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§ 1. introduction

1.1. The continuous functor problem. By a cylinder in a category C we mean a
small category K, two functors P, Q : K - (, and a natural transformation

a : P- Q. we denote the cylinder for short by a. When P is the constanr functor
at some object N of C, the cylinder a is called a cone, with vertex N.

A functor T : C - A is said to be continuous with respect to a if lim TP and
lim 7Q existin A, and if lim Ta : lim TP — lim TQ is an isomorphism. When « is
a cone with vertex N, this continuity just means that Ta : TN — TQ is a limit of
TQ in A. If Tis continuous with respect to each a in a class T of cylindersin C,
we say that T is continuous with respect to T.

Note that all of our categories are supposed to be locally small, and that a
class is said to be small if it is a set, and large otherwise; completeness means small
completeness. '

If Tis a class of cylinders in a small category C, the functors T: C ~ A con-
tinuous with respect to ['form a full subcategory [C, A] . of the functor category
[C. A]. which is easily seen to be closed under limits in [ C, A} : the primary aim
of this paper is to give sufficient conditions for it o be a refle:tive subcategory.
Since the conditions we give include the completeness and the cocompleteness of
A. they will also be sufficient for the completeness and the cocompleteness of
(C. Al, .

In a subsequent paper wc shall give a different set of sufficient conditions. The
two sets at least come close to being mutually incompatible, and we have no com-
mon proof of the two results.

There are many examples of categories of the form [C, A]. ; for instance the
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catcgory of A-valued sheaves on asite C. Often I' consists of cones that are them-
sclves limits: then the functors in [C, A);. are said to be those that preserve these
limits. One such example is that of the left-exact functors C - A, where C and A
are abelian: another is that of the C-algebras in A, where C is a theory with rank -
in this case the limits to be preserved are the products of dimension less than the
rank. In the case A = Sets, Lambek [10] considered the category of those T that
preserve all small limits in C, and raised the question of its cocompleteness: this

is a case in which the class I is not small.

As for the history of the problem, certain special cases are classical; for instance,
the refiectivity of sheaves of abelian groups among presheaves; or the reflectivity of
left exact functors, from a small abelian category to Ab, among all additive func-
tors. The gencral assertion that {C, A} is reflective in [C, A] if A is Sets, Ab,
Sets®P or AL°P, ind if T consists of cones that are limits, was made by the first
author ({15, pp. 118—119]). A proof in the case A = Sets, ' = any small family of
cones, was given in the unpublished but widely distributed notes of Gabriel. A
proof in the case A = Sets, I' = all conesin C that are limits, was given by Kenni-
son [9]. During the writing-up of this paper, we have received a preprint of Ulmer's
sutmmary |14} of his forthcoming book with Gabriel [6] ; they give a proof when

I" is small and A is what they call a locally presentable category. In view of their
characterization of these categories (see § 3.2 below), the problem for a locally
prescntable A reduces to the problem for A = Sets as originally considered by
Gabriel,

n the present paper we prove the reflectiveness of [C. A} |- for a class of cate-
gortes A bigger than that of the localiy presentable ones, containing such non-
locally-presentable categories as topological spaces or compactly generated spaces.
We also aliow T to be farge, insisting only that the class of cylinders in T which
are not cones be small. The subsequent paper will deal with cases where A°P has
the kinds of properties that A has here, and will include such cases as A = Sets®P,
Rings'? or Top*P.

Our results seem to bear some relation, not too well understood, to those of
Barr {1] and of Schubert [12] on the cocompleteness of the algebras over a monad
(= triple).

1.2. The orthogonal subcategory problem. When suitably formulated in the functor
category [C. A], our problem appears as a special case of a more general one, having
nothing to do with functor categories as such.

We say that a morphism k . A/ = N and an object B in a category A are ortho-
gonal, writing B 1 k or k 1 B, if the function A(k, B) : A(V, B) = A(M, B) is bijec-
tive: that is. if every £ M — B is of the form f= gk forauniqueg : N> B. If A s
a class of morphisms of A, write &* for {BE€ A|B Lk foreveryk € A}, orequally
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for the full subcategory of A with this class of objects. Similarly, if B is a class of
ubjects of A, write B! for the class of morphisms k in A orthogonal to every
B€E B.

If F: K = Ais a functor with limit L, and if k : M = N is orthogonal to FK for
each K € K, it follows at once from the fact that A(N, =) and A(M, -) : A — Sets
preserve limits that k is orthogonal to L in other words

Proposition 1.2.1. A! is closed under limits in A.

It follows therefore that, when A is complete, Al will be reflective in A if the
solution-set condition is satisfied. We shall give in §4 sufficient conditions for this
to be so.

1.3. Reduction of the first problem to the second . If X is a set and 4 € A, we write
X @ A for the coproduct of X copies of 4; so that by definition A(X ® A, B)
>Sets(X, A(4.B)). IfH: C»Setsisafunctorand 4 € A we alsowrite H® A4 :
C — A for the functor sending C to HC ® A.

Leta : P~ Q: K = Cbe a cylinder in the small category C. Consider the func-
tor P : KOP - [C. Sets] which sends K to C(PK, --). and let P be its colimit in
[C, Sets} . Define Q and @ similarly. Then a gives rise to a natural transformation
& : Q -+ P with components @y = C{ay . ), and passage to the colimit gives a
morphisma : @ = 7 in [C. Sets]. If A is a category with copowers, we get for
eachA € Aamorphisma @4 :J@4-P®@Ain[(, A].

Proposition 1.3.1. Let A be complete and cocomplete and let T be a class of
cylinders in the small category C. Write A for the class of morphisms a®A:
O®A-P®Ain|C.A],wherea€ I A€ A. Then [C, A}, = &' .

