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TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 340, Number 2, December 1993

EHP SPECTRA AND PERIODICITY. II: A-ALGEBRA MODELS

BRAYTON GRAY

ABSTRACT. The results of part I suggest that for small m , the Smith-Toda spec-
trum V(m) can be approximated by spaces having universal mapping proper-
ties and interlocking fibrations. For each m, a A-algebra model representing
the Bousfield-Kan E’ term for these spaces is constructed, and all of the ideal
results are proven on the chain level.

INTRODUCTION

The classical EHP sequences fit together to form the EHP spectral sequence.
This filters the stable homotopy groups of spheres by “sphere of origin” and by
its self-referential nature, creates a technology both for cal¢ulating homotopy
groups and for analyzing results beyond the range i which we have a complete
calculation.

In [G] we showed that the sphere spectrum is not the only spectrum with such
a filtration, and gave evidence which suggests that for large enough primes, the
spectrum V (m), if it exists, should also have EHP sequences.

Constructing the fibrations suggested in [G] will not be an easy task for large
values of m . It is our purpose here to present a A-algebra version of these
EHP sequences in the spirit of Bousfield and Curtis [BC, C]. They describe
short exact sequences of chain complexes:

H:0—A2n) 5 AQn+1)E AQap+1)—o0,
H:0—-A2n-1)EA2n) & ACap-1)—0

which induce long exact sequences in homology that correspond to the E! terms
of the unstable Adams spectral sequences for the appropriate homotopy groups.

In addition to the EHP sequences, we produce short exact sequences corre-
sponding to the sequences CMN, RCMN, and E? of [G] which relate adjacent
values of m and establish the connection with periodicity. Thus, in the “world
of ext”, the conjectures in [G] are valid.

Throughout this paper we will be working at a prime p > 2. In 2.3 we define
complexes Agyy(n) with A_y)(n) = A(n). Our results are then summarized as

Theorem. There are chain complexes Ay (n) defined for n > 0 and m > —1
and inclusions Agyy(n) C Aimy(n + 1) such that
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618 BRAYTON GRAY
w ~
Ay = JAm(n) = E(t0, ... , Tm) ®A
n=1

where E(tgy, ... , Tm) IS the indicated subalgebra of the dual io the Steenrod
algebra. Furthermore there are exact EHP sequences:

H: 0 = Am(2n) 5 Am@n+1) B Apy2up+2pm1—1) - 0,
H:0 = Am2n—1) 5 Am@n) B Am@rp-1) -0
and Ay (0) is acyclic.

There are also exact sequences:

E: 0o Am@n—-1)5 Apm@n+1) 5 Apan(2np—1) -0,
CMN: 00— Am(2n+1) 5 Apmynu+1) 53 Apm(2n+2p™1 +1) - 0,
RCMN : 0 — Apmy2n+ 1) 3 Apmeny(2n) 53 Apmyn+2p™1 = 1) > 0

corresponding to the double suspension sequence and the Cohen-Moore-
Neisendorfer sequences of [G].

Finally Ay is a differential algebra in such a way that

(@) Amy()g * Agmy(n + ) C Agmy(n),

(b) The connecting homomorphism in the exact sequence CMN can be rep-
resented by a chain map of degree g, = 2(p™ —1):

Um © A(m_l)(Zn +2p™ — 1) — A(,,,_l)(Zn - 1)
such that the diagram
A(m_l)(Zn +2p"—-1) — A(m_l)(2n +1)

IEZ \ lEZ
A(,,,_l)(Zn +2p"=-3) —— A(m_l)(2n -1)

commutes where the horizontal maps are left composition with an element
Um € Agm—1)(2r + 1), for r>0.

Note that property (a) generalizes a result of Harper and Miller in case m =
—1 [HM, 1.17] and reflects the theory of compositions suggested in [G]. In
property (b) the map v,, has degree g, and is the algebraic analog of a v,
self-map.

This theorem summarizes the results in 2.3, 3.6, 3.7, 4.1, 4.2, 5.1, 5.2, 6.3,
6.5 and 6.6.

One striking corollary concerns v,, periodic homotopy:

Corollzry 5.2.
U Apmey (21 = 1) 2 05 A1y 21+ 1) 205 (E(T05 -+ > Tme1) ® A).
This generalizes one of the main results of [HM].

In §7, we introduce the category of unstable right A modules, which we take
to be an approximation to the unstable homotopy category. The properties of
this category reinforce various delooping conjectures of [G].
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EHP SPECTRA AND PERIODICITY. II: A-ALGEBRA MODELS 619

In §8, we make explicit, the EHP spectral sequence obtained for calculating
H,(Am)) = Ext (H*(V(m)); Zp) .

1

We begin by recalling the Bousfield-Kan construction [BK]. This is an explicit
chain complex for calculating Ext4(M*; Z,) where A4 is the mod p Steenrod
algebra and M is a right 4 module. It is obtained by putting a twisted differ-
ential (see 1.4) on the tensor product of M and A, where A is the A algebra.

The A algebra is filtered by A(n) corresponding to the sphere! S”. We will

construct a filtration of the Bousfield-Kan construction M ® A induced by a
filtration on M . A particularly important special case applies to submodules
of A, (the dual of the Steenrod algebra).

Definition 1.1. Let M be a right 4 module. A decreasing filtration FpM will
be called useful if

(a) (FpxM)&#" Cc M,

(b) (FxM)B C Fe_ M,

(c) If (M — F(yM),B#0, k+r is even.

Example 1.2. Let M = A,, the dual of the Steenrod algebra considered as
a right 4 module. Let FyM = @1, -1, A« where the sum is over all se-
quences of integers of length & and t; € 4, is the standard exterior generator
of dimension 2p’ — 1. Using the comultiplication in A, one easily sees that
7;P" = €t1;_; where € =1 if n =p'~! and 0 otherwise. Thus a is satisfied.
Likewise &8 =0 and 7;8 =0 if i > 0 while 798 = 1. Thus b is satisfied.
Finally (F,M), = (Fx. M), if k +r is odd, and c is satisfied. This will be
called the Bockstein filtration since the dual filtration of 4 is by the number of
Bocksteins.

Proposition 1.3. If F, M is a useful filtration of M and N C M is a submodule,
the induced filtration on N given by FyN = NN F,M is useful.

This gives a useful filtration on the dual of any cyclic left 4 module. Of
course another useful filtration is obtained by setting FyM = M for all k.

The Bousfield-Kan construction M & A provides us with a differential on the
tensor product M ® A. The differential is defined by the formula

(14) dx®v)=(-DY " xP @iv+) xpP @ pv +(-1)*xedv
i>0 i>0

for x € M and v € A where |x| is the dimension of x.
Suppose now that M has a useful filtration. We define a subspace

M2n-1)cC M ®A as follows:
M@2n—1)=J(FEM), @ A2n— 1 +k +7).
We now define the depth of a useful filtration by the formula:
d(M) = max{2pi — k —r | (FxM), %" # 0}.

'In case n is even, A(n) corresponds to the “homotopy theorists even sphere”; i.e., the p — 1
cell complex J,_(S").
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620 BRAYTON GRAY

Proposition 1.5. If 2n — 1 > d(M), M(2n — 1) is a subcomplex.

To prove this we require a result of Harper and Miller [HM, 1.18] which we
will use frequently in the sequel.

