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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 340, Number 2, December 1993 

EHP SPECTRA AND PERIODICITY. II: A-ALGEBRA MODELS 

BRAYTON GRAY 

ABSTRACT. The results of part I suggest that for small m , the Smith-Toda spec- 
trum V(m) can be approximated by spaces having universal mapping proper- 
ties and interlocking fibrations. For each m, a A-algebra model representing 
the Bousfield-Kan E' term for these spaces is constructed, and all of the ideal 
results are proven on the chain level. 

INTRODUCTION 

The classical EHP sequences fit together to form the EHP spectral sequence. 
This filters the stable homotopy groups of spheres by "sphere of origin" and by 
its self-referential nature, creates a techinology both for caltulating homotopy 
groups and for analyzing results beyond the range irn which we have a complete 
calculation. 

In [G] we showed that the sphere spectrum is not the only spectrum with such 
a filtration, and gave evidence which suggests that for large enough primes, the 
spectrum V(m), if it exists, should also have EHP sequences. 

Constructing the fibrations suggested in [G] will not be an easy task for large 
values of m. It is our purpose here to present a A-algebra version of these 
EHP sequences in the spirit of Bousfield and Curtis [BC, C]. They describe 
short exact sequences of chain complexes: 

H: O ) MA(2n) E- A(2n + 1) H A(2np + 1) 0, 
E H' H': 

O 
A(2n - 1) E A(2n) )f A(2np - 1) 

O 

which induce long exact sequences in homology that correspond to the E1 terms 
of the unstable Adams spectral sequences for the appropriate homotopy groups. 

In addition to the EHP sequences, we produce short exact sequences corre- 
sponding to the sequences CMN, RCMN, and E2 of [G] wnich relate adjacent 
values of m and establish the connection with periodicity. Thus, in the "world 
of ext", the conjectures in [G] are valid. 

Throughout this paper we will be working at a prime p > 2. In 2.3 we define 
complexes A(m) (n) with A(_ 1) (n) = A(n) . Our results are then summarized as 

Theorem. There are chain complexes A(m)(fn) defined for n > 0 and m > -1 
and inclusions A(m)(n) c A(m)(n + 1) such that 
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618 BRAYTON GRAY 

oo 

A(m) = U A(m)(n) = E(TO, cTm) 0 A 
n=1 

where E(zo, ..., Tm) is the indicated subalgebra of the dual to the Steenrod 
algebra. Furthermore there are exact EHP sequences: 

H: 0 A(m)(2n) + 4A142nl+l) 4 A(m)(2np + 2pm+l I 1) 0, 

H': O A(m)(2n-1) A(m)(2n) W A(m)(2np-1) 0 0 

and A(m) (0) is acyclic. 

There are also exact sequences: 

E2 
? 

~~A(m) (2n - 1)A(m)(2n + 1) A(m+1) (2np -1) O , 
CMN: O A(m)(2n + 1) 

1 
A(m+l)(2n + 1) Ym A(m)(2n + 2pm+I + 1) 0, 

RCMN: 0 A(m)(2n + 1) A3 A(m+l)(2n) + A(m)(2n + 2pm+l - 1) 0 

corresponding to the double suspension sequence and the Cohen-Moore- 
Neisendorfer sequences of [G]. 

Finally A(m) is a differential algebra in such a way that 
(a) A(m) (n)a * A(m) (n + a) c A(m) (n), 
(b) The connecting homomorphism in the exact sequence CMN can be rep- 

resented by a chain map of degree qm = 2(pm - 1): 

vm : A(m_l)(2n + 2pm - 1) -+ A(m-l)(2n - 1) 

such that the diagram 

A(m_l)(2n + 2pm - 1) - A A(ml)(2n + 1) 

E2 1E2 

A(m-l)(2n + 2pm - 3) A(m-l)(2n - 1) 

commutes where the horizontal maps are left composition with an element 
Vm E A(m-l)(2r + l)qm for r > 0. 

Note that property (a) generalizes a result of Harper and Miller in case m = 
-1 [HM, 1.17] and reflects the theory of compositions suggested in [G]. In 
property (b) the map vm has degree qm and is the algebraic analog of a vm 
self-map. 

This theorem summarizes the results in 2.3, 3.6, 3.7, 4.1, 4.2, 5.1, 5.2, 6.3, 
6.5 and 6.6. 

One striking corollary concerns vm periodic homotopy: 

Corollary 5.2. 

Vm A(m-1)(2n -1) v-1A(m_ 1)(2n + 1) rv vm(E(TO, ... Tm- 1) (')A). 

This generalizes one of the main results of [HM]. 

In ?7, we introduce the category of unstable right A modules, which we take 
to be an approximation to the unstable homotopy category. The properties of 
this category reinforce various delooping conjectures of [G]. 
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EHP SPECTRA AND PERIODICITY. II: A-ALGEBRA MODELS 619 

In ?8, we make explicit, the EHP spectral sequence obtained for calculating 

H*(A(m)) -- EXtA(H* (V1(m)); Zp) 

We begin by recalling the Bousfield-Kan construction [BKI. This is an explicit 
chain complex for calculating ExtA (M*; Zp) where A is the mod p Steenrod 
algebra and M is a right A module. It is obtained by putting a twisted differ- 
ential (see 1.4) on the tensor product of M and A, where A is the A algebra. 

The A algebra is filtered by A(n) corresponding to the sphere1 Sn . We will 
construct a filtration of the Bousfield-Kan construction M 0 A induced by a 
filtration on M. A particularly important special case applies to submodules 
of A* (the dual of the Steenrod algebra). 

Definition 1.1. Let M be a right A module. A decreasing filtration FkM will 
be called useful if 

(a) (FkMM)An c FkM, 
(b) (FkM)fl c FkIM, 
(c) If (FkM - Fk+l M)rfl :$ 0, k + r is even. 

Example 1.2. Let M = A*, the dual of the Steenrod algebra considered as 
a right A module. Let FkM = eTj, . CikA* where the sum is over all se- 
quences of integers of length k and Tj E A* is the standard exterior generator 
of dimension 2pi - 1. Using the comultiplication in A* one easily sees that 
Ti7n = CTi,I where c = 1 if n = pi-l and 0 otherwise. Thus a is satisfied. 
Likewise Xjfl = 0 and Tifl = 0 if i > 0 while zofl = 1. Thus b is satisfied. 
Finally (FkM)r = (Fk+lM)r if k + r is odd, and c is satisfied. This will be 
called the Bockstein filtration since the dual filtration of A is by the number of 
Bocksteins. 

Proposition 1.3. If FkM is a usefulfiltration of M and N c M is a submodule, 
the induced filtration on N given by FkN = N n FkM is useful. 

This gives a useful filtration on the dual of any cyclic left A module. Of 
course another useful filtration is obtained by setting FkM = M for all k. 

The Bousfield-Kan construction Mo A provides us with a differential on the 
tensor product M 0 A. The differential is defined by the formula 

(1.4) 0(x ?v) = (-l)IXI ExgDi ?iv + Ex/,kS ? uiv + ( el)ilx?gav 
i>O i>O 

for x E M and v E A where [xl is the dimension of x. 
Suppose now that M has a useful filtration. We define a subspace 

M(2n - 1) c M?A as follows: 

M(2n - 1) = U(FkM)r 0 A(2n - 1 + k + r). 

We now define the depth of a useful filtration by the formula: 

d(M) = max{2pi - k - r I (FkM)r,91 'A O}. 

1In case n is even, A(n) corresponds to the "homotopy theorists even sphere"; i.e., the p - 1 
cell complex Jp _(Sn). 
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620 BRAYTON GRAY 

Proposition 1.5. If 2n - 1 > d(M), M(2n - 1) is a subcomplex. 

To prove this we require a result of Harper and Miller [HM, 1.18] which we 
will use frequently in the sequel. 

Proposition 1.6. The subcomplexes A(n) c A satisfy 

AkA(n) c A(n - kq) if n > 2pk > O, 

YkA(2n+l)cA(2n-kq-1) ifn>pj>O. 

