjoint to this, with unit η : idA → φ̄φ given by the span

X

A X×B X

∆

over A× A, and counit ǫ : φφ̄→ idB given by

X

X ×A X B

∆

over B× B, where ∆ denotes the relevant diagonal maps. To see this it suffices to check
that the triangle equations hold up to homotopy. The 2-morphism φη : φ → φφ̄φ is given
by the span

X ×B X

X X ×B X ×A X,

π1 id× ∆

and ǫφ is given by

X ×A X

X ×B X ×A X X.

∆× id π2

The composite φ→ φ of these two maps is therefore given by the pullback

(X ×B X)×(X×BX×AX) (X ×A X).
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We claim that this pullback is equivalent to the limit of the diagram

X X

X X X

A B.

id id id id

To see this, take the right Kan extension of this diagram along the inclusion into the cate-
gory with shape

◦ ◦

• ◦ •

• • •

• •,

where ◦ denotes the new objects. This produces a diagram

X ×B X X ×A X

X X ×A X ×B X X

X X X

A B,

whose limit can be identified with (X ×B X) ×(X×BX×AX) (X ×A X) by a simple cofinal-
ity argument. On the other hand, since right Kan extensions are transitive, this must
agree with the limit of the first diagram, which can be identified with X (again by an
easy cofinality argument). Thus (ǫφ) ◦ (φη) ≃ idφ, and the other triangle equivalence,
(φ̄ǫ) ◦ (ηφ̄) ≃ idφ̄, is proved similarly. �

Theorem 12.4. The (∞, k)-category Spank(C) has adjoints.

Proof. We prove this by induction on k. For k = 1, there is nothing to prove. Suppose
we have shown that for all C the (∞, k − 1)-category Spank−1(C) has adjoints. We saw
in Lemma 12.3 that Spank(C) has adjoints for 1-morphisms, and for every pair X, Y of
objects in C the (∞, k− 1)-category Spank(C)(X, Y) can be identified with Spank−1(C/X×Y)
by Proposition 8.3, and so has adjoints by the inductive hypothesis. Thus Spank(C) also
has adjoints. �

Corollary 12.5. The (symmetric) monoidal (∞, k)-category Spank(C) has duals.



ITERATED SPANS AND CLASSICAL TOPOLOGICAL FIELD THEORIES 55

Proof. As a monoidal (∞, k)-category, we may identify Spank(C) with the endomorphism
(∞, k)-category Spank+1(C)(∗, ∗). Since Spank+1(C) has adjoints, it follows that Spank(C)
has duals. �

Invoking the cobordism hypothesis in the form [Lur09c, Theorem 2.4.6], we get:

Corollary 12.6. Suppose C is an ∞-category with finite limits. Then every object C of C defines a

framed k-dimensional TQFT Zk
C : Bordfr

k → Spank(C), where Bordfr
k denotes the (∞, k)-category

of framed cobordisms.

Remark 12.7. For D an ∞-category with finite colimits, we write Cospank(D) for the
(∞, k)-category Spank(D

op). If Bordun
k denotes the unoriented cobordism (∞, k)-category,

it is reasonable to expect that there is a symmetric monoidal “forgetful functor” Bordun
k →

Cospank(S
fin), where Sfin is the ∞-category of finite CW-complexes. This would send a

cobordism between manifolds with corners to the iterated cospan given by the inclusions
of the underlying homotopy types of the incoming and outgoing boundaries and corners.

If we assume this, we can give an explicit construction of the framed field theoryZk
C valued

in Spank(C) associated to an object C ∈ C:

(1) If C is an ∞-category with finite limits, then C is cotensored over Sfin. Thus given C ∈ C

there is a functor C(–) : (Sfin)op → C. Since Spank(–) is natural in limit-preserving

functors, this induces a functor C(–) : Cospank(S
fin)→ Spank(C) for all k.

(2) Identifying Spank(C) as an endomorphism (∞, k)-category in Spank+n(C) for all n, we

conclude that the functor C(–) is En-monoidal for all n, hence symmetric monoidal.

(3) Composing, we get a symmetric monoidal functor Ẑk
C : Bordun

k → Spank(C) that sends

a cobordism X to CX and the iterated span coming from the iterated boundary of X.

(4) By the cobordism hypothesis, the composite of Ẑk
C with the forgetful functor Bordfr

k →

Bordun
k is the unique symmetric monoidal functor Bordfr

k → Spank(C) that sends the

point to C, hence it must be equivalent to Zk
C.

