The fundamental theorem of alternating functions

Matthieu Romagny

September 15th, 2005

Let A be a commutative ring with unit and $n \ge 1$ be an integer. The symmetric group in n letters acts on the polynomial ring $A[X_1, X_2, \ldots, X_n]$ by permutation of the variables. The most famous invariant polynomials are the elementary symmetric functions S_i determined by the expansion $(T - X_1)(T - X_2) \ldots (T - X_n) = T^n - S_1 T^{n-1} + \cdots + (-1)^n S_n$. The fundamental theorem of symmetric functions asserts that the invariant ring for this action is the subring $A[S_1, S_2, \ldots, S_n]$, and that the polynomials S_i are algebraically independent.

If one looks at the restricted action of the alternating group, there are more invariants. For example the Vandermonde polynomial $V_n = \prod_{1 \le i < j \le n} (X_i - X_j)$ is multiplied by the signature $\varepsilon(\sigma)$ under action of a permutation σ . When $2 \in A^{\times}$, it is known that the invariant ring is generated by the S_i $(1 \le i \le n)$ together with V_n . At the other extreme if 2 = 0 in A then V_n is symmetric, so the same result does not hold. In this note we provide the correct invariant ring for the action of the alternating group, for any A.

· · .

Keeping notations as above, consider the following four polynomials :

$$\Theta_n = \prod_{1 \le i < j \le n} (X_i + X_j) \quad ; \quad \Sigma_n = (V_n)^2 \quad ; \quad \Delta_n = \frac{1}{4} (\Sigma_n - \Theta_n^2) \quad ; \quad W_n = \frac{1}{2} (V_n + \Theta_n)$$

The first three are symmetric, while an odd permutation maps W_n to $\Theta_n - W_n$. Substituting $2W_n - \Theta_n$ to V_n in the equation $\Sigma_n = (V_n)^2$, one finds the integrality equation $(W_n)^2 - \Theta_n W_n - \Delta_n = 0$. Finally, all four polynomials have coefficients in \mathbb{Z} : for W_n this is clear, and the above equation shows that this is true also for Δ_n . As we now prove, for general A, the correct substitute for V_n is W_n :

Theorem Let $n \ge 2$. The ring of alternating polynomials in the variables X_1, \ldots, X_n is $A[S_1, \ldots, S_n, W_n]$ with relation $(W_n)^2 - \Theta_n W_n - \Delta_n = 0$.

Proof: Let $B = A[S_1, \ldots, S_n]$, and denote by C the ring of alternating polynomials. We first prove that C is a free module over B with basis $\{1, W_n\}$. Let F be an alternating polynomial. It is clear that $F^* = F - \tau F$ is independent of the choice of an odd permutation τ . In particular for $\sigma = (ij)$ this says that $X_i - X_j$ divides F^* . In the sequel, we use repeatedly the fact that $X_i - X_j$ is a nonzerodivisor in $A[X_{i,j}]$, for all (i, j). We will now prove that V_n divides F^* . We choose

Key words: Symmetric functions, alternating group, invariants

Mathematics Subject Classification: 05E05, 13A50, 14L30, 20B30

the lexicographic order on the pairs (i, j) with $1 \le i < j \le n$. Starting from $F^* = (X_1 - X_2)Q_1$ we assume by induction on N that there exists Q_N such that

$$F^* = \left(\prod_{(i,j) \le N} (X_i - X_j)\right) Q_N$$

Let (u, v) be the N + 1-th pair. Then Q_N vanishes when we specialize to $X_u = X_v$, because $X_u - X_v$ divides F^* . Hence $X_u - X_v$ divides Q_N , by a direct computation. After n(n-1)/2 steps we have $F^* = V_n Q$. Clearly, Q is uniquely defined and invariant under the full symmetric group. Now we check that the polynomial $P = F - W_n Q$ is also symmetric. If σ is odd we have $F - \sigma F = F^* = V_n Q$ and $\sigma W_n = \Theta_n - W_n = W_n - V_n$. Hence,

$$\sigma P = \sigma F - \sigma W_n \cdot \sigma Q = \sigma F - (W_n - V_n)Q = F - W_n Q = P$$

This proves that 1 and W_n generate C as a B-module. Furthermore, if $P = W_n Q$ with $(P, Q) \in B^2$, then after we apply an odd permutation we get $P = (\Theta_n - W_n)Q = (W_n - V_n)Q$. From this and $P = W_n Q$ it follows that $V_n Q = 0$ hence Q = 0. This shows that C is a free B-module. Therefore, the map $B[T]/(T^2 - \Theta_n T - \Delta_n) \to C$ defined by $T \mapsto W_n$ is a surjective map between free modules of the same rank, so it is an isomorphism.

Institut de Mathématiques Analyse Algébrique Université Pierre et Marie Curie Case 82 4, place Jussieu F-75252 Paris Cedex 05 romagny@math.jussieu.fr