Proof of Propositiorn 1.5. It suffices to show that if x E (FkM)r and v E 
A(2n - I + k + r) then xAi o Aiv and x/3SAi 'tiv both belong to M(2n - 1) 
when 2n- 1- > d(M). Now Xg9" E (FkM)r-iq and 

,iv E AiA(2n- 1 +k+r) C A(2n- 1 +k+r-iq) 

by 1.6 if 2n - 1 + k + r > 2pi > O . This holds if 2n - 1 > d (M) . Consequently 
xg?iA'v E M(2n - 1) . Likewise x/kI?5' e (Fki1M)rjiq-1 and jiV E JLiA(2n- 
1+k+r)CA(2n-3+k+r-iq) if k+r is even and n-l+k2r >pi> O 
by 1.6. If k is maximal with x E FkM and xfl $ 0, k + r must be even by 
1.1(c). Finally, since x,l E (Fk_lM)r-i, (xf3)39i : 0 implies that 2n - 1 > 

d(M) > 2pi - (k - 1) - (r - 1) = 2pi - k - r + 2, so 2n - 2 + k + r > 2pi 
completing the proof. 

The following result will be proven in the next section. 

Proposition 1.7. If M c E(Qo, T1, ...) c A, with the Bockstein filtration, 
d(M) = 0. 

2 

The goal of this section is to study the right A module HV(m) which could 
occur as the homology of a Smith-Toda complex V(m) . We will show that the 
A module structure is unique and isomorphic to the appropriate submodule of 
A.. The A module structure of submodules of A. is then noted. 

Let [m] = {O, 1, ..., m} and [-1] = 0. For S c [m] write Qs - 

Qil ...Qik where S = {iI ik} and il < i2 < ... < ik. Let H* be a left 
A module which has as a basis all Qsu, S c [m] where Jul = 0. 

Lemma 2.1. There is a unique left A module structure on H*. With this struc- 
ture ?IAu = 0 for each pure Steenrod operation LI with I #? 0. Let HV(m) be 
the vector space dual to H* . Then the image of HV(m) in A* is the subalgebra 
E(To,... ,Zm). 

Proof. To see that LIu = 0 for all I : 0 it suffices to prove that .9P u = 0 if 
n > 0. If not, Pnu = QSu for S = {il * ik} and consequently 2pn(p - 1) = 
2(pil+** ++pik)-k . Since il < i2 < ... < ik ak > k-1 . Also k = 2t so we 
get 

t + pn(p - )pil +, + pik. 

Studying the p-adic expansions of this equation one sees that t > pik-l and 
hence that k > 2pk-2 which implies that k = 2. Again looking at p-adic 
expansions we see that this is impossible. 

Now consider the left A module map A -* H* which sends 1 to u. This 
is an epimorphism and determines a monomorphism HV(m) c A*. Since 
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EHP SPECTRA AND PERIODICITY. II: A-ALGEBRA MODELS 621 

I u = 0 for each pure Steenrod operation Pi, HV(m) C E(To, TI, . . . ) . 
For dimensional reasons HV(m) = E(To, ... , Tm). Consequently the right A 
module structure on HV(m) is determined. 

Our task now is to clarify the A module structure on E(TO, ...). To this 
end we define some notation. For S = {ii, ... , ik} write TS = T i * * * Ti if 
iI < i2 < < ik . Let S' ={i + I i E S} and (S, T) =(S - T') U T if T' c S . 
Let 

(S T) T(S, T) if (S-T') n T=q 
0 otherwise 

(this implies that T(S, T) = ?TS-TTT). Now write ISI for the number k of 
elements in S and put pS = p i + * * + pik and pO = 0. Thus p pT = pT' 

In evaluating the right A module action it is important to observe that the 
following unusual Cartan formula for the Bockstein [BK, 11.2] 

(xy)f3 = (xf3)y + (-1)IxIx(yfl). 

Proposition 2.2. 

TSf{ = T(S{ }) if O E S, 
0 ~~if 0 0SI 

T -(S, T) if n =pT, 

s 0 otherwise, n $ 0. 
Proof. Since TiBf = 0 except when i = 0 and Tofl = 1 the Cartan formula 
gives the first equation. Since Ti3n = ETi-I where e = 1 if n = pi-1 and 
e = 0 otherwise, an application of the Cartan formula to TS shows that this is 
only nonzero when n is a sum of distinct powers of p and TSJPT :$ 0 only if 
T' c S. In this case each element in S n T' is decreased by one. The resulting 
sequence is still in numerical order although there may be repetitions, in which 
case that term is 0. This happens precisely when (S - T') n T $ +, in which 
case T(S, T) = 0. 

Proof of Proposition 1.7. If Tsy n :$ 0, n = p T and T' c S. Thus 2np-k-r = 
2p T - |SI - (2ps - ISI) = 2(pT' _ pS) < 0. 

Finally we describe M(2n - 1) in case M = E(TO, ...T, m) in complete 
detail for future reference. 

Proposition 2.3. Let A(m) (2n - 1) be the subspace of E(To, ... , Tm) XA defined 
by 

A(m)(2n - 1) = TS ( A(2n - 1 + 2ps). 
SC[m] 

Then A(m) (2n - 1) is a subcomplex for n > 1 with differential given by the 
formula 

a (TS X VI) =(-1)SI E T(S, T)J ApTV 
T'CS 
T$54 

+ T r(S-{0}, T)0 1upTV +(-1)ISITS0aV 
{O}UT'CS 
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622 BRAYTON GRAY 

for S c [m] and v E A(2n - 1 + 2pS) . Note that A(-,)(2n - 1) = A(2n - 1). 

It is also interesting, in the light of [HM] to consider the submodule of A, 
dual to AI. (Al))* has a unique A module structure and has a Zp basis 
consisting of zT 124k where 0 < i < 1 and 0 < k < p- I . Using the Bockstein 
filtration we easily get d((Al )*) = q and consequently there are subcomplexes 
A1 (2n- 1) of (A 1)* A for each n > p . Furthermore F(n+ 1) c A I(2np2-1) C 

F(n + 1) where F(n + 1) and F(n + 1) are the complexes defined in [HM]. 
AI (2n - 1) is the same form as the Bousfield-Kan construction on a space X 
filtered by subspaces VI (2n - 1) = XO c XI c X2 c Xp-l with fibrations 
Xi- I Xi -- V(1)(2n + iq - 1). (See [G] for notation.) 

3 
We begin this section by analyzing the Hopf invariants in the A algebra. We 

will prove some technical lemmas about their behavior on composites general- 
izing to odd primes a result of Singer [S]. We will use these results to define 
Hopf invariants for A(m). 

Let us recall the definition. 

Definition 3.1. Let v E A(2n + 1). By expanding in terms of admissible mono- 
mials, there is a unique expression 

V = V1 + /YnV2 +AnV3 

with vI E A(2n - 1), V2 E A(2np + 1), and V3 E A(2np - 1). If n = 0, 
VI = V3 = 0. We write Hn(v) = v2 and Hn(v) = V3. This defines maps of 
degree -nq and -(nq - 1) respectively. 

A(2n + I) n) A(2np + 1), A(2n + 1) A(2np - 1). 

v, is completely determined by the formula vI = v - tnHn (v) - inHn(v). 

Lemma 3.2. Hn is a chain map while Hna = -OHn - joHn. Consequently 
there are short exact sequences of chain complexes: 

EH H: 0 - A(2n) -+ A(2n+ 1) Hn A(2np+ 1) 0, 
E Hn' H': 0 - A(2n - 1) -+ A(2n) A(2np - 1) 0. 

Proof. Differentiate the formula in 3.1. 

The Harper-Miller result (1.6) allows us to define homomorphisms via left 

composition: 

A(2n + 1) +4 A(2n - kq + 1) if kp < n, 
A(2n + 1) + A(2n-kq-1) ifkp+1<n. 

Proposition 3.3. Suppose v E A(2n + 1). If kp < n we have 
(a) Hn-k(p-1) (AkV) = ?kpHn (V), 
(b) Hn-k(p-1)(IAkV) = - UkpHn(V) - 1kpHn (V) where 

0 ifkp<n, 
v if kp = n. 