Proof. To say that T€ Al is to say that every u : § ® A - T factorizes as follows
for a unique »:

o®a . M T
! -
i -
(‘l) &@Ai . -7 v
PRA-

Such morphisms ¢ correspond bijectively to morphisms ¢ : 0~ AA, T-);and
these correspond bijectively to morphisms p” : QK ~ A(A, T —) which are natural
in K (when A(A, T ) is considered as a functor of K which is independent of K).
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Since QK = C(QK. -), the Yoneda lemma shows that such u” correspond bijec-
tively to morphisms p'"’ : 4 = TQK that are natural in K, and thus finally to mor-
phisms ii : A - lim TQ. Since the diagram (1.1) translates into the diagram

A s » lim TQ

- ’I*
~
v lim Ta

~ N f
l

~
> limTP

tosay that T€ A! isindeed to say that T€ [C, A]. .

1.4. Factorizations. The formulation of our sufficient conditions involves in an
essential way a chosen proper factorization (E, M) on the category A; this is the
sarne thing as a bicategorical structure in the sense of Isbell [7]. Among the prop-
erties of these, we need the closure properties of E; these are largely the same as
the closure properties of B, which we also need; and this is because these repre-
sent two special cases of sometl.ing more general that we call a prefactorization.
We give in § 2 a connected account of prefactorizations and of factorizations, in
sufficient generality to be of use in other contexts.

Much of what we do in §2 can be found in one or other of two recent sources:
the privately circulated manuscript of Barr [2], who deals with factorizations and
generators; and that of Ringel [11], whose regular D-pairs coincide under mild
completeness and cocompleteness hypotheses with our prefactorizaiions.

§ 2. Prefactorizations and factorizations

2 1. Prefactorizations. We work in a fixed category A. Given morphisms p and i of
A we write p } i if, for every pair of morphisms «, v with vp = iu, there is a unique
dizgonal w rendering commutative the diagram

if H 1s any class of morphisms we define two other classes as follows:
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H'={pilpth forallh€ H},
H'={ilhii foralheH}.

By a prefactorization (E. M) in A we mean a pair of classes of morphisms of A such
that E=M' and M = E¢.

By the usual arguments about Galois connexions, we get from any class H pre-
factorizations (H', H'4)and (H* ', H*). If we order prefactorizations by setting
(E. M) (E', M) whenever E C E' (which is equivalent to M D M'), then they form
a (possibly large) complete lattice: the supremum of (E,, M) is(M', M), where
M=NM,.

If the colimit of the diagram p, - 4 ~> B, isq,, : B, — C, we call g p,,. which is
independent of a, the fibred coproduct of the p_: when all the p_ are epimorphisms,
so that g,p, is too, we substitute for “fit-red copmdu'ct" the word *“‘cointersection”.

Proposition 2.1.1. Ler (E, M) be a prefactorization. Then
(a) E contains the isomorphisms and is closed under composition;
(b) every push-out ofan E isan E;
(c) Ep, :ZA, <~ LB isanEifeachp, : A, > B, isan E;
(d) the fibred coproduct of p, - A =B, isan E ifeachp, isan E;
(e) if pq isan E so is p, provided that q is either an E or an epimorphism.

Proof. All are easy consequences of the fact that E is of the form H' for some class

H (cf. [1I]).
Proposition 2.1.2. If (E, M) is a prefactorization, E N M is the class of isomorphisms.
Proof. For the non-trivial part takep=i€ E N M,u = 1,v= 1 in diagram (2.1).

Proposition 2.1.3. Let A have a terminai object and let B be any class of objects of
A Then B! is the class E of a prefactorization, and therefore has all the closure prop-
erties given in Proposition 2.1.1. Moreover, it has the following special properties:
(a) if pq € B', then q € B, provided that either p € B* or q is an epimorphism;
(b) if q is an epimorphism, then pq is in B! if and only if p and q are both in B*.

Proof. For the first part observe that B! = H', where H consists of all the morphisms
B~ Z with BE€ B and Z the terminal object. Assertion (a) follows easily from the
definition of B, and (b) is immediate from (a) and Proposition 2.1.1 (e).

Proposition 2.1.4. Let (E, M) =(H', H'*) be a prefactorization in A and consider
the following assertions:
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(2) Every M is a monomcrphism.
(b) Every H is a monomorphism.
(¢) pg¢ € E impliesp € E.

(d}y Every coequalizerisin E.
{e) Every retractionisin E.

Then
(c)
/,. ’/f \
(@) ====> (b)_ (e).
T /fﬁ
(@~

1
while (e) = (a} if A admits either finite sums or weak kernel-pairs.

Proof. (3) = (b). (¢) = (¢), (d) = (e) are trivial: (b) = (c) and (b) = (d) are easy con-
sequences of the fact that £ = H'.

To prove (¢) = (a), let ix = iy where i € M and where x, y : 4 — B. If we have
finite sums, set w =(1,x),¥=(1,¥) : B+ A~ B.If we have weak kernel-pairs, let
u, v be instead a weak kernel-pair of i. Then in both cases we have 1 =ut, | = vt
for some ¢; we have x = us, y = vs for some 5; and we have iu = iv. Since the retrac-
tionu is in E by hypothesis (ej and since i is in M, the square iu = i» has a diagonal
w with v = wu. But then | = v = wut = w; whence u = v and therefore x = p, as de-
sired. (cf. [2])

2.2. Factorizations. A factorization (E, M) in A consists of two classes £, M of mor-

phisms of A, each containing the isomorphisms and closed under composition, such
that

(2.2) every morphism of A is of the form ip, wherei€ M andp € E;
(2.3) if vip =i'p'u’, where i, i’ € M and p, p’ € E, there is a unigue w rendering
commutative the diagram

Since £ 7 M contains the isomorphisms, (2.3) is clearly equivalent to

24y £FCM! and MCE'.
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Itis immediate that, if « = 1 and v = | in (2.3), then w is an 1somorphism; so the
factorization in (2.2) is essentially unique, and we call it the canonical factoriza-
tion of the given morphism of A.

Proposition 2.2.1. Every factorization is a prefactorization.

Proof. In view of (2.4) we need E O M' and its dual. Let f€ M' have canonical
factorization f = jp. By the definition of M' there is a ¢ rendering commutative

€ e ..—.-:
j s
. rd
| s
i ~ !
r L !