Proposition 1.6. The subcomplexes A(n) C A satisfy

AxA(n) € A(n — kq) ifn>2pk >0,
uARn+1)c ARn—-kq—-1) ifn>pj>0.
Proof of Propositior. 1.5. Tt suffices to show that if x € (FyM), and v €
AQ2n—1+k+r) then xP ®A,v and xBP' ® ;v both belong to M(2n—1)
when 2n —1>d(M). Now x%#' € (F,M),_;; and

Aiv €AARn—1+k+r)CA2n—-1+k+r—iq)

by 1.6 if 2n—1+k+r > 2pi > 0. This holds if 2n—1 > d(M) . Consequently
xP'@Aiv € M(2n—1). Likewise xfP' € (Fy_1M),_jq—1 and pv € p;A(2n—
1+k+r)CARn—-3+k+r—iq) if k+r is even and n—1+kT+’ >pi>0
by 1.6. If k is maximal with x € F;M and x8 # 0, k + r must be even by
1.1(c). Finally, since xB € (Fx_{M),_;, (xB)P' # 0 implies that 2n — 1 >
dM)>2pi—(k-1)—(r—1)=2pi—-k—-r+2,s0 2n—-2+k+r > 2pi
completing the proof.

The following result will be proven in the next section.

Proposition 1.7. If M c E(ty, t1,...) C A. with the Bockstein filtration,
dM)=0.

2

The goal of this section is to study the right 4 module HV (m) which could
secur as the homology of a Smith-Toda complex V' (m). We will show that the
A module structure is unicue and isomorphic to the appropriate submodule of
A, . The A module structure of submodules of A, is then noted.

Let [m] = {0,1,...,m} and [-1] = ¢. For S C [m] write Q5 =
Qh...Q% where S = {i;---ix} and i) < i) < --- < ix. Let H* be a left
A module which has as a basis all Q5u, S C [m] where |u|=0.

Lemma 2.1. There is a unique left A module structure on H* . With this struc-
ture P'u = 0 for each pure Steenrod operation P! with I # 0. Let HV (m) be
the vector space dual to H* . Then the image of HV (m) in A. is the subalgebra
E(tg, ... , Tm).
Proof. To see that Z'u =0 for all I # 0 it suffices to prove that 7"y = 0 if
n>0. If not, #?"u= QS5u for S = {i;---i;} and consequently 2p"(p — 1) =
2(p" +---+p)—k. Since ij <ir <---<ix, ix>k—1.Also k=2t sowe
get ) A
t+ptp—1)=pt+---+p*
Studying the p-adic expansions of this equation one sees that ¢ > p%~! and
hence that k > 2pk—2 which implies that k = 2. Again looking at p-adic
expansions we see that this is impossible.

Now consider the left 4 module map 4 — H* which sends 1 to u. This
is an epimorphism and determines a monomorphism HV(m) C A.. Since
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Plu = 0 for each pure Steenrod operation P!, HV(m) C E(tg, T1,...).
For dimensional reasons HV (m) = E(tg, ... , Tm). Consequently the right 4
module structure on HV (m) is determined.

Our task now is to clarify the 4 module structure on E(tg,...). To this
end we define some notation. For S = {i;, ..., iy} write 15 = 7;---7; if
i1 <ip<--<ig.Let S'={i+1lieS} and (S, T)=(S-THUT iIf T"CS.

ket if (S—T)NT =¢
s, Ho-1)nl=o,
S, T)=
us, T) {0 otherwise

(this implies that t(S, T) = +t5_77r). Now write |S| for the number k of
elements in S and put pS = p¥* + .-+ p and p? =0. Thus p-pT = PT".
In evaluating the right 4 module action it is important to observe that the
following unusual Cartan formula for the Bockstein [BK, 11.2]

(xy)B = (xB)y + (—1)*Ix(y8).
Proposition 2.2.

[ t(S-{0}) if0€S,
’S”‘{o ifogs,

i — T

PN = { (S, T) zfn—e ,
0 otherwise, n # 0.
Proof. Since 1,8 = 0 except when i = 0 and 798 = 1 the Cartan formula
gives the first equation. Since ;2" = €t;_; where € = 1 if n = p'~! and
€ = 0 otherwise, an application of the Cartan formula to 7g shows that this is
only nonzero when # is a sum of distinct powers of p and tsg’PT # 0 only if
T’ c S. In this case each element in SN T is decreased by one. The resulting
sequence is still in numerical order although there may be repetitions, in which
case that term is 0. This happens precisely when (S — T')N T # ¢, in which
case 7(§, T)=0.

ProgfofProposition 1.7. If 15" #0, n=pT and T c S. Thus 2np—k—r =
2p™ —|S| - (205 - |S]) = 2(pT - p®) 0.

Finally we describe M(2n — 1) in case M = E(1¢, ... , T) in complete
detail for future reference.
Proposition 2.3. Let A,)(2n—1) be the subspace of E(to, ... , 1m)§>A defined
by

Am@2n—1)= > 15®AQ2n—1+2p%).
SC[m]
Then Agmy(2n — 1) is a subcomplex for n > 1 with differential given by the
Sformula

d(ts®@v)= (-1 S (S, T) @ 4yrv
T'CS
T#¢

+ Y o(S—{0}, T) @ uyrv + (-1)Sltg@ov
{0}uT'cS

This content downloaded from 128.151.150.9 on Mon, 1 Apr 2013 10:58:15 AM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

622 BRAYTON GRAY

for S C[m] and v € A(2n — 1+ 2pS). Note that A_;y(2n — 1) = A(2n - 1).

It is also interesting, in the light of [HM] to consider the submodule of A,
dual to A4;. (A4;)« has a unique 4 module structure and has a Z, basis
consisting of 7' t2&k where 0 <¢; <1 and 0 < k < p—1. Using the Bockstein
filtration we easily get d((4;).) = ¢ and consequently there are subcomplexes
A;(2n—1) of (4;).®A foreach n > p. Furthermore F(n+1) C 4;(2np?—1) C
F(n+ 1) where F(n+ 1) and F(n + 1) are the complexes defined in [HM].
A1(2n — 1) is the same form as the Bousfield-Kan construction on a space X
filtered by subspaces V;(2n — 1) = Xy C X; C X, C X, with fibrations
Xi—1 = Xi = V1)(2n+ ig — 1) . (See [G] for notation.)

3

We begin this section by analyzing the Hopf invariants in the A algebra. We
will prove some technical lemmas about their behavior on composites general-
izing to odd primes a result of Singer [S]. We will use these results to define
Hopf invariants for A, .

Let us recall the definition.

Definition 3.1. Let v € A(2n+ 1). By expanding in terms of admissible mono-
mials, there is a unique expression

V =V + Uplsy + Anls
with v € A2n—1), v, € A2np+1),and v3 € AQnp—1). If n =0,
vy =v3 = 0. We write H,(v) = v, and H}(v) = v3. This defines maps of
degree —ng and —(ng — 1) respectively.
ACn+ 1) o Anp+ 1), A@n+1) 25 AQrp - 1).
vy is completely determined by the formula vy = v — u, H,(v) — A, H) (V).

Lemma 3.2. H, is a chain map while H,0 = —0H), — uoH,. Consequently
there are short exact sequences of chain complexes:

H: 0 - A2n) 5 AQn+1) B AQwp+1) - o,
H: 0 - A2n-1) & aAen) 5 Awp-1) = o0
Proof. Differentiate the formula in 3.1.