This construction would also allow us to understand the O(k)-action on the space ιC of
objects of Spank(C): This action is given on the space of TQFTs by acting by O(k) on

the framings in Bordfr
k . Since we know all the framed TQFTs factor through the forgetful

functor Bordfr
k → Cospank(S), which is O(k)-equivariant with respect to the trivial action

on the target, we see that the action on ιC is trivial. As a consequence, we can also classify
other kinds of TQFTs in Spank(C), since by [Lur09c, Theorem 2.4.18] these are determined
by O(k)-equivariant maps to ιC. For example, the space of unoriented field theories is
equivalent to Map(BO(n),C) — when C is the ∞-category S of spaces, this is precisely the
∞-groupoid of spaces equipped with an n-dimensional vector bundle.

Actually constructing such a forgetful functor from cobordisms to cospans would, how-
ever, depend on the details of a construction of Bordun

k , such as that of Calaque and Sche-
imbauer [CS15], and we will not attempt to do so here.

13. FULL DUALIZABILITY FOR ITERATED SPANS WITH LOCAL SYSTEMS

In this section we consider dualizability for iterated spans with local systems. We’ll
prove that if X is an ∞-topos and C is a complete k-fold Segal object in X, then a symmetric
monoidal structure on C induces one on Spank(X;C). Moreover, we will show that if C has
duals then the same is true of Spank(X;C).
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Proposition 13.1. Suppose C is a symmetric monoidal complete k-fold Segal object in an ∞-topos
X. Then the (∞, k)-category Spank(X;C) is symmetric monoidal.

Proof. Since C is symmetric monoidal, we can choose a sequence of “deloopings” (Ci, ci)
such that C0 = C and Ci ≃ Ci+1(ci+1, ci+1), i.e. an infinite delooping sequence in com-
plete k-fold Segal objects. By Proposition 9.3, we can then identify Spank+i(X;Ci) with the
mapping (∞, k + i)-category

Spank+i+1(X;Ci+1)(xi+1, xi+1)

in Spank+i+1(X;Ci+1), where the object xi+1 is the map ∗ → Ob(Ci+1) corresponding to
the object ci+1. Thus we get an infinite delooping sequence Span∞+k(X;C), from which
we can extract an ∞-fold monoid Ω∞Span∞+k(X;C) in complete k-fold Segal spaces. By
Proposition 10.11 this is equivalent to a symmetric monoidal structure on Spank(X;C). �

Proposition 13.2. Suppose C is a complete k-fold Segal object in X that has adjoints for 1-
morphisms. Then Spank(X;C) has adjoints for 1-morphisms.

Proof. Suppose given a 1-morphism in Spank(X;C), i.e. a span A← X → B in X equipped
with a map to the span Ob(C) ← Mor1(C) → Ob(C). We will show that a right adjoint to
this morphism is given by B← X → A, now with X equipped with the map

X → Mor1(C)
(f∗)−1

−−−→ Adj(C)
g∗

−→ Mor1(C),

which interchanges the source and target of 1-morphisms in C.
The unit for the adjunction is given by the span A ← X → X ×B X over A× A, where

the map X → Mor2(C) is the composite

X → Mor1(C)
(f∗)−1

−−−→ Adj(C)
u∗
−→ Mor2(C)

and the counit by B← X → X ×A X, where X is now equipped with

X → Mor1(C)
(f∗)−1

−−−→ Adj(C)
c∗
−→ Mor2(C).

The triangle identities for the adjunction then follow by combining the proof of Lemma 12.3
with the homotopies coming from the triangle identities for the generic adjunction. Thus
all 1-morphisms in Spank(X;C) have right adjoints. To see that they also have left adjoints,
we simply interchange the roles of the morphisms f∗ and g∗ above. �

Theorem 13.3. Suppose C is a complete k-fold Segal object in X that has adjoints. Then Spank(X;C)
has adjoints.