If kp+1<n we have 
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(c) Hn-k(p-1)_I(1UkV- ) = 0, 

(d) Hn-k(p-1()-(JLkv) = Y-kp+IHn (v) -Akp+ lHn(v) where 

{ O if kp+ 1 <n, 
v ifkp+1=n. 

Each of these results can be expressed, somewhat more conceptually, as a 
commutative diagram. For example, a) can be written 

A(2n + 1) k A(2n-kq + 1) 
1Hn 1Hn-k(p- 1) 

A(2np + 1) PI A(2np - kpq + 1). 
Proof. We consider first the cases (a) and (b). Write V = VI + /InV2 + AnV3 as 
in 3.1 and consider the composition. 

AkV = AkVI + AkJnV2 + /k/nV3 E A(2n - kq + 1). 

We look at the last term first. Ak'n is expressible as a sum of terms of the form 
iAn-k(p-I)-jAkp+j with j < n - kp. If the inequalities in 1.6 are satisfied we can 
write 

in-k(p-I)-jikp+jV3 E fn-k(p-1)_jAkp+jA(2np - 1) 
C fn-k(p-l)-jA(2np - (kp + j)q - 1) 

c A(2n - kq - 1). 
Such terms do not contribute to either Hopf invariant. The requisite inequalities 
are: 

(1) 2(kp + j)p < 2np - 1 which holds since j < n - kp 
(2) 2(n - k(p - 1) - j) < 2np - (kp + j)q - I which holds whenj > 1. 
The term with j = 0 has coefficient -1 , so AkinV3 -iAn-k(p-I)AkpV3 (mod- 

ulo A(2n - kq - 1)). Similarly we may write 9UkMn as a sum of terms of either 
the form iAn-k(p-1)-j/tpk+j or /n-k(p-1)-jApk+j with j < n - kp. A similar 
analysis shows that the only terms not in A(2n - kq - 1) correspond to j = 0. 

Suppose now that kp < n. Then AkJlnV2 -(-n-k(p-1)1tkp - /Yn-k(p-I1)Akp)V2 
(modulo A(2n - kq - 1)). Also AkV1 E A(2n - kq - 1) by 1.6. We then have 

Ak V --Ana- k(p-1) (/tkpV2 + .kpV3) + ln-k(p1- )ikpV2 

modulo A(2n - kq - 1) . This completes the proof of (a) and (b) in case kp < n. 
If kp = n, /kV = AkV1 + JlkAkpV2 since 'k'kp = 0 and /k/lkp = ILkAkp. Thus 
Hk(tkV) = /kpHkp(v) and Hk(/kV) = V = V - kpHkp(V) - /kpHkp(v). 

The cases of (c) and (d) are similar. If n > kp + 1, 

/IkV -Yn-k(p-1)->1/kp+1V2 - n-k(p-1)-1ikp+1V3 (modulo A(2n - kq - 3)). 
If n = kp + 1, /IkV = 1ukVI since 1lk Jlkp+l = 0 = /IkAkp+1 so Hk(YUkV) = V= 

v - YnHn (V)- AnHn (v) - 

At this point we will introduce intermediate complexes A(m)(2n) for n > 0, 
m > 0. These correspond to the "even spheres" in the EHP filtration. First set 

cm(S) 
{ ? m ES9 2 m OS, 

and then 
A(m)(2n) = Ts 0 A(2n - 1 + 2pS + cm(S)). 

SC[m] 
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624 BRAYTON GRAY 

Lemma 3.4. Each of the modules on the left are subcomplexes of the complexes 
on the right 

A(m)(2n + 1) t A(m+l)(2n + 1), 

A(m) (2n) 14 A(m)(2n + 1), 

A(m)(2n - 1) 12 A(m)(2n), 

A(m)(2n + 1) 22 A(m+l)(2n). 

Proof. Since 1 = 1113 we need only consider the last three cases. By definition, 
they are all submodules. It remains to show that A(m)(2n) is closed under 0a. 
Suppose first that Em(S) = 2, and O(TS 09 v) = E T(i) (0 Vi . Then Cm(T(i)) = 2 
so this case is clear. The case cm (S) = 0 is obvious in case n > 1. Consider 
then the case n = 0 and em(S) = 0. Referring to the proof of 1.7, we see that 
the problem terms correspond to T' = S or {O} U T' = S and m E (S, T) (or 
m E (S - {O}, T)). This cannot occur. 

These complexes will play a crucial role in the EHP development of the next 
section. For TS 09 v E A(m) (2fn + 1) define a function ( (TS 0 v) by 

(zS 0 V) = (-1)IsI{STS, Hn+ps(v)} + T({O} U S') 0 Hn+ps(V) 

Theorem 3.5. If n > 0, (a defines a chain map (in the graded sense) of degree 
-(nq - 1): 

A(m)(2n + 1) '2) A(m+l,)(2np - 1) 

with (o(A(m)(2n)) c A(m)(2np - 1). 
If n = 0, qo defines a degree 1 map 

A(m)(1) + A(m+l)(0) 

with ( (A)(m)(O)) c A(m)(O) such that (Oa + a0( = 13 in positive dimensions. 

Corollary 3.6. A(m) (0) is acyclic. That is, 

r(A(m)k()) 0, r>O= 

Proof of Corollary 3.6. Let D = OIA(m) (0) . Then (oD+D( = 1 - q where q is 

augmentation. 

Proof of Theorem 3.5. 

Hn+ps(v) E A(2np - 1 + 2pS') and Hn+ps(v) E A(2np - 1 + 2pS'u{o}). 

These integers are positive if n > 0 sO (o is a well-defined homomorphism in 
this case. In case n = 0 the only difficulty occurs when S = +. In this case 
Ho = 0. 
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It is left to evaluate 00 and 0(9. 

qf(0(T5 V)) = E r(S, T)' H'+p(S,T)(ApTV) 
T'CS 
T$q5 

+ (-1) IS' T({O} U (S, T)') 0&Hn+p(S,T) (pTV) 

T'CS 
T5qS 

+ (1) ISI T(S - {O}, T)' 0 Hn+p(S-{0}, T)(jUpT) 
{O}UT'CS 

+ T T({O} U (S - {0}, T)') 0 Hn+p(S-{O},T) (CpTV) 

{O}UTICS 

+ T5, 0 Hn+pS(0aV) + (-1) ISI T({} U S') 0 Hn+ps(aV). 

Now assume n > 1 and apply 3.3 with n + pS for n and pT for k. This 
gives 

(o( (TS V)) = T r(S, T)' (-/pT'Hn+pS (V) - ApT'Hn +pS(V)) 

T'CS 
Tq54 

+ (-1)ISI Z T({O} U (S, T)') 0 ApT'Hn+ps(V) 

T'CS 

+ &+ 
+ T({0} U (S - {0},~ T)') 

{O}UT'CS 

0 (-jUPTI+1Hn+pS (&) - )pT+ 1Hn+pS (V)) 

+ TS, 0 H+pS (0 v) + (-1) 1SIT({O} U S') 09 Hn+ps(0V). 

In case n = 0 we must exclude the terms from the first and third sum in 
which T' = S ({0} U T' = S) and add Ts r V1. 

