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$1. introduction 

1 .I. 77~ mnMumus functor pmblem. By a cydinder in a category C we mean a 
~mdkategofy K, two functarsP, Q : K + C, and a natural transformation 

o : P-+ Q; we denote the cylinder for short by a. When P is the r’onstunt functor 
at some object N of C. the cylinder Q is called a m?ne. with vertex AL 

A fun&.x T : C + A is said to be continuous with respcx~ to 01 if lim P and 

l&n TQ exist in A. and if tim TQ : lim TP + lim TQ is an isomorphism. When or is 
a cone with vertex N, this continuity just means that TO : TN + TQ is a limit of 

TQ in A. If Tis continuous with respect to each at in a class r of cylinders in C, 

we say that T is continuous with mpect to r. 

Nate that all of our categories are supposed to he locally small, and that a 
class is said to be SO& If it is a set, and Irree otherwise; completeness means small 
completeness. 

If I’is a class of cylinders in a small category C, the functors T : C + A con- . 

tinuous with respect tcr IV’orm a full subcategory [C, A] I’ of the functor category 
[(I’, A), which is easily seen to be closed under limits in [C. AJ ; the primary aim 
of this paper is to give suffkknt conditions for it to be 3 reflective subcategory. 
Since the conditions we give include the completeness and the cocompletcness of 
A. they will lztlsu be sufficient for the completeness and the cocompJeteness of 

IC. Al,. * 
In a subsequent paper WC shall give a different set of sufficient conditions. The 

two sets at least come close to being mutually incompatible, and we have no corn-- 

mon proof of the two results. 
There are many examples of categories of the form [C, A),. ; for instance the 



category of A-valued shc~ves on a site C. Often I’ consists of uoncs that are thcm- 

ves limits: then the functors in [C, A],- are said ta be those that pmme these 

hits. @w such example is that oi the Scft-exact functors f + A, where C and A 
are abelian: another is that of the C-algebras in A, where C is a theory with rank - 

in this case the limits to be preserved are the products of dimension less than the 

rank. in the case A = Sets, Lmbek [IO] considered the category of those T that 
prcwrve aN smaft limits in @, and raised the question of its cocomplctencss; this 
is IP CM in which the class f is not smal!. 

AS for the history of the problem, certain special cases are classical; for instance, 
rhe xflectivity of sheaves of abelian groups amsng prcsheaves; or the reflectivity af 
kft exact functors. from a maI1 abelian category to Ab, maerg all additive func- 
tars. The general assertion that [C, Af is reflective in [ 4:, Al if A is Sets, Ab, 
!kt@‘P or Atf’p . tnd if I‘ consists of cones that are limits, was made by the first 
author ( 115, pp* 1 W- I 191 Je A proof in the casf: A = Sets, r = any maif family of 

cmm, was given in the unpublished but widely distributed notes of Gabrict. A 

proof in the cake A = Sets, f = atI cones in C tflat are limits, was given by Kenni- 
MMI 19). During the writing-up of this paper, we have rweived a preprint af Mmcr‘s 
summary [ 14) of his forthcoming book with Gabriel [6] ; they give a proof when 

I’ is small and A is what they tail a IO&@ ~m~~~bfe category. in view of their 

characterization of these categories (see 3 3.2 below ), the probkm for a lc.xalty 

prcmtable A reduces to the problem for A = Sets as ariginaily considered by 

Gabriel. 

4n the present paper we prove the reflectiveness of Ic. A ] I- for a class ofczate- 

goirm A bhggcr than that of the localiy presentable ones, containing such non- 
fcJI:alfy-prescntabfe categories as top&q&al spaces or compactly generated spaces. 
UClrr also altow r to be large, insisting onfy that the ciass of cylinders in r Nehich 
arc not rones be small. The subsequent paper will deat with cases where Ac3p has 

the kinds of properties that A has here, and will include such cas,rs as A = WP, 

Ri VP or TopOP. 
Our reds Stem to bear some relation, not too well understood, to those of 

Barr 111 and of Schubert f 121 on the txxompietencss of the algebras over u n~onad 

f= triple j. 

l.2. 7&e crrrhr,go& subcrrr~o~~ ~~~hlenl. When suitably formulated in the functor 

category IC, A] + our problem appears as a special clase of a more gcnerai one, having 
ta do with functor categories as such. 

WC say that a morphism k . iI1 fl-+ N and an objet t R in a category A are ortiro- 
gorral, writing H I k CH k J. 8, if’ the function A(&. B) : A(N, B) + A(&{, B) is bijm 

tive; that IS. if every f : M -+ R is of the form f-= gk for a unique g : IV -+ t3. If 3 is 

;i ciass of rnorphkms of A, write 3? for {B E A 1 H _b k for every k E A } , or equally 
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for the full subcategory of A with this class of objects. Similarly, if 8 is a class of 

objects of A, write El1 for the class of motphisms k in A orthogonal to every 
BE 8. 

If F : K + A is a functor with limit I,, and if k : M + N is orthogonaf to FK for 
each K E K, it follows at once from the fact that A(N, -) and A(M, - ) : A + &ts 
preserve limits that k is orthogonal to L; in other words 

hop&ion I 2.1. Al is dosad under limits in A. 

It follows therefore that. when A is complete. A1 will be rcflcctive in A if the 
solution-set condition is satisfied. We shall give in $4 suffiicient conditions for this 
to be so. , 

1.3. RtzJuctiw of the first pvblem to the sec&rd . tf X is a set and A E A, we write 

X 43) A for the coptoduct of X copies of A; so that by detInition AM Qp A, B) 
2 Sets (X, A&4, B)). If H : C -+ Sets is a functor and A E A. we also write HC8) A : 

C --* A for the functor sending C to HC Qp A. 
Let Q : P -, Q : K + C Br a cylinder in the small category C. Cossider the t’unc- 

tor P : K”p --, [ C, Sets) which sends K to C(PK, --). and let P be its colintit in 
(C, SetsI. Define 0 and $j similarly. Then Q gives rise to a natural transformat ion 
& : 0 --* fi with components hK = C(aK. ). and passage to the cohmit gives a 
morphism c : 0 -+ P in (C, SetsI. If A is a category with copowers, WC get fbr 
each A f A a morphism ;r” Qo A : 0 cx) A +? C3 A in 1 t. A]. 

