A Characterisation of Solvable Groups

ANDREAS DRESS

Introduction

Let G be a finite group. A G-set M is a finite set on which G operates from the left by permutations, i.e. a finite set together with a map $G \times M \to M$, $(g, m) \mapsto g m$ with g(hm) = (gh)m, em = m for $g, h, e \in G, m \in M$ and e the neutral element. With M and N a G-set the disjoint union $M \downarrow N$ and the cartesian product $M \times N$ are in a natural way G-sets, too. This way the equivalence classes of isomorphic G-sets form a commutative halfring. Let $\Omega(G)$ be the associated ring. The following note is to prove that G is solvable if and only if the prime ideal spectrum $\text{Spec}(\Omega(G))$ of $\Omega(G)$ is connected in the Zariski topology, i.e. if and only if 0 and 1 are the only idempotents in $\Omega(G)$.

The Additive Structure of $\Omega(G)$

Let T be a G-set. Then the following three statements are equivalent:

- (i) G operates transitive on T, i.e. for $m, n \in T$ exists $g \in G$ with g m = n.
- (ii) Any G-homomorphism of a G-set N into T is epimorphic¹.

(iii) There exists $U \leq G$ with $G/U \simeq T$.

We call such a G-set transitive.

Any G-set is in a unique way the disjoint union of transitive G-sets. This means

(1) $\Omega(G)$ is a free Z-module with basis the set $\mathfrak{T} \subseteq \Omega(G)$ of all elements in $\Omega(G)$ represented by transitive G-sets.

(2) Two G-sets are isomorphic if and only if they represent the same element in $\Omega(G)$.

We therefore identify a G-set M with the element in $\Omega(G)$ represented by M. For $T \in \mathfrak{T}$ let \tilde{T} be the uniquely defined class of conjugate subgroups $U \leq G$ with $T \simeq G/U$. For S, $T \in \mathfrak{T}$ we write $S \prec T$ if there exists a G-homomorphism $S \rightarrow T$ (or equivalently if any group in \tilde{T} contains a group in \tilde{S}).

This relation is obviously transitive and because any G-homomorphism $M \rightarrow T$ for $T \in \mathfrak{T}$ is epimorphic, we also have: $S \prec T$ and $T \prec S$ if and only if T = S.

For $U \leq G$ we write \tilde{U} for the set of subgroups, conjugate to U and U for the element G/U in $\Omega(G)$. For $U, V \leq G$ we write $U \sim V$ if U is conjugate to V

^{1.} It is perhaps interesting to observe, that dually G operates primitive on a G-set M if and only if G acts non-trivial on M and any G-homomorphism $M \rightarrow N$ into any G-set N is either injective or sends M into just one (G-invariant) element.

and $U \leq V$ if U is conjugate to a subgroup of V. One has:

(3)
$$U \in \mathfrak{T}; \quad (\tilde{U}) = \tilde{U}; \quad U \sim V \Leftrightarrow \tilde{U} = \tilde{V} \Leftrightarrow U = V; \quad U \lesssim V \Leftrightarrow U \prec V.$$

Finally if we write for $S, T \in \mathfrak{T}$ the product $S \cdot T$ in the form $\sum_{R \in \mathfrak{T}} a_R R$, then $a_R \neq 0$ implies $R \prec S$, $R \prec T$ because for $a_R \neq 0$, i.e. $R \subseteq S \times T$ the projections $S \times T \rightarrow T$, $S \times T \rightarrow S$ imply the existence of maps of R into S and T. (More exactly for S = U, T = V and R = W the number a_R equals the number of double cosets $U g V (g \in G)$ with $W \sim U \cap V^g$.)

The Symbol $\langle U, M \rangle$

For a subgroup $U \leq G$ and a G-set M we write $\langle U, M \rangle$ for the number of elements in M, invariant under U: $\langle U, M \rangle = \# M^{U}$.

This symbol has the following properties:

(4)
$$\langle U, M \downarrow N \rangle = \langle U, M \rangle + \langle U, N \rangle,$$

(5)
$$\langle U, M \times N \rangle = \langle U, M \rangle \langle U, N \rangle.$$

(6) For $T \in \mathfrak{T}$ we have

$$\langle U, T \rangle \neq 0 \Leftrightarrow U \prec T \Leftrightarrow U \leq V$$
 for $V \in \tilde{T}$.