We now collect terms using 

T(S', W) T(S,~T)' if W = T', 
T ' ) ({O}U (S-{O}, T)') if W= {0}U T' 

to obtain 

O (a (T( 0 V0)) = E r(S', W) 0 (-,upw H+s (v ApwH 
wcs 

+ (-1) 
IS' T({O} U (S, T)') ?ApT'HHn+ps (V) - Ts, 09Hn+ps (V ) 

T'CS 
T$40 

+ (-1)I5IT({O} U S') 0 aHln+ps(v) - TS, 0 oHn+ps(v). 
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626 BRAYTON GRAY 

On the other hand, 

0 ((o (TS 0 V)) = (-)0(TS' 0 Hn+ps () + 0 (T({O} U SI) 0 Hn+PS()) 

T T(S', T) 9 ApTHn+PS(V) + TS, ( 9H/+Ps (V) 
TCS 
T$Eb 

+ (-1) ISI+1 E T(S' U {O}, T) ApTHn+pS (V) 

TCS 
T$4$ 

+ j T(S, T) 0 #UpTHn+pS(V) 
TCS 

+ (-1SI+'1 T({O} U S') 0 aHn+ps (V)- 
These are clearly equal with the opposite sign. Thus (00 = -0(0 when n > 1. 
When n = 0 all the terms of V0 + 0a0 cancel except those corresponding to 
W = S in (00 and T = S in the first and fourth terms of 0( . The resulting 
sum is 

TS 0 V1 + TS 0 )psH>s(v) + TS 0 4upsHps(V) 
which is Ts 0vD. 

Theorem 3.7. If n > 1 there is an exact sequence of chain complexes 

E2: 0 -+ A(m)(2n - 1) E lA(m)(2n + 1) 11 A(m+l)(2np-1) 0. 
Proof. Clearly E2 is 1-1 and (0.E2 = 0. If q(ETSi 0Vi) = 0, Hn+ps1(vi) = 
0 = HI+8s.(vi) since the elements {T5 , T({0} U SiI)} are independent. Thus 
each vi is a double suspension and E TSI ( vi is in the image of E2. Since q 
is clearly onto we are done. 

4 

In this section we will describe the EHP sequences and the Cohen-Moore- 
Neisendorfer exact sequences. In all there are five interlocking short exact se- 
quences of chain complexes giving five long exact sequences in homology. These 
are direct analogues of geometric fibrations proposed in [G1. 

Proposition 4.1. There are short exact sequences: 

CMN: 0 -+ A(m)(2n + 1) A A(m+l)(2n + 1) 
Z4 A(m)(2n+2pm+l+1) - 0, 

RCMN: 0 A(m)(2n + 1) A A(m+1)(2n) 
Ym A(m)(2n + 2pm+l1) 0 

where n > 0 and 7rm has degree 2pm+1 - 1 such that the diagram 

0 A(m)(2n - 1) A(m+l)(2n - 1) Ym A(m)(2n + 2pm+l ) - 0 
1 E2 I E I 

0 A(m)(2n + 1) A A(m+l)(2n) Ym A(m)(2n+2pm+l -1) 0 

II 1 E 1E2 
0 A(m)(2n+ 1) A A(m+l)(2n+ 1) ZmA(m)(2n+2pm+l + ) 0 

commutes. 
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Proof. Define 

Ym(TS 
\ 

v) = (j)TT0TT V ifS=TU{m+1}, 
0 ~~if m+ 1 

OS. 
All of the assertions are easy to check. 

Proposition 4.2. There are short exact EHP sequences: 

H: 0 A(m)(2n) +A(m)(2n + 1) H A(m)(2np + 2pm+1 1) 0 
E ~~~H' 

H': 0 - A(m)(2n - 1) 4 A(m)(2n) H+ A(m)(2np - 1) 3 0 

where H and H' have degrees -(2pm+l + nq - 2) and -(nq - 1) respectively. 
Furthermore the diagrams: 

0 0 

0 A(m)(2n -1) L A(m+l)(2n -1) YmA(m)(2n + 2pm+l) 1) 0 
E E2 l E II 

(I) 0 3 A(m)(2n + 1) A A(m+l)(2n) Ym A(m)(2n + 2pm+l - 1) 0 

1 1?n 1 H' 
A(m+l)(2np - 1) = A(m+l)(2np - 1) 

1 1 
0 0 

(II) 
0 0 
1- 1- 

O- A(m)(2n + 1) A A(m+l)(2n) 2m A(m)(2n + 2pm+l - 1) 0 
11 1 E 1 E2 

0 -A(m)(2n + 1) - A(m+l)(2n + 1) - A(m)(2n + 2pm+l + 1) 0 
1 E 1 

A(m+l)(2np + 2pm+2 1) = A(m+1)(2np + 2pm+2 - 1) 

1 1 
0 0 

(III) 
0 0 

1 1 
E H' 

0 3A(m)(2n-- + A(m)(2n) H A(m)(2np-1) -+0 
II t E 1 

0 A(m)(2n1)- E A(m)(2n + 1) * A(m+l)(2np-1) -+0 
1 H I Ym 

A(m)(2np + 2pm+l - 1) = A(m)(2np + 2pm+l - 1) 
1 1 
0 0 

Proof. H' = ( DA(m)(2n) (see 3.5), H = Ym+ IPn . All of the assertions are easy 
to check. 

The EHP sequences easily give an EHP spectral sequence with an almost 
inductive procedure for computing, in the usual way. Corollary 3.6 calculates 
H*(A(m)(0)) which allows one to start an inductive calculation. One simple 
consequence of 4.2 and 3.6 is 
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628 BRAYTON GRAY 

Corollary 4.3. H: A(M,,(1) -+ A(m) (2pm - 1) is a chain equivalence, where 
A(m)(1) is the connected cover (augmentation ideal) of A(m)(1). 

Applying this to (II) with n = 0 we get 

Corollary 4.4. There is a chain equivalence: 

A(m) (2pm+l + 1) A(m)(2pm+l - 1) A(m+l)(2pm+2 1). 

Restricting with (II) or (III) we get 

Corollary 4.5. There is a chain equivalence 

A(m) (2pm+1) - A(m)(2pm+l - 1) E A(m)(2pm+2 _ 1). 

See also (6.9). 

Finally from (II) we get 

Corollary 4.6. The inclusion A(m) (1) A(m+ 1) (1) is null homotopic. 

5 
In this section we will examine periodicity in this context. The connecting 

homomorphism from CMN (see 4.1) represents a compressed version of a 
vm+l self-map. We wish to represent this as a chain map. For simplicity we 
replace m by m - 1. 

Proposition 5.1. Suppose n > pm. Then there are chain maps of degree qm = 

2pm - 2 

vm : A(ml,)(2n + 1) - A(m-l)(2n - 2pm + 1) c A(m_l)(2n + 1) 

compatible for various n and inducing in homology the connecting homomor- 
phism from 4.1. 

Proof. A splitting of CNM from 4.1 is given as follows (with n decreased by 
pm - 1): 

e: A(m_l)(2n + 1) -- A(m)(2n - 2pm + 1) 

where e(Ts 0 v) = (-1)ISIT(S U {m}) 0 v . e is not a chain map, but ye = 1 
and Dy = -yD (since y has odd degree). In such a situation y(De + eD) = 0 
so we may pull ea + ae to A(m l)(2n - 2pm + 1). An explicit formula is easily 
obtained; viz.: 

Vm(TS V v) - ZT((S, T) U {m-1}) OiApT+pm-lV 

T'CS 

+ (-I)ISIE T((S-{ 1}, T) U {m- l}) 0/ pT+pm-1V 
{O}UT'CS 

if m > 1. vo: A(-,)(2n + 1) -- A(-,)(2n - 1) is given by left multiplication by 
guo. These formulas are independent of n and hence compatible for various 
n. 
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Corollary 5.2. Let v-1A(m_l)(2n + 1) be the telescope of the chain map 

vm: A(m_l)(2n + 1) -+ A(m_l)(2n + 1). 

Then the suspension A(m-l ) (2n - 1) E A(m_ 1) (2n + 1) induces an isomorphism: 

vm A(m-l)(2n - 1) v v'A(m-l)(2n + 1) for n > 1 

and the resulting periodic chain complex is isomorphic with vm1 (HV(m-1) 0A). 

Theorem 5.3. If n > pm there is a commutative diagram: 

A(m_l)(2n+ 1) - A(m)(2np-1) 

1vm 1VM+ 1 

A(ml )(2n+ 1-2pm) + A(m)(2(n-pm)p-1). 
In case n = pm we have vm+,(Opm - (ovm = e :A(m1,)(2n + 1) -+ A(m)(1) 

(see 5.1). 