Proof. To say that TE A’ is to say that every ~1 : a OD A -+ T factorizes as follows 
for a unique v: 

c1 
. - . --- -+_T 

Such morphisms ~1 ctrrrespond bijectively to morphisms p’ : g -+ &A, 7’ - ); and 

these correspond bijectively to morphisms ~1” : &I -+ &A. T -. ) which are natural 

in K (when &A, T -- ) is considered as 3 functor of K which is independent of K). 



Since &T = c(QK. -), the Yoneda lemma shows that such plr correspond bijec. 
lively to morphisms I.r”’ : A -+ TQK that are natural in K, and thus finally to mor- 
phism~ : A + lim TQ. Since the diagram ( I. 1). translates into the diagram 

to say that TE ICI’ is indeed to say that TE [C, Al,- , 

L4. Fizc?&~fif~ns The formulation of our sufficient conditions involves in an 
com~lerttial way a chosen proper l cto&utiun ( E, M) an the category A; this is the 
sarr~e thing as a bicclregwtieul s~mcture in the sense of Isbell 171. Among the prop- 
erties of these, we need the closure properties of E; these are largely the same as 
th4s closure properties of 6 i p which we also need; and this is becauspc these repre- 
scrrt two special cases of some tl Jng more general that we call a prefiMwizution. 

Wt: give in 15 2 a connected account of prefactorizAtions and of factorizations, in 
suifftcient generality to be of use in other contexts. 

Much of what we do in $2 can be found in one or other of two recent sources: 
the privatdy circulated manuscript of Barr [2], who) deals with factorizations and 
generators; and that of Ringed [ 111, whose rq&u Dpdrs coincide under mild 
completeness ilnd CocompIeteness hypotheses with our prefactorirzrions. 

8 2. Prefactwizations and factorizations 

2,li. Rt$&fM~trbrzs. We work in a fmed category A. Given morphisms p and i of 
k ‘we writep J i if. for every pair of morphisms N, v with vp = iu, there is a ursiquc 
di;llgonal w rendering commutative the diagram 

P 
- _--., - _c.-_- -+ 

If ff 15 any class of morphisms we define two other classes as follows: 
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ff’={pIpJh forallhEt(), 

W={iIhSi for all h E ff}. 

By a pnefmtotizufion (E, M) in A we mean a pair of classes of morphisms of A such 
that f=Mt and&b P. 

By the usual arguments about Galois connexions, we get from any class H pre- 
factorizations ( ff a. ff t c ) and ( H ) ?, f-f’). If we order prefactorizations by setting 
(E, M) bc; (E’, N’) whenever E C E’ (which is equivalent to M 3 M’), then they form 
a (possibly large) complete lattice: the supremum of ( E,. MJ is (M f , M ), where 
M = n iit, . 

If the colimit of the diagram pa - A * Ba is qa : BQ + C, we call 9*pQ, which is 
independent of Q, the fib~d copruduct of the pa ; when all the pa aw cpimorphisms,, 
so that 9&pa is too, we sur3stitute for “fit~red coprc;duct” the word “cointersection”. 

t 

Proposition 2.1 .I. Let ( E. lli[ ) be a prefictorkatiort. Then 
(a) E contains the isomorphisms and is closed undo composition; 
(b) at*~y push-out of an f is an E; 
(c) Spa :X&+Ilcar,isanEifeuchp, :A,+B,isan E; 
(d) the fibred coptiwt of pa : A-+Bo,isan fifeuchp,isau E; 
(e) if p4 is an E so is p, provided that 9 is either an E or an epimurphism. 

hf. All are easy consequences of the fact that E is of the form ff ’ for some class 
ff (cf. Ill],. 

koposition 2.1.2.1”( f , M) is a prefactwization, E n M is the ckss of isomorphisms. 

bof. For the non-trivial part take p = i E E fl M, u = 1, v = 1 in diagram (2.1 J. 

kcpsition 2.1.3. Let A have a terminal abject and let 8 be any class of objects of 
A Then B1 is the class E of a prefactorization, and therefore has all the closure prop 
erties &en in Rqwsition 2.1.1. Moreover, it has the fotlowing special properries: 

(a) if”pq E 8? the11 9 E 8’. pnwided that either p E B1 or 9 is an epimorphism; 
f b) if 9 is an epimorphism, then pcl is in @ if and only if p and 9 are both in 8? 

Roof. For the first part observe that B* = H t, where ff consists of all the morphisms 

B -+ 2 ~4th BE 8 and 2 the terminal object. Assertion (a) follows easily from the 
defmition of 81, and (b) is immediate from (a) and Proposition 2.1.1 (e). 

-position 2.1.4. Let ( E, M) = ( ff t , H t 1 ) be a prefactorization in A and consider 
the fukMrzg assertioru: 



while (e) * ( a$ if A admits either fin&e hums or wADk kerr&pairs_ 

Proof. (a) * (a), (c) a(e), (d) * (6) are trivial;(b) =+(c) and (h) a (d) are easy con- 
Sequences of the fact that E = ff t. 

To prove (e) * (a), let ix = iy where iE M and wherex, y : A --* B. If we have 
finite jums, set u = ( I, x), Y = ( 1. y) : B + A + B. If WC have weak kernel-pain, let 
u. Y be Instead a weak kern&pair of i. Then in both cases WC have 1 = ut, I = vt 

for slome I; we havex = US; y = lzs far some s; and we have iu = iv. Since the retrae- 
tion u is in E by hypothesis (e) and since i is in M, the square iu = ir? has a diagonal 
l W with v = W. But then I = vt = wolf = w; whence u = IF and therefore x = y, as de- 

sired. (cf. f 2 1.) 

