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These notes cover the major part of an introductory course
on formal groups which I gave during the session 1966-67 at King's
College London. They are based on a rough draft by A.S.T. Lue.
I have not included here the last part of the course, on formal
complex multiplication and class field theory, as this subject is
now accessible in the literature not only in the original paper but
also in the Brighton Proceedings. The literature list on the other

hand includes some papers published since I gave my course.
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CHAPTER I. PRELIMINARIES

§1. Power Series Rings

Let R be a commutative ring. The power series ring
R[[D%_,...,Xn]] in n indeterminates Xl""’xn over R is a ring
vhose elements are formal power series

i i
X teaux

b O SRPIN X = f. .
( 19°°°e n) l ippeeesl

with component-wise addition and Cauchy multiplication as its
operations,
Denote by N the set of non-negative integers and let Mn

L
In other words M is the set of maps of {lje.s,n} into N. We

be the set of n-tuples i = (il,...,in), with components i, € N.

define addition and partial order on Mn component-wise, ie.e.

i+k= (11 + k-1'¢00’ 1n + kn)
and

i Z_k ——4 iz lkl for & = l.coo.no

The zero element O on M_ is the n~tuple (0,«ees0).
Now we cen write

f(}&,coo,xn) = f(X) =2 = . Z f.Xi

1€Mn

. i i
(interpret X* as X, l...Xnxl !), and define



(g + £); =g + £,

(g.f)i = k+§=i gkfj.

With these definitions R[[:Xl,...,xn]] is a commutative ring, which
contains R as a subring : identify & € R with the power series T,
for which fo =aand f; = 0 (the zero of R) when i > O (the zero

of Mn)' We shall write

U R— R[[Xls"'oxn]]

for the inclusion map. The augmentation

€ : R[[Xl,...,Xn]] — R
is the ring homomorphism with e(f) = £, TNote that the diagram

R R

R[[Xyseeest 1]
commutes .
Note:: we can view the formal power series ring as the set
of maps Mn + Re If the particular symbols for the n indeterminetes

are not explicitly needed we shall simply write

R[[xl,...,xn]] =R.



It is clear of course that the map

) £, —> ) £yt
i €M 1 jem *
n n

sets up an isomorphism
R[[XyseeesX 1] = BRI yeenst, 1]

compatible with both ¢ and ue.

a1l (R _); = R[[X ,eeesx 11 [[x]] 2 R[[% peeesX 1] =R o

The disgrem
e S
n=-1
uRn—l’l uP.,n
L4
B
£ €
R, 151 R,n
Rn—l —> R
SR,D—l
commutes ¢

Denote by U(S) the group of units (invertible elements)of a ring S.



PROPOSITION 1 £ € U(Rn) if end only if e(f) € U(R).

PROOF As U is & functor from rings to groups, f € U(Rn) will imply
e(f) € U(R).

Ilet n =1le If e(f) = f.€ U(R) then one can solve

0

successively the equations

fo8o =

fogl + flgo = 0, “aee g

fogr + flgr_l + doe *+ frgo =0

-

for the coefficients of the power series g(X) = (£(X) )"t. This

settles the case n = 1. Now proceed by induction, using Lerma l.

Filtrations of Abelian Groups

Let A denote an abelian group. A filtration v of A is a
nap
viA>T U o

which satisfies
(1) +(0) == , Imv# {=},

(2)  v(x=y) > inf {v(x), v(y)} ,

It follows that v(=x) = v(x).

(Hote : suppose that v(x) = « only if x = 0, i.e. that v is &

Heusdorff filtration (see below)e. Then by taking |x-| = (%)V(X).



we get a metric space since |x~y| < swp {|x], |y|} < |x| + |y] .
Note also, that v(a.n) > o implies |a.n| 2> 0)e

Given a filtration v, then for m ¢ N, define
A ={xea]|v(x) >m} .
Am is a subgroup of A ( = Ao), and Am3 A 41 Defining

= )
Ay méI'IAm ’

we have in fact

A

0

{xear |vix) ==},

v is in turn determined by the groups Am, for m € N, via the
equations

v(z) = sup ne.
xéAm

In fact if we are just given a decreasing sequence {Am} {n € H) of
subgroups of an sbelian group A = Ay» then this last equation defines

e filtration on A,

LEMMA 2 Suppose A is an S-module for some ring S. Then the AL

ere S-modules if and only if v(sx) > v(x) for all x € 4, s € S,

Vhen this is the case, we speak of S-filtrations.
A filtration is Heusdorff if A_ = {0} .

If {a.n} is a sequence of elements of A, and lig v(a.n -3) =

then we write l:i.m.v & =& Torvy Hausdorff, a sequence can only have one
n-o



limit. A sequence with & limit is a limit sequence. A sequence

{a.n} in A is a Cauchy sequence if

lim_ (a
n->°°v n+l

Every limit segquence is a Cauchy seguencee.
A riltration v is complete {or, A is complete under the

- an) = O,

filtration v) if it is Hausdorff and if every Cauchy sequence in A
has a limit in A.
Exemple (i) If there exists k for which A, = A_ = {0}, then A
is complete. The Cauchy sequences are the sequences which are
ultimately constante.

P
Example (ii) A = 'l A(k), vhere A(k) are S-modules, and a(k)

k=0
denotes the k-th component of a € A. Define

0 for all k < rl,

Ir={a6A|a.(k)

p.={a€n|alk) =0 for all k > r},

via) = inf n= sup Te
a(n)#0 2a €I

LEMMA 3 With these definitions, (i) v is an S-filtration of

A with the I, as associated subgroups:

(ii) v is a complete filtration, and if:v a(n) =a

(a(n) is defined to be the element of A with a.(n)(k) a(k) for
k < n, and a(n)(k) =0 for k > n);

(iii) for each r, A is the direct sum I, +P.




Example (iii) A is an abelian group, v a filtration on A with
associated subgroups Am. Denote by -n'm : A/Am+l - A/Am the
natural quotient maps.

Consider, in the direct product F;ll (A/Am), the submodule A of
elements o for which = (a(m+l)) = a(m)s The filtration of Q(A/Am)
(ef. 2nd Ex, page 6) defines a filtration ¥ of -!:., under which
A is Hausdorff and complete. Also, p_: A - A/Am defines a
homomorphism A + I;l (A/Am) whose imege is contained in A. This gives

therefore a homomorphism p : A > A. Ve have

(1) v(p(a)) = v(a), for a ¢ 4;
(ii) P is injective if and only if A is Hausdorff;

(iii) p is bijective if and only if A is complete.

LEMMA 4 If v is a filtration of A, and if A is a ring, then

hd - C . -
v(xy) 2 v(x) + v(y) if and only if A A A e In this case also
lin a b = lim_ a,+linm D , and we say v is a ring filtration.

We leave the proofs as exercises.

n
If i € M_, define |i| = ] i For £ € R, we define the order
n . k=1 2 . -
of £ to be ord(f) = B [i| . By taking £(k) = £.x*
f.#0 N I 1
i 1i=k
h . = inf .
(homogeneous polynomiel), we see ord(f) £(x)#0 ke Denote by Rn(k.)
the R-module of homogeneous polynomials of degree k in the

variables K.L""’xn' Then

=M
R = k=0 Rn(k) *
In Lemme 3, by taking A =R, S =R, and A(k) = Rn(k), we have

n’



Ir={f|f.i=0for li] <z},

P_ = {polynomials in X

. poeeesX Of degree < r-l} .

PROPOSITION 2 The function ord is a complete filtration of R with

associated subgroups I , and R = I + P (direct sum of R-modules).

Also, ord(f.g) > ord(f) + ord(g).

Moreover, Iq.Ip = Ip_'_q, and the Ir are ideals of IO = Rno

PROOF By Lemmas 3 and b4,

Note that I, = {f € R | £, =0} . Therefore I, = Ker ¢ , and
R /I, = R
NOTATION ¢ £ = g mod deg q means £ = g (mod Iq), ie€e, f-g € Iq.

PROPOSITION 3 IfR _:i._§_ an intesga.l domain, then ord( f.g) = ord(f)

+ ord(g) and R is an integral domain.

PROOF Verify directly for n = 1, Then by induction on n, using
Lerma 1.

Suppose now that J is an ideal of R. The power series f, with
£, € J for all i, form en ideal J[[X]] = J[[X;,eeesX 1] of B , and
I[[X]] = ker { R,+ (R/7) Y. IfK,J are ideals of R, then

k[[x]1.5[[x]] € . [[x]].

PROPOSITION 4 Let v be a rin§ filtration of R with essociated ideals

. ' L7 = L] L . L . L - -
Jp. Then v'(¥) inf v( fi) is e ring filtretion of R with associated

i
ideals Jp[[X]I. If v is Hausdorff/complete then v' is Hausdorff/completes

PROOF v'(£) > p¢==> v(f;) > p for all ie= 1, € J, for all i
> f e Jp[[x]].



Also, Jp[[X]].Jq[[X]] < JP.Jq[[X]] c Jp+q[[x]].

If v is Hausdorff then N JP[[X]] = 0, and therefore v’ is
Hausdorff,

To show that v complete => v* complete, let {f(n)} ve a v*
Cauchy sequence. Then v*(f(n+l)-f(n)) + «, Therefore, for all i,
V(fi(n+l)-fi(n)) + w, Since R is complete under v, then for
each i there exists lim_f.(n) = £;o Let f = ) fiXi. Given eny

e i
positive number K, there exists n, such that

v*(£(n+l)=£(n)) > K, for all n > n,, and hence
v(fi(n+l)-fi(n)) > K, for all n > ny, and for all i. So
v(fi(n) - fi) > K, for all n > n,, and for all i, and
v*(£(n) - £) > K, for all n > nye Therefore

f = lim .f(n). This shows v” is complete.
N

THEOREM 1 Suppose v is & ring filtration of R with associated ideals

g o Defi
aq ne

}q = 3[BT + o [Ty + oo+ 5 (112, + we 1 s

¥(£) = inf {n + v*(£(n))} .
n

(v* is the induced filtration of Prop 4, f(n) denotes the homogeneous

component of T of degree n).

N
Then (i) ¥ is a ring filtration of R with associated ideals Jq;
n N
ey s -7 4a = Ya,
(ii) ifJ =J,7 then J = J,%

(iii) if v is Hausdorff/complete, then ¥ is Hausdorff/complete.

S is & local ring if it has one and only one maximel ideal #t.
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(A ring is local if and only if the non-units form an ideal, which
will then be the meximal ideal 7”1 ). Ve obtain a filtration on S
by the powers ol of m .

COROLLARY 1. If R is & local ring then so is R . If in addition

R is Heusdorff, so is R , and if further R is complete, so is R .

The corollary follows from the theorem and the observation that
if m is the maximal ideal of R then by Prop. 1 the complement of the
ideadm[[X]] + I, of R consists of wnits.,

For the proof of the theorem we first need a number of lermas.

LEMMA 5  If the Ji are ideals of R, with JqC J C eee C Jl’

gl
end if X = Jq[[X]] + Jq_l[[_X]]Il + eos + I, then f € K if end only if

£(2) has coefficients BT s &= 01500050710

)
PROOF The sufficiency is straightforward. For necessity, take f € K.

%
Then f = rgo g, Where g € Jq_r[[X]]Ir. For % < g-1, £(8) = r-ZO g.(2),

and for r < %, g (8) € Jq—r[[x]] c Jq_z[[x]]. Therefore f£(2) has

coefficients in I ..
Q-2

LEMA 6 I J is an idesl of R, end K = J[[X]] + I,, then

k2 = J9[x]] + J‘l"l[[x]]ll + eee + T[N, + eos + T

PROOF By induction on q, and using Lemms 5 with 3. = 7. Mat £(2)
has coefficients in J%~% implies that £(2) € k%, and hence f € X%,

Therefore L.H.S. 2 ReHeSe That RelHeSe P Le.HeSe. i3 clear.

PROOF of Theorem 1 (i) ¥ is clearly a filtration of R .
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Now W(£) > q <= ipf {n + v(£(a))} 2 ¢
<=> 4+ v (£(2)) > qfor 02 <g-l

<=> £(2) has coefficients in J__

quoroiziq-l

N
<=> € JCl (by Lemma 5)e

a, N N
Since also J «J C J then this proves (i)e.
pa " “pra’ P (1)

(ii) This follows from Lemma 6.

(iii) Suppose v is Hausdorff. Take f€& () }q' Then £(2) has
coefficients in Jg_-sz, for all q > %. This implies that £(2) has
coefficients in N Jq, which by our hypothesis is O. Hence (%) =0
for all ¢ , and therefore £ = O. Therefore v is Hausdorff. Suppose

v is complete. Denote by f( a) the polynomial part of f of degree < q.

Then g(f(Q)) > W(£)s Also,

a1 + v(£19) > el = gge fm 4 v(e)) 2 v D).

Let {f r} be a Cauchy sequence under v (throughout the rest of this
proof, suffixes refer to the numbering of the sequences). Given k > O,

there exists n, = nj(k), such that

¥(fr - £) >k, for all r,s > n,. Therefore

%(fr(q') - fs(Q)) >k, for all r,s > n.. Hence

O.

v’(fr(Q) - fs(q)) >k =q+1for all rys >n,e

For a fixed g, {fr(Q)} is a Cauchy sequence with respect to v”.
Therefore there exists limv, fr(q') = f(q) (since v” is complete,

e
Prop 4) and
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v‘(fr(q) - f(q')) >k=-q+1l, forallr > DOge
Now, (fr(qﬂ))(‘?-) = fr(‘”, and teking limits we obtain

(f(qﬂ))(Q) = f(q'). Therefore there exists & unique power series
£ such that f(q') are the terms of f of degree < q. We show now

that lim;\; fr = £, How
o o]

g(f(z) - f) > %, and %"(fr(z) - fr) > %, for all re

~(2) (2) .
Mlso v*(£'"" = £ *"") > &, for r > n.(2)  (v* Cauchy sequence).
(2) _

Therefore V(£ fr('q')) > %, for r > 0 (2).

Hence ¥(f - £.) 22, for r > n,(8)s This completes our proofs

THEOREM 2 If R is noetherian, then so is R e

PROOF It will suffice to establish the theorem for n = 1, for then
the genersal case follows by & trivial induction argument, using
Lerma 1.

Let J be an ideal of R, For amy ¢ 2 0, J N Iq={f€J | ora(s) > q}

is an ideal of Ry» and its image in R under the map f qu (we here
revert to the notation where fq denotes the coefficient of X% in f) is
an ideal Aq of Re As f ¢ JﬂIq implies Xf € Jan—i-l ve have

Aq;!-l ) Aq. The ring R being noetherian, it follows that we can find

ak>0, so that A, = A, for all £ > O.

It will suffice to prove that JNI,_ is finitely generated over Ry

:d
for J/J/\Ik LR L/L., as an R-submodule of RIJ./IK, is finitely

generated over R, hence over Rl. Therefore J will then also be

finitely generated over Rl.
As A, is finitely generated there is a finite set f(l) (i

= l,d-..S)
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(1)

serving as enumerating index here),

(1)

of power series in J N L (the
so that the fk(i) generate Ak over Re Ve contend that the T
generate J N 11«: over B‘.L'

let g €JdN I‘k' We shall construct inductively sequences

{g(l’m) }m (i = 1,40eys) of power series, so that firstly

g(i’m) = g(i,m+l) (mOd degree m)

and secondly

g E§ f.(i)g(i,m)
i=l

(mod degree mt+k).

By the first relation we obtain power series g(l) = lim.ord g(l’m),
s . .

2 f(l)g(l).

i=1

and by the second one g = Thus we see that in fact

i

f( ) generate J N 11;'

The step from m to m+l goes as follows (put g(l’o) = 0 to

epply this to the first stepl) th =g =~ Zf(l) g(l'm) lies in

S .
INTL,. Hemceh €A =A, i, b = izl Ay fk(l) .

A; € Re Put g(i’m+l) = Aixm + g(i’m). Then
A7 o) (Emel) _ oy Hld), m s
g E o g h E 250y
=hy X E fk(i) Ay T 2 0 (mod degree mtk+l),

For the rest of this section we suppose R is a complete local
ring, with meximal ideal ., and k = R/, Tor f € R T denotes
its image in kn under the epimorphism Rn >k inducsd by R - k.

The Weierstrasse-order of f, W-ord(f), is defined by
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W-ord(f) = ordk(f).
Then W-ord(f) # » <=> £ #0 <=> f has some unit coefficient.
Note that as ordk(?.é) = ordk(?) + ord (g), also W-ord(feg) =

W-ord(f) + Weord(g).

A distinguighed polynomiel f of R:L is a polynomial of the form

£+ £.X + £.X° 4 eee + £ X 4 X3, vhere all the £, are in M.
I R g1 i

Note then that Weord(f) = deg(f).

THEOREM 3 (Weierstrasse preparation theorem) If f € R, and

W-ord(f) = p < =, then there exists_a unique u € U(Rl) and

& unigue distinguished polynomial g such that £ = ue.g. Then of course

W-ord(g) = W-ord(f).
PROOF Ve shall prove by induction on m that (Am) : There exists a

v(m) € U(Rl) and a distinguished polynomial g(m), so that

fo v\ 2 B (moamB{[H]).

This congruence determines v(m) (end hence g(m)) uniquely mod

m"[[x]].

Assuming (Am) for all m, it follows from the uniqueness pert that

w@#l) o o (m) (moa m [[x]]).
As R, is complete with respect to the filtration {m2[{[x]]}, we
obtain in the limit a unit v of Rl, so that f.v = g is & distinguished
polynomial. loreover, v is determined uniquely mod m™[[X]] for all
m, ie€e, is unique. Now multiply through by u = v-l to get the theoren.
To establish (A m) we may work over the residue class ring R/wlzl,1 s

iees, we may suppose that n> = 0, PFirst for m = 1 the hypothesis
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states that £(X) = . u(X), where u(X) is a wnit of B, But this is

in effect also the assertion.
For the induction step write m = r + 1. By the induction

hypothesis there exists a power series

v(r)(x) = v(X) = "z° v, X
i=0 *

o .
so that, writing £f(X) = ) fiX:', ve have
i=0

v, € U(R), (1)

b o
Vofp+...+vf -1+up, upe»m, (2)

p O

_ r
Volg * eee +VE =, u €m, (a1l s > p)e (3)

This is just the congruence for (Ar) expressed coefficient-wise.

By the uniqueness part of (A;,) the coefficients vI of v(r+l)(x)

must be of the form

V=V, o+ A, A, € mMF
1 % 1 1

We have to show that the Ai can be chosen so that

VIf + eee + vl')f 1, (2*)

O'p 0

VoE, * eee ¥ VIE, =0, for all s > p. (3")

0 s 0

(Remember that P R,

0l)e Hote that vi will certainly lie

in U(R)e TFrom (2), (3), (2') and (3') we get the equations
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A fs + Alfs"l P aee + }\Sfo S -1q (s lp)o

0 s?

The Ai are to be chosen in mr, and we know that fk € m for k < p.

Hence we must have

Aofp = - uP!
}\Ofp+l + llfp =S - up'l‘l’ See o
Aofpste * M Tpsiea1 ¥ o0 * Mgy = = o (a11 k > 0).

As i‘p € U(R) these equations have unique solutions for Ay in R, and
by induction on k one slso sees that Ap e mist lie in m . Then we
can solve for the v:.‘_. The wniqueness of the v, mod t* and of the As

implies the uniqueness of the v{ .

§2. Homomorphisms

A and B are abelian groups with filtrations v, w respectively.
A continuous homomorphism 6 ¢ A + B is a homomorphism of groups
such that, given m € I, there exists % € I for which (4,)6 c B .
Hence, if v(an) + », then w(ane) + w, To say that 6 is

bicontinuous means that 6 : A + B is an isomorphism of abelian groups,

and both 6 and 6~ are comtinuous.

THEOREM 1 (i) Suppose S is a commutative ring, complete under a

ring filtration v, and R is a subring of S. Given 8y seeesd, in

S with values v(a;) > 1, there exists a unique continuous ring

homomorphism 6 : R+ S (with respect to the order filtration on Rn)

which leaves R elementwise fixed, and such that xie = a;e
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(i1) Explicitly, if i‘(Xl,....Xn) €R , then

3 limv f(q')(al,-..,an) = f(Xl,qoo,Xn) 9 .

q—)ﬂ
(Here f(q)(Xl,...,Xn) is again the polynomial of degree < q = 1 which
coinecides with f mod degree q).

(1ii) Let T be a commutative ring containing R, complete under

a ring filtration w, and with elements Eyreeesf for which w(ai) > 1,

so that :

Given S and 8 geeesd 85 in (i), there exists a unigue continuous

ring homomorphism ¢ ¢ T + S with Ei ¢ = a. and leaving R elementwise

fixed.

Then the continuous homemorphism Rn + T vhich keeps R elementwise

fixed and maps X, into §, is a bicontinuous isomorphism.

PROOF If £(X) € R ,» then

el gy _ olddigy = b.X', by € R
1*]=a . .
(q+1) (a) _ 1 '
Therefore £ (algdoo’&n) - (al’qco,an) = Zbil,...’in a.l cooan
end its value under v is at least il * voe * in = g Hence

+1
V(f(q )(&l,..o,an) - f(q')(a.l....,an) ) > ® 85 q¥F
{f(Q)(al,...,an)} is therefore a Cauchy sequence under ve. Ve put

f(x coe X ) g = lim f(q) (a soe o8 )0
1? *n q_mv 1° *“n

It follows quite easily now that 6 is a continuous ring homomorphism,

and the uniqueness of 6 then follows from continuity.
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The proof of (iii) is standard (uniqueness of universal objects).
If there is no ambiguity involved, we shall write f(al,...,an)

. (a)
for lim £ (a cee 3,)0
g’ 19°°%%y

For a ring S with ring filtration v, define I(S,v) = {s € 8 | v(s) > 0O}.
Consider the category J%, whose objects are the pairs S,v as in
Theorem 1, and whose morphisms are the continuous ring homomorphisms
Syv + T,w which maps I(S,v) into I(T,w). ;ﬁR:)QBR' whereé?R is the
full subcategory with objects Rn,ord (order filtration). Theorem 1
then says HomJR(Rn,S) 2 1(s,v)", by associeting with each 6 the
element (X,6 jeee,X 6)e

Consider now the case S = R, = RI[Yl""’Y£J] s Where we write

the indeterminates of Rm as Y's, to distinguish them from those of Rn’

wvhich are still denoted by X's. Let

Xr 0 = gr(Yl,ooo.Ym), (r = l,...,n).