Proof. We calculate using the formulas of 3.5 and 5.1. 

(Pn-pmVm(TS 09 V) =1)ISI 1 T(S, T)'Tm 0 Hnpmp(S T)+pm-1 (IpT+pm-1V) 

T'CS 

- Z TOT(S, T)'Tm 0 Hn-pm+p(s T) +pm-1(IApT+pm-1V) 
T'CS 

+ T(S- {O}, T)'Tm 0 Hn-pm+p(S{O} ,T)+pm-I(lipT+pm-IV) 

{O}UTICS 

+ (-i)ISI Z TOT(S - {O}, T)'Tm 

{O}UT CS 

0 Hn _pm +p(S-{0}, T) +pm-1 (/lpT+pm-1 V) 

using 3.3, in case n > pm this reduces to 

(-l)ISI E T((S, T)' U {m}) 0 (-HpTI+pmHn+pS (V) pTI+pmHHpS(V)) 

TICS 

- Z T({O} U (S, T)' U {m}) 0ApT'+pmHn+pS(V) 
T'CS 

+ (-1) IS Z T({O} U (S - {O}, T)' U {m}) 
{O}UT CS 

0 (j1pT1+pm+l Hn+pS (V) - 
.ppTI+pm+ l Hn+pS (V)) 

= ( i)ISI+1 Z- T((S', T) U {m}) 0i pT+pmHn+pS(V) 

TCS 

- 
Z z((S' U {O}, T) U {m}) 0 ApT+pmHn+pS(v) 

TCS 

+ (-1)ISI+1 Z T((S', T) U {m}) 08 1pT+pmHn+pS(V) 
TCS 

= Vm+ (O (TS 09 V). 

In case n = pm, the reduction of (OnpmVm(TS 0 v) differs in the first 
and fourth terms. The terms corresponding to T' = S and {O} U T' = S 
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630 BRAYTON GRAY 

reduce to (-1) ISIT(S U {m}) 0 I'. The corresponding terms in the expansion of 
Vm+l (O(Ts 0 v) are in the first and third sums with T = S. They yield 

(-1) Sl+ T(S U {m}) 0 A2n+psH'+ps(v) + T(S U {m}) 0 #n+pSHn+ps (v) - 

Thus (On-pmVm(TS(v)V)-Vm+l(O(TS($0v) = (-l)ISIT(SU {m})0v = e(TS 0v) by 
3.1. 

6 

In this section we show that there is a unique way to make A(m) into a 
differential algebra. Unstably this multiplication exactly reflects the composition 
theory in [G]. 

We give A(m) a bigrading by letting the s grading of TS 0 v be the usual s 
grading of v E A. Thus the boundary raises s by 1. 

Theorem 6.1. Suppose A(m) is a bigraded differential algebra such that A(m-l) 
is a subalgebra for m > 0 and if s = 0 A(m) reduces to E(To,., Tm). Then 
the following formulas determine the multiplication: 

AnTO = TORn + Aln, JXn TO = TO/in, 

AnTi = -Tin- Ti)In+p-i, i > 0, 

/LnTi = Ti,?n + Ti-1/,n+p1-1, i > 0. 

Proof. The general method of proof will be to expand AnTi and differentiate the 
expansion. Using induction we then calculate the coefficients of the resulting 
over determined system. In some cases various terms in the expansion will be 
cycles (e.g. Tk)pk), at which point the inductive step will need to be augmented. 

Write AnTo = an To;n + bn in . Here the right-hand side is a general term of 
A(o) with s = 1. Differentiate this equation with n = 1 to obtain b, = 1. 
Differentiate this with n = 2 and substitute in from the first equation to obtain 
b2 = 1 and al = a2 = -1. Now apply induction after differentiating the 
general equation to conclude an = -1 and bn = 1 . Expand 0 = AnT2 to obtain 

YnTO = To/n for n > 0. For n = 0 differentiate 0 = T20 
For an element in A(m) we will speak of the polynomial degree to mean the 

degree in the Ti 's. We claim now that AnTm , when expanded, contains no terms 
of polynomial degree greater than one. This is proved by double induction on 
n and m. By induction, the expansion of (9A)n)Tm has degree one so the same 
is true for 0 (An Tm) . Thus AnTm can have no term of degree bigger than 2 and 
the only possible degree 2 terms are TiTkVk where 1k E A is a cycle with s = 1 . 
Thus vk = Apt and the stem degree of TiTjVk is congruent to 1 mod q. Since 
the stem degree of AnTm is congruent to 0 mod q, such terms cannot occur. 

Now write AnnTI = anjsn+I + bnTOAn+I +cnTiAn . In case n = 1 we differentiate 

to obtain a, = 0 and b, = cl = -1. Now apply InTITO = -inTOTl to obtain 
/nTI = -bnTOin+1 - cnTl/n. By induction assume an = 0 and bn = cn =-1 . 
Calculate 0= AnT2 to obtain an+1 =0 and cn+I = -1. Now differentiate and 
look at the terms of polynomial degree 0 to obtain bn+I = 0. Use AnT To = 

-inTOTi to obtain /inTl = TO/in+1 + TI/in for n > 0. The case n = 0 follows 
by differentiating TOTI = -TI TO. 

We will simplify the general case by introducing derivations O$m (X) = [Tm, X] 
- TmX - (-1)XIXTm . We have Om(Om$(x)) = 0 and Om(Onn(X)) = -On(Omm(X)). 
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Our calculations give 0O(/In) = 0, OkO(An) = ,Un, 0k1(.n) = -TOJn+, and 
q$1 (in) =- TOin+ 1 

Now differentiate TITm = -TmTl to get 0 = TO(Al Tm + Tm/l + Tm_jApm-1+1) = 

T0(km(Ai) + Tm_ijpm-i+i). Using q$m ((iAn)) =- _1(0m(An)) 1 Om(Ti) = 0, and 
induction on n we get 0 = To(qm(in) + Tm_1ipm-i+n). Thus 

Om('(n) = -Tm-1Aipm-1+n + anTOin+pm-1+.+.+p+1. 

Assuming that m > 1, differentiating, and looking at the terms of polynomial 
degree 0 we get 0 = anf/Oin+pm-1+...+1. Thus a(n = 0. Using q0(q$m(3n)) = 

-Om (OO(in)) we get mn(,Un) = Tm-1n/1n+pm-1. 

We have next to show that the equations of 6.1 give A(m) the structure of an 
associative algebra. This will be done inductively using the following 
Lemma 6.2. Let F be a graded differetnial algebra and q: F -+ F be a derivation 
of odd degree with q$2 = 0. Then there is a differential algebra F' which is a 
free right F module with basis 1 and T, and q extends to a derivation q' and 
rF by theformula [T, y] = q(y). 

Proof. Use the formula Ty = (- 1) IYI YT + +(y) to define a multiplication extend- 
ing the right F module structure. Thus 

(a + Tb)(c + Td) = (ac - (_1)lalq(a)d) + T(bc + (_ 1)Ialad - (I1)bq$(b)d). 

Associativity is an easy verification, and the unit of F, if it has one, is a two- 
sided unit for F'. 

As a simple application we may let F = A and 0 be the differential. We 
will write AO for T. This extends A to an associative algebra on Ai, and pti 
for all i > 0. The usual formulas for the differential are then converted into 
the Adem relations, and it is a well-known observation that they then have the 
same form for all i. Let us call this algebra EA. 

We will extend EA(m) to EA(m+l) by induction using 6.2. As in 6.1 we 
will need to consider the first two cases on their own right and then use general 
considerations to complete the inductive step. 

Thus to construct EA(o), we need to construct a derivation q0 of EA con- 
sistent with 6.1. To do this we must show that if we define qo by q$O(An) = An , 
00O(/n) = 0 and ko(ab) = 0o(a)b + (-1)ja1a0o(b), this defines a derivation of 
EA. We have precsribed an algorithm for calculation. We need to show that 
the Adem relations are carried into relations by this algorithm. With the nota- 
tion of [HM], there are four kinds of Adem relations labeled (1.7), (1.8), (1.9) 
and (1.10). It is easy to see that (1.9) is carried to (1.10) and (1.10) is carried 
to 0 = 0. Using the formula dk, i = Ck-l, j-l - Ck, j (in the notation of [HM]), 
one sees that (1.8) is carried to (1.10). The same formula is used to show that 
00 carries (1.7) into (1.9) minus (1.8). 