Proof. We will show that if C has adjoints for i-morphisms then Spank(X;C) also has ad-
joints for i-morphisms. The case i = 1 was proved in Proposition 13.2. Suppose i >

1, then we must show that Spank(X;C)(ξ, η) has adjoints for (i − 1)-morphisms for all
ξ, η ∈ Spank(X;C). By Proposition 9.3, this (k− 1)-fold Segal space can be identified with
Spank−1(X;Cξ,η), and by definition (or by Proposition 11.11 in the case of spaces) Cξ,η has
adjoints for (i − 1)-morphisms if C has adjoints for i-morphisms. Thus by induction we
see that Spank(X;C) has adjoints for i-morphisms. �

Corollary 13.4. Suppose C is a (symmetric) monoidal complete k-fold Segal object in X that has
duals. Then the (symmetric) monoidal (∞, k)-category Spank(X;C) also has duals.
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Proof. Since C is monoidal, by Definition 11.18 there is a pointed complete (n + 1)-fold
Segal object (C⊗, ∗) with adjoints such that C is the endomorphism n-fold Segal object
C⊗(∗, ∗). Then Spank(X;C) is the endomorphism (∞, n)-category Spank(X;C⊗)(x, x), where
x is the object ∗ → Ob(C⊗) corresponding to the base point. By Theorem 13.3 the (∞, n +
1)-category Spank(X;C⊗) has adjoints, hence the monoidal (∞, n)-category Spank(X;C)
has duals. �

Invoking the cobordism hypothesis, we get:

Corollary 13.5. Suppose C is a symmetric monoidal complete k-fold Segal object in X that has

duals. Every morphism φ : X → Ob(C) in X defines a framed k-dimensional TQFT Zk
φ : Bordfr

k →

Spank(X;C), where Bordfr
k denotes the (∞, k)-category of framed bordisms.

Example 13.6. Suppose A is a grouplike E∞-algebra in an ∞-topos X. Then by Proposi-
tion 11.19 we may regard A as a symmetric monoidal n-fold complete Segal object with
duals in X for any n, and so we get for every n a symmetric monoidal (∞, n)-category
Spann(X; A). The underlying (∞, n)-category of this is just Spann(X/A), but the symmet-
ric monoidal structure is not that coming from the Cartesian product in X/A (i.e. the fibre
product over A); instead, the tensor product of two maps X, Y → A is the product X × Y
equipped with the composite map X × Y → A × A → A where the second map is the
multiplication in A. Similarly, the unit for the symmetric monoidal structure is the unit
map ∗ → A, and the dual of an object X → A is the composite X → A → A where the
second map is the inverse mapping for A.

Remark 13.7. According to [Lur09c, Proposition 3.2.7], the ∞-category Spank(S;C), where
C is a complete k-fold Segal space, should have a universal property. Namely, if B is
a symmetric monoidal (∞, k)-category equipped with a symmetric monoidal functor to
Spank(S), then the space of symmetric monoidal functors B→ Spank(S;C) over Spank(S)
should be naturally equivalent to the space of symmetric monoidal functors from the
pullback B ×Spank(S)

Spank(S∗) to C. Moreover, [Lur09c, Proposition 3.2.6] gives a de-

scription of the general cobordism (∞, k)-category Bord
(X,ζ)
k (where ζ is a map of spaces

X → BO(k)) as a pullback of this form, namely

Bord
(X,ζ)
k Spank(S∗)

Bordun
k Spank(S)

where the bottom map is the unoriented TQFT determined by ζ. If we assume this, as well
as the consequences of a hypothetical forgetful functor from cobordisms to cospans dis-
cussed in Remark 12.7, we would get much more information about field theories valued
in Spank(S;C). For example, we would be able to describe the O(k)-action on the space
of objects: the forgetful functor Spank(S;C)→ Spank(S) induces an O(k)-equivariant map
from framed field theories valued in Spank(S;C) to those valued in Spank(S). Since the
O(k)-action on the target is trivial, this would mean that in the source O(k) can only act
on the fibres of this map. The fibre at X ∈ S can be identified with the space of (X, ζ)-
field theories valued in C, where ζ is the map X → ∗ → BO(k); invoking the cobordism
hypothesis it would follow that the fibre is Map(X, Ob(C)), with the obvious O(k)-action
induced from that on Ob(C).
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14. THE (∞, 1)-CATEGORY OF LAGRANGIAN CORRESPONDENCES

In this section we will use the theory of symplectic derived stacks and Lagrangian mor-
phisms developed by Pantev, Toën, Vaquié, and Vezzosi [PTVV13] to construct an ∞-
category Lagn

(∞,1) of n-symplectic derived stacks, with morphisms given by Lagrangian

correspondences between them. This construction is based on ideas of Calaque, who
describes the underlying homotopy category in [Cal15]. We begin by briefly recalling
the setup for derived stacks and (closed) p-forms; for full details we refer to [TV08] and
[PTVV13].