(a)

f(X_L,...,Xn) 5] =&i% T (gl(Y).-..,gn(Y)).

We shall derive another expression for this element of R e Write
for k € M
n
L

k k
k 1 n k
g (Y) =g (Y)qoo (Y) = 7
1 & ’Lsz &g

Since ord, g (Y) > 1 we have ord, £5(1) > |k| =and therefore gﬁ = 0

for |2] < |k|. Thus it makes sense to define
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f(gl.loo’@n) = f(gl’ooo,gn) (Yl""’Ym)

X
= 7 (] fE)t.
2 €M keM
n pe)

PROPOSITION 1 &3’}3 f(q')(gl(Y),...,gn(Y)) = f(gl,...,gn) (Yl,...,Ym).

PROOF Verify for polynomials f. Then extend to power series f by
continuity.

Let f = (fl,...,fr) be a "vector" of r power series inn
indeterminates, and let g = (gl,...,gn) be a "vector" of n power

series in m indeterminates. e denote by f ° g the vector
(fl(gl,coo.gn), T fr(gl,...,gn))

of r power series in m indeterminates. With this rmltiplication the
vectors £ = (f],e0e,f ) with verying r end n form a category, whose
objects are the positive integers, f being viewed as a "map" r > n.
In view of the preceding theorem and proposition, a homomorphism
o € Hoan(Rn,Rm) determines a vector &q : n > me Il{oreover
8g o 6 =gy gd) e In fact this mep 6 > &g is an isomorphism of
categories. In other words we can either use the language of
homomorphisms 6 or that of vectors of power series.

In Rn’ consider the ideal I = Ker ¢, and denote by -f-‘ the image
of f under the natural epimorphism I - I/I2 = D(Rn)' If
f= 121 c,X; + terms of degree > 2, then f= izl ci;{i‘ D(Rn) is a

i=l - -
free R-module on X seee,X o When 0 : R >R is in 3°R, then
2 2 .
I(r))e < I(R ), and I (Rn)e <I (Rm), and so 6 induces s
homomorphism D(8) D(Rn) -> D(Rm), of Remodules. Denote by v the

category of finitely generated free R-modules, or "vector spaces over R".
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PROPOSITION 2 D is a functor: ?R -*f/”R.

COROLLARY If R is bicontinuously isomorphic to R » thep n = m.
For, a finitely generated free module over a commutative ring R has
a unique rank.

If © is a homomorphism in \gDR then X.0 = Hi c., Y + terms
1 k=1 ik’k

n
of degree > 2, and X.D(6) = } ¢, ¥ . D(8) can be represented in
-~ 1 k=1 ik’k
the matrix form D(8) = (cik)’ and ¢, = (aXiG/BY:)Y=O.
By Prop. 2, D defines a map : HOI??R(Rn,Rm) * Hom,, (D(P.n),D(Rm)).

R
We define a map E in the opposite direction as follows. If ¢ maps

Xi onto zcikYk’

which maps Xi onto Zc ikYk' We have

then teke E(¢) : Rn > Rm to be the homomorphism

E(¢l° ¢,) = E(¢)) ° E(¢2), DE(¢) = ¢,

THEOREM 2 Let 6 be a continuous k_lgr_ggggmi@_Rn *R. Then 6

is a bicontinuous isomorphism if and only if D(®) is an isomorphism of
R-modules.

COROLLARY If © is surjective then it is ap isomorphism,

PROOF OF COROLIARY 6 surjective => D(0) surjective => D(0)

isomorphism => 6 isomorphism,

The theorem can be rephrased to read : given fi(Yl,...,Yn), with
fi(O,...,O) =0, i = 1,4es,n, then det (Bfi/ayk)Y=o is & unit if and
only if there exist gj(X1"°‘=Xn) such that f£,(g ,eee5g ) = X; (INVERSE
FUNCTION THEOREM).

PROOF OF THEQREM We need only prove the sufficiency of the condition.

Assume that ¢ = D(g) is an isomorphism. Write 3 = E(¢).
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-1
Then D(6 ° 9§ ) = 1. As ¢ is an isomorphism, it will suffice to
=1
show that 6 © ¢ is an isomorphism. Without loss of generality we

can therefore suppose that D(6) = 1. With this assumption,

Xi =X, 8 mod 12,

where Xl""’xn are the indeterminates of Rn' We construct polynomials

ggz)(x) of degree % - 1 so that

X, = ggl)(x 6) mod I,

§2+1)

s (X) = g§“)(x) mod I,.

8
By induction on £ , suppose that

X, = gﬁz)(xe) + 1 ckxk mod I,

1 |kl=£ 1°

- (2) k
Then Xi =g (x8) + 2 c?(xe) mod I,

!k|=2 3 +1°

Take g§£+l)(x) = ggz)(x) + L e Xk. Then {ggz)(x)} is a Cauchy
1 1 |k|=£ k 1

sequence, with limit gi(X), say. Also,

X, = g (%0) = g (X) 0 .

Define Y by the equations X ¥ = gi(X). Then xi(w ° g) = gi(x)e =X,

and so by the uniqueness part of Theorem 1, ¥ ° 6 = 1, Therefore
1 =D(¥) » D(8) = D(¥). As before, there exists x so that x » ¥ = 1.
Therefore x = x ® (¥ » 8) = 6 , and hence Y and 6 are inverse

isomorphisms.
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Although Hor, (Rn,Rm) is not a group, we can define some
R

sort of "filtration" on it by taking

a{e) = inf ( (ro) =~ (£))
or ;20 ordY ordX
= inf (ordY(Xie) - 1),

i=l’d..,n

ith this definition,
ord (6 « ¢) > ord(8) + ord(4).

53, TFormal Groups

In this section we take R to be a fixed ring, and all power
series are over R.

A formel group F(X,Y) of dimension n is a system Fi(X,Y) of n
pover series in 2n indeterminates X = {Xi,...,Xﬁ} , ¥ = {Yl,...,Yn}
satisfying

(1) F(X,0) = X, F(0,Y) =Y;

(2) F(7(%,Y),2) = F(X,F(Y,2)).

In view of (1), the substitution in (2) makes sense.

Immediately we have F(0,0) = 0, and

lioreover, terms of degree greater than 1 are "mixed", i.e. X's and
¥'s only occur together. F is commutative if F(X,Y) = F(Y,X).

PROPOSITION 1 Given F, there exists a unigue i(X) (n power series in

n indeterminates) so that F(X,i(X)) = F(i(X),X) = 0.

PROOF Put gi(X,Y) =X, - F;(X,Y), i = 1,4005n. g; has no constant
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tern vhen viewved as a power series in Y.

(% /30y Doy =~ (93 /My Dyayag = = Sypee

By §1, Prop. 1, the determinant of (Bgi/ ) is & unit of

Y=0
R[Exl,...,xh]]. Apply §2, Theorem 2: there exist h.(X,¥), (i = 1,...,n)
such that gi(X,h(X,Y)) =Y., e X, - Fi(X,h(X,Y)) =Y., or
Fi(X,h(X,Y)) =X -1, (i = 1yeeeyn)e Put Y =X: Fi(X,h(X,X)) = 0,
Take i(X) = h(X,X).

The proof of the uniqueness of the inverse is a translation of
the standard proof of group theory.

Suppose now that F and G are formal groups of dimensions n and n
respectively. A homomorphism f : F + G is a "vector" f = £iaeeesf

of m power series in XyseessX , with no constant terms, so that

£(r(%,Y)) = e(£(x),£(¥)).
The homomorphism f determines a homomorphism 6 g * Rm - Rn’ given by
Z;6, = fi(X), vhere Z. are the indeterminates of R, end X; those of
Rn. ITf ¢+ F>G, g ¢ G~ H are homonmorphisms of formal groups then
g°f : F+ His a homomorphism of formal groups. Also li(X) =X,
gives the identity homomorphism of F. Hence :
PROPOSITION 2. The formal groups and their homomorphism form
a category &y (=), and £ +> 0, defines a contravariant functor
'EﬁR -h@R. (But as f is written on the left, 8 on the right we still

have © =6_.0 6 ,)
28

fog °f
Remark : A homomorphism £ ¢ F + G of formal groups is an isomorphism

(in g’R) if and only if 6, is an isomorphism (in ‘?R)' loreover,
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if £ is any "vector" of n power series with 6 en isomorphism, and
if F is a formal group of dimension n, then there is a unique formal
group G(= £ ¢ F © f"l) so that f is an isomorphism F - G.

THEOREN 1 (i) Let F be a formal group of dimension n, and S,v € d’R.

Then Hor::{f (Rn,S) becomes a group F(S) under the operation given by
R

wf¢ , vhere X, (ufi¢) = F,(Xu,X¢), for w, ¢ € Ho%,R(Rn,S). If 7

is commutative, then F(S) is abelian.

(1) If ¥ e Hom, (5,7), then (ufe) © ¥ = (u ° V)E(o @ ¥).
R === Y5

(iii) Let G be a further formal group of dimension m, then

vhen T € Homg'(G,F), we have
000 (wf4) = (0, ° w)ilo oo ¢).

(iv) with the hypothesis of (iii), and if in sddition F

is cormmutative, then Homg'(G,F) is a subgroup of the abelian group

F(Rm) = Ho%R(Rn,Rm) .

Remarks: (i) Identifying

Hon}fR(Rn,s) = I(8,v)"

(efe 82, Theorem 1), the group operation becomes o¥g = Fa,8),

4,8 € I(S,v)".

(ii) Agein, if we express Hon?, (Rn,Rm) in terms of vectors f of power
R

series we get the group operation

(£2g) (X) = F(£(x),e(x)).
(iii) By the theorem, Hory, (Rn,Rn) is closed under composition
R

(multiplication) and ‘F‘. (addition), with a one-sided distributive lew,



-25-

ises, it is a near ring.
(iv) The theorem, plus a few formal trivialities, tells us that F(S)
is a functor EﬁR X‘YR + groups.
(v) Let Sga‘b be the full subcategory of F =3:‘R whose objects are
the commmtative formal groups. Then the sets Hom (F,G) for F, G & G‘vab
have the structure of szbelian groups and the composition of
homomorphisms is bilinear. In particular Ind 9',(3’) = Homg;(F,F) is
now a ring.

The proof of Theorem 1 is by a straightforward applicetion of
the definitions, and the axioms for formal groups.

Suppose novw that T is a cormmutative formel group of dimension n.

We define a function v on the abelian group IF'(S) = I(S,v)n by
v(czl,...,an) = .u;: v(ai).

e state the following two propositions without proof :

PROPOSITION 3 : ¥ is a filtration of F(S).

(Ve have not defined filtrations for non-sbelian groups!)

PROPOSITION L: With F and G as in Theorem 1 (iv), the composite

nep Hon (G,F) <y HO%R(Rn,Rm) 2, Ho%R(D(Rn),D(Rm)) is e homo-

morphism of groups (the commosition in Hom (G,T) being ;‘ff,).

For a given prime nurber p, denote by :Rn+ Rn the

homomorphisn which fixes Rn and takes Xi into Xf.z. Then
a

(2) p” (a) D -
Tewm=T : Xi — Xi and T : Xi —> Xi « Let R denote the
additive group of R.

THEOREM 2 _Let £ : F + G be a homomorphisn of formal groups (of

dimensions n and m respectively) and let 0 e P By >R the
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. . . . + . .
corresponding homomorphism of rings. (i) Suppose R' is torsion free.

. . .. + .
Then D(ef) = 0 if and only if £ = 0. (ii) Suppose R is of exponent

p (prime). Then D(6,) = 0 if and only if either £ = 0, or

6, = b o w(q)’ vhere D(¢.) # O and ¢ > 0.

PROOF Ve use the notation afi/an = fik(kl,...,xh);
(an/aYv) (x,yl,...,yn) = Fuv(X,Y); (aGi/avz) (U,v) = Gy (u,v)e
low differentiating the equation fi(F(X,Y)) = Gi(f(x),f(Y))

with respect to Y, , we obtain (chain rule)

n m
jzl fij(F(X,Y))ij(X,Y) = 221 G, , (£(x),2(¥)) £y, (1)

Define the matrices

as(x) =(fij(x)); d2F(X,Y) = (F., (X,Y));

it

d2G(U,V) = (Giz(U,V)).
Our equation, for all i and k, then gives the matrix equation

df(F(X,Y)).deF(X,Y) = de(f(X),f(Y)).df(Y).

llence
df(F(X,O)).sz(X,O) = deG(f(X),O).df(O),

i-eo,

df(X).sz(X,O) = dQG(f(X),O).df(O).

ow af(0) = D(ef). Mso, det daF(0,0) =1 i.e., En(det sz(x,o)) = 1.

Hence by §1, Prop. 1, det sz(x,o) is 2 wnit, and so d2F(X,O) is an
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invertible matrix. If D(ef) = 0, i.e., df(0) = 0, then af(X) = 0,
and therefore afi/BXj = 0 for all i,j. When rY is torsion free
this implies £ = O. Vhen rY is of exponent p this implies

£(X) = g(x®), iee., 0, = eg o 7, In the latter case now proceed by
induction. But we rmst show that 6g comes from a homomorphism of

formal groups, ie«e., that g(¥) is a homomorphism of formal groups. Iow

g(F(p)(Xp,Yp))

2(F(x,1)P) = £(F(X,Y)) = o(£(x),£(1))

a(g(x®),e(?))

(p)

where T is obtained from F by raising each coefficient to its pth
pover. We have then g(F(p)(X,Y)) = G(g(X),z(¥)). Since F(P)(X,Y)

is a formal group (the map which sends each element of R into its pth
pover is an endomorphism of R), g is indeed a homomorphism of formal
SIOUDS «

If 6=¢o 'rr(h), and D(¢) # O, then h = ht(6) is called the

height of 0 « We define ht(0) = « , TFor f s homomorphism of formal
EToups , ht(ef) = ht(f) is called the height of £» If £ # O, then

h
ht(f) = h is the greatest integer so that f is a power series in X° .

PROPOSITION 5, (i) If f, g are homomorphisms of formal groups and fe g

is defined, then ht(fe g) > nt(f) + ht(g). (ii) If, G is a

commutative formal group and f,z € Ho%;(F,G), then
ht(fgg) > int  {ht(s), ht(g)l} .

ht(f)
PROOF (i) If £ is a power series in Y® s and g is a pover series in
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ht(g)
xF (vhere Y and X are the corresponding indeterminates) then

nt(f) + ht(g)
clearly fo g is a power series in X s end therefore

ht(f) + ht(g) < ht(feg). (NOTE: if our formal groups are of
dimension 1, and R is an integral domain, then ht(f) + ht(g) = ht(fe g),

and the height function is a valuation).

(nt(s£))

(ii) Since 6 ¢ can be vritten in the form ¢.°w vhere

D(¢,) # O, then inf {ord X;$,} = 1. Therefore ¥v(£) = inf{ord £;} = pht(f).
i i

The filtration property of ¥, established in Prop. 3, now gives

ht(r# h h

> (£2e) t(f)’ P t(g),

>inf { p , Which implies that

ht(fég) > inf {nt(f), htlg)} . [Throughout this proof read "power series"

to mean "vector of power series"]
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CHAPTER II LIE THEORY

§1, The bialgebra of a formal group

Throughout this chapter R is a fixed commutative ring with
identity and M is the cetegory of R-modules. For }, N € M
also M @ N and HomR(M,N) are R-modules.,

We shell need the notions of a coalgebre and of a bialgebra
over R, The definitions we shall give are adapted to our special
situation. A coalgebra {, x, o, 8} is given by an R-module M

and homomorphisms of R-modules

kK1 M—sM8 N (comiltiplication),
B:M—3R,

so that the following dlagrams commute:

M—— % sue 2

(1.2) JK }/1 @
-

1 @RM-———————Q e RM 8 RM

("associative law" - here we identify (M8 M) 8 M =M 8 (M8 M)).

- M8 RM

/
(1.3) M t

\
M8 U

(here t is the "twisting map", t(x 8 y) =y 8 x ; "commutative law").
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(1.4) “1;\H\\\H‘~*
R

M
A/B
iy n
R aes } I @ Hi\
(1.5) G I o 8«
M K —> M@ M
Ma
i’\ -
(1.6) R 8 . 198
RO M = M =2 M8 R

A bialgebra is given by
(1) a coalgebra {M, «k, o, B},
(ii) +the structure of an associative (but not necessarily cormutative)
R-algebre on M with identity [Exercise : describe by diagrams | .

Here a is to coincide with the algebra structure mep R +> M, and
k and B are to be homomorphisms of R-algebras. Note that together with
M also M GR M has the structure of an R-algebra with identity, the
product being given by (x:L 8 yl).(x2 8 ye) = x %, 8 ¥,y e We thus
demand that k(x.y) = k(x)ek(y)e Apart from the possible absence of the

commutative law for multiplication the axiom set for a bialgebre is
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self dual. If the multiplication in I is commubative we shall

speak of a commmtative bialgebra.

We shall now consider the category N whose objects are the
pover series rings Rn’ for varying n, viewed as filtered R-modules
under the order filtration, and whose morphisms are the continuous
homomorphisms of filtered R-modules (i.e. not just the ring homomorphisms
R, as a corplete filtered R-module,

0
0 if a # 0. Write

as in @R). We shall also view R

via the trivial filtration : v(a)
Un = rIomJV. (Rn,R)o

Notation: If T € Rn’ u € Un we shall use the symbol <f,u> for the image

in R of f under u. Thus

<f, u 4+ v> = <fyu> + <f,v> ’

<f + g, u> <f, u> + <g,u> ,
and if r € R,
<rf,u> = <f,ru> = r < f,u> .

The fact that u is continuous means that <f,u> = O vhenever ord f > m,

vhere m € Il depends on u. Ve identify Uy with R, vie

> =
<I‘l,r2 rlr2.
Ve also need provisionally a notation for the action of an
element s € Honm M(Un,R). Ve shall write [s ,u] for the image of
u under s.
In the sequel let ¥ i denote the full subecategory of JW. forned

by the modules Un'
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PROPOSITION 1 (i) If 6 € H°‘jr(3n’3m) then the eguation

<fByu> = <f,0u> (feR,u€l)

defines a 6 € Hoa&(Um,Un). The meps R+ Uy, 8 ¥> 0 define an

additive contravariant functor ff -*M « (Uote however that as we

are writing the maps U, > U, on the left ve shall have (6 ° ¢)§ =0 o ¢%-)
(ii) If w € Ho%Um,Un) then the equation [s,w‘ u] = [sw' ,uJ
defines a map w' : Ho%Un,R) -+ Ho%Um,R).-
(iii) The eguation [sf,u] = <f,u> for a given £ € R,
and all u € U defines an s, € Hom (U ,R). Themap £ +> s .isa
homomorphism R HomM(Un,R) of R-modules.
(iv) 5,4 = (s,) (7).

DPROOF Straightforward and standardl

PROPOSITION 2 U is g free R-podule op 6§, (k € M ), yhere

<f’ 6k> = f 9 ite.’

<XQ,6k> = L i:

PROOF If u € Un’ thenu= ] < Xk,u> 6? (the right-hand sun is in
keM }
n

fact 2 finite sun : u is continuous and hence <Kk » > = 0 for all
x| sufficiently large). Un is therefore spanned by 61:' How

<f, 12 ¢y 5k> = Z fl:ck' Therefore 12 ¢ 5}_ = 0 implies
- )id L -

= 0 for all k. Hence in fact Un

) f,e, = 0 for all f, and so also ¢
X )i o k

is free on the 8 »
Y
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COROLLARY 1 The mep f +>s, is an isomorphism R -+ Hmﬁ((Un’R)'

PROOF If s, =0, then 0 = [s.,u] = <f,u> for 211 u € U . This

£

implies £ = O, and therefore f+>s £ is injective.
Ifs € Ho%Un,R), teke f = 1):: [s,ﬁk] Xk. Then s = 8.
Thus f F>s. is surjective.

COROLLARY 2. The homomorphism Hom )('(Rn’Rm) -> Hoxa&(Um,Un) which

naps 0r>0 is an isomorphism. Thus the ﬁmctor)f—*jf of

Proposition 1 is an antisomorphism of categories.

»

PROOT" Suppose ® = 0. Then for all fy u, <f, 9=:u> = 0. Therefore

0 = <fo,u> = [sfe,u] s Which implies s 0 = O for all1 f« But s is

bl
an isomorphism, and therefore £6 = 0 for all f, vhich means 6 = O.
This proves injectivity. If w € Ho&(Um,Un), define 0 € Hozy(Rn,Rm)
by £6 = ) <f,w 61,> X'k. Then 6 = w o This proves surjectivity.

k 2
COROLLARY 3, The map Un 8 RUn———-> Um given by

8 8 s —>3
(kl,u.,kn) (21 500052) (g seeesk slypenesl )

is an isomorphism of R-modules.
PROOF  Obvious.

The significance of the last corollary lies in an interpretation
presently to be derived.