Thus EA(o) is an associative algebra. We write T0 for the introduced element 
and thus have formulas AnTO = -TOTm + ji, for all n > 0. In particular we 
define d(x) = [AO , x] as before and have dTo = go . Thus with this differential 
we have recovered A(o) . 

We will prove by induction 

Theorem 6.3. A(m) has the structure of a differential algebra using the formulas 
of 6.1. If AO is introduced, we have an algebra EA(m) with d(x) = [AO, x] . 
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Proof. Having settled the case m = 0, we will assunme, by induction that a 
multiplication in A(m) is constructed satisfying 6.1. One can easily add AO using 
6.2 so we have EA(m) with d(x) = [AO, x]. The induction will be complete if 
we can find a derivation Om+I: EA(m) "EA(m) with Om+I (Ti) = 0, Xm+i (in) = 

-Tmin+pm and qm+l(lGn) = -TmAn+pm Let Am be the quotient of the free 
associative algebra generated by all Ai, pis for i > 0 and Ti for 0 < i < m 
modulo the relations: 

(a) T2 = 0, TiTj =-TjTi 
(b) An To =-TOAn + lAn AinTO = TO/in, 

(c) inTi -TiAn= - Ti_1/n+pi-1 

(d) An Ti = Ti/n + Ti- 1/ n+p- 1, 
Now define a derivations p : Am - Am of degree q and Obk Am A,Am of 

degree 2(pk - 1) for 0 < k < m + 1 by the rules: 

Ok(An) =-Tk-l1n+pk-1, n > 0, k > 0, 

ckk(Yn) = -Tk-lin+pk- 1, n > 0, k > 0, 

?)0(An) = An, O tO(Yn) =, ? k(Ci) = ? S k > O, 

P(9n) = #n+l X P(An) =An+1 X P(Ti) = ?. 

It is straightforward to check that these are well defined. The following rela- 
tions hold: 

(*) Ok'l = -XIk, kP = P(k- 

Since these homomorphisms are derivations, it is only necessary to check equal- 
ity on the generators. 

EA(m) is a quotient of Fm by the relations (1.7) to (1.10) of [HM]. These 
derivations will define derivations of EA(m) if they preserve the two-sided ideal 
generated by these relations. We have already observed that q0 is defined on 
EA(m). The induction relies on 

Lemma 6.4. p defines a derivation EA(m) - EA(m). 

Continuing with the proof of 6.3 we note that all of the relations (1.7) and 
(1.10) can be generated by repeated application of p and bo to 2i+pi = 0 = 
/ti4pi+l . Indeed applying p to AiApi = 0 k times yields 

k fk 
Z ( ) Ai+sApi+k-s = 0. 

s=O 

Using induction one can then write Ai)pi+k as a sum of admissible terms which 
yields (1.7). In the same manner yUApi+1 = 0 leads to (1.9). Consequently we 
only need to show that /k(4iApi) = 0 = Ok k(YliApi+ 1). This is straightforward. 

Proof of 6.4. Using bop = poo reduces the calculation to (1.7) and (1.9). Con- 
sider the relation (1.7): 

AiApi+k = Ck, jAi+k-jpi+j 

Applying p and expanding )i+l1pi+k, the formula reduces to 

( Ckp,jp if k > p, 
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This is easy to verify. The same congruence is used with (1.9) so p extends to 
a map of EA(m). 

Proposition 6.5. Suppose S = {ii, ik } with il < i2 < ... < ik. Then 
TS = Til 

.. *Tik - 

Proof. Both sides of the equation have s filtrations 0 where there are no cycles 
if S : 0q. So it suffices to show that both sides have the same differential. 
Since the left-hand side is computed by 2.3 it suffices to compute the right side. 
Suppose il > 0. We then prove by induction on k, that 

0(Ti . ik) = ( 1)k Z T(S, T) 0)LpT 

T'CS 
T$cb 

in agreement with 2.3. The general case is obtained by calculating 0 (TOTS) with 
0 0 S. 

The following theorem suggests the compositions contemplated in [G]. 

Theorem 6.6. A(m)(n)UA(m)(fn + a) c A(m)(fln) 

The proof will be based on 

Lemma 6.7. 
(a) TSA(m)(2n + 2ps + 1) c A(m)(2n + 1), 
(b) if m 0 S, TSA(m) (2n + 2pS) c A(m) (2n), 
(c) A(2n + 1),A(m)(2n + a + 1) c A(m)(2n + 1), 
(d) A(2n + 1)aA(m)(2n + a) C A(m)(2n). 

Proof of 6.6. Suppose n = 2k + 1 . Then 

A(m)(2k + 1)UA(m)(2k + a + 1) 

c E TsA(2k + 2pS + l)a-2ps+ISIA(m)(2k + a + 1) 

c ZTSA(m) (2k + 2pS + 1) c A(m) (2k + 1) 

by (c) and (a). Suppose now that n = 2k. We then have 

A(m)(2k),A(m)(2k + a) C E TsA(2k - 1 + 2ps + 6(S)),_2ps+ISIA(m)(2k + a). 

We separate two cases. If S = {m} we get 

TmA(2k - 1 + 2pm)a_2pm+lA(m)(2k + a) 

C TmA(m)(2k - 1 + 2pm) C A(m)(2n - 1) C A(m)(2k) 

by (c) and (a). If S :A {m} . e(S) + I S> 2 and we apply (d) to conclude that 
these terms are contained in 

Z TsA(m)(2k - 2 + 2pS + e(S)). 

If m E S, e(S) = 0 and this is contained in A(m)(2k - 1) c A(m)(2k) by (a). 
If m S, we apply (b) to see that such terms are contained in A(m) (2k) . 

For the proof of 6.7 we will need the following 
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Lemma 6.8. For n > 0 and S c [m] we have 
(a) AnTS = (- l)ISI ET'CS T(S, T)>n+pT + E{O}UT'CS T(S - {O}, T)JLn+pT 

(b) LnTS = ETCST(S, T)Lln+pT. 

Proof. (a) reduces to 2.3 if n = 0. Apply p n times to prove (a). Apply qo 
to prove (b). 

Proof of 6.7. (a) is immediate. To check (b) note that if m 0 S, 6(S U T) = 
c (T) . We prove both (c) and (d) by induction on the s filtration in A. In case 
s = 1 we must prove 

AkA(m)(2n + kq- 1) c A(m)(2n), 
AkA(m)(2n + kq) c A(m)(2n + 1), 

/kA(m)(2n + kq) c A(m)(2n), 

/YkA(m)(2n + kq + 1) c A(m)(2n + 1). 

Each of these are proven using 6.8. For example, 

AkA(m)(2n + kq - 1) C ZAkTsA(2n + kq + 2pS - 1) 

C T z(S, T)>k+pTA(2n + kq + 2pS - 1) 

+ E T(S - {0}, T)JLk+pTA(2n + kq + 2pS - 1). 

Suppose S 54 T'. Then Ak+pTA(2n + kq + 2pS - 1) c A(2n + 2p(S T) - 1) 
by 1.6, so these terms are contained in A(m)(2n - 1) c A(m)(2n). If S = T', 

Ak+pTA(2n + kq + 2ps) c A(2n + 2pT) and TTA(2n + 2pT) C A(m)(2n) since 
m 0 T. A similar analysis applies to the second sum (where T' c S - {0}). 

We prove (c) and (d) together by induction. Suppose that they are both valid 
for monomials of length < s and let v have length s where I is an admissible 
sequence. We distinguish two cases. 

Case 1. v, = Aivp E A(2n + 1), . Let cf' = I aI = c - iq + 1 . Now i < n so 
vp E A(2ip - 1), c A(2n + iq - 1),. We can then use induction induction to 
see that: 

l/IA(m)(2n + iq + '-1) c A(m)(2n + iq-1), 

lIIA(m)(2n + iq + c') c A(m)(2n + iq). 

