The fundamental theorem of alternating functions

Matthieu Romagny

September 15th, 2005

Let A be a commutative ring with unit and $n \geq 1$ be an integer. The symmetric group in n letters acts on the polynomial ring $A\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ by permutation of the variables. The most famous invariant polynomials are the elementary symmetric functions S_{i} determined by the expansion $\left(T-X_{1}\right)\left(T-X_{2}\right) \ldots\left(T-X_{n}\right)=T^{n}-S_{1} T^{n-1}+\cdots+(-1)^{n} S_{n}$. The fundamental theorem of symmetric functions asserts that the invariant ring for this action is the subring $A\left[S_{1}, S_{2}, \ldots, S_{n}\right]$, and that the polynomials S_{i} are algebraically independent.

If one looks at the restricted action of the alternating group, there are more invariants. For example the Vandermonde polynomial $V_{n}=\prod_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right)$ is multiplied by the signature $\varepsilon(\sigma)$ under action of a permutation σ. When $2 \in A^{\times}$, it is known that the invariant ring is generated by the $S_{i}(1 \leq i \leq n)$ together with V_{n}. At the other extreme if $2=0$ in A then V_{n} is symmetric, so the same result does not hold. In this note we provide the correct invariant ring for the action of the alternating group, for any A.

Keeping notations as above, consider the following four polynomials :

$$
\Theta_{n}=\prod_{1 \leq i<j \leq n}\left(X_{i}+X_{j}\right) \quad ; \quad \Sigma_{n}=\left(V_{n}\right)^{2} \quad ; \quad \Delta_{n}=\frac{1}{4}\left(\Sigma_{n}-\Theta_{n}^{2}\right) \quad ; \quad W_{n}=\frac{1}{2}\left(V_{n}+\Theta_{n}\right)
$$

The first three are symmetric, while an odd permutation maps W_{n} to $\Theta_{n}-W_{n}$. Substituting $2 W_{n}-\Theta_{n}$ to V_{n} in the equation $\Sigma_{n}=\left(V_{n}\right)^{2}$, one finds the integrality equation $\left(W_{n}\right)^{2}-\Theta_{n} W_{n}-$ $\Delta_{n}=0$. Finally, all four polynomials have coefficients in \mathbb{Z} : for W_{n} this is clear, and the above equation shows that this is true also for Δ_{n}. As we now prove, for general A, the correct substitute for V_{n} is W_{n} :

Theorem Let $n \geq 2$. The ring of alternating polynomials in the variables X_{1}, \ldots, X_{n} is $A\left[S_{1}, \ldots, S_{n}, W_{n}\right]$ with relation $\left(W_{n}\right)^{2}-\Theta_{n} W_{n}-\Delta_{n}=0$.

Proof : Let $B=A\left[S_{1}, \ldots, S_{n}\right]$, and denote by C the ring of alternating polynomials. We first prove that C is a free module over B with basis $\left\{1, W_{n}\right\}$. Let F be an alternating polynomial. It is clear that $F^{*}=F-\tau F$ is independent of the choice of an odd permutation τ. In particular for $\sigma=(i j)$ this says that $X_{i}-X_{j}$ divides F^{*}. In the sequel, we use repeatedly the fact that $X_{i}-X_{j}$ is a nonzerodivisor in $A\left[X_{i, j}\right]$, for all (i, j). We will now prove that V_{n} divides F^{*}. We choose
the lexicographic order on the pairs (i, j) with $1 \leq i<j \leq n$. Starting from $F^{*}=\left(X_{1}-X_{2}\right) Q_{1}$ we assume by induction on N that there exists Q_{N} such that

$$
F^{*}=\left(\prod_{(i, j) \leq N}\left(X_{i}-X_{j}\right)\right) Q_{N}
$$

Let (u, v) be the $N+1$-th pair. Then Q_{N} vanishes when we specialize to $X_{u}=X_{v}$, because $X_{u}-X_{v}$ divides F^{*}. Hence $X_{u}-X_{v}$ divides Q_{N}, by a direct computation. After $n(n-1) / 2$ steps we have $F^{*}=V_{n} Q$. Clearly, Q is uniquely defined and invariant under the full symmetric group. Now we check that the polynomial $P=F-W_{n} Q$ is also symmetric. If σ is odd we have $F-\sigma F=F^{*}=V_{n} Q$ and $\sigma W_{n}=\Theta_{n}-W_{n}=W_{n}-V_{n}$. Hence,

$$
\sigma P=\sigma F-\sigma W_{n} \cdot \sigma Q=\sigma F-\left(W_{n}-V_{n}\right) Q=F-W_{n} Q=P
$$

This proves that 1 and W_{n} generate C as a B-module. Furthermore, if $P=W_{n} Q$ with $(P, Q) \in$ B^{2}, then after we apply an odd permutation we get $P=\left(\Theta_{n}-W_{n}\right) Q=\left(W_{n}-V_{n}\right) Q$. From this and $P=W_{n} Q$ it follows that $V_{n} Q=0$ hence $Q=0$. This shows that C is a free B-module. Therefore, the map $B[T] /\left(T^{2}-\Theta_{n} T-\Delta_{n}\right) \rightarrow C$ defined by $T \mapsto W_{n}$ is a surjective map between free modules of the same rank, so it is an isomorphism.

[^0]
[^0]: Institut de Mathématiques
 Analyse Algébrique
 Université Pierre et Marie Curie
 Case 82
 4, place Jussieu
 F-75252 Paris Cedex 05
 romagny@math.jussieu.fr