2.2. Facmtizatims. A factoriza?iun (E, M) in A consists of two classes E, M of mop 
phisms of A, each containing the isomorphisms and &scd under composition, such 
that 

(2.2) 
(2.3) 

every mofg&m of A is of the fofm ip, where i E M and p E f ; 
if vi’ = i’p’dF where i, F” E M and p, p’ E E, there is a unique w rendering 
commutative the diagram 

P i 
_-- .._ 

P 
--+ f _ - - .- - I. _.._-_,___._+ , 

a ; I I 
i W’ 1 ip 

: 
i 

I ‘II 
m------b-_. ---_--+ _ _ .---. __ ____“__ -y 

P’ 
., 

I 



It is immedirtte that. if u = 1 and Y = i in ( 2.3). then w is an rsomorphism; so the 

factorization in ( 2.2) is essentially unique, and we tail it the eutfonical ftictonia- 
tirrrr of the given morphism of A. 

Roof. In view of ( 2.4) we need E 3, ht ? and its dual. Let fE M ? have canonical 

factsrizMon f = ip. By the defimtion of M lr there is a t rendering commuta tjvc 

Let the canonic;rl fxtoriration oft bc t = &. By the uniqueness of canonical fac- 

torizations applied to ii - 4 = it = t = 1 l t . we conclude that 41 is an isomorphism; 

whence t f M. By the same uniqueness applied to 1 l y = tf = ti . pI WC conclude 

that ti is an isomorphiun. Since it = 1 it fofh>ws that t is an isomorphism, whence 

f=r*-tpE E.(tf. [?I.) 

2.3. lkjpsr factorizutions. A prefa<torization, and in particular a factorization. is 

said to be prop@ if Avery f: is an epimsrphism and every M is a monom~rphian. 

Ptaaf. For the “only if*’ part, j E E by Proposition 2.1.4 rend then j is an isomar- 

phism by Prupati tion 2. I .L. The “lf~’ part is obvious for a factori/,ation and it re- 

mains to prove it for 8 prefWori/.ation. Let it4 = r*p with i E ,\I : form the pull-back 

(s, j) of i and v get tin& 



Then j E &I by Proposit ion 2.1.1 (h). whence j is an isornorphism by hypothesis. 

Then d-l is a diagonal for (2.1). unique since i is monomorphic: sop E M t = E. 

Fh&.Civenf: A 38 let ia : Ca + B be the M’s through which f facfoaizp5 and let 
i : C -+ &I? be their intersection. Then f factorizes through i, sa:w asf= @. We have 

M by Proposition 2.1.1 (d)andpE E by L&mma 2.3.1. 

Write Epi, Mon for the classes of all epimorphisms and of all monomorphisms in 
A. An cpimorphism p in A is said to be exttrernal if, whenever p = jt with j mono- 
morphic. i is an isomorphism. Write Epi +. Non* for the classes of extrema9 epi- 
morphims and of err t remal m onomorphisms. 

1ptoof. By Proposition 2.1.4. Man’ 4 C Mon; whence Man? 4 = Mon, so that (Mont, 
Han) is a prefaetorization.. Since every coretrtaction is in Mon, Monl C Epi by the 
dual of Proposition 2.1.4. It now follows from Lemma 2.3. I that Mod = Epi+. 

Rowtion 2.3.4. (Epi*, Mon) is o pruper factrrrizati~~n in A in each uf the fslluwing 
iTaSe$.’ 

( i ). A is finitely cgmplete and u&nits arbikrary intersectkms o]* m~n~?rtmrphisms. 
(ii). A is finit@ cscamplete and admits arbitmty- cointersectians ul’ extremal 

qimurphisma 

Roof. Cases (ij and (ii) follow from Lemmas 2.3.3 and 2.3.2, For case (iii), given 
f’ letf= ip where p is the coequalizer of the kernel-pair of$ and let i = j9. where 9 
is the coequafizer of the kernel-pair of i. Then f and p have the same kernel-pair, 
M) that 9p, which is intermediate betweenfand p, also has this kernel-pair. Since a 
ccxqualizer is the coequaltier of its kernel-pair, 9p and p are ooequdizers of the 
same thing, u%ence 9 is an isomorphism. This means that i E Man, on the other hand 
p G Epi* by Lemma 2.3.3 and Proposition 2.1.4. 

Thus any respectably complete or cocomplete category admits the proper facztor- 
izAtions (Epi*, Mon) and @pi, Man*), which may concide. These are clearly the 
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least and the greatest, respectively, of the proper factotizations; there may be 
others between them. In Hausdorff topological spaces, Epi* = topological quo:ient 
maps, Mon = injections; Epi = maps on to a dense subset, Man* = inclusions of a 
closed subspace. Gn intermediate proper factorization is given by E = surjections, 
M = inclusions of a subspace. 

2.4. Sr&&je~f~. Let A be a category with a given proper factorization (E, M). We 
are going to use such words as “subobject”, “w&powered”, “union”, “generator” 
in a sense relative to ( E, &I); if there is danger of confusion we can say “&subob- 
ject”, etc. 

As usual we say of monomorphisms i : B -+ A and j : C -J A that i G j if i = jk 

for some (nccesMly unique) k : B + C; and we call i and j equiwhr if i G j and 
i G i. By a subo6jes’t of A we mean an equivalence class of monomorphisms 
i : B + A, one (and therefore all) of which belong to M. As usual we freely confuse 
the subobject with its representative monomorphism i : t3 + A, and we often Ioosely 
calf 8 itself the subobject. We order the subobjects as we do their representatives; 
thus they form a [possibly large) partially ordered class. We call A well-powmed if 
for each A E A the class of subobjects of A is small. We define quotient object and 
co-weQt?w~~~ dualty. 

If iQ : 8, + A are subobjects of A and if the monomorphisms ja admit an inter- 
set tion i : B -+ A, then i is again a subobjec t of A by Proposition 2.1.1(d); we call 
it the inremrtim of the iQ ; clearly it is their infunum. We also write B = n Bet. 