The Harper-Miller result (1.6) allows us to define homomorphisms via left
composition:
AC2n+1) % A@n—kq+1) ifkp<n,
ARn+1) % AQn-kgq-1) ifkp+1<n.

Proposition 3.3. Suppose v € A2n+1). If kp < n we have
(@) Hp_gp—1)(Akv) = AipHy(v),
(b) H,’,_k(p_l)(lku) =€ — UppHy(v) — AypH, (V) where

6_{0 ifkp <n,
" v ifkp=n.
If kp+1<n we have
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(c) H”l—k(p—l)ul(/'tky) =0,
Hy_(p—1)—1(xV) = € = lhypi 1 Hy(V) — Aipy1 Hy(v) where
6_{O ifkp+1<n,
“lv ifkp+1=n.
Each of these results can be expressed, somewhat more conceptually, as a
commutative diagram. For example, a) can be written

AQn+1) 2 AQn—kqg+1)
| H, 1 Hocipooy
kp

ACnp+1) 22 AQnp — kpg + 1).
Proof. We consider first the cases (a) and (b). Write v = vy + upvs + Ayvz as
in 3.1 and consider the composition.
AV = Avy + A nVa + Agdnvs € AQ2n — kq + 1).
We look at the last term first. A; 4, is expressible as a sum of terms of the form
An—k(p—1)—jrkp+j With j < n—kp . If the inequalities in 1.6 are satisfied we can
write
ln —k(p—1)— lkp+j”3 € j'n —k(p—1)— jxkp+JA(2np_ 1)
C An—k(p-1)-jA(2np — (kp + j)g — 1)
CAQn—~kqg-1).
Such terms do not contribute to either Hopf invariant. The requisite inequalities
are:
(1) 2(kp + j)p < 2np — 1 which holds since j < n—kp
(2) 2(n—k(—1)—j)<2np— (kp + j)g — 1 which holds when j>1.
The term with j = 0 has coefficient —1, 50 AxAnv3 = —Ay_k(p—1)AkpV3 (moOd-
ulo A(2n—kq —1)). Similarly we may write u,u, as a sum of terms of either
the form A, _rp—1)—jlpk+j OF Un—k(p— 1)- jApk+j With j < n—kp. A similar
analysis shows that the only terms not in A(2n—kqg — 1) correspond to j =0.
Suppose now that kp < n. Then Agunvs = (=Ap_kp—1)Micp — Bn—k(p—1)Akp)V2
(modulo A(2n — kg —1)). Also Ay € A2n — kg — 1) by 1.6. We then have
AV = —An_i(p—1)(HrpV2 + AicpV3) + Un—k(p—1)AkpV2
modulo A(2n—kg—1). This completes the proof of (a) and (b) in case kp < n.
If kp=n, v = Ay + thipva since Agdy, = 0 and Agpg, = prly, . Thus
Hy(Axv) = AgpHyp(v) and H, (Av) =vi=v — /'Lka,’(p(u) — WipHyp (V) .
The cases of (c) and (d) are similar. If n > kp+ 1,
KV = —Un—k(p—1)—1Hkp+1V2 — ,un—k(p—l)—l'lkp+l’/3 (mOdulo A(2n - kq - 3)) .

If n=kp+1, mv =y since prlgpsr = 0= ppdips1 $0 Hy(uv) = v1 =
v — UnHy(v) - l H,(v).
At this point we will introduce intermediate complexes A (2n) for n >0,
m > 0. These correspond to the “even spheres” in the EHP filtration. First set
0, mesS,

em(S)={2 o

Am(2n) = > 15 ® A(2n — 1+ 2p5 + €n(S)).
SC[m]

and then
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624 BRAYTON GRAY

Lemma 3.4. Each of the modules on the left are subcomplexes of the complexes
on the right

(211 +1) LN A(m+1 (2n+1),
m)(2n) LN A(m 2n+1),
m)(2n — 1) = Apmy(2n),

Ay (2n + 1) =5 Apyn)(2n).

Proof. Since 1 = 1113 we need only consider the last three cases. By definition,
they are all submodules. It remains to show that A, (2n) is closed under 0 .
Suppose first that €,,(S) =2, and 9(1sQv) =) 1(i)Qv;. Then €,(t(i)) =2
so this case is clear. The case €,,(S) = 0 is obvious in case n > 1. Consider
then the case n =0 and €,(S) = 0. Referring to the proof of 1.7, we see that
the problem terms correspondto 77 =8 or {0}UT'=S and me (S, T) (or
m € (S — {0}, T)). This cannot occur.

These complexes will play a crucial role in the EHP development of the next
section. For 75 ® v € A(yy(2n + 1) define a function ¢(t5 ® v) by

p(ts®v) = (1) Nrg ® H,, ,s(1)} + 1({0} US") ® Hypps(v).

Theorem 3.5. If n > 0, ¢ defines a chain map (in the graded sense) of degree
—(ng—1):

Apmy 21+ 1) =5 Amyn)(2np — 1)

with @(A(m)(2n)) C Am)(2np —1).
If n=0, o defines a degree 1 map

Amy(1) = Agmy1)(0)
with @(A)(m)(0)) C Am)(0) such that 90 + ¢ =13 in positive dimensions.
Corollary 3.6. A (0) is acyclic. That is,

Z,, r=0,
Bamo)={ " 17

Proof of Corollary 3.6. Let D = g¢| Ap(©) - Then 9D + D¢ =1 —n where 1 is
augmentation.

Proof of Theorem 3.5.
H,,,s(v) € ACnp —1+2pS) and H,,,s(v) € AQnp — 1 +2pS0h),
These integers are positive if n > 0 so ¢ is a well-defined homomorphism in

this case. In case n = 0 the only difficulty occurs when S = ¢. In this case
H) =
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It is left to evaluate @8 and d¢.

p(@(ts@v)) = > 1S, T) ®H,, 5.0 (ApV)

T'CS
T#$
+ (=11 Y 1({0}U (S, T)) ® Hyppis.n(Rprv)
T'CS
T#¢
+ (_1)|S|—1 Z T(S - {0} ’ T)/ ® HyIH-pS {0}.7) (:upTV)
{0}uT'CS
+ Y t({0yU(S = {0}, T)) ® Hypis-t0r.1)(itpr¥)
{oyur’'cs
+ 19 ® Hy, (V) + (=1)S17({0} US) ® Hyyps (90).

Now assume # > 1 and apply 3.3 with n +p® for n and pT for k. This
gives

9(@(ts®V)) = Y WS, T) ® (—pyr Hyyps (V) = Ay Hyyps (v))

T
+ (=11 S 1({0}U (S, T)) ® Ayr Hypyps(v)
T'CS
T#¢
+ Y t{0yu(s—{0}, 7))
{o}uT'CS

® (_ﬂpT’+1Hn+pS(V) - )“pT'+1H +ps( v))
+ 1y ® Hy, ,s(0v) + (-1)S17({0} US") ® Hy,ps (V).