Definition 14.1. Let k be a field of characteristic 0. We write cdga≤0
k for the category of

non-positively graded commutative algebras in cochains over k, equipped with the usual

model structure, and dAff
op
k for the associated ∞-category. We may equip this ∞-category

with an étale topology, as described in [TV08], and we write dStk := Shét(dAffk) for the
associated (very large) ∞-topos of étale sheaves of (large) spaces.

Remark 14.2. It is not necessary to take k to be a field of characteristic zero. However,
for more general rings commutative differential graded algebras are often not the most
appropriate notion of “derived rings”, the more useful notions being simplicial commuta-
tive algebras and (connective) E∞-algebras. For a field of characteristic zero, however, all
three notions coincide.

Remark 14.3. For many purposes we do not want to consider arbitrary objects of dStk,
but only some subclass of “geometric” objects. The notion of derived Artin stacks provides
a good definition of such geometric stacks; roughly speaking they are derived stacks ob-
tained as iterated realizations of smooth groupoids — see [TV08] for details. In particular,
derived Artin stacks always have cotangent complexes. As in [PTVV13] we will implicitly
add the assumption that all derived Artin stacks considered are locally of finite presen-
tation, so that their cotangent complexes are dualizable quasicoherent sheaves. We write

dStArt
k for the full subcategory of dStk spanned by the derived Artin stacks locally of finite

presentation — by [TV08, Corollary 1.3.3.5] this is closed under finite limits in dStk.

Definition 14.4. In [PTVV13], functors Ωp and Ω
p
cl from dAff

op
k to the ∞-category of cochain

complexes that take a derived affine scheme to its complex of p-forms and closed p-forms,

respectively, are constructed and shown to be étale sheaves. We let Ap[n] and A
p
cl[n] be the

derived stacks (i.e. sheaves of spaces on dStk) obtained from the shifts Ωp[n] and Ω
p
cl[n]

via the Dold-Kan construction. If X is a derived stack, we refer to Ap[n](X) as the space

of n-shifted p-forms on X. There is a “forgetful” map Ω
p
cl → Ωp, which induces natural

transformations A
p
cl[n] → Ap[n], but the components are not in general monomorphisms

(i.e. inclusions of a subset of the connected components).

Remark 14.5. Since A
p
cl[n] comes from a sheaf of cochain complexes on dStk, and hence

a sheaf of spectra, we may regard it as a sheaf of grouplike E∞-spaces, i.e. a grouplike
E∞-monoid in dStk. Thus by Example 13.6 there is a symmetric monoidal (∞, k)-category

Spank(dStk;A
p
cl[n]) with duals for all p, n.

Definition 14.6. If X is a derived Artin stack, an n-shifted 2-form ω ∈ A2[n](X) corre-
sponds to a morphism Λ2

TX → OX[n] of quasi-coherent sheaves on X, where the tangent
complex TX is the dual of the cotangent complex LX . We say that ω is non-degenerate if the
induced morphism TX → LX[n] is an equivalence, and write A2

nd[n](X) for the collection

of components of A2[n](X) corresponding to the non-degenerate n-shifted 2-forms.
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Definition 14.7. An n-shifted symplectic form on a derived Artin stack X is a non-degenerate
closed 2-form, i.e. an element of the pullback

Sympln(X) := A2
cl[n](X)×A2[n](X) A

2
nd[n](X),

which is a subset of the connected components of A2
cl[n](X). An n-symplectic derived Artin

stack (X, ω) is a derived Artin stack X equipped with an n-shifted symplectic form ω.

Definition 14.8. Suppose X is a derived stack, and ω is an n-shifted closed 2-form on
X. If f : L → X is a morphism of derived stacks, then an ω-isotropic structure on f is a
commutative square

L X

∗ A2
cl[n].

f

ω

0

Equivalently, it is a path from 0 to the composite closed n-shifted 2-form f ∗ω in A2
cl[n](L).

Definition 14.9. Suppose (X, ω) is an n-symplectic derived Artin stack, and f : L→ X is a
morphism of derived Artin stacks. Then an isotropic structure on f induces a commutative
square (see [PTVV13, §2.2] for the details)

TL f ∗TX

0 LL[n]

of quasi-coherent sheaves on L. We say that the isotropic structure is Lagrangian if this
square is Cartesian.