Because there are highly respectable categories, tike Spanier’s quasi-topological 
spaces [ 131, that are not well-powered but admit intersections of arbitrary fmilies 
of subobjects. we should define u&n ror large families also. Let us therefore say 
that Y fmi!y qa : 8, +C(aE i1)isin Eif,wheneverwehavek:D-+Einti and 

morphismsu, : Ba s* D (a f A) and v : C + E rendering commutative all the dia- 

grams 

Ba -.- _cc___ _q_!!_ -.._..-_3 C 

P t 

I 

i 
i 
J 

D _-. - -._-_-r- .___._ 

k 
._.-“--) [:’ 

then there is a w : C-+D with bp = V; that wq, = N, and that w is unique follows 

because k is a monomorphism. If ICB, exists in A, this is exactly to say that the 
morphism q : Xi& + C’, with components qa, is in E. 



A subobject j : C + A of A is now said to be the UPZ~OPI of the t%ubob+cts 
i& : i3, -+ A if ia G j for all ~)r and if. where we factorize the i, through j as 

then the family qor is in E. It is eaq- to see that a union is unique if it exists and 
that it is the supremum of the la. We also write C= U B*. Note that if the SQ are 
considered as s&objects of C rather than af A, then C is still their union. 

The union of the jQ! certainty exists if CB, does; it isj : C -* A where jiy is the 
canonical factorization of the morphism i : S3a --, A with components ip. We leave 
the reader to pruve that it also exists if A admits pull-backs and admits arbitrary 
intlcrscctions af subobjects. 

A morphismf : A -43 induces a map from the subobjects of A to those of& it 
assigns to a subobject i : C -+ A of A the subobject j : D -+ l3 of B where the cano- 
nical/ factorization of fi is&. We write D = &’ and cali it the direct image of C. In 
patticular we have the case where i = 1, ; iff : A + B has the canonicai facto&a- 
tionA+CzR. weca)l~:C~Rtheirrms!~ofl;andwriteC=irnJ”~A.Itis 
immediate that f(lJ~&) = U~C; if the left side exists. 

Suppose that A admits pull-backs. Then a morphism f : A + B atso induces a 
map from the subobjects of B to thsse of A. It ti~tgns to gr subobject j : D + B of 
B the sub&jet i : C-A of A given by the putl-back d&wn 

Note that i E M by Proposition T. 1. I (bj. We write C=f-*D and cat1 it the MMYS~ 
imw ofD. it is immediate that ~-t(~D~) = nf-Il& if the Ieft side exists. 

2.5. Genemtors. Let A again have a given proper factorization ( [, Irjf). A gene~~h~r 
of A is a slplofl full subcategory G of A such that, for each A E A, the family of ult 
morphisms G -+ A with domain G E G is in E. If A admits coproducts, there is a 
canonicaf morphism 

fG, f)-conipuncnt, for G E G and I^E A(G, A), isf; and to say that C is a 
enerator is to say that gA E f: for each A E IL Mote that G remains a generator 

if f E, MI is replaced by a larger proper factor& tion ( E’, bf ‘). 



Reposition 2.5.1. Cilnsider the stfftements: 
(3) G is a generator. 
(b) For any proper suhbject i : i3 -+ A, there is a G’ E G and a morphism 

f : C + A that does not factorize though i. 
lhen (a) * (b), while (bb * (a) if A admits coproduets or pull-backs. 

Roof. (a) a(h) is immediate from the definition of a generator;{ b) * (‘a) follows 
from Lemma 2.3.1 if A admits coprcxiucts, and is left to the reader when A admits 
pull-backs. 

Cotilaty 2.5.X If A bus a gtmemtt~r and admits finite intersmtims of s&objet ts, 
it is well-pwerexl. 

Roof. Of two different subabjwts of A at least one differs from their intersection, 
whence there is a C; E G anrt a morphism G -+ A factorizing through one but not 
through the other. 

Roof. Density of G means that every family X,; : A(c’, A) -+ A(G, B) that is na- 
tural in C is of the form A QG, fi for a uniyuc f : A 3 B; this clearly implies (b). 
The latter implies(c) by Propasitm 2.5. I. 

That (0) a*(d), and the Converse when E. = Epi. is evident if coproducts exist; 

the proofs in the other case are left to the reader. To see that (c) =+ (b) when 

M = Mon. let f satisfy the hypothesis at‘(b). 1 t f‘ollows easily from the fact that 

(c) * (d) that 1-E Man; Proposition 2.5. I then shows that f is an isomorphism. 

5 3. Boundedness 

3. i . Lk$nitim~ of boundedt~ess. We suppose hence forth that A. besides having a 

given proper fautorizstisn ( E, At ). is comp!ete and cocorrq-kte. 



WC rec;alf that a rsgzrkz~ cardinal is an infinite one that is not the sum of a lesser 
numbIer of lesser cardinals, and that there are arbitrarily large regular cardinals - 

for any inGnite cardinai, the next greater one is regular. 
An ordered set J is a-direcr&, for 3 regular cardinal o, if every subset of J of 

cardinal < u has an upper bound in J. By a +&ec&?d @M” c,fsubo~.&cr;s @B we 
mean a family & : Ca + 23 (<m Es) of subobjects of 8 where J is uedirected and 
where & -4 ‘p whenever a G iJ. We then calf !J CQ a a&e~& uniott, 

lixt u be a regular cardinal. An object A E A is said to be br;runc&$& u if 

(34 Any morphism from A ta a set-indexed union u& G [Ca factorizes through 
U, ti K Coi for some subset A” of P of cardinal < u. 

This clearly implies 
(3.2) Any morphif;m from A to a o-directed union & E J t?& factarizes through 

some Cal. 
tn fact. (3.1) and ($2) are equivalent, for 

where J is the set of subsets of I of cardinal < 01 and this set is s-directed. 
We say that A E A is &NH&X$ if it is bounded by some regular cardinal u; and 

we tail the least such a the bo~& of A. We say that A is boutid if each A E A 
is bounded. 

We can calt A ordim& bounded if (3.2) holds whenever J, in addition to being 
a-directed. is we&ordered. This is equivalrznt to (X2) if u = w (we identify cardi- 
nats with the corresponding initial ordinals), but is presumably strictly weaker for 
a general o. Everything we say below remains true if we replace “bounded“ by 
“ordinally bounded” and “u-directed union” by “we&ordered o-directed unh:n”. 
Ordmal boundednass suffices for our appfications; but all the examples we give 
are actually bounded. 