Let I = {f€R | ora (£) > 1} . fThen

In {(IGRRn+Rn0RI) ->RneRRn} = I
1s an ideal of the ring Rn e RRn' Let v be the filtration of Rn & RRn

corresponding to the povers I of the ideal I, Then

v(f @ g) = ord(f) + ord(g). Denoting the indeterminates of R, by
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X= }{l,...,Xn and those of Rzn by
define a homomorphism Rn 8 RRn

£(X) 8 g(x) —— r(x') g(x").

continuous homomorphism of Re-algebras.

seen to be simply the restriction
Going over to the completion R 8
bicontinuous isomorphism Rn 8 PRn

U

'\‘ ~
op = nogh,(Rn 8 R s R), and the

identified with Un 8 PUn‘ The resulting isomorphism U

+ R

Pl ,X" = Xi,...,X&,X{,...,XQ we

on of Remodules by :

This turns out to be an injective

In fact the filtration v is

of the order filtration of Ran'

R of R @ e obtain a

-
n n ° Rn
Rone Thus we get an isomorphism
module on the right can be

e =

ny
on = Yp @ g'p

is the inverse of that of the last corollary.

The ring multiplication in

Rn @ RRn -+ Rn. As multiplication

Rn is described by a map :

is continuous and Rn is complete,

this map extends uniquely to a continuous homomorphism

R

n n

determined uniquely by the rule

h=]
8 R—> R,

(£(x) 8 g(x)) 7_ = £(x)a(x).

Identify from now on Rn 3 =R

R
R'n

2n’

notation for the indeterminates of R

In the previously introduced

s 7. 18 then given by
2n n

n(x',x") = n(X,%).

Let :
[ En

R, + R be the augmentation, by § R>R) the ring

embeddinge Ve then have, on identifying JEn = Un Q RUn’

(vriting P for \@R)
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PROPOSITION 3 The maps

1tn : Un+U2n=UneRUn’
ew:R*U,

n n

¥ g =+ R

lln- n

define on U, the structure of a coalgebra.
The isomoxphism

i
Hom N.(Rn,Rm) = Hom M(Um,Un)
gives rise to a bijection

7

PROOF  For the first assertion we only have to show that T €y

and L enter into commutative diagrams dual to those postulated for

the maps k = wi s O = ez, B = uz defining a coalgebra structure

(see (1.1)-(1.6)). For example (1.2) follows from the associative

lgw for the product 7 , (1.3) from the commutative law, and so on.
For the second part of the proposition note that a

6 € Hom N-(Rn,Rm) will actually lie in Hom g)(Rn,Rm) if and only if

the diagrams

‘o
7
=]

en n

828 8

2o}
v
Bbﬂ



R AN
n yol
€ e

R
R
Me M

R —9_____> R

n m

cormute, The dual diagrams (star everything and reverse all arrows)
give precisely the necessary and sufficient conditions for e* to be
a homomorphism of coalgebras.

Let W be the category whose objects are the coalgebras

s #
{U, n, ¢

®
13 T €po My } and whose morphisms are the homomorphisms of

coaelgebras., The last proposition then tells us that the functor
N+ * yields an a.ﬁtisomorphism P + N of categories.
Let F = F(X',X") be a power series in 2n indeterminates
Xt = )r]",...,}(z'1 and X" = X{,...,X; » With zero constant term. Let
by € Homg (R n’R2n) be the corresponding homomorphism of power
series rings. Thus £(X) 0p = £(F(X',X")). Then F will be a formal

group if and only if the following diagrams commute s
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R
n

6 \\\\S:
f R
(1'7) P2n 2n
€ 8 1 \\\\>i 1@ €
R

T4
n

<

(F(0,X) =X = F(X,0))

(identifying R 8 R= Rn),

R
8
R F__, q
n 2n
(1.8) B, 0, 8 1 {"Associative law').
196
F '
R2n —> R3n

In addition we know of course that eF is a homomorphism of rings,

preserving identities. Hence the following two diagrams also commute

8.8 8
Rn 3 R Rn RQn 8 R REn
(1.9) [ j
6
F .
Rn . R2n
R
(1.10)
un IJ2n
g
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In the first diagram the vertical maps are those induced by
multiplication, going over from @ to the completed tensor product 8.

Consider now the dual map

p=286,: Uzn-'-'Un@RUn-»Un.

This is an R-linear multiplication on Un and the duals of diagrams
(1.7)=-(1.10) ncw show that U, becomes a bialgebra. E.g. the dual
of (1.8) is the associative law for multiplication and the dual of
(1.9) tells us that the commltiplication w: of U is an algebra
homomorphism,

We can sum up : If F is & formal group of dimension n, then
p = e; defines the structure of a bialgebra on Un ( the coalgebra
structure being fixed once and for all by w:, sﬁ and uz).

Conversely if p : Un 8 Un + Un is & map, defining the structure of

R

& bialgebra then in particular p € Homco alg
*

P = 6 for some unique power series P(X',X"). The axioms imposed on

(U2n,Un) and hence

p (as stated above) then imply that F is & formal group. We have

thus proved the first part of
#*
F

formal groups of dimension n onto the set of structures of bialgebra

THEOREM 1 (i) The mep F +> 6., = p., is a bijection of the set of

* * *
on the coalgebra {Un, Tas € M }.

n

(ii) The algebra U, sPp is commutative if and only if the

formal group F is cormutetive.

(iii) If P and G are formel groups of dimensions n end m

respectively then the isomorphism
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N
Homjf(Rm,Rn) = Ho?’L(Un,Um)
gives rise to a bijection
o) X
Homy’(r ,G‘) = HomBia.lg ((Un’PF) ’ (Um’PG)).

The proof of (ii) is quite analogous to that of (i).
For (iii), consider the vectors f = (fl,...,fm) of n power
series in n indeterminates. We know that these stand in biunique

correspondence under a map £ > 6. with the 6 € HomQ(Rm,Rn).

f

8
Going over to the duals we obtain a bijection £ +> p. = 6, € HomCoa.lg(Un’Um)'

By duelizing the appropriate diagram one sees then that £ is a

homomorphism F -+ G precisely when the diagram

Pp
U 8. U > U
n Rn n
[ Py ¥ ps Pe
U 8 U > U
Pg

commtes, i.e. vhen p, is & homomorphism (Un’PF) > (Um,pG) of
bialgebras.
Let @ be the category of bialgebras whose underlying
% *® *
coalgebra is one of the {Un, Tay  Eps W } « Ve can then sum up

The maps F —> Un’pF’ f +— Pe define an isomorphism
F

e

A of categories,

ote that we end up with a covariant functor!
We shall now discuss the bialgebra Un’PF in some more detail.

If k = (kl""’kn)’ g = (g,l,...,zn) are in Mn we define
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k+2 - kl+2'l kn+2'n and 21 = 2.} 9 !
2 21 zn ’ v & l.... n. L ]

Ve denote by a, the element of I{ of the form o = (0yesey03190500,50),
vhich has 1 in the i-th position and O elsevhere. The element
Ai of Un is defined by the equation Ai = Sa » 1eCe,

i

. s X .
X;,4 >=1, <kj,Ai> = 0 for i#i, <, ;> =0 if lx] # 1.

For the formal group F(X,Y), we introduce the notations

Fk(X,Y) TX o+ Y+ Bk(X,Y) mod degree 3, (k = 1,.e.,n),
X,Y) = Ay o, XY, A, . R.
Bk( »¥) i),:.] 1o,k 7175 ° 1stke

Then we have

PROPOSITION k4

A 1 if x=0,
(1) e (1) = 805 w (8) = § 37 kson

(1) m(s) = I 8

8 S. .
g ¥4

(i1i) pF(GO 8 u) = pF(u 8 60) = u,

(iv) py(s, ® §,) =(k;’°)sk+z + o<l <o ¢85 » c5 € B,
(x #0# 2).
RLTAT n
(v) pF(Ai’Aj) =( °‘i> atas kél )‘i,j,kAl:'
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n
COROLLARY pF(Ai,Aj) - pF(Aj,Ai) = kzl (Ai,j,k - Aj’i’k)A *

PROOF (i) and (iii) are obvious.

(ii) We have
# _ ) S
m(8)= ] <x oxl, n(5)>5, o I

[
But by the definition of T

%o wd ¥ = ot = Lyifk=12+
<X 8 XYy w (8,)> = <XTY,6 > 0, otherwise.

Hence the result,

(iv) Let r = (rl,...,rn). Then

n r,
F(X,Y)* = 1 F.(XY)*=
i=1 *
n r,
= I (X. +Y.) '+ terms of order > |r|
i=l 1 1

(X + ¥)¥ + terms of order > |r|.

How <Xr, pF(dk ] 62)7 = <F(X,Y)r,dk 8 52> is the coefficient of
v* in F(X,Y)¥. This is thus O when |r|>|k + 2] and also when

lr] = |k + 2] but »r # k + 2. On the other hand if r =k + £ then

L
. )

this coefficient is clearly (* o Finally when r = O then

<, pF(ak 8 62)> = <1,§, 8 8,> =0,

(v) By (iv) we know already that

.0
G370 n

Po(d.,4.) = 8 + u
I R 3 5
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and we have to show that ui,j,k = Ai,j,k' In fact we have
- e
W5k T <F(X,Y) » A8 Aj>
= <Fk(X,Y), A; @ Aj>
= <B, (%,Y), b; @ 4,>
= AQ 3

1,09k

as <X + Y, 4 @ Aj> = 0 and <G(X,Y), A, @ Aj> = 0, whenever
ord G > 3. This completes the proof of tae Proposition.
We define T(Rn) to be the submodule of those u € U, for

which

T2, uw> = 0 = <R,u> .

T(Rn) is thus the submodule generated by the b;+ The next
proposition gives an inner characterisation of T(Rn) in terms

of the coalgebra structure of Un'

PROPOSITION 5, Given u € Un the following statements are

equivalent

(1) ue T(Rn),
(1i) n*(u) =u@e+eBu,
(1iii) <fg, u> = e(f)<g, w> + elg) <f,u> ,

(Recall that ¢ = 60 is alweys the identity in any bialgebra Pp

structure of Un).
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PROOF (i) => (ii): By Prop. b4 (ii) holds for u = A;, hence by

*
R-linearity of = for all u € T(Rn)'

(i1) = (iii)

%
<fg,u> = <f 8 g, = (u)>

i

<f®g,u@cec+eBuww

e(g) <f,u> + e(f) <g,u> .

(iii) => (1)

If £, g € I then e(f) = e(g) = 0 and so <fg,u> = O.

By linearity <12, u> = 0., Also

<1, w = <l,1,u> = e(1)<l,u> + (1) <1,u>

=2 <l,u> , i.es <l,u> = O, Hence <R,u> = O,

§2, The Lie algebra§ of a formal group

Pirst we list, without proofs, the definitions and results
on Lie algebras to be used,

Throughout R is a fixed commutative ring, and all "algebras"
are algebras over R. For each associative algebra A there exists
a Iie algebra éf,(A), vwhich coincides with A as a module, the Lie

Product [h,b] inZ (A) being given in terms of the associative

product &b by

[g,b] = ab = ba.
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Each Lie algebra L has an enveloping algebra E(L). More
precisely E(L) is an associative algebra with identity with an
attached homomorphism j : L +£ (E(L)) of Lie algebras so that the

map

fr——>>Ff o j

(f e Homassoc(E(L),A)) is a bijection

(2.1) Homassoc(E(L) sA) —> Hom . (L,2(A}).
Note: All associative algebras have identities, and Hom is

assoc

the set of homomorphisms preserving identities.
By (2.1), taking A = R we get from the null mep L +s£ (R)
a homomorphism of associative algebras
Tt : E(L) + R.
As E(L) has an identity we also have a homomorphism
o : R~ E(L).
Next if L1 and L2 are Lie algebras, then their cartesian set
product L1 x L2 has again & Lie slgebra structure, and
o8
E(Ll x L2) = E(Ll) 8y E(Lz).

In particular

E(L x L) = E(L) 8, B(L)

3(2y,2,) > j(¢,)81+18 i(2,).
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The disgonel map I > L x L thus gives rise to & homomorphism

D : E(L) » B(L) sRE(L)

of associative algebras.

A. The associative algebrae structure on E(L) together with

the maps D, o0, T define on E(L) the structure of a bialgebra

(afe §1 for the definition).

To prove this one would only have to verify now the
commtativity of the diagrams (l.1) ~ (1.6), and this can be
done by going back to the defining property of the enveloping
algebrae TFor the particular Lie algebraswhich we shall have to
consider this also follows from the explicit description to be
given below.

From (2.1) we obtain a map
E: HomLie(Ll,La) + HomBialg(E(Ll),E(Lz)).

In fact given a homomorphism o @ Ll -+ L2 of Lie algebras there

is one and only one homomorphism E(a) : E(Ll) > E(Lz) of

associative algebras so that

L
l E(a)

B(L ) ——— (L)

2

commutes.
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In view of the obvious functorial properties of the maps
D, o and T associated with each L, E(c) will in fact commute
with these. In other words
Be E is a functor from Lie algebras to bialgebras.

Now let L be & Lie algebra which as an R-module is free on
88y generators dl""‘dh° Then @
Ce ("Poincaré-Birkhoff - Witt Theorem") L + E(L) is injective.

We shall accordingly view L as embedded in E(L)e Write
for k = (kl,...,kn') €M

k k
R n 0 _
dk - dl ‘..dn (di - 1)

(the order of the factors matters!) Then we have the description

D, (i) E(L) is the free R-module on the &,

(11)  dfa* = &** I (k8 # 0).

+ a.d
0<|3]<|k*2| ¥

(iii D(di) =184, +4;, 61,
and hence
(a = § (%) af el
- - 1, l
1+)=K

(iv) o(1) =a° =1.

w(d) = 0, ko
1, k=0.

Now we return to the associative algebra Un’PF defined in

the preceding section, F being a formal group of dimension n. Ve
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shall write [,] 7 for the Lie product. Thus

[ uw ]F = pplu,v) = pplvyu).

In the notation of IT §1, Prop. 4, we now see that

(2.2.) [Ai,Aj] . E (Ai,j’k - Aj'i’k) A

It follows that the submodule T(Rn) of U generated by the A
(see §1) is closed under [’]F' In other words T(R ) is a Lie algebra
under [’]F" vhich we shall denote by LF - the Lie algebra associated
with the formal group F.

Let £ : F > G be a homomorphism of formal groups (dim F = n,

din G = n). The homomorphism 6_ : R, * R, maps R (vieved as a

f

subring) into itself, and maps I%m) (=1{re¢ le ord £ > 21}) into
*
t

1s a homomorphism of associatbive

I"(zn). Hence the dual homomorphism 6
w®
£

algebras, lsee, it takes the multiplication Pp into Dye Hence

: U~ U_ will map
n m

T(Rn) -+ ‘I’(Rm). Moreover, 0

also

% % %
[6f 1, ef v] ¢ = 6; [u,v] 7

0.3

for u, v € Un' It follows that 6 £ gives rise, by restriction, to

& homomorphism Lf : LF > LG of Lie algebras. Ve sum up :

PROPOSITION 1 LF and L - define e covariant functor from the

category 'F of formal groups to the category of Lie algebras, and

LF preserves dimensions, i.e., LF is a free R-module on dim F

generators.
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Alternative Description: Let R(n) be the module of n-tuples

a = (a.l,...,an) (ai € R). Let BR(X,Y) be the homogeneous
quadratic component of Fk(X,Y) (k =1,00eyn) (cfe §1) and write

Ak(x,y) = Bk(X,Y) - Bk(Y,X). Define a multiplication on R(n),

(n) g gln) , g(n)

ie@ey @ map R by

AF(a.b) = (Al(a’b),o.o’An(a,b))o
Then, if p is the isomorphism T(Rn) -+ R(n) of modules given by

p‘(ZaiAi) = (8y500058,), We get from (2.2)
p([u,vlF) = A (p(u),p(v)).

(n

Thus R ), AF is a Lie algebra, in fact isomorphic with LF'

For formal groups F and G of dimensions n and m respectively,

we denote by Ai F and Ai c the corresponding free module generators
9 9
of LF and LG' If £ : F+ G is a homomorphisnm then fik. € R are
defined by
n
£:(XypeensX)) = kzl £ %, (mod deg 2).
n
PROPOSITION 2 Lf(Ak’F) = 1 T 5 ¢

1'—-

m
PROOF Suppose Lf(Ak,F) = iz.:l Cix Ai,G' say. Then (we denote the

indeterminates of G by Yl,...,Ym)
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Q
il

i = Yy Lplay g)>
Yis 05(8 £)>
= X300 b F

<fi(‘{l""’xn)’ Ak’F>

f

ik*®

COROLLARY 1  The homomorphism £ : F + G is an isomorphism of formal

groups if and only if L, is an isomorphism of Lie algebras.

PROOF By I, 52 Theorem 2.

COROLLARY 2 If R is torsion free them L. = O if and only if f = O,
PROOF By I, §3 Theorem 2.

For the rest of this section we assume that R is a Q-algebra
(Q is the field of rational numbers). Under this hypothesis we
shall prove that the category of formal groups and the category of
Lie algebras which are free E-modules of finite rank are isomorphic.
More precisely we have:

THEOREM 1 (i) Let R be a Q-algebra. For each Lie algebra L which

group F such that L is isomorphic to Lpe

(ii) Hom.a;(F,G) -+ H°mLie(LF’LG) ig 2 bijection,

(iii) The formal groups F and G are isomorphic if and

only if the corresponding Lie algebras L. and L, are isomorphice

The proof of Theorem 1l requires three lermas. Ve teke L
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to be & Lie algebra which as module is free on generators dl,...,dn.

The module homomorphism C. : E(L) -+ U, is defined by the equation

L
ky -
CL(d ) = k! 8o

where we shall use throughout the description of E(L) given in D.

LEMMA 1 Cp, is an isomorphism of modules. Moreover, the diagrams

E(L) D g1 e, E(L)
c, o, 8¢y
*
“n
Un > Un OR Un
R

commmute.
The multiplication E(L) @ E(L) = E(L) defines through Cr,

a multiplication qr, * Un ® Un > Un'

LEMMA 2 There exists a formal group F for which 97, = Pps -1

q, defines on U the structure of & bialgebra. Then also L = Ly
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Let now conversely F be & given formal group. Since LFC_SC(Un,pF),
this inclusion map can be pulled back to a homomorphism

Q

E(LF) + U spp of algebras (universal property of enveloping algebra).

LEMA 3 @ : E(LF) + U_spp is an isomorphism. Also

* *® ( ) *
QoU‘En;unoQ—T and QGQcD—'ITnQ.

PROOF of Lemma 1 Since RY is divisible and by II §1, Prop. 2, the

k!ék form a free basis for Un’ and so CL is an isomorphism of modules.

Also by D and II §1, Prop. k4

(c, @ c) D () (c, 8¢ ( (f) at ¢ o)

n)
i+j=k

ket i J
= C, (a") & c_(a%)
i+§=lc i3y L L

k! J 5, 88,
j+j=x * 9

fl
w
o

# _ k

By extending linearly to E(L), this proves that the first diagram is

commtative. Similarly for the second diagram.

PROOF of lLerma 2 qr, is defined so that

E(L)

N

E(L) 8. E(L)

CL 8 CL CL

Q.
U @euU L

h 4
(on]
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is commutative. That ay, defines a bialgebra structure on Un

is now trivial by Lemme l. The isomorphism of categories ¢ =B
of the last section ensures the existence of a formal group F
such that the Un’qL = Un’PF' Since CL maeps di onto Ai’ L and LF
are isomorphic under CL as modules, and since CL preserves the Lie

product then this is an isomorphism of Lie algebres.

PROOF of Lemma 3 Let E_ be the submodule of E(L;) generated by

the d® with || < r and let Vr be the submodule of U generated by
the Bk with [kllﬁ r. We shall then prove by induction on r the
assertions
- k -

()  Vhen k| = r then Q(d") = e, (mdV, ), e &

unit of R ;
) - o -

(Br‘ Q meps E_ bijectively onto V.o
As E(LF) is the union of the E, U the union of the V the
bijectivity of Q : E(LF) + U follows.

By the definition of Q ,

2(a°) = (1) = 8 e

[+ X
l — —
a(a ™) = ald,) =4, = G“i .

where lail =1, o, has a 1 at the i-th place. As for k] <1

the dk ere free generators of E. and the § are free generators

1
of V,, both (Al) and (Bl) are true.

k

For the induction step from r to r + 1 let |j| =r + 1,

and write j = k + & where |k| < r,|2] <r. Then by D (ii),
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& = afa* (mod Er)' Hence by the induction hypothesis, and by §1

Prop. k4,
a(a’) =z, (2(d), a(@") = e pi(5,,8,) = sy (moa V),

where e,e' are units of R (recall here that R is a Q-algebra,
i.e., that we have unique division by integers). We have thus
established (Ar+l)' But now (B r+l) follows from (A r+1) and (Br) by
an easy argument.

The first equation in Lemma 3 just tells us that 2 is e map
of R-algebras. All the maps occuring in the last two equations of the
lemme are homomorphism of algebras preserving identities. In each case
it then suffices to verify that the images of the generators d; of the
algebrs E(LF) coincide, and this follows from the explicit description
given earlier on. (D and §1, Prop. 4).

PROOF of Theorem 1 (i) is just Lemma 2, (iii) follows from the

fact that F F> L, is a functor, and from (ii).

For (ii), we recall (ef. II §1, Theorem 1) that

n
Hom,é'(F,G) = HomBia.lg(Un'pF : Um,pG)
(n = dim Fy m = dim G). Recalling the way Lp and L, were defined,
we see now that it suffices to prove that the map

wod HomBia.lg(Un’pF 3 Um’pG) M HomL:i.e (LF’LG)

is bijective. Ve consider the disgram (of module homomorphisms)
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nf
v
=

(]

J S gg
E(LF) > E(LG)
QF QG

+ g

v o
Un’pF ” L‘m’PG

Here jF is the inclusion map, QF as in Lemms 3 is the unique
homomorphism of algebras so that QF o jF is the inclusion nmap
Lp = T(Rn) + U« Let ¥ be a homomorphism of bialgebras. Then
u(y) : Ly + Ly is uniquely determined as the module homomorphism

for which
(a) ¥ © Q. jo=0,0 j, o ult)
Next let 8 : I'F +> LG be a homomorphism of Lie algebras.

