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These notes cover the major part of an introductory course

on formal groups which I gave during the session 1966-67 at King's

College London. They are based on a rou9h draft by A.S.T. Lue.

I have not included here the last part of the course. on formal

complex multiplication and class field theory. as this subject is

now accessible in the literature not only in the original paper but

also in the Brighton Proceedings. The literature list on the other

hand includes some papers published since I gave ray course.

A.TC.
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CHA.P:rER I. PRELIMINARIES

91. Power Series Rings

Let R be a commutative ring. The power series ring

R , ••• in n indeterminates Xl •••• ,Xn over R is a ring

whose elements are formal power series

with component-wise addition and Cauchy multiplication as its

operations •

Denote by N the set of non-negative integers and let M
n

be the set of n-tuples i = (i
l
•••• ,in)' with components it . N.

In other words M is the set of maps of u,•.• ,n} into N. Wen

define addition and partial order on Mn component-wise, i.e.

and

The zero element a on M is the n-tuple (0, ••• ,0).
n

Now we can write

f(X) =l' = L
i E M

n

. i
l

i
(interpret r as Xl •••Xn 1), and define
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(g + f). =g. + f.,
J. J. J.

With these definitions R[[Xl, ••• ,xJl is a cOlIDl1Utative ring, which

contains R as a subring : identiry a E: R with the power series f,

for which f
O

= a and f i = 0 (the zero of R) when i > 0 (the zero

of M ). We shall write
n

for the inclusion map. The a:uentation

is the ring homomorphism with & (f) = f
O
• Note that the diagram

R R

/
R[[JS.•••• ,x;JJ

commutes.

!2i!.:: ive can view the formal power series ring as the set

of maps M + R. If the particular symbols for the n indeterminates
n

are not explicitly needed shall simply write

=R •n
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It is clear ot course that the map

I
iE:Mn

I
:L iEM

n

sets up an isomorphism

compatible with both E: 8.11d \1-

mJMA 1 • R •n

'Ihe diagram

CODllUtes.

\1R R,n-1 R0-1 l:-

01/

(Rn_1)1
'\r

R
n

1ERn-l.'l. 1ER,n
R it Rn-l

E:R,n-1

Denote by u(s) the group of units (invertible eJ.ements)of' a ring s.
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PROPOSITION f E U(R ) if and only i:r d:r) c U(R).
n

PROOF As U is a fUnctor f'rom rings to groups, :r Eo U(Rn ) will imply

E(:r) E U(R).

Let n =1. I:r df) =:r0 Eo U(R) "then one can solve

successively the equations

... ,

:ror the coefficients o:r the power series g(X) = (:r(X) )-1. This

settles 'the case n = 1. Nmv proceed by induction, using Lemma 1.

of Abelian Groups

Let A denote an abelian group. A filtration v of A is a

map

v : A -+ 11 V ClO,

which satisfies

(1) v(O) =ClO , Im v :i {ClO} ,

v(x-y) in:r {v(x), v(y)} ,

It :rollovs 'that v(-x) = v(x).

(Note : suppose that vex) == ClO only if x = 0, i.e. that v is So

Hausdorff filtration (see below). Then by taking Ix·1 = n)vex) ,
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iye get a r:letric space since 1x;,.yl sup {Ixl. lyP Ixl + Iyl •

Note also. that v( an) -+0 0() implies Ian I 0).

Given a filtration v. then for m E: define

A = {x f A I vex) > m}
m - •

Am is a subgroup of A ( = Ao)' and Am Am+l. Defining

A = n A
0() mEl{ III •

'toTe have in fact

v is in turn determined by the groups A • for m Eo U. via them

equations

vex) = sup m.
III

In fact if we are just given a decreasing sequence {A } (m E. It) ofm.

subgroups of an abelian group A = AO' then this last equation defines

a filtration on A.

LEMMA 2 Suppose A So S-module !2!: s, Then the A--m

=0()

8-modules g only if. v(sx) vex} x Eo A. s E S.

"]hen this is the case. ,Te speak of S-filtrations.

A filtration is Hausdorff if A = «» .co

If {an} is a sequence of elements of A. and fia yean - a)

then ioTe vTrite lim a = a. For v Hausdorff. a. sequence can only ha.ve one
n-+rRv n
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limit. A sequence with a limit is a limit sequence. A sequence

{a } in A is a Cauchy sequence ifn

lim (a +1 - a ) o.
n-t<JOv n n

mIY limit sequence is CauchY sequence.

A filtration v is (or, A is complete under the

filtration v) if it is Hausdorff and if ever-J Cauchy sequence in A

has a limit in A.

Example (i) If there exists k for which Aco = .t\: = {O}, then A

is complete. The Cauchy sequences are the sequences which are

ultimately constant.
co

Example (ii) A = rr A(k), where A(lc) are S-modules, and a(k)
k=O

denotes the k-th component of a E: A. Define

I ={a E A a(k) =0 for all k < r},
r

Pr ={a E: A a(k) =0 for all k r},

yea) = inf n = sup
a E. I

r

r.

= a

=a(k) for

IiEMl,1A 3 these definitions l (i) v S-filtration 2!.

A witIl the I as .=as=so;;.;c;;;,;:i;;;,;:8;,;:t;.;:;e,;::,d subgroups:r-- - -

(i:I.) v is a com,ple1:ie fil1:ira1:iion, and limy a (n)
- - - - I1"+'<a

(a(n) is defined to be the element of A with a (n) (k)

k < n, and a(n)(k) = 0 for k

(iii) for each r, A is the direc1:i sum. I + P •
-- -- - r r
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Example (iii) A is an abelian group, v a filtration on A with

associated subgroups A. Denote by 'If : AlA +1 -+ AIA them m m m

natural quotient maps.

-
Consider, in the direct product n (AlA), the submodule A ofm m

elements a for ,rhich 'If (a(m+l» =a(m). The filtration of n(A/A )m m m

(of. 2nd Ex, page 6) defines a filtration v of A, under which

-A is Hausdorff and complete. Also, p : A -+ AlA defines am m

homomorphism A -+ n (AlA) whose image is contained in A. This givesm m
therefore a homomorphism p : A -+ A. Ue have

( .,J.,
(ii)

(iii)

v(p(a» =veal, for a E A;

p is injective if and only if A is Hausdorff;

p is bijective if and only if A is complete.

I»1MA 4 .!! v i!..!. filtration .2! A, 2 g A .!. ring,

v(xy) > vex) + v(y) if end O'l"llv if A A CA. In this case also
- __ ..:::.:=al-_ n m n+m ----

lim a b = lim a .lim b , and we say v is a rinlZ filtration.
v n n v n v n --

Ue leave 'the proofs as exercises.

n
If i E 14 , define Ii I = Ii.. For fER, we define the order

n . k=l .It n .
of f to be ord(f) = Iii. By taking f(k) = L. f.XJ.

i rv liT=k J.

(homogeneous polynomial), we see ord(f) = k. Denote by Rn(k)

the R-module of homogeneous polynomials of degree k in the

variables JS.' ••• ,Xn• Then

co

R =n R (k) •n k=O n

In Lemma 3, by taking A =Rn, S =R, and A(k) = Rn(k), we have
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I ={f =0 for Iii < r} ,r 3.

Pr ={polynomials in X!' ••• ,Xn of degree r-l} •

PROPOSITION 2 function ord i!!..! complete filtration.!?! Rn

associated SubgrOUps I , and R = I + P (direct sum of R-modules).
r - n r r --

Also. ord(f.g) > ord(f) + ord(g).- -
Moreover, I I = I + ' and the I are ideals of I O = R •qp pq--r- - n

PROOF By Temmas 3 and 4.

Note that I l ={f Rn I to =O}. Therefore I l =Ker e: , and

IV
Rn/Il = R.

NOTATION; f :: g mod deg q means f :: g (mod I ), i.e., f-g E: I •
q - q

PROPOSITIOU 3 .!! R i!..2 integral domain. ord(f.g) =ord(f)

+ ord(g) Rn i!!. integral domain.

PROOF VerifY directly for n = 1. Then by induction on n, using

Lemma 1.

Suppose now that J is an ideal of R. The power series f, with

f i c J for all i, form an ideal J[[xJ] = ••• ,xnll of Rn, and

J[[X]] = Ker { Rn -+- (R/J)n }. If K, J are ideals of R, then

K[[XJJ .Jf[X]J C (K.J) [[x]].

PROPOSITION 4 k!.l v E.!:. .! filtration .2! R associated ideals

Jp• v'(r) =inf v(f.) is a ring filtration of R with associated
. 1-- -n-
3.

ideals Jp[[XlI. 1! v !!. Hausdorff/complete v' !!!. Hausdorff/complete.

PROOF v'(f) _> p v(f.) > p for all i<=) f. E: J for all i
3. - 3. P

<; ) l' [IXlJ.
p
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Also, Jp[[X]].Jq[[X]] C Jp.Jq [[xJl C Jp+q[[X]].

If v is Hausdorff then n J [ ex]1= 0, and therefore v" is
p

Hausdorff.

To show that v complete => v" complete, let {f(n)} be a v"

Cauchy sequence. Then v'(f(n+l)-f(n» + co. Therefore, for all i,

v(f. (n+l)-f. (n) 0+ co. Since R is complete under v, then for
J. J.

i
each i there exists lim f. (n) =f.. Let l' =L f.X. Given any

r:r+cov J. J. i J.

positive number K, there exists nO such that

v'(f(n+l)-f(n» > K, for all n nO' and hence

v(f.(n+l)-f.(n» > K, for all n nO' and for all i. So
J. J.

v(f.(n) - f.) > K, for all n nO' and for all i, and
J. J.

v'(f(n) - f) > K, for all n nO. Therefore

l' = lim ,f(n). This shovTS v" is complete.
n-+cov

TIIEORm1 1 Suppose v i!.!. ring filtration of R associated ideals

J q• Define

= J [[x]] + J l[[X]]Il ...... + J [[X]]I + •• I ;q q q- q-r r q

=inf {n + v'(f(n»} ,
n

(v' is the induced filtration of Prop 4, fen) denotes the homogeneous

cOm.Ponent of l' of degree n).

'"(i) i!.!. E:as. filtra.tion Rn associated ideals J q;
'" "It(ii) if J q =J l

q,
J q =J l

q;

(iii) II v i!. Hausdorff/cowlete. !!. Hausdorff/complete.

S is a local ring if it has one and only one maximal ideal 111., •
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(A ring is local if and only if the non-units form an ideal, which

will then be the maximal ideal 1'11, ). He obtain a filtra.tion on S

by the powers *t of 1"11/.

COROLLARY 1. It R :!!. !:. ring aa is Rn• g, !£. addition

R !!. Ha.usdorff i:!. Rn, ll. further R i::!. cOmplete, !.2. i::!. Rn•

The corollary follows from the theorem and the observation that

if -m... is the maximal ideal of R then by Prop. 1 the complement of the

idealm [[x]] + I 1 of Rn consists of units.

For the proof of the theorem lre first need a number of 1emI!l8.S.

LEMMA.2 If the J. are ideals of R. 'VTith J c J 1 C. ••• c. J1•- --]. - - - q q..

= Jq[[x]} + J q_1[[X]JIl + ••• + I q• K

f{t) has coefficients in J n , t =O.1 •••• ,q-1.
- - q-N

PROOF The Sufficiency is straightforward. For necessity, take l' E:: K.

Then l' = r where Gt E J _ Ifx] ] I. For t q-1. f{ t) = g (t).
r=O -r q r r r=O r

and for r < z., g (t) E;; [[x]] c.. J n[[X]]. Therefore f{t) has- r q-r q-,y

coefficients in J n.q-,y

m·1MA 6 If J !!. ideal H, and K =J[[xJ] + Il'

K
q =Jq[[x]J + J q-1[[X]]I

1
••• + Jq-r[[X]]I

r
+ ••• + I q•

PROOF By induction on q, and using Lenmla 5 with J =;T. 1'hat f{ t)
r

has coefficients in J
q- t implies tha.t f{.fI.) E Kq, and hence f E: Kq•

Therefore L.H.S. :> R.H.S. Tha.t R.H.S. :> L.H.S. is clear.

PROOF 2!. Theorem 1 (i) is clearly a filtration of Rn•
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NmT q <=> inf {n + q

<::> R. + v" (f(R.» q for 0 R. q-l.

<::>

<::>

f( R.) has coefficients in Jq-R. f'or 0 R. q-l.

'"f t J (by Lemma. 5).q

'" '" '"Since also J .J C J + • then this proves (i).
p q p q

(ii) This follmrs from Lemma 6.

'"fc n J. Then f(R.) has
q

This impl.ies that f( R.) has

Suppose v is Hausdorff. Take(iii)

coefficients in J q-R. for all q R..

coefficients in n J, which by our hypothesis is o. Hence f(R.) = 0
q

for all R. , and therefore f =O. Therefore v is Hausdorff. Suppose

v is compl.ete. Denote by f( q) the polynomiaJ. part of f' of' degree < q.

Then Also,

'"Let {fr} be a Cauchy sequence under v (throughout the rest of this

proof, SUffixes refer to the numbering of the sequences). Given k > 0,

there exists nO =no(k). such that

For a fixed q, {f (q)} is a Cauchy sequence with respect to v'.
r

Prop 4) and

Therefore there exists l.im f (q) =f(q)
v r

r-+<::>

(since is
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- f(q) > k - q + 1, for all r

Now, (f (q+l»(q) = r (q), and taking limits iTe obtain
r r

(f(q+l»(q) =f(q). Therefore there exists a unique power series

r such that f{q) are the terms of f of degree < q. We now

that liJlt\l f = f. NOlT
r-+o'v r

_ f) t, and (t) _ f ) t, for all r.
r r

Also - f (t» > t for r > n (t) Cauchy sequence).
r -' - 1

Therefore - t, for r

Hence - f r) t, for r .=:. nl (t) • This completes our proof_

THEOREM 2 II R noetherian, Rn•

PROOF It inll suffice to establish the theorem for n = 1, for then

the general case i'ollmrs by a trivial induction argument, using

Lemma 1.

Let J be an ideal of R
l•

For any q > 0, J () I ={f E J I ord(f) > q}
- q -

is an ideal of Rl, and its image in R under the map f I--'f' l'q (-tie here

revert to the nota.tion where f denotes the coefficient of X
q
in r) is

q

an ideal A of R. As f E:. JnI implies Xf E. J()I +1 'YTe haveq q q

Aq+l:) Aq_ The ring R being noetherian. it f'ollmrs tha.t we can find

a k .=:. O. so that"\. = for all t 0_

It inll suffice to prove that JnIk is finitely generated over Rl'

l' J/ f)L "II / R / • ••or J K = J + as an R-submodule of 1 J.S finitely"

generated over R, hence over rs._ Therefore J .rill then also be

finitely" generated over Bl-

As is finitely generated there is a finite set rei) (i =l, ••••s)
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of power series in J () (the (i) serving as enumerating index here),

so that the f
k
(i) generate over R. 't'Te contend that the f(i)

generate J () over

Let s f: J () :sc. He sha.ll construct inductively sequences

{g(i ,m) } (J.0 1 ) f ° th :t fO tly= , ••• ,s 0 power serJ.es, so a. J.rs
m

and secondly

(i,m) _ (i.m+l)
g =g (mod degree m)

s :: I f(i)g(i.m) (mod degree m+k).
i=l

By the first relation we obtain povrer series g (i) = lim d g(i ,m) •
or

and by the second one g = r f(i)g(i). Thus we see that in fact

f
( i ) i=l

generate J f1

The step from m to m+l goes as follows (put g(i.O) = 0 to

apply this to the first step!) : h =g _ If(i) g(i.m) lies in

s
J ('\ Hence Eo = i.e •• = Ai

Ao E R. Put g(i,m+l) = Aoxm + g(i.m). Then
J. J.

f (i)
k '

For the rest of this section suppose R is a conplete 10caJ.

-ring. with ma.ximaJ. idealm, and k =RIm. For f f R, f denotes
n

its image in k under the epimorphism R + k by R + k.
n n n

The Heierstrasse-order of f, 't'T-ord( f), is defined by
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-VI-ord(f) =
Then VI-ord(f) ; GO <=> f; 0 <=> f has some unit coefficient.

Note tha.t as or<\(r.i) =or<\(1) + also VI-ord(f.g) =
VI-ord(f) + VI-ord(g).

A distinguished polyPomieJ. f of I1. is a polynomial of the form

fO + flX + f 2Y?- -I" ... + fq_1X
q-l + X\ where all the f i are in-nt.

Note then that lv-ord( f) = deg( r).

THEOREM 3 (VIeierstrasse preparation theorem) ±! f E: Rl

vI-ord(f) =p < 4:0, there exists_a. unique u E U(Rl)

!. unique distinguished polynomial g f ;: u.g. 2! course

Iv-ord(g) ;: W-ord(:r).

PROOF ..Ie shall prove by induction on m tha.t (A ) : There exists a
m

v(m) E U(11.) and a distinguished polynomial gem)J so that

This congruence determines v(m) (and hence g(m» uniquely mod

Assuming (Am) for all m. it follows from. the uniqueness part that

As Rl is complete with respect to the filtration {"11l"m[[x]1}, we

obtain in the 1mt a unit v of so that f. v = g is a distinguished

polynomial. Horeover, v is determined uniquely mod m..m[[XJl for all

. .. . -1
m, J..e., J.S unJ.que. Now multJ.ply through by u =v to get the theoreI:l.

To establish (A ) ve ll18\V work over the residue class ringm
i.e., 'VTe rIJlXY' suppose that = o. First for m ;: 1 the hypothesis
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states that f(X) =Xp• u(X), where u(X) is a unit of Rl• But this is

in effect also the assertion.

For the induction step write m =r + 1. By the induction

hypothesis there exists a power series

co •

so that, writing f(X) = L f.r, we have
'=0 J.J.-

•••

VOf + ••• + v f O = ,s s s
rE. 11t. ,

S
(all s > pl.

This is just the congruence for (A ) expressed coefficient-wise.r
By the uniqueness part of (A' ) the coefficients v: of v(r+l) (X)

r J.

must be of the form.

v : =v . + ).,.,
J. J. J.

Ue have to show that the ).,. can be chosen so that
J.

v'f .,.
Op

v'f +o s

•••

•••

(Remember tha.t 1H,.r+l ='h1"m = 01). that Vowill lie

in U(R). From (2), (3), (2') and (3') we get the equations
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=- (s p).

The Ai are to be chosen in -mr , and we know that fk E m for k < p.

Hence we must have

A f =- IIp 'o P

=- IIp+l ' ... ,
••• + =- (all k 0) •

As fp E: U(R) these equations ha.ve unique solutions for Ai in R. and

by induction on k one also sees that Ap+k must lie in -m.r • Then we

can solve for the v-:. The uniqueness of the v , mod 'hf.,.r and of the A.

implies the uniqueness of the v-:.

§2. Homomorphisms

A and B are abelian groups vnth filtrations v, w respectively.

A continuous homomorphism e : A -.. B is a homomorphism of groups

such that, given m c H, there exists !I. E IT for which (A!I.)e c. Bm•

Hence, if v(a ) + =. then w(ae) -.. =. To that e isn n

bicontinuous neens that e: A + B is an isomorphism of abelian groups,

and both e and e-1 are continuous.

THEOREl-1 1 (i) Suppose S i!.!. commuta.tive ring, complete under !.

ring filtration v, R !!.!. subring 2!. S. Given a... •••••a in
J. n-

s values v( ai) 1, there exists !. unique continuous ring

homomorphism e : Rn -.. S (with respect to the order filtration on Rn)

Which leaves R fixed, and such that x.e = a,••
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(Here f{q)(Xp ••• ,X
n)

is again the polynomial of degree < q - 1 vThich

coincides with f mod degree q).

(iii) T coIiltlUtative ring containing R, complete under

.!. ring filtra.tion w, elements tl.... ,tn for which vT(ti ) .::.,1,

Given S and a, , ... ,a as in (i). there exists .!. unique continuous
- --.L n---

ring homomorphism <jl : T + S with t. <jl = a. and leaving R elem.entwise
-1. 1.-

fixed.

continuous Rn + T which keeps R

fixed and maps x. into t. is a bicontinuous isomorphism.
- 1.- J.-- .

PROOF If reX) E. Rn , then

ib.X , b. E R.
1. 1.

Th r r (q+l ) ( ) f(q) ( )ere ore •••• ,a.n - al•••• ,an

and its value under v is at least i l + ••• + in = q. Hence

{r(q) ••• ,an)} is therefore a Cauchy sequence under v. He put

r(xl •••• ,! ) e = lim r(q) (al•••••a. ).
n q-.-v n

It follows quite easily now that e is a continuous ring homomorphism,

and the uniqueness of e then follows from continuity.
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The proof of (iii) is standard (uniqueness of universal objects).