} Vg P
i P 4 i‘
i
v -

"o —»

Let the canonical factorization of 7 be ¢ = jq. By the uniqueness of canonical fac-
torizations applied to§ - ¢ =it = 1 = 1 - |, we conclude that g is an isomorphism;
whence 1 € M. By the same uniqueness applied to | - p = tf = ti - p, we conclude
that #i is an isomorphism. Since 17 = 1 it follows that ¢ is an isomorphism, whence
F=rtpeE.(cf [2])

Corollary 2.2.2. Factorizations are just those prefactorizations that satisfy (2.2).

2.3. Proper factorizations. A prefactorization, and in particular a factorization, is
said to be proper if every E is an epimorphism and every M is a monomorphisni.

Lemma 2.3.1. Let (E, M) be a proper prefactorization in A. Suppose either that
(E, M) is actually a factorization or else that A admits pull-backs. Thenp € E if
and only if, whenever p = jt with j € M, j is an isomorphism.

Proof. For the “only if” part,j€ E by Proposition 2.1.4 and thenj is an isomor-
phism by Proposition 2.1.2. The *“if™" part is obvious for a factorization and it re-
mains to prove it for a prefactorization. Let ju = vp with i € M: form the pull-back
(s. /) of i and v getting
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Then j € M by Proposition 2.1.1 (b), whence j is an isomorphism by hypothesis.
Then sj~! is a diagonal for (2.1). unique since i is monomorphic:sop€ M' = E.

Lemma 2.3.2. A proper prefactorization (E, M) in A is actually a factorization if
A admits pull-backs and admits intersections of arbitrary families of monomorphisms
that lie in M.

Proof. Given f : A > Bleti, : C, > B be the M’s through which f factorizes and let
i : C - B be their intersection. Then f factorizes through i, sav as f = /p. We have
i € M by Proposition 2.1.1 (d) and p € E by Lemma 2.3.1.

Write Epi, Mon for the classes of all epimorphisms and of all monomorphisms in
A. An epimorphism p in A is said to be extremal if, whenever p = jt with j mono-
morphic, j is an isomorphism. Write Epi*, Mon* for the classes of extremal epi-
morphisms and of extremal monomorphisms.

Lemma 2.3.3. If A is finitely complete or finitely cocomplete, (Epi*. Mon) is a
proper pre-factorization.

Proof. By Proposition 2.1.4, Mon' ¢ C Mon; whence Mon' ¢ = Mon, so that (Mon',
Mon) is a prefactorization. Since every coretraction is in Mon, Mon' C Epi by the
dual of Proposition 2.1.4. It now follows from Lemma 2.3.1 that Mon' = Epi®.

Proposition 2.3.4. (Epi*, Mon) is a proper factorization in A in each of the following
cases:
(i). A is finitely complete and admits arbitrary intersections of monomorphisms.
(ii). A is finitely cocomplete and admits arbitrary cointersections of extremal
epimorphisms.
(iit). A is finitely complete and finitely cocomplete, and composites of coequal-
izers are coequalizers.

Proof. Cases (i) and (ii) follow from Lemmas 2.3.3 and 2.3.2. For case (iii), given
f.let £=ip where p is the coequalizer of the kernel-pair of / and let i = jq, where q

is the coequalizer of the kernel-pair of . Then f and p have the same kernel-pair,

so that gp, which is intermediate between f and p, also has this kernel-pair. Since a
coequalizer is the coequalizer of its kernel-pair, gp and p are coequalizers of the
same thing, whence g is an isomorphism. This means that i € Mon, on the other hand
p € Epi* by Lemma 2.3.3 and Proposition 2.1.4.

Thus any respectably complete or cocomplete category admits the proper factor-
izations (Epi*, Mon) and (Epi, Mon*), which may concide. These are clearly the
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2.4. Subobjects. Let A be a category with a given proper factorization (€, M). We
are going to use such words as “subobject™, “weli-powered™, “union™, “generator”
in a sense reiative to ( £, M), if there is danger of confusion we can say **M-subob-
ject”, etc.

As usual we say of monomorphismsi: B>A4 andj: C -+ A thati <jifi=jk
for some (necessarily unique) # : B = C; and we call i and j equivalent if i <j and
J S i. By asubvbject of A we mean an equivalence class of monomorphisms
i : B+ A, one (and therefore all) of which belong to M. As usual we freely confuse
the subobject with its representative monomorphism i : B =+ 4, and we often loosely
call B itself the subobject. We order the subobjects as we do their representatives;
thus they form a (possibly large) partially ordered class. We call A well-powered if
for each A € A the class of subobjects of A is small. We define quotient object and
co-well-powered dually.

Ifi, : B, - A are subobjects of 4 and if the monomorphisms i, admit an inter-
section i : B - A4, then { is again a subobject of A by Proposition 2.1.1(d); we call
it the intersection of the i . clearly it is their infimum. We also write B=N B, .

Because there are highly respectable categories, like Spanier’s quasi-topological
spaces [13]. that are not well-powered but admit intersections of arbitrary families
of subobjects, we should define union (or large families also. Let us therefore say
that a family q, : B, = C(a€ A)isin E if, whenever we have k : D - E in M and
morphisms u, : 8, = D(a € A) aid v : C = E rendering commutative all the dia-
grams

[+ 4
B, - C
P
5
i
!
uq ; v
4
1
|
§
v 4
D ~— > E
2.
K
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A subobject j 1 T+ A of A is now said to be the union of the subobiccis
iy B,~Aili, <j for aii a and if, when we factorize the i, mugni as
B,—C—A
@ qy ! '

then the family ¢, is in E. It is easy to see that a union is unique if it exisis and
that it is the supremum of the i,. We aiso write C'= U B,,. Note that if the B, are
considered as subobjects of C rather than of A, then C is still their union.

e

The union of the i, certainly exists if £B, does; it isj : C ~ A where jq is the
canonicai factorization of the morphism 7 : Eii - A with components i,. We leave
the reader to prove that it aiso exists if A admits pull-backs and admits arbitrary
intersections of subobjects.