We say that pull-backs pres~e u-dinxved urtirms if whenever f : A + B and 
whenever C, -+ B is 3 u-directed famiiy of subobjects of &3, then Uf- i Ca = 
f-l UC,. Clearly it make< qo difference if we require this only in the case when H 
is itself UC,. lif we require it only forfE M, we say that ~vtte~~e~~r’onu ~~e~e~~e 
u~~reetedunions;wemay then write the conditionas U(R “CQ)=A n UC,, 

bjf. ii). Given AE A, Iet 7 be a regular cardinal 3 u and > the number of subob- 
ject-6 of A. Then for any morphisr;l f : A --c u C, in to a r-directed union we have 



A = Uj=-- t C, by (i). Since there are fewer than 7 different f-- 1 Car, they are all con- 
tained in some f’ t C’. Thus A = f” 1 C” and f factorizes as A = fi 1 C’ -+ Ca + U Ca. 

(ii). This time choose 7 u and > the number of subobjects of every quotient 
object of A. Ifi= ip is the canonical factorization of a morphism f : A + U Ca 

into 1 r-directed union, then i facto&es through some CB as in the proof of(i), so 

f factorizes through CI”@. 

RoaQ. (a) s+ (b) trivtally. and (c) * (a) by Proposition 3.1.1 and Corollary 2.52. 
To prove Qb) * (~1 let f : a4 -+ U Ca ‘be a morphism in::o a u-directed union, 

where 11 is the least rcp~lar ordinal bounding each GE C. Far each GE G and 

C&I h : C; -+A. the composite fi factorizes through some CQF whence h factorizes 

throughf-t C, and csfortk& through Uf- IQ. Thus U:‘-t C, =A by 

Proposition 2.5.1. 

Given the above s-dimted fam~!y of su bobjects let the canonical factorization 

of the induced nlorphism colim CO - B be 

The coprojcction /o : Co -+ colim Ca is in M by Yroposi t ion 2. I A, because 

G C k)ia is in M. Since j : I: Ca * colim Ca is a coequalizcr, it is in E by Proposi- 

tion 21.4. Therefore c&n Ca is the union of the ,& ; C’* -+ i=olim Ca . Since pj is 
also in E, I) is the union of the jQ : C* -4 A. 

To say that A has rank u, then, is to say that every f’ : R 4 U Ca factorizes 

through some Ca if U CQ is a o-directed union that c~~ineides with +zolim Cti. Thus 
if A is bounded it ccrtuinly has rank. The converse is false: in the category of 
Hausdorff spaces with the factorization (Epi, Man+), the one-point space is a 

generator with rank but is not bounded; see Example 3.3.5 below. The strictly 
stronger condition of boundcdness, or at least ordinal boundcdness, seems to be nc- 
ceWr)t for our results. 

If C is a generator with rank for the proper factorization ( E. ,92 ). it is obviously 



also one for any larger proper factorization ( f’, A!‘): buf boundedness is highly 
snsitive to the factorization and may disappear if WC wake it either sn13Her or 

larger; see Examples 3.3.4 and 3.3.5 below. 

Roof. Let px = py. where x, y : c -+ coh.m Ca with G E 6. Then x and ,rp both fat- 

to& throu& & for some a, say as x = & U, y = & F. Since JIX = p_~*. we have 
i&u = iav, whence u = P and x = y. From the (c) w(d) part af Ptopusitiun 2.5.3 it 
flows that p is a monomorphism. 

Prd. With u as in Lemma 3-2.1 we have p C% Man; but p 6Z E = Epi*, so that p is 
an isomorphkm; hence every G E 6 actualty is bounded by a, 

J’he forthcoming paper by Gabriel and Elmer [61, summarized by Umer in 1141 
caiHs an object A E A o-presntable if the representable functar A(& --) : A * MS 

preserves ail u-directed colimits; that is, eolimits of functors frum 3 u-directed small 
category, of which a u-directed ordered set is a special case. These authors call A 

kmd~~ presentable if it is cocomplete and has a generator G for the factorization 
(Epi*, Han) such that each C e G is a-presentable for some a. Such a category is 
complete, and is cewelt-powered even for the factorization (Epi, Man*); more- 
over every A E A is r-presentable for some 7 depending upcsn A. The categories A 

and A”P cannot both be locally presentable unkss A is a small complete lattice. 
The authors give various characterizations of Iwally prescrmble categwies. They 

are [in the language of our 5 I ) those categories of the form 1 C, Set& where f 
k a smcrll class of Iimits in C; and here we can choose C to have all limits of size 
< some u and Tto consist af these limits. They are also those full subca tegorics of 
functor categories f C, Sets] that are of the form A”. for a s)MQII clas;s A of mw 
phisms in it”. SetsI. 

Since a u*presentable abject certainly has rank 6 u in Barr’s sense, Propoation 
3.2. Z gives 

We exhibit in Example 52.3 below a bounded category with a generator. for the 
torkation &pi*, Man), that is not locally presentable. 



Example 3.3.1. A complete and cocomplete. well-powered and co-well-powered, 
abelian ABS category, with its unique proper factorization (Epi, Man), is bounded 
by Proposition 3. I. 1. Since the first au tfrar has given ( [ 5, p. 13 I 1) an example of 
such 3 category without a generatar, it follows that a bounded category need not 
have a generator. AH of our remaining examples will however have one. 

Example 3.32. If we use the factorization fEpi *, Marl) a11 the locally presentable 
categories are examples of bounded ones with a generator. Some examples of 

Icwatly presentable categories. mostly quoted from [ 14). are: the category Sets;, 

the algebras in Sets over a theory with rank; the category of ordered sets; the cate- 
gory Cd af small categories; the dual Comp”p of t(he category of compact (= cilnl- 

pact IIausdu:ff) spaces; the category of sheaves of set:, on a Crothendieek topology; 
a cocomplete abelian ABS category with a generator; fhe category of torsion-free 
abetian gtoup~; the category of those abelian groups in which 4x = 0 implies 2.x = 0. 

tn ail af these cases. except perhaps Comp”p, the boundedness is immediately 
evident; for example in the algebras over a theory with rank u7 the free algebra on 
one element is a generator and a o-directed union of subalgebras is just their set- 
t heare tic al union. 