If there is no ambiguity involved, we shall vTrite ... ,an)

for lim f(q)(al, ••• ,a
n
) .

q-+<x>v

For a ring S with ring filtration v, define I(S,v) ={s E S I v(s) > ol.

Consider the category J'R' vThose objects are the pairs S,v as in

Theorem 1, and whose morphisms are the continuous ring homomorphisms

S,v .... 'l',11' vThich maps I(S,v) into I(T,vr) • ..i'R::> 9'R' where.9R is the

full subcategory 1dth Objects R ,ord (order filtration). Theorem 1n

then says Hom,f (R ,S) I(S,v)n, by associa.ting with each e the
R n

element (Xle , ••• ,Xna).

Consider novT the case S =Rm =R1IYl' ••• ,yJI ., where ve vrrite

the indeterminates of R as Y's, to distinguish them. from those of R ,m n

1vhich are still denoted by X's. Let

(r = 1, •• • ,n).

Then

He shall derive another expression for this element of Rm• ifrite

for k E 1>1
n

L yfl. •
fl.tHm

Since ordy Sr(y) 1 we ha.ve ordy gk(y) Ikl and therefore = 0

for I fl.1 < Ik I_ Thus it makes sense to define
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PROOF Verify for polynomials f. Then extend to power series I' by

continuity.

Let I' = (fl, ••• ,fr) be a "vectcr" of r pmTer series in n

indeterminates, and let g = (gl' ••• ' be a "veeeer" of n power

series in m indeterminates. He denote by fog the vector

of r power series in m indeterminates. With this multiplication the

vectors f = (fl' ••• ,fr) with varying r and n form a category, whose

objects are the positive integers, f being viewed as a "I:Ia.pu r n.

In view of the preceding theorem and proposition, a homomorphism

a e Hom." (R ,R ) determines a vector Sa : n -+- m. Horeover
tf'R n m

ga tJ cjl = Sa 0 Scjl. In fact this map a Sa is an isomorphism of

categories. In other 'tlords we can either use the language of

homomorphisms a or that of vectors of power series.

-In Rn, consider the ideal I = Ker c , and denote by r the image

of f under the natural epimorphism I -+- I/I2 = D(R ). Ifnn n _
f = I clJS. + terms of degree 2, then ¥ = I e.x., D(R) is a

i=l i=l 1. 1. n
free R-module on Xl, ••• ,i. When a : R -+- R is in S'R' thenn n m

I(Rn)e C I(R ), and 12(R )e c 12(R), and so e induces a.m n m

homomorphism n(e) : D(R ) -+- D(R), of R-modules. Denote by 1J-R then m

category of finitely generated free R-modules, or "vector spaces over RU
•
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COROLLARY If. Rn is bicontinuousJ.y isomorphic to Rm, then n = Ill.

For, a finitely generated free module over a commutative ring R has

a unique rank.

If a is a homomorphism in g:>R then X. a = cikYk + terms
J. k=l

III

of degree 2, and X:D(a) = I c.kYk• D(a) can be represented in
l. k=l].

the matrix form D(a) =(ci k), and ci k = (axia/ayk)y=o.

By Prop. 2, D defines a map : (R ,R ) + (D(R ),D(R ».
R n m R n m

We define a map E in the opposite direction as follows. If <jl maps

X. onto Lc.kYk, then take E( cf» : R + R to be the homomorphism
J.]. n m

..rhich maps Xi onto LcikYk• VIe have

THEOREt;1 2 Let a be a. continuous homomorphism R + R. ThAn a
- -- --- n n

is !. bicontinuous isomorphism !r.m it. D(a) a. a Q!..

R-modules.

COROLLARY If. e surjective then it. i§.. Q iSomorphism.

QE. COROLLARY a surjective => D(a) surjective => D(a)

isomorphism => a isomorphism.

The theorem can be rephrased to read: given f.(Yl, ••• ,Y ), with
J. n

fi(O, ••• .o) = 0, i = l, ... ,n, then det (Of'i/aYk)Y=O is a unit if and

only if there exist g.(Xl, ••• ,x ) such that f.(gl, ••• ,g ) = X.
J n ]. n].

THEORH1).

T1!EOPJ};1 He need only prove the Sufficiency of the condition.

Assume that cf> =D( a) is an isomorphism. Urite 4> = E( cf» •
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-1
Then D( e ) = 1. As is an isomorphism, it 1dll suffice to

-1
show that e 0 is an isomorphism. VTithout loss of generality we

can therefore suppose that n(e) =1. VTith this assumption,

where JS., ••• 'Xn are the indeterminates of R
n
• vIe construct polynomials

R.) (X) of degree R. - 1 so that
J.

X. :: g R.) (X e) mod I nt
J. J. IV

By induction on P. , suppose that

Then X. :: + l ck(xe)k mod IR.+1.
J. J. Ikl=R.

Take = + I c xk. Then is a Cauchy
J. J. Ikl=p. k J.

sequence, 1.n.th limit g. (X), say. Also,
J.

x. = g.(xe) = g.(X) e
J. J. J.

Define '1' by the equations x. '1' =g. (X) •
J. J.

•

Then X.('1' 0 e) =g.(x)e =X.,
J. J. J.

and so by the uniqueness part of Theorem 1, '1' " e = 1. Therefore

1 = D('1') " D(e) = D('1'). As before, there exists X so that X 0 '1' = 1.

Therefore X =X • ('1' • e) = e , and hence '1' and e are inverse

isomorphisms •
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Although (R ,R ) is not a group, we can define some
R n m

sort of on it by taking

ordeal =inf (ordy(fe) - ordx(f»
f;O

= inf - 1).
. 1 -y, ••• ,n

Uith this definition,

ord (a 0 ord(e) +

§3. Formal Groups

In this section ,Te take R to be a fixed ring, and all peifer

series are over R.

A formal group F(X,Y) of dimension n is a system Fi (X,Y) of n

povrer series in 2n indeterminates X = iJS.., ••• ,Xn} , Y = {Yl , · · · , Yn }

satisf'ying

(1) F(X,O) =X, F(O,y) =Y;

(2) F(F(X,Y),Z) =F(X,F(Y,Z».

In view of the substitution in (2) makes sense.

ve have FCO,O) =0, and

F.(X,Y) X. + Y. mod degree 2.

l!oreover, terms of degree greater than are t1mixed", i.e. X's and

Y's only occur together. F is commutative if F(X,Y} =F(Y,X}.

PROPOSITIOn Given F, there exists unique i(X} (n pOi-Ter series !!!..

n indeterminates) so that FCX,i(X}) =F(i(X),X) =o.--
PROOF Put g.(X,Y} =X. - F.(X,Y}, i =l, ••• ,n. g. has no constant
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term .Then vie'rTed as a pOlTer series in Y.

By §l, Prop. 1, the determinant of (3gi/3Yk)y=O is a unit of

n[[X2, ••• ,Xn]]. Apply §2, Theorem 2: there exist hi(X,Y), (i = l, ••• ,n)

such that g.(X,h(X,Y» = Y., i.e. X. - F.(X,h(X,Y» = Y., or
1 111 1

F.(X,h(X,Y» = X. - Y., (i = l, ••• ,n). Put Y = X : F.(X,h(X,X» = O.
111 1

Take i(X) =h(X,X).

The proof of the uniqueness of the inverse is a translation of

the standard proof of group theory.

Suppose nOW' that F and G are formal groups of dimensions n and m

t · 1 A h _'I.. • F G' n trespec 1vey. omomo£M+"J.sm .I. : 1S a vec or .I. - .1.1 , ••• , "m

of m power series in Xl t ••• ,Xn, n2. constant tel'I:lS. so that

The homomorphism f determines a homomorphism af : Rm Rn, given by

= f.(X), uhere z. are the indeterminates of P. and X. those of
1 .I. 11m 1

R. If f : F G, g : G H are homoIJOrphisms of formal groups thenn

g 0 f : F H is a homomorphism of formal groups. Also 1. (X) - X
1 - i

gives the identity homomorphism of F. Hence:

PROPOSITIon 2. formal groups their homomorphism

category '<ftR (= ), r t---+ af defines §. contravariant i'unctor

(But as r is written on the left, a on the right vTe still

have e.&O = a.p 0 e .)J.og .I. g

Remark: A homomorphism f : F G of formal groups is an isomorphism

(in er R) if' and only if ar is an isomorphism (in (J R). Horeover,
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if l' is any "vector" of n power series 'tdth Sf an isomorphism, and

if F is a formal group of dimension n, then there is a unique formaJ..

group G(= l' 0 F 0 1'-1) so that l' is an isomorphism F -+ G.

THEOREH 1 (i) formal group dimension n, S,v E: :f R.

under operation given by

If F<l> E (R ,S).
J R n

w ,

(Rn,S) becomes F(S)
R

, "there X. = F. (Xw,Xcj», for
1" J. l!" J. -

f!. commuta.tive, F(S) is abelian.

(ii) !!. '1' E: (S,T). then (W;cI» 0 '1' = (w 0 If);( <j> 0 If).
R

(iii) Let G be !. :f'urther formal group dimension m, then

'When l' E. Hom (G.F). 'We have- ----

(iv) hyPothesis 2!. (iii), and in addition F

!!. commutative, HomCJr(G.F) is !:. sUbgroup 2!. abelian group

F{R ) =Hom- (R ,n ).
m n ra

Remarr..s : (i) Identifying

Homn (n .S) = I{S,v)n
J R n

(cf. §2, Theorem 1). the group operation becomes a;S =F(a,S),

a,S E I(S,v)n.

(ii) Again. if 'We express Hom.... (n ,R ) in terms of vectors f of power
n m

series we get the group operation

(X) = F(f(X),g{X».

(iii) By the theorem, Hom,...,. (n ,n ) is closed under composition
n n

(multiplication) and ; (addition), with a one-sided distributive lB.'t.]' ,
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i.e., it is a ring.

(Lv) The theorem, plus a fEnT formal trivialities, tells us that F(S)

is a functor x J'R -+ groups.

(v) Let t:f1 ab be the full subcategoIjr of ::f =:1'R whose objects are

the commrtatzive formal groups. Then the sets Hom (F,G) for F, G t r;jrab

have the structure of abelian groups and the composition of

horaomor-phtisms is bilinear. In particular EndJF) = is

nov a ring.

The proof of Theorem 1 is by e. straightforward a.pplication of

the definitions, and the ro:ioms for formal groups.

Suppose nO"'T that Ii' is a. cOIJ!llUtative formal group of dimension n.

lIe define a function v on the abelian group F(S) = I(S,v)n by

v(al, ••• ,a ) =inf v(a.).n .
J.

He state the follo't-Ting tvl'O propositions vTithout proof

PROPOSITIon 3 : v is !. filtration 2f. p(S).

(He have not defined filtrations for non-abelian groups!)

PROPOSITIOH 4: Hith F G in Theore:u 1 (iv), composite

map Hony}G,F) e-.,. (Rn,Rn ) (D(Rn),D(Rm» is h2EQ.-
R R

:morphism 9£ groups in Hom (G,F) being

For a given number p, denote by :R -+ R the
n n

honomorphism lrhich fixes R and tall:.es X. into xT!.
2 n J. J.

0 = : X. xT! and X. xT!9.. •
J. J. J. J.

Then

+Let R denote the

additive group of R.

THEOREt! 2 I' : F -+ G hOr.lomoruhisn of formal groups (2!.

dimensions n m respectively) let Of : Rm -+ Rn
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corresponding homomorphism 2!. rings. (i) Suppose R+ is tors ion

D(Sf) = 0 if. only g r =o. (ii) Suppose R+ i!. 2!. exponent

p (;prime). D(Sf) =0 it if:. either r =0, .2!.

Sf =+f 0 11'(q), vlhere D(<Pf) 1: 0 and q > O.

He use the notation = fik(X1, ••• ,Xn);

(aF lay ) (X,Y1, ••• ,Y ) =F (X,Y); (aG./avn ) (u,v) =G' n (U,V).v n N

Nml differentiating the equation f.(F(X,Y» =G.(f{X),f{Y»

with respect to Y
k
, we obtain (chain ruJ.e)

n
I f .. =
j=l

Define the matrices

OUr equation, for all i and k, then gives the matrix equation

Hence

i.e.,

Nm1 df(O) =D(Sr). Also, det d2F(O,O) =1 i.e., en(det d2F(X,O» =1.

Hence by §l, Prop. 1, det d
2F(X,O)

is So unit, and so d
2F(X,O)

is an
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invertible matrix. If D(e
f)

= 0, i.e., df(O) = 0, then df(X) = 0,

f .. "lh P+. t .and therefore af. ax. = 0 for all J.,J. \' en .n J.S crsaon free
J. J

.L.

this implies f = O. 1'lhen R' is of exponent p this implies

f(X) = g(XP), i.e., e
f
= agO '11'. In the latter case now proceed by

induction. But 1Te must shov that e comes frora a homomorphism of
g

formal groups, i.e., that g(X) is a homomorphism of formal groups. How

wThere F(P) is obtained from F by raising each coefficient to its pth

pmTer. We have then g(F(p)(X,y» =G(g(X),g(Y». Since F(p)(X,y)

is a formal group (the map 'trhich sends each element of R into its pth

pow'er is an endomorphism of R), g is indeed So homomorphism of formal

groups.

If e = 0 '11'(11.), and 0, then 11. =ht(e) is called the

heig.'-lt of e. He define ht (0) = co. For f a homomorphism of formal

If f 0, thengroups, ht( a
f
) = ht(f) is called the height of f.

11.
ht(f) = 11. is the greatest integer so that f is a. pover series in xP •

PROPOSITI01r 5. (i) If. r, s homomoIJ?l1isms 2f. formal groups fog

is defined, then ht(f o g} .::. ht{r) .,. ht(g). (ii) If, G is !.

commutative formal group f,e; E (F,G),

ht(f}
PROOF (i) If f is a pmrer series in yp , and g is a power series in
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ht(g)
xP ('where Y and X are the corresponding indeterminates) then

ht(f) + ht(g)
fa g is a power series in xP , end therefore

ht(f) + ht(g) ht(f 0 g). (:HOTE: if our formal groups are of

dimension 1, and R is an integral domain, then ht(f) + ht(g) = ht(f 0 g),

and the height f'unction is a valuation).

(ii) Since ef can be uritten in the form epf. 'IT (ht (f» vThere

D(4)f) 0, then inf {ord X.4>f} = 1. Therefore v(f) = inf{ord r.) = pht(f).
i i

The filtration property of v, established in Prop. 3, nOlT gives

pht(rag) ;:. inf { pht(f), pht(g)} , vThich implies that

ht(fag) ;:. inf {ht(f), ht(g)} • [Throughout this proof read "power series"

to mean "vector of power series"]
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CHAPTER II LIE THEORY

H. The bialgebra. of a. formal group

Throughout this cha.pter R is a fixed commutative ring ..rith

identity and At is the category of R-modules. For H, N E: )(

also M9 RN and are R-modules.

iVe shall need the notions of a coa.lgebra a.nd of a bialgebra

over R. The definitions we shall give are a.dapted to our special

situation. A coa.lgebra {H. Ie, a. e} is given by an R-module M

and homomorphisms of R-modules

Ie M , M 6} RU (comultiplication),

(1.1) a R >M ,
a 1,1 }R ,

so that the follO'tving diagra.ms commute:

11 K

(1.2 ) } lUK
K 3 l

!-I 'Y 11 0 i'·f 3: R1-l

("associative lall'tt - here vl'e identify (M 0) M) 0) M= M (M 0) H».

(here t is the "t'\visting map", t(x e y) =y x; ttcommutative la.v1").
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n

R
'\t
= ...., 0 ....

(1.5)

1"
'"r: 9 a

M re
) M Q

A bialgebra is given by

(i) a coalgebra {H, re, a, B},

(ii) the structure of an associative (but not necessarily' commuta.tive)

R-algebra on H "ri.th identity [Exercise: describe by diagrams ]

Here a is to coincide with the algebra structure map R ... H, and

x and B are to be homomorphisms of R-algebras. Note that together "ri.th

Malso H SR Mhas the structure of an R-algebra identity, the

product being given by S Yl).{X2 S Y2) = 0 Y1Y2. 'He thus

demand that re{x.y) = re{x).re{y). Apart from the possible absence of the

cOJmllutative law for multiplica.tion the axiom set for a bialgebl1a is
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self dual. If the multiplica.tion in H is commutative ve shall

speak of a. ve bi:,a.lsebra.

He shall no....t consider the category ff objects are the

poi,rer series rings R , for varying n , vim·red as filtered R-modulesn

under the order filtration, and 't-Those n.orphisms are the continuous

homomorphisms of filtered R-modules (i.e. not just the ring homomorphisms

as in fi'R). He shall also vieiY' n = RO as a. cOI:l]?lete filtered R-module,

via. the trivial filtration : v(a) =0 if a ;. o. Hrite

U = HOD. AI" (R ,R).n ...;r n

Notation: If f C' R , u E: U we shall use the symbol <f ,u> for the image
n n

in R of f under u, Thus

and if r R,

<f. u + v> =<f,u> + <f,v>

<f + g, u> =<f, u> + <g,u> ,

<rf,u> = <f,ru> = r < f,u> •

,

The fact that u is continuous means that <f,u> = 0 ....rhenever ord f > m
- u

where I!lu II depends on u, He identify Uo .Tith R, vis.

<rl,r2> = r lr2•

He also need provisiona.ll:r a notation for the action of an

eleI:lent s E Hom.M.. (Un' R) • I'Te sha.ll 't,;rite [s ,u] for the in.age of

u under s ,

In the sequel let denote the full sUbcategor.r of J\1. formed

by the modules U •
n
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PROPOSITIOU 1. (i) If a E. Hom,(:R ,n ) then the equation- n :c -- .

i':
<fa,u> =<f,e u> (f t R , u f. U )

n L1

defines a f Hom.. (U . ,U ). The :caps R U , a .....,.. e* define £
- Jt\..mn - n n

admtive contravariant functor Y+Y . (Hote however that as we

are vTriting the maps U + U on the left we shall. have (a 0 l/» * =e* 0
III n

(ii) !!. w E [s.w' ul = [swt,uJ

defines !:!:. mal? w' .: ,n) +

(iii) !lllt equation [s f'u] :: <r,u> for S:. given f t: Rn ,

f!Jl. u E- Un def'ines Q:n. sf' e HOrx(Un ,R) • m&m. f ,....,. sf' i§.. §.

hOIllOmornhism Rn -+ HomJ\l(Un ,n) Qi. R-:codules.

*(iv) sfa = (Sf) (a )'.

rBQQ.F Stra.ightfoI"VTard and standard!

PROPOSITIOII 2 Un §:. free R-:codule gn.. Ok (l\. C I"in ) ....There

<f, °> = f ,k k

*cjl .)

°>k
== 1., k == 9..

0, k rf. 9...

If u E: U , then u = I < u> (the right-hand SUI:l is in
n ke.M •

n
fa.ct a. finite sun : u is continuous and hence <if-. u> =0 for all.

lId Sufficiently large). Un is therefore spanned by ok. H01T

I Cl'C °> =k - k
Therefore l cr Ok =0 implies

k •

I floc, = 0 for all. f, and so also ck = 0 for all. k. Hence in fact Un
k ..

is free on the 0
1
•

t
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COROLLARY 1 T'ne map f .....,. sf is an isomorphism R -+ Hom,..(U .R).- -- - n JIot n

PROOF If sf = 0. then 0 = =<f,u> for all u Eo Un. This

implies l' =0, and therefore fl'--+Sf is injective.

If s E HOQ..(U ,R), take s = l [s ,ok] T'nen S =sf.
n k

Thus l' Sf is surjective.

COROLLARY 2. The hODlOI:lorphism HomV' (R ,R ) -+ Hor:J,,(U. ,U )
- .11 nm .JVLmn

naps a...,. a': is E. isooorphism. fUnctor J{ -+11 2!.

Proposition 1 E. antisomorphism 9£. categories.
*

!]QQ.F Suppose 0 = o. Then for all 1', u, <1', 0"u> =O. Therefore

o = <fO,u> = [Sfa'u], which inIPlies sfe =0 for all f. But s is

an isomorphism, and therefore fa = 0 for all 1', iThich means El = o.

If CI) E: Hom.. (U ,U ). define a HOIll.,..{R ,R )JIlmn J{ nm

Then 0 = This proves surjectivity.