Then E(6) : E(LF) -+ E(LG) is the unique homomorphism of bialgebras

so that

(0)  E(6) * j;=j, ° 6.
By Lemma 3, Q is an isomorphism of bialgebras. Define
A(6) : U by + U_,p, by

(¢) A(e) o q, = Q, ° E(e).

F

Then by (b) and (e)
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Mo) » g e jp =0 e g

o 0,
Thus (cf. (a) with ¥ = A(e)),
ur(e) = o,

On the other hand, for given V¥ , we have by (a) and (b)

0g * E(u(®) ¢ ip,

Yoo ¢ Jp

hence

QG e E(H(?))s

¥ oo q

and so by (c) (with o

u(¥)),

Ye

au(y)

Thus A and u are inverse bijections. The theorem has thus been
established. (Incidentally we have proved also that E is &

bijection.)

COROLLARY 1 If R is a Q-algebra then every commutative formal group

F 1s isomorphic 1o the additive group of dimension dim F.

The additive group G, of dimension n is given by (Ga)i (%,Y) = X + Y.

PROOF F is commutative  <=> +the multiplication Pp in v, is
commutative  <=> PF(Ai’Aj) = pF(Aj'Ai) for all i, <=> L; is
abelian. This Lo is uniquely determined by its dimension, and the

dimension therefore determines uniquely the class of F.
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COROLLARY 2 If R is a Q-algebra, every formal group of dimenmsion 1 is

commtative. Corollary 2 is also true if instead we suppose R has

no nil potent elements (Lazard).
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CHAPTER III., COMMUTATIVE FORMAL GROUPS OF DIMENSION ONE

§l, GENERALITIES Throughout this chapter all formal groups are

cormutative of dimension one. We repeat the definitions, and a few
pertinent facts.

A formel group F(X,Y) is a power series (over R) in two
variables X,Y, satisfying

(1) r(o,Xx) = X = F(X,0) 3

(i1) F(r(x,Y),2) = F(X,F(Y,2));

(iii) r(X,Y) = FP(Y,X).

A homomorphism £ : F »+ G of formal groups is & power series
(with zero constant term) in one variable satisfying the relation

(iv) (r(x,Y)) = 6(£(X),o(¥)).

We shall write (f o g) (X) = £(g(X)). We denote by HomR(F,G)

the set of homomorphisms F + G of formel groups. If f, g € Homy(F,G),
(£ + g) (X) = a(£(x), a(x)).

With respect to this addition HomR(F,G) is an gbelian group, and
the composition © for homomorphisms is bilinear (ecf. I, §3, Th.l).
We shall call such a category "additive" (always with quotation
marks, as the term additive category without quotation merks is
now accepted to mean something more). The "additive" category
of commutative formal groups of dimension 1 over R will in the
sequel be dencted by ¢ p.

HomR(F,F) = End.R(F) is a ring with identity. There thus

exists a unique homomorphism Z -+ Endq(F) which preserves
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identities. The image of the integer n will be denoted by [n]F.

Thus [l]F(X) =X, [—1]F(X) is the power series i(X) of

I, §3, Prop. 1, i.es, F(X, [-1].(X)) = 0, and [n+1]F(X) = F([a] o(x),%).
HomR(F,G) is a left End.R(G) and a right End.R(F)-module, and

the action of Z on HomR(F,G) can be described in terms of either of

its two embeddings in the rings of endomorphisms. In other words,

forn € Z and f € Hom.R(F,G)

[n]G° f=1fc¢° [an.
How we recall the definition of the map D (ef. I, §2).

For dimension 1 we simply have D(f) = = coefficient of X in £(X).

h
D is then a functor ¥, + R, in other words

D(f o g) = b(£). D{g),

D(f + g) = D(£) + D(g).
Moreover f is an isomorphism if and only if D(f) € U(R).

PROPOSITION 1 A homomorphism ¥ : R+ S of rings (with identity)

gives rise to functors ¢, + Y of "additive" categories, which

preserves the action of D.

PROOF  Obvious. The desired mep of objects and morphism is that

induced by Y on the coefficients of the appropriate power series.

PROPOSITION 2 If R is an integrel domain, then End (F) is a

(non-commtstive integral) domsin, and HomR(F,G) is a torsion-free

End,(F) (and End (G)) module.
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PROOF If £ =fX +f o X5 4 veus
_ s+l
and g = ngs + gs+1 X + cses fr,gs # 0,
then T o g=71 gr Xr+s + seoe
r°s ’

and frgg # O, Therefore f ¢ g = O implies either £f = 0 or g = O.
From this we deduce that EndR(F) is an integral domain, and that
HomR(F,G) is a torsion-free EndR(F) (and EndR(G)) module.

The image of Z —+ EndR(F) is thus also an integral domain,
and its kernel must therefore either be O or pZ for some prime p.
If the characteristic of the quotient field of R is O, then
(efs I, §3, The 2) D : EndR(F) + R is an erbedding. Therefore

EndR(F) is a commtative integral domain and ker {Z - End (F)} = 0.

COMPARISON OF FORMAL GROUPS

A polynomial in R[X,Y] is primitive if the ideal in R
generated by the coefficients is the unit ideal. (A polynomial
in Z[X,Y] 4is thus primitive if the highest common factor of the
coefficients is 1l.) The natural map Z -+ R can in the obvious way
be extended to a map ZEX,Y] > REX;Y] and then primitive polynomials
are mapped onto primitive polynomials.

We shall now introduce Lazard's polynomials Bn and Cn. Here
B (X,Y) = (x+1)% - x7 = ¥,
If n is not a prime power, then

Cn(X,Y) = Bn(X,Y).
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If on the other hand n = qr, vwhere r > O and q is a prime, then
C_(X,Y) =& B (X,Y).
n? g n?

Note that Cn is always an integral polynomial.

LEMMA 1 C (X,Y) is a primitive polynomial in Z[X,Y].

PROOF Suppose that plcn(X,Y). If first n is a power of p, this
implies (by induction on m) thet ™ = m (mod p2). which is false,

Next if n = p'r, r > 1, (p,r) = 1 then ve get
S S n S Sr
(P + Pz x+Y)P =+ =xPT P (mod p);
hence X+ =5 + ¥ (mod p),

which is false (coefficient of XY™ T ).
The following theorem exhibits the relation between two

formal groups which agree up to a given degree.

THEOREM 1 (Lazard) Let F and G be formal groups over a commutative

ring R with
Fz=@G (mod deg n)e.
Then F=G+aC (mod deg n + 1)

for some a € R.
To prove this theorem we shall need also

LEMMA 2 Assume the same hypothesis as in Theorem 1, and furthermore

let I'(X,Y) be the homogeneous polynomial of degree n for vhich

FzG+T (nod deg n + 1).
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Then r(x,Y) = r(y,x) ,
r(x,0) = 0 = r(0,Xx), (P)
and r(X,Y) + r(x + ¥,z) = r(X,¥ + 2) + r(Y,2)

PROOF The first two equations are trivial. To prove the third
equation we observe that, working modulo degree n + 1, (and using
the notation G(X,Y) = X + Y + G2(X,Y), which means that G2(X,Y)

is the sum of terms of G of degree > 2)

F(F(X,Y),2) = 6(F(X,Y),2) + r(F(x,Y),2)

F(X,Y) + Z + G, (F(X,Y),2) + I(X + Y,2)

6(X,Y) + r(X,Y) + Z + GQ(G(X,Y),Z) + I'(X + Y,2)

c(a(x,Y),2) + r(X,Y) + (X + Y,Z).
Similarly one shows that
F(x,F(Y,2)) = a(x,06(Y,2)) + r(%X,Y + 2) + r(y,2).
This proves our assertion. (The second equation can also be derived
from the third).

To prove the theorem it will suffice to show that any
homogeneous polynomial I' of degree n, satisfying conditions (P) is
of the form aCn.

Lazard's original proof is very tough and computational. We
shall give here a simpler proof in which the computations are restricted
to fields., The basic idea is first to generalize the theorem
appropristely. Instead of polynomials over a ring we consider
polynomials over an (additive) Abelian group A. With these one can
compute in the same way as if A were a ring - except that there is
no multiplication. The advantage is that one can now use the structure

theory of Abelian groups. To be more precise we define
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AEXl,...,xn] =A8, zfxl,...,x#],
and call the elements of this module "polynomials over A". As
Z[Xl,...,Xn] is a free Z-module, one may view the module of
polynomials over & subgroup B of A as contained in A[Xl,...,xn] .
Theorem 1 is then a consequence of

THEOREM la Every homogeneous polynomial T' of degree n, satisfying

conditions (P) of Lemme 2, is of the form T = aC with a € A,
Let us first assume

I. The theorem is true when R = A is a field.

Then in view of Lemma 1, and by I with R = Q the rational field,
we conclude

Z.

II. The theorem is true for R

Next one shows

III. The theorem is true for A =R = Z/(Pr), P a prime, r > 0.

In fact, for r = 1, this follows from I, Now we proceed by induction

on re The induction hypothesis can be written as a congruence
- r r+l
r(x,y) = aCn(X,Y) + P l‘l(X,Y) (mod p~ )

where a € Z, and where I‘l satisfies (P) mod p. But then

r,(%,¥) = bC (X,Y) (mod p)

(b € 2), and hence

r(X,Y) = (a + p'd) ¢, (X,Y) (mod p* 7).

Ive It suffices to establish the theorem for finitely generated

Abelian groups A.

In fact, any polynomial I with coefficients in an Abelian group
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A msy be viewed as a polynomial over the subgroup of A generated
by the coefficients of T .
Ve If the theorem is valid for groups A end B then it is valid

glsc for their direct sum.

This is obvious,
Now the theorem follows from IT - V and the structure theory
of finitely generated Abelian groups. We still have of course to

establish I, and this requires some computation.

PROOF of I. Note that Cn(X,Y) viewed as a polynomial over the given
field R is non-zero (by Lemma 1) and clearly satisfies conditions
(P)e It then suffices to show that the conditions (P) determine
subspace S of dimension < 1 of the vector space of homogeneous
polynomials of degree n.

n
Write I(X,Y) = J arxruc”‘r « Then by (P)
r=0

a = a a. =g =0
T n-r * 0 n ¢

Moreover we get from the last equation in (P), on comparing the

A U, n=A=1

1Mz,

a (A+u> - n-A )
A+u M Sp2r \ n— A=U ?

. A+u> _ n—k)
le€oy B‘)\+u<]~1 —a)\ ( u .

Teke A =1y, and B =w

coefficient of X (A>0, A + p < n) the equations

(1) (0 + 1)

o (7).

e
w+l
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Next take u =1, A

L}
4

(2) aml(w + 1) aw(n -w)e

If first the characteristic of R is zero then (1) shows that
dim S < 1 es required. From now on assume that the characteristic
of Ris p # O,

Suppose first of all that whenever 1 < w < n - 1 then either

(wyp) =1 or (» - w,p) = 1. Then we have again, by (1),

va, = a (zj') » when (w,p) =1,

_ - n-1 =
(n - w) & = (n - a.\)a.n e T ™ (n—w—l) , when (n = w,p) = 1.
Thus again dim § < 1. This covers the case (n,p) = 1 and the case
n = p. For the remaining case n = mp > p, we can proceed by
induction.
Let then n = mp, m > 1. Wow use (2). This shows that

-

o1 = O vhenever either plw or when p} w + 1 and a, = 0. Therefore

arp+s=0forr_>_l,and1§_s_<_p-l.

In other words

& = O vhen (pyw) =1 and w > p,

As B = 8y 0 end as n > 2p, it follows that &, = 0 vhenever

r+ v . In other words

r(x,y) = rl(xp,yp),
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where I‘:L is homogeneous of degree m < n and clearly satisfies

conditions (P). Hence

r,(x,Y) = aC, (X,Y).
It remains to be shown that

¢, (xP,¥P) = ve_(%,1).

If m is not a power of p, then Cm = cB, Cn = Bn and the result follows
from the corresponding result for the polynomials Bk' Ifmis a

power of p we work overZ. We have

B (xP,vP) = [(x + V)P - BP(X,Y)]m - PRy

m
_ pm  _pm r{m (m~r)
= (x + Y)P2 o xPR_ yPR, er (-1) <r> BP(X,I)r (x + Y)P\&T/,

This is = Bn(X,Y) (mod pz), as m = 0, BP(X,Y) £ 0 (mod p) and so

0 (mod p2). On dividing

each term under the summation sign is

through by p we finally get
c (xP,YP) = ¢ (X,Y)  (mod p).
m n

This completes the proof of Theorem la.

LIMMA 3 Suppose F and G are formal groups and

F=G+aB (mod deg n + 1),

Then there exists a power series f(X), f£(X) =X (mod deg n), so that

f(F(f-lx, ) = G(X,Y) (mod deg n + 1).
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PROOF Put £{X) = X - bX" (mod deg n + 1). We show that,for &
proper choice of b, f£(F(X,Y)) = G(fX,fY) (mod degn + 1). Ve

work modulo degree n + 1 :

£(F(X,Y)) = F(X,Y) - b(X + ¥)B,

G(X,Y) + al(X + ¥)? - ax® - a¥® -~ b(X + V)7,

[}

G(£X,£Y) = G(X,Y) - bX° - bY",
The right congruence is obtained by taking b = a.
LEMMA 4 Suppose F and G are formal groups and
F=0G+aC (mod deg n + 1).
Then for m € Z,
[mlF(X) z [m]G(X) + a.{e:n(mn - m)}x® (mod deg n + 1),

where e =1, vhen n is not a prime power,

e =% » vhen n is a pover of the prime g, (Wote: C, =¢ B ),

{en(mn - m)} stands for the element of R which is the image of

) n
the integer en(m -m)e

PROOF  The lemma is clearly true for m = 1. Proceed by induction on
me Vrite Sl.m(X) for the polynomial of degree < mn which is congruent

(modulo deg n + 1) to [m]F(X) - [m]G(X). Working modulo deg n + 1,
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we have

[+ 1]F(X) F( [m] ;(x),X)

G( [m] {X),X) + 2 c( [m] (%), X)

1

a( [m]G(x) X) + 2 (X) +a Cn(mX, X)

[m + 1]G(x) + 2 (X) + & C_(mX,X).

(mX + X)) = (@0)® - X7,

Over Z, Bn(mX,X)

((m+ 1)° = o = 1)X°.

Therefore C_(mX,X) = ¢_((n + 1)? - - 1) .

Hence zmﬂ(x) = 2.m(X) + zz«.{en((m-i-l)n - o® - 1)}X°., By the induction
hypothesis, this is equal to a.{.t:n(mn -m+ (m+ 1) - - 1)} X5,

vhich is ale ((m + 1)° -~ (m+ 1))}

THEOREM 2 A formal group F is isomorphic over R 1o the additive

group G, if and onmly if, for all primes p, [P]F has coefficients

in pRs Recall that Ga(X,Y) =X+ Y,

PROOF If £ : F -+ G is ean isomorphism of formal groups, then

Bly =< < [lg o .

That [p]F has coefficients in pR for all primes p is therefore a

property of isomorphism classes of formal groups. Since [n] e (X) = nX,
a
this shows that the condition is necessary.
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To prove the sufficiency of the condition we construct a sequence

{g } of invertible pover series such that

g, (mod deg n),

Ent1

1

g °Fo g; X+ Y (mod deg n + 1),

The sequence {gn} is a Cauchy sequence, with limit g, say.

Hence

1

gosFog X+Y (mod deg n),

for n arbitrarily large. Therefore

1

goFog- =X+ Y,

Construction of {gn} ¢ Take g = X. Suppose we have already

constructed ByseeesBy 19 and suppose
-1 _
By ° Fog  =HZX+Y (mod deg n)e.

It will suffice for us to construect a power series f such that

H
n
"~

(mod deg n),
and foHoftox+y (mod deg n + 1),

for then the required g, can be taken to be f » 8n-1°

By Lazard's theorem (Theorem 1),
H=X+1Y+eaC (X,Y) (mod deg n + 1),

for some a € Re If n is not a prime power, then aC, = aB . If n
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is a prime power, n = pr, then by Lemms 4
[elg(®) = [p], () + a(p™L - 1)x® (mod deg n + 1),
a
= pX + a.(pn-l - l)X"c1 (mod deg n + 1).

But by our hypothesis [p]H(X) has coefficients in pR. Hence
a €pR, and a = pb for some b € R, This implies a.Cn = an.

We have shown then that

2]
u

X+Y + cBn(X,Y) (mod deg n + 1).
By Lemma 3, there exists f with the required properties.

COROLLARY 1. (Independent of Lie theory) If R is a Q-algebra

then every commtative formal group of dimemsion 1 is isomorphic

over R to the additive group.

COROLLARY 2. Let R be a ring with pR = 0, p & prime number. _Then

a formal group F defined over R is isomorphic to G, if and only if

[»]; = o.

COROLLARY 3. Let R be a local ring, whose residue class field is of

prime characteristic p. Then a formal group ' defined over R is

isomorphic to the additive group, if and only if the coefficients of

[P]F 1‘.':5.3_ :]E'. PR

§2, CLASSIFICATION OF COMMUTATIVE FORMAL GROUPS OF ONE DIMENSION OVER

A SEPARABLY CLOSED FIELD OF CHARACTERISTIC p. (p> O)

Let k denote our base field, of characteristic p. For formal
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groups F and G (over k) and f € Homk(F, G), £ is a power series in
h
X2 , where h = ht(f). (cfe. I, §3, Th. 2). More precisely, we have,

S,
f(X) = a-lX + 8.2 +* aee s al # Oe

PROPOSITION 1 (i) nt(f + g) > inf {ut(£),ht(g)} .

(i1) nt(f o g) = nt(r) + nt(g).

PROOF (i) has been proved already (I, 53, Prop.5).

(ii) ©Put n = ht(f), m = ht(g). Then

n m
£(X) = a%® + eee , g(X) =1 + oo , 2 #£0, b # 0.
n n+m n
Therefore £{g(X)) = ab® *®  + oo , and ab® # O.

COROLLARY 1 ht(u) = 0 if and only if u is an invertible power series,

in which case ht(u o £ o u™>) = ht(£).

COROLLARY 2  If we comsider Z with the p-adic filtration, and

Endk(F) with the height filtration, then Z —+ Endk(F) is continuous,

We define the height Ht(F) of the formal group F to be

h'l‘-([p]F). By Cor. 1 to Prop. 1, Ht(F) only depends on the isomorphism

class of F.
COROLLARY 3 Lf Ht(F) # Ht(G), then Hom (F,G) = O.

PROOF If f € Hom (F,G), then £ o [p] = [p] ¢ £. Hence
ht(f) + Ht(F) = ht(f) + HL(G). Since HE(F) # Ht(G), then

ht(f) = « , and £ = 0,
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PROPOSITION 2 Homk(F,G) is complete under the height filtration.

PROOF Let {fn} be a Cauchy sequence under the height filtration.

Then it is a Cauchy sequence with respect to the order filtration, and

pht(g) .

ord(g) = Put £ = linm (fn). Then, working modulo degree n,

ord
we have

£(F(X,Y))

fn(F(XsY)) = G(fn(X), fn(Y))

a(£(x), £(¥)).

Hence f € Homk(F,G) and f is the limit of {fn} under the height

filtration.

COROLLARY  The homomorphism Z + End (F) extends to a homomorphism

Zp > Endk(F) {where Zp denctes the p-adic integers).

The disgranm

7. > Endk(F)

D

of ring homomorphisms commutes, as all the maps preserve identities.
Thus D([p];) = 0, iees, bt([p],) > 0, ise., HE(F) > 0. By Corollary
2 to Theorem 2 of the last section, Ht(F) = @ if and only if F is
isomorphic to the additive group Ga‘ Thus if F is not isomorphic
to the additive group, i.e., if Ht(F) < = then the map ZP -+ Endk(F)

is an embedding.
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The three main theorems which follow give firstly the
existence of formal groups of prescribed height h > O over any
field of characteristic p, secondly the complete classification of
formal groups over a separably closed field, and thirdly the

determination of Endk(F) .

THEOREM 1 Given a positive integer h, there exists a formal group F

h
defined over GF(p), so that [p]n(X) = %P .

THEOREM 2 (Lazard) If k is & separably closed field of characteristic

Py then formal groups F and G defined over k are k-isomorphic if and

only if Ht(F) = Ht(G).

THEOREM 3  (Dieudonné - Lubin) Suppose k is a separably closed

field of characteristic p, and let F be a formal group defined over

k with Ht(F) =h < = . Then End (F) is isomorphic to the maximsl
order m in the central division algebra & of invariant 1/h and of rank n®
over Q.

The last theorem is due to Dieudonné in the wesker form that
Endk(F) is isomorphic to some order in & . That this is actually the
maximal order was proved by Lubin, using results on formal groups over
discrete valuation rings. We shall give a direct proof.

We shall need some lemmas. Let R be a discrete valuation ring

with finite residue class field of pS elements. Denote by % the

maximal ideal of R, and take 7 in R so that ¥ =R,

LEMMA 1  Suppose f(X) and g(X) are power series over R satisfying
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(%) = g(X) = oX (mod deg 2),
£(x) = g(x) = x2 (mod ¥ Yo
s

where q = p for some positive integer & . Let L(Xl,...,Xn)

be a linear form over Re Then there exists a pover series

F(Xl,...,Xn) over R satisfying the conditions

(1) FlXppeeesX)) = Ll 4eee,X) (mod deg 2),
(ii) P(F(XyyeeesX ) = Fla(X)geee,a(X ).

