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A Characterisation of Solvable Groups

ANDREAS DRESS

Introduction

Let G be a finite group. A G-set M is a finite set on which G operates from
the left by permutations, i.e. a finite set together with a map GxM—>M,
(g, m)t—>gm with g(hm)=(gh)m, em=m for g, h, ee G, me M and e the neutral
element. With M and N a G-set the disjoint union M 4 N and the cartesian
product M x N are in a natural way G-sets, too. This way the equivalence
classes of isomorphic G-sets form a commutative halfring. Let Q(G) be the
associated ring. The following note is to prove that G is solvable if and only
if the prime ideal spectrum Spec{Q(G)) of Q(G) is connected in the Zariski
topology, i.e. if and only if 0 and 1 are the only idempotents in Q(G).

The Additive Structure of £2(G)
Let T be a G-set. Then the following three statements are equivalent:
(i) G operates transitive on T, i.e. for m, ne Texists ge G with gm=n.

(i) Any G-homomorphism of a G-set N into T is epimorphic?.

(i) There exists UG with G/U=T.
We call such a G-set transitive.

Any G-set is in a unique way the disjoint union of transitive G-sets. This
means
(1) Q(G) is a free Z-module with basis the set T Q(G) of all elements in
Q(G) represented by transitive G-sets.
(2) Two G-scts are isomorphic if and only if they represent the same element
in Q(G).

We therefore identify a G-set M with the element in Q(G) represented by M.

For TeT let T be the uniquely defined class of conjugate subgroups UG
with T=G/U. For S, Te we write S<T if there exists a G- homomorphlsm
§—T (or equwalently if any group in T contains a group in S).

This relation is obviously transitive and because any G-homomorphism
M — T for TeZ is epimorphic, we also have: S< Tand T<S ifand only if T=S.

For U< G we write U for the set of subgroups, conjugate to U and U for
the element G/U in 2(G). For U, V=G we write U~V if U is conjugate to V

1. It is perhaps interesting to observe, that dually G operates primitive on a G-set M if and
only if G acts non-trivial on M and any G-homomorphism M - N into any G-set N is either
injective or sends M into just one (G-invariant) element.
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and ULV if U is conjugate to a subgroup of V. One has:
3) Uel; (0)=U; U~VeU=VsU=V, UsV<sU<V.

Finally if we write for S, Te T the product S- T in the form )’ a, R, then
ReX
ap+0 implies R<S, R<T because for ap+0, i.e. R€Sx T the projections
SxT—T, Sx T— S imply the existence of maps of R into S and T. (More
exactly for S= U, T=Vand R =W the number a, equals the number of double
cosets UgV (geG) with W~U V&)

The Symbol (U, M

For a subgroup U< G and a G-set M we write {U, M) for the number of
elements in M, invariant under U: (U, M> =4 MY

This symbol has the following properties:
(4) UM END)={U,M>+(U,N>,
(5) UM xN)={U,M><{U,N>.
(6) For TeI we have

U, TY40U<T<USV  for VeT.

(7) (U, Uy=(Ng(U): U).
Obviously (6) implies (U, M> =<V, M) for all M if and only if U~V (take
M=U and M=V).

But one has also:

Lemma 1. Two G-sets M and N are isomorphic if and only if (U, M) =
KU,N> for all ULG.

Proof. Obviously M= N implies (U, N>={(U, M) for all UZG.
On the other hand assume M#N. If M= Y m; T, N= ) n, T there exists

€ Te
then a biggest SeT with mg+ng. We mayTas:sume mT=n:=O for all TES.

But then (4) and (6) implies for UeS§,ie. U=S:
U, My =mg{U,8)+ng{(U,S)=(U,N>.

Furthermore we have the following formula:

(8) USG M G-set: UM=UMYU+ ) m,T.

TXU
Proof. Assume U-M =) m; T. Obviously m;+0 implies again T<U. So
it remains to compute my. But we have:
U, UM»=(U, U -<U,M)=} m U, T)
=my{U,U> = (U, M) =my. g.e.d.
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As another corollary of the properties (4)—(7) we have the following
remark:Let U, VSG,W=UnV. If(N (W): W)does notdivide (W, U (W, V ),

then there exists g, he G with W:': Usn V™,

Because otherwise with U-V =) m; Twe have (W, U- V) WU, V=
Y my W, T>=mu{W, W), which would imply:

(Ng(W): W)=(W, W[ (W, UYWLV

Prime Ideals in 2 (G)

Because of (4) and (5) the map M+ (U, M) extends to a ring homo-
morphism (U, +>: Q(G)— Z. Define for p being 0 or a prime number p; ,=
{xeQ(G)|<U, x)=0mod p}. Obviously p, , is a prime ideal in Q(G). We are
going to prove, that any prime-ideal in Q(G) is actually of this form. More
exactly we have

Proposition 1. (a) Let p be a prime ideal in Q(G). Then the set T—(TNp)
contains exactly one minimal element T, and for UeT, and p=char Q(G)/p
one has p=ypy, .