Hence: 

v/A(m)(2n + a) c AiA(m)(2n + iq - 1) c A(m)(2n), 

v,A(m)(2n + a + 1) c AiA(m)(2n + iq) c A(m)(2n + 1). 

Case 2. vi = jiiv1, E A(2n + 1),J. Let c' = Ivi1 = a - iq. Since i < n, 
/,p E A(2ip + 1),J, c A(2n + iq + 1),, . Again by induction, 

v,A(m)(2fn + iq + c') c A(m)(2n + iq), 

l/,A(m)(2n + iq + c' + 1) c A(m)(2n + iq + 1). 

Then we get 

v/A(m)(2n + a) c JLiA(m)(2n + iq) C A(m)(2n), 

vIA(m)(2n + a + 1) c /IiA(m)(2n + iq + 1) c A(m)(2n + 1). 

This completes the induction and establishes 6.7. 
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One consequence of the existence of compositions is that elements of Hopf 
invariant one produce splittings. This gives us the following generalization of 
4.5. 

Proposition 6.9. There is an isomorphism of chain complexes 

A(m)(2pk) A(m) (2pk - 1) D A(m) (2pk+l _ 1). 

Proof. Apk E A(2pk + 1) C A(m)(2pk) is a cycle. If x E A(m)(2pk+l - 1) then 

)pkX E A(m)(2pk) by 6.6. Thus we may define a chain map 

? : A(m) (2pk+ _ 1) -* A(m)(2pk) 

by C (x) = ApkX. 

Now write x = ESC(m] TSrS with vs E A(2pk+I + 2pS - 1). Then we expand 
ApkX using 6.8a and observe that most terms are in A(m)(2pk - 1) . It is an easy 
matter to see that HIk (r (x)) = pk (5 (X)) = x . Thus the sequence 

H' : 0 -* A(m) (2pk - 1) _* A(m) (2pk) -) A(m)(2pk+l _ 1) -* 0 

splits. 
Finally, we introduce a Bockstein homomorphism into A(m)(n). Define 8im 

via the composites: 

A(m)(2n + 1) lA(m)(2n + 2pm + 1) A(m)(2n + 2pm + 1) 
T E E2 t E3 

A(m)(2n) A4 A(m-1)(2n + 2pm -1) A A(m)(2n + 2pm - 2) 

Theorem 6.10. tim is a derivation with 14 - 0, Ilm+ I = -ofim and flm/nm+i = 
_pPm 

Proof. As in the proof of 6.3, we construct a derivation 13m : Am Am by 
f8m(Tm) = 1 and for i < m 8(Ti) = 0, 8(A,) = fl,8 ) = 0. One easily checks 
that flm = lYm- 1- 

7 

The complexes A(m)(n) have a unit 1 E A(n) c A(m)(n) and have their 
gradings normalized so that the unit has dimension 0. We will call this the 
stable grading. By way of contrast, the complexes in [BK] are graded according 
to their unstable dimension. We wish to regrade the complexes A(m) (n) . Since 
they are not known to have a geometric analog, we seek an algebraic limitation 
on the regrading that reflects geometric considerations. The composition pairing 
of 7rq(x) and 7qtT (Sa) to 7rq+T(x) suggests the following. 

Definition 7.1. An unstable differential right A module (for short, unstable A 
module) is a graded chain complex M = {Ma} of Zp vector spaces together 
with pairings Ma ? A(o)T - Ma+T which are associative and satisfy m * 1 = m 
and d(m 2 A)=d(m) i A+(-1) m . dA form E MM and AE A(of). 

Clearly the unstable cochain complex MtDA of [BK] is an unstable A mod- 
ule. In fact, if we ignore the differential in M0D_A we see that it is the free 
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unstable A module generated by the graded vector space M (in the sense of 
adjointness). 

Given an unstable A module M we can construct QM by (QM), = M,+I. 
This will again be an unstable A module if we define the A action as follows. 
Write S?x E (QM), for the element corresponding to x E M+i . Then define 
a A module action by (Qx)), = (-l)IIQ(xA) and a derivation by d(Qx) = 
Q(dx). Reversing this process (delooping) is in general, not possible. Let us 
consider, for example, regrading A(n). We ask for which k is QkA(n) an 
unstable A module,. For this we need A(nf)m+k * A(m) c A(n) which by [HM; 
1.17] requires m < n + m + k, i.e., k > -n. Thus Q-nA(n) is a delooping 
for A(n). In general, QkA(n) corresponds to Qk+nSn. If n + 1 7& 2pS for 
some s, Q-n-'A(n) is not an unstable A module. To see this, note that if 
it were, we could define 1 * An+1 E (Q-n-1A(n))(n+l)q-l = A(n)(n+q)-l with 

d(l * An+1) = (_ 1)n+l 1 * d(n+l1) . Since d(An+l) :A 0 when n + 1 :A 2pS and 
is not a boundary in A(n), this is impossible. Of course if n + 1 = 2pS, 
A(n + 1) _ A(n) D A(2ps+l - 1) so this is best possible. 

Let A(n) be the augmentation ideal in A(n). The next lemma implies that 
f?-n-')A(n) is a right A module. This suggests that the fiber of the map Sn U p 
en+ -* K(Zp, n) could be an H space (where p > 2). 

Lemma 7.2. A(n)dA(n + d + 1) c A(n). 

Proof. We show that v1A(n + d + 1) c A(n) for v, E A(n)d by induction on 
the length of I. First note that 

AkA(n + kq) c A(n) if 2k < n, 
/tkA(2m+kq+2)cA(2m+1) if k<m, 
/tkA(2m + kq + 1) c A(2m) if k < m. 

This handles the case s = 1 . Suppose vI = AkVI' with 2k < n. Then we have 

v1A(n + d + 1) C AkkA(2kp- 1)d-kq+lA(n + d + 1) 

C AkA(nf +kq - l)d-kq+1A(n + d + 1) 
C AkA(n + kq - 1) c A(n). 

On the other hand, suppose VI = Ilk VI' with 2k + 1 < n . Then 

v1A(n + d + 1) C ktkA(2kp+ l)d-kqA(n + d + 1) 

C /UkA(n + kq)d-kqA(n + d + 1) 
c ukA(n + kq) c A(n). 

In the last step we apply the case s = 1. 

We will call the delooping Q-nA(n) the unstable grading for A(n) and dis- 
tinguish it with the notation A(n). Thus A(n) = QnA(n). We wish to consider 
unstable gradings for the complexes A(m) (n) . This should give us some insight 
as to how far the spaces considered in [G] could be delooped. 

We first examine the classical EHP sequences in this light. 
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Definition 7.3. A map of unstable differential right A modules is a chain map 
of degree 0 which preserves the A module action. 

We now claim that the following are exact sequences in the category of un- 
stable A modules: 

F ~~~~H' O A(2n - 1) E QA(2n) - QA(2np- 1) 0, 
IE ~~H 

O - A(2n) I QA(2n -,- 1) H QA(2np + 1) 0. 

Furthermore neither H or H' can be delooped. The only hard part is to show 
that H and H' are maps of unstable A modules. This follows from the 

Lemma 7.4. Suppose x c A(2n)d and y c A(2n + d), then Hn(xy) = Hn(x)y. 

Suppose x E A(2n+ O)d and y E A(2n + d + 1). Then Hn(xy) = Hn(x)y. 