A morphism f : A - B induces a map from the sububjects of 4 to those of B: it
assigns to a subobject i : C — A4 of A the subobject j : D — B of B where the cano-
nical factorization of fi is jg. We write D = fC and call it the direct image of C. in
particular we have the case wherei =1 4.i{f : A ~ B has the canonical factoriza-
tionA4 —» C? B, wecallk : C—~Btheimage of f,and write C=imf=fA._Itis
immediate that f(UC,) = UfC, if the left side exists.

Suppose that A admits pull-backs. Then a morphism f : 4 -~ B also induces a
map from the subobjects of B to those of A. It assigns to a subobjectj: D~ B of
B the subobject i : C— A4 of A given by the pull-back diagram

C—ra
E '
i i
- &
DB

Fs

7

Note that i € M by Proposition 2.1.1 (b). We write C = f 1D and call it the inverse
image of D. It is immediate that f~1(NVD,) =N f-1D_ if the left side exists.

2.5. Generators. Let A again have a given proper factorization (E, M). A generator
of A is a small full subcategory G of A such that, for each A € A, the family of all
morphisms G —~ 4 with domain G € G isin E. If A admits coproducts, there is a
canonical morphism

K4 EioGAGABRG—A,
whose (G, f)-conipenent, for GE€ G and f € A(G, A), isf. and tosay that Gis a
generator is to say thatk 4 € E for each 4 € A. Note that G remains a generator
if (E. M) is replaced by a !arger proper factorization (E', M').
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Proposition 2.5.1. Consider the statements:
(3) G is agenerator.
(b) Forany proper subobject i - B+ A, there is a G € G and a morphism
f: G~ A that does not factorize through i.
Then (a) = (b), while (b) = (a) if A admits coproducts or pull-backs.

Proof. (a) => (b) is immediate from the definition of a generator: (b) = (a) follows
from Lemma 2.3.1 if A admits coproducts, and is left to the reader when A admits
pull-backs.

Corollary 2.5.2. If A has a generator and admits finite intersections of subobjects,
it is well-powered.

Proof. Of two different subobjects of 4 at least one differs from their intersection,
whence therc is a G € G and a morphism G —~ A4 factorizing through one but not
through the other.

Proposition 2.5.3. Let A admit coproducts or be finitely complete. Consider the
Jollowing statements:

(a) G is asmall dense (= adequate) subcategory of A .

(b) If MG, N : A(G. A) - A(G, B) is an isomorphism for all G € G, then f is an
isomorphism.

(¢) G isagenerator.

(d) Whenever f#g:. A -=BthereisaG €< Gandanh : G —~ A such that
T +#gh ‘

Then (a) = (b) = (¢) = (d); moreover (d) = (c) if the factorization (E, M) is
{Epi, Mon®), and (c) = (b) if (E, M) is (Epi*, Mon).

Proof. Density ol G means that every family A ; : A(G, A) -~ A(G, 1) that is na-
tural in G is of the form A (G, ) for a unique £ : A - B; this clearly implies (b).
The latter implies (¢) by Proposition 2.5.1.

That (¢) = (d), and the converse when E = Epi. is evident if coproducts exist;
the proofs in the other casc are left to the reader. To see that (¢) = (b) when
M = Mon, let f satisty the hypothesis of (b). 1t follows easily from the fact that
(¢) = (d) that £ € Mon: Proposition 2.5.1 then shows that f is an isomorphism.

§ 3. Boundedness

3.1. Definition of boundedness. We suppose henceforth that A, besides having a
given proper factorization (E, M), is complete and cocomplete.
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We recall that a regular cardinal is an infinite one that is not the sum of a lesser
number of lesser cardinals, and that there are arbitrarily large regular cardinals -
for any infinite cardinai, the next greater one is regular.

An ordered set J is o-directed, {or a regular cardinal o, if every subset of J of
cardinal < o has an upper bound in J. By a o-directed family of subobjects of B we
mean a family /, : C, - B{(a €J) of subobjects of 2 where J is o-directed and
where i, < ig whenever a < 3. We then call UC, a o-direcred union.

Let o be a regular cardinal. An object 4 € A is said to be bounded by o if
(3.1)  Any morphism from 4 to a set-indexed union U, . ,C, factorizes through

U, < x C, for some subset K of / of cardinal <g.

This clearly implies

(3.2)  Any morphism from A4 to a o-directed union U, . ; C, factorizes through
some C,.

in fact, (3.1) and (3.2) are equivalent, for
Uﬁelca = UK&‘JUQG;KCG'

where J is the set of subsets of / of cardinal < o: and this set is o-directed.

We say that A € A is bounded if it is bounded by some regular cardinal o; and
we call the least such o the bound of A. We say that A is bounded if each A € A
is bounded.

We can call A ordinally bounded if (3.2) holds whenever J. in addition to being
o-directed,. is well-ordered. This is equivalent to (3.2) if 0 = w (we identify cardi-
nals with the correspondiny initial ordinals), but is presumably strictly weaker for
a general 0. Everything we say below remains true if we replace “bounded” by
*“ordinally bounded™ and *‘o-directed union™ by “well-ordered o-directed unicn™.
Ordinal boundedness suffices for our applications; but all the examples we give
are actually bounded.

We say that pull-backs preserve o-directed unions if whenever f: A -~ B and
whenever C, + B is a o-directed family of subobjects of 8, then Uf-1C, =
I-1UC, . Clearly it makes no difference if we require this only in the case when B
is itself U C, . If we require it only for f € M, we say that intersections preserve
o-directed unions; we may then write the condition as U(4 NC,)=4 N UC,.

Proposition 3.1.1. A is bounded if either
(i). A is well-powered and, for some o, pull-backs preserve a-directed unions, or
(ii). A is well-powered and co-well-powered and, for some o, intersections pre-
serve o-directed unions.

Proof. (i). Given A€ A, let 1 be a regular cardinal 2 o and > the number of subob-
jects of A. Then for any morphisin f : A =+ UC, into a r-directed union we have
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A=Uf lCo by (i). Since there are fewer than 7 different s~ lCm. they are all con-
tained in some £~ 1C,. Thus A = f~1C; and f factorizes as 4 =f-1¢; > G~ UC,.