(7) $\langle U, U \rangle = (N_G(U): U).$

Obviously (6) implies $\langle U, M \rangle = \langle V, M \rangle$ for all M if and only if $U \sim V$ (take M = U and M = V).

But one has also:

Lemma 1. Two G-sets M and N are isomorphic if and only if $\langle U, M \rangle = \langle U, N \rangle$ for all $U \leq G$.

Proof. Obviously $M \cong N$ implies $\langle U, N \rangle = \langle U, M \rangle$ for all $U \subseteq G$.

On the other hand assume $M \neq N$. If $M = \sum_{T \in \mathfrak{T}} m_T T$, $N = \sum_{T \in \mathfrak{T}} n_T T$ there exists then a biggest $S \in \mathfrak{T}$ with $m_S \neq n_S$. We may assume $m_T = n_T = 0$ for all $T \not\cong S$. But then (4) and (6) implies for $U \in \tilde{S}$, i.e. U = S:

$$\langle U, M \rangle = m_S \langle U, S \rangle \neq n_S \langle U, S \rangle = \langle U, N \rangle.$$

Furthermore we have the following formula:

(8)
$$U \leq G, M \text{ G-set: } U \cdot M = \langle U, M \rangle U + \sum_{T \leq U} m_T T.$$

Proof. Assume $U \cdot M = \sum m_T T$. Obviously $m_T \neq 0$ implies again $T \prec U$. So it remains to compute m_U . But we have:

$$\langle U, UM \rangle = \langle U, U \rangle \cdot \langle U, M \rangle = \sum m_T \langle U, T \rangle$$

= $m_U \langle U, U \rangle \Rightarrow \langle U, M \rangle = m_U.$ q.e.d.

As another corollary of the properties (4)-(7) we have the following remark: Let $U, V \leq G, W = U \cap V$. If $(N_G(W): W)$ does not divide $\langle W, U \rangle \langle W, V \rangle$, then there exists $g, h \in G$ with $W_{\pm}^{\subset} U^g \cap V^h$.

Because otherwise with $U \cdot V = \sum m_T T$ we have $\langle W, U \cdot V \rangle = \langle W, U \rangle \langle W, V \rangle = \sum m_T \langle W, T \rangle = m_W \langle W, W \rangle$, which would imply:

$$(N_G(W): W) = \langle W, W \rangle | \langle W, U \rangle \langle W, V \rangle.$$

Prime Ideals in $\Omega(G)$

Because of (4) and (5) the map $M \mapsto \langle U, M \rangle$ extends to a ring homomorphism $\langle U, \cdot \rangle$: $\Omega(G) \to Z$. Define for p being 0 or a prime number $\mathfrak{p}_{U,p} = \{x \in \Omega(G) | \langle U, x \rangle \equiv 0 \mod p\}$. Obviously $\mathfrak{p}_{U,p}$ is a prime ideal in $\Omega(G)$. We are going to prove, that any prime-ideal in $\Omega(G)$ is actually of this form. More exactly we have

Proposition 1. (a) Let \mathfrak{p} be a prime ideal in $\Omega(G)$. Then the set $\mathfrak{T}-(\mathfrak{T}\cap\mathfrak{p})$ contains exactly one minimal element $T_{\mathfrak{p}}$ and for $U \in \tilde{T}_{\mathfrak{p}}$ and $p = \operatorname{char} \Omega(G)/\mathfrak{p}$ one has $\mathfrak{p} = \mathfrak{p}_{U, p}$.

(b) One has $\mathfrak{p}_{U,p} \subseteq \mathfrak{p}_{V,q}$ if and only if p=q and $\mathfrak{p}_{U,p} = \mathfrak{p}_{V,q}$ or $p=0, q \neq 0$ and $\mathfrak{p}_{U,q} = \mathfrak{p}_{V,q}$. Especially $\mathfrak{p}_{U,p}$ is minimal, resp. maximal, if and only if p=0, resp. $p \neq 0$.