Note: This actually implies that the compositions 

~~~~H' 
A(2n) -* A(2n) -*A(2np - 1) and A(2n + 1) -*A(2n + 1) -* A(2np + 1) 

are A module maps. 

Proof. We only do the first case as the second is similar. Suppose first that 

x c A(2n - 1). Then by 7.2, xy c A(2n - 1) so the equation holds. Now 
the equation clearly holds when x = An so suppose that x = Anv with v E 

A(2np - 1)d-nq+1. Then, by the lemma, vy E A(2np - 1) so Hn(xy) = vy = 

Hn(x)Y- 

We now ask, for which k is QkA(m)(n) an unstable A module? 

Proposition 7.5. QkA(m)(n) is a right A module if k > -n, but not if k = 

-n - 1 where n + 1 :? 2pS or n + 2pm :n 2pS for some s > 0. 

Proof. Consider first QkA(m)(2n+1). The composition pairing must be defined 
on 

[QkA(m)(2n +- )]d 
0 A(d) = A(m)(2n + l)d+k (0 A(d) 

- Z TsA(2n + 1 + 2'S)d+k-2ps+IS 0 A(d) 

for which we need d < (2n + 1 +2ps) + (d +k - 2pS+ ISI); i.e., 2n + 1 + ISI > 
-k. Thus 2n + 1 > -k is sufficient. To see the converse, look at the term 
corresponding to S = 0. In the other case we have: 

[QkA(m) (2n)]d 0$ A(d) = A(m) (2n)d+k (0 A(d) 

= , TsA(2n - 1 + 2pS + cm(S))d+k-2pS+ISI (0 A(d) 

and the requisite inequality is -k < 2n - 1 + ISI +cm(S) . Since ISI +cm(S) > 1, 
-k < 2n suffices. For the converse directions look at terms where S = {m}. 

This result supports the delooping conjecture of [G]: that Wn(m) deloops until 

it is n - 1 connected, i.e., ('mV = Q+l(m A particular case of importance 

is the space Wn which is the fiber of the double suspension. This suggests that 
Wn is a double loop space (at odd primes). At p = 2, the complex A(Wn) 
(see [M]) only supports one delooping of Wn precisely because the extra terms 
in the boundary formula prevent it from being an unstable A module when 
delooped once more. 
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Theorem 7.5. There are exact sequences in the category of unstable A modules: 

:0 
A(m)(2n) 

E HQA (m)l(2np 
+ 2pm+1 1) 0 

-' - E H' H * 0O A(m)(2n-1) QAK(m)(2n - (m)(2flnp-1) 0 

-2 --E2 9'w 
E : 0 A(m)(2nf-1) Q2A(m)(2n + 1) - QA(m+l)(2-P-1) 0 

CMN: 0 A(m)(2n + 1) A A(m+I)(2n + 1) 2A(m)(2n + 2pm+l + 1) 0 

RCMN: 0 O A(m)(2n + 1) 3 
A(m+l)(2n) 7 A(m)(2n + 2pm+l - 1) 0 

and a commutative diagram: 

j22A(m)(2n + 2pm+l - 1) g22A(m) (2n + 1) 

E2 -m+l E2 

A(m)(2n + 2pm+l - 3) A(m)(2n- 1) 

where the horizontal maps are given by left composition with 

Vm+i(1) E A(m)(k)k+2pm+12 for k> 1. 

Proof. Since it is clear that the various inclusions are A module maps, one can 
reduce the question to checking y, vm+1, and (p. The first two are clear from 
the definition, while the third follows from 7.3. 

The exact sequences (*) actually split as right A modules (but not as chain 
complexes); we have 

.QA(2n + 1) = A(2n) Q2A(2np + 1), 

QA(2n) = A(2n - 1) D QA(2np - 1). 

By iteration we get 

QiA(2n + 1 ) = . nAp. . lptA(p) 

i=o 
00 

Q2A(2n) = A(2n - 1) fAnqUnp- I ... *i(np_l)pA(2(np - l)p'). 
i=O 

In particular, i2?(2n) and Q2A(2n + 1) are free right A modules; consequently 
we have 

Proposition 7.6. If M is a free right A modules, QM is also free. 

It is possible to describe a basis for Q2M from a given basis {x0} for M. 
For each xa! with Ixax = 2n + 1, one takes Xa/n ... /npi-, for each i > 0. 
For each xa with IxaI = 2n one takes xa and Xa4inAjp- I , - -(np-1I)pi- for 
each i > 0. These basis elements can also be described in terms of homology 
operations. Using then notation of [C], 

Kk+l(M5A) = JDk(Lk(M))?A. 

This content downloaded from 128.151.150.9 on Mon, 1 Apr 2013 10:58:15 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


EHP SPECTRA AND PERIODICITY. II: A-ALGEBRA MODELS 639 

In particular, we have the isomorphism 

A(m) (2n - 1) Z- E LSIA(2n + 2pS - 1) 
SC[m] 

as right A modules. This is then a free right A module and suggests that the 
homology of the spaces Vnm) (2n - 1) of [G] should be 

8 H*(n1S1s2n+2ps- 1 ) 
SC[m] 

8 

In this section we describe in some detail an EHP spectral sequences for 
calculating ExtA(H*(V(m)); Zp) for -l < m < oo. In the case m = -1 
this method was used in [CGMM], and works just as well in the other cases. In 
particular, for m = oo it simplifies and can be used to calculate the cohomology 
of the subalgebra of the Steenrod algebra generated by the Yi -, i > 0. 

The results are purely organizational. The short exact sequences H and H' 
give long exact sequences in homology and these fit together to form a spectral 
sequence. The s grading in the A algebra gives a bigrading to A(m)((n) and 
hence the spectral sequence is trigraded. We lay out the stem dimension (u) 
horizontally and the filtrations v > 0 vertically. We ignore s except when 
calculating differentials. It can be read off the genealogical description for re- 
assembly into an Adams diagram. Write Ad for the subspace of the A algebra 
of elements of stem dimension d and monomial length s. We bigrade A(m) (n) 
by A(m) (n) = TsZ As) n A(m) (n). Then the differential in A(m) (n) increases 
s by 1. 

Theorem 8.1. For each m > -1 there is a trigraded spectral sequence {sEu I} 
with 

(a) dr: sEu, v s+iEur1i,v-r 

(b) sEu 2v = Hu-qv+l (As-' (2pv - 1)), 

sEu',2v+=Hu-qv-qm+l (Am) (2pv + 2pm+l - 1)), 
(C) Exti' (H* (V(m)) zp)-ffli Q sEt??fs, i, 
(d) Hu (A(m) (v)) is the homology of the subspectral sequence with tE u= 0 

for t>s, 
(e) 

SEU Z ifu=s=O, 
s l. 0 otherwise. 

The proof is straightforward. The case m = oo simplifies since half of the 
E1 terms are missing. 

Theorem 8.2. There is a trigraded spectral sequence {sEur v } with 
(a) dr :S Eur,v` s+1Eur- ,v-r , 

tbX E1 - H (As-1'2pv 1 (b) sEu,v = Hu-qv+l A 
(oo)P - 1)) 

(c) Extsjt(H*(V(oo); Zp) _ Extpt(Zp, Zp) (Do sEts t where P c A is 
the subalgebra generated by the Steenrod pth powers, 
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(d) Hu (As(oo) () = EDfivo sEu, i, 
(e) Z ifu=s=O, 

sEY1u=jlo0 otherwise. 

Calculation with these spectral sequences is greatly aided by the following 
composition formula for Hopf invariants (see 7.4). Let A(m)(n) be the aug- 
mentation ideal. 

Theorem 8.3. Suppose x E A(m)(2n)d and y E A(m)(2n + d) then Hn(xy) = 

H, (x)y. Suppose x E A(m)(2fn+ l)d and y c A(m) (2n +d + 1). Then Hn (xy) = 
Hn (x)y 

Thus the Hopf invariant of a composition is always obtained by taking the 
Hopf invariant of the first factor and multiplying by the second factor, provided 
the first factor is of positive stem degree. 

The proof of 8.3 is long but entirely analogous to that of 7.4. It is accom- 
plished by showing first that ~o(xy) = ~o(x)i(y) for x E A(m)(2n + l)d and 
y E A(m)(2n + d + 1). The Hopf invariants are easily derived from ~o. The 
result is then seen to follow from the analog of 7.2; namely 

A(m) (2n+ 1 )dA(m)(2n + d + 2) C A(m)(2n + 1). 

This is obtained by a modification of the analysis in ?6. 
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