These conditions determine F uniquely over the gquotient field of R.

(This is a slight veriant of a lerma of Lubin - Tate.)

PROOF Our aim is to construct a sequence {Fm} of polynomials

over R in Xl""’Xn with the properties :
Fm(Xl,...,Xn) is of degree m - 1,
F(XpseeesX ) 2 L(X ye0e,X ) (mod deg 2),
£(F_(X),000,% ) = F (8(X))yeeese(X )  (mod deg n),
Em*l(xl,...,xh) = Fm(Xl,...,Xn) + A(Xl,...,Xn),

where A(Xl,...,xn) is a homogeneous polynomial of degree m. These

conditions imply (here we work with congruences modulo degree m + 1)

that

Fop1(8(X ) aeeeya(X)) = F (a(X)),000,8(X ) + a(g(X))5000,8(X )

Fm(?;(xl) seee ,g(xn)) + A( TTXl.o o ,'ern)

F (e(X))ye00,8(%)) + = B(E yeeesX )e
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If we write £(X) = ™ + f(z)(x), then we also have

P(F (X seees X)) = £(F (X pe0e,X ) + A(X 000X )
= me(xl,...,xn) + TA(X) yeen X ) + f(a)(Fm(}L_L,...,Xn))
= f(Fm(Xl,...,Xn)) + vrA(Xl,...,Xn).
We are therefore required to find A satisfying the congruence
F(8(%))seee,a(X ) + e ME poeesX ) = T(F (X)ye00,X ) + TAK ye0e,X )e

In other words, we must solve over the quotient field of R the

congruence
1 Fm(g(Xl),...,g(Xn)) - f(?m(xl,...,:{n))
A(X ’IOC’X ) = -
1 n m 1
1 - a7
There clearly exists a unique solution. But 1 = S is a

unit of Re To show that the solution has coefficients in R we
mst show that Fm(g(xl),...,g(xn)) - f(Fm(Xl,...,Xn)) has
coefficients in 3P(i.e. is divisible by © ). Since £(X) = g(x) = x2

(mod ), then

Fm(g(}%-) ,coo,g(Xn)) - f(Fm(Xll"' SXn))

Fm(X%,...’XIql-) - (Fm(Xl,-..,Xn))q (mOd ? )o

But (F (X ,eee, )% = F0xE, 000 2d)  (mod ),
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(Fi denotes the polynomial obtained fronm Fm by raising a&ll the
coefficients to the g-th power). As q is a power of the cardinality

of the residue class field, we have Fg = F_. Hence
- q - q q
(Tm(Xl,-..,Xn)) = Fm(Xl,...,Xn) (mod f* ),
and therefore
Fm(g(xl)’loo’g(xn)) - f(Fm(Xl"..'Xn)) =0 (mod %),

as required.
We are now in a position to prove Theorem l. (We use here

an idea which plays a central role in Iubin - Tate.)

Zp’ T=Dp, q= ph for

pX + X%, and L(X,Y) = X + Y.

PROOT OF THEOREM 1 In Lerma 1, take R

some positive integer h, f(X) = g(X)

There then exists a power series F(X,Y) over Zp such that

FX,Y) =X+ ¥ (mod deg 2),
and

F(£(X),£(¥)) = £(F(x,Y)).

But the power series F(Y,X) is also a solution of our existence

problem., By the uniqueness of solutions therefore we have
F(X,Y) = F(Y,X).

With L(X,Y,Z) = X + Y + Z, we easily check that the corresponding
existence problem of the lemms has both F(F(X,Y),Z) and F(X,F(Y,2))

for solutions. Fronm the uniqueness of solutions we deduce
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r(F(X,Y),2) = F(X,F(Y,Z)).

Hence F(X,Y) is a commitative formal group over Zp, and f lies in
End,, (F)y with D(f) = p. Since D : End, (r) » zP i& injective,

P P h
and D( [p]F) = p, then f = [pIF. In other words [PIF =pX + X0 .

The homomorphism Zp + GF(p) induces a functor from the

category of formal groups over Zp to the category of formal groups
over GF(p)e The inage T of F is then a formal group over GF(p),
with [p]f, = Xph. This then yields Theorem 1l.

From now on h is a fixed positive integer, end q = ph.

LEMIA 2 Suppose k is a field of characteristic p, and F is a

formal group of height h defined over k. Then T is k-isomorphic

to a formal group G, where G = X + Y + ch(X,Y) (rod deg q + 1)

end ¢ # O,

PROOF We know that F = X + Y (mod deg 2). Suppose now that

=
u

X+Y (mod deg n) withn < q. By Th. 1 of §1, we have

=
"

X+Y+eC (mod deg n + 1) for some ¢ € ko If n # pk then
cC, =bB for some b € k (all primes p° # p are units in k). If
n = pk with k < h we assert that eC =0 (= Bn)° For by Lemma 4 of

§1, we have (Ga denoting the additive group)
[pIF(X) = [p]G (X) + e(-1)x" (mod deg n + 1).
a

But [p]F(X) =0 (mod deg q), and [P]G (X) = pX = 0. Hence ¢X° 2 0
a

(mod deg n + 1) and so ¢ = O,
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Thus we have shown that if F = X + ¥ (mod deg n) with n < g
then there is a b € k such that F =X + ¥ + bB (nod deg n + 1).
Now apply Lemma 3 (§1) to obtain an invertible f such that

laxsy (mod deg n + 1)« Ve can therefore assume that

f oF o f
FEX+Y (mod deg q)e Ifwe had F = X + Y (mod deg q + 1) we could
apply Lemma 4 (again with m = p) to obtain [p]F(X) 20 (mod deg

q + 1), which contradicts the hypothesis on the height of F.

We state next a lemma in which (for the first time) essential

use is made of the hypothesis that k be a seperably closed field.

LEMMA 3 Let k be a separsbly closed field of characteristic p.

Suppose g(X) = £(x%) with z(o) = 0 and £ # 0. Then there is an

invertible power series u (over k) such that

wt . g o u=x3,

PROOF Let g(X) = aX? (mod deg q + 1), where a # O. As k is

separably closed, there exists c €k, ¢t = o, Put vl(X) = cX,

8,(X) = (vl-_1 o g o vy) (X). Then g,(x) = % (mod deg q + 1).

But gg(X) is a power series in X% and hence gz(X) z X2 (mod deg 2q).
We now prove for r > 2 : If gr(X) is & power series in X3,

gr(X) z X2 (mod deg rq) then for a suitable choice of b in vr(X) =

X + er we have

~1 = »a
(Vf °g.° Vr) (X} =« (mod deg (r + 1)q).

Starting with g(X) and defining inductively

V;l O qeee © Vzl°g cvlo..‘. V&r=gr
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we obtain an infinite product V] 0 seead V oV o see , Which under

r+l

the order filtration converges to a v(X) so that
(vie g ov) (x)=3x%

Let gr(x) z X% + aX? ( we use congruences mod deg rq + 1

throughout). Then

2 + (a + p%)xF2

8. (v.(X))
and

vr(xq) x% + vx¥9,

Ve have then to solve
plab+ a=0

in the unknown b. This equation is separeble, and hence can

be solved in k. Thus

X2 (mod deg rq + 1)

(‘V.l ° gr ° vr) (X)

r
and hence also mod deg (r + 1) q.

DEFINITION A formal group F of finite height h over a separsbly

closed field k of characteristic p, is in normel form if

(1) [pl4x) = x2 (@ =1,

(ii) F(X,Y) =X + Y + ccq(x,y) (mod deg q + 1)

for some ¢ # 0 in k.
Our next lemma shows us that for formal groups in normel form

we can work over GF(q) rather then k.
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LEMMA b If [PlF = X% then F is defined over GF(q) and every

endonorphisn of F is defined over GF(q).

PROOF  Since GF(q) = {a € k| a% = a} we have the following
equivalence : g(}Ll,...,Xn) = g(X) is defined over GF(q) <=> g(x%) =
g(X)%.  Now [p]F °© F=7Fo [p]F so I is defined over GF(q) when
[P]F = ¥%, loreover [p]F is in the centre of Endk(F) so if £ € Endk(I-‘)
we have [P]F o f=fe [P]F’ i.es © is defined over GF(q).

The next lemma is the crucial one for the proofs of Theorems

2 and 3, It ties lemmas 2,3,4 together.

LEMMA 5 Each formal group over a separsbly closed field k is

isomorphic to one in normal form.

PROOF Let F be a formal group of height h over k. Apply Lemme 3

to [p]F : there is a u(X) such that u ™~ o [p]F o u=3%x% But

wt [m]F ° u=[n] for all integers m > 1, and
U e Foeou

=4
°

5]
o

o

il

2 F. So we may assune F is such thet [p]F = %, Then
by Lemme 2, there is an invertible v(X) in GF(q)[[X]] (r is defined
over GF(q) by Lemma 4) such thai (vie Foov)(X)zX+7Y+ ch

(mod deg g + 1), with ¢ # 0. Now [p] -1 =v-l° [p] p° V= [P]F
v e Fey

(since v is defined over GF(q)). Thus v> e F o vis in normal form.
So we can now assume vhenever 1t is convenient that all formal
groups are defined over GI'(q), where throughout q = ph.

Define a category ¥ as follows : objects, all formel groups F

in normel form and of height h over k; morphisms, all homomorphisms
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of formal groups (in % ) over k. ¢ is "additive" (ef. §1).

Next let M be the module, under ordinary addition, of

k-1 i

polynomials of form Z a; ¥ = a(x), a; ¢ 6F{q)e M is in
i=0

the obvious way an hg-dimensional vector space over GF(p). We

define a multiplication ° on M by
(a o b) (X) = a(p(x)) (rod deg q).

This makes M into a ring.
] . - - q_—l .
Itr=0(X)= J £, %, witet=7(X)= ] r, ¥,
j=1 J J= J

Then we have

PROPOSITION 3 The map £ +—> f defines a functor G+ M of

"additive" categories., Explicitly T og=7f o é, £ -(l_; g =

? o+ -é, 1 = 1. Moreover, £t is & surjection Homk(F,G) + M,

for sny pair of formal groups F,G in 4 .

PROOF We show first that f € M for f € Hom (F,G). Since f is a
homomorphism, £ e [p]F = [p]G o £, and since F and G are in normal
form, [p]p = [p], = X% We deduce that f is defined over GF(q).
Next by (ii) of the definition of normel form we see thet
(X + Y) = £(X) + £(Y) (mod deg q), and so mod deg q, T is &
polynomial in x?, Thus T € M.

It is clear that T e g =F o g, and 1 = 1. Now
£+ (x) = a(£(x), g(x)) = £(X) + g(X) (mod deg q) (again by (ii)
of the definition of normal form). Therefore TE‘E (X) = T(X) + g(X) =

£(X) + g(X) since deg T < q and deg & < q.
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Finally we show that the map is surjective. For this it
suffices to show that given a € M with first coefficient &, # 0,
there is an £ € Homk(F,G) such that T = a, for these elements
generate M (as an additive group). As usual, we produce an f
using the completeness of GF(q)[[X_]]. We conmstruct a sequence {fn}

of invertible power series (for n > q) with the properties :

r =a

q ]
£, o FEG o £ (mod deg n),
fe1 = T (mod deg n).

Suppose we have reached f . Put H = f;l ° G e°f . Then

=
I

=H (mod deg m)e By Lazard's theorem (§1,Th.l) there is =

c € GF(q) such that F = H + ch (mod deg m + 1)e Ifm # pg' then

ccm me for some b € GF(q)s Ifm = pz then by Lerma 4 of §1,

ch 0 (since [p]F = [p]G = [p]H). Thus F = H + bB_ (mod deg m + 1),

b € GF(a)e Now apply Lemma 3 of §1 to deduce the existence of an

1oy

invertible power series u over GF(q) such that uw ¢ F ¢ u
(mod deg m + 1), and u(X) = X (mod deg m). Put Ty =5y © Ue

It is clear that fm+l ] fm (mod deg m), and so we have completed
the induction step. Now put f = %;g fn. We see that t = a, and

e Homk(F,G). This completes the proof of the proposition.

PROOF OF THEOREM 2. Ve can assume both F and G are in normal

form. Choose f € Homk(F,G) such that T = 1, (surjection of Prop.3).

This implies that £(X) = X (mod deg 2), and so f is an isomorphism.
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For literature on the arithmetic theory of division algebras

over Qp see Mo Deuring, Algebren, J.P. Serre, Local class field

theory 1 Appendix (Brighton notes).

PROOF OF THEOREM 3 We shall write E = E'ndk(F). We split the proof
into five steps :

1) E is a free Zp-module of renk h° :

2) D =E¢ 7 Qp is a division algebra of rank n? over Qp 3

3) E is the maximal order of & (over ZP) H

L) The centre cent (J ) of @ is Qp :

5) The invariant inv(D) of & is 1/y.
We first show that
(5) pPE={f €L | ht(£) > nh = n.nt( [p] )1

Clearly if f = [p]; e g then ht(f) = n.ht(fp]F) + ht(g) > nh,
Conversely, let ht(f) > nh. This means that there is a power
series g(X) so that £(X) = g(Xa"), i.e., so thet T = g o [_-p]g.
Ve must show thet g € E. Since F is defined over GF(q)

(remark after Lerme 5) we have

£(7(X,1)) = g(#@x,0%) = grx® 1)),

_ n n
F(£(%,Y)) = Flg(x® ), a(¥?)).
Comparing the two expressions we deduce that

g(F(X,Y)) = F(g(x), (1))

as required.
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Now E is Hausdorff and complete under the height topology. Hence
N pn E =0 and E is a complete topological Zp—module. As E conteains
Zp and has no divisors of zero (ef. III, 51 Prop.2), E is a torsion-
free Zp-module. By the preceding Prop. 3, E/p = My iee€e, E/PE is of
finite dimension h> over GF(p). Therefore E itself is a free
Zp-module of rank ha. This gives assertion 1).

Byl), & =zt @ 7 QP is an algebra over QP of dimension hZ.
As E has no zero—divisois » & is a division algebre.

We shall denote multiplication in & in the usual way, i.e.,
write f.g for the product of f and g« If f and g happen to be in
E then of course f.g coincides with the composite power series f° g,
Thus in particular for f € E, p°f = [p]; o f,

To establish 3) we first recall that the normalized p-adic
valuation v of Qp, with v(p) = 1, has a unique extension to <
again to be denoted by v. On the other hend %‘- nt : f H%— ht(f)
is a valuation of E, vhose restriction to Zp coincides with v.

Hence -1];;- ht can be extended to a valuation of & , and by uniqueness

this is the same as v. In other words we have
(B) ht(f) = hev(£f), for f € E,
The maximal order N of &P is the set

N={ged | v(g) >0} .
Thus clearly EC N, For the opposite inclusion consider an
element g of Ne Then as E spans D over Qp, png € E for some

n > 0. Now v(o%g) > n, and so by (B), ht(p"g) > nh, whence by (A)
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p’e=[pl} c £=0pt,

for some f € E, As & is torsion-free, this implies g = £, iee.,
g €E, Thus N C E, and hence N = E,
For L) we first note that it suffices to establish the

As zp < cent(E), it will suffice to show that the Zp-re.nk of
cent(E) is <1, If f € E, pf € cent(E) then £ € cent(E). Thus
cent(E) is a direct sumand of E, and therefore its Zp-rank
coincides with the dimension over GF(p) of its image cent(E)

in the algebra M. By Prop. 3 the map E + M is surjective, whence
cent(E) C cent(M). It thus remains to be shown that the dimension

of cent(M) over GF(p) is at most 1.

a_,b. € GF(q)
h=1 3 °°
b(x) = ] bjxp ,

be two elements of M. Then

h=1 i
(8. e b) (X) = z a-ob- Xp ?
o J
J=0
Bl § J
(boa) (X)= ] a5 b, ¥,
j=o !

FPor b(X) to lie in the centre of Il it is thus necessary that for all

J
2y € GF(q) and all j = 1, veey b = 1, b;(ag - a,g ) = 0. But if



-85 -

.

o)

and so we must have bj = 0 for these values of j. In other words a

J
is a primitive element of GF(q) then 2 # ag (J =1, eeey b = 1),

central element is of the form of a(X). So now suppose that
a(X) € cent(l1), vhile b(X) is arbitrary. If we choose bj = 1 for

all j we get the equation a, = a.g, i.ee, a, € GF(p)e Thus in fact

0 0
cent(M) is of dimemsion < 1. (of course one has equality here).
To prove 5) we first recall the definition of inv (P ) most

convenient for our purpose. There exists an element g of & so that

for all £ € E
(c) gfg = fp (mod y— )
vhere #=1f€x | nt(f) > 1} = {f € E | +(£) 3_%1-}

is the maximal (two-sided) ideal of E. g is of course not unique but
the values v(g) of such elements g form a unique coset mod Z, which is
the invariant of & . One may, by multiplying through by elements of
cent (D) = Qp, suppose that O < v(g) < 1. One then has to show that
for such a g we have v(g) =-;L; .

Let then g satisfy (C), and assume that v(g) =-I-'i- ,
0 <k <h=1. Ve shall show that k = 1, From (C) we have,

on multiplying up by g,

gf = 2% (mod ée_'ﬁl).

How we can translate our statements into the language of pover

series. We have a power series g(X) of height « , i.e., with

K
- - K+l
g(X) = ax®f (mod deg p° ),

so that for all £(X) € E
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(g of) () 2 (£2) e 2) (X)  (mod deg p°™),

where

HP)(X)= (£ °2Ff © 400 @ £) (X) (p times).

If f(X) = X+ dace 2 then f(P) (X) = f.'g X+ aoe ’ and

1
hence, mod deg pK+l

K
(g o £) (X) = afg X,
(f(P) o g) (X) = afﬁ X,

K
ieee, afﬁ = afi. As f, can be any element of 6F(q) (by Prop. 3)
and as a # 0 it follows that ¥ = 1.

This completes the proof of the theorem.

53. Galois cohomology

Let T' and A be topological groups, and suppose A is a ' =group,
so that the elements of I' induce automorphisms of A and so that the

e

map T x A~ A is continuous. For Yy € T , a € A we denote by
the image of a under the map defined by vy «
A cocycle of T in A is a continuous map a : T + A vhich

satisfies the relsation

a(y8) = a(y). Ya(s).

We denote the set of cocycles of T in A by Zl(F,A). Note that
Zl(P,A) is a set with a base point, viz., the trivial cocycle which
maps each element of T onfo the identity of A. For a € Zl(r,A) and

b € A, the equation
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a(v) =v™ aly).

defines a cocycle &y € Zl(P,A). ™o cocycles which are related by
such an equation for some b € A are said to be essociated. This is
an equivalence relation, and the equivalence classes in Zl(F,A)

thus defined are called the cohomology classes. The set of

cohomology classes is denoted by Hl(r,A), which again is a based set
with base point the class of the trivial cocycle. The cocycles

associated with the trivial cocycle are called gplitting cocycles,

and they are given by

aly) =p71, M
for some b € A.
Consider now a field k of characteristic p, and let K be a normal

separable extension of k. Denote by I' the Galois group Cal(K/k).

For kl a finite field extension of k in K, we write

A =1{yerT | ¥ Zleaves k, fixed elementwise} .
1

A topology on TI' is defined by taking as basis of open neighbourhoods

of the identity the subgroups Akl for all finite field extensions

k, of k in K, With this topology, & continuous hemememshiem map

a : I' » A of topological groups has the following interpretation :
Teke vy € T , and U a neighbourhood of a(y). There exists a

finite extension field k, of k so that whenever § € I' has the same

1

effect on k, as vy , then a(s) € U,

We state the following two 'lemmas' without proof. (k¥ denotes

the additive group of K, and K* denotes the multiplicative group
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of the non-zero elements of K).

LEMIA 1 Hl(P,K+) = 0, (This is a consequence of the Normal

basis theorem.)
. %
LEMA 2 (Hilbert's Satz 90). HS(I,K ) = 1.

Let S be the group, with respect to ¢ composition, of power
series £(X) defined over K of the form £(X) = £,X + f2X2 *eee y §) # 0.
A topology on S is defined by the order filtration i.e., by
vieving S as a subset of K[[X]]. The action of I on S is defined by

the action of T on the coefficients of the power series in S. With

this structure we have

PROPOSITION 1 HY(T,S) = 1.

PROOF  Define st») . {£(x) € s | £(X) = X (mod deg n+l) }. Then S(n)

is a normal subgroup of S (exercise for the reader). The sequence

1)

1+ s +S+K +1,

%
where S + K maps f£(X) onto fl’ is an exact sequence of T —groups.
Mso, if £(X) € S(n), then £(X) = X + o2t (mod deg nt+2). The

mep £(X) >0 defines a homomorphism S(n) -+ K+ of I'=groups, and

1 S(n+:L) - S(n) + x50

is exact.
We must show thet, if & € Z© (I,S), then there exists b € S such

that a(y) =b™T © Yp,
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Take a € Zl(I‘,S). Then a(y) = E a.r(y)Xr , a.r(y) € X,

r=1

*
The map Y '—?a-l(Y) is a cocycle I' - K , and hence by Lemms 2

#
. = 'Y
there exists b, € K such that blal(Y) L

and detine 5 (1) o alv) o D@ = Py € s me

(1)

map Yy +> a(l)(y) is a cocycle I' = S'=', If we write

a(l)(y) =X + aél) X b oaee ’

then the map v r— aél)
exists c, € K' such that

aél)(v) =Y, -

Take c(X) = X + c2X2. Then c(X) © a(l)(Y) o (Ye(x) )-l = a(z)(Y) €S

This way, we get a Cauchy sequence {b(n) (X)} such that
5@ (x) o aly) o (B (x))te s,
Put b = lig ) (%), Then

a.(Y) = b-l Q Yb.