The example of Cat shows { IS, p. 1391) that coequahzers need not he closed 
under composi~iczn in a lwally presentable category. and hence (see [8l] that 
the pull-back of a coeyualizer need not by an epimorphism. Thus in a bounded cate- 
gory with a generator the pull-bck of an C need not be an E. 

Example 3.3.3. The catcgov Top of topologicat spaces is not locally presentable. 
In fat it is not even bounded for the factorization @pi*. Mm); here Epi* = the 
topological quotient maps and Man = the injections. To see this, let A be the two- 

point space (0, I) with the trivial topology and let u be any regular cardinal. iden- 
tifi& with the corresponding initial ordinal, Let R be the set of ordinals G a with 

the trivial !r~pology. For each Q < u set Va = {/I E R 1 /iI 2 a}, and take Ca to be the 
same set 3s ti but with the topology in which the open sets arc the empty set, R, 
and the sets Vfl for 0 2a. Taking ip : Co + B as the identity map, we have a u- 

dircctcd family of subobjects of& and clearly U Co = R. Yet the mapf : A --+ B 

given by j( 0) = 0, f’( 1) = u, fat toriLes through no Co. 

Example 3.3.4. With the factorization (Epi. Man*) the category Top has the one- 
point space as a generator and is bounded: for Epi = the surjections, Man* = the 
inclusions of subspaces. and every union of subspaces is their set-theoretical union. 

This shows that boundedness for a given fac‘torimtion dots not imply boundcdness 

for a smaller une. 



Exam* 3.35. For exactly the same reasons the category of Mausdorff spaces is 
bounded with a generator if we use the factorization in which E = the sujections 
and kJ = the inclusions of subspaces. For the factorization (Epi, Man*), however, 
the category is no longer bounded al though the one-point space is still a generator. 
To see this, recall that Man* now consists of the inclusions of closed subspaces. 
kt A be the onr:!-paint space, let u be any regular cardinal, jet El be the set of ordi- 
nals G u with the order topology, and let Ca far Q < u be the clued subspace 
((EB~@<ar}.Th en or f th’ f t IS ac orization UC* is B, but the map A * Is sending 
A to u factorizes through no 4?& This shows that boundedness for a given facto& 
zation dots not imply boundedness for a larger one. 

Note that the same example shows that Comp, with its unique proper fslctoriza- 
tisn, is not bounded and so not locally presentable. 

Errompk 3.3,6. The same arguments show that compac:tly-generated spaces, whether 
Hausdarff or not (see [3] for the definition of the latter), and the quasi+topologW 
spaces of Spa lier [ 131 t are bounded with a generator when M consists of the in- 
etutions of the appropriate s&RtruQ:tureo. Since there are a proper class of quasi- 
topologies on the two-point set 40, 1} (for each cardinal u define one by taking 
the admissible mapsf: C-, (0. f}, for CEComp, to be those for which f-*(O) is 
the intersection of G u open sets), WC see that a bounded category with a generator 
need not be co-well-powered. 

Enample 3.3.7. We know that SetsoP, with its unique proper factorization, is not 
locally prcsentablc (since Sets is). In fact it is not bounded either. For let A = (0, 1) 
and let o be any regular cardinal. Ed t I3 be the set of ordinals < u and lc t C* for 

Q *= u be the set of ordinals G Qr. Define ia : B -+ Ca by ia@ = @ for fi G (I, i,(& = 0 
for $ > Q. Since i : B -+ n Ca is injective, B is the union in SeWP of the o-directed 
family of subobjects i,. Yet f : B -* A given by f@) = 0 if 0 is even, f@) = I if fl is 
odd, factorizes thrcough no C,. 

The time example, with everything given the trivial topology, shows that TopOP 
is not bounded for any proper factorization. 

E~unpk 3.3.8. Let A be bounded and let C be any small category. The factoriza- 
tion (E. #4;5 j on A gives rise to one on the functor category [C, Al if we define 
f : T-+ S in [C, A] to be in f or in M if and only if each component fc : TC -+ SC 
1s in E or in !J. S&e coiimits are formed pointwise, so are unions. It follows at 
once that f C, Al is bounded, the bound of T being the least regular cardinal bound- 
ing ?‘I? for alf CE C. Moreover, if A has a generator G, the set of “generalized re- 

table functors” t”(C, -) @ G, for G E G, forms a generator for [C, A]. 



Example 3.3.9. Further examples of bounded categories are provided by Remark 
52.2 below. and in particular by Example 52.3. 

5 4. The orthogonal subcategory theorem 

4.1. Plorrft#rhe theclrent. We now return to the problem of 5 1.2 and give suffi- 
cient conditions for the reflec tivcness of A 3 . 

Lemmr4.1.1. Let i : C -* B be irr M where BE A! Therr 
(a)ifk :nr~Nisi~Aa?~ilf,~:N-,Csarisf~~~fk=~kthenf=~; 
(b) ifA C E then CE A”. 

Roof. (a).From ipk = &k we have if = ig since B E A1 an3 then f = g since i is mono- 
morphic. 

(b). For any k : M -, A’ in d anC any I’ : M --, C we have iJ+ hk t‘or some h : N+ f3 

since BE AL. Because i E M and k E E the square if= hk has a diagonal x : N + C 
withak =I: If alsog’k = f thcng’ =R by (a). 

iRmma 4.12. Let the typical mqphism k of A lme canonical fbe turiza t ion k ‘k ” ; 

write A’ fclr the class rlf*all such k’. and wtite A” for the class of a11 such k”. T/m 
AL T (A’ u A”)‘_ 

hoof. By Proposition 2. 1.3 (b? we have B J. k if and only if B 1 k’ and B I k”. 

Theotern 4.1.3. Let A be Q complete and cocnmplete category with a given proper 
fucturizotion ( E, M b Let A be bounded md co-weiI-powered. Let the class 
A = Ct, U\lct where @ is small and where q E E. ThePr AL is a reflective subcategory 
of A. 

Proof. By Proposition I 2. I we have only to verify the solution-set condition for AL. 

