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A Characterisation of Solvable Groups 

ANDREAS DRESS 

Introduction 

Let G be a finite group. A G-set M is a finite set on which G operates from 
the left by permutations, i.e. a finite set together with a map G • 
(g, m) ~ g m with g(h m)= (g h) m, e m = m for g, h, ee G, m~M and e the neutral 
element. With M and N a G-set the disjoint union M-~N and the cartesian 
product M x N are in a natural way G-sets, too. This way the equivalence 
classes of isomorphic G-sets form a commutative halfring. Let ~(G) be the 
associated ring. The following note is to prove that G is solvable if and only 
if the prime ideal spectrum Spec(~2(G)) of Q(G) is connected in the Zariski 
topology, i.e. if and only if 0 and l are the only idempotents in Q(G). 

The Additive Structure of ~2 (G) 

Let T be a G-set. Then the following three statements are equivalent: 

(i) G operates transitive on T, i.e. for m, n s T exists g~ G with g m = n. 

(ii) Any G-homomorphism of a G-set N into T is epimorphic t. 

(iii) There exists U___ G with G/U ~- T. 

We call such a G-set transitive. 

Any G-set is in a unique way the disjoint union of transitive G-sets. This 
m e a r l s  

(1) f2(G) is a free Z-module with basis the set Z_~f2(G) of all elements in 
f2(G) represented by transitive G-sets. 

(2) Two G-sets are isomorphic if and only if they represent the same element 
in f2 (G). 

We therefore identify a G-set M with the element in f2 (G) represented by M. 
For T e Z  let T be the uniquely defined class of conjugate subgroups U < G 

with T~G/U. For S, Ts3; we write S-KT if there exists a G-homomorphism 
S -* T (or equivalently if any group in T contains a group in S). 

This relation is obviously transitive and because any G-homomorphism 
M - *  Tfor Te3; is epimorphic, we also have: S-< Tand T-KS if and only if T=S. 

For U_< G we write [2 for the set of subgroups, conjugate to U and U for 
the element G/U in f2(G). For  U, V< G we write U,~ V if U is conjugate to V 

t. It is perhaps interesting to observe, that dually G operates primitive on a G-set M if and 
only if G acts non-trivial on M and any G-homomorphism M-~ N into any G-set N is either 
injective or sends M into just one (G-invariant) element. 
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and U < V if U is conjugate to a subgroup of V. One has" 

(3) ue3;; (C)=CT; U~V~CJ=f/~.U=F; U<~F.~U<V. 

Finally if we write for S, Te  3; the product S. T in the form ~ a R R, then 

% # 0  implies R-<S, R-<T because for aR4:0, i.e. R~_Sx T the projections 
S x T ~  T, S x T-~ S imply the existence of maps of R into S and T. (More 
exactly for S = U, T =  Vand R = W the number a R equals the number of double 
cosets Ug V (geG) with W~ U ~ Vg.) 

The Symbol (U, M) 
For a subgroup U<_G and a G-set M we write (U ,M)  for the number of 

elements in M, invariant under U: (U,  M ) =  4-M v. 

This symbol has the following properties: 

(4) (U, M ~ N ) = ( U ,  M ) + ( U ,  N),  

(5) (U ,M •  (U, N) .  

(6) For Te3; we have 

( U , T ) # O ~ U - ( T ~ U < V  for VeT. 

(7) (u, V)=(NG(V): F). 
Obviously (6) implies ( U , M ) = ( V , M )  for all M if and only if U ~ V  (take 
M =  U and M =  V). 

But one has also: 

Lemma 1. Two G-sets M and N are isomorphic if and only if (U, M)= 
(U, N) for all U < G. 

Proof Obviously M --- N implies (U,  N )  = (U,  M) for all U < G. 

On the other hand assume M 4: N. If M = ~ m r T, N = ~ n r T there exists 
TE~ TE~E 

then a biggest SeX  with ms#n s. We may assume mr=nr=O for all T;~S. 
But then (4) and (6) implies for UeS,  i.e. U=S: 

(U, M5 =ms(U, S) #ns(U,  S) = (U, N) .  

Furthermore we have the following formula: 

(8) U<G,M G-set: U . M = ( U , M )  U+ ~ mrT. 
r~:u 

Proof Assume U. M = ~  m r T. Obviously mr#O implies again T-< U. So 
it remains to compute me. But we have: 

(U, UM)=(U,  C) .  (U, M ) = ~  mr(U, T) 

=mu(U, U) ~ ( U , M ) = m  v. q.e.d. 
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As another corollary of the properties (4)-(7) we have the following 
remark:Let U, V< G, W= U c~ V. If(No(W): W)does not divide (W, U)  (W, V), 
then there exists g, heG with W ~  U~c~ V h. 

Because otherwise with U. V = ~ m r rwe  have (W,, U- V) = (W,, U)  (IV,, V) = 
mr(W, T)=mw(W,,  W),  which would imply: 

(N~(W): W)=(W,, W)I(W, U)(W,V). 

Prime Ideals in ~2 (G) 

Because of (4) and (5) the map M~--~(U,M) extends to a ring homo- 
morphism (U, .) :  O(G)--,Z. Define for p being 0 or a prime number pV, p= 
{xeO(G)I(U, x )=O mod p}. Obviously Pv, p is a prime ideal in f2(G). We are 
going to prove, that any prime-ideal in (2(G) is actually of this form. More 
exactly we have 

Proposition 1. (a) Let p be a prime ideal in f2(G). Then the set Z - ( Z  c~ p) 
contains exactly one minimal element Tp and for U ~  and p=charO(G)/p 
one has P =Pu, p- 

(b) One has Pu, p ~ P v ,  q if and only if p=q and pv.p=pv.q or p=0,  q:~0 
and pv, q=pV, q. Especially Pv,, is minimal, resp. maximal, if and only / fp=0 ,  
resp. p+O. 