(c) In case p=0 one has $\mathfrak{p}_{U,0}=\mathfrak{p}_{V,0}$ if and only if $U \sim V$. One has further: $\mathfrak{T}-(\mathfrak{T}\cap\mathfrak{p}_{U,0})=\{T\in\mathfrak{T}|U\prec T\}$, especially $T_{\mathfrak{p}_{U,0}}=U$.

(d) In case $p \neq 0$ one has $\mathfrak{p}_{U,p} = \mathfrak{p}_{V,p}$ if and only if $U^p \sim V^p$, where for a group U the subgroup U^p is the (well defined!) smallest normal subgroup of U with U/U^p a p-group. In this case one has for $\mathfrak{p} = \mathfrak{p}_{U,p}$: $T_\mathfrak{p} = U_p$, where U_p is the preimage in $N_G(U^p)$ of any p-Sylow subgroup in $N_G(U^p)/U^p$.

Proof. (a) If S and $T \in \mathfrak{T}$ are both minimal in $\mathfrak{T} - (\mathfrak{T} \cap \mathfrak{p})$, then

$$S \cdot T = \sum_{R \prec S, T} n_R R \notin \mathfrak{p},$$

therefore $R \notin p$ for at least one $R \prec S$, T and then R = S = T. Furthermore for T = U we have by an obvious extension of (8) to any element $x \in \Omega(G)$:

$$T \cdot x = \langle U, x \rangle T + \sum_{\substack{R \in \mathfrak{T} \\ R \nleq T}} m_R R \equiv \langle U, x \rangle T \mod \mathfrak{x}$$

which implies:

 $x \in \mathfrak{p} \Leftrightarrow \langle U, x \rangle \equiv 0 \mod \operatorname{char} \Omega(G)/\mathfrak{p} \Leftrightarrow x \in \mathfrak{p}_{U, \mathfrak{p}}$ for $p = \operatorname{char} \Omega(G)/\mathfrak{p}$.

(b) Obviously any prime ideal containing $\mathfrak{p}_{U,0}$ is of the form $\mathfrak{p}_{U,p}$ and any prime ideal containing $\mathfrak{p}_{U,p}$ for $p \neq 0$ is equal to $\mathfrak{p}_{U,p}$, because $\mathfrak{p}_{U,p}$ is maximal.

(c) It is enough to prove $\mathfrak{T} - (\mathfrak{T} \cap \mathfrak{p}_{U,0}) = \{T \in \mathfrak{T} | U \prec T\}$, but this is just a restatement of (6).

(d) If $W \leq U$ and U/W a p-group, then obviously $\langle U, M \rangle \equiv \langle W, M \rangle \mod p$ for all M because $M^U \subseteq M^W$, M^W is U-invariant and $M^W - M^U$ is a disjoint union of nontrivial U/W-orbits. Therefore $U^p \sim V^p$ implies $\langle U, M \rangle \equiv \langle U^p, M \rangle$ $= \langle V^p, M \rangle \equiv \langle V, M \rangle \mod p$, i.e. $\mathfrak{p}_{U,p} = \mathfrak{p}_{V,p}$.

Now assume $p_{U, p} = p_{V, p} = p$ and $T = T_p$.

Obviously T = W if and only if $\langle U, M \rangle \equiv \langle W, M \rangle$ mod p for all M and $\langle U, W \rangle \equiv \langle W, W \rangle = (N_G(W); W) \equiv 0 \mod p$. But this is just the case for the preimage U_p of any p-Sylow subgroup of $N_G(U^p)/U^p$ because $U^p = (U_p)^p$ is characteristic in U_p , therefore $N_G(U_p) \subseteq N_G(U^p)$ and a fortiori $p \not\prec (N_G(U_p); U_p)$ and on the other hand $\langle U, M \rangle \equiv \langle U^p, M \rangle \equiv \langle U_p, M \rangle$ mod p. Therefore $\mathfrak{p}_{U,p} = \mathfrak{p}_{V,p}$ implies $U_p \sim V_p$ and then $(U_p)^p = U^p \sim (V_p)^p = V^p$. q.e.d.