Let F be a formal group of height h defined over k and

fixed once and for all. If G is another formal group defined over

k aend f : F + G is an isomorphism defined over K then

Ye(F(x,Y)) = o(Y£(x), Y£(¥)), (yeT)

and so 'f : F » G is an isomorphism. It follows then that

aly) = ¢4

Take b(l)(x) = le

is a cocycle I' » K. By Lemms 1 there

o Yf is an automorphism of F (defined over K). Also,

(2)
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alys) = £ o Yo o p7L o Yo o Yl o ¥0p 2 g(y) 0 Y a(s).

Let k) = k(fl”"’fh) be the field obtained by adjoining the

first n coefficients of £ to k. Then if y and § have the

same effect on kl we have 'f = 6f (mod deg n + 1), and hence

a(8) (mod deg n + 1). Thus a is continuous. Hence
1

a(y)
if £ : F > G is an isomorphism (over K), then a(y) = £ ~o 'f
defines a cocycle of T in AutK(F).

Every other isomorphism F -+ G is of the form f o g for

g € AutK(F). Since

al(Y)=(f. g)-l. V(s < g) =g"lo =1 o Y ovg_.:g-l. aly) « Yg

then we can associate uniquely with G the cohomology class of
£ o e = a(y).

Suppose now further that G and H are isomorphic formal groups
over k and that 2% : G + H is an isomorphism defined over k. Then

2 of : F+His an isomorphism defined over K and

(z of)-loY(z ) f) f-lo z-loYchf

-1
"f DYf’

since Yo =3 o G and H are therefore associated with the same

class of Hl(r,AntK(F)).
Denote by IsoK/k
formel groups which become isomorphic to F over K. Ve have then

(F) the set of k-~isomorphic classes of

defined a map IsoK/k(F) - Hl(F,AntK(F)).

THEOREM 1 Isog, (F) » H(T,Aut,(F)) is a bijection.
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PROOF Suppose G and H are associated with the same cohomology
classe Let £ : F > G, £ : F - H be K-isomorphisms. Then there

exists g € AutK(F) so that

f-l o Yf = g-l ° 2-l° Yz 4 Yg.

Rearranging we get
2°g'f-l=Y2°Yg‘ Yf-l=Y(2a°g°f—l).

The K-isomorphism 2 ¢ g ° £1 is therefore fixed for all y € T.

Tt follows that & ° g ¢ £+

t G+ His a k-isomorphism. Thus
1 . . s .
the map IsoK/k(F) + H (P,AutK(F)) is an injection.
Let a € Zl(r,AutK(F)). Since Zl(P,AutK(F)) c zi(r,s),

then by Proposition 1 there exists f € S such that

aly) =£LeYs | forallyerl.

But if

6(x,Y) = £F(£H(X),271(Y))

then £ : F + G is an isomorphism of formal groups. lloreover

Ya(x,¥) = £ ° aly) Fla(y)™t o £72(x), a(v)L e (1))

er(eH(x), £HY)) = a(x,Y),
as a(y) € Aut (F). This being true for all vy € I' we conclude that
G is defined over k. It maps onto the cohomology class of a. Thus we do
have a surjection.
Let now I(k,h) be the set of k-isomorphisms classes of formal groups

of height he By §2, Theoren 1,
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I(k,h) = IsoK/k(F)

when K is a separable closure of ke We thus obtain a full
classification of formal groups of height h from the theorem.

COROLLARY If K is a separable closure of k, then

I(k,n) & BT, Aut (F)).
Note that by §2, Theorem 2 we know the group AutK(F).

Example Let h =1, Then by §2, The 3 End (F) = z, for eny K
and hence AutK(F) = Up, the group of p-adic units. The Galois
group I leaves % c,EndK(F) elementwise fixed, hence leaves the
closure Zp of Z fixeds Thus I' leaves AutK(F) fixed. But then
Hl(P,AntK(F))

Hom(P,AutK(F)) is just the set of continuous
homomorphisms T -+ Aut,(F), i.e. of continuous homomorphisms
I‘-)‘Up.

Now let the field k of definition of F be a finite field
and let K be its algebraic closure. Then, as a topological
group, the Galois group I' is generated by the Frobenius substitution
¢ : o+ o, vhere k = GF(r) (r a power of p). loreover, for each
element £ of UP there is one and only one continuous homomorphism
r - Up which takes o onto £ » Thus we can identify Hom(P,Ub) = UP

and ve end up with & bijection
I(k,1) = IsoK/k(F) “— U

whenever k is a finite field, and the height of F is l.
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We can use the preceding Theorem 1 to derive a classification of
formal groups of finite height h over a finite field k, which 1s due to
J-Ps Serre. Let F be such a group, fixed once and for all, and write
B = EndK(F), K being an algebraic closure of ke If o € E dencte by
czE(a) its conjugacy class (under inner automorphisms). Let w be

the normalized p-adic valuation of E @ which takes as its set

Zpo'p
of finite values precisely Z, in other words, for f € E, w(f) = ht(f).
If k has ps elements then write ’I's for the set of conjugacy classes
cLE(n) of elements with value w(w) = s,

Now let G be another formel group of height h defined over k.

Choose an isomorphisn

(1) g:F~nG

over K. Then

(2) o(v) = g Yoveg v € End, (G)
defines an isomorphism End.K(G) SEof Zp—a.'l.gebras. HMoreover to
within an inner automorphism this 6 is uniquely determined by G.

Now clearly the power series

s
t = t(X) = %

is an endomorphism of G, and so
3(e) = et (6(t))

solely depends on G, and not on the choice of g in (1).

THEOREM 2. (Serre). The map ¢ gives rise to a bijection

I(k,h) v T .
-
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8

PROOF Let o be the Frobenius automorphism a +> af of K/k. As

I' = Gal(K/k) is free profinite on the single generator o it

follows that the map

a t—— alo)

is a bijection
21(r,u(E)) ~ U(E) (the group of units of E).
Hence a +———> alc) © t is a bijection

(3)  ZHI,uE) v v (s).

Observe now that if g = } &, X® then
n=1

tog= og"to

and so when g, # O then

(1) glo tog=cot, c=gte %

Thus in the map (3) cohomologous cocycles correspond to conjugate

elements, i.e. we get a bijection

(5)  EM(r,u(m) x 1.

If now g and 6 are as in (1) and (2) then, by (4),
8(t) = a(a) ¢ t, where a is a cocycle corresponding to the isomorphism
class of G under the bijection of Theorem 1. Thus the map ¢ factorizes
through Hl(P,U(E)), ises ¢(CG) solely depends on the isomorphism
class of G, and moreover ¢(G) € T, Hence finally ¢ induces a map
I(k,h) + T, which factorizes into the product of the bijection of
Theorem 1 and the bijection (5) and thus is a bijection.

Ve also note
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PROPOSITION 2. With 6 as in (1), (2), End (G) is isomorphic to the

subring of E of elements commuting with 6(t)

PROOF In EndK(G) the ring Endk(G) is characterized by %o = a, i.e.
byt ea= cet.

COROLLARY 1 End.K(G) is always the maximal order of the O -algebra

0
P
it spans.

COROLLARY 2. There exists a group G defined over k, and of height h

with End (G) = End (), if and only if h divides s.

For, the set of values of w on the centre Zp of E is the set
of positive rmltiples of h.

COROLLARY 3, If k is the prime field then End (G) is commtative and

its field of guotients is totally ramified of degree h over Qp.

In fact in the algebra Qp 8, End.k(G) D, the field Qp(t)

L
n

of a central division algebra of rank h2, O,P(t) is of degree at most h.

has ramification index at least h, as w(t) == w(p). But as a subfield

Thus in fact h is its degree and ramification index, and moreover

Qp(t) is then a maximal cormutative subfield of D.
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CHAPTER IV. COMMUTATIVE FORMAL GROUPS OF

DIMENSION ONE OVER A DISCRETE VALUATION RING

§l. The homomorphisms.

Throughout this chapter we limit our consideration to
commutative formal groups of dimension 1.

PROPOSITION 1  Let L be & field of characteristic O, and F

a formal group (commutative, of dimension 1) over L. Then

there exists a unique isomorphism b 3 F > G (the additive

group) defined over L, so that 2F'('O) = 1., Suppose now that S is

en integral domain with quotient field L, and that F is defined

over S. Then &' (x) ¢ s[[x]].
(We denote the inverse of the isomorphism % by eF) .

(Motivation for notation : If F is the multiplicative group

log(1 + X) = § (-1™ %,

G (X,Y) = X + Y + XY, then &_(X)
n F n=l

and

_ X
eF(X)—e -1

Sl

ln.

il
he~18

n
PROOF By II, §2 Theorem 1, Corollary 1, or III §1, Theorem 2,
Corollary 1, we see that there exists an isomorphism (over L)
g :F~>G. Also, D(g) = g'(0) # 0, How D : EndL(Ga) + L is an
isomorphism, since the elements of EndL(Ga) are the monomials oX,.
Ve can therefore find g € EndL(Ga) such that D(gl) = D g)-l.
Thus L = g6 : F > G, is an isomorphism with z'F(o) = 1, To show

uniqueness, suppose £, g : F - Ga are isomorphisms with
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£1(0) = g'(0). Then £ o g™* € Aut(G_) and D(f - gty =1,
Therefore T ° g’l is the identity on G and so f = g.

To prove the second part of the proposition (write 'Q'F = 2)
we differentiate, with respect to Y, the equation

UF(X,Y)) = ox) + 2(Y).
We obtain

LY (r(X%,Y)) Fa(X,Y) = 21(Y),

where FQ(X,Y) denotes the derivative of F(X,Y) with respect to Y.
Put ¥ = 0 : 2'(X) F2(X,O) =1, From our assumption on F, F2(X,O)
has coefficients in S and leading coefficient 1, Therefore £'(X) has

coefficients in S, being the inverse of FZ(X,O).

COROLLARY 1 Hom.L(F,G) =eg ° End.L(Ga) ° Ape
COROLLARY 2 D : Hom (F,G) +~ L is a bijection.
COROLLARY 3 If F and G are formal groups defined over S

then D : Hom,(F,G) + S is injective.

PROPOSITION 2 With the same hypothesis as in Prop. 1, and if

in addition q is a positive integer, q > 1, then Hom (F,G) is

the set of all power series f (with zero constant term) defined

over L so that

oo [dg=[d, - . ()

PROOF By Prope 1, Cor. 2 we only have to show that (%), together
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with the equation D(f) = a, determines f uniquely. We shall

establish uniqueness of the partial series

(n) -1
£ £.X 4 vou + £ X

by induction on n.
Suppose that

f(n')

o

[qJG ° f(n) (nod deg n),

[l

ieee, that

£®) o Q- [dlge £ = x® (mod gegn + 1),

Then

1,.(n+1) R [q]F _ [q']G o glo¥l) o m fn(qn - )X (mod deg n + 1),

as D([q]) = . Here we must have

P o= ——

n n
9-q

Note that clearly f is a "polynomial® in £yseeesfy 4o
More precisely we see by iteration that there exist polynomials
Qn(T), depending on F, G and n so that f = ¢n(fl). The unique

f satisfying (%) in Proposition 2, with D(f) = a, is thus

) ¢n(a.)Xn.

n=1l
Suppose from now on that R is & discrete valuation ring with
quotient field K of characteristic O, maximsl ideal # » end

residue class field k of characteristic p # Do Let v denote the
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veluation on K given by Za« . (we teke v normalized, so that
v(p) = 1). (lote: we are now allowing filtrations whose velues

are real, but not necessarily integral.)

COROLLARY Let T and G be defined over R. Then D(HomR(F,G))

is closed in R.

PROOF D : HomK(F,G) + K is a bijection by Prop. 1. D‘l(a) in

HomK(F,G) has leading coefficient a, and hence D-l(a.) = 3 <I>n(za.’)Xn .
n=1

R is a closed set (with respect to the valuation topology) in K,
and since ¢n is & polynomiel it is continuous. The elements a € K
for which @n(a) € R therefore form & closed subset Cn of K, Since
D(HomR(F,G)) = Q C » ‘then D(HomR(F,G)) is closed.

We denote by k the separable closure k., The homomorphism
R + k induces a functor 'gR +{g£ (ef, III, §1, Prop. 1), under

which F +— F

|

PROPOSITION 3 If F is mot i ic to G_ then
Hom,(¥,G) ~+ Home (F,G)

is injective.
PROOF Suppose f : F > G is a non-zero homomorphism so that .i-‘ = 0,

Let (n) = %o Then £(X) = 7 g(X) vhere r > O and g # O. Ve have

" g(F(X,Y)) = a(r"g(x), 7 g(¥))

i

TE(X) + 7g(Y)  (moa g ™ R[[]]).
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Hence g(F(X,Y)) = g(x) + g(Y) (mod 2 rlx|]),
and g(F(X,Y)) = g(x) + g(¥).

Therefore g ° [p]i, = [p]"é o g=0,
a

Since g # 0, then [p]z = 0, i.e., F Ea (rII, §1, Th.2).

In view of III, §2, Cor 3 to Prop. 1, we have

COROLLARY ~ If Ht(F) # =, H&(F) # Ht(B), then Hom (F,G) = O.

Suppose now that F and G are formal groups over R, and
f‘, G are of finite height. Then we can define three different
filtrations on HomR(F,G). viz., the filtration induced by the
normelized filtration v on R and the injection D : Hom.R(F.G) + R
(again to be denoted by v); the filtration induced by the height
filtration ht on HomE(F,(-}) and the injection of Prop 3 {again
denoted by ht); the p-filtration where the associated subgroups are
{[p]g Hom,(T',G) } (denoted by up).

Recall now that two filtrations on a group are said to
be equivalent if they give rise to the same topology. Before
stating Theorem 1, which gives the relation between v, ht and
up, we make the Pollowing definition. A filtration w on a free
Zp-modu.le A of finite renk is called & norm if, for some

veluation v' of ZP’ equivalent to the p-adic one,
w(ca) = v'(c) + wla), c e ZP' a € A,

Any two norms ere then equivalent.

THEOREM 1 Suppose R is complete. (i) v, ht and u, ere equivalent
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filtrations on HomR(F,G), and HomR(F,G) is complete under these

filtrations. (ii) Hom.R(F,G) is a free Zp-module of ramk < h2,

n o= gt(F). (iii) (Iubin) End.P(F) is a commmtative Zp-order

whose quotient field has degree over Q‘P dividing he.
Remark: One can in fact show that the rank of Hom,(F,G) divides
h. See below (Corollary 3 to Theorem L4 in §2).

A Zp-order is a Zp—a.lgebra. which is free of finite rank as
a Zp-module. Recall that we already know End.R(F) to be an integral
domain.

Note that v and ht are in fact valuations on EndR(F).

Hence ht.(f = £ = v(£f). Thus we have the
ht 7 v F

COROLLARY  In End (F), ht(f) = v(£). Ht(F).

PROOF OF THEOREM 1 It follows from the Corollary to Prop. 2 that

Hom,(F,G) is complete under the v-topology. With respect to the

p-adic topology on Z and v-topologies on EndR(F) and R,

A —+md.R(F)

ID

R

is a commutative diagram of continuous maps. We may therefore

extend Z - End.R(F) to meke

=}
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commutative. Since HomR(F,C-) is a torsion-free End.R(F)-module
(111, 51, Prop.2), then Hom.R(F,G) is a torsion-free Zp-module.
If g €In {zp -+ EndR(F)} , il.es D(g) € zp, then for f € HomR(F,G)

we have
v(f o g) = v(£) + v(D(g)), (22)

vhere v(D(g)) is the p-adic value of D(g).
Now consider End,(F) and EndE(E) with the height filtration,
and Z, ZP again with the p-adic topology. Ve get a diasgream of

continuous meps

Zy, —— nd (F)
\ mdﬁ(ﬁ)

vhich is commutative when ZP is replaced by Z, hence remasins

cormmtative now. It now follows that
HomR(F,G) > Homl-:(f‘,a) (%)

is a homomorphism of Zp-modules. But HomE(l-T',Er) is a free
Z ~module of rank O or rank n2 (cf. Lemma 1, given after this
proof). Since (###) is an embedding (Prop.3), then HomR(F,G)
is a free Zp—module of rank < h2.

Now ht(f ¢ g) = nt(T ° g) = ht(?) + nt(g). But the
restriction to Zp of the height function is a valuation equivalent
to the p-adic one. Hence ht is & norm on HomR(F,G). In view of

(#2), v is also a norm on HomR(F,G). Trivially, u, is a norm on
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HomR(F,G). Since all norms are equivalent, then v, ht and u,
are equivalent.

Ve know that, to within iscmorphism, Z C Endp(F) < Endg(F).
Since Endi(ﬁ) is isomorphic to the maximal order of a central
division algebra & of rank v® over % (rIr, 52,Th.3), then the
quotient field of EndR(F), which contains Qs is conteined in & .
But every subfield of a central division algebra over a field is
contained in & maximal such subfield, and if h° denctes the rank
of the division algebra then every such maximal subfield has
degree he This gives the rest of the theoren.

We have still to prove the lemms promised sbove, viz.,

LEO 1 IfF is of finite height h, then Hom(F,G) is a free

Z-module of zenk O or n,

PROOF If Ht(G) # Ht(F), then HomE('F",E)= o (III, §2, Prop 1, Cor.3).

Suppose then that Ht(G) = Ht(F)= h. By III, 52, Th.2, there

exists an isomorphism f : T + G, end hence HomE(f,a) =f o Endi(f).
The maps g~ T ° g define an isomorphism EndE(E) -> Homi(ﬁ,a) of
Zp-modules. The lerms now follows from III, §2, The3.

Suppose now that L is a finite field extension of the
quotient field K of R, and denote by S the ring of integers of L.
Then Theorem 1 holds for S substituted in place of R. Ve dencte
the quotient fields of End.(F) and End,(F) by &o(F) and &4 (F)

respectively.

PROPOSITION 4 If K contains all algebraic exbensions Qi.Qp in L
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of degree dividing h, then End (F) = End.(F).

PROOF Since D : EndS(F) + S is injective (Prop.l, Cor 3), then
5S(F) is isomorphic to the quotient field & of D(EndS(F)) which
is a subfield of L. By Theorenm 1, E?S(F) is an algebraic extension
of QP of degree dividing h, and by our hypothesis on K, & C K,
Consider £ € End (F). Ve have £'(0) = D(£) € & , and therefore
£'(0) € K. By Prop. 1, Cor. 2, there exists g € End, (F) such that
g'(0) = £'(0)s Regarding g as being in EndL(F), then g'(0) = £'(0)
implies £ = g (Prop. 1, Cor.2). Therefore f € End.K(F) N EndS(F)
= End(F).

Note: Let Qéh) denote the composite field (inside some algebraic
closure ) over Qp of all algebraic extensions of Qp of degree
dividing he One knows that the number of these extensions is
finite and hence that [ggh) : Qp] <o . If K does not contain

all extensions of QP of degree dividing h, then KQéh) does.

§2__The group of points of a formal group F
In this section R is a complete discrete valuation ring

with quotient field K of characteristic 0, maximal ideal ;ﬁ , and
residue class field k of characteristic p # O. We assume the
9&-vgluation v on K is normalized so that v(p) = 1.

All formal groups, unless otherwise mentioned, are defined
over R, and are assumed to be commutative, of dimension l.

K is the algebraic closure of K. The integers in K (i.e.
the elements of the integral closure in K of R) form a local ring R

(not Noetherian), i.e. the non-units of R form an idesl which is the
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unique maximal ideal b_(/ of R. The unique extension to K of the
valuation v of K, will agein be denoted by v. Note that K is not
complete.

Suppose L is & finite field extension of K, and let S
denote the integers in L. Take f € S[[Xl,...,xn]]. Then for
Cygesest € é-é . f(al,...an) nekes sense and converges in R
(and if the constant term in f is O, f(al,...,an) lies in 97 )e
Note that Gygeess0 and all the coefficients of f are integers

in Ll = L(al,...,an), and L., being a finite extension of a complete

1
field K, is complete. We then apply I. §2, Theorem 1.

Let now F be a formal group (defined over R).

PROPOSITION 1 (i) The elements of % form an abelian group

F(R) = P(F) under the operation

o*B = F(a,B),

and v(a*8) > inf {v(a), v(B)} . The elements of P(F) of finite

order form a subgroup A(F), the torsion subgroup of P(F).
(ii) P(F) and MF) are modules over I = Gal(K/K).
(iii) If f£: F > G is a homomorphism of formal groups defined

over R then the map o + f(a) is a homomorphism P(f) : P(F) + P(G).

P and A are covariant functors from the category 9 n to the
category of T-modules, In particuler P(F) and A(F) are modules

over End.R(F), and these endomorphisms commute with T .

PROOF (i) If L/K is finite, and S, the veluation ring of L, then

F(SL) is defined as in I, §3, Theorem 1 and is an ebelian group. Ve
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have then

P(F) = Lim F(s ) = Y. F(s)
L

(ii) If y e T, then YF(a,B) = F(Ya,YB), since F is defined
over R and its coefficients are therefore fixed by Yy . This part
of the proposition is then easily verified.

(iii) If £ : F + G is a homomorphism defined over R, then
f maps giinto itself (since f has zero constant term). Since

(F(X,Y)) = a(£(X),r(¥)),
£aZp) = £(F(a,8)) = a(£(a),£(8)) = £(a)Zr(B).
Since Y£{ a) = f(Ya), f commutes with v

Remark If F is the additive group G,» then P(F) is just b-pvith
the orlinary addition. A(F) = 0.

If F is the multiplicative group G Gm(X,Y) =X+ Y+ XY,
then P(F) is isomorphic to the group U of those units u of R for
which u £ 1 (mod}-L e The isomorphism P(F) + U is given by a—r 1 + a.
MF) is isomorphie with the group of p =th roots of unity for all n.

