A Characterisation of Solvable Groups

Andreas Dress

Introduction

Let G be a finite group. A G-set M is a finite set on which G operates from the left by permutations, i.e. a finite set together with a map $G \times M \rightarrow M$, $(g, m) \mapsto g m$ with $g(h m)=(g h) m, e m=m$ for $g, h, e \in G, m \in M$ and e the neutral element. With M and N a G-set the disjoint union $M+N$ and the cartesian product $M \times N$ are in a natural way G-sets, too. This way the equivalence classes of isomorphic G-sets form a commutative halfring. Let $\Omega(G)$ be the associated ring. The following note is to prove that G is solvable if and only if the prime ideal spectrum $\operatorname{Spec}(\Omega(G))$ of $\Omega(G)$ is connected in the Zariski topology, i.e. if and only if 0 and 1 are the only idempotents in $\Omega(G)$.

The Additive Structure of $\Omega(G)$

Let T be a G-set. Then the following three statements are equivalent:
(i) G operates transitive on T, i.e. for $m, n \in T$ exists $g \in G$ with $g m=n$.
(ii) Any G-homomorphism of a G-set N into T is epimorphic ${ }^{1}$.
(iii) There exists $U \leqq G$ with $G / U \cong T$.

We call such a G-set transitive.
Any G-set is in a unique way the disjoint union of transitive G-sets. This means
(1) $\Omega(G)$ is a free Z-module with basis the set $\mathfrak{I} \subseteq \Omega(G)$ of all elements in $\Omega(G)$ represented by transitive G-sets.
(2) Two G-sets are isomorphic if and only if they represent the same element in $\Omega(G)$.

We therefore identify a G-set M with the element in $\Omega(G)$ represented by M.
For $T \in \mathfrak{I}$ let \tilde{T} be the uniquely defined class of conjugate subgroups $U \leqq G$ with $T \cong G / U$. For $S, T \in \mathfrak{I}$ we write $S<T$ if there exists a G-homomorphism $S \rightarrow T$ (or equivalently if any group in \tilde{T} contains a group in \tilde{S}).

This relation is obviously transitive and because any G-homomorphism $M \rightarrow T$ for $T \in \mathfrak{I}$ is epimorphic, we also have: $S<T$ and $T<S$ if and only if $T=S$,

For $U \leqq G$ we write \tilde{U} for the set of subgroups, conjugate to U and U for the element G / U in $\Omega(G)$. For $U, V \leqq G$ we write $U \sim V$ if U is conjugate to V

[^0]and $U \leqq V$ if U is conjugate to a subgroup of V. One has:
\[

$$
\begin{equation*}
U \in \mathfrak{I} ; \quad(\tilde{U})=\tilde{U} ; \quad U \sim V \Leftrightarrow \tilde{U}=\tilde{V} \Leftrightarrow U=V ; \quad U \leqq V \Leftrightarrow U<V \tag{3}
\end{equation*}
$$

\]

Finally if we write for $S, T \in \mathfrak{I}$ the product $S \cdot T$ in the form $\sum_{R \in \mathfrak{I}} a_{R} R$, then $a_{R} \neq 0$ implies $R<S, R<T$ because for $a_{R} \neq 0$, i.e. $R \subseteq S \times T$ the projections $S \times T \rightarrow T, S \times T \rightarrow S$ imply the existence of maps of R into S and T. (More exactly for $S=\boldsymbol{U}, T=\boldsymbol{V}$ and $R=\boldsymbol{W}$ the number a_{R} equals the number of double cosets $U g V(g \in G)$ with $W \sim U \cap V^{g}$. $)$

The Symbol $\langle\boldsymbol{U}, \boldsymbol{M}\rangle$

For a subgroup $U \leqq G$ and a G-set M we write $\langle U, M\rangle$ for the number of elements in M, invariant under $U:\langle U, M\rangle=\# M^{U}$.

This symbol has the following properties:

$$
\begin{align*}
& \langle U, M+N\rangle=\langle U, M\rangle+\langle U, N\rangle \tag{4}\\
& \langle U, M \times N\rangle=\langle U, M\rangle\langle U, N\rangle \tag{5}
\end{align*}
$$

(6) For $T \in \mathfrak{I}$ we have

$$
\langle U, T\rangle \neq 0 \Leftrightarrow U<T \Leftrightarrow U \leqq V \quad \text { for } V \in \tilde{T} .
$$

(7) $\langle U, \boldsymbol{U}\rangle=\left(N_{G}(U): U\right)$.

Obviously (6) implies $\langle U, M\rangle=\langle V, M\rangle$ for all M if and only if $U \sim V$ (take $M=\boldsymbol{U}$ and $M=\boldsymbol{V}$).

But one has also:
Lemma 1. Two G-sets M and N are isomorphic if and only if $\langle U, M\rangle=$ $\langle U, N\rangle$ for all $U \leqq G$.