Let k : Mk -+Nk be the typical element of +, and let u be a regular cardinal 
bounding Mk for all k f Cp. 

We now produce a solution-set for a given A E A. For each ordinal ot we define 

inductively a set S, of objects of A: 

so = the set of quotient objects of A. 

S a+1= the set of quotient objects of objects of the form 

C+Zkr cl A(l)lk.C)~~~.whereCES, , 



3nd f<u a limit ordinal 0, 

%J = the set tjf quotient ubjxts of objects (,f :litc form C, cT &&, where 
Ca E S, for each 0. 

WC assart that S, n 0’ is a suMran-.set for A. 
Suppose given, then, f : A -+ B with B E 15 l. We 3te to SIIOW tht3t /’ factarixes 

through some object of S, n Ai. We define inductively for each ordin3.l (or a sub- 

objccr i, : A, + 8 through which f factorizes, with iQ_ 2 $ for Q 2 0. Recall from 
52.4 the definition tfinraff4. 

(i). We tskeio : A0 + B to be the image off‘: A -+ 8. 
iii). Suppose that ia : A, -+ 5 has been cunstructcd. For each k E rt and each 
A(&, A,) there is, because bt E A’, a unique _p : A$ -+ R rendering camnmt;t- 

tivc the diagram 
AC 

M, L __. _ L.. _ _ ̂  ___ 3 & 

; 

C4.l) I i 

/ + 

4 

4 
%k 

Wrrtc ,Q x for this)t. We define &,.t : A, + t 

images ui aft theyk x 
+ B to be the unictn of’ A, and of the 

I for k E @ and x E &Mk, A,). In other wt~dc, J’* + 1 is the 
{magic of the morphism A, +&+(P AMf,J,H3Nk + B whose lirst component 
is iO and wh@e (k, x)-component is )‘A ,x. 

(rri). For a ilimit ordinal 0, we take $ : A, --t R to be the unikz of the ja for 
a < 3; that is. to be the image of I=, < p A, + Be 

It is evident that A, E S, 6~ each ot; in particular A,, E $,. Since f factorizes 
thr(mghA, 3sA +AO+dd + H, the proof will be complete if we show that 
A,$&. 

Let k E Ct. Since A, is a u-directed union, anyg : Mk + A, factorizes as 
.M iC +A, -~&for mrne Q < u. If we write x ftjr this morphism IQ -+ A,, we have 
y = ykex as in (4.1). By the definition of A, + l, y f3ctoriztx through A, + I and 
4 fohwi thrarugh A,. If this morphism Nk --I, A, is fr, we have i,hk = imgI whence 
hk = (5: since i, is m jnomorphic. 1 f also h’k = g then h’ = k by Lemma 4.1, I (3); 
thusA. Ewcl”. By Lemma4.1.1 (b) we haveA, E\lir’, whenced, EEA’ and the 
proof is complete. 

4%.Z 7k buundadne~s of AL. We shall show that Ai is again baunded, but first we 
must give it a proper factorization. 
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Proof. The first assertion follows at once from the observation that Sf’J g if and 

only iff 4 Tg. Now let ( 6, hi) bc proper. Sin~c T is faithful it reflects monomor- 
phisms and hensc every M’ is a monomorphism. If i is an equalizer in 6 then Ti 
is an cyualizer in A; hence M’ contains a11 equalizers. and therefore every E’ is 

cpimorphk by Proposit ion 2.1.4. 

Wf. A’ has a proper prefac:tori/.ation with the @vcn M’ by Lemma 4.2.i, and it 
is actually a factorization by Lemma 2.32. By the reflectivity ofA’ in A, it is 
cumpkt~ and cocompletc and admits interser:tions of arbitrary families of subob- 
jcc ts. If A admits a generator G, and if S is the r&x tion of A in to A’ , the SG for 
G E G clearly form a generator for Al. 

To SW thst A’ is ccbwell-powered, ict f : R -+ R bdong to f ‘, and iet n + A, 
-* H be the factorization off’construc‘tcd in the proof of Theorem 4.1.3, with 
dl, E S, n A1 and A, -+ I3 in M. Then since R, 3 B is in M’ it is an isomorphisr~.! 

by Lemma 2.3. t ; which gives the desired ccr-well-powereiness since S, n A1 is a 
set depending only upon AL 

Finally we show that A’ is bounded. Let u be the cardinal in the proof of 
Theorem 4.1.3. We first show that if ia : Ca + B is a o-directed family of subob- 

jects in A1 then the union U Ca in A of the CQ in fact lies in A1 and is therefore 
also their union in A’. If k E cl and g : Mk + U Ca then g factorizes through some 

C’ by the dcf’inition of u; the morphism A#, -+ Ca is nk for some n, since 
(Ii E A”, and therefore g is hk for sonic’ lr. That h is unique follows from Lemma 
4.1. I (a), whcncc U Ca E ttb” ; and U Cc, E @ I by Lemma 4. I. 1 (b). Thus 

UC, E AL. 
Now if A E A1 is bounded in A by 7. it is clearly bounded m At by max(o. 7). 



8 5. The continuous functor theorem 

S.I* Rc~ucfion offhe size of A. We return finally to the prohlenl ~,f $ 1. I, reduwi 
to that of Q 1.2 by Proposition I.3. I. The A of the tatter propc-rsition k very large. 
ad WC must reduce its size if we hope to apply Theorem 41.3. We do so by StJp= 

psing that A has a generator. Recall that a proper factorization ( E, hi ) on A gives 

3 pfopelr factonzation (E, Al) on (C, A) as in §3.3.8. 

pcuL4 
‘j Qb Rd --- --? W,cXrRd 

! 3 

by pushing out from the top left cocncr fwm a commutative diagram 



189 

Let CTE [C. Al be in A;. Since 

with similar expressions for I+‘@ Qb RA and 0 431 RA, it follows from Propositions 2.1.3 
and 2.1. I (c) that I’ is orthuguna1 10 6 @ RA for each flE H, A E A. From Propo- 
sitions 2.1.3 and 2.1. I (b) it then foHows that T is orthogonal to the push-out 
Q, A of 0 09 1zA. From Propositianv 2. t .3 and 2.1.1 (a) and (e) it follows that T 
is orthogonal to fl@ d if and only if it is orthogonal to pp, cl . Thus LhL = (.A, U Q)l 

where Sz is the class of all pa, A, $ E 63, A E A. 