(ii). This time choose 7 2 0 and > the number of subobjects of every quotient
object of A. If = ip is the canonical factorization of a morphism f: 4 - UC,
into a r-directed union, then 7 factorizes through some Cﬁ as in the proof of (i), so
[ factorizes through C;;.

Proposition 3.1.2. If A has a generator G, the following are equivalent:
(a). A is bounded.
(b). G is bounded for each G € G.
(c). For some o, pull-backs preserve o-directcd unions.

Proof. (a) = (b) trivially, and (¢) = (a) by Proposition 3.1.1 and Corollary 2.5.2.

To prove (b) = (c) let f : 4 = UC, be a morphism in:o a g-directed union,
where o is the least regular ordinal bounding cach G € G. For each GE G and
cach hi: G~ A, the composite fh factorizes through some C,, whence h factorizes
through j~1C, and a forciori through U 'C,. Thus U/ -1C, = A by
Proposition 2.5.1.

3.2. Comparison with definitions of Barr and of Gabriel-Ublmer. Barr in {2} defines
A € A as having rank < o if, whenever i, : C, — B is a o-directed family of sub-
objects, every morphism f : A = colim €, factorizes through some C,. He con-
siders in particular categories with a generator G such that each G € G has rank; in
such categories every object has a rank.

Given the above o-directed family of subobjects let the canonical factorization
of the induced morphism colim C, -~ B be

3.3) coiimC, -;;-* D T B.

The coprojection j, : C, = colim C,, is in M by Proposition 2.1.4, because
i, =kpj, isin M. Sincej : £ C, = colim C, is a coequalizer, it isin E by Proposi-
tion 2.1.4. Therefore colim C, is the union of the j, : C, - colim . Since pj is
also in E, D is the union of the i, : C, =B

To say that 4 has rank < a, then, is to say that every f: A =~ U C_ factorizes
through some C,, it UC, is a o-directed union that coincides with colim €. Thus
if 4 is bounded it certainly has rank. The converse is false: in the category of
Hausdorff spaces with the factorization (Epi, Mon*), the one-point space is a
generator with rank but is not bounded; see Example 3.3.5 below. The strictly
stronger condition of boundedness, or at least ordinal boundedness, seems to be ne-
cessary for our results.

If G is a generator with rank for the proper factorization (E. M). it is obviously
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also one for any larger proper factorization (E’, M’): but boundedness is highly
sensitive to the factorization and may disappear if we make it either smaller or
iarger; see Examples 3.3.4 and 3.3.5 below.

Lemma 3.2.1. Let A have a generator G each object of which has rank < 0. Then
the p of (3.3) is a monomorphism.

Proof. Let px = py. where x, y : G - colim C, with G € G. Then x and v both fac-
torize through j, for some a, say as x =j, u, y = j, v. Since px = py, we have

igu =iy, whence u =y and x = y. From the (¢) = (d) part of Proposition 2.5.3 it
follows that p is a monomorphism.

Proposition 3.2.2. Ler the factorizetion be (Epi*. Mon) and let A have a generator
G with rank. Then A is bounded.

Proof. With 0 asin Lemma 3.2.1 we have p € Mon; but p € E = Epi*, so thatp is
an isomorphism; hence every G € G actually is bounded by o.

The forthcoming paper by Gabrizl and Ulmer [6], summarized by Ulmer in [14]
calls an object 4 € A o-presentable if the representable functor A(A4, —) : A - Sets
preserves all o-directed colimits: that is, colimits of functors from a o-directed small
category, of which a o-directed ordered set is a special case. These authors call A
locally presentable if it is cocomplete and has a generator G for the factorization
(Epi*, Mon) such that each G € G is o-presentable for some 0. Such a category is
complete, and is co-well-powered even for the factorization (Epi, Mon*); more-
over every A € A is 7-presentable for some 7 depending upon 4. The categories A
and A°P cannot both be locally presentable unless A is a small complete lattice.

The authors give various characterizations of locally presentable categories. They
are (in the language of our § 1) those categories of the form {C, Sets],. where T
is a small class of limits in C; and here we can choose C to have all limits of size
<some o and T'to consist of these limits. They are also those full subcategories of
functor categories |, Sets] that are of the form A* for a small class A of mor-
phisms in {C. Sets]. :

Since a o-presentable object certainly has rank € o in Barr's sense, Proposition
3.2.2 gives

Proposition 3.2.3. Locally presentable categories are bounded for the factorization
(Epi*, Mon).

We exhibit in Example 5.2.3 below a bounded category with a generator, for the
factorization (Epi*, Mon), that is not locally presentable.
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3.3. Examples of bounded catcgories

Example 3.3.1. A complete and cocompiete, well-powered and co-well-powered,
abelian ABS category, with its unique proper factorization (Epi, Mon), is bounded
by Proposition 3.1.1. Since the first author has given ({5, p. 131]) an example of
such a category without a generator, it follows that a bounded category need not
have a generator. All of our remaining examples will however have one.

Example 3.3.2. If we use the factorization (Epi*, Mon) all the locally presentable
catepories are examples of bounded ones with a generator. Some examples of
locally presentable categories. mostly quoted from [14], are: the category Sets;
the algebras in Sets over a theory with rank; the category of ordered sets; the cate-
gory Cat of small categories; the dual Comp®P of the category of compact (= com-
pact Hausdoff) spaces; the category of sheaves of sets on a Grothendieck topology;
a cocomplete abelian ABS category with a generator; the category of torsion-free
abelian groups; the category of those abelian groups in which 4x = 0 implies 2x = 0.
In all of these cases, except perhaps Comp®P, the beundedness is immediately
evident; for example in the algebras over a theory with rank o, the free algebra on
one element is a generator and a o-directed union of subalgebras is just their set-
theoretical union.
The example of Cat shows (|8, p. 139} ) that coequalizers need not he closed
under composition in a locally presentable category, and hence (see [8] ) that
the pull-back of a coequalizer need not be an epimorphism. Thus in a bounded cate-
gory with a generator the pull-bck of an € need notbe an £.