In case n = 0 we must exclude the terms from the first and third sum in
which 7'=S ({0}uT’=S) and add t5®v;.
We now collect terms using

g (S, Ty if w=T1,
( )_{r({O}U(S—{O},T)’) ifw={0juT

to obtain

p@(ts@v) =Y US', W) ® (~ipw Hyyps(v) = Apw Hy ps(v))

wcCS

W ¢

+(=1)BIS" 1({0}U(S, T)) @Ay Hyyps (v) — T5: @ Hy, 5(v)
T'CS
T#6

+ (~1)SIE({0} US") ® 9 Hyyps () — Tt ® ttoHyyps(v).
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On the other hand,
d(p(ts®v)) = (-1)So(1s @ Hy, s(v)) + 0(1({0}US") ® Hyyps (v))

=Y S, T) @ AprH,, ,s(v) + 15 ® OH,,, s(v)

TCS
T

+(=1)SHN"2(S" U {0}, T) ® AprHyyps(v)
TCS
T#¢

+ 1S, T) ® pyrHyyps(v)
TCS

+ (=) ({0}US") ® OH, s (V).
These are clearly equal with the opposite sign. Thus 99 = —9¢ when n > 1.
When n = 0 all the terms of @8 + d¢ cancel except those corresponding to
W =S8 in ¢0 and T =S in the first and fourth terms of d¢ . The resulting
sum is

Ts®UI +Ts® /Ips ;S(V) +Ts ® ,upsHps(I/)

whichis ts®v.

Theorem 3.7. If n > 1 there is an exact sequence of chain complexes

2
E?:0 = Apmy(2n ~ 1) £5 Ay (21 + 1) 25 Ay (2np — 1) — 0.

Proof. Clearly E? is 1-1and ¢ - E?=0. If p(Y 15, @ 1) =0, H, () =
0=H +ps,-(’/i) since the elements {rs , 7({0} US})} are independent. Thus
each v; is a double suspension and " 75, ® v; is in the image of E2. Since ¢

is clearly onto we are done.

4

In this section we will describe the EHP sequences and the Cohen-Moore-
Neisendorfer exact sequences. In all there are five interlocking short exact se-
quences of chain complexes giving five long exact sequences in homology. These
are direct analogues of geometric fibrations proposed in [G].

Proposition 4.1. There are short exact sequences:
CMN: 0 — Am2n+1) Am+y(2n+1)
B Am(Cn+2pmtt+1) - 0,
RCMN: 0 - Am(2rn+1) LN Am+1)(2n)
m Am(n+2p"1—1) - 0
where n >0 and m,, has degree 2p™*! — 1 such that the diagram
0= Apmy(2n = 1) 5 Ay (20— 1) 38 Apy(2n+2p™+1 — 1) — 0

\:l‘_‘

I | E
00— A(m)(2n + 1) 5 A(m+1)(2n) I (m)(2n + 2pm+1 _ 1) -0

0— A(m)(2n + 1) LN A(m+1)(2n + 1) &") A(m)(zn + 2pm+1 + 1) =0
commutes.
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Proof. Define

(-D)Trev ifS=Tu{m+1},
0 ifm+1¢S.

All of the assertions are easy to check.

m(ts®@V) = {

Proposition 4.2. There are short exact EHP sequences:
H: 0= Amy(2n) B Am@n+1) L Am@rp+20m1 —1) -0
H:0 > Apmy2n—1) 5 Apy@n) L Apm(@2np-1) -0

where H and H' have degrees —(2p™*! + nq —2) and —(nq — 1) respectively.
Furthermore the diagrams:

0 0
! !
0— A(m)(Zn - 1) N A(m+1)(2l’l - 1) I (m)(2l’l + 2pm+l) _ 1) =0
. LE n
D 0= Am@r+1) 2 Am(2r) B Apy2n+2p™'-1) -0
L on | &
Apms1y(2np — 1) = Amyr)(2np — 1)
! |
0 0
(I1)
0 0
l l
lE l E?
0— A(m)(zl’l +1) 4 A(m+1)(2n +1) — A(m)(zl’l + 2pm+l +1) -0
LE lo
Apms1)(20D +20™2 — 1) = Apny1y(2np + 2p™2 — 1)
| l
0 0
(1)
0 0
! , l
0= Apm(2n—1) = Am)(2n) il Am(2np —1) -0
I , lE l
0— Am2n-15 Apmy(2n+1) L Amsny@ip—1) =0
Lu m
Amy(2np +2p™ = 1) = Apmy(2np + 2p™H = 1)
! |
0 0

Proof. H' = ¢|Am)(2n) (see 3.5), H = ym+19n . All of the assertions are easy
to check.

The EHP sequences easily give an EHP spectral sequence with an almost
inductive procedure for computing, in the usual way. Corollary 3.6 calculates
H.(A(m)(0)) which allows one to start an inductive calculation. One simple
consequence of 4.2 and 3.6 is
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—

Co/r\o/llary 43. H : Apmy(1) — Apm(2p™ — 1) is a chain equivalence, where
A(my(1) is the connected cover (augmentation ideal) of Am)(1).

Applying this to (II) with n =0 we get
Corollary 4.4. There is a chain equivalence:

Ay (0™ + 1) = Apmy(20™ ! = 1) & Ay (2™ = 1).

Restricting with (II) or (III) we get

Corollary 4.5. There is a chain equivalence
Aimy(20™ 1) 2 Ay (2™ = 1) @ Ay (2p™F2 - 1).

See also (6.9).

Finally from (II) we get
Corollary 4.6. The inclusion Amy(1) = Apms1)(1) is null homotopic.

5

In this section we will examine periodicity in this context. The connecting
homomorphism from CMN (see 4.1) represents a compressed version of a
Um41 self-map. We wish to represent this as a chain map. For simplicity we
replace m by m—1.

Proposition 5.1. Suppose n > p™. Then there are chain maps of degree q, =
2p™m -2

Um - A(m_l)(Zn +1)— A(m_l)(Zn -2p"+1)C A(m_l)(Zn +1)

compatible for various n and inducing in homology the connecting homomor-
phism from 4.1.
Proof. A splitting of CNM from 4.1 is given as follows (with n decreased by
pm—1):

e: A(m_l)(2n +1)— A(m)(2n -2p" +1)

where e(ts @ v) = (=1)Slt(SU{m}) ®v. e is not a chain map, but ye = 1
and 9y = —yd (since y has odd degree). In such a situation y(de +ed) =0
so we may pull ed +9e to A(,_1)(2n—2p™ +1). An explicit formula is easily
obtained; viz.:

Um(ts@v) = = > (S, T)U{m—1}) ® Ayrypm-1v
T'CS
+ (=BT N (S = {0}, T)U{m — 1}) ® gy pm-1v
{o}uT'CS

if m>1. vo:A-(2n+1) = A_1)(2n—1) is given by left multiplication by
lo . These formulas are independent of # and hence compatible for various
n.
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Corollary 5.2. Let v,,'Ayn—1)(2n + 1) be the telescope of the chain map
Um : A(m_l)(Zn +1)— A(m_l)(Zn +1).