Definition 14.10. Suppose (X, ωX) and (Y, ωY) are n-shifted symplectic derived Artin
stacks. A span

L

X Y

f g

in (dStArt
k )/A2

cl[n]
induces a commutative square

TL f ∗TX

g∗TY LL[n]

of quasi-coherent sheaves on L. We say the span is a Lagrangian correspondence if this square
is Cartesian.
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Remark 14.11. If we write Y for the derived stack Y equipped with the negative of the
symplectic form of Y, which is also a symplectic form, we may identify spans of the form

X
f
←− L

g
−→ Y over A2

cl[n] with isotropic morphisms L → X × Y: Making the maps f and

g into a span over A2
cl[n] precisely corresponds to choosing a path from f ∗ωX to g∗ωY

in the space of closed 2-forms on L, which is the same as giving a path from the zero
form to f ∗ωX − g∗ωY. Under this equivalence, Lagrangian correspondences correspond

to Lagrangian morphisms to X × Y: since quasicoherent sheaves on L form a stable ∞-
category, producing a pullback square

TL f ∗TX

g∗TY LL[n]

is the same thing as producing a fibre sequence

TL f ∗TX ⊕ g∗TY

0 LL[n],

where the right vertical map is the difference of the two maps to LL[n] in the first square.

Proposition 14.12 ([Cal15, Theorem 4.4]). Suppose X, Y, and Z are n-symplectic derived Artin

stacks, and X
f
←− K

g
−→ Y and Y

h
←− L

k
−→ Z are Lagrangian correspondences. Then the composite

span

K ×Y L

X Z

is also a Lagrangian correspondence.

Proof. A Cartesian square

N K

L Y

φ

ψ g

h
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induces a commutative diagram

TN φ∗TK φ∗ f ∗TX

ψ∗TL φ∗g∗TY φ∗LK[n]

ψ∗k∗TZ ψ∗LL[n] LN [n].

Here the upper right square is Cartesian since X ← K → Y is a Lagrangian correspon-
dence, and the bottom left square is Cartesian since Y ← L → Z is a Lagrangian corre-
spondence. The top left square is Cartesian since N is the fibre product of K and L over Y.
Finally, since Y is symplectic we have an equivalence φ∗g∗TY ≃ φ∗g∗LY[n], and so we can
identify the bottom right square with a shift of the dual of the top left square. The bottom
right square is therefore coCartesian, but we’re in a stable ∞-category so coCartesian and
Cartesian squares coincide. Thus the boundary square in the diagram is also Cartesian,
which by definition means that X ← N → Z is a Lagrangian correspondence. �

Definition 14.13. By Proposition 14.12, Lagrangian correspondences are closed under
composition in the homotopy category of Span1(dStk;A2

cl[n]). We can therefore define

the ∞-category Lagn
(∞,1) to be the subcategory of Span1(dStk;A2

cl[n]) whose objects are the

n-symplectic derived Artin stacks and whose 1-morphisms are the Lagrangian correspon-
dences between these.

Remark 14.14. The idea of considering symplectic derived stacks and Lagrangian corre-

spondences as a subcategory of Span1(dStk;A
p
cl[n]) is taken from [Sch14b].

Lemma 14.15. The symmetric monoidal structure on Span1(dStk;A2
cl[n]) induces a symmetric

monoidal structure on Lagn
(∞,1).

Proof. To show that Lagn
(∞,1) inherits a symmetric monoidal structure, it suffices to prove

that it contains the unit of the symmetric monoidal structure on Span1(dStk;A2
cl[n]), and

that its objects and morphisms are closed under this. The unit is the map ∗ → A2
cl[n]

corresponding to 0, which is obviously symplectic. If X and Y are n-symplectic derived
Artin stacks, then their tensor product is the Cartesian product X × Y equipped with the
sum of the symplectic forms on X and Y, which is again symplectic. Finally, the tensor
product of two Lagrangian correspondences is again their Cartesian product, which is
Lagrangian with respect to the sum symplectic structures (since we just get the direct sum
of the two Cartesian squares of quasi-coherent sheaves, which is again Cartesian). �

Proposition 14.16. With respect to the induced symmetric monoidal structure, all n-symplectic
derived Artin stacks are dualizable in Lagn

(∞,1).