This proves injectivity.

by fa =r ik.
k ..

COROLLARY 3. map Un 0 U2n given &

!!!. isomorphism 2!. R-modules.

Obvious.

The significance of the last corollary lies in an interpretation

presently to be derived.

Let I = {f " Rn lord (f) rr , Then

-Im {(I 0 RR + R 0 RI) -+ R 0 RR} =In n n n

is an ideal of the ring R 0 RR. Let v be the filtration of R 0 RRn n n n

corresponding to the pOirers I q of the ideal I. Then

v(f 0 g) =ord(f) + ord(g). Denoting the indeterminates of Rn by
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X X d th l' R b X' X" X' X' X" X"= A 1' · · · , n an ose 0 '2n y , = 1'· •• , "1'···' 'n we

define a homomorphism R S RR -+ R2 of R-oodules by :n n n

f(X) @g(X) f{X') g(X"). This turns out to be an injective

continuous homomorphism of R-algebras. In fact the filtration v is

seen to be simply the restriction of the order filtration of R
2n

•

. A

Going over to the completion R S ER of R@BEveobtainan n n , n

bicontinuous isomorphism E ; nR R2• Thus we get an isomorphismn J., n n
'" ...U

2n
=IIomy (Rn S RRn , R), and the module on the right can be

identified with U S RU. The resulting isomorphism U2 U RUn ,n n n n

is the inverse of that of the last corollary.

The ring multiplication in E is described by a map :
n

As multiplication is continuous and R is complete,n

this map extends uniquely to a continuous homomorphism

'Il' : R S RR --....)' Rn,n n n

determined uniquely by the rule

(£(X) S g(X» 'Il'n = f(X)g(X).

"Identif'y from nov on R 18 R = R • In the previously introducedn R n 2n

notation for the indeterminates of R2n, 'Il'n is then given by

heX' ,X") 'Il'n = h(X,X).

Let e: : R -+ R be the augmentation, u : R -+ R the ringn n n n

embedding. I'Te then have, on identif';,ring U2 = U Q RU ,
n n J. n

(lrriting IP for g>R)
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PROPOSITION 3 maps

U ... U2 =U *nU ,n n n _ n

c
n

*11n

R ... U ,
n

U ... R
n

.. :r.w ..
a = e • 13 = 11 defining a coa.lgebra structure

n n

For example (1.2) follovTS from the associative

defip.e 2B. Un structure 2!.!. coalgebra.

isomorphism

tV
Hom Ar(R ,R ) =Hom J.f (U ,U )

.I, n Ill. ,JY\,.. Ill. n

gj.ves bijection

PROOF For the first assertion we onJ.y have to shaw that 11' • cn n

and 11 enter into commutative diagrams dual to those postulated for
n

*the maps K = 11' ,
n

for the product 'IT , (1.3) from the commutative law, and so on.
n

For the second part of the proposition note that a

e Homy(R ,R ) will actually lie in Hom d')(R ,R ) if and only if
n Ill. n Ill.

the diagrams

1T

rae
n R)-

fa'IT

R2m
1ll.

> R
Ill.
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R

commute. The dual diagrams (star everything and reverse all arrows)

*give precisely the necessary and sufficient conditions for e to be

a homomorphism of coalgebras.

Let 1L be the category whose objects are the coalgebras

* * *{Un' 'Il'n' en' l1n } and whose morphisms are the homomorphisms of

coalgebras. 'rhe last proposition then tells us that the f'unctor

J( ...1(* yields an antisomorphism !P ... 1( of categories.

Let F = F(X',X") be a power series in 2n indeterminates

x· = Xi, ••• and XU = Xi, ••• , with zero constant term. Let

OF Homg> be the corresponding homomorphism ot power

series rings. Thus f(X)eF = f(F(X' ,X"». Then F will be a formal

group it and only if the following diagrams commute :
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(identifYing R RR = R ),n n

(r(o,X) =X=F(X,O»

R
eF

) n

oj"
-'2n

(1.8) 1SF 8 1
("Associative la.w").

l' ...
1 8 eFR2n

') R
3n

In addition we know of course that e
F
is a homomorphism of rings,

preserving iden'tities. Hence the following two diagrams also commute

...
... SF 8 eF ...

R 9 R Rn
' R

2nrn

1
(1.9)

e
FR 'It R2nn

R

R
n
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In the first diagra.m the ver-tical maps are those induced by

multiplication, going over from 9 to the completed tensor product 9.

Consider now the dual map

*p = e
I'

u =U 9 U +U.2n n R n n

This is an R-linear multiplication on U and the duals of diagrams
n

(1.7)-(1.10) nCl.,. shov that U becomes a bia.lgebra. E.g. the dual
n

of (1.8) is the associative lsu for multiplication and the dual of

*(1.9) tells us that the comultiplication 1T of U is an algebran n

homomorphism.

He can sum up : If I' is a formal group of dimension n. then

*p = 6I' defines the structure of a bia.lsebra on Un ( the coalgebra

* * *structure being fixed once and for a.1l by '!Tn' £n and J.1n ) .

Conversely if p : U 9R U + U is a map, defining the structure of
n n n

a bialgebra then in particular p HomCOalg(U2n ,Un) and hence

*p =eI' for some unique power series I'(X' ,XU). The axioms imposed on

p (as stated above) then imply that I' is a formal group. i>le have

thus proved the first part of

*THEOREM 1 (i) map I' t-7 ep = PI' bijection 2!. 2!.

formal g;roups 2! dimension n !ll2! structures 2f. bialgebra

on the coalgebra

( ii) The algebra Un'PI' i!. cOm1llutative if' only it

formal group I' i!. coI:lIlIlitative.

(iii) ll. I' G formal sroups 2f. dimensions n !a! m

respectively isomorphism
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Hom)(R ,R ) HomlJf (U .U )m n ./''- n m

gives rise bijection

The proof of (ii) is quite analogous to that of (i).

For (iii). consider the vectors l' =(fl••••• fm) of power

series in n indeterminates. vTe know that these stand in biunique

correspondence under a. map

Going over to the duals we

f Sf ",rith the S E: Homg> (Rm,Rn).

*obtain a bijection r p", = Sf E- Home al (U •u ).
109 n

By duaJ.izing the appropriate diagram one sees then that l' is a

homomorphism F + G precisely when the diagram

PF ,

) Um

commutes. i.e. when Pf is a homomorphism (Un,PF) + (Um,PG) of

bialgebras •

Let be the category of bialgebras "'Those underlying

*coalgebra is one of the {Un' '!Tn' He can then sum up

maps F .....,. Un,PF, 1'''''''''' Pf define !!:a. isomorphism

"'t.'Ut7J
<1' ot» of categories.

Hote tha.t we end up inth a covariant functorl

He shall nOVT discuss the bialgebra Un 'PF in some more detail.

If k = (k1, ....kn) • i = (.tl ' •••• in) are in Un we define
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•

i'Te denote by c£. the element of H of the c£. = (0, ••• ,0,1,0, •• ,0),n

't'1hich has 1 in the i-th position and °elsevThere. The element

A. of U is defined by the equation A. =° , i.e.,n c£.
1.

<X.,A. >= 1, <X.,A.> = ° for i,j, <ik, A.> = °if Ikl , 1.
J

For the formal group F(X,Y), we introduce the nota.tions

Then we have

,

PROPOSITIOll 4..
(i) e;"(1) =

n
*() 1 if k=O,

°0; ok = O·f1. "rv.

i)

(ii) (Ok) = L one oJ. •
n R.+j=k N

(iv) PF(ok e 0R.) = (k;R.)Ok+R. + I c.O. , c. R,
) o<ljl<lk+R.I J J J

(k , 0 FR.).

n
I A. • kh... •
k=l
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n
- = r (A•• k - A.• k·.. J. J l' J J. k=l J. ,J , • J ,J.,

PROOF (i) and (iii) are obvious.

(ii) He ha.ve

*But by the definition of '11' ,
n

1, if k = + j
0, othertvise •

Hence the result,

n r.
F(X,y)r = n F.(X,Y) J. =

i=l J.

n r,
= n (X, + Y,) J. + terms of order> Irl
i=l J. J.

= (X + y)T + terms of order> Irl.

= 0 is the coefficient of

in F(X,y)r. This is thus 0 when Ir I> Ik + I and also 'When

Irl = Ik + but r :f k +!l.. On the other hand if r = k + then

th ' ff", (k F'nan h 0 thJ.G coe J.cJ.ent J.S clearly • J. Y V en r = en

<1, PP(ok 0 Og» = 0 = O.

(v) By (iv) lore knoir aJ.ready tha.t

(
a,+a.)

= J. J 0 +J. J c," a •. a.
J. J. J
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and ve ha.ve to show tha.t p. • k =A. • k. In fact ve have
:L.J. :L.J.

p.. = <F(X,Y)
:L.J,k • b.. S b..>

:L J

:: <Bk(X,Y), b.. S b..>
:L J

as ex + Y
k,

s. S s.> = 0 and <G(X, y) , s. S s.> =0, whenever
-K :L J :L J

ord G 3. This cOtlpletes the proof of the Proposition.

We define T(R ) to be the submodule of those u E: U forn n
'Which

<r2 , u> =0 =<R.u>

T(Rn) is thus the submodule generated by the b.i • The next

proposition gives an inner characterisation of T(Rn) in terms

of the coalgebra structure of U •
n

PROPOSITIOn 5 I Givan u t u the follo\ring statements are
- n- - -

eiuivalent

(i) u T(R ).
n

(ii)

(iii)

*(u) =u 9 & + £ 9 u.

<fg. u> :: £(f)<g, u> + e:(g) <f,u> •

(Recall that c = 00 is aJ.ways the identity in a:rry biaJ.gebra PF

structure of U ).n
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(i) => (ii): By Prop. 4 (ii) holds for u = hence by
J.

*R-linearity of 1T for all u E T(Rn) •

(ii) => (iii)

*<fg,u> = <f g, 1T (u»

= <f S, u e + e 9 u>

= e(g) <f,u> + e(f) <s,u> •

(iii) => (i)

If f, g E I then e(f) = e(g) =0 and so <fg,u> =O.

By 1inearity <I2 , u> =O. Also

<1, u> = <1.1,u> = e(1)<1,u> + e(l) <1,u>

= 2 <1,u> , i.e. <1,u> = O. Hence <R,u> = O.

§2. The Lie algebral of a formal group

First we list, without proofs, the definitions and results

on Lie algebras to be used.

Throughout R is a fixed commutative ring, and all "algebras"

are algebras over R. For each associative algebra A there exists

a Lie algebra £ (A), which coincides with A as a module, the Lie

Product [a,b} in;(, (A) being given in terms of the associative

product ab by

[a,b] =ab - ba,
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Each Lie a.lgebra L has an enveloping algebra E(L) • Hore

precisely E(L) is an associative aJ.gebra with identity with an

attached homomorphism j : L -+L (E(L» of Lie algebras so that the

map

f I > f 0 j

(r s Hom (E(L),A» is a bijectionassoc

Hom (E(L) ,A) -;> Hom... (L,£.(A».assoc . L1e

!tote: A1.l associative algebras have identities, and Hom isassoc

the set of homomorphisms preserving identities.

By (2.1), taking A = R we get from the null map L -+£.. (R)

a homomorphism of associative aJ.gebras

T : E(L) -+ R.

As E(L) has an identity we also have a homomorphism

C1 : R -+ E(L).

Next if L1 and L2 are Lie algebras, then their cartesian set

product L1 x L2 has again a Lie algebra structure, and

In particular

"-E(L x L) =E(L) eR E(L)

via
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The diagonal map L -+ L x L thus gives rise to a homomorphism

of associative algebras.

A. associative algebra structure sa E(L) together

maps D, a. r define 2!!. E(L) structure 2! bialgebra

(of. §l for the def'inition) •

To prove this one would only have to verify now the

commutativity of the diagrams (1.1) - (1.6). and this can be

done by going back to the defining property of the enveloping

algebl'a. For the particular Lie algebraswhich we shall have to

consider this also follows from the explicit description to be

given below.

From (2.1) we obtain a map

In fact given a homomorphism a : Ll -+ L2 of Lie algebras there

is one and only one homomorphism E(a) : E(L
l)

-+ E(L2) of

associative algebras so tha.t

a
L
1

) L
2

1 E( 0.) 1
E(L

1)
E(L

2)

commutes.
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In view of the obvious functorial properties of the maps

D. (j and T associated with each L. E(a) will in fact commute

with these. In other words

!. E!!. functor algebras to bialgebras.

Now let L be a Lie algebra which as an R-module is free on

se:y generators •••••dn• Then:

c. - Witt Theorem") L + E(L) is injective.

We shall accordingly vie'lY L as embedded in E(L). i{rite

for k = (kl•••••kn ) r'b

o(d. =1)
J.

(the order of the factors mattel'S1) Then we have the description

D. (i) E(L) !!. R-module sm. ak •

(ii)

(iii)

dkd9. =dk+9. + I a.dj

o<ljT<lk+9.1 J

n(d.) =1 8 d. + d. 8 1,
J. J. J.

, (k,9. ; 0).

T(dk) = 0, k;O
1, It=O.

lTow we return to the associative algebra Un ,Pp defined in

the preceding section, F being a formal group of dimension n. iVe
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[ ,] F for the Lie product. Thus

In the notation of II §l, Prop. 4, we now see that

It follows that the submodule T(R ) of U generated by the li.n n

(see §l) is closed under [,IF. In other words T(Rn) is a Lie algebra

under [,JF • 'Thich we shall denote by L
F

- the Lie algebra associated

with the formal group F.

Let f : F a be a homomorphism of formal groups (dim F =n,

dim G =m). The homomorphism a
f

: R -+ R maps R (vie1i'ed as am n

sUbring) into itself, and maps I(m) ( = {f E: Rmlord r 2}) into

2 *.
I (n) • Hence the dual homomorphism af : Un -+ Um 'VT1.ll map

*T(Rn) -+ T(Rm). r·'!oreover, af is a homomorphism of associative

algebras, J..e., it takes the multiplication PF into PO. Hence

also

[a; u, e; v] a = a; [u,v] F'

....
for u, v Un. It follati's that a gives rise. by restriction, to

a homomorphism L
f

: La of Lie algebras. He sum. up :

PROPOSITION 1 L
f
define !:. covariant functor from

category 'Cf 2!. formal g,roups category 2!. algebras

LF ;preserves dimensions, i.e., L,..., is a free R-module on dim F
, -

generators.
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Alternative Description: Let R(n) be the module of n-tuples

a = (B:1., ••• ,an) (ai E R). Let lSk(X,y) be the homogeneous

quadratic component of Fk(X,Y) (k =1, ••• ,n) (cf. u) and

= - Define a multiplication on R(n),

i.e., a map R(n) e R(n) H(n) by

Then, if p

=(Al(a.b) •••• ,An(a.b».

is the isomorphism T(R ) R(n) of' moduJ.es given by
n

is a Lie algebra, in f'act isomorphic with Lp.

For formaJ. groups F and G of dimensions n and m respectively.

we denote by 6. F and 6. G the corresponding free module generators
J.. J.,

of and LG• If f' : F G is a homomorphism then f'ik f R are

defined by

f. (x, •••• ,X )n
n- r f· k Xk (mod deg 2).
k=l J.

PROPOSITION 2
m

== r f· k 6. G
i=l J. J.,

m
PROOF Suppose Lf(,\ F) = .r Cik 6i ,G' Then (we denote the

, J.=l

indeterminates of' G by yl•••• 'ym)
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Cik = <Yo , L/t\,F»1.

= <Yo ,
J.

= <yief, t\,F>

= <1' . (Xl' ••• ,X ) it t\,F>1. n

COROLLARY 1 homomorphism l' : F -+- G is isomorphism .2!. formal

grOUPS if ll. Lf is !!!. isomorphism 2!. Lie algebras.

PROOF By I, §2 Theorem 2.

COROLLARY 2 !!. R+ is torsion !!!!. Lf :: 0 .it only ll. r = O.

PROOF By I, §3 Theorem 2.

For the rest of this section we assume that R is a Q-algebra

(Q is the field of rational numbers). Under this hypothesis vre

shall prove that the category of formal groups and the category of

Lie algebras which are free R-modules of finite rank are isomorphic.

Hore precisely vre have:

TIlEOREH 1 (i) R 2!.!. Q-algebra. E2!:. Lie algebra L which

i:!.!. module .2!. finite dimension R, there exists !. formal

grOUP F L i:!. isomorphic

(ii) -+- u.!. bi.iection.

(iii) formal groups F m G !no isomorphic i!.!!:a!

i!. the corresponding algebras LG isomorphic.

The proof of Theorem 1 requires three lemmas. Ife take L
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to be a Lie algebra which as module is free on generators •••••dn•

'!he module homomorphism CL : E(L) + Un is defined by the equation

where we shall use throughout the description of E(L) given in D.

LEMMA 1

commute.

CL is !!!. isomorphism 2!.modules. Moreover. diagrams

E(L) D E(L} E(L)

1C 1CL
CLL

*'Il'
U n

U Un ') n n

R

R

The multiplication E(L) e E(L) -> E(L) defines through CL

a multiplication qL : Un e Un + Un·

LEMMA 2 There exists .!. forttlal grOUP F !2!:. which qL = PF' L.!..,

qL defines 2!!. Un structUre 2!..!. bialgebra. also L
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Let now conversely F be a given formal group. Since

this inclusion map can be pulled back to a homomorphism

n : .. Un,PF of algebras (universal property of enveloping algebra).

* *n.a = En' n =T *and (0 9 n).n = n.
- n

PROOF of Lemma 1 Since R+ is divisible and by II §l, Prop. 2, the

ktok form a free basis for Un' and so CL is an isomorphism of modules.

Also by n and II sa, Prop. 4

= L
i+j=k

=kt I
i+j=k

<5. 9 <5.
J. J

By extending linearly to E(L). this proves that the first diagram is

commutative. Similarly for the second diagram.

PROOF of Lemma. 2 qL is defined so that

E{L) i
R

E{L)

SCL 1
U U
n n

E(L)

1CL
----------7" Un
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is commutative. That qL defines a bialgebra structure on Un

is now trivial by Lemma 1. The isomorphism of categories

of the last section ensures the existence of a formal group F

such that the Un,qL =Un,PF. Since CL maps di onto ll.i' L and

are isomorphic under CL as modules, and since CL preserves the Lie

product then this is an isomorphism of Lie algebras.

PROOF 2!. Lemma 3 Let Er be the submodule of generated by

the dk with Ik I < r and let V be the submodule of U generated by- r n

the Ok with Ik I r. We shall then prove by induction on r the

assertions

(Ar ) When Ikl =r then n(dk) - (mod Vr _l ) , ek a

unit of R ;

n maps E bijectively onto V •r r
(B )
r'

As is the union of the E I U the union of the V ther n r

bijectivity of n: + Un follows.

By the definition of n ,

where Ia·1 = 1, a. has a 1 at the i-th place. As for Ik I _< 1
]. ].

k
the d are free generators of El and the Ok are free generators

of Vl, both and (Bl) are true.

For the induction step from r to r + 1 let Ijl =r + 1,

and write j =k + J/, where IkI .::. r, IJ/, I .::. r. Then by (ii),
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dj :: dkdR. (mod E ). Hence by the induction hypothesis, and by §l
r

where e,e' are units of R (recall here that R is a Q-a.lgebra,

i.e., that we have unique division by integers). 't-le have thus

an easy argument.

The first equation in Lemma 3 just tells us that n is a map

of R-algebras. All the maps occuring in the last two equations of the

lemma. are homomorphism of algebras preserving identities. In each case

it then suffices to verify that the images of the generators di of the

algebra E(LF) coincide, and this follows from the explicit description

given earlier on. (D and §l, Prop. 4).

!]QQ.F !2!. Theorem 1 (i) is just Lemma. 2. (iii) follows from the

fact that F t-->' LF is a functor, and from (ii).

For (ii), we recall (cf. II §l, Theorem 1) that

'"Hom ,G) =H0m..aialg(Un ,PF ; Um,PG)

(n =dim F, m =dim G). Recalling the wtq and Lf were defined,

'ti'e see now that it suffices to prove that the map

is bijective. He consider the diagram (of module homomorphisms)
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e

--------,., E(La)

1Q
F 1°a

Here jF is the inclusion map, OF as in Lemma 3 is the unique

homomorphism of algebras so that OF 0 jF is the inclusion map

r.. = T(R ) ... U. Let ll' be a homomorphism of bialgebras. Thenn n

ll(ll') : ... La is uniquely determined as the module homomorphism

for which

l-Iext let e: ... La be a homomorphism. of Lie algebras.