We can now prove the final result. To put it a little bit more general, we define for a finite group U the subgroup U^s to be the (well defined !) minimal normal subgroup of U with U/U^s solvable. Then we have

Proposition 2. Two prime ideals $\mathfrak{p}_{U,p}$ and $\mathfrak{p}_{V,q}$ are in the same connected component of $\operatorname{Spec}(\Omega(G))$ if and only if $U^s \sim V^s$. The connected components of $\operatorname{Spec}(\Omega(G))$ are therefore in a one-one correspondence with the classes of conjugate subgroups $U \leq G$ with U = [U, U]. The number of minimal primes in the connected component of $\mathfrak{p}_{U,p}$ equals the number of classes of conjugate subgroups $V \leq G$ with $V^s \sim U^s$.

Proof. It is enough to prove the first statement. Let A be a noetherian ring. For any prime ideal $p \in \text{Spec } A$ let $\overline{p} = \{q | q \in \text{Spec } A, p \subseteq q\}$ be the closure of p in Spec A. Then two prime ideals p and q are in the same connected component of Spec A, if and only if there exists a series of minimal prime ideals p_1, \ldots, p_n with $p \in \overline{p}_1$, $q \in \overline{p}_n$, $\overline{p}_i \cap \overline{p}_{i+1} \neq \emptyset$ (i=1,..., n-1). But for $A = \Omega(G)$ we have $\overline{p}_{U,0} \cap \overline{p}_{V,0} \neq \emptyset$ if and only if $U^p \sim V^p$ for some p, which implies $U^s = (U^p)^s \sim (V^p)^s = V^s$.

Therefore if $\mathfrak{p}_{U,p}$ and $\mathfrak{p}_{V,q}$ are in the same connected component of Spec $\Omega(G)$, we have $U^s \sim V^s$.

On the other hand $\mathfrak{p}_{U,p}$ and $\mathfrak{p}_{U^s,0}$ always are in the same connected component, because we can find a series of normal subgroups of U:

 $U = {}_0U \triangleright_1 U \triangleright_2 U \triangleright \cdots \triangleright_n U = U^s$ with ${}_{i-1}U/{}_iU$ a p_i -group for some prime p_i (i=1,...,n), which implies:

$$\mathfrak{p}_{U,p} \in \overline{\mathfrak{p}}_{0U,0}; \quad \overline{\mathfrak{p}}_{i-1U,0} \cap \overline{\mathfrak{p}}_{iU,0} \neq \emptyset \quad \text{for } i=1,\ldots,n. \quad \text{q.e.d.}$$

Proposition 2 yields obviously the wanted characterisation of solvable groups. As another corollary one gets: G is minimal simple if and only if $\Omega(G) \cong \mathbb{Z} \oplus \Omega'(G)$ for some $\Omega'(G)$ with spec $\Omega'(G)$ connected.

One also has the obvious generalisation:

Let π be a set of prime numbers. Define $Z_{\pi} \subseteq Q$ to be the subring of the rationals, containing all rational numbers with denominators prime to π : $\mathbb{Z}_{\pi} = \mathbb{Z}[p^{-1}|p \notin \pi]$ and define for a group U the subgroup U^{π} to be the smallest normal subgroup of U with U/U^{π} a solvable π -group. Then the connected components of Spec $\Omega_{\pi}(G)$ with $\Omega_{\pi}(G) = \Omega(G) \bigotimes \mathbb{Z}_{\pi}$ are in 1-1 correspondence with the classes of conjugate subgroups $U \leq G$ with $U = U^{\pi}$, i.e. (U: [U, U]) π -prime. Especially Spec $\Omega_{\pi}(G)$ is connected if and only if G is a solvable π -group and $\Omega_{p}(G)$ is a local ring if and only if G is a p-group. In general $\Omega_{p}(G)$ is a direct product of local rings, isomorphic to a ring of the form $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}$ if and only if p does not divide the order of G.

Dr. Andreas Dress The Institute for Advanced Study Princeton, New Jersey 08540, USA

(Received October 14, 1968)