Proof. Let (X, ω) be an n-symplectic derived Artin stack. We must show that the dual of
X is also an n-symplectic derived Artin stack, and the evaluation and coevaluation maps,
as described in the proof of Proposition 13.2, are Lagrangian correspondences. By Exam-
ple 13.6 the dual of X is X̄, meaning X equipped with the negative −ω of its symplectic
form. This is again symplectic, as the morphism TX → LX [n] induced by −ω is simply
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the negative of that induced by ω, and so is also an equivalence. The coevaluation map is

given by the span ∗ ← X
∆
−→ X̄ × X, where ∆ is the diagonal and X̄ × X is equipped with

the sum symplectic structure (−ω, ω). The induced diagram of quasi-coherent sheaves on
X is

TX TX ⊕TX

0 LX [n],

where the top horizontal map is (−id, id). This is Cartesian if and only if the square

TX TX

TX LX [n]

is Cartesian, where the top horizontal and left vertical maps are both the identity, but this
is true since X is symplectic as this means the other two maps, which are also identical,
are equivalences. Thus this span is a Lagrangian correspondence. The evaluation map

X̄ × X
∆
←− X → ∗ is likewise a Lagrangian correspondence by a similar argument. �

Corollary 14.17. Every n-sympectic derived Artin stack X determines a framed 1-dimensional
TQFT

ZX : Bordfr
1 → Lagn

(∞,1).

REFERENCES

[Ati88] Michael Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988),
175–186 (1989).

[BD95] John C. Baez and James Dolan, Higher-dimensional algebra and topological quantum field theory, J.
Math. Phys. 36 (1995), no. 11, 6073–6105.

[Bar05] Clark Barwick, (∞, n)-Cat as a closed model category, 2005. Thesis (Ph.D.)–University of Pennsylva-
nia.

[Bar13a] , On the Q-construction for exact ∞-categories (2013), available at arXiv:1301.4725.
[Bar13b] , From operator categories to topological operads (2013), available at arXiv:1302.5756.

[Bar17] , Spectral Mackey functors and equivariant algebraic K-theory (I), Adv. Math. 304 (2017), 646–727,
available at arXiv:1404.0108.

[BGS16] Clark Barwick, Saul Glasman, and Jay Shah, Spectral Mackey functors and equivariant algebraic K-
theory (II) (2016), available at arXiv:1505.03098.

[BSP11] Clark Barwick and Christopher Schommer-Pries, On the unicity of the homotopy theory of higher cate-
gories (2011), available at arXiv:1112.0040.

[BV73] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture
Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR0420609

[Cal15] Damien Calaque, Lagrangian structures on mapping stacks and semi-classical TFTs, Stacks and cate-
gories in geometry, topology, and algebra, Contemp. Math., vol. 643, Amer. Math. Soc., Providence,
RI, 2015, pp. 1–23, available at arXiv:1306.3235.

[CS15] Damien Calaque and Claudia Scheimbauer, A note on the (∞, n)-category of cobordisms (2015), avail-
able at arXiv:1509.08906.

[DS11] Daniel Dugger and David I. Spivak, Mapping spaces in quasi-categories, Algebr. Geom. Topol. 11
(2011), no. 1, 263–325.

arXiv:1301.4725
arXiv:1302.5756
arXiv:1404.0108
arXiv:1505.03098
arXiv:1112.0040
arXiv:1306.3235
arXiv:1509.08906


ITERATED SPANS AND CLASSICAL TOPOLOGICAL FIELD THEORIES 63

[DK12] Tobias Dyckerhoff and Mikhail Kapranov, Higher Segal spaces I (2012), available at
arXiv:1212.3563.

[Fre94] Daniel S. Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994), no. 2,
343–398.

[FHLT10] Daniel S. Freed, Michael J. Hopkins, Jacob Lurie, and Constantin Teleman, Topological quantum field
theories from compact Lie groups, A celebration of the mathematical legacy of Raoul Bott, CRM Proc.
Lecture Notes, vol. 50, Amer. Math. Soc., Providence, RI, 2010, pp. 367–403.

[GH15] David Gepner and Rune Haugseng, Enriched ∞-categories via non-symmetric ∞-operads, Adv. Math.
279 (2015), 575–716, available at arXiv:1312.3178.

[GHN17] David Gepner, Rune Haugseng, and Thomas Nikolaus, Lax colimits and free fibrations in ∞-categories,
Doc. Math. 22 (2017), 1225–1266, available at arXiv:1501.02161.

[Gra07] Marco Grandis, Higher cospans and weak cubical categories (Cospans in algebraic topology, I), Theory
Appl. Categ. 18 (2007), No. 12, 321–347.

[Gro15] Moritz Groth, A short course on ∞-categories (2015), available at arXiv:1007.2925.
[Gro63] Alexander Grothendieck, Revêtements étales et groupe fondamental, Séminaire de Géométrie
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