Then E( e) : ... E(La) is the unique homomorphism of bialgebras

so that

E(e) 0 j =joe.
F a

By Lemma 3, fA is an isomorphism of bialgebras. Define

A(e) : Un,PF ... Um'Pa by

(c) A(e) 0 n =n 0 E(e).
F a

Then by (b) and (c)
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Thus (cf. (a) with' =A(e»,

lJA(e) =e.

On the other hand, for given Il', ve have by (a) and (b)

hence

and so by (c) (with e =p(Il'»,

Thus Aand lJ are inverse bijections. The theorem has thus been

established. (Incidentally we have proved also that E is a

bijection. )

COROLLARY 1 II R is Q-algebra every cOIlmlutative formal group

F is isomorphic additive group .2f. dimension dim F.

The additive group G of dimension n is given by (G ). (X,Y) = X + Y••a a i

and the

<=>commutative <=> PF(6.,6.) = PF(6.,6.) for all i,j
J. J J J.

abelian. This is uniquely determined by its dimension,

PROOF F is commutative <=> the multiplication PF in Un is

is

dimension therefore determines uniquely the class of F.
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COROLLARY 2 !! R !!.!:. Q-algebra. every formal grOUP 2! dimension 1

commuta'tive. Corollary 2 is also true if instead we suppose R has

no nil potent elements (Lazard).



- 57-

CHAPTER III. COHHtITATlVE FORHAL GROUPS OF DINElISION mm

sr. GEllERALITIES Throughout this chapter all formal groups are

commutative of dimension one. We repeat the definitions. and a few

pertinent facts.

A formal group F(X,Y) is a power series (over R) in two

variables X,Y. satisfying

(i)

(ii)

(iii)

F(O,X) =X =F(X.O) ;

F(F(X,Y).Z) =F(X,F(Y,Z»;

F(X,Y) =F(Y,X).

A homomorphism f : F + G of formal groups is a power series

(with zero constant term) in one variable satisfying the rela.tion

(iv) f(F(X,Y» =G(f(X),f(Y».

vle shall write (f 0 g) (X) = f(g(X». We denote by

the set of homomorphisms F + G of formal groups. If f, g E: (F ,G) ,

(f + g) (X) = G(f(X), g(X».

i'lith respect to this a.ddition (F ,G) is an abelian group, and

the composi tion 0 for homomorphisms is bilinear (cf. I, §3, Th.l).

He shall call such a category "additive" (always with quotation

marks, as the term additive category without quotation marks is

now accepted to mean something more). The "additive" category

of commutative formal groups of dimension lover R will in the

sequel be denoted by R.

= is a ring with identity. There thus

exists a unique homomorphism Z + which preserves
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identities. The image of the integer n will be denoted by En] F.

Thus [l]F{X) = Xt [-l]F(X) is the power series i(X) of

It §3, Prop. 1, i.e., F(X, [-l]F(X» = 0, and =F( [n]F(X) ,X).

is a left and a right and

the action of Z on can be described in terms of either of

its two embeddings in the rings of endomorphisms. In other words,

Now we recall the definition of the map D (cf. I, §2).

For dimension 1 we simply have D(f) = f1 = coefficient of X in f(X).

D is then a f'unctor '9R .. R, in other words

D{f 0 g) =D(f). D(g),

D(f + g) =D(f) + D(g).

Moreover f is an isomorphism if and only if DCf) E: U(R).

PROPOSITION 1 homomorPhism 'iT: R .. S 2!. rings

gives f'unctors <@R" 2!. "additive" categories. which

preserves action 2!. D.

PROOF Obvious. The desired map of objects and morphism is "tha.t

induced by '¥ on the coefficients of the appropria.te power series.

PROPOSITIon 2 It R !!t.IE. integral doxnain. i!..

integral) d01l1a.in. !!E. ,G) is

(F) (!BE:.. (G» module.
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PROOF If r = r Y! + r 1 r+l +r r+
.... ,

and •.8 s+l
g = gsA + gs+l X + ••••• f ,g :f:. 0tr s

then fog = r gr
r s

r+sX + •••••

and f gr :f:. O. Therefore fog =0 implies either f = 0 or g =o.r s

From this we deduce that is an integral domain, and that

is a torsion-free (and module.

The image of Z is thus also an integral domain,

and its kernel must therefore either be 0 or pZ for some 12rime p.

If the characteristic of the quotient field of R is O. then

(cf. It §3, Th. D : R is an embedding. Therefore

is a commutative integral doIilain and ker {Z = O.

COMPARISON' OF FOR!·IAL GROUPS

A polynomial in R[X,Y] is I2rimitive if the ideal in R

generated by the coefficients is the unit ideal. (A polynomial

in z[x,Y] is thus primitive if the highest common factor of the

coefficients is 1.) The natural map Z R can in the obvious way

be extended to a map Z[x.r] -+ R[X.Y] and then primitive polynomials

are mapped onto primitive polynomials.

He shall nOW' introduce Lazard t s polynomials B and C. Here
n n

B (X.Y) = (X + y)n - xn _yn.
n

If n is not a prime power. then

C (X.y) =B (X,Y).n n
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If on the other hand n =qr, where r > 0 and q is a prime, then

C (X,Y) =! B (X,Y).
n q n

Note that C is alwa;ys an integral
n

LEMMA 1 Cn(X,Y) !!.!. primitive po;Lypomial Z[x,Y].

PROOF Suppose that pic (X,Y). If first n is a power of p, this
n

implies (by induction on m) that mn s m (mod p2.), whic;h is false.

N xt °f se J. n:z: p r, r > 1, (p,r) =1 then we get

s s s s
(Xp + yP )r :: (X + y)n :: 'J!1 + yn :: xp r + yP r (mod p);

hence

which is false (coefficient of rr-l 1).

The following theorem exhibits the relation bet\Teen t\TO

formal groups \Thich a.gree up to a given degree.

THEOREl-1 1 (Lazard) F G £!. forrtJal groups commutative

ring

F :: G (mod des n).

F :: G + e.C (mod deg n + 1)n

To prove this theorem we shall need also

LEMMA 2. Assume hyPothesis in Theorem 1. !:!& furthermore

r(x,Y) homogeneous pOlYnomial degree n f2!:. ..thich

(mod deg n + 1).
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r(x,Y) =r(Y,x) ,

r(x,o) =0 = r(o,x),

r(x,Y) + rex + Y,z) =r(x,Y + z)

(p)

PROOF The first two equations are trivial. To prove the third

equation we observe that, working modulo degree n + 1, (and using

the notation G(X,Y) = X + Y + G2(X,Y), which means that G2(X,Y)
is the sum of terms of G of degree .?. 2)

F(F(X,Y),Z) =G(F(X,Y),Z) + r(F(X,Y),Z)

=F(X,Y) + Z + G2(F(X,Y),z) + reX + Y,z)

=G(X,Y) + + Z + G2(G(X,Y),z) + rex + Y,z)

=G(G(X,Y),Z) + r(x,Y) + rex + Y,Z).

Similarly one shows that

F(X,F(Y,Z» =G(X,G(Y,Z» + r(x,Y + Z) + r(y,z).

This proves our assertion. (The second equation can also be derived

from the third).

To prove the theorem it will.suffice to show that any

homogeneous polynomial r of degree n, satiSfying conditions (p) is

of the form aC •
n

Lazard t s original proof is very tough and computational. We

shall give here a simpler proof in which the computations are restricted

to fields. The basic idea is first to generalize the theorem

appropriately. Instead of polynomials over a ring we consider

polynomials over an (additive) Abelian group A. With these one can

compute in the same We::! as if A were a ring - except that there is

no multiplication. The advantage is that one can now use the structure

theory of Abelian groups. To be more precise define
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A[JS., ••• ,xnl = A Z[Xl'··· ,xnJ,

and call the elements of this module "polynomials over A". As

Z ••• ,Xn] is a :free Z-module, one may view the module o:f

polynomials over a SUbgroup B or A as contained in A[Xl' • • • ,Xn] •

Theorem 1 is then a consequence o:f

THEOREt-! la Even" homogeneous polynomial r 2!. degree n, satisfying

conditions (p) E! Lemma 2. is 2!. r =aCn a E: A.

Let us :first assume

I. The theorem is true when R =A is a :field.-
Then in view of Lemma 1, and by I vTith R =Q the rational :field,

we conclude

II. The theorem is true for R =Z.-
Next one shows

III. theorem !2!. A = R = Z/(pr). p a prime. r > O.

In :fact, :for r =1, this :follows :from I. Now we proceed by induction

on r. The induction hypothesis can be written as a congruence

r(x,Y) =aCn(X,Y) + prrl(X,y) (mod pr+l)

where a E: Z, and where r
1
satis:fies (p) mod p. But then

rl(x,Y) =bCn(X,Y)

(b Z), and hence

(mod p)

r(x,Y) = (a + prb) C (X,Y)
n

r+l)(mod p •

IV. 1!?- su:r:rices i2. establish theorem f2I. finitelygenerated

Abelian groups A.

In :fact, a:ny polynomial r with coe:f:ficients in an Abelian group
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A ms;y be viewed as a polynomial over the subgroup of A generated

by the coefficients of r •

V. II theorem is valid f.2!:. groups A B it k valid

also for their direct

This is obvious.

Now' the theorem follows from II - V and the structure theory

of finitely generated Abelian groups. \'1e still have of course to

establish I. and this requires some computation.

PROOF of!.. note that C (X.Y) viewed as a polynomial over the givenn

field R is non-zero (by Lemma 1) and clearly satisfies conditions

(r), It then suffices to shaw that the conditions (r) determine a.

subspace S of dimension 1 of the vector space of homogeneous

polynomials of degree n.
n

Write r(x.y) = l
r=O

r ..n-ra X Y •
r

Then by (p)

a = a • aO = a =O.r n-r n

Moreover ve get from the last equation in (p). on comparing the

coefficient of XAy].lzn-A-].I (A > O. A + ].I < n) the equations

•

i.e ••

Take A =1. and ].I =w
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If first the characteristic of R is zero then (1) shows that

dim S 1 as required. From n01v on assume that the characteristic

of R is p ; o.

Suppose first of all that whenever 1 n - 1 then either

(w,p) =1 or (n - w,p) =1. Then we have again, by (1),

waw = (:i) , when (w,p) =1 ,

(n - (0) a = (a - w)a = a. (n-1 1) , when (n - w,p) =1.
00 n - W.L n-tI)-

Thus again dim S 1. This covers the case (n,p) =1 and the case

n =p. For the remaining case n =mp > p, we can proceed by

induction.

Let then n =mp, m > 1. Now use (2). This shows that

aW+1 = 0 whenever either plw or when pt 00 + 1 and aw =O. Therefore

arP+s =0 for r 1, and 1 < s p - 1.

In other words

a =0 when (p,w) =1 and 00 > p.
00

As a =a , and as n _> 2p, it follows that a,., =0 whenevern-w 00 '"

• In other words
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'Where r1 is homogeneous of degree m < n and clearly satisfies

conditions (p). Hence

It remains to be shown that

If m is not a power of p, then Cm =cBm, C = B and the result follows
n n

from the corresponding result for the polynomials BIt. If m is a

power of p we 'tfork We have

This is :: B (X,Y) (mod p2), as m :: 0, B (X,Y) :: 0 (mod p) and so
n p

each term under the summation sign is :: 0 (mod p2). On dividing

through by P we finally get

C (Xp yp) :: C (X Y)m' n t
(mod pl.

This completes the proof of Theorem la.

Ln>iMA, 3 Suppose F !B!! G !£!. formal groups

F :: G + aB (mod deg n + l).n

there exists !. power series f(X), f(X) :: X (mod deg n}, so that--
(mod deg n + a),
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PROOF Put f'(X) :: X - bTl (mod deg n + 1). We show that,f'or a

proper choice of' b , f'(F(X,Y»:: G(f'X,IT) (mod deg n + 1). We

work modulo degree n + 1 :

f'(F(X,Y» :: F(X,Y) _ b(X + y)n,

The right congruence is obtained by taking b = a.

LEMMA 4 Suppose F G f'ormal groUps !n!

F :: G + aCn (mod deg n + 1).

E Z,

(mod deg n + 1),

where e: =1, when n is not a prime power,n - _..-

e: =!, when n is a power of' the prime q, (Note: C = e: B ).
n q - --- --- n n n

{e:n(m
n

- m)} stands fS2!. element 2!. R ,'Thich !!. image 2!.

the integer e (mn - m).
- - n

PROOF The lemma. is clearly true f'or m =1. Proceed by induction on

m. Write R. (X) f'or the polynomial of' degree < n which is congruent
m -

(modulo deg n + 1) to [m}F(X) - [m]G(X). Working modulo deg n + 1,
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we have

:: G( em] G(X).X) + R. (X) + a C (mX. X)m n

:: [m + l]G(X) + R.. (X) + a C (mX,X).m n

Over Z, B (mX,X) = (mX + X)n - (mX)n - xn,
n

Therefore C (mX,X) = E «m + l)n - mn - l)XO •n n

Hence R..m+l(X) = R.m(X) + ahn«m+l)n - mn - l)}XO. By the induction

hypothesis, this is equal to a{£ (mn - m + (m + l)n - mn - l)}n

which is a{e «m + l)n - (m + l»}XO.n

THEOREM 2 !::. formal group F is isomorPhic R additive

grOUP Ga if only if, !2!.!!!. primes p, [P]F coefficients

.y!. pRe

PROOF

Recall that G (X, Y) =X + Y•
a

If l' : F + G is an isomorphism of formal groups, then

That [PIF has coefficients in pR for all primes p is therefore a

property of isomorphism classes of formal groups. Since [n] G (X) =nX,
a

this shows that the condition is necessary.
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To prove the sufficiency of the condition we construct a sequence

of invertible pcn'1er series such that

(mod deg n),

0 F 0 -: :: X + Y (mod deg n + 1).

The sequence is a Cauchy sequence, vlith limit g. say.

Hence

g 9 Fog-1 :: X + Y (mod deg n).

for n arbitrarily large. Therefore

g 0 F 0 g-l =X + Y.

Construction of {g }
n Take gl = X. Suppose we have already

constructed gl' ••• and suppose

-1
f!. oFof!. =H::X+Y-n-l -n-l (mod deg n).

It will suffice for us to construct a power series f such that

f :: X (mod deg n},

and f Q H 0 f-l :: X + Y (mod deg n + 1),

for then the required can be taken to be f 9

By Lazard t s theorem (Theorem 1),

H :: X + Y + aC (X,Y)n (mod deg n + 1),

for some a (: R. If n is not a prime power, then aCn = aBn • If n
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is a prime pov1er, n =pr, then by Lemma 4

fp]H(X) ;: Ii>JG (x) + a(pn-l - l)il
a

pX + a(pn-l _ l)xn

(mod deg n + 1),

(mod des n + 1).

But by our hypothesis [P]H(X) has coefficients in pRe Hence

a E: pR, and a =pb for some b E: R. This implies aCn =bBn•

have shown then that

H ;: X + Y + aB (X,Y)
n (IIlOd des n + 1).

By Lemma 3, there exists l' with the required properties.

COROLLARY 1. (Independent of Lie theory) !!. R is !. Q-algebra

every commutativa formal group 2!. dimension 1 isomorphic

R ]g. the additive group.

COROLLARY 2. f2l R !. ring pR =0, P !. prime number. T'nen

!. formal group F defined R k isomor,p!lic Ga !!. only if

G>1F = o,

COROLLARY 3. R !.local ring. whose residue class field is 2f.

prime cha.racteristic p. formal grOUP F defined R !!.

isomorphic additive group. II only if coefficients 2f.

[P1F i!!. pRe

§2. CLASSIFICATIOn OF COMMUTATIVE Fom-w, GROUPS OF ONE DIMENSION OVER

A SEPARABLY CLOSED FIELD OF CHARACTERISTIC p. (p) 0)

Let k denote our base field, of chara.cteristic p. For formal
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groups F and G (over k) and l' E- G), l' is a power series in
h

xP , where h = ht(f). (cf. I, §3, Th. 2). More precisely, we have,

h h
f(X) =a xP + a +

1 2 •••

PROPOSITION 1 (i) ht (r + g) inf {ht (f) ,ht (g)} •

(ii) ht(f 0 g) =ht(f) + ht(g).

PROOF (i) has been proved already (I, §3, Prop.5).

(ii) Put n =ht(f), m =ht(g). Then

n m
f(X) =aXP + ••• , g(X) =bXP + ••• , a ;. 0, b ;. O•

n n+m n
Therefore f(g(X» =abP xP + ••• , and abP ;. O.

COROLLARY 1 ht(u) = 0 if!!::!!i only if u !!.!m. invertible power series.

l1hich ht(u 0 l' 0 u-1) =ht(r).

COROLLARY 2 It consider Z 't-lith filtration.

En<\(F) height filtration. Z ... En<\(F) is continuous.

He define the height Ht(F) of the formal group F to be

ht( [P]F)' By Cor. 1 to Prop. I, Ht(F) only depends on the isomorphism

class of F.

COROLLARY 3 If Ht(F) ;. Ht(G), ,G) = o.

PROOF If r E. ,G), then l' 0 fP1 F = f:PJG 0 f. Hence

ht(f) + Ht(F) =ht(f) + Ht(G). Since Ht(F) ;. Ht(G), then

ht(f) = , and l' =O.
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PROPOSITIon 2 is complete under height filtration.

PROOF Let {f } be a Cauchy sequence under the height filtration.
n

Then it is a Cauchy sequence with respect to the order filtration, and

ord(g) =pht(g). Put f =lim d(f). Then, working modulo degree n,
or n

we have

=G(f(X),

Hence f E: and f is the limit of {fn} under the height

filtration.

COROLLARY homomorphism Z + En'1t (F) extends to !!:. homomorphism

(where Z denotes the p-adic integers).
p

The diagram

z En'1t(F)

1D

k

of ring homomorphisms commutes, as all the maps preserve identities.

Thus D( [P]F) = 0, i ..e., ht( [P]F) > 0, i.e., Ht(F) > o. By Corollary

2 to Theorem 2 of the last section, Ht(F) = GO if and only if F is

Thus if F is not isomorphicisomorphic to the additive group G •a

to the additive group, i.e., if Ht(F)

is an embedding.

< co then the map Zp +
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The three main theorems which follow give firstly the

existence of formal groups of prescribed height h > 0 over

field of characteristic p, secondly the complete classification of

formal groups over a separably closed field, and thirdly the

THEOREM 1 Given integer h, there exists a formal group F
h

defined GF(p), [P]F(X) =xP •

THEOREg 2 (Lazard) !!. k is !. separably closed field of characteristic

p, formal groups F !!!LG defined k k-isomorphic it.

only i! Ht(F) =Ht(G).

THEOREH 3 (Dieudorm6 - Lubin) Suppose k separab;J..y closed

field .2!. characteristic p, F 2!.!. formal group defined 2Y!!.

k Ht(F) =h < CXl • End:k(F) is isomorphic maximal

order 11(., in central division algebra 9J 2!. invariant l/h !BE:..2!. h2

The last theorem is due to in the weaker form that

End:k(F) is isomorphic to some order in 5lJ.. That this is actually the

maximal order was proved by LUbin, us ins results on formal groups over

discrete valuation rings. We shall give a direct proof.

He shall need some lemmas. Let R be a discrete valuation ring

with finite residue class field of pS elements. Denote by 11 the

maximal ideal of R, and take n in R so that:f = nR.

LErlHA 1 Suppose f(X) g(X) power series R satisfying
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(mod deg 2),

(mod !f i.

h s1 "t" "t Let L(X X )w ere q =p posJ. J.ve J.n eger R. • _ l' • • " n

be So linear form over R. Then there exists !. pm-Ter series

F{Xl, ....Xn) R satisfying conditions

(mod deg 2),

These conditions determine F uniquely quotient field S?! R.

(This is So slight variant of a lemma. of Lubin - Tate.)