An isogeny f : F + G is defined to be a non-zero homomorphism
defined over R. Since £'(0) is algebraic over K then £'(0) lies in
some finite extension L of K. By Prop. 1, Cor.2, there exists
g € HomL(F,G) such that g'(0) = £'(0). Since f,g € HomK(F,G), then
the same proposition tells us that f = g. £ is thus defined over

L N R, Hence every isogeny is defined over some finite extension of R.

From now on all formal groups to be considered are zssumed to be of finite



-107-

height, unless otherwise mentioned.

THEOREM 1 (Iubin,Serre) Let £ : F + G_be an isogeny. Then

(i) the map P(f) : P(F) + P(G) is surjective;
ht(f)

(i1)  the kermel of P(f) is g finite group of order p .

PROOF Let p € QL. Then f(X) = 4 is defined over some finite

extension S of R. For the Weierstrass order we have the equation

We=ord(£(X) = u) = Weord(£(X)) = pht(f).

eand ht(f) is finite by §1, Prop. 3. By the Weierstrass Preparation

Theoren (I, §1, Th.3) therefore,
£f(X) = v = u(X)es(x),

where u(X) is an invertible power series and g(X) is a distinguished
polynomial:
ht(f)

g(x) = xF + ] giXi » 8 € Yge

0<i <ph’c (1)

Take a € K so that g(a) = 0. Since the coefficients of g lie in S
then o € R. As g; € 'g , then also o € ?. But the zeros of

£(X) = p are precisely the zeros of g(X). Hence we have f(a) = u for
some o € ?. This proves (i).

ht(f)

For (ii), teke u = 0. HNow g(X) hes p distinct roots,

provided that gla) = 0 implies g'(a) # 0. Thus £(X) = O has pht(f)
roots inyz s Provided f(a) = O implies £'(a) # 0, (a€ }Z).
Differentiating the equation £(F(X,Y)) = G(£(X),£(Y)) with respect to

Y, we obtain



-108 -

f'(F(X,Y))Fa(X,Y) = Gz(f(X).f(Y))-f'(Y)

(here, the suffix 2 denotes the derivative with respect to the

second variable)s Put X = o, Y = 0, If f(a) = O, then

f'(a)Fz(a,O) = GQ(O,O).f'(O). = £1(0) # 0 (by §1, Prope 1, Cor.2).
Therefore £'(a) # O.

The following theorem is really a Corollery of Theorem l.

THEOREM 2 (Lubin, Serre). (i) P(F) is a divisible group, and the

integers prime to p induce automorphisms of P(F).

(ii) AF) = (Qp/ZP)(h) , h = Ht(F).

((h) denotes h-fold product)

PROOF (i) For n prime to p, i.e. n 2 unit of R, [n]F is an
automorphism of F. Hence P([n]F) is an automorphism of P(F).

Apply Theorem 1 to £ = [p];. The surjectivity of
P([p]5) : P(F) > P(¥) implies that P(F) is divisible.

(ii) A(F) is a torsion subgroup of the divisible group P(F)
hence divisible. Also A(F) is p-primary. Hence A(F) ¥ (Q?/Zp)(c) ’

dinm{Ker [p]F}
where ¢ = dim{Ker[p]F}. But the cardinality of Ker[p]F is p .

vhich by Theorem 1 is ph. Therefore ¢ = h,
For each real number p , the set J = {0 € B]v(a) > o}
is a fractional ideal of R« If p > O, then Jp is an ideal of R, and

in particular, J = iﬂ. For p > O, the elements of Jp forn a
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subgroup F(Jp) of P(F) (Prop.l). (Abuse of Kotation).

3 |

By §1, Prop, 1, there exists a unique isomorphisn 2,F

0
[
[ ]

defined over K, such that zl'{,(X) is defined over R and JLF',(O)

As before, we denote the inverse of 2’F by epe

-)G.

THEOREM 3 (Serre) (i) %, converges on ?L; e, converges on Jy /-1

(ii) The map o+ R.F(oc) (o € %) defines s homomorphism

P(F) + ¥ of I-modules and of End, (F)-modules. The seguence

0 + A(F) » P(F) » B > 0 is exact.

(ii1) %, and e define inverse isomorphisms

o vk

(wvhere the group operation on J+l /o1 is the usual addition).

For the proof of Theorem 3 the following lemmtis needed.

LEMMA 1 For each real number p > O, there exists an integer

n = n(p,F) such that, for 211 o« € K with v(a) > p , ¥e have
v( Ep];(a)) > 1/p=l.

PROOF Ve may assume p < 1, since otherwise we may take n = O.

Now [p]F(X) z pX (mod deg 2)e If v(a) > O, then

[P] (o) = pa + or,

for same r € Re Thus if v(a) > p, then
v([p]p(a)) 2 inf(1 + v(a), 20) > inf (1,20).

We deduce then by induction that
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v( [plg(a)) > inf (1,2%),
and we then choose n so that 2°p > 1/p=1.
PROOF OF THEOREM 3  Write 2.(X) = Z a ¥'s Since 2'_ is defined

F
n=1
over R and 21(0) = 1, then v(na ) > o end &, = 1. We thus have

v(a.n) > =v(in)e Putn= p'(n) ; then v(n) < o(n). Now

o(n)

v(a &) = nv(a) + v(a )>p (@) v(a) = v(n) > p v(a) - o(n),

which tends to = as n + », provided that v(a) > O. Hence !.F(a)

converges if v(a) > O.

Write eF(X) Z b X‘n Choose B € R so that v(g) = 1/p-1,
1 n=1
€eZe Bp- = De Then

nl) n=1

25T - v(n)

v(a

vhich is > O when v(n) = 0. If v(n) > O we continue

v(n)

p—:—- v(n) > P—-—- - v(n)

pv(n)-l

=l+p+P‘+¢¢o+ -v(n)_>_0.

Therefore (8™F o o ¢ B) (X) = Z a Bn “1 ¥ has coefficients in E,
n=1
end leading coefficient 1. Its inverse under composition

(1o e 08)= J bnsn"lx“ .

is thus also a power series with integrel coefficients and leading

coefficient 1. Hence v(ann'l) > 0. Teke a € J 1/p-1° i.e., such that
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v(a) > 1/p~1., Then
v(o, )= w0 B (T w)
= v(bnsn"l) +V((i§)n’1) +v(a)>®  asn +e

. o .

-l > - bS
since v( B) 0. Thus eF( o) converges if o € 3y /o1 loreover
v(bnan) >y(a), if n > 1. Therefore eF( a) = o+ o vhere v(a')> v{c).
Hence we deduce that, if o € Jl/p—l’ then v(eF(a)) = v{a)e Similarly,
- e > = o A
if o Jl/p-l’ then v( ZF(a)) v(a)e The maps o eF(a) and

o > 2'}?( @) thus define inverse bijections J Under 2‘F

1/p-1 7 1/p-1°
therefore the subgroup of points F(Jl /P"'l) becomes isomorphic to
the additive group of Jl /p-1? and the inverse isomorphism is given
by ege We have thus established (i) and (iii).

Since B' is torsion free, then A(F) C Ker f.e Let o € Ker &.
By Lemma 1, [p:l; (a) € F('Il/p-l) for some integer n > 0. Since
R'F( [-p];(d)) = 0, then by (iii), fp]?,(a) = 0, Therefore o € A(F),
Thus in fact Ker &(F) = A(F).

Suppose a € Z* . since K+/J is a torsion module, then

1/p-1

n ) .
p & € J for some m. Thus by (iii) there exists a € Jl/p—l

1/p=1

such that 2F(oc) = pma.. But P(F) is divisible (Theorem 2) so there

exists B € P(F) such that [p]?(B) = a . Since pmﬂF(B) = p’a, then

Q'F(B) = g, Ve have thus shown that 2F : P(F) » B is surjective

and so that the sequence 0 + A(F) =+ P(F) » %" >0 of groups is exact.
Since Lp is defined over X this is & sequence of T -modules.

It f € End.R(F), then both &, ° £ and £r(o) o %, are homomorphisus

F »> Ga. with derivative £'(0) at O. They therefore coincide. Fronm
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the cormmutetive disgranm

P(F) i — B
p(£) '(0)

. |

P(r) — ®F

we deduce that P(F) - £ is a homomorphism of End.R(F) - rodules.
The following theorem is & converse of Theorem l. It shows
that every finite subgroup of ATF) arises as the kernel of some

isogeny.

THEOREM 4 (Lubin) Let ¢ be a finite subgroup of MF). Let L be the

fixed field of the stebilizer of ¢ in Gal(K/K), and let S denote

the integers of L. Then there exists & formal group G and an

isogeny f : T + G, both defined over S, so that

(1) Ker £ = ¢ , (we write Ker £ for Ker P(f)),

(ii) Ifg: F~+H is an isogeny with Ker g > ¢ , then there

exists a unique isogeny h : G -+ H such that g =h o . If gand H

are defined over the integers S, of some finite extension L. of L

1l 1l

then §_q.:i£_h.

COROLLARY 1 If there exists an isogeny F + G defined over some

S,s then there also exists an isogeny G -+ F defined over S

l.

OF
PROOF{COROLLARY 1 If £ : F + G is an isogeny, then suppose the

exponent of Ker T is pr. Then Ker £ C Ker [p];. By Theoren U
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there exists an isogeny h : G ~ F such that h o« f = Ep]F, and h
is defined over S, .

COROLLARY 2  Either Hom.(F,G) = 0, or Hom(F,G) as an End (F)-module

is isomorphic to a non-zero ideal of EndS(F), and as an EndS(G)-module

is isomorphic 1o a non-zero ideal gg_Ends(G).

PROOF Suppose HomS(F,G) # O, By Cor. 1, there exists an isogeny
g :G>+Fover Se Themap f > g ¢ f is an injective homomorphism
HomS(F,G) > EndS(F) of Ek1ds(17')-modules, whose image is & non-zero

ideals Analogously for the map £ +> £ ° g,

COROLLARY 3 If Homy(F,G) # O then
(1) the guotient fields of D(End, (7)) and of D(End (G)) goincide;

(ii) the rapk of Hom,(F,G) over Z_ is the ramk of End,(F)

p = ==

(and of End,(cG)).

PROOF (ii) follows immediately from Corollary 2 and from the fact
that any non-zero ideal of an integrsl domain I, which is a Zp-order,
has the same Zp-ra.nk as I.

For (i) write Ej = D(Ends(F)), H = Homg(F,G), T, = EndEF(H).
and let L be the quotient field of E; (viewed as a subfield of R
Define similarly EG’ Te and LG‘ By Corollary 2, H is isomorphic
to a non-zero ideal of the integral domain EF’ and therefore Ty
is a subring of Los containing Ege Clearly E, C Tp, hence
LG C LF' Similarly LF C LG'

For the proof of Theorem 4 we shall need some lemmas.

If A is a complete local ring (this always to imply that it is
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Hausdorff) then so is A[[X]]. We write . for the meximal ideal
and w for the associated filtration of the latter rings If T€ m ,

T ¢ A, then ve may view A[[T]] as & subring or A[[X]].

LEMMA 2 Suppose that X is a root of the_polynomial in U

-, R
P(U) = Un - nz PiUl )
i=1

with coefficients in Al[rll, and so that
wip;) 2n -1,
Then A[[¥]] is genersted as an A[[T]]-moaule by 1, Xyeoe s XF,

PROOF For each non-negative integer m and for i = O,l,essyn = 1,

there are unique elements ros in A[[T]], go that in A[[T]] [U]
t

n-1 i
" e :'LZO g U (mod P(U)).

Herer . =68 . vh <ne-1l d . = D. us, form <n
i myi enn < s BN rn’l Py Thus, <n,

w(z ;) 2m=-i. Form >n one easily establishes the seme

9
inequality by induction, using the iteration formulase for the T

Hence if g o € A the series converges under the

z ®nm, i
n=o0 ’
w-topology and hence

© n-1 © .
L o= 1 (1 am,) =
n=o0 iso \m=mo T
as we were required to show.
Recall now (ef. I, §2, Th.l) that if B is a comrmutative

ring containing A, complete under some filtration u, and if B € B,
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u(B8) > O then there is a unique continuous homomorphism of rings
0 A[[X]], order -+ B,yu

with 8(X) = B, which leaves A elementwise fixed. Let in particular
B = A[[X]], u = wve. Then the resulting 6 is continuous also for
the w=topology.

Let now F be a formal group (commutative, of dimension 1)
defined over A, and let ¢ € ", (the maximal ideal of A). Then by

the preceding argument we obtain a continuous automorphism 6

¢
of A[[X]] over A which maps X into F(X,¢). Let F(A) be the group

of points, i.e. of elements of m, under the product off = F(osB) e

Ir ¢-l is the inverse of ¢ in F(A) then 6 -1 is the inverse

o Hence 6¢ is bicontinuous. The map ¢ + ©
is then an injective homomorphism of F(A) into the bicontinuous

automorphism of © 5

automorphisnm group of A[[X]]/A+ Let now ¢ be a finite subgroup of F(4),

and suppose that A is an integral domain.

LEMA 3 The fixed ring of ¢ in A[[X]] is A[[r]], vhere T = T;! F(X,0).

PROOF VWe consider the Weierstrass order in U on the power series

ring A[[T]] [[U]]. We have, with n = card ¢ ,

Weord ( M F(U,0) = T) = Weord( M F(U,s))
o )

= ) Weord F(U,¢)
3

Ny

as Weord F(U,¢) = 1. Therefore, by the Weierstrass Preparation Theorem

(I, 51, Th.3)
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pFw»>-T=umawu

where P(U) is a monic polynomiel in U of degree n over A[[T]]

and Q(U) is an invertible power series in U. Clearly the F(X,¢)

and so in particular X = F(X,0) are roots of [1 F(U,¢) - T, hence
o)

of P(U)e Counting degrees and number of roots we see that
(1) P(U) = 71 (U =~ F(X,¢)).
&
Thus P(U) satisfies the conditions of Lerma 2, and hence

(2)  A[[x]] is generated by l,X,...,Xp-l as an A[[T]]-module.

How let

E = quotient field of A[[X]],
E, = quotient rield or A[[r]],
El = fixed field of ¢ in E.

Then

(3) By C Epy

and by Geloils theory

But by (2), E is generated over E. by 1, X,..,Xn—l. In view of

0

(3), (4) it follows firstly thet By = E,

l,X,...,Xn_l are independent over EO’ Thus P(U) is irreducible over

and secondly that the

Eye By (2) therefore A[[X]] is a free A[[T]] -module on 1,X,000,5278,
l.ee, every element a of A[[?]] has a unique representation in the

form
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() a= ] axt, e €[]

Suppose now that o is fixed under ¢ , i.e., in El. As
EO = El and as (5) is the representetion of o as an element in
terms of a basis over EO’ it follows that o = & € A[[T]]. Thus

A[[X]] n E, C A[[T]]. The opposite inclusion is trivial.

PROOF OF THEOREM & Let L' = K(9¢), and let S' denote the integers

of L's Then £{X) = N F(X,4) is & power series over S' with
vanishing constant teim. For p € & , £(y) = Ml F(y,9) = 0.
Therefore Ker £ > ¢ , Also, if o € P(F) and f((pa) = 0, then
M Flay¢) = 0. This means thet F(a,$) = O for some ¢ € ¢, and a
iZ the inverse of ¢ under +, Hence a € ¢, Thus we heve shown
that Ker £ = ¢, ’

Let A = 5'[[X]], and aefine £ (Y) = £(r(x,Y)) € A[[x]].

Then

ﬁnﬂ?mmmw=nmmMm
o]

For p € ¢ , £ V() = M F(F(X,F(Y,0)), ¢)
)

M F(R(,Y),F(9,8)) = £ (¥).
o]

By Lemma 3, the fixed ring of A[[¥]] under ¢ is A[[£(¥)]]. Hence

£7(y) ¢ A[fe(0)]] = s*[[e(v),x]] = B][x]], vhere B = s'[[£(¥)]].
Consider £ (X) = I P(F(X,Y), ¢)» This is fixed under the

action of ¢ on B[[x]] givei vy X%= F(X,0). Ve mey apply the lemma

again, and deduce that the fixed ring of B[[X]] under ¢ is
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B[[e(0)]T = s*[[e(x),£(0)]].
Now we sun up : £(F(X,Y) = f*(Y), when considered as a

pover series in Y over A = S' [[X]], and we saw that

£ (1) € A[[e(0)]] = B[[x]], where B = s*[[e(¥)]]. Thus £(F(X,¥) = £ (X)
is en element of B[[f(x)]] = s*[[e(x),£(¥)]]. Hence there exists

6(x,¥) € s*'[[x,Y]] so that
(6)  £(r(x,Y)) = a(£(x), £(¥)).

Now £'(X) = } {F'(X,9) 1 P(X,4)} . We put X = O and observe that
) oY
0 € &, and we get £'(D) = ¥'(0,0) :c‘z ¢ # 0. Thus, working over L',
¢

ve conclude that

(7) G=feFaft

is a formal group.

Let A be the stabilizer of ¢ in Gal(R/K). As ¢ is finite,
this is a subgroup of finite index, whose fixed field we denoted by
Le If 6 €A, then £(X)6 = MF(X,08) = M F(%,4) = £(X)s Thus
£(X) is defined over L, and byQ(T). so is G? Thus finally G is a
formal group defined over S = S'MN L and £ is an isogeny F =+ G
defined over S so that Ker £ = ¢ , We have thus established (i).

Let now g ¢+ T + H be an isogeny with Ker g D ¢ , defined
over the ring Sl of integers in some finite extension Ll of Ko« Ve

mey suppose thet Ll D L', Ve see that for ¢ & &

g?(x) = (F(x,4)) = B(g(X),e(s)) = H(g(x),0) = g(X).

Thus g(X) lies in the fixed ring of ¢ in 5,[[x]], i.e., &(x) = n(£(x))
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by Lemms 3, with h(X) € Sl[[X]]. As g(X) has no constant term,

neither has h(X). One now verifies easily that h is an isogeny G -+ H.

§3 Division and Rational Points.

248, K, v,bz, R, B etc., are as in §2. L is e field
between K and IE, S is the domain of integers of L, i.e.,
s={a€l |v(a) >0} . @a-=cal(R/L).

Let F be a formel group over R, vhose reduction mod }&

is of finite height. Write

P(F,L) = P(F) N L,

A(F,L) = A(F)N L

(subgroups of points, and of torsion points in L). Let moreover
K(F,L) be the subgroup of P(F) of points o which are of finite
order mod L, i.e., for which [P]IFI (¢) € L for sufficiently large n.

Thus &K (F,L)/P(F,L) is the torsion group of P(F)/P(F,L).

IHEOREM 1 %, gives rise to g commitative diagram with exact

rows of homomorphisms of End,(F)-modules.

0 -+ A(F,L) + P(F,L) 3 L¥ + ©(,A(F)) + E-(2,B(F)) + 0

L1

0 +AF) +R(F,L)+L" -+ o
COROLLARY Ve get an exact sequence

o + AMF)/AF,L) + R(F,1)/P(F,L) +L¥/Im A + oO.
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PROOF _OF THE COROLLARY Immedisates

PROOF In view of §2, Theorem 3, we get an exact sequence

0 + E2(Q,A(F)) + HO(Q,P(F)) + 10(2,2) » Hl(SZ,A(F)) + Hl(sz,P(F))+ Hl(ﬂ.ﬁ+).

But HJ'(Q,I-{+) = 0. We thus get the top row of the disgram. Note also
thet A is given by the restriction of Q’F' It is clear that the
cohomology groups are End.R(F)-modules, as the operation of EndR(F)

on P(F) and on ¥ commtes with the Galois group (FF is an End.R(F)-module
via the mep End.R(F) + R + E). The proof of the theorem will be complete
once we have shown that .Q.F(a) € L7 if ana only if o €R (F,L). Here

we use

LEMMA 1 Let f be gn isogeny F -+ G defined over S, and o € P(F).

Then f(a) € P(G,L) if and only if, for all w € @," pa € Ker P(f).

(s is the difference in P(F)}).
Teking the lermms for granted st the moment we note that if
c€ R (F,L) then [p]; (¢) € L for some n, hence for that n and for all w
also [P];(wa 7 @) =0, i, “a m @ € A(F) = Ker %.. Thus
wlF(G) = ZF(wa) = 2.(a). In other words 2o(a) € Lt. Conversely,
2,(e) € L' implies that Yoz @ € Ker %, for all w . But there are only a
finite number of elements wa§ o Hence for all w and for some n,
wou-F o € Ker [p]g o This implies that [p];(a) = w[p]g(a) for all w ,

i.e., [p]?.(a) € L, whence o € R (F,L).

PROOF OF LEMMA 1 f(«) € P(G,L)

<=>wf(a)a f(a) = 0 for all w

<=> f(waF‘ @) =0 for all w .
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SUGGESTION In the following discussion (Theorem 2 and 3) consider the
particular case when F = Gm and its relation to Kurmer theory.
In the next theorem A® stands for the product of ¢ copies

of a group A. h is the height of F.

C
THEOREI 2 MF)/MF L) = (0,/z.) i,
+ n 5
L'/Im » = (QP/ZP) ’
' 4% [
R(F,L)/P(F,L) = (QP/ZP) s C=c +C
Here ¢, < h, and if the veluation on L is discrete ¢, = h.

e, 2 fr Qp] (the degree), and if the valuation on L

is discrete e, = [L : QD].

COROLLARY If L is algebraic of finite degree over % then

v L:a]+n
R (F,L)/P(F,L) = (Qp/Zp) ‘P

PROOF OF THE COROLLARY Immediate.