(c) In case p = 0  one has pv, o=Pv, o if and only if U~V. One has further: 
Z - ( Z n p v ,  o)= {T~ZIU-<T}, especially T~v,o= U. 

(d) In case p+O one has pv, p=pv, p if and only i fU p~ V p, where for a group 
U the subgroup U p is the (well defined !) smallest normal subgroup of U with 
U/U p a p-group. In this case one has for P=Pv, p: Tp=Up, where Up is the 
preimage in N~(U") of any p-Sylow subgroup in N~(UP)/U p. 

Proof (a) If S and T~ Z are both minimal in Z -  (Z ~ p), then 

S. T= ~ nRRq~p, 
R'< S, T 

therefore R~p for at least one R~(S, T and then R = S =  T. Furthermore for 
T= U we have by an obvious extension of (8) to any element x~Q(G): 

T . x = ( U , x )  T+ ~ , m g R - ( U , x )  T m o d p  
R~Z 
R~T 

which implies: 

x ~ p ~ ( U , x ) - O m o d c h a r Q ( G ) / p c : >  x~pv, v for p=charg2(G)/p. 

(b) Obviously any prime ideal containing Pv, o is of the form Pv, p and 
any prime ideal containing PU, p for pal/=0 is equal to Pv, p, because Pv, p is 
maximal. 

(c) It is enough to prove Z- (Zc~Pv ,  o)={T~ZIU-~T},  but this is just a 
restatement of (6). 
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(d) If W< U and U/Wa p-group, then obviously (U, M)-= (~'}~ M) rood p 
for all M because M V g M  w, M w is U-invariant and M W - M  v i s a  disjoint 
union of nontrivial U/W-orbits. Therefore U p ~ V p implies ( U, M) -~ ( U p, M) 
= ( V  e, M ) ~ - ( V , M )  modp, i,e. pv, v=pv, p. 

Now assume Pv, v = Pv, v = P and T= 7;. 
Obviously T= W if and only if (U, M) -- (W, M)  mod p for all M and 

(U, W)__=(W, W)=(NG(W): W)~0modp.  But this is just the case for the 
preimage Up of any p-Sylow subgroup of 2X~(UP)/UP because UP=(g~) p is 
Characteristic in Up, therefore 2X~(L~)___NG(U" ) and afortiori p4V(,'~b(O~): Uv) 
and on the other hand ( U, M )  - ( U v, M )  =- ( [~, M )  mod p. Therefore Pv, v = 
Pv, p impfies L ~  t~ and then (b~)~ = Uv,-~ (Vy = V v. q.e.d.  

We can now prove the final result. To put it a tittle bit more general, we 
define for a fmite group U the subgroup U * to be the (well defined!) minima! 
normal subgroup of U with U/U ~ solvable. Then we have 

Proposition 2. Two prime ideals Pv, p and Pv, q are in the same connected 
component of Spec(O(G)) /f and Only if U*,.~ V ~. The connected components of 
Spec(f2(G)) are therefore in a one-one correspondence with the classes of con- 
jugate subgroups U <= G with U = [U, U]. The number of minimal primes in the 
connected component of Pv, t, equals the number of  classes, of conjugate sub~. oups 
V <= G with V ~ ~, U ~. 

Proof. It is enough to prove the first statement. Let A be a noetherian ring. 
For any prime ideal p~ Spec A let ~ = {q lq~ Spec A, p _< q} be the closure of p 
in Spec A. Then two prime ideals p and q are in the same connected component 
of Spec A, if and only if there exists a series of minimal prime ideals p~ . . . . .  p, 
with pE~l, q~p,, pic~pi+~4:9 ( i= l  .. . .  , n - l ) .  But for A=O(G) we have 
Pv, 0 c~ Pv, 0 4:0 if and only if U p ~ V v for some p, which implies U ~ = (U~) s,-~ 
(Vp)~= v ~. 

Therefore if Pv.~ and Pv, q are in the same connected component of 
Spec s (G), we have U s ,,~ V s, 

On the other hand Pv, p and Pw, o always are in the same connected com- 
ponent, because we can find a series of normal subgroups of U: 
U=oU~, -1Ut>eU~ . . .> ,U= U ~ with i_lU/i U a pt-group fo r  some prime 
Pi (i = t , . . . ,  n), which implies: 

pv;ve ~oV, O; ~,..,<o c~ ~u,o 4: ~ for i=1 . . . . .  n. q,e,d. 

Proposition 2 yields obviously the wanted charaeterisation of solvable 
groups. As another corollary one gets: G is minimal simple if and 0nly if 
O(G)~Z  | f2'(G) for some ~2'(G) with spec fa'(G) connected. 

One also has the obvious generalisation: 
Let rt be a set of prime numbers. Define Z c_Q to be the subring of the 

rationals, containing all rational numbers with denominators prime to re: 
7Z~ =TZ ~- t lp(~n ] and define for a group U the subgroup U ~ to be the smallest 
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normal subgroup of U with U/U ~ a solvable g-group. Then the connected 
components of Spec f2~ (G) with f2~ (G) = ~2 (G) | Z~ are in 1 - 1 correspondence 

g 

with the classes of conjugate subgroups U < G  with U =  U ~, i.e. (U" [U, U]) 
~-prime. Especially Spec f~(G) is connected if and only if G is a solvable 
~-group and (~p (G) is a local ring if and only if G is a p-group. In general f2p (G) is 
a direct product of local rings, isomorphic to a ring of the form 2~p x ;gp x...  x ;gp 
if and only if p does not divide the order of G. 
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