Then the suspension A,_1)(2n—1) E} Am-1)(2n+1) induces an isomorphism:
U Am_1)(2n = 1) S 0 Ay 2n + 1) forn > 1

and the resulting periodic chain complex is isomorphic with v,,'(HV (m— 1)<§>A) .
Theorem 5.3. If n > p™ there is a commutative diagram:
Apm—1y(2n+1) L Am(2np—1)

l Um l Um+1
A(m_l)(2n +1- 2pm) —({) A(m)(2(n —p’”)p - 1)
In case n = p™ we have Umi1@pm — PoUm = € : Apm_1)(2n + 1) = Amy(1)
(see 5.1).
Proof. We calculate using the formulas of 3.5 and 5.1.
q),,_pm’vm(‘ts X I/) = (—l)lsl Z T(S, T)/Tm ® Hr/l—pm-f-p(s»r)-f-pm"l(lPT‘H’m_lV)
T'CS
- Z 707(S, T),‘l'm ® Hn_pm+p(s,r)+pm—1(ﬂ.prﬂ,m-ll/)
T'CS
+ Z (S —{0}, I)'tm ® H,I,_pm+p(S—{0},T)+pm—1(.upT+pm—lV)
{o}uT'CS
+(=DT N 7or(S - {0}, T)'tm
{o}uT'CS
® H,,_pm+p(s—{o},r)+pm—1 (,Ltpr+pm-1 1/)
using 3.3, in case n > p™ this reduces to

(1)U S™ (S, T U{m}) @ (~yrr sy Hosps () = Ayt s pmHip s ()

T'CS

— 57 ({0} U(S, T U{m}) ® Ayrs o Hyps(v)
T'CS

+ (=18 ST ({0} U (S — {0}, TY U {m})

{orur'cs
® (=Hprt syt Hyaps (V) = Aprt g pmy 1 Hy s (V)
= (=D)L S 7((S7, T)U{m}) ® Aprypm Hyy s (V)
TCS
=) (S U{0}, T)U{m}) ® Aprypm Hyyps(v)
TCS
+ (=) N T 1((S7, T)U{m}) @ ppripm Hyips (V)
TCS
= Vm+l¢(TS V).

In case n = p™, the reduction of @,_pmUm(ts ® v) differs in the first
and fourth terms. The terms corresponding to 7/ = S and {0} UT' = §
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reduce to (—1)IS17(SuU{m})®v; . The corresponding terms in the expansion of
Ums19(Ts ® V) are in the first and third sums with 7' = S. They yield

(—D)SH (S U{m}) ® Apyps Hy s (V) + T(S U{m}) ® hyyps Hyyps (V) -

ThuS @ppmUm(Ts O V) = Ums19(Ts ®) = (~1)SI7(SU{m}) ® v = e(15® ) by
3.1.

6

In this section we show that there is a unique way to make A, into a
differential algebra. Unstably this multiplication exactly reflects the composition
theory in [G].

We give A, a bigrading by letting the s grading of 75 ® v be the usual s
grading of v € A. Thus the boundary raises s by 1.

Theorem 6.1. Suppose Ay is a bigraded differential algebra such that A1
is a subalgebra for m >0 and if s =0 Ay reducesto E(tq, ... ,Tm). Then
the following formulas determine the multiplication:

AnTo = ToAn + n, HnTo = Toln,

ln‘l'i = —Tiﬂ.n - ‘l','_lﬂ.n.,_p;-l , 1> O,

UnTi = Tilln + Ti—1fpyp-1 5 i>0.
Proof. The general method of proof will be to expand 4,7; and differentiate the
expansion. Using induction we then calculate the coefficients of the resulting
over determined system. In some cases various terms in the expansion will be
cycles (e.g. TrA,«), at which point the inductive step will need to be augmented.

Write A,To = dnToAn + bnitn . Here the right-hand side is a general term of
Ay with s = 1. Differentiate this equation with » = 1 to obtain b =1.
Differentiate this with #» = 2 and substitute in from the first equation to obtain
b, =1 and a; = a, = —1. Now apply induction after differentiating the
general equation to conclude a, = —1 and b, = 1. Expand 0 = 4,73 to obtain
UnTo = Toln for n> 0. For n=0 differentiate 0= 13.

For an element in A(,, we will speak of the polynomial degree to mean the
degree in the t,’s. We claim now that 1,7, , when expanded, contains no terms
of polynomial degree greater than one. This is proved by double induction on
n and m . By induction, the expansion of (84,)t, has degree one so the same
is true for 0(A,7,). Thus 4,7, can have no term of degree bigger than 2 and
the only possible degree 2 terms are 7,7, Where v, € A isacycle with s=1.
Thus v, = A, and the stem degree of 7;7;v, is congruent to 1 mod ¢ . Since
the stem degree of A,7,, is congruent to 0 mod ¢, such terms cannot occur.

Now write A,T; = anflins1+bnToAns1 +CnT1An . Incase n = 1 we differentiate

to obtain a; =0 and b; = ¢; = —1. Now apply 4,779 = —4,7¢7T; to obtain
UnT1 = —bnTolins1 — CnT1ln . By induction assume a, =0 and b, =c¢, = —1.
Calculate 0 = A,,t% to obtain a,,; =0 and c¢,y; = —1. Now differentiate and

look at the terms of polynomial degree O to obtain b,,; = 0. Use 4,779 =
—AnToT) to obtain u,T; = ToUns1 + T1Mn for n > 0. The case n = 0 follows
by differentiating 797, = —7;70 .

We will simplify the general case by introducing derivations ¢, (x) = [t , X]
= TmX — (—1)*Ix7, . We have ¢m(dm(x)) =0 and @m(dn(x)) = —Pn(pm(x)).
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Our calculations give @o(4n) = 0, ¢o(dn) = Hn, ¢1(Un) = —Touns1 and
#1(An) = —ToAny1 -

Now differentiate 717, = —t,71 to get 0= 10(A1Tm+ TmA1 + Tm—1dpm-141) =
To(Pm (A1) + Tm—14pm-141) . Using @m($1(An)) = —¢1(dm(4n)) s ¢m(z:) =0, and
induction on n we get 0 = t1o(¢m(An) + Tm-14ym-1,,) . Thus

¢m(}'ﬂ) = _Tm_lj.pm—l_'_n + an101n+pm—l+...+p+].

Assuming that m > 1, differentiating, and looking at the terms of polynomial
degree 0 we get 0 = aplodyipm-14..i1. Thus a, = 0. Using ¢o(dm(dn)) =
~®m(Po(An)) we get m(un) = “Tm—1Upypm-1 -

We have next to show that the equations of 6.1 give A, the structure of an
associative algebra. This will be done inductively using the following

Lemma 6.2. Let I' be a graded differetnial algebra and ¢:T" — T be a derivation
of odd degree with ¢*> = 0. Then there is a differential algebra T' which is a
free right T module with basis 1 and t, and ¢ extends to a derivation ¢' and
I by the formula [t, y] = ¢(y).

Proof. Use the formula ty = (—1)"ly74+¢(y) to define a multiplication extend-
ing the right I' module structure. Thus

(a+ tb)(c + 1d) = (ac — (-1)¥¢p(a)d) + 1(bc + (—1)¥ad — (=1)b¢(b)d).

Associativity is an easy verification, and the unit of I', if it has one, is a two-
sided unit for I".

As a simple application we may let I' = A and ¢ be the differential. We
will write A9 for 7. This extends A to an associative algebra on A;, and u;
for all i > 0. The usual formulas for the differential are then converted into
the Adem relations, and it is a well-known observation that they then have the
same form for all ;. Let us call this algebra EA.

We will extend EA,) to EA(,41) by induction using 6.2. As in 6.1 we
will need to consider the first two cases on their own right and then use general
considerations to complete the inductive step.

Thus to construct EA ), we need to construct a derivation ¢y of EA con-
sistent with 6.1. To do this we must show that if we define ¢¢ by ¢o(4,) = tn,
do(1n) = 0 and ¢g(adb) = ¢o(a)b + (—1)%apy(b), this defines a derivation of
EA. We have precsribed an algorithm for calculation. We need to show that
the Adem relations are carried into relations by this algorithm. With the nota-
tion of [HM], there are four kinds of Adem relations labeled (1.7), (1.8), (1.9)
and (1.10). It is easy to see that (1.9) is carried to (1.10) and (1.10) is carried
to 0 =0. Using the formula dj ; = cx_1,j—1 — ¢k, (in the notation of [HM]),
one sees that (1.8) is carried to (1.10). The same formula is used to show that
¢o carries (1.7) into (1.9) minus (1.8).