PROOF Our aim is to construct a. sequence {F} of polynomials
In

over R in JS.""'Xn with the properties

F (xl, ••• ,X ) is of degree m - 1,m n

F (Xl' ••••X ) =L(Xl, ••• ,X )m n n (mod deg 2),

f(F (iL, ••• ,X » =F (g(xl), ••• ,g(X» (mod deg m),m -"]. n m n

F +l{iL, ••• ,X ) =F (Xl, ••• ,X ) + 6{iL, ••• ,X ),m -"]. n m n -"]. n

where 6(JS.,'" ,Xn) is So homogeneous polynomial of degree m, These

conditions imply (here we 'Tork with congruences modulo degree m + 1)

tha.t
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If we write f(X) = TIX + f(2) (X), then ve also have

=r(F ••• ,X » + n6(Xl, ••• ,x ).m -J. n n

We are therefore required to find 6 satisfying the congruence

F (g(Xl), ••• ,g(X » + 6(Xl, ••• ,X ) =f(F (xl, ••• ,X » + nA(Xl, ••• ,x ).
m n n m n n

In other words, vre must solve over the quotient field of R the

congruence

{
Fm(g(Xl),···,g(Xn» - f(Fn(X1t ••• ,Xn})}

m - 1
1 - 'l'i'

m-l
There clearly exists a unique solution. But 1 - n is a

unit of R. To show that the solution has coefficients in R we

must show that F (g(Xl), ••• ,g(X}) - f(F (X_, ••• ,X }) hasm n m -"J. n

coerricients in 1r (i.e. is divisible by n ). Since rex) =g(X} =x
q

(mod r ), then

F ••• ,g(X }) - r(F (Xl' ••• ,X }) -m -J. n m n

F (xl\ ••• ,x
q)

- (F (Xl' ••• ,X }}q (mod -<£., ).m n m n f
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(F
q

denotes the polynomial obtained from F by raising all them m

coefficients to the q-th power). As q is a. po'Ter of the cardinality

of the residue class field, we have pq =F. Hencem n

(F (Xl' ••••X »q =F (Xlq•••• ,xq) (mod ).m n m n Q

and therefore

F (g(Xl) •••• ,g(X » - f(F (Xl •••• ,X » =0m n m n

as required.

(mod y-).

We are now in a position to prove Theorem 1. (vIe use here

an idea '\lhich plays a central role in Lubin - Tate.)

h
PROOF OF THEOREH 1 In Lemma 1. take R =Z, 'IT =p. q =p for

p

some positive integer h, f(X) = g(X) =pX + xq, and L(X.Y) =X + Y.

There then exists a. pO'VTer series F(X.Y) over Z such that
p

(mod deg 2).

and

F(r(X).f(Y» =f(F(X.Y».

But the power series F(Y.X) is also a solution of our existence

problem. By the uniqueness of solutions therefore we ha.ve

F(X.Y) =F(Y,X).

l1ith L(X,Y,Z) =X + Y + Z, we easily check that the corresponding

existence problem of the lemma has both F(F(X.Y).Z) and F(X,F(Y.Z»

for solutions. From the uniqueness of solutions we deduce
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F(F(X,Y),Z) = F(X,P(Y,Z».

Hence F(X,y) is a commutative formal group over Z , and f lies in
I'

(F), with n(f) =p. Since n : (F) + Z i' injective,
I' I' h

[PIp. In other vTords [pIp = pX + xl' •

I'

and n( [P]F) = p, then f =

The homomorphism Z + GP(p) induces a functor from the
I'

category of formal groups over Z to the category of formal groups
I'

over GF(p). The image Fof F is then a formal group over GF(p) ,
h

with [plF=Xl'. This then yields Theorem 1.

h
From now on h is a fixed positive integer, and q =p •

LEHI\IA 2 Suppose k !!.!. field E!. characteristic p, F is !.

formal group 2f. heif"...ht h defined k. F !!. k-isomorphic

formal group a, ..There G :: X + Y + CCq(X,Y} (nod deg q + 1)

O.

PROOF He know that F :: X + Y (mod dee 2). Suppose no•• that

§l, we have

k
If n F I' then

(mod deg n) with n < q. By Th. 1 of

F :: X + Y + cC (mod dee n + 1) for some c E k.n

cCn =bBn for some b E: k (all primes p" F I' are units in k). If

n =pk lTith k < h we assert that cC =a (= B ). For by Lemma 4 ofn n

F :: X + Y

§l, we have (Ga denoting the a.dditive group)

[plF(X) :: [PJG (X) + c(_l)Xn

a
(mod dee n + a),

But cP]F(X} :: 0 (mod dee; q), and [pJ a (X) =pX =O. Hence :: 0
a

(mod dee; n + 1) and so c =O.
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Thus we have shc)lin that if F =X + Y (mod deg n) with n < q

then there is a b Eo k such that F =X + Y + bB (ood des n + 1).n

N()li apply Lemma 3 (§l) to obtain an invertible r such that

I' 0 F 0 f-l =X + Y (mod deg n + 1). We can therefore assume that

F =X + Y (mod deg q). If ve had F =X + Y (mod deg q + 1) we could

apply Lemma 4 (again with m = p) to obtain [pJF(X) =0 (mod deB

q + 1). which contradicts the hypothesis on the height of F.

He state next a lemma. in vrhich (for the first time) essential

use is made of the hypothesis that k be a separably closed field.

LEI'1r,1A 3 k s!3parably closed field Q!. characteristic p.

Suppose g(X) = f(X
q)

g(o) =0 and f l 'I- O. there is !:B.

invertible pOwer series u

-1 .qu ogou=X.

PROOF Let g(X) =aX
q (mod dee; q + 1). where e. 'I- O. As k is

separably closed. there exists c E: k. cl-q = a. Put vl (X) = eX.

S2(X) = (v;:l Q s 0 vl) (X). Then g2(X) =Xq (mod deg q + 1).

But is a pOIier series in Xq and hence g2(X) =Xq (mod des 2q).

VIe no•., prove for r 2 If g (X) is a power series in xq•
r

Sr(X) =X
q

(mod deg rq) then for a suitable choice of b in vr(X) =

X + br ve have

( -1v 0
r

g 0 v..) (X) :: Xqr r (mod deg (r + l)q).

Starting 'tvith g(X) and defining inductively

-1
v
r
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we obtain an infinite product vl 0 ••• 0 vr 0 vr+l 0 ••• , which under

the order filtration converges to a veX) so that

Let g (X) :: xq + eJfq (vTe use congruences mod deg rq + 1
r

throughout) • Then

and

He have then to solve

b
q

- b + a = 0

in the unknown b. This equation is separable, and hence can

be solved in k. Thus

(V-loa. 0 v) (X) :: Xq (mod deg rq + 1)
r -r r

and hence also mod deg (r + 1) q.

DEFINITION A formal group F of finite height h over a separably

closed field k of characteristic p, is in normal form if

(i)

(ii)

wlF(x ) =X
q

(q =ph),

F(X.Y) =X + Y + cC (x,Y) (mod deg q + 1)
q

for some c 0 in k.

Our next lemma shows us that for fomsJ. groups in normal form

we can work over GF(q) rather than k.
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m,lHA 4 If [pI
F
=X

q
F is defined .2!!rr. GP(q) every

endomorphism .2!. F is defined GF( q).

PROOF Since GF(q) ={a E: kl aq = a} ve have the following

equivalence : ••• ,Xn) = g(X) is defined over GF(q) <=> g(X
q)

=

g(X}q. NO't1 [P]F 0 F =F 0 [pJ p so F is defined over GF(q) vhen

[PJp = xq. Horeover [PJ F is in the centre of En<1t(F) so if r E- Endl\:(F)

we have [pJ F 0 f = f 0 [p]p, i.e. f is defined over GF(q).

The next lemma. is the crucial one for the proofs of Theorems

2 and 3. It ties 1emna.s 2,3,4 together.

LEHI·1A 5 formal group se'Oara.b1y closed field k is

isomorphic to in. normal !2m.

PROOF Let F be a formal group of height hover k , Apply LemIllC. 3

to [P]F : there is a u(X) such that u-1 0 [plF <) u =X
q•

But

u-l .. [m]p 0 u = [m] -1 for all integers m 1, and
u (I F 0 u

u-l 0 F .. u F. So we may assune F is such that [P]F = xq. Then

by Lemma 2, there is an invertible veX) in GF(q) [[X]] (F is defined

over GF(q) by Lemma. 4) such that (v-l 0 F 0 v) (X) :: X + Y + cC
q

(mod deg q + 1), with c ;. o. l10w [PJ -1 = v-
l

0 [PJ P 0 v = [pJ F
v <l F· v

(since v is defined over GF(q». -1 .Thus v 0 F .. v a.s in normal form.

So we can now assume vThenever it is convenient that all formal

groups are defined over GP( q). ilhere throughout q =ph.

Define a category f? as follows : obj ects, all fortW.l groups F

in normal form and of height hover lq morphism, all homomorphisms
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of formal groups (in over k. is "additive" (er, sn ,
Next let 1>1 be the module, under ordinary addition, of

h-l i
polynomials of form I a. xl' =a(X), 0.. f. GF(q). H is in

i=O
the obvious way an h2-dimensione.l vector space over GF(p). He

define a multiplication 0 on Mby

(a 0 b) (X) is a(b(X»

This makes 1-1 into a ring

(mod deg q).

co q-l
If f = f(X) = I f. xj , write r = reX) = r

j=l J j=l

Then we have

f.
J

-PROPOSITIOI1' 3 !!!!. map f .--.,. f defines !. f1.U1ctor H 2!.

"additive" categories. Explicitly fog = fog, f + g =
G

r + S, i = 1. I,foreover, !!.!. surjection ... M,

pair 2!. formal Groups F,G •

PROOF ife show' first that f E 11 for f E: II0l'\ (F , G)• Since f is a

homomorphism, f 0 [plF = IpJ G 0 f, and since F and G are in normal

form, &JF = LP1G = X
q•

He deduce tha.t f is defined over GF(q).

Next by (ii) of the definition of normal form we see that

f(X + y) f(X) + fey) (mod deg q), and so mod deg q, f is a

polynomial in Xp• -Thus f (; r-1.

It is clear that fog = f 0 S, and i = 1. !row

f + g (X) = G(f(X), g(X» =f(X) + g(X) (mod deg q) (aga.in by (ii)
G

of the definition of normal form). Therefore f + S (X) = f(X) + sex) =
G

reX) + g(X) since deg r < q and deg g < q.



- 81-

Finally 'tie show tha.t the map is surjective. For this it

suffices to show that given a E: 1-1 'tn.th first coefficient a :# O.o

there is an l' E HC>I\(F.G) such that f =a. for these elements

generate M (as an additive group). As usual, we produce an l'

using the completeness of 'tie construct a sequence {fn}

of invertible power series (for n ;:, q) with the properties :

f =a.q

l' of::Gofn n

l' 1 - l'n+ n

(mod deg n},

(mod deg n},

Suppose we have reached f. Put H =1'-1" G 0 f. Then
In m In

F :: H (mod deg In). By Lazard's theorem (u,Th.l) there is a

c E GF(q) such that F :: H + cC (mod deg m + 1). If In :# pJ!. then
m

cC =bB for some b E: GF(q). If m =pJ!. then by Lemma 4 of §l.m m

cCm = 0 (since [p1F = [PJG = fuJI-!). Thus F :: H + bBm (mod deg m + 1).

b E GF(q). Now apply Lemma 3 of §l to deduce the existence of an

invertible power series u over GF(q) such that u 0 F u-l :: H

(mod deg m + 1), and u(X) :: X (mod des m). Put 1'm+l = fm 0 u,

It is clear that fm+1 :: fm (mod deg m), and so we ha.ve completed

-the induction step. Now put l' =lim f. He see that l' =a, andn

l' This completes the proof of the proposition.

PROOF OF THEOREH 2. He can assume both F and G are in normal

form. Choose l' E:: such tha.t f = 1, (surjection of Prop.3).

This implies tha.t f(X) ;:: X (mod deg 2), and so l' is an isomorphism.
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For literature on the arithmetic theory of division algebras

over O-p see E. Deuring, Algebren. J.P. Serre, Local class field

theory 1 Appendix (Brighton notes).

PROOF OF THEOREl·i 3 We shall vrrite E =En<1c(F) • lIe split the proof

into five steps :

1) E is a free Z -module of rank h2 ;
P

2) 9J =E e Z is a division algebra of rank h2 over ;
P

3) E is the maximal order of 50 (over Z ) ;
P

4) The centre cent ) of 9J is ;

5) The invariant inv(3» of 9J is l/h.

He first show that

Clearly if f = c g then ht(f) = n.ht([p]F) + ht(g) nh.

Conversely, let ht(f) nh , This means that there is a pOt-rer

series g(X) so that f(X) = g(Xqn), i.e., so that f =g 0 [pJ;.

iJe must shovT that geE. Since F is defined over GF( q)

(remark ar"t;er Lemma 5) we ha.ve

n n n
f(F(X,Y» = g(F(X,y)q ) =g(F(Xq ,yq »,

and
n n

F(r(X.y» =F(g(Xq), g(yq ».

Comparing the 'tl-ro expressions we deduce that

as required.
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1'1ow E is Hausdorff and complete under the height topologv. Hence

n pn E =0 and E is a complete topological Z -module. AB E contains
p

Z and has no divisors of zero (cf. III t §1 Prop.2)t E is a torsion-
p

""free Z -module. By the preceding Prop. 3. E/pE =M. i.e•• E/pE is of
p

finite dimension h2 over GF(p). Therefore E itself is a free

Z -module of rank h2• This gives assertion 1).
P

By 1). = E Z is an algebra over of dimension h
2•

p
As E has no zero-divisors t 9J is a division algebra.

He shall denote multiplication in SJ in the usual vTa::J. i.e ••

write f.g for the product, of r and g. If l' and g happen to be in

E then of eourse f.g coincides with the composite power series l' 0 g.

Thus in particular for l' E- E. pnf = " f.

To establish 3) vTe first recall that the normalized p-adic

valuation v of with v(p) = 1. has a unique extension to

again to be denoted by v; On the other hand ; ht : l' t-+ ht(f)

is a valuation of E. lmose restriction to Z coincides vrith v :p

Hence ht can be extended to a valuation of £ , and by uniqueness

this is the same as v ; In other lvords we have

(B) ht(r) =h.v(f). ror r e s.

The maximal order Ii of.!lJ is the set

If = {g E' 9J I v(g) ;:. o) •

Thus clearly E CIT. For the opposite inclusion consider an

element s of If. Then as E spans ..$ over 0'll' png E: E for some

n O. Now V(IPg ) ;:. n, and so by (B) t ht(png);:. nh. vThence by (A)
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n
o :f = P f',

f'or some f' E: E. As:if) a.s torsion-f'ree, this implies g =f', i.e.,

geE. Thus NeE, and hence N :: E.

For 4) we f'irst note that it suf'fices to establish the

equation

center:) :: Z •
P

.As Z c. cent(E), it will suff'ice to show that the Z -rank of'
p p

cent(E) is 1. If' f' E:- E, pf E- cent(E) then f E:- cent(E).

cent (E) is a direct summand of' E, and theref'ore its zp-re.nk

coincides with the dimension over GF(p) of' its image cent{E)

in the algebra H. By Prop. 3 the map E .... H is surjective, whence

cent{E) C cent(H). It thus remains to be shovn that the dimension

of' cent(r.i) over GF(p) is at most 1.

Let a(X) = a X ,
o

h-l j
b(X):: l b.XP

j=O J

be two elements of' 1,1. Then

a ,b. E GF(q)
o J

j
b yPaO j.. ,

h-l
(a 0 b) (X) = l

j=O

htl pj pj
(b 0 a) (X) = l. a

O
bJo X •

j=O

For b(X) to lie in the centre of' IiI it is thus necessary that f'or all

j
aO E: GF(q) and all j :: 1, ••• , h - 1, bj(ao - &6 ) =O. But if'
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j
aO is a primitive element of GF(q) then aO f (j =1, ••• , h - 1),

and so we must have b. = 0 for these values of j. In other vTords a
J

central element is of the form of a(X). So nov suppose that

a(X) E cent(n). "Thile b(X) is arbitrary. If we choose b. =1 for
J

all j we get the equation aO = i.e., aO GF(p). Thus in fact

cent(H) is of dimension =:,.1. (of course one has equality here).

To prove 5) we first recall the definition of inv (.9) most

convenient for our purpose. There exists an element g of 9J so that

for all r f E

(e)

'There

(mod 1- )

1 = {f E- E I ht(f) l} = {f E: E I v( f) }

is the maximal, (t'lTe-sided) ideal of E. g is of course not unique but

the values v( g) of such elements g form a unique coset mod Z. which is

the invariant of'£ • One mFJ:Y'. by multiplying through by elements of

cent ($) =Q"p' suppose that 0 =:,. v(g) < 1. One then has to sho'''' that

for such a give have v(g) = •

Let then g satisfy (e), and assume that v(g) =*.
o .::. K .::. h - 1. He shall shovT that K =1. From (e) we have,

on multiplying up by g.

gf = rPg ( K+l)
mod 1- ·

HOiV' ive can translate our statements into the language of' povTer

series. We have a power series g(X) of height K • i.e., with

K
g(X) :: a:xP

so that for all f(X) E:- E

( K+l)mod deg p ,
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(g f) (X) _ (f(P) 0 g) (X) ( 1<:+1)nod deg p ,

(1' 0 l' 0 ••• o f) (X) (p times).

If f(X) = flX + •••• , then f(P} (X) =if X + ••• , and

1<:+1hence, mod deg :p

I<:

(g 0 f) (X) :: a.rf X,

(f(P) Q g} (X) :: afi X,

I<:

i.e., 80tf = 8o:ri. As 1'1 can be any element of GF(q) (by Prop. 3)

and as a/:O it 1'o11o't-1s that I<: =1.
This completes the proof of the theorem.

§3. Galois cohomology-

Let r and A be topological groups, and suppose A is a r -group,

so that the elements of r induce automorphisms of A and so that the

map r x A -+ A is continuous. For y E: r , a E: A we denote by Ya.

the image of a under the map defined by y •

A cOeycle of r in A is a continuous map a r -+ A '\"Thich

satisfies the relation

Ue denote the set of cocycles of r in A by Zl( r,A) • }Iote tha.t

Zl( r ,A) is a set with a base point, viz., the triviaJ. cocycle which

maps each element of r onto the identity of A. For a Zl(r,A) and

b e A, the equation
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1defines a cocycle E; Z (r ,A) • 'I'vro cocycles which are related by

such an equation for some b E A are said to be associated. This is

an equivalence relation, and the equivalence classes in zl(r ,A)

thus defined are called the cohomoloe;:r classes. The set of

cohomology classes is denoted by (r ,A), which agai.n is a based set

with base point the class of the trivial cocyc.Le, The cocycles

associa.ted with the trivial cocycle are called splitting cocycles.

and they are given by

•
for some b E A.

Consider now a field k of characteristic p. and let K be a normal

separable extension of k. Denote by r the Galois group Gal(K/k).

For kl a finite field extension of k in K. ,;e write

= {y r I y leaves kl fixed elenentwise} •
1

A topology on r is defined by taking as basis of open neighbourhoods

of the identity the subgroups for all finite field extensions
1

kl of k in K. Hith this topology. a continuous hememe!Jlitiea map

a : r -+ A of topological groups has the follovTing interpreta.tion :

Take y E r • and U a neighbourhood of a( y) • There exists a

finite extension field kl of k so that whenever e E- r has the same

effect on kl as y. then aCe) U.

lie state the following tt-TO t lemmas t In.thout proof. +(K denotes

the additive group of K. and K* denotes the multiplicative group
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of the non-zero elements of K).

mmA 1 If( r ,K+) = o. (This is a consequence of the Iiorma.l

basis theorem.)

1m·mA 2 (Hilbert's Satz 90). Jf(r,K*) = 1.

Let S be the group, with respect to 0 composition, of power

series f(X) defined over K of the form f(X) =flX + f 2x2 + ••• , f l ;. O.

A topology' on S is defined by the order filtration i.e., by

viewing S as a subset of K[[X]]. The action of r on S is defined by

the action of r on the coefficients of the pmrer series in S. Hith

this structure we have

PROPOSITION 1 Hl(r,S) =1.

Define sen) = {f(X) E S I rtx) :: X (mod deg n+l) }. Then Sen)

is a normal subgroup of S (exercise for the reader). The sequence

*where S -+ K maps f(X) onto f1' is an exact sequence of r -groups.

Also, if 'leX) E sen), then f(X) :: X + cacn+l (mod deg n+2). The

map f(X) a defines a homomorphism sen) .... K+ of r-groups, and

is exact.

He must shat.,. that. if a E Zl (r ,S), then there exists b t. S such

that a( y) = b-1 0 Yb.