Example 3.3.3. The category Top of topological spaces is not locally presentable.
In fact it is not even bounded for the factorization (Epi*, Mon); here Epi* = the
topological quotient maps and Mon = the injections. To see this, let 4 be the two-
point space {0, 1} with the trivial topology and let o be any regular cardinal, iden-
tified with the corresponding initial ordinal. Let B be the set of ordinals < ¢ with
the trivial topology. For cacha < o set ¥V, ={3 € B| > a}. and take C, to be the
same set as B but with the topology in which the open sets are the empty set, B,
and the sets V; for § 2 a. Taking i, : C, — B as the identity map, we have a o-
directed family of subobjects of B, and clearly UC, = B. Yetthemapf: 4 ~ B
given by £(0) = 0, f(1) = o, factorizes through no C,.

Exampie 3.3.4. With the factorization (Epi, Mon*) the category Top has the one-
point space as a generator and is bourded: for Epi = the surjections. Mon* = the
inclusions of subspaces, and every union of subspaces is their set-theoretical union.
This shows that boundedness for a given factorization does not imply boundedness
for a smaller one.
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Example 3.3.5. For exactly the same reasons the category of Hausdorff spaces is
bounded with a generator if we use the factorization in which E = the surjections
and M = the inclusions of subspaces. For the factorization (Epi, Mon*), however,
the category is no longer bounded although the one-point space is still a generator.
To see this, recall that Mon* now consists of the inclusions of closed subspaces.
Let A be the one-point space, let g be any regular cardinal, let B be the set of ordi-
nals < o with the order topology, and let C, for a < o be the closed subspace
{5 € BB <a}. Then for this factorization UC, is B, but the map A - B sending
A to o factorizes through no C,. This shows that boundedness for a given factori-
zation docs not imply boundedness for a larger one.

Note that the same example shows that Comp, with its unique proper factoriza-
tion, is not bounded and so not locally presentable.

Example 3.3.6. The same arguments show that compactly-generated spaces, whether
Hausdorff or not (see [3] for the definition of the latter), and the quasi-topological
spaces of Spaier |13}, are bounded with a generator when M consists of the in-
clusions of the appropriate sub structures. Since there are a proper class of quasi-
topologies on the two-point set {0, 1} (for each cardinal o define one by taking

the admissible maps 1 : C— {0. i}, for C € Comp, to be those for which f~1(0) is
the intersection of & o open sets), we see that a bounded category with a generator
need not be co-well-powered.

Example 3.3.7. We know that Sets°P, with its unique proper factorization, is not
locally presentable (since Sets is). In fact it is not bounded either. Forlet 4 = {0, 1}
and let o be any regular cardinal. I.et B be the set of ordinals < ¢ and let C,, for
a < o be the set of ordinals < a. Definei, : B~ C, byi () =Bforg<a,i (§)=0
for $>a. Sincei: B = TIC, is injective, B is the union in Sets°P of the g-directed
family of subobjectsi,. Yet f: B> A given by f(8) = 0if Biseven, f(B) = 1 if Bis
odd, factorizes through no C,.

The same example, with everything given the trivial topology, shows that Top®P
is not bounded for any proper factorization.

Example 3.3.8. Let A be bounded and let C be any small category. The factoriza-
tion (E. M) on A gives rise to one on the functor category [C, A] if we define
J:T-Sin[C, A] tobein E orin M if and only if each component f - TC > SC
isin £ or in M. Since colimits are formed pointwise, so are unions. It follows at
once that [C, A] is bounded, the bound of T being the least regular cardinal bound-
ing TC for all C € C. Moreover, if A has a generator G, the set of “‘generalized re-
presentable functors” C(C, —) @ G, for G € G, forms a generator for [C, A].
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Example 3.3.9. Further examples of bounded categories are provided by Remark
5.2.2 below, and in pariicular by Example 5.2.3.

§ 4. The orthogonal subcategory theorem

4.1. Proof of the theorem. We now return to the problem of § 1.2 and give suffi-
cient conditions for the reflectiveness of A!.

Lemmad.ll. Leti: C~Bbein M where BE A'. Then
QY ifk - M—>NisinAandiff.g :N—=Csatisfv fk =gk then f=g.
DYifACEthenCeE A:.

Proof. (a).From ifk = igk we have if = ig since B € A! and then f = g since / is mono-
morphic. _

(b). Forany k : M~ Nin A anc any f : M = Cwe have if = hk for some h - N~ B
since BE Al Because i € M and k € E the square if = hk has a diagonalg : N > C
withgk = f. If also g’k = f theng’ = g by (a).

Lemma 4.1.2. Let the typical morphism k of A have canonical factorization k'k”
write A’ for the class of all such k', and write A" for the class of all such k". Then
At =(A"U A"y,

Proof. By Proposition 2.1.3(b)we have B Lk if andonly if BL k' and B L k".

Theorem 4.1.3. Ler A be a complete and cocomplete category with a given proper
Jactorization (E, M). Let A be bounded and co-well-powered. Let the class

A =& UV where d is small and whereV € E. Then A' is a reflective subcategory
of A.

Proof. By Proposition 1.2.1 we have only to verify the solution-set condition for A*.
Letk : M, - Ny be the typical element of ®, and let o be a regular cardinal
bounding M, forallk € ¢.
We now produce a solution-set for a given A € A. For each ordinal a we define
inductively a set S, of objects of A:

Sy = the set of quotient objects of 4,

Sa +1 = the set of quotient objects of objects of the form
C+Ipc o AM, OY®N; . whereCE S, ,



186 PJ. Frevd, GM. Kelly, Categories of continuous functors, 1

and for a limit ordinal 3,

S; = the set of quotient objects of objects of the form £, §Ca» Where
C, €S, foreacha.

We assert that S, N A! is a solution-set for 4.

Suppose given, then, f: A - B with B€ At, We aie 1o show that f factorizes
through some object of §_ 0 A'. We define inductively for each ordinal a a sub-
objecti, : A, = B through which f factorizes, with i, > ig for a 2 8. Recall from
§ 2.4 the definition f image.