PROOF  The groups A(F), R(F,L) and L' are divisible. Hence

the same is true for their respective quotient groups. loreover

R (F,L)/P(F,L) is & p-primary torsion group, by definition. Hence

it is of the form (QP/ZP)C' The other two isomorphisms and the

equstion ¢ = ¢ + ¢, now follow from the Corollary to Theoren l.
Clearly c, cannot exceed the dimension [L : Q,P] of the

O,P-spa.ce L. On the other hand the isomorphism A(F) B4 (Q‘P/Zp)h

implies that ¢, < h. Moreover if A(F,L) is finite then ¢; =h.
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Suppose now that the valuation of L is discrete. Let p
be the least properly positive value of v on L, and apply §2,
Lemma 1 with this p « This yields a positive integer n, so that

[P]g (a) € J) jpmy Vhenever v(a) > o+ Thus

By §2, Theorem 3, the latter group is null. In other words
A(F,L) C Ker [p]; and hence is finite. Thus in fact ¢; =h.

Let 2.(x) = zl anxn. We alreedy know that v(a )> - v(z).
If the veluation oi‘n; is discrete, and p is as above then for &ll

o € P(F,L),
V(f'F(d)) > inf v(a_ o®) > inf n v(a) - v(a) > ¢ ,
n n - n -

vhere ¥ =inf {np - v(n)} >« « . Thus v(In A) > ¢t for some
n
integer t, i.e., the fractional ideal ?t contains Im A , and so

we have a surjection

5]

[T
(QP/ZP) ’

vhence S5 2 [L : Q‘P] » 1ece, ¢, = [L : Qp] .

LY/m A - L+/rbLt s

Let nov ¢ be a subgroup of A(F,L). Define &, = set of
isogenies g over S originating from Fo (i.es, g : F * G for some G),
so that Ker P(g) < ¢

ﬂq, = set of a € P(F), so that for some ge ‘& o) gla) € L.
Note that &£, is a subgroup of P(F). For suppose s 6 € g P

gl(al) €L, gz(a.z) € L. Then the subgroup of A(F) generated by
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Ker P(gl) and Ker P(ga) is finite, hence of form Ker P(f) where

1° 8 =° &y

to be defined over S. Now we see that f € '&"o, say £ ¢+ F > G,

As Ker P(f) C ¢ we may suppose T, f] end £,

On the other hand f(a'l?‘ a, ) = fl(gl(al))ﬂ fa(gg(a.z)) € L, as

fi(si(ai)) € L.

THEOREM 3 (i)  We have a commutative diagrem with exsct rows

0+ o = P(F,L) ->5€¢/¢ S Hom {2,9) + (2, P(F))

| o

0+ A(F,L) + B(F,L) + L =+ H(a/A(F))> H(2,P(F))

(Homc = continuous homomorphisms).

(ii) Define for a € ﬁ@ y W € 0,

e(a§ ¢) (w) = <a, w> o

Then

<a,w> = 0 for all w & a & P(F,L),
<a,w> = 0 for all a &> w leaves L( 93@) elementwise fixed.

Note: The last result gives a perfect pairing
R, /P(F,L) x Gal(L(R,)/L) > ¢ .

Unfortunately this does not in general allow us to determine

Gal (L( Qq,) /L)uniquely. But we evidently have

COROLLARY Gal(L(K,)/L) is en Abelian pro p-group. If ¢ is

finite, then the exponMent of Gal(L(X,)/L) is finite and divides

that of ¢
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PROOF OF THEOREM 3 The diagram comes from the diagran

0 = & »P(r)>P(F)/ o+ O

I

0 »A(F) +2(F) > K + 0
on taking cohomology, provided that we show that

(1) H‘l(ﬂ,@) = Homc(n,@), which is true as 9 acts trivially
on &%, and
(ii) HO(Q,P(F)/¢) =Q¢/¢ .
ileee, wa.f,aetb for all w &= g € Qq,.
Now if a € 9%, then by Lemme 1, v & 8 € Ker P(g) for some

g € ?ﬁq,, ie€0e, Yama €0 s for all w . Conversely, if

F
Ve, 7o € ¢ for 211 w, then these elements (finite in number)
lie in a finite subgroup of ¢, i.e., in Ker P(g) for some g€ 52@ .
Hence by Lemma 1, & € 924’ .
Note that <a,w> = Ya, 7 e for the proof of the second part

of the theoren.

SPECIAL CASE How let £ ¢ F -+ G be a fixed isogeny over S and

let ¢ = Ker P(f)s Then R, = [ € p(F)|£(a) € L] ,f defines a

homomorphism P(f,L) : P(F,L) =+ P(G,L) and we have
(2) Coker P(f,L) = R,/ P(F,L) = In 0 .

The second isomorphism follows from Theorem 3, the first from the

comutative diagram with exact rows
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0+ ¢+ P(F,L) + In P(£,L) + 0

|

£
o+e+ £+ PG,L) 0

From (%) we get a homomorphism 6 , the composition

p(G,L) -+ Coker P(f,L) - Homc(Q,Q).

Explicitly this is given by the usual construction of Kummer theory :

Let b € P(G,L). Choose a so that f(a) = b, Then

'éb(w) = Y B 8.
Write
-éb(UJ) = {'b,w} .

Ve derive a pairing
Coker P(f,L) x Gal(L(&,)/L) + Ker P(f) = ¢ ,

with zero kernels.
If L is a local field we can use the symbol {b,w} and

the norm residue symbol to define a symbol
[b,c] € Ker P(£) , be P(G,L), c€L .

All this applies in particular to f = [p]F, assuning
Ker P( [p]F) < AMF,L). Then we can determine the group &Q/P(F,L)
in (#). In fact this is the kernel of p in the group &L (F,L)/P(F,L).
Hence by Theorem 2, we get : If the valuation on L is discrete

(and Ker P([p];) < A(F,L)) then
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5€¢/P(F,L) is a vector space over Z/pZ of dimension

s S GEEEee—

( ==
) [L:Qp]+h.

How let

A= Gaa.l(r.(@Ker B( [p]F))/L).

By the last corollary this is a vector space over Z/pZ. Class
field theory allows us to give an upper bound on dim A when

[L : Qp] is finite, namely
din A < aim(L/LP) = [L : o.p]+1+a

(6§ = 1 or 0, depending on whether L does or does not contain the

p~th roots of unity). We also get a lower boumd. For,
dim(Hom (4, Ker P([p].))) = (aim 4)n.
Also by (#), (=)
dim(Im 6) =h + [L : Qp] .

Hence

and thus

(case h = 1 ),
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§4, The Tate Module

The notation is the same as that of §2. Ve shall frequently
write [p]; in place of A( [p];). We know that [p]; yields a

homomorphisnm
p:m : Ker [;p];"'m + Ker [p]?

(here Ker [p]? stands as en abbreviation for Ker A( fp]?)).
These maps, and the groups Ker [p]le‘l define an inverse system of Abelian
groups, whose inverse limit is the Tate module T(F) of F. Thus the

elements of T(F) can be written as sequences
(al’a2' l..)’ ﬂi E A(F)

[bl, () =0, [pl, (a;,,) =2

L)

1
Similarly we have an inverse system, indexed by the integers
n > 0, whose groups all coincide with A(F), the map from

MF),,, to A(F)_ being the endomorphism [p]g. Let V(F) be the

inverse limit. The elements of V(F) can be written as sequences
ar= (a.o,al,az,...), a; € AF),
[P]F (s'i+1) e

The map & > &, is a homomorphisn Vv(F) + A(F), whose kernel may

clearly be identified with T(F), i.e., we get an exact sequence

(4.1) 0 + T™(F) » V(F) » A(F) + 0,
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Equivalent description : We start with the isomorphisn

HomZp ci; 2% AMF)) = Ker [elz

which takes T into the image f(-]:-g mod Zp)° The direct system
P
—l-ﬁ- ZP/ZP with limit QP/ZP gives rise to an inverse system by means
b
of the functor Hom, ( LA(F)), vhich under the above isomorphism

goes over to the inverse system (Ker [p]?, pIr:'m). Hence in fact
(4e2) Hamy (Q /7, A(F)) 2 o(F).
P
Similarly from the direct system -:-L-n- Zp with limit Qp one obtains an
P
isomorphism
(1.3) Hom, (@, A(F)) = V(F),
P

and of course we have the natural isomorphisn
N
H0mZ (Z » A(F)) = A(F)o
D b

By means of these isomorphisms the sequence (L.l) can now be
interpreted s being obtained by applying the functor HomZ ( LA(F))
b

to the sequence
0~z = + Q/Z_ =+ 0.
P QP ‘p/ P

Mternatively (4.,1) may be viewed as obtained from this sequence by
tensoring over Z:p with ?(F).
Another consequence of (4.2) and (4.3), together with

the isomorphisus
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"
Ry (Ol %/75) ¥ 2

Hom, (2, Q/2) = Q,
"z, P B =G
and §2, Theorenm 2, is

()

Zp »

e

PROPOSITION 1 o(F)

e

v(F) %‘h).

We shall in fact view T(F) as a lattice (= free Zp-module of
meximel renk) in the vector space V(F),

The groups and maps of (4.l) are clearly functorial. Hence
in particular T(F) and V(F), as vell as A(F), are EndR(F)-modules,
and the maps of (4.1) are homomorphisms of End.R(F)-modules. Moreover,

an isogeny £ : F + G gives rise to a commitative digram
T(F) + V(F) - A(F)

(Lok) (s} v(f) A(L)
T(c) + v(c) - AG).

PROPOSITION 2 V(f) is an isomorphism snd T(F) is injective, with

Coker T(£) = Ker A(f) finite.

PROOF If dim. Ker V(f) = s, then Ker A(f) contains the submodule
Ker V(f)/Ker T(f) = (Qp/Zp)s. As Ker A(f) is finite (ef. §2, Th.l),
s = 0 and so Ker V(f) = 0, Similarly, as Coker A(f) = 0, (agein by the

same theorem), we conclude that Coker V(f) = 0. Now it follows that
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Ker T(£) = 0 and Ker A(f) = Coker T(f) (Snake Lemms).

From this proposition it follows that Im T(f) is a lattice
in v(G), a sublattice of T(G)s (The term lattice L in a vector
space V is always to imply that L is of maximal rank, i.e., spans V).
We shall write L(f) for the inverse image of T(G) under V(f), iee.,
for V(£)™* (7(¢)). This is a superlattice of T(F) in V(F).

The Galois group T = Gal(R/X) acts on V(F) and T(F) as well
as on A(F) and the maps of (4.1) are homomorphisms of T -modules.
VWle are assuming throughout that the given formal group F is defined
over R, but we do not assume other formael groups G,Hyeess t0 be
necessarily defined over R - they may be defined over the integers in
some finite extension of R. If however G as well as the isogeny
f : F + G are defined over R, then the diagram (4.4) is one of

I' «module homomorphisms and so both Im T(f) and L(f) are I' -modules.

THEOREM 1 (Lubin) (1) Let L be a sublattice of T(F) im V(F).
Then there exists an isogeny f : H~+ F so that L = Im T(f),_and

if L is stsble under I then H and f mey be chosen to be defined over R.

If In 7(f;) C In T(£), £, being an _isogeny H, + F then there

is an isogeny h : H. + Hwith f. = £ ¢ h. In particular Im T(f)

1 1l

determines H and f to within isomorphism,
(i1) Let L be & superlattice of T(F) in V(F). Then there
exists en isogeny g : F -+ G with L(f) = L. If L is steble under T

then G and g mey be chosen to be defined over R.

if (g) < L(g;), g being en isogeny F + C,, then there
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is ap isogeny h : G > G, so that h o g = g+ In particuwlar
L(g) determines G and g to within isomorphism,

PROOF  First that of (ii)s L/T(F) is a finite subgroup of
V(F)/T(F) = A(F). Taking quotients mod T(F) we thus get an
order preserving bijection from the set of superlattices L to the
set of finite subgroups of A(F), which also preserves stability
under Ts MNote also that if g : F + G is an isogeny, then
Ker AMg) = L/T(F) precisely when V(g)L = T(G), i.e., L = L(g).
(ii) now follows from §2, Theorem k.

Next the proof of (i). Let in the sequel n be an integer
with p© T(F) € L, L being now the given sublattice of T(F),
Then p °L = L' D T(F) and so, by (ii), there exists an isogeny
g : F > Hwith L' = L(g), i.e., with V(g)L' = 7(H). Now
pL' = L ¢ T(F) implies that p° Xer A(g) = O, i.e,, that
Ker A(g) € Ker [p]g. By §2, Theorem U4, there is an isogeny
£f:HE>Fwith fog= [plre But then Im 7(£) = V(£ ° g)L'
= an' = L, as required.

Hote that in the sbove constructions the choice of n is
immaterial (of course within the stated conditions). If sey
m > n, then g =g° [p]?n replaces g and still f o g = [P_‘l?‘
Note secondly that if L is T =~stable then so is L'. Choose then
g to be defined over R. Hence g-l (inverse under substitution) is
defined over K, and thus f = [p]? ° g-l is defined over K, hence

over R,
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Let :f:‘l

We may suppose that Im T(fl) o p°® T(F). Let g be as sbove. As, by

: H, > F be an isogeny with L, = In T(fl) C Im T(f) = L.

hypothesis, pn Ker A(fl) = 0 there is an isogeny g * F~+H
. _ n . - n_
vith g ¢ £ = [p]Hl. But then also f; * g = [plp = 7 ° &

ljow we have
Ker Mg, ) = p 2 Im o(£)/T(£) < p 2 Inm T(£)/{F) = Ker Alg).

Therefore, by §2, Theorem 4, there is an isogeny h

Hl-erith

g=he g, ie€ey £ e h °g =1 ° 8 andsofl £ < he
This completes the proof of the theorem.

We can extend the injective map

Home(F4G) + Hom (V(F), V(G))

to a map

QP 8, Homﬁ(F,G) -+ Hom(V(F), V(G))
D

which we shall still denote by V, and which remains injective.

Viewing Hom=(F,G) as contained in W8y Home(F,G) we have
P

THEOREM 2 Let g € Q, 8, Home(F,G). Then g € Home(F,G) if

P
and only if V(g) maps T(F) into T(G).

PROOF "Only if" is trivial.

"If" : Let p" g = h € Home(F,G). Then Im T(h) C p” T(G),

whence by Theorem 1, h [p]g ° by hl € Homﬁ(F,G). But then

8 =hlo

Write now EF = D(Endﬁ(l?)) and let I.F be the guotient field
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of EP in K. Then of course D induces an isomorphism

Q, 2 Endz(F) = Lo

Ve view T(F) as an E -module and so V(F) as an L~module. By

Theoren 2
E, = {a €L | & 7(F) < T(F)}.

Let g : G~ F be an isogeny. We know (§2, Theorem 4 Corollary 3)

that Ly = L, and in fact V(g) is an isomorphism of L-modules.

G’

Hence

COROLLARY (Lubin)  E, = {a € Ly | a In T(g) € In T(g)le

Now one has

THEOREM 3 (Lubin) Let 6 be an order over Z (contained in R).

Then there is & formal group F with ht(F) = [@ : Zp]

so that E = & .

We first find sn F so that ht(F) = [0 : Zp] and so that
L, is the quotient field of @ .,

Let K be the quotient field of ¢ , R the valuation ring of

K. Ve then have

PROPOSITION 3 There is a formel group F of height h = [K : QP]

so_that EF = R

PROOF  (Comstruction of Lubin-Tate)s Let m generate the maximal ideal
fof Rand let g = cerd(R/g) = p°. By III, §2 Lemma 1 there is a

unique F(X,¥) € R[X,Y]] vitn
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F(X,Y) =X+ Y (mod deg 2)
and with

F(£(x), £(Y)) = £(F(X,Y))
where £(X) = 71X + %%, We shall then show below that F is & formal
group, so that the map D : End.R(F) + R is surjective, hence bijective.
Moreover [p]F = £% o u, where e is the ramification index of K‘/Q-p and u
is & unit of End (F). Therefore ht([p];) = ews = [K : %] = h.
Thus F is of height h, and KC L. As [L : Qp]l[K : Qp:[ =h
it follows that K = Ll" and R = EF'

Let a € R and construct, along the lines of III §2 Lemms 1,

a pover series [a] {X) over R with

[a] (%) =aX (mod degree 2)

and

i}

Lo [a]

We have then to show that

[a.] ° f.

F(X,Y) = F(Y,X),
F(F(X,Y),2) = P(X,F(Y,2)),

[e] (F(x,Y)) = F([a](X),[a] (X)),

and it will follow that F is indeed & commutative formal group and [e]
is an endomorphism of F with D( [a]) = a, In each case this is done
via the uniqueness part of III §2, Lemma 1, Thus e.g. the two sides
in the last equation are both solutions of the problem of finding G,
so that

a(£(x), £(¥)) = £(a(x,¥)),

G(X,Y) = aXx + aY (mod degree 2).
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PROPOSITION 4 Iet F b

a formal group of finite height and let

© be an order with guotient field Ly Then there is a formal

group G isogemeous to F so that 0 = E.

PROOF  Let L be any sublattice of T(F) so that © = {a€ L, | eL C Lk
Such sublattices exist, €ege, L = @ x with O # x € T(F). By

Theorem 1, there is an isogeny g : G + F so that L = Im T(g). By

the Corollery to Theorem 2, E, = G .

Theorenm 3 now follows from the last two propositions.

The Tete module as a module over T' = Gal(R/k).

We already know that T(F), and hence V(F) is a T -module.
An element v of T will leave T(F) and hence V(F) elementwise
fixed if and only if y leaves A(F) fixed. But A(F) is just a
subset of I-C', and so we see that the representation of T by
V(F) (or by T(F)) is a faithful representation of its quotient
group Gal(K(A(F))/K).

Let + : I' + GL(T(F)) (automorphism group of T(F)) be the
homomorphism with xt(y) = xy for x € T(F). GL(T(F)) is a topological
group, & typical open neighbourhood of the identity being the subgroup
of automorphisms a = 1 (mod p°) (i.e., of form 1 + sp~, 1 = identity,
s an endomorphism of T(F)). +t is continuous. To see this we only have

to note that t(y)

n

1 (mod p°) if and only if p, t(¥) = o (1),
where p  is the map T(F) = Ker [plg. (definition of T(F) as inverse
limit). But pnt(y) = pn'b(l). if and only if y leaves Ker [p]g C X fixed.

We now consider the T -module V(F).
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THEOREM 3 V(F) is an irreducible TI-module, over % (iees, the only

Qp-subspa.ces of V(F) which are I' -modules are V(F) and 0).

This is a version of a result given by Serre, watered down to fit

in with the tools we have available.

PROOF Denote by I's the orbit under T of an element s in a I =set S.
Vhat we have to show is that if 0 # x € V(F) then the subspace
generated by Tx is the whole of V(F). It clearly suffices to
consider an x € T(F), with x ¢ p T(F). Let then } be the 7 -submodule
of V(F) generated by TIx. ! is a free z~module of renk s < h and we
have to show that s > h.

Write p, for the surjection T(F) + Ker [P]g associated with
the inverse limit T(F) = 1lim Ker [p]g. M < T(F) and so pn(M) is
defineds It is the direct product of at most s cyclic subgroups, and
so the number of elements in pn(M), not in ppn(M) is at most

ns _ P(n—l)s

D e Write o = pn(x). Then each element of o lies in

pn(M), and not in ppn(M). Therefore

card(l"a.n) :P(n—l)s (pS - l)

The left hand side is the number of conjugates of o, over K, and so

equal to the degree [K( an) : K] « Ve thus get the inequality
(4.5) [K(e) : €] < ™5 (5° - 1)

holding for all n.

Now note that

(k.6) [p]r (o) =0, a, # 03 [p]F(an+l) = 0.
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We shall show that this implies the existence of a positive constant
¢ so thet
(L.7) [K(an) : K] > anh » for all n,

Comparison of (4.5) with (4.7) as n > « yields then the required
inequality s > h.
To get (4eT) from (4.6) we require a lemma,to be proved later.

LOMA  Let «,6 € P(F), [p]; (a) =8 .

(2) 1 v(B) < 1, then v(a) < v(B)/p.

(b) If v(B) <1/e, e being the ramification index of K over
Qpe then v(e) < v(8) /5"

We apply the lemma to complete the proof of the theorem. Return
to (4.6). By §2 Theorem 3, v(al) < 1/p-1 < 1. From the lemma, form
(a), we obtain by induction the inequality v( an) < 1/p"” '1. Therefore
for some n, , V(O.n ) < 1l/e, Now use form (b) in the lerms to get

(<]
for n > n, the inequality v(a ) < 1/e p(n-no )h

« On the other hand let
e, be the ramification index of K(an)/K-. Then certeinly e v(an) > 1/e,

1/e being the least strictly positive velue of v on K. Hence finally

{ . i = -nbh'
[h(an)'K]z-enz-evan >p ¢, c=p .

It remains to prove the lemma. Let [p].(X) = } aan.
- n=1

Here &, = p. Apply I, §3 Theorem 2 to the ring R/pR and the
reduction of [p]F(X) mod pRe This tells us that v(a ) > v(p) =1

whenever rt o, ie€e, in particular
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(4.8) v(an) 21 for O < n < p.

Similerly, applying the same reasoning to the residue class field of R,

one gets

(449) v(a ) > 1/e for 0 <u < p.

'Y

Let now v(a.jaa) = inf v(a.nan). Then v(B8) > v(a.ja‘?) and so
n

(4.10) jvla) < viag) + jvla) = v(azal) < v(B).

If first v(B) < 1 then for O < n < p, we have by (4.8)

v(a.nan) = v(a.n) + nv(a) > 1 > v(B) > V(ajaj)s

and so j > p, whence by (4.10) pv(a) < v(B).

If next v(8) < l/e, then we deduce similerly that j > p°,

vhence again by (L4.10) ph v(a) < v(B).
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