(b) One has py, ,<py,, if and only if p=q and p, ,=p, , or p=0, g+0
and py , =Py, Especially py , is minimal, resp. maximal, if and only if p=0,
resp. p=£0.

(c) In case p=0 one has Pu.o=Py,o if and only if U~V. One has further:
T—(Tnpy,o)={TeZ|U<T}, especially T, =U.

(d) In case p=+0 one has py, ,=py, , if and only if UP ~V?, where for a group
U the subgroup UP is the (well defined!) smallest normal subgroup of U with
U/U? a p-group. In this case one has for p=py ,: T,=U,, where U, is the
preimage in Ng(UP) of any p-Sylow subgroup in N, (U")/U’J

Proof. (a) If S and TeZ are both minimal in T —(T N p), then
S-T= 3 ngRé¢p,

R<S, T
therefore R¢p for at least one R<S, T and then R=S=T. Furthermore for
T=U we have by an obvious extension of (8) to any element xeQ(G):

T-x=(U,x) T+ ) mygR={U,x) Tmodp
. RET
which implies:

xep < (U, x>=0mod char Q(G)/p < xepy,, for p=char Q(G)/p.
(b) Obviously any prime ideal containing Py,o is of the form py , and

any prime ideal containing py , for p#0 is equal to py ,, because py ,
maximal.

(¢) It is enough to prove T~(Tnpy o)={TeT|U<T}, but this is just a
restatement of (6).
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(d) If W=2U and U/Wa p-group, then obviously <U, M>={(W,M> mod p
for all M because MYcM"™, M¥ is U-invariant and M" —MV is a disjoint
union of nontrivial U/W-orbits. Therefore U? ~ V? implies (U, My ={U?, M>
={VF, M)y={V,M)mod p,i.e.py ,=Py, ,-

Now assume py ,=py, ,=p and T=T,.

Obviously T=W if and only if {U, M) (W, M> mod p for all M and
U, Wy ={(W,W5=(Ny(W): W)%0mod p. But this is just the case for the
preimage U, of any p-Sylow subgroup of N, (U?)/U? because U? ~(U3‘° is
characterzstlc in U, therefore N;(U,)= N;(U®) and a fortiori p } (N, U, }
and on the other hand U, My= (U” M= ({U,, M} mod p. Therefore. ;;ﬁ o=
Py, , implies U, ~V, and then (U, ¥ = UPNQV}P—VP . ged

We can now prove the final result. To put it a little bit more general, we
define for a finite group U the subgroup U* to be the {well defined !} minimal
normal subgroup of U with U/U* solvable. Then we have ‘

Proposition 2. Two prime ideals py, , and p, , are in the same connected
component of Spec(Q(G)) if and only if Us~ V. The connected components of
Spec{Q(G)) are therefore in a one-one correspondence with the classes of con-
jugate subgroups U G with U=[U, U). The number of minimal primes in the
connected component of Py, , equals the number of classes of conjugate subgroups
V=G with Vo~ U~

Proof. 1t is enough to prove the first statement. Let 4 be a noetherian ring.
For any prime ideal peSpec A let p=1{algeSpec 4, p<Sq} be the closure of p
in Spec 4. Then two prime ideals p and q are in the same connected component
of Spec 4, if and only if there exists a series of minimal prime ideals p,, ..., p,
with pep,, q€p,, P;OP; =P i=1,...,n—1). But for A=0Q(G) we h’ave
i’)momﬁy’o:f:@ if and only if U?~ ¥? for some p, which implies U= (U2~
(Vry=v

Therefore if py, and p,, , are in the same connected component of
Spec Q(G), we have U~

On the other hand py , and Pys, o always are in the same connected com-
ponent, because we can find a series of normal subgroups of U
U=,U U, U > U=U* with ,_ U/ U a p-group for some prime
p; (i=1, ..., n), which implies:

Pu.p€ P00 PrwoNP o+l for i=1,...,n. g.e.d.

Proposition 2 yields obviously the wanted characterisation of solvable
groups. As another corollary one gets: G is minimal simple if and only if
QIG)=Z @ ' (G) for some '(G) with spec Q'(G) connected.

One also has the obvious generalisation:

Let = be a set of prime numbers. Define Z_= @ to be the subring of the
rationals, containing all rational numbers with denominators prime to =:
Z,=Z[p '{p¢=] and define for a group U the subgroup U™ to be the smallest
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normal subgroup of U with U/U" a solvable n-group. Then the connected
components of Spec £2_(G) with Q_(G)=Q(G) R Z, are in 1 —1 correspondence
/A

with the classes of conjugate subgroups UL G with U=U", i.e. (U: [U, U))
n-prime. Especially Spec Q,(G) is connected if and only if G is a solvable
n-group and Q,(G) is a local ring if and only if G is a p-group. In general Q,(G) is
a direct product of local rings, isomorphic to a ring of the form Z p XLy x XL,
if and only if p does not divide the order of G.
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