- 89-

co

Take a zl(r,s). Then a(y) = L a (y)xr , a (y) K.
r=l r r

*The map y (y) is a cocycle r + K , and hence by Le:rnma. 2

there exists b
l
E K* such that = Yb

l•
Take b(l)(X) =blX

and define b(l)(X) 0 a(y) 0 (yb(l)(X»-l = a(l)(y) E: 8(l). The

map y a(l)(y) is a cocycle r + 8(1). If we write

a(l)(y) = X + + ••• ,

then the map y .......,. is a cocycle r + K+. By Lemma 1 there

exists c
2
E K+ such that

a (l ) (y ) =Yc c
2 2 - 2·

Take c(X) = X + Then c(X) 0 a(l)(y) 0 (Yc(x»-l = a(2)(y) E: 8(2)

This Wa;y', we get a Cauchy sequence {b(n) (X)} such that

Put b = ilia b (n) (X). Then

Let F be a formal group of height h defined over k and

fixed once and for all. If G is another formal group defined over

k and f : F + G is an isomorphism defined over K then

(y E:- r)

and so yf : F + G is an isomorphism. It follows then that

a( y) = f-l j) Yf is an automorphism of F (defined over K). Also,
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Let kl :: k( 1'1' ••• ,fn) be the field obtained by adjoining the

first n coefficients of l' to k. Then if Y and 0 have the

same effect on kl we have Yl' :: of (mod deg n + 1), and hence

aCyl :: a(o) (mod deg n + 1). Thus a is continuous. Hence

if l' : F + G is an isomorphism (over x), then a( y) :: 1'-1 0 Yl'

defines a cocycle of r in AutK(F).

Every other isomorphism F + G is of the form l' 0 g for

g E: AutK(F). Since

(f. g)-l. Y(f" g) :: g-l <I 1'-1 0 Yf 0 Yg:: g-lo aCyl 0 Yg,

then we can associate uniquely with G the cohomology class of

1'-1 0 Yf :: aCY).

Suppose now further that G and H are isomorphic formal groups

over k and that 1,: G + H is an isomorphism defined over k. Then

1, • l' : F + H is an isomorphism defined over K and

(1, • 1')-1 0 Y(J, () f) :: 1'-1" 1,-1 0 YJ, • Yf

:: 1'-1 D Yf ,

since Y1, :: 1,. G and H are therefore associated .dth the same

class of r( r ,AutK(F».

Denote by IsoK/k(F) the set of k-isomorphic classes of

formal groups which become isomorphic to F over K. VIe have then

defined a map IsoK/k(F) + r(r,AutK(F».

THEOREH 1 Isex/k(F) + r(r.AutK(F» bijection.
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PROOF Suppose G and H are associated with the same cohomology

class. Let f : F -+ G, R.: F -+ H be K-isomorphisJ:lS. Then there

exists g E AutK(F) so that

Rearranging we get

The K-isomorphism R. 0 g 0 f-l is therefore fixed for all y E: r ,

It follows that R. • g • f-l : G -+ H is a. k-isomorphism. Thus

the map lsoK/k(F) -+ is an injection.

Let a f zl(r,AutK(F». Since zl(r,AutK(F» C

then by Proposition 1 there exists f E: S such that

But if

, for all y Eo r,

then f : F -+ G is an isomorphism of formal groups. I1oreover

as a(y) E AutK(F). This being true for all y E:. r vTe conclude that

G is defined over k. It maps onto the cohomology class of a. Thus we do

have a surjection.

Let now I(k,h) be the set of k-isomorphisms classes of formal groups

of height h. By §2, Theorem I,
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,.,hen K is a separable closure of k. vle thus obtain a full

classification of formal groups of height h from the theorem•

COROLLARY .If K is a separa.ble closure of Ie. then

Uote that by §2. Theorem 2 ve know the group AutK(F).

ExapI,ple Let h =1. Then by §2. Th. 3 En'1<:(F) =Zp for a:n::! K

and hence AutK(F) = Up' the group of p-adic units. The GaJ.ois

group r leaves Z C. En<i<:(F) elementwise fixed. hence leaves the

closure Zp of Z fixed. Thus r leaves AutK(F) fixed. But then

r(r.AutK(F» =Hom(r.AutK(F» is just the set of continuous

homomorphisms r -+ AutK(F), i.e. of continuous homomorphisms

r -+- u •
P

NOi., let the field k of definition of F be a finite field

and let K be its aJ.gebraic closure. Then, as a topological

group , the Galois group r is generated by the Frobenius sUQstitution

a : a ar, where k =GF( r) (r a power of p). Horeover. for each

element of Up there is one and only one continuous homomorphism

r -+- U which takes a onto Thus we can identify Hom( r.u ) = up p p

and we end up with a bijection

whenever k is a finite field. and the height of F is 1.
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We can use the preceding Theorem 1 to derive a classification of

formal groups of finite height h over a finite field k t lrhich is due to

J-P. Serre. Let F be such a. group, fixed once and for all, and write

E = En<1c(F), K being an algebraic closure of k. If a Eo E denote by

cR..E(a) its conjugacy class (under inner automorphisms). Let w be

the normalized p-adic valuation of E 9 l/.. 0"p which takes as its set
p

of finite values in other words, for f E, w(f) =ht(f).
If k has pS elements then vrrite T for the set of conjuga.cy classess

1f) of elements with value vT( 1T) = s.
Now let G be another formal group of height h defined over k.

Choose an isomorphism

(1) g F '" G

over K. Then

(2) e(v) =g-l"vug, v t Endx(G)

defines an isomorphism Endx( G) E of IIp-algebras. I.1oreover to

vTithin an inner automorphism this e is uniquely determined by G.

UOIr clearly the pOvTer series

s
t =t(X) =xP

is an endomorphism of Gt and so

solely depends on Gt and not on the choice of g in (1).

THEOREH 2. (Serre) • The oap If> gives 12. bi,j ection

I(k,h) '" T •
- s



- 94-

s
PROOF Let a be the Frobenius automorphism a aP of K/k. As

r ::: Ga.l(K/k) is free profinite on the single generator a it

follows that the map

So a(a)

is a bijection

(the group of units of E).

Hence a a( a) 0 t is a bijection

Observe now that if s > I then
n=l

tog = ag 0 t,

and so when gl 0 then

(4) -1 -1 agot 0 g =cot, c::: gog

Thus in the map (3) cohomologous cocycles correspond to conjugate

elements, i.e. we get a bijection

T •
- s

If now g and a are as in (1) and (2) then, by (4),

aCt) ::: a(a) 0 t, where So is a cocycle corresponding to the isomorphism

class of G under the bijection of Theorem 1. Thus the map ep factorizes

through i.e. ep(G) solely depends on the isomorphism

class of G, and moreover ep(G) Eo T. Hence finally ep induces a map
s

I(k,h) -+ T , which factorizes into the product of the bijection ofs

Theorem 1 and the bijection (5) and thus is a bijection.

VIe also note



- 95-

PROPOSITIOl1 2. e (1), (2), En'1/ G) is isomol"}?hic

sUbring E elements commuting e(t)

PROOF In Endx(G) the ring is characterized by (jCt = Ct, i.e.

by t 0 CL = a 0 t.

COROLLARY 1 En'\(G) always maximal order of -algebra

it spans.

COROLLARY 2. There exists .a group G defined k , of height h

= Endx(G), if only!!. h divides s.

For, the set of values of w on the centre lZ of E a.s the setp

of positive multiples of h.

COROLLARY 3. !f. Ie is prime field En'1t(G) is commutative

ili field 9!.. quotients is totally ramified 9!.. degree h

In fact in the algebra 3 Z En,\(G) = D, the field Q"p(t)
p

has ramification index at least h , as w(t) = w(p). But as a subfield

of a central division algebra of rank h
2
, 0"p (t) is of degree at most h.

Thus in fact h is its degree and ramification index, and moreover

is then a maximal commutative subfield of D.
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CHAPTER IV. CONII·roTATIVE FORMAL GROUPS OF

DnreUSIOU ONE OVER A DISCRETE VALUATION RING

§I. homomorphisms.

Throughout this chapter we limit our consideration to

commutative formal groups of dimension 1.

PROPOSITION 1 L !. field of characteristic 0, F

!. formal group (commutative, of dimension 1) L.

there exists !!. unique isomorphism .l/,p : F + Ga (the additive

group) defined L, R.p' (0) = 1. SUppose!!2E. S i!.

!!l. integral domain IDl!. quotient field L, and that P is defined

m£. S. R.'F{X) f S[[X]].

(We denote the inverse of the isomorphism .l/,F by eF).

(r,Iotivation for notation: If P is the multiplicative group
ClO

Gm(X,Y) = X + Y + XY, then R.F(X) = log(l + X) = r (_l)D-l xn/n ,n=l
and

X ClO yfl
eF(x) = e - 1 = L '="1" .)

n=l n.

PROOF By II, §2 Theorem 1, Corollary 1, or III u, 2,

Corollary 1, lIe see that there exists an isomorphism (over L)

g : F + Ga. Also, D(g) = gt(O) , O. Now D : -+- L is an

isomorphism, since the elements of are the monomials cae.

We can therefore rind gl C such that D(Sl) =D(g)-l.

Thus R.F =Slg : F -+- Ga is an isomorphism with R.'F(O) = 1. To show

uniqueness, suppose f, g : F + G are isomorphisms with
a
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ft(O) =g'(O). Then r 0 g-l E. Aut(G) and D(r 0 g-1) = 1.
a

Therefore f 0 g-l is the identity on G and so f =g.a

To prove the second part of the proposition (write .R.p = .R.)

1-Te differentiate , with respect to Y, the equation

.R.{F{X,Y» = .R.{X) + .R.{Y).

He obtain

where F2(X,Y) denotes the derivative of F(X,Y) with respect to Y.

Put Y =0 : .R.'(X) F
2(X,O)

=1. From our assumption on F. F2(X,O)

has coefficients in S and leading coefficient 1. Therefore.R.' (X) has

coefficients in S, being the inverse of F2(X,O).

COROLLARY 1

COROLLARY 2

COROLLARY 3

D : He>m:r, (F .G) .... L !!. !. bijection.

It F G formal groups defined S

D : HOlI1g(F ,G) .... S is in.iective.

PROPOSITION 2 hypothesis !!:!t in Prop. b !!:!!£. if

i:a addition q is !. positive integer. q > 1, HOIIL(p,G) is

2f. power series r constant term) defined

over L SO that- --

PROOF By Prop. 1, Cor. 2 we only have to shmT that (*), together
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with the equation n(f) =a. determines f uniquely. He shall

establish uniqueness of the partial series

fIX + ••• + f jf-l
n-l

by induction on n.

Suppose that

_ [q] 0

G
(mod deg n) t

i.e•• that

Then

as D( [q}) = q. Here we must have

•
c

f = -----n nq-q

Note that clearly fn is a "polynomial" in f l,··· ,fn_l•

Nore precisely we see by iteration that there exist polynomials

q> (T), depending on F. G and n so that f = q> (fl). The unique
n n n

f satisf'ying (*) in Proposition 2. with D(f) =a, is thus

co

Suppose from now on that R is a discrete valuation ring with

quotient field K of characteristic O. maximal ideal ,... ,and

residue class field k of characteristic p , o. Let v denote the
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va.luation on K given by r . (we take v normaJ.ized, so that

v(p) :;: 1). (Hote: ve are now allOtdng filtrations 'tlhose values

are real, but not necessarily integral.)

COROLLARY F G 2!t defined R. !h!B. (F,G) )

closed R.

PROOF D: + K is a bijection by Prop. 1. D-l(a) in
00

has leading coefficient a, and hence D-l(a) = I
n=l

R is a closed set (with respect to the valuation topology) in K.

and since is a polynomial it is continuous. The elements a E. K

for which (a) E R therefore form a closed subset C of K. Sincen n

= Q Cn' then D(HOIlln(F,G» is closed.

lie denote by k the separable closure k , The homomorphism

-R + k induces a f'unctor '9R + '§k (cr , III, H, Prop. 1) J under

-which F F

-PROPOSITIOlT 3 If F is B2:t isomorphic li Ga

i:!. in'; ective •
-PROOF Suppose f : F -+- G is a. non-zero homomorphism so that f =O.

Let (n) = ')1-. Then f(X) = nr g(X) where r > 0 and g ;. O. He have

(mod '1 r+l R[[xlI) •



Hence g(F(X,Y» =g(X) + g(Y)

and g(F(X,Y» = sex) + s(y).
Therefore g 0 &JF = fp1G 0

a
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(mod

-g =O.

r.] -"'-Since g ; 0, then LP F =0, i.e., F =Ga (III, §l, Th.2).

In viet.,. of III, §2, Cor 3 to Prop. 1, ",.,.e have

COROLLARY

Suppose nm.,. that F and G are formal groups over R, and

F. G are of finite height. Then we can define three different

filtrations on viz., the filtration induced by the

normeJ.ized filtration v on R and the injection D : .. R

(again to be denoted by v); the filtration induced by the height

filtration ht on and the injection of Prop 3 (again

denoted by ht); the p-filtration where the associated subgroups are

{ (F ,G)} (denoted by up)'

Recall now that two filtrations on a group are said to

be equivsJ.ent if they give rise to the same topology. Before

stating Theorem 1, "''''hich gives the relation between v. ht and

up' we make the following definition. A filtration w on a free

Zp-module A of finite rank. is called a norm if, for some

vsJ.uation Vi of Zp' equivalent to the p-adic one,

w(Cs.) = v'(c) + w(a). c e Z , a E A.
P

Any "tl-TO norms are then equivalent.

THEOREM 1 Su;epose R !!. complete. (i) v, ht and u are equivalent
-p-
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filtrations is complete under these

filtrations. (ii) zp-module of h
2•

h = Ht(r). (iii) (Lubin) En<L(F) is a commutative Z
-- p-

whose quotient field h!:!. degree dividing h.

Remark: One can in fact shOi'l' that the rank of .G) divides

h. See below (Corollary 3 to Theorem 4 in §2).

A Z -order is a Z -algebra vThich is free of finite rank asp p

a Zp-module. Recall that we alreaay knovT to be an integral

domain.

Irote that v and ht are in fact valuations on

Hence = =v(f). Thus lfe have the

COROLLARY ht(f) = v(f). Ht(F).

PROOF Q£:. THEOREH 1 It follows from the Corollary to Prop. 2 that

is complete under the v-topology. With respect to the

p-adic topology on Z and v-topOlogies on and R.

is a commutative diagram of continuous maps. \ole may therefore

extend Z -+ (F) to make
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commu"tative. Since is a torsion-free

(III, U, Prop.2), then Hom....(F ,G) is a torsion-free Z -module.
r< p

If s t- Ira {Zp -+- , i.e. D(S) E: Zp' then for r E

we have

v(f 0 g) =v(f) + v(D(g»,

't-There v(D(g» is the p-adic va.lue of D(g).

NOW' consider and the height filtration,

and Z, Zp again with the p-a.di.c topology. He get a diagram of

continuous maps

which is cOIIImuta"tive when Z is replaced bY' Z, hence remains
p

commutative nOVT. It nOW' follOW's that

(***)

is a homomorphism of Zp-modules. But H0I!Jt(F ,G) is a free

Zp-module of rank 0 or rank h2 (cf. Lemma 1, given after this

proof). Since (***) is an embedding (Prop.3), then

is a free Z -module of rank < h2•
P -

NOW" ht(f 0 g) =ht(f 0 g) :;:: ht(r) + ht(g). But the

restriction to Z of the height fUnction is a valuation equivalent
p

to the p-adic one. Hence ht is a on In view of

(**), v is also a norm on Trivially, up is a norm on
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(F.G)• Since all norms are equivalent. then v. ht and up

are equivalent.

VIe know that, to within isomorphism, zp c C End.:k(F).

Since is isomorphic to the maximal order of a central

division algebra fJJ of rank. h2 over C1p (III, §2,Th.3), then the

quotient field of which contains Op, is contained in •

But every subfield of a central division algebra over a field is

contained in a maximaJ. such sUbfield, and if h2 denotes the rank

of the division algebra then every such maximal subfield has

degree h. This gives the rest of the theorem.

He have still to prove the lemma. promised above, viz ••

1 y:. F is Qf. finite heip'..ht h , then ,a) is !.

Z -module of rack 0 or h2•p ---

PROOF If Ht(G) Ht(F), then 0 (III, §2, Prop 1, Cor.3).

Suppose then that Ht(G) = Ht(F)= h. By III, §2, Th.2, there

exists an isomorphism f : F -+- G, and hence ,a) = f 0

The maps g f---t fog define an isomorphism -+- of

Z -modules. The lemma. nov follovTs from III, §2, Th. 3.
p

Suppose nov that L is a finite field extension of the

quotient field K of R, and denote by S the ring of integers of L.

Then Theorem 1 holds for S substituted in place of R. He denote

the quotient fields of and Endg(F) by and &S(F)

respectively.

PROPOSITIOJ)T 4 y:. K contains algebraic extensions 2!. in L
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degree dividing h, (F) = En<13 (F) •

PROOF Since D : EndS(F) + S is injective (Prop.l, Cor 3), then

&- S(F) is isomorphic to the quotient field 8- of D(EndS(F» which

is a subfield of L. By Theorem 1, &- s(F) is an algebraic extension

of of degree dividing h, and by our hypothesis on K, & C K.

Consider f E: En<13(F). liTe have f' (0) = D(f) E &- , and therefore

f'(O) E K. By Prop. 1, Cor. 2, there exists g E: En%(F) such that

g'(O) = f'(O). Regarding g as being in then g'(O) = f'(O)

implies f = s (Prop. 1, Cor.2). Therefore f E En%(F) n Ends(F)

=

!Iote: Let denote the composite field (inside some algebraic

closure ) over of all algebraic extensions of of degree

dividing h. One knows that the number of these extensions is

finite and hence that : 01>]< co • If K does not contain

all extensions of of degree dividing h, then does.

§2 The group of points of a formal group F

In this section R is a complete discrete valuation ring

with quotient field K of characteristic O. ma.ximaJ. ideal 11 ' and

residue class field k of characteristic p o. lfe assume the

1-valuation v on K is normalized so that v(p) = 1.

All formal groups, unless othennse mentioned, are defined

over R, and are assumed to be commutative, of dimension 1.

-
K is the algebraic closure of K. The integers in K (Le.

the elements of the integral closure in it of R) form a local ring Ii
-(not Noetherian), Le. the non-units of R form an ideal which is the
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- -unique maximal ideal l' of R. The unique extension to K of the

-valuation v of K, will age.i.n be denoted by v. Note that K is

complete.

Suppose L is a finite field extension of K, and let S

denote the integers in L. Take f E S[[Xl' ••• ,Xn]] • Then for

-al,. • • ,an E '1 • f( al, •• •an) makes sense and converges in R

(and if the constant term in f is 0, f(al, •••• an) lies in ).

Note that al, ••• ,an and all the coefficients of f are integers

in Ll = ••• ,an)' and Ll• being a finite extension of a complete

field K. is complete. He "then apply I. §2, Theorem 1.

Let now F be a formal group (defined over R).

1 (i) elements 2f. 1{ !EE!!!!!. abelian group

F(R) =P(F) under :!ill!. operation

a*13 =F(a,B),

and v( a*13) inf {v( a}, v( 13)}. elements 2f. p( F) 2.t finite

order tQl"111!. subgroup A(F), torsion subgroup .9!. PCF).

(ii) P(F) and A(F) are modules over r = Gal(K!K).- - -
(iii) g f: F -)0 G is §. homomorphism 2.t formal groups defined

over R map a t-+ f(a) i!!.!. homomorphism P(f) : P(F) -)0 peG).

P sS A covariant functors £!:2!!!. category iJ R to

catego;z 2!. f-modules. !B. pal"ticular P(F) 2 A(F) IllOdules

.!?!!£. sa these endomorphisms commute r •

PROOF (i) If t/K is finite, and SL the valuation ring of L. then

F(SL) is defined as in I, §3. Theorem 1 and is an abelian group. vie



-106 -

ha.ve then

P(F) = F(S ) = U F(SL)
L L L

(ii) If Y r, then YF(a,B) =F(Ya,YB), since F is defined

over R and its coefficients are therefore fixed by y. This part

of the proposition is then easily verified.

(iii) If f : F -+ G is a. homomorphism defined over R, then

-f maps t into itself (since f has zero constant term). Since

f(F(X,Y» =G(f(X),f(Y»,

•

Remark If F is the additive group G
a,

then P{F) is just twith

the orlinary addition. h{F) =O.

If F is the multiplicative group G, G (X,Y) =X + Y + XY,m m

then P{F) is isomorphic to the group U of those units u of R for

,..hich u :: 1 (mod1- ). The isomorphism P(F) -+ U is given by a l-'-t 1 + 0..

h{F) is isomorphic 'nth the group of pn_t h roots of unity for all n.