Proof. Obviously $M \cong N$ implies $\langle U, N\rangle=\langle U, M\rangle$ for all $U \leqq G$.
On the other hand assume $M \neq N$. If $M=\sum_{T \in \mathfrak{I}} m_{T} T, N=\sum_{T \in \mathfrak{I}} n_{T} T$ there exists then a biggest $S \in \mathfrak{T}$ with $m_{S} \neq n_{S}$. We may assume $m_{T}=n_{T \in \mathfrak{I}}^{T \in \mathbb{I}}=0$ for all $T \not \ni S$. But then (4) and (6) implies for $U \in \tilde{S}$, i.e. $\boldsymbol{U}=S$:

$$
\langle U, M\rangle=m_{S}\langle U, S\rangle \neq n_{S}\langle U, S\rangle=\langle U, N\rangle .
$$

Furthermore we have the following formula:

$$
\begin{equation*}
U \leqq G, M G \text {-set: } \boldsymbol{U} \cdot M=\langle U, M\rangle \boldsymbol{U}+\sum_{T \neq \boldsymbol{U}} m_{T} T . \tag{8}
\end{equation*}
$$

Proof. Assume $\boldsymbol{U} \cdot M=\sum m_{T} T$. Obviously $m_{T} \neq 0$ implies again $T<\boldsymbol{U}$, So it remains to compute m_{U}. But we have:

$$
\begin{aligned}
\langle U, \boldsymbol{U} M\rangle=\langle U, \boldsymbol{U}\rangle \cdot\langle U, M\rangle & =\sum m_{T}\langle U, T\rangle \\
& =m_{\boldsymbol{U}}\langle U, \boldsymbol{U}\rangle \Rightarrow\langle U, M\rangle=m_{\boldsymbol{U}} . \quad \text { q.e.d. }
\end{aligned}
$$

As another corollary of the properties (4)-(7) we have the following remark: Let $U, V \leqq G, W=U \cap V$. If $\left(N_{G}(W): W\right)$ does not divide $\langle W, U\rangle\langle W, \boldsymbol{V}\rangle$, then there exists $g, h \in G$ with $W_{\neq}^{\subset} U^{g} \cap V^{h}$.
Because otherwise with $\boldsymbol{U} \cdot \boldsymbol{V}=\sum m_{T} T$ we have $\langle W, \boldsymbol{U} \cdot \boldsymbol{V}\rangle=\langle W, \boldsymbol{U}\rangle\langle W, \boldsymbol{V}\rangle=$ $\sum m_{T}\langle W, T\rangle=m_{\boldsymbol{W}}\langle W, \boldsymbol{W}\rangle$, which would imply:

$$
\left(N_{G}(W): W\right)=\langle\boldsymbol{W}, \boldsymbol{W}\rangle \mid\langle W, \boldsymbol{U}\rangle\langle W, \boldsymbol{V}\rangle .
$$

Prime Ideals in $\boldsymbol{\Omega}(\boldsymbol{G})$

Because of (4) and (5) the map $M \mapsto\langle U, M\rangle$ extends to a ring homomorphism $\langle U, \cdot\rangle: \Omega(G) \rightarrow Z$. Define for p being 0 or a prime number $p_{U, p}=$ $\{x \in \Omega(G) \mid\langle U, x\rangle \equiv 0 \bmod p\}$. Obviously $\mathfrak{p}_{U, p}$ is a prime ideal in $\Omega(G)$. We are going to prove, that any prime-ideal in $\Omega(G)$ is actually of this form. More exactly we have

Proposition 1. (a) Let \mathfrak{p} be a prime ideal in $\Omega(G)$. Then the set $\mathfrak{I}-(\mathfrak{I} \cap \mathfrak{p})$ contains exactly one minimal element T_{p} and for $U \in \tilde{T}_{\mathfrak{p}}$ and $p=\operatorname{char} \Omega(G) / p$ one has $\mathfrak{p}=\mathfrak{p}_{U, p}$.
(b) One has $\mathfrak{p}_{U, p} \subseteq \mathfrak{p}_{V, q}$ if and only if $p=q$ and $\mathfrak{p}_{U, p}=\mathfrak{p}_{\boldsymbol{V}, q}$ or $p=0, q \neq 0$ and $\mathfrak{p}_{U, q}=\mathfrak{p}_{V, q}$. Especially $\mathfrak{p}_{U, p}$ is minimal, resp. maximal, if and only if $p=0$, resp. $p \neq 0$.
(c) In case $p=0$ one has $\mathfrak{p}_{U, 0}=\mathfrak{p}_{V, 0}$ if and only if $U \sim V$. One has further: $\mathfrak{I}-\left(\mathfrak{I} \cap \mathfrak{p}_{U, 0}\right)=\{T \in \mathfrak{I} \mid U<T\}$, especially $T_{\mathfrak{p}_{U, 0}}=U$.
(d) In case $p \neq 0$ one has $\mathfrak{p}_{U, p}=\mathfrak{p}_{V, p}$ if and only if $U^{p} \sim V^{p}$, where for a group U the subgroup U^{p} is the (well defined!) smallest normal subgroup of U with U / U^{p} a p-group. In this case one has for $\mathfrak{p}=\mathfrak{p}_{U, p}: T_{p}=U_{p}$, where U_{p} is the preimage in $N_{G}\left(U^{p}\right)$ of any p-Sylow subgroup in $N_{G}\left(U^{p}\right) / U^{p}$.

Proof. (a) If S and $T \in \mathfrak{I}$ are both minimal in $\mathfrak{I}-(\mathfrak{I} \cap \mathfrak{p})$, then

$$
S \cdot T=\sum_{R<S, T} n_{R} R \notin \mathfrak{p}
$$

therefore $R \notin p$ for at least one $R<S, T$ and then $R=S=T$. Furthermore for $T=U$ we have by an obvious extension of (8) to any element $x \in \Omega(G)$:

$$
T \cdot x=\langle U, x\rangle T+\sum_{\substack{R \in \mathcal{I} \\ R \neq T}} m_{R} R \equiv\langle U, x\rangle T \bmod \mathfrak{p}
$$

which implies:

$$
x \in \mathfrak{p} \Leftrightarrow\langle U, x\rangle \equiv 0 \bmod \operatorname{char} \Omega(G) / \mathfrak{p} \Leftrightarrow x \in \mathfrak{p}_{U, p} \quad \text { for } p=\operatorname{char} \Omega(G) / \mathfrak{p}
$$

(b) Obviously any prime ideal containing $\mathfrak{p}_{U, 0}$ is of the form $