Thus EA ) is an associative algebra. We write 7o for the introduced element
and thus have formulas 4,79 = —TgAm + U, for all » > 0. In particular we
define d(x) = [Ag, x] as before and have d7y = ug. Thus with this differential
we have recovered A ).

We will prove by induction

Theorem 6.3. A, has the structure of a differential algebra using the formulas
of 6.1. If Ay is introduced, we have an algebra EA,y with d(x) = [4o, X].
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Proof. Having settled the case m = 0, we will assume, by induction that a
multiplication in A, is constructed satisfying 6.1. One can easily add Ao using
6.2 so we have EA(, with d(x) = [4¢, x]. The induction will be complete if
we can find a derivation ¢yy1: EAgny — EAmy With ¢y01(7:) =0, ¢my1(An) =
—TmhAnspm ANd Py (Un) = —TmAnepm . Let A, be the quotient of the free
associative algebra generated by all A;, u; for i > 0 and 7; for 0 <i < m
modulo the relations:

(a) T% = O, TiT; = —T;T;

(b) AnTo = —Todn + Un, KnTo = Toln,

(C) ﬂ.n‘L',‘ = _Ti}»n — Ti_lzf,H_pz—l 5

(d) unti=Titin + Ti—1lnyp-1 »

Now define a derivations p : 4, — A, of degree g and ¢ : 4, — Ay, of
degree 2(pk — 1) for 0 < k < m+ 1 by the rules:

Pk(An) = —Th—tApspe-1,  n20,k>0,
¢k(ﬂn) = _Tk—l.un+pk—1 ’ nz 03 k > 07
¢0(/1n)=,uns ¢0(:un)=05 ¢k(1i)=09 kZOa
pP(n) = tns1s  P(An) =Ans1, p(1:)=0.
It is straightforward to check that these are well defined. The following rela-
tions hold:
(%) kb1 =—d19k, kP = PPi.
Since these homomorphisms are derivations, it is only necessary to check equal-
ity on the generators.
EA(») is a quotient of F,, by the relations (1.7) to (1.10) of [HM]. These
derivations will define derivations of EA, if they preserve the two-sided ideal

generated by these relations. We have already observed that ¢o is defined on
EA(m) . The induction relies on

Lemma 6.4. p defines a derivation EAyy — EAgy) .

Continuing with the proof of 6.3 we note that all of the relations (1.7) a
(1.10) can be generated by repeated application of p and ¢o to 4;4,; =0
Uipiv1 - Indeed applying p to A;4,; =0 k times yields

k
k
Z (S ) /'Li+s/‘['pi+k—s =0.

s=0
Using induction one can then write A;4,;, as a sum of admissible terms which
yields (1.7). In the same manner u;A,;+1 = 0 leads to (1.9). Consequently we
only need to show that ¢ (4;4p;) = 0 = ¢p(Uidpi+1) . This is straightforward.

Proof of 6.4. Using ¢op = p¢o reduces the calculation to (1.7) and (1.9). Con-
sider the relation (1.7):

Aidpirk = ch, jhivk—jApiti-
Applying p and expanding A;;14p;.k , the formula reduces to

nd

Ck—p,j—p ifk2p,
Ch,jF Ch,jm1 = Cha1,j = § 1 ifp>k=j,
0 ifp>k>j.
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This is easy to verify. The same congruence is used wiih (1.9) so p extends to
amap of EA(y.

Proposition 6.5. Suppose S = {iy, ..., ix} With iy < iy < --- < iy. Then
Ts=Ti T -

Proof. Both sides of the equation have s filtrations 0 where there are no cycles
if § # ¢. So it suffices to show that both sides have the same differential.
Since the left-hand side is computed by 2.3 it suffices to compute the right side.
Suppose i; > 0. We then prove by induction on k, that

At i) = (1% Y (S, T) @Ay
T'CS
T#¢

in agreement with 2.3. The general case is obtained by calculating 9(79ts) with
0¢S.

The following theorem suggests the compositions contemplated in [G].
Theorem 6.6. A, (1) Am)(n + ) C Aymy(n).
The proof will be based on

Lemma 6.7.
@) TsAm(2n+2p5 +1) C Amy(2n+1),
®)if m&S, tsAum(2n+2pS) C Apmy(2n),
(€) A2n+ 1)sAmy(2n+0+1) C Apmy(2n + 1),
(d) AQ2n + l)aA(m)(2n +0)C A(m)(2n) .

Proof of 6.6. Suppose n =2k + 1. Then
Amy(2k + 1)g A2k + 0 + 1)
C Y tsA2k +2p5 + 1), gpsii5/Aem) (2k + 0 + 1)
C S tsAm)(2k +2p5 +1) C Ay (2k + 1)
by (c) and (a). Suppose now that n = 2k . We then have
Ay (2k) g A(m)(2k + 0) C Z tsA(2k — 1+ 2p5 + €(S)) g—2p5 4151 Aem) (2K + 0).
We separate two cases. If S = {m} we get

TmA(2k — 1+ 2p”.’)a_2pm+1A(m)(2k +0)
C TmA(m)(Zk -1+ 2p'”) C A(m)(2n e A(m)(2k)

by (c) and (a). If S # {m}. €(S)+|S| > 2 and we apply (d) to conclude that
these terms are contained in

> tsAum)(2k — 2+ 2pS + €(S)).

If meS, €(S) =0 and this is contained in A, (2k — 1) C Ag)(2k) by (a).
If m ¢S, we apply (b) to see that such terms are contained in A,)(2k).

For the proof of 6.7 we will need the following
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Lemma 6.8. For n >0 and S C [m] we have

(a) Ants = (=1)IS! Yries WS, T)Apgpr + Z{O}UT’CS (S — {0}, T)ltnspr

(b) unts =3 qics TS, T)thnapr -
Proof. (a) reduces to 2.3 if n =0. Apply p n times to prove (a). Apply ¢o
to prove (b).

Proof of 6.7. (a) is immediate. To check (b) note that if m ¢ S, €(SUT) =
€(T). We prove both (c) and (d) by induction on the s filtration in A. In case
s =1 we must prove

/lkA(m)(Zn +kq — 1)c A( )(2?1) s
lkA(m)(Zn + kq) C A(m)(2n + 1) ,
HicAm) (21 + kq) C Amy(2n),

ﬂkA(m)(2n +kq+ 1) C A(m)(2l’l + 1)

Each of these are proven using 6.8. For example,
AANmy(2n + kg —1) C > AxtsA(2n + kg +2pS — 1)
C Y 1S, T)AgsprAQ2n + kg +2p5 — 1)
+ 37 1(S = {0}, T)piespr A1 + kg +2p5 — 1).

Suppose S # T'. Then A;,,7A(2n + kq +2p5 — 1) C A(2n +2pS:T) — 1)
by 1.6, so these terms are contained in A(,;)(2n — 1) C Aypy(2n). If §=T7,
AksprAQ2n + kq + 2pS) € A(2n + 2pT) and 17A(2n + 2pT) C Agm)(2n) since
m ¢ T . A similar analysis applies to the second sum (where 77 Cc S — {0}).