An isogen.y f : F -+ G is defined to be a non-zero homomorphism

defined over R. Since fl(O) is algebraic over K then f'(O) lies in

some finite extension L of K. By Prop. 1, Cor.2, there exists

g e such that gl{O) =f'(O). Since f,g E then

the same proposition tells us that f =g. f is thus defined over

L n R. Hence every isogeny is defined over some finite extension of R.

From now on all formaJ.. groups to be considered are assumed to be of finite
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height, unless otherwise mentioned.

THEOREH 1 (Lubin ,Serre) Let f : F -+ isogeny. Then

(i) map P(f) : P(F) -+ peG) is sUl",jective;

(ii) E!!. kernel of P(f) i:!. finite grOUP 2!. order pht(f).

-PROOF Let lJ. E 1t. Then f(X) - u is defined over some finite

extension S of R. For the Heierstrass order we have the equation

ht(f)
W-ord(f(X) - lJ.) =W-ord(f(X» = l' ,

and ht(f) is finite by §l, Prop. 3. By the Heierstrass Preparation

Theorem (I, §l, Th.3) therefore,

f(X) - lJ. = u(X).g(X),

where u(X) is an invertible power series and g(X) is a distinguished

polynomial :

ht(f)
g(X) =Xl'

Take a E so that g(a) =o. Since the coefficients of g lie in S

then a e n. As Si E j, then also a E 1- But the zeros of

f(X) - lJ. are precisely the zeros of SeX). Hence we have f(a) = lJ. for

some a E j. This proves (i).

For (ii), take lJ. = O. Now g(X) has pht(f) distinct roots,

provided that g(a) = 0 implies s' (a) f:. o, Thus rtx) = 0 has pht(f)

roots in i ' provided f( a) =0 implies ff (a) 0, (a E j).
Differentiating the equation f(F(X,Y» =G(f(X),f(Y)} with respect to

Y, 'fTe obtain
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(here, the suff'ix 2 denotes the deriva.tive with respect to the

second varia.ble). Put X = a. Y =O. If' f(a) =O. then

f'(a)F
2(a,O)

=G
2
(O,O) . f ' (O) . = ft(O) # 0 (by §l, Prop. 1, Cor.2).

Therefore f'(a) # O.

The following theorem is really a. Corollary of' Theorem 1.

THEORm,I 2 (Lubin, Serre). (i) P(F) !.!!.!. divisible grOUP, and

integers prime :E. p induce automorphisms 2£ P(F).

(ii) A(F) • h =Ht(F).

«h) denotes h-fold product)

PROOF (i) For n prime to p. i.e. n a. unit of R, [n].", is an
l'

a.utomorphism of P. Hence p( [nJ.",) is an automorphism of P(F).
l'

Apply Theorem 1 to r = The surjectivity of'

p( fp]:) : P(F) + P(F) implies that pep) is divisible.
1:'

(ii) A(F) is a torsion subgroup of the divisible group pep)

hence divisible. Also A(F) is p-primary. Hence A(F) •

dim{Ker II>JF}where c = dim{Ker[p]F}' But the cardinality of' Kerfp]p is P

Which by Theorem 1 is ph. Therefore c = h •

For each real number p

is a fractional ideal of' R.

• the set J = {a c Klv(a) > p}
P

If p > O. then J is an ideal of' R. and
- p

in particular, J 0 = 1-. For p .::. 0, the elements of' J p f'orm a
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subgroup F(J ) of P(F) (Prop.l). (Abuse Notation).
p

By §l, Prop, 1, there ey.ists a. unique isomorphism. R..... : F -+- G ,
J:' a

defined over K, such that R.F(X) is defined over R and R.F(O) = 1.

As before, we denote the inverse of R.F by eF•

THEOREr,! 3 (Serre) (i ) R.F converges on '1; eF ponverges on Jl/p-l

(ii ) map a R.
F
( a) (a E j) defines !:. hOI!lO:r.lorphism

P(F) -+- It 2f. r-moduJ.es 2!. sequence

o -+- h(F) -+- P(F) -+- iC+ -+- 0 is exact.

(iii-) R.F eF define inverse iSOI!lOrphisms

I\, +
F(Jl/p_l) =J l/p-l

(1rhere the group operation on J+l/p-l is the usual addition).

For the proof of 'lheorem 3 the following 1emm<ds needed.

LEHMA 1 :E2!: number P > 0, there exists integer

n =n(p,F) a E: v(a) p

v( > l/p-l.

PROOF He mz:r assume p < 1. since othenrise we may take n = O.

Now [P]F(X) := pX (mod deg 2). If v(a) > 0, then

[p]F(a) =pa + ir,
for some r R. 'lhus if v( a) p, then

v([p]F(a» inf(l + v(a), 2p) inf (l,2p).

'Vle deduce then by induction that
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inf (1.2
np),

and we then choose n so that 2np > 1/p-1.

PROOF OF THEOREU 3 VTrite = l a f!. Since I.'F is defined
n=l n

=1. then v(nan) 0 and =1. lie thus have

Put n = p.. (n) t then yen) .:;. a(n). Now

v(a an) = nv(a) + v(a ) > p:(n) yea) _ yen) > po(n) veal - o(n),
n n - -

which tends to CD as n provided that yea) > O. Hence

converges if yea) > o.

vTrite eF(X) = l bnx?'. Choose /3 R so that v( /3) = 1/p-1.
1 n=l

e.g. =p. Then

v( a Sn-1) > - yen)
n - p-1

which is 0 when yen) = O. If yen) > 0 we continue

yen)
n-1

1
_ yen) > p 1 -1 - yen)

p- - p-

2 v(n)-l ()=1 + P P + ••• + P - v n O.

Therefore (/3-1 0 R.F 0 S) (X) = an/3n-1 yf has coefficients in R,

and leading coefficient 1. Its inverse under composition

is thus also a pO't1er series 'tnth integral coefficients and leading

coefficient 1. Hence v(b Sn-1) > O. Take a f: J1/ l' i.e •• such that
n - p-
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v( a) > l/p-l. Then

as n co,

since > O. Thus eF( a) converges if C4 E. Jl/p-l- Horeover

v(b eP) > v( a), if n > 1. Therefore e
F
( a) = a + a' 'Ilhere v( a') > v{a).

n '

Hence 'lye deduc e that. if a t Jl/p-l' then v( eF( a» = v( a) • Similarly,

if a E: Jl/p-l' then v( = v( a). The I:1S.pS a H' eF( a) and

a R.F( a) thus define inverse bijections Jl/p-l Jl/p_l- Under

therefore the subgroup of points F(Jl/p_l)
becomes isomorphic to

the additive group of J,l/p-l' and the inverse isomorphism is given

by eFe He have thus esta.blished (i) and (iii).

Since K+ is torsion free, then h(F) C Ker 1.,.,_ Let a E Ker R..,.,.

By Lemma. 1, (a) E F(J,l/p_l) for some integer n > o. Since

R.p ( a» =0, then by (iii), a) =O. Therefore a h(F).

Thus in fact Ker R.(F) = h(F).

Suppose a E K+. Since iC+/Jl/P-l is a torsion mdule, then

pm a Eo Jl/p-l for some m. Thus by (iii) there exists a c Jl/p-l

such that iF(a) = pnla• But P(F) is divisible (Theorem 2) so there

exists B e P(F) such that &>J;( (3) = a • Since pIDR.F( S) = pn1a, then

R.F( S) = a. He have thus sholm that R.
F

P(F) R+ is surjective

and so that the sequence 0 heF) peF) R+ 0 of groups is exact.

Since .lI.p is defined over K this is a sequence of r -modules.

If f E then both R.F 0 f and f' (0) 0 iF are homomorphisms

F G 'Inth derivative f' (0) at O. They therefore coincide. Froma.
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the commutative diagram

P(F) ----=----+,

lp(f) Ir' (0)
P(F) -----....,.,. R+

we deduce that P(F) R+ is a homomorphism of Endu(F) - I:'loduJ.es.

The theorem is a converse of Theorem 1. It shcnrs

that every finite subgroup of A(F) arises as the kernel of some

isogeny.

THEOREH (Lubin) q; finite sUbgroup of A(F). Let L be the---
fixed field 2!. sta.bilizer 2!. q; in Ga.l(R/K), S denote

integers 2!.L. there exists !. rormaJ. group G

isogeny r : F G, over S, so

(i) Kerf=<I> , (we ifrite Ker r for Ker

(ii) !f. s : F -+- H is isogeny Ker g .:> e , then there

exists !. unique h : G -+- H g =h 0 f. !!. s H

!:!!. defined integers Sl 2!. finite extension Ll L

then so is h.---
COROLLARY 1 !!. there exists isogeny F G defined

Sl' there exists !!!. isogeny G F defined Sl.

OF
PROOF,(COROLLARY 1 If f : F -+- G is an isogeny t then suppose the

exponent of Ker r is pr. Then Ker f C Ker By Theorem 4
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G -+- F such that h 0 f = G?J:, and h
i:!

COROLLARY 2 Either H01Ilg (F ,G) =0, 2!:.H01Ilg (F ,G) Ends (F) -module

i:2.. isomorphic to ideal 2!. Ends(F), EndS(G)-module

isomotphic ideal 2!. (G).

?ROOF Suppose HO!llc-{F,G) :# o. By Cor. 1, there exists an isogeny
i:)

g : G -+- F over S. The map f .....,. g 0 f is an injective homomorphism

H01Ilg(F,G) -+- Ends{F) of whose image is a non-zero

ideal. Analogously for the map f .......,. fog.

COROLLARY 3 li. H01Ilg (F ,G) :# 0

(i) quotient fields 2!. 2!. D(EndS(G» coincide;

(ii) 2! H0I!ls(F,G) 2Y£ Zp i:!. 2!. Ends (F)

2!. EndS(G) ) •

PROOF (ii) follOt<TS iIlmlediately from Corollary 2 and from the fact

that a:ay non-zero ideal of an integral domain I, vThich is a Z -order,
p

has the same Z -rank as I.
P

For (i) vrrite =D(EndS(F», H =Hamg(F,G), TF = (H),
F

and let be the quotient field of EF (vie'YTed as a sUbfield of

Define similarly EG, TG and LGe By Corollary 2, H is isomorphic

to a non-zero ideal of the integral domain EF, and therefore TF

is a sUbring of L.F' containing EFe Clearly EG C TF , hence

LG C. Similarly c. LGe

For the proof of Theorem 4 we shall need some lemmas.

If A is a complete local ring (this e.1iTays to imply that it is
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Hauadorff) then so is A[[x]1. vIe 'VTrite 11t- for the ma.ximaJ. ideal.

and 'V1 for the associated filtration of the latter ring. If T E. '1J1., ,

T At then we may viEnr AIlT]l as a subring of A[[X]].

LEHHA 2 Suppose X !!. 2!. polynomial !!l U

n-l
P(U) =tf - L

i=l

ip.U
J.

,

i:!l.A[[T]l,

w(p.) ;> n - i •
J. -

A[[X]] generated !!L mtA[[T]]-module 2l.1t X, ••• ,xn-l •

PROOF For eacn non-negative integer m and for i = O.l•••• tn - 1,

there are unique elements r . in A[[T]], so that in A[[T]] Iu]
m,J.

n-l
tfle L r . ui

i=O mtJ.
(mod p(U».

Here r . == <5 • v1hen m < n - 1. and r . =p.. Thus. for m n.m.J. m.J. - n,J. J.

l1(r .i > tn - i. For m ;> n one easily establishes the same
m,l. -

inequality by induction, using the itera.tion formulae for the r ••
m m.1

Hence if a. E: At the series L So r . converges under the
m m=o m m,],

l1-topology and hence

as we required to shmr.

RecaJ.l nO'V1 (of. It §2, Th.l) tha.t if B is a commutative

ring containing A, complete under some filtra.tion u, and if e E B,
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u(S) > 0 then there is a unique continuous of rings

with etx) = S, which leaves A elementidse fixed. Let in particular

B = A[[x]] t U = IT. Then the resulting e is continuous also for

the IT-topology.

Let now F be a formal group (commutative, of 1)

defined over A, and let ep (: '»t..A (the ideal of A). Then by

the preceding argument we obtain a continuous automorphism eep

of A[[X]] over A which maps X into F(X,<l». Let F(A) be the group

of points, i •e. of elements of 11t
A

under the product a{;S = F(a, S) •

If ep-1 is the inverse of ep in F(A) then e<!l-l is the inverse

autoI:lorphism of e¢. Hence etP is bicontinuous. The map <l> ..... e¢

is then an injective homomorphism of F(A) into the bicontinuous

automorphism group of A[[X]] fA. Let nOW' be a finite subgroup of F(A),

and suppose that A is an integral domain.

L]}.IHA 3 fixed ring Qf. A[[xlJ is A[[T]] t iThere T =TJ F(X,<l».

PROOF 'He consider the l1eierstrass order in U on the pOW'cr series

ring AnT]} [[U]]. He have, idth n =card ,

H-ord ( n F(U,¢) - T) = 1'1-ord( 11 F(U,cf»)

= L F(U,tP) =n,
¢

as i-l-ord F(U,<1» =1. Therefore, by the Heierstrass Preparation Theorem
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rl - T =p(U).Q(U),
If>

where P(U) is a monic polynomial in U of degree n over AI[T]]

and Q(U) is an invertible power series in U. Clearly the F(X,cj»

and so in particular X = F(X,O) are roots of n F(U,cj» - T, hence
W

of p(U). Counting degrees and number of roots we see that

(1) p(u) = n (U - F(X.cj»).
4i

Thus p(U) satisfies the conditions of Lemma 2. and hence

(2) A[[X]J is generated by 1,X,••• ,r-l as an A[[T]]-module.

UOvT let

E = quotient field of A[[X]] ,

EO = quotient field of A[[T] ] •

El =fixed field of Win E.

T'.aen

and by Galois theory

But by (2), E is generated over EO by 1, X, •••t"-l. In vievT of

(3), (4) it follOi-TS firstly that EO = E
l
, and secondly that the

1,X, ••• ,xn-l are independent over Eo. Thus P(U) is irreducible over

EO. By (2) therefore A[[X] I is a free A[[T]] -module on 1,X•••• ,xn-1 •
i.e., every element a of A[[xlJ has a unique representation in the

form
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a. E A[[T]] •
1.

Suppose nO\-1 that a is under <I> ,i.e., in El• AB

EO = El and as (5) is the representation of a as an element in

terms of a basis over EO' it follows that a =aO E. AUT]}. Thus

A[[X]] () El C A[[T]] • The opposite inclusion is trivial.

PROOF QE. THEOREH 4 Let L' = K( <I> ), and let S' denote the integers

of L'. Then f(X) = rl F(X,$) is a power series over S' with

vanishing constant term. For $ t <I> , f($) = n F($,4-) = o.
cI>

Therefore Ker f > (l • .AJ.so, if a ' P(F) and f(a) = 0, then

n F(a,cfl) = o. This means that F(a,4-) = 0 for some ell E:. cI>, and a
cI>

is the inverse of 41 under +. Hence a t cI>. Thus we have ShOtID
F

thatKerf= cI>.

Let A = S' [[x]] t and define f* (Y) = f(F(X,Y» E Any]].

Then

*f (y) = n F(F(X,Y) ,41) = n F(X,F(Y ,<iI».
cI> cI>

For $ E cI> , f*$(y) = rl F(F(X,F(Y,$», 4-)
cI>

*= n F(F(X,Y) ,F( $,9» = f (Y).
cI>

By Lemma 3, the fixed ring of A[[Y]} under cI> is A[[:r(Y)]]. Hence

*f (y) A[[tiy)]] = s'I[f(Y),x]l = BUXJ]. vThere B= s' [[fey>]].

Consider f**(X) = n F(F(X,Y), 41). This is fixed under the
cI>

action of cI> on B[[x]] given by Xcfl= F(X,$). We may apply the lemma

again, and deduce that the fixed ring of B[[x]l under cI> is
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B[[r(x)]l = s' [[r(X),f(Y)]].

Now we sum up : f(F(X,Y) = 1'*(Y), when considered as a

pO'VTer series in Y over A =S' [[X]] .. and we saw that

(y) E: A[[r(Y)]J =B [[x]], where B = s' [[f(Y)JJ. Thus f(F(X,Y) = 1'**(X)

is an element of B[[f(X)]] = s' [[f(X) ,f(Y)]]. Hence there exists

G(X,Y) E s' [[x,Y]} so that

(6) f(F(X,Y» =G(f(X),

Now 1" (X) = r {F' (X,l/J) n F(X,<l»}. He put X =° and observe that
l/J <1>;&l/J° E: eJ, and we get 1"(0) = F'(O,O) n 4> ; 0. Thus, working over L'.

<1>;&0
'VTe conclude that

(7) G = l' 0 F Q 1'-1

is a forma1. group.

Let A be the stabilizer of 0 in As is finite,

this is a SUbgroup of finite index, "Those fixed field "re denoted by

L. If 0 E: A , then rtx) 0 = n F(X,4>o) = n F(X,<l» = rtx), Thus
ep I}

f(X) is defined over L, and by (7), so is G. Thus finaJ.J.y G is a

formal group defined over S =S' () L and l' is an isogeny F + G

defined over S so that Ker l' = 0 • He have thus established (i).

Let no'.; g : F + Ii be an isoe;eny vTith ICer g ::) ep , defined

over the ring Sl of integers in some finite extension of K. He

IrJB:Y' suppose that L1 ::> L'. VIe see that for <p ep

g<l>(X) =g(F(X,<l») =H(g(X),S(¢» =Ii(g(X),O) =g(X).

Thus g(X) lies in the fixed ring of ep in Sl[[X]] , i.e., g(X) =h(f(X»
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by Lema 3, 1vith heX) E. 8
1
[[xJ]. As g(X) has no constant term,

neither has h(X). One now verifies easily tha.t h is an isogeny G -+ H.

§3 Division and Ra.tional Points.

l,R, K, v, ffi, Ro, K etc., are as in §2. L is e. field

-between K and K, 8 is the domain of integers of L, i.e.,

8 = {a L Iv(a) O} • n =Gal(!/L) •

Let F be a formal group over R, uhose reduction mod 1-
is of finite height. Write

P(F,L) =P(F) () L,

A(F ,L) =A(F) n L

(subgroups of points I and of torsion points in L). Let moreover

,L) be the subgroup of P(F) of points a which are of finite

order mod L, i.e., for 'VThich (a) E L for sufficiently large n.

Thus is the torsion group of P(F)/P{F,L).

THEOREl·l 1 R.F gives ti!!. !. cOImllUtative diagram exact

2!. homomorphisms 9!.

o + h(F,L) -+ P(F,L) 4 L+ -+ -+ -+ 0

1 1
o -+ h(F) -+6((F,L) -+ L+ -+ 0

COROLLARY get !m. exact sequence



-120-

PROOF OF THE COROLLARY IJlDl1ediate.

PROOF In view of §2, Theorem 3, we get an exact sequence

But r(n,r) = O. We thus get the top rmr of the diagram. Uote aJ.so

that t.. is given by the restriction of R.F• It is clear that the

cohomology groups are as the operation of

on P(F) and on r commutes with the Galois group is an

via the map .... R .... ?-). The proof of the theorem will be complete

once we ha.ve shown that R.F(a) E L+ if and only if a cfi<. (F.L). Here

we use

LEr.1f·1A, 1 s Bs.. Eo isogen.v F .... G defined over S. a P(F).

f(a) P(G,L) it and if. l2!:. W E n.wa ra Ker P(f).

(F difference in P(F».

Taking the lemma for granted at the moment we note that if

a E fR- (F ,L) then fPJ; (a) E"= L for some n, hence for that n and for all CI)

aJ.so a) = 0, i.e•• wa r a A(F) = Ker R.
F
• Thus

wR.F(a) = R.F(CI)a) = R.F(a). In other words R.F(a) L+. Conversely,

R.F(a) E L+ implies that a E: Ker R.F for all CI). But there are only a

finite number of elements a. Hence for all CI) and for some n,

a E Ker This implies tha.t = for all W •

i.e., E L. Whence a E

PROOF OF LEl>1MA 1

<=>wf(a)5 f(a) = 0 for all W

<=> f(CI)ar a) = 0 for all W •
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SUGGESTION In the following discussion (Theorem 2 and 3) consider the

particular case when F =G and its relation to Kummer theory.m
c .In the next theorem A stands for the product of c copaes

of a group A. h is the height of F.

THEOREH 2
c

A(F)/A(F.L) 1

c
L+/Im A 2 ,

•

Here c1 ::.. h, II valuation saL i!. discrete cl = h.

c2 [L : 0"p] degree), and if valuation En. L

discrete c2 = [L : oJ.
COROLLARY !!. L i!. algebraic 2!. finite degree ".P

•

PROOF OF THE COROLLARY Immediate.