Rem& 5.1.2. If 6!l is small so is A1 l but $2 is still large. If, however, A is complete, 
and if (3 is a generator not only for the factorization (E, Af) but also for the face 
&Mr~tion @pi*. Man) -.- which is the case in the work ofQbric1 and Ulrner 161 
then the mu!t of Lemma 5. I. I can be improved to: A’ = 0; . 

To see this, write IX, l 4 1 for the product of X copies of A, where X E Sets md 
A E A. Then for funi: tots t’ : C - Sets and Ip : C + A write 1 V, 7’1 for 

JcGc [K’,TC) (=e 141 for th e explanation of this notation). For A E A, we have 

Now TE Ai- if and only if [C, Al (i3 0 A, T) is an isomotphism for each 
6 f @, A E A; which is tu say that each &I, 16, TI ) is an isonwphisrn; or simply 
Gut [fl, T) is an isomorphism for each @E 6% By PrcrposiMn 2.5.3 this will bc so 
if A(G, (@. 7J ) is an isomorphism for each G E G, that is if each 1 C, A] (p C~J G, T) 

is an isonrorphism. that is if T f At. 
(For the application of this remark to the situation of Proposition 1.3.1 we do 

not need the above generality; it suffices to rewrite the proof of the proposition 
replacing A E A by G f G. ) 

Proof. By Proposikn I .3. I and Lemma 5.1. I, [ C, A] Iq = (A, U stji, where 



52 C E and where A, consists of the a” Qp 0, a E I’, G E the generator G. Here 

z : 0’ -*pa in the language of 5 1.3, where CT : Pa + Qa. 

WC ctaim that there are only a set of different pa. By hypothesis there arc only 
a set for whrch Q is not a cone. But if Q is a cone of vertex A( PQ- is the constant 
functor at N, & is the constant functor at C{N, - ), and its cofimit PO is just 
cc/V. -1; there are no more of these than C has objects. 

zis the class of codamains of the elements of A, is smatl. Now by Lemma 4.1.2 
we have Ai = (Ai U Ai ):. where Ai consists of the b1 ‘s, and A; of the E’s, in the 
e~~~nic;al factorizations k: = k’k” of the elements k of At. But since 1 C. Ai has a 

nerator by $$3.3.8, it is we&powered by Corollary 2.5.2, whence the domains of 
e k’ form a set since the codamains do. Thus Ai is smalt. Since ( C, Alta = 

(a; UA; U2)l d an since Ai tf I2 C E, the reflectivity of IC, A], folfaws from 
leorem 4. I .3. 

Remrk 52.2. From the above together with Proposition 4.L.L it ft~llows that 
IC. Al, with a suitabiic propr factorization (E’, H’) is bounded with 3 ser~erator, 
Nate tht if( E, M) = (Ep!*. Mea) fat* A then ( f-“. M’) = (Lpi*, Man) tis~. [C. All*, 

‘ncc the inclusion f C, A j I. --c [C, A) both preserves and reflects mnnomorphisms_ 
More generally the same is true for any subcategory Ai of ( C. A] where A is 3ny 

of morphiyms in [ C, A i all but a SH of which tire in E. 
This gives new examples of bounded categories: the algebns over a theory-with- 

rank in Top. with a suitable 4 E, $4 ); the category sf ail limit-preserving functors 
in EC. Sets]. with (Epi*, Man) 3s the factorization. 

Woreovcr, we can now exhibit a bounded category with 3 generator. for (#pi*, 

Mm), which is not localiy psesentabte; at ieast if we suppose that there are no 

measurable cardinals. The example is the following, for which we are indebted to 

hhrr Mx!u. 

Exunplc 52.3. Let 8 be the category of boolean u-algebras ;nd maps preserving 
countable meets, countable joins and 0. Let A be the class of maps of the form 

C+ l,where S isaset ,Zs the boolean algebra of subsets of S, C the ideal of 
countable sets, f the ternMa object. Define i5f = ;?Lk The non-existence of measur- 
3ble tardinafr is equivafent with 2 E ,tf * M is easily seen to be bounded for 

, Mm) with 22 as generator, Be~auw bf is closed with respect to products, 
l”lb for any Set s. 

L’ as 3n object in izJ is not prcseqtable for any cardina!. The functor representktd 
by ? is the forgetful iitnctor. g(Zl, -. j reflects and preserves 311 limits. It suffices 

to sbw that M * 8 fails to preserve &directed limits for every (r, 

Let S be a set of ardinality H_t. 
$Fv4 

For A C B CI S there is a natural map 
-+ Zs4k Letting A and R rsrrge through the subsets of cardinality H, we ab- 
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tain an &-directed diagram whose colimit in 8 is ZS/D where D is the ideal of a19 
subsets of cardinahty G N,. But ?$lr, $: Ad. 

lsbell produced this example for a better reason: there exists small category C 
and class r of cones such that M * [ Cw, Set&., but because M is not locally pre- 

sentable, there is no small lw for this purpose. Define c to be the full subcategory 
in B of ah free algebra of finite or countable rank and the terminal object 1. Let 
I‘, be the set of cones necessary to display each free algebra as a copowcr of the 

rank-l free algebra and one more cone to dispfay 1 as the coequaligcr of the two 
maps from 2* to 2. Then 1 (Y’, Sets],* a 8. Now for each set S take the canonical 
diagram in C whose cdimit is p/D ad define I’ as 1) together with all such dia- 
grams turned into cones by making 1 (not $$W) their vertices. Then 
1 CT. SetoJ,. * E;( , 

A&& irr prr~$, Au@dsr I. 19 72. A simpler example of a bomdcd category with a 
generator, for (Epi*. Man)* which is not tocahy presentable, stitl under the hypothe- 
sis that there are no measurable cardinals, is given on page 104 of fh] which has 
now speared. 

References 