(i). We take iy : Ay ~ B to be the image of /' 4 -~ B.

(ii). Suppose that i, : 4 ~ B has been constructed. For each k € & and each
x € A(My, A_) there is, because B € Al a unique y : Np ~ B rendering commuta-
tive the diagram

k
Mk S e ey Nk
! |
3 i
4.1 x% Ly
|
P - H
! |
. |
A, . - B
, g,

Write y;  for this y. We define i, ,y : 4, ,; ~ B to be the union of A4, and of the
images of all the y; , fork € ®and x € AM,, A,). In other words. iy o is the
image of the morphism 4, + L5 . o AM;. A,) ® N ~ B whose first component
is i, and whose (k, x)-component is y; ,.

(1it). For a limit ordinal 3, we take i‘3 . Ag = B 10 be the unicr: of the i, for
a<g:thatis, tobe the image of £, . 5 4, ~ B.

Itisevident that A, € S for cach a. in particular 4, € S,,. Since f factorizes
through 4, as 4 = A5 =~ A, ~ B, the proof will be complete if we show that
A, €A

Letk € &. Since A, is a o-directed union, any g : M; ~ A, factorizes as
M; = A, = A for some a <o. If we write x for this morphism M -~ A4, we have
¥ = yg 5 asin(4.1). By the definition of 4, ., ¥ factorizes through 4, ,, and
a fortiori through A . If this morphism N, = A4 is h, we have i hk = i g, whence
hk = g since i, is m ;nomorphic. If also h'k = g then h’ = h by Lemma 4.1.1 (a);
thus A, € ¢'. By Lemma 4.1.1 (b) we have A, € V!, whence 4, € A* and the
proof is complete.

4.2. The boundedness of A*. We shall show that A' is again bounded, but first we
must give it a proper factorization.
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Lemmad4.2.1. Let S : A = Bbeleft adjoint to T : B~ A, and let A have a pre-
Jactorization (E , M). Let SE be the class {Sp | p € E }in B, and let (E'. M") be the
prefactorization (SEV ' (SE))Yon B. Theni € M'ifand only if Ti € M.

If moreover T is faithful and B admits finite products, then (E’, M) is proper
if (E, M) is proper.

Proof. The first assertion follows at once from the abservation that Sf { gif and
only if f } Tg. Now let (E, M) be proper. Since T is faithful it reflects monomor-
phisms and hence every M’ is a monomorphism. If i is an equalizer in B then T’
is an equalizer in A; hence M’ contains all equalizers, and therefore every E' is
cpimorphic by Proposition 2.1.4.

Proposition 4.2.2. Let A and A satisfv all the hypotheses of Theorem 4. 1.3, and
in addition let A admit intersections of arbitrary families of subobjects. Then A
has a proper factorization (E', M') in which M’ consists of those i € M that lie in
Al and A} is complete and cocomplete, admits intersections of arbitrary families
of subobjects, is co-well-powered, and is bounded. Moreover if A admits a gene-
rator so does A*.

Proof. A! has a proper prefactorization with the given M’ by Lemma 4.2.1, and it
is actually a factorization by Lemma 2.3.2. By the reflectivity of A' in A, it is
complete and cocomplete and admits intersections of arbitrary families of subob-
jects. If A admits a generator G, and if S is the reflection of A into A?, the SG for
G € G clearly form a generator for Al

To see that A! is co-well-powered, let f: 4 + Bbelong to £ and fet A ~ A,
- B be the factorization of f constructed in the proof of Theorem 4.1.3, with
A, €S8, NAand A, = B in M. Then since A, — B is in M it is an isomorphisr»
by Lemma 2.3.1; which gives the desired co-well-powerecness since S, N Al isa
set depending only upon 4.

Finally we show that A' is bounded. Let o be the cardinal in the proof of
Theorem 4.1.3. We first show that it i, : C, — B is a o-directed family of subob-
jects in A! then the union UC, in A of the C, in fact lies in A' and is therefore
also their union in A'. If k € ® and g : M} = U, then g factorizes through some
C, by the definition of o: the morphism My - C,, is nk for some n, since
C, € A%, and therefore g is hk for some h. That A is unique follows from Lemma
4.1.1(a), whence UC, € d'iand UC, € ¥! by Lemma 4.1.1 (b). Thus
Uc, eat.

Now if 4 € Al is bounded in A by 7. it is clearly bounded in A' by max(o. 7).
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§ 5. The continuous functor theorem

§.1. Reduction of the size of A. We return finally to the problem of § 1.1, reduced
to that of § 1.2 by Proposition 1.3.}. The A of the latter proposition is very large,
and we must reduce its size if we hope to apply Theorem 4.1.3. We do so by sup-
posing that A has a generator. Recall that a proper factorization (E. M) on A gives
a proper factonzation (E, M) on {C. A} asin §3.3.8.

Lemma $.1.1. Ler A be a cocomplete category with a given proper factorization
(E. M)and with a generator G. Let © be a class of morphisms 8 Vg Ws in

[C. Sets] . write A for the class of morphisms BRA : V; @ A4 ~W; @ A,€0,
A€ A m [C. A} .and write Ay for the subclass of A consisting of the 3 ® G with
SE€ Oand G € G. Then there is a class S of morphisms in [C. A} with Q C E such
that & =(4a; UQ).

Proof. Write RA for E; . MG, A)Y® G.and k 4: RA ~ A for the canonical mor-
phism of §2.5. From the commutative diagram

) BERA
V, ®RA — W, ® RA
! \
% — ;
;®A = W, ®A

by pushing out from the top left corner form a commutative diagram

83 RA

V3 ® RA > Wﬁ & RA
'E i 1‘\_
Yo% Tsga
‘ Wy @ xa
Vv, 84 — — Y '
8 - ’ﬂ. 4 B A . .
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Let T€ [C. A] be in A Since
VBQRA ZLGe G A(G.A)@(VpQG),

with similar expressions for W; @ R4 and §® RA, it follows from Propositions 2.1.3
and 2.1.1 (¢) that T is orthogonal 1o 3 @ RA foreach §€ 0, 4 € A. From Propo-
sitions 2.1.3 and 2.1.1(b) it then follows that T is orthogonal to the push-out
rs. 4 ©f B® RA. From Propositions 2.1.3 and 2.1.1(a) and (e) it follows that T
is orthogonal to 8 ® A if and only if it is orthogonal top; . Thus A! = (A, U Q)
where Q is the classof all p; 4.3€6,4€ A

Since k 4 € E. each component of W; @ k4 isin £ by Proposition 2.1.1 (¢c):
therefore Wy @ k4 isin E. and sop; 4 isin E by Proposition 2.1.4. This completes
the proof.