PROOF The groups A(F). and L+ are divisible. Hence

the same is true for their respective quotient groups. Horeover

9(F.L)/P(F.L) is a. p-primary torsion group, by definition. Hence

it is of the form The other two isonorphisms and the

equation c =cl + c2 now follow fron the Corollary to Theoreo 1.

Clearly c2 cannot exceed the dimension [L: Q-pl of the

'" hQ"p-space L. On the other hand the isomorphism A(F) = ('),/Zp)

implies that c
l

Horeover if A(F,L) is finite then cl =h.
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Suppose now that the veJ..uation of L is discrete. Let p

be the least properly positive value of v on L, and apply §2,

LeIlIIl1e. 1 with this P. This yields a positive integer n, so that

[P]; (a) t Jl/p-l whenever v( a)!. P. Thus

(A(F ,L» C Jl/p-l (\ Ker

By §2, Theorem 3, the latter group is null. In other words

A(F,L) C Ker and hence is finite. Thus in fact cl = h.
co

Let R-F(X) = r \-Te eJ..ready know that - v(n).
n=l n

If the valuation of L is discrete, and p is as above then for eJ..l

a E P(F.L),

v(R-F(a» > inf v(a an) > inf n v(a) - v(n) > ,
- n n - n -

'mere K = in! {np - v(n)} > - co. Thus v(Im A) > t for some
n -

integer t, i.e., the fractioneJ.. ideeJ.. '1t contains In A , and so

'tie have a surjection

Let nmT tbe a subgroup of A(F.L). Define = set of

isogenies g over S originating from F. (i.e., g : F ... G for some G),

so that Ker peg) c: t •

fiCo = set of a E: P(F), so tha.t for some gc (f. t' g(a.) L.

Irote that 0 is a subgroup of P{F). For suppose gl' g2 t (fi (I; ,

t- L, g2(a2) E L. Then the subgroup of A(F) generated by
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Ker and Ker P(S2) is finite, hence of form Ker P(f) vThere

f = f l 0 gl =f 2 0 g2. As Ker p( f) C e we "t!W:'J' suppose r, f l and f 2

to be defined over S. How vTe see that f c: <fr t' say f : F .... G.

On the other hand a2 ) = f 2 (g2(a2 ) ) f L, as

f.(g.(a.)) E. L.
J. J. J.

THEOREH 3 (i) hm. !. commutative diagram with exact

o .... P(F,L)

1
o .... A(F,L) .... P(F,L)

HOD (n,¢) -+
c

1 1
.... :n{n)A(F))....

(Home =continuous homomorphisms).

(ii) Define £2r. a E £1<iR • w E:. .0.,

a(e. + ¢) (w) =<a, w> •
F

<a..w> =0 !2=:E. w <i ) a. P(F,L),

<a.,w> = 0 !2!:. a. ( >w leaves L( elementidse fixed.

The last result gives a perfect pairing

Unfortunately this does not in general e.lloi1' us to determine

Gal (L /LJ uniquely. But we evidently have

COROLLARY Abelian pro p-group. If ¢ is

finite, e.:monlent 2!. Gal(L( finite divides

•
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PROOF OF THEOREH 3 The diagram comes from the diagram

° IP .... P(F) .... P(F) / IP.... °
1 !° ....A(F) .... P(F).... K .... °

on taking cohomology, provided that we sho'll' that

(i) r(S'2,II» =Hom (S'2,IP) , which is true as n acts trivially
c

on II>, and

(ii) HO(S'2,P(F)/IP) =$(IP/II> ,

i.e., a E IP for all w (1 a t fl<-IP •

NO'l'1 if a E then by Lemme. 1, W ap a E. Ker peg) for some

g E: i.e., waF a E IP , for all w. Conversely, if

wa F a E. II> for all w, then these elements (finite in number)

lie in a. finite subgroup of IP, i.e., in Ker peg) for some g E: •

Hence by LeIm!IB. 1, a c fK IP •

Note that <a,w> =wa F a for the proof of the second part

of the theorem.

SPECIAL CASE 1'1'011 let f : F .... G be a fixed isogeny over S a.nd

let II> =Ker P(f). = [a E: P(F) \1'(80) Eo L] ,1' defines a

homomorphism P(f,L) P(F,L) .... P(G,L) and we have

(*) P(f,L) P(F,L) Im a •

The second isomorphism foli01-1S from Theorem 3, the first from the

commutative diagram'tnth exact r01TS
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+ IIll. P(f.L)

1
P(G.L)

+0

+0

From (*) we get a homomorphism e • the composition

P(G.L) + Coker P(f.L) + Hom (n.t).c

Explicitly this is given by the usual construction of KumI:ler theory

Let b E P(G.L). Choose a so that f(a) =b. Then

Urite

\Ie derive e. pairing

Coker P(f.L) x + Ker P(f) = t •

with zero kernels.

If L is a local field we can use the symbol {b.w} and

the norm residue symbol to define a sY1J]bol

[b.C] E: Ker P(f) , b E. P(G.L). C E L •

All this applies in particular to f = [P]F' e.ssUI:ling

Ker p( 1P1F) C A(F,L). Then we can determine the group ,L)

in (*). In fact this is the kernel of p in the group £ (F,L)/P(F.L).

Hence by Theorem 2. i-re get: If the valuation on L is discrete

(and leer p( fplF) C A(F.L» then
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+ h.[L : OpJ

i§..!. vector space Z/pZ 2!. dimension
( **)

NOW' let

By the last corollary- this is a vector space over Z/pZ. Class

field theory allOW'S us to give an upper bound on dim A when

[L : is finite, namely

(cS = 1 or 0, depending on whether L does or does not contain the

p-tb roots of unity). lole also get a lower bound. For,

dime Im e) = h + [L

Hence

a.ndthus

dimA>l+
[L :

h •

(case h = 1 1).
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§4. The Tate Module

The notation is the same as that of 62. vIe shall frequently

write [i;,); in place of A( &J;). ife know that IPJ; yields a

homomorphism.

(here Ker [P]; stands as an abbreviation for Ker A( 11>];) )•
These maps t and the groups Ker &J; define an inverse system. of Abelian

groups, whose inverse limit is the Tate module T(F) of F. Thus the

elements of T(F) can be 'YTritten as sequences

a. E: A(F}
1.

Similarly we have an inverse system, indexed by the integers

m. 0, whose groups all coincide with A(F), the map from

A(F)n+m to A(F)m being the endomorphism V(F) be the

inverse limit. The elements of V(F) can be written as sequences

a. Eo A(F) t
1.

•

The map a ........,. a
o
is a homomorphism V(F) ... A(F) t whose kernel may

clearly be identified with T(F) t i.e. t 'YTe get an exact sequence

o ... T(F) ... V(F) ... A(F) ... o.
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Equivalent description: We start with the isomorphism

HOIllz (L z /Z. 1I.(F» Ker •
p pn p p

which tnkes f into the image f(l... mod Z ). The direct system
pn p

l... z tz i'lith linit 0.,/Z gives rise to an inverse system by means
pn p p P

of the functor HOIllz ( .1I.(F». i{hich under the above isomorphism

p n+m
goes over to the inverse system (Ker Pm ). Hence in fact

Homz • 1I.(F» T(F).
p J;' p

Simi2arJ.y from the direct system L Z llith limit Q one obtains an
pn P 1>

isomorphism

'"HOmz 1I.(F» =V(F).
p

and of course ve have the natural isomorphism

'"HOIllz (Z • 1I.(F» =1I.(F).
p P

By means of these the sequence (4.1) can nov be

interpreted as being obtained by applying the functor HOmz (
P

to the sequence

.1I.(F) )

Alternatively (4.2) I!la\Y' be viewed as obtained from this sequence by

tensoring over Z with T(F).
p

Another consequence of (4.2) and (4.3). together ilith

the isomorphism
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and §2, Theorem 2, is

PROPOSITION 1 T(F) Z (h),
p

V(F) G1p (h) •

He shaJ.l in fa.ot view T(F) as a. lattice (= free Z -module of
p

maximal rank) in the vector space V(F).

The groups and maps of (4.1) are clearly f'UnctoriaJ.. Hence

in particular T(F) and V(F), as vrell as A(F), are

and the maps of' (4.1) are homomorphisms of Endu(F)-modules. 1.10reover,

an isogeny f : F .. G gives rise to a commuta.tive digram

(4.4)

T(F) .. V(F) .. A(F)

IT(r) 1v(f) 1A(f)

T(G) .. V(G) .. A(G).

PROPOSITIon 2 V(f) .!!.!a. isomorphism !S2:. T(F) i:!. injective.

Coker T(f) Ker A(f) finite.

PROOF If Ker V(f) = s. then Ker A(f) contains the sUbmodule

Ker V(f)/Ker T(f) As Ker A(f) is finite (cf. §2, Th.l),

s = 0 and so Ker V(f) = O. Similarly, as Coker A( f) = 0, (again by the

same. theorem), we conclude tha.t Coker V(f) =O. Now it foll017S that
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Ker T(f) = 0 and Ker A(f) Coker T(f) (Snake Lemma).

From this proposition it follows that Im T(f) is a. lattice

in V(G). a sublattice of T(G). (The term lattice L in a vector

space V is to imply tha.t L is of maximal rank, i.e., spans V).

We shall write L(f) for the inverse image of T(G) under V(f), i.e.,

for V(f)-l (T(G». This is a superlattice of T(F) in V(F).

The Galois group r =Gal(iC/K) acts on V(F) and T(F) as well

as on A(P) and the maps of (4.1) are homomorphisms of r -moduJ.es.

He are assuming throughout that the given formal group P is defined

over R, but yTe do not assume other formal groups G,H, •••• to be

necessarily defined over R - they mB¥ be defined over the integers in

some f'inite extension of' R. If however G as well as the isogeny

f : F -+ G are defined over R, then the diagram (4.4) is one of

r -module homomorphisms and so both Im T(f) and L(f) are r -modules.

THEOBE1>1 1 (Lubin) (L) L B!.!. sublattice 2!. T(F) i!!.V(F).

exists ml isogepy f : H -+- F sa L = Im

i!. L !!. stable under r H !:ll! f chosen defined R.

!! Im T(fl) C II:!. T(f), f l being !Jl isoanv IS. -+ F there

!!.!a. isogeny h : HI -+- H f l = f 0 h. particuJ.a.r Im T(f)

determines H t vrithin isomorphism.

(ii) L superlattice 2!. T(F) i!t V(F). ..th-.e..r...e..

exists .!It isogeny g : F -+ Gmh. L(f) =L. li. L stable under r

G s chosen be defined R.

!f. L{g) c. L(gl)' Sl being sa isoseny F -+ Gl, there
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S. isogeny h : G ... Gl !2. hog :: 131. !a. particular

L(g) determines G 13 within isomorphism.

PROOF First that of (ii). L/T(F) is a finite subgroup of

V(F) IT(F) :: 1\(F). Taldng quotients mod T(F) we thus get an

order preserving bijection from tne set of superle.ttices L to the

set of finite subgroups of 1\(F). which also preserves stability

under r. lIote also tha.t if g : F ... G is an isogeny, then

Ker 1\(13) :: L/T(F) precisely when V(g)L :: T(G), i.e., L :: L(g).

(ii) now follOW's from §2, Theorem 4.

Next the proof' of (i). Let in the sequel n be an integer

with pn T(F) C L, L being now the given sublattice of T(F).

Then p :: L' :::> T(F) and so, by (ii), there exists an isogeny

g : F ... H with Lt =L(g). i.e., with V(g)L' :: T(fl). Now

:: L C T(F) implies tha.t pn Ker 1\(g) :: 0, i.e., that

Ker 1\(g) C Ker By §2. Theorem 4, there is an isogeny

f : H ... F with fog :: But then 1m T(f) :: V(f 0 g)L'

:: pI1:,' =L, as required.

note tha.t in the a.bove constructions the choice of n is

immateriaJ. (of course within the stated conditions). If sey

m n, then 131 :: s " [PJ;--n replaces g and still f " gl :: [pl;.
lTote seconcUy that if L is r -stable then so is L'. Choose then

g to be defined over R. Hence g-l (inverse under substitution) is

defined over K, and thus t :: [P] 0 g-1 is defined over K, hence

over R.
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Let f l : Hl + F be an isogeny with Ll = Im T(fl) c. Im T(f) = L.

vTe may suppose tha.t Im T(f
l)

':::> pn T(F). Let g be as a.bove. As, by

hypothesis, pn Ker lI.(fl ) =0 there is an isoe;eny e;l : F +

with 0 f l = But then a.J.so f l 0 = &J; = fog.
1

Now we have

Therefore, by §2, Theorem 4. there is an isogeny h : H:L + H with

g =h i.e., f 0 h 0 = f 1 II gl' and so f l = f 0 h.

This completes the proof of the theorem.

He can extend the injective map

to a. map

Z + Hom(V(F), V(G»
p

which we shall still denote by V, and which remains injective.

VievTing Homn(F,G) as contained in 8 Z Homn(F,G) we have
p

THEOREM 2 1£t e E s Z s E: H0I!IR(F,G) II
p

only if. Vee;) maps T(F) T(a).

PROOF "Only if" is triviaJ..

"If" : Let pn e = h C Homn(F ,G). 'Ib.en Im T(h) C. pn T(G),

whence by Theorem 1 t h = [P] 0 hl' hl E Homn( F,G) • But then

s = hle

Ivrite nmr EF = and let be the quotient field
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of Ep in K. Then of course D induces an isomorphism

tV

Z Endn(F} =LF•
P

He vimr T(F} as an EF-IilOdule and so V(F} as an Lp-IilOdule. By

Theorem 2

= {a E: LF I a T(F} C. T(F)}.

Let g : G -+ F be an isogeny. He knelr (§2, Theorem 4 Corollary 3)

that = LGt and in fact V(g} is an isomorphism of

Hence

COROLLARY (Lubin)

one has

THEOREH 3 (Lubin) Let (iJ be an order over Z (contained in R).
- -- - p -

Then there is a. formal groun F with ht(F} = [(jJ: Z 1_ _-' _ r p

so that EF = @.

He first find an F so that ht(F) = [@ zpl and so that

is the quotient field of ([) •

Let K be the quotient field of (7, R the valuation ring of

K. He then have

3 There is !. formal grOUP F of height h = [I.C--:

50 that Ep =R.

PROOF (Construction of Lubin-Tate). Let n generate the maximal ideal

R and let q = card(R1if} = pS. By III, §2 Lemma. 1 there is a

unique F(X,Y} E R[[X,y]] lrith
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(mod deg 2)

F(f(X). =f(F(X.Y»

where f(X) = 'll'X + Xq• vTe shaJ.l then show below that F is a formal

groUP. so that the map D : + R is surjective. hence bijective.

Moreover [plF = fe 0 u, where e is the ramification index of Ie/Qp and u

is a unit of Therefore ht( [pIF) =e.s = [Ie : \1 ;: h.
Thus F is of height h. and x As : Q-pJ I [!c : = h

it that Ie = and R ;:

Let a E R and construct. aJ.ong the lines of III §2 Lemma 1,

a. po'VTer series [a.] (X) over R with

and

[a] (X):: aX (mod degree 2)

f 0 [aJ ;: [e] 0 f.

Ue have then to shovT that

F(X.Y) ;: F(Y.X).

F(F(X.Y).Z) ;: F(X.F(Y.Z».

[a] (F(X.Y» ;: F( [eJ (X). raJ (Y».

and it will follow that F is indeed a commu.tative formal group and [a]

is an endomorphism of F with D( [a.]) = a. In each case this is done

via the uniqueness part of III §2, Lemma. 1. Thus e.g. the two sides

in the last equation are both solutions of the problem of finding G.

so that

G(f(X). =f(G(X.Y»,

G(X.Y) :: aX + aY (mod degree 2).
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PROPOSITION 4 F !. formal grOUp 2.t finite height

(!) order quotient field LF• there is !. formal

group G isogeneous to F !!2. C9 =EGe

Let L be any subla.ttice of T(F) so that o = {a E Lp I aL C L}.

Such sublattices exist, e.g., L =(!) x with 0 I: K E. T(F). By

Theorem 1, there is an isogeny g : G ... F so that L = Im T(g). By

the Corollary to Theorem 2, EG = @ •

Theorem 3 now follows from the last two propositions.

The Tate module as a module over r =-- -- -
He already Y...nmT that T(F), and hence V(p) is a r -module.

An element y of r will leave T(F) and hence V(F)

fixed if and only if y lea.ves A(F) fixed. But A(F) is just a

subset of i, and so we see that the representation of r by

V(F) (or by T(F» is a faithful representation of its quotient

group Gal(K(A(F»/K).

Let t : r ... GL(T(F» (a.utomorphism group of T(F» be the

homomorphism vrith xt(y) = ry for x Eo T(F). GL(T(F» is a topological

group, a typical open neighbourhood of the identity being the subgroup

of automorphisms a :: 1 (mod pn) (i.e., of form. 1 + spn, 1 = identity,

s an endomorphism of T(F» • t is continuous. To see this we only have

to note that t(y) :: 1 (mod pn) if and only if p t(y) =p tel),
n n

l{here Pn is the map T(F) ... Ker [p];. (definition of T(F) as inverse

limit). But pnt(y) = Pnt(l). if and only if y leaves Ker CK fixed.

Ue nOl! consider the r -module V(F).
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THEOREt,,! 3 vtr) irreducible r-module. (i.e., the only

of v(r) which are r -modules are v(r) and 0).

This is a version of a result given by Serre, 'iatered down to fit

in ,lith the tools we have available.

Denote by rs the orbit under r of an element s in a r -set S.

'Hhat we have to show is tha.t if 0 (: x : v(r) then the subspace

genera.ted by rx is the 'ihole of vrr),

consider an x E T(F), with x f p T(r).

of V(F) generated by rx. 11 is a free

It clearly suffices to

Let then 1-1 be the Z -submodule
p

Z -module of rank s < h and '1e
p -

have to show that s h.

Hrite Pn for the surjection T(F) -+ Ker associated with

the inverse limit T(F) = lim Ker II C T(F) and so Pn (M) is

defined. It is the direct product of at most s cyclic sUbgroups, and

so the number of elements in P (I.:I), not in PP (M) is at mostn n
ns (n-l)s. ( ) . .p - p • \'JrJ.te a =P xr« Then ea.ch element of ran lJ.es Jonn n

Pn(H), and not in PPn (n). Therefore

The left hand side is the nUDber of conjugates of an over K, and so

equal to the degree [K(a) K]. He thus get the inequal.ity
n

holding for all n.

lTOV1 note that

(4.6)
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He shall show that this implies the existence of a positive constant

c so that

Comparison of (4.5) 'tfith (4.7) as n + CCI yields then the required

inequality s h.

To get 7) from (4.6) we require a lemma.,to be proved later.

LEHHA a,a E:. p(p), [p]p (a) = S •

(a) !!. v( B) .::. 1, v( a) .::. v( 8) Ip.

(b) !!. v( (3) .::. lIe, e being ramification index 2!. K

yea) .::. v(S)/ph.

I'Te apply the leI:lI:la to complete the proof of the theorem. Return

to (4.6). By §2 Theorem 3, .::.l/p-l 1. From the lemma, form

(a), we obtain by induction the inequaJ.ity v( a ) < IIp!1-1• Therefore
n -

for some no , v(a ) < lIe. How use form (b) in the lemma. to get
no -

for n _> no the inequality v( a ) < lIe p (n-no )h. On the other hand let
n -

en be the ramification index of K( an) IK. Then certainly e v( a ) > lIe,n n-
lIe being the least strictly positive value of v on K. Hence finally

It remins to prove the lelm!la.
CCI

Let [P]",(X) = I a X
n •

.. n=l n

Here = p. Apply I, §3 Theorem 2 to the ring R/pR and "t-l),e

reduction of [P]F(X) mod pRe This tells us that v(a ) > yep) =1
n -

whenever p t n, i.e., in particular



v(a ) > 1
n -
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for 0 < n < p.

Simi1ar-J.y. applying the same reasoning to the residue class field ot R.

one gets

v(e. ) > lIe
n -

hforO<n<p.

(4.10) jv(a) < v(a.) + jv(a) = < v(s).
- J J -

If' first v(B) .::. 1 then f'or 0 < n < p. we have by (4.8)

and so j p. whence by (4.1b) pv(a) v(B).

If' next v( (3) .::. lie, then we deduce simi1arJ.y that j ph.

whence again by (4.10) ph v( a) .::. v( B)•
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