We prove (c) and (d) together by induction. Suppose that they are both valid
for monomials of length < s and let v have length s where I is an admissible
sequence. We distinguish two cases.

Case 1. vi=Awp € A2n+1),. Let ' =|vp|=0—ig+1. Now i <n so
vy € AQ2ip — 1) € A2n + ig — 1), . We can then use induction induction to
see that:

vpiAm(2n+ig+0' —1) CAm(2n+ig—1),
v Amy(2n + ig + 0') C Apmy(2n + iq).
Hence:
VIA(m)(2n + 0) C AiAm)(2n + ig — 1) C Ay(2n),
Vihmy(2n + 0 + 1) C AiAm)(2n+iq) C Apy(2n +1).

Case 2. v = uvp € A2n+1),. Let ¢’ = |vp| = 0 —ig. Since i < n,
vy € AQ2ip + 1)y C A(2n + iq + 1), . Again by induction,

vi Ay (2n + iq +0') C Agmy(2n + iq),
vpAem(2n +ig+0'+1) C Amy(2n +ig +1).
Then we get
ViAm)(2n + 0) C uiNm)(2n + iq) C Am)(2n),
ViAmy(2n +0 + 1) C uiAmy(2n +iqg + 1) C Agmy(2n + 1).
This completes the induction and establishes 6.7.
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One consequence of the existence of compositions is that elements of Hopf
invariant one produce splittings. This gives us the following generalization of
4.5.

Proposition 6.9. There is an isomorphism of chain complexes

Apm)(20%) = Ay (2% = 1) ® Ay (20" = 1).

Proof. Ay € A(2p% +1) C Aim)(20%) is a cycle. If x € Apmy(2p**! — 1) then
ApkX € Apmy(2p%) by 6.6. Thus we may define a chain map

n: A(m)(2pk+1 -1)— A(m)(zl)k)

by n(x) =Auxx. :

Now write X =} g, Ts¥s With vg € A(2p**t' +2pS —1). Then we expand
Ap«X using 6.8a and observe that most terms are in A(m)(2pk —1). It is an easy
matter to see that H;k(n(x)) = ¢« (n(x)) = x . Thus the sequence

H':0 = Ay (2% = 1) = Apmy(20%) = Apmy(20*1 = 1) > 0

splits.
Finally, we introduce a Bockstein homomorphism into A,,(n). Define By,
via the composites:

Am@n+1) "2 Apon@2n+2p"+1) - Apmy(2n+2p™ +1)
T E T E? T E
Amy@2n) "2 Apmony(2n+2p"—1) = Amy)(2n+2p™ - 2)

Theorem 6.10. S, is a derivation with B2, =0, Bmi19 = —¢Bm and Bmdmi1 =
_ppm .

Proof. As in the proof of 6.3, we construct a derivation S, : A, — Am by
Bm(tm) =1 and for i <m PB(1;) =0, B(An) = B(un) = 0. One easily checks
that B, = 1ym—1.

7

The complexes A(y)(n) have a unit 1 € A(n) C A¢pm(n) and have their
gradings normalized so that the unit has dimension 0. We will call this the
stable grading . By way of contrast, the complexes in [BK] are graded according
to their unstable dimension. We wish to regrade the complexes A,;)(n). Since
they are not known to have a geometric analog, we seek an algebraic limitation
on the regrading that reflects geometric considerations. The composition pairing
of 7s(x) and 7s1.(S?) t0 Msy.(x) suggests the following.

Definition 7.1. An unstable differential right A module (for short, unstable A
module) is a graded chain complex M = {M,} of Z, vector spaces together
with pairings M, ® A(6), — My, which are associative and satisfy m -1 =m
and dim-i)=d(m)-A+(-1)°m-di for me M, and A€ A(o).

Clearly the unstable cochain complex M®A of [BK] is an unstable A mod-
ule. In fact, if we ignore the differential in M®A we see that it is the free
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unstable A module generated by the graded vector space M (in the sense of
adjointness).

Given an unstable A module M we can construct QM by (QM), = M, .
This will again be an unstabie A module if we define the A action as follows.
Write Qx € (QM), for the element corresponding to x € M, . Then define
a A module action by (Qx)A = (—1)4Q(x4) and a derivation by d(Qx) =
Q(dx). Reversing this process (delooping) is in general, not possible. Let us
consider, for example, regrading A(n). We ask for which k is QKA(n) an
unstable A module,. For this we need A(n),,.rA(m) C A(n) which by [HM;
1.17] requires m < n+m+k, ie., k > —n. Thus Q7 "A(n) is a delooping
for A(n). In general, QXA(n) corresponds to Q**+"S" . If n + 1 # 2p* for
some s, Q ""!A(n) is not an unstable A module. To see this, note that if
it were, we could define 14,11 € (Q7" A1) (nr1yg—1 = A1) (nsq)—1 With
d(1+Apy1) = (=1)"'1 - d(Apyy). Since d(Any1) # 0 when n+ 1 # 2pS and
is not a houndary in A(n), this is impossible. Of course if n + 1 = 2p*,
A(n+1)=A(n) e A(2ps*! — 1) so this is best possible.

Let A(n) be the augmentation ideal in A(n). The next lemma implies that
Q~"~1A(n) is aright A module. This suggests that the fiber of the map S” U,
e"! - K(Z,, n) could be an H space (where p > 2).

—

Lemma 7.2. A(n);A(n+d+1)CA(n).

Proof. We show that v;A(n+d + 1) C A(n) for v; € A(n),; by induction on
the length of 7. First note that

MA(n+kq) C A(n) if 2k <n,
wAm+kqg+2)c ACm+1) ifk <m,
WwACm+kq+1)c A2m) if k <m.

This handles the case s = 1. Suppose v; = A vy with 2k < n. Then we have

viA(n+d + 1) C e A(2kp = 1)y_ggr Aln+d +1)
C A + kg — Vyg_jpu At +d +1)
ChAn+kqg-1)C An).
On the other hand, suppose v; = u vy with 2k +1 < n. Then

viA(n+d + 1) C A (2kp + 1)_yA(n +d + 1)
C A+ kq)g_ Aln+d +1)
C uxA(n + kq) C A(n).

In the last step we apply the case s = 1.

We will call the delooping Q~"A(n) the unstable grading for A(n) and dis-
tinguish it with the notation A(n). Thus A(n) = Q"A(n). We wish to consider
unstable gradings for the complexes A)(n). This should give us some insight
as to how far the spaces considered in [G] could be delooped.

We first examine the classical EHP sequences in this light.
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Definition 7.3. A map of unstable differential right A modules is a chain map
of degree 0 which preserves the A module action.

We now claim that the following are exact sequences in the category of un-
stable A modules:

0 - ACn—1) & oA@n) % QAGmp-1) - o0,

0 - A2n) L oagn+1) £ QA@np+1) — O

Furthermore neither H or H'’ can be delooped. The only hard part is to show
that H and H' are maps of unstable A modules. This follows from the

—~—

Lemma 7.4. Suppose x € A(2n); and y € A(2n+d), then Hy(xy) = Hy(x)y.
Suppose x € A2n+ 1), and y € A2n+d +1). Then Hy(xy)= Hu(x)y.

Note: This actually implies that the compositions
ACn) — A2n) T A@2np —1) and A@2n+1) - AQn+1) —» AQnp + 1)
are A module maps.