Remark 5.1.2. If @ is small so is A, but § is still large. If, however, A is complete,
and if G is a generator not only for the factorization (€, M) but also for the fac-
torization (Epi*. Mon) -- which is the case in the work of Gabriel and Ulmer [6] -
then the result of Lemma 5.1.1 can be improved to: &' = 45 .

To see this, write [X, 4] for the product of X copies of 4, where X € Sets and
A€ A Then for functors ¥V : C > Setsand 7 : C—+ A write [V, T] for
fcec IVC,TC) (see [4] for the explanation of this notation). For 4 € A, we have

AA4. V. TH=[C.AJ(V@A, D.

Now T € At if and only if [C. A} (3 ® A, T) is an isomorphism for each
BE B, 4 € A; which is 1o say that each A(A, [8. T}) is an isomorphism; or simply
that |8, T} is an isomorphism for each 3 € ©. By Propaosition 2.5.3 this will be so
if A(G, |8. T)) is an isomorphism for each G € G, thatisif each [C, A] (B&® G, T)
is an isomorphism, that is if TE€ A, .

(For the application of this remark to the situation of Proposition 1.3.1 we do
not need the above generality: it suffices to rewrite the proof of the proposition
replacing 4 € Aby G € G.)

5.2, Proof of the theorem

Theotem 5.2.1. Let A be a complete and cocomplete category with a given proper
Jactorization (E, M). Let A be bounded with a generator, and co-well-powered.
Let U be a class of cylinders in the small category C. and let all but a set of these

cvlinders be cones. Then (C., A] ;. is a reflective subcategory of [C. Al.

Proof. By Proposition 1.3.1 and Lemma 5.1.1, [C, A} =(&, U Q). where
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Q C E and where A consists of the a ®G, a€ T, G E the generator G. Here
a : J, - P, in the language of § 1.3, wherea : P, > Q.

We claim that there are only a set of different P, . By hypothesis there are only
a set for which ais not a cone. But if a is a cone of vertex N, P_ is the constant
functor at N, P, is the constant functor at C(V, - ), and its colimit 7, is just
C(N. -). there are no more of these than C has objects.

So the class of codomains of the elements of A, is small. Now by Lemma 4.1.2
we have &) =(A; U Aj ), where A} consists of the M's, and A} of the E's, in the
canonical factorizations k = k’k" of the elements k of A;. But since [C, A] hasa
generator by § 3.3.8, it is well-powered by Corollary 2.5.2, whence the domains of
the k' form a set since the codomains do. Thus A is small. Since [C, A} =
(A} U A USY and since A U2 C E, the reflectivity of IC, A} follows from
Theorem 4.1.3.

Remark 5.2.2. From the above together with Proposition 4.2.2, it follows that
(€. Al,- with a suitable proper factorization (£, M) is bounded with a generator.
Note that if (E. M) = (Ep**. Mon) for A then (£, M) = (Epi*, Mon) foc [C. A,
since the inclusion [C, Aj;- - {C, A] both preserves and reflects monomorphisms.
More generally the same is true for any subcategory At of | C. A] where A is any
class of morphisms in [C, A} all but a set of which are in E.

This gives new examples of bounded categories: the algebras over a theory-with-
rank ir Top, with a suitable { E, M) the category of all limit-preserving functors
in {C. Sets] . with (Epi*, Mon) as the factorization,

Moreover, we can now exhibit a bounded category with a generator, for (Epi®,
Mon), which is not locally presentable; at least if we suppose that there are no
mcasurable cardinals. The example is the following, for which we are indebted to
John Isbell.

Example 5.2.3. Let B be the category of boolean o-algebras and maps preserving
countable meets, countable joins and 0. Let A be the class of maps of the form
25/C—+ 1, where S is a set, 25 the boolean algebra of subsets of S, C the ideal of
countable scts, 1 the terminal object. Define M = Al. The non-existence of measur-
able cardinals is equivalent with 2 € M M iseasily seen to be bounded for

(Epi*, Mon) with 22 as generator. Bacause M is closed with respect to products,

25 € M for any set §.

22 as an object in M is not preseqtable for any cardinal. The functor represented
by 22 is the forgetful functor. B(22, - ) reflects and preserves all limits. It suffices
to show that M — B fails to preserve X -directed limits for every a.

Let § be a set of cardinality N__,. For4 CB C S there is a natural map
254 L 25\B Letting 4 and B rauge through the subsets of cardinality X we ob-
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tain an R _-directed diagram whose colimit in B is 25/D where D is the ideal of all
subsets of cardinality < X_. But 25/D & M.

Isbell produced this example for a better reason: there exists small category C
and class I" of cones such that M = [P, Sets],., but because M is not locally pre-
sentable, there is no small T" for this purpose. Define C to be the full subcategory
in B of all free algebras of finite or countable rank and the terminal object 1. Let

I’y be the set of cones necessary to display each free algebra as a copower of the
rank-1 free algebra and one more cone to display 1 as the coequalizer of the two
maps from 22 to 2. Then [ C°P, Sets];. ~ B. Now for each set S take the canonical
diagram in C whose colimit is 25/D and define I" as I} together with all such dia-
grams turned into cones by making 1 (not 25/D) their vertices. Then
{COP_ Sets],. =M.

Added in proof, August 1, 1972. A simpler example of a bounded category with a
generator, for (Epi®. Mon}, which is not locally presentable, still under the hypothe-
sis that there are no measurable cardinals, is given on page 104 of {6] which has
now appeared.
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