Proof. We only do the first case as the second is similar. Suppose first that
x € A2n—1). Then by 7.2, xy € A(2n — 1) so the equation holds. Now
the equation clearly holds when x = A, so suppose that x = A,v with v €

A(2np = 1),_,qs: - Then, by the lemma, vy € A2np — 1) so Hy(xy) = vy =
H,(x)y.
We now ask, for which k is QXA (n) an unstable A module?

Proposition 7.5. QXA (n) is a right A module if k > —n, but not if k =
—n—1 where n+1#2p* or n+2p™ # 2p* for some s > 0.
Proof. Consider first QkA(m) (2n+1) . The composition pairing must be defined
on
[Q% Ay (21 + 1)1y ® A(d) = Amy(2n + 1) 444 ® A(d)
= tsAn+ 1+ 20%) gk gps 415 ® Ad)

for which we need d < (2n+1+2p%)+(d +k—2pS+|S|);ie., 2n+1+|S| >
—k. Thus 2n + 1 > —k is sufficient. To see the converse, look at the term
corresponding to S = ¢. In the other case we have:

[Q%Am) (2n)1s @ A(d) = Apmy(21)arie ® A(d)
=Y tsAQn — 1+ 2% + €m(S))ask—2p5+15) © Ald)

and the requisite inequality is —k < 2n—1+|S|+€,(S) . Since |S|+€x(S) > 1,
—k < 2n suffices. For the converse directions look at terms where S = {m}.

This result supports the delooping conjecture of [G]: that W(;’n) deloops until
itis n—1 connected, i.e., Wj, = Qm+y, . A particular case of importance
is the space W, which is the fiber of the double suspension. This suggests that
W, is a double loop space (at odd primes). At p = 2, the complex A(W;)
(see [M]) only supports one delooping of W, precisely because the extra terms
in the boundary formula prevent it from being an unstable A module when
delooped once more.
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Theorem 7.5. There are exact sequences in the category of unstable A modules:

" 0 — Am(2n) L QR,n+1) B QA2 —1) - 0
H : 0 - KApmen—-1) £ Q&,,2n) B QRgm@np = 1) -0
=2 . — B 9

E : 0 - Apmn-0) 5 @R,,2n+1) % QAp@ap-1) -0

CMN : 0 — Apm(n+1) 5 Apip@n+l) L QAm@n+2p™i+1) — 0

RCMN:0 — QAp»y2n+1) 3 Apin(2n) L Apm@n+2pmt T 1) - 0
and a commutative diagram:
QZA(m)(2n +2pmtl — 1) — QZA(m)(Zn +1)

Um+
EZT \“ EZT
A(m)(2n + 2pm+l — 3) — A(m)(2n -1

where the horizontal maps are given by left composition with

Umsi(l) € A(m)(k)k+2pm+l._.2 fork>1.

Proof. Since it is clear that the various inclusions are A module maps, one can
reduce the question to checking ¥, VUpy1, and ¢ . The first two are clear from
the definition, while the third follows from 7.3.

The exact sequences (x) actually split as right A modules (but not as chain
complexes); we have

QAQ2n+1) =A2n)® QA(2np + 1),
QA(2n) = A(2n—-1)® QA(2np - 1).

By iteration we get

QA(2n + 1) = @ﬂnﬂnp . ,Lt,,pf-;A(ani) ,
i=0

QA2n) = A2n = 1) & @ Anktnp—1 - - - Binp—1)p A2(np — 1)p").
i=0
In particular, QA(2n) and QA(2n+1) are free right A modules; consequently
we have
Proposition 7.6. If M is a free right A modules, QM is also free.

It is possible to describe a basis for QM from a given basis {x,} for M.
For each x, with |x,| = 2n + 1, one takes Xofn---Unpi—1 for each i > 0.
For each x, with |x,| = 2n one takes X, and XeAnlnp—1---Hmp—1)pi-1 fOr
each i > 0. These basis elements can also be described in terms of homology
operations. Using then notation of [C],

QY (M®A) = JDy (L (M))RA.
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In particular, we have the isomorphism
Am@n—-1)= > QSIAQn+2pS-1)
SCm]
as right A modules. This is then a free right A module and suggests that the
homology of the spaces V,,y(2n — 1) of [G] should be

® H*(Q|S|S2n+2ps—l).

scim]

8
In this section we describe in some detail an EHP spectral sequences for
calculating Ext, (H*(V(m));Z,) for —1 < m < co. In the case m = —1

this method was used in [CGMM], and works just as well in the other cases. In
particular, for m = co it simplifies and can be used to calculatt; the cohomology
of the subalgebra of the Steenrod algebra generated by the &', i > 0.

The results are purely organizational. The short exact sequences H and H’
give long exact sequences in homology and these fit together to form a spectral
sequence. The s grading in the A algebra gives a bigrading to A,)(n) and
hence the spectral sequence is trigraded. We lay out the stem dimension (u)
horizontally and the filtrations v > 0 vertically. We ignore s except when
calculating differentials. It can be read off the genealogical description for re-
assembly into an Adams diagram. Write A for the subspace of the A algebra
of elements of stem dimension d and monomial length s. We bigrade A,,)(n)
by Af,,(n) = (3> ts®A*)NAmy(n) . Then the differential in A, (n) increases
s by 1.

Theorem 8.1. For each m > —1 there is a trigraded spectral sequence {;Ej, ,}
with
(@) d": sEj, > snEj_y , .,
(b) s ;,21, = Hu—qv+l(Af;1)l (2pv - 1)),
SEth,2v+1 = Hy—gv—gpn (Af,;)l(Zp'u +2p™ - 1)),
(c) Exty!(H*(V(m)), zp) © Dy sEX ;i
(d) Hu(Afm)(v)) is the homology of the subspectral sequence with E;, , =0
for t>s,

(e)
Z, ifu=s=0,

E! ={ ,
s7u,0 0 otherwise.

The proof is straightforward. The case m = oo simplifies since half of the
E! terms are missing.

Theorem 8.2. There is a trigraded spectral sequence {;Ej, ,} with

(@) d" s Ef oy = sk,

(b) sEti,u = u—qv+1(Af;l)(2pv - 1)),

(c) Exty!(H*(V(o0); Zy) 2 Exty!(Zy, Zy) = @2y sEX,, Where P C A is
the subalgebra generated by the Steenrod pth powers,
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(d) Hu(A{)(v)) = Dig sE;
(e) )

£l _{Zp ifu=s=0,
ST T 0 otherwise.

Calculation with these spectral sequences is greatly aided by the following

composition formula for Hopf invariants (see 7.4). Let A, (n) be the aug-
mentation ideal.

—

Theorem 8.3. Suppose x € Ayyy(2n); and y € Apmy(2n +d) then Hy(xy) =
Hj(x)y. Suppose x € Ajmy(2n + 1)z and y € Amy(2n+d+1). Then Hy,(xy) =
Hy(x)y .

Thus the Hopf invariant of a composition is always obtained by taking the
Hopf invariant of the first factor and multiplying by the second factor, provided
the first factor is of positive stem degree.

The proof of 8.3 is long but entirely analogous to that of 7.4. It is accom-
plished by showing first that ¢(xy) = ¢(x)i(y) for x € Ayy(2n + 1), and
Yy € Apmy(2n +d + 1). The Hopf invariants are easily derived from ¢ . The
result is then seen to follow from the analog of 7.2; namely

Ay + 1) gAmy(2n+d +2) C Agmy(2n+ 1).

This is obtained by a modification of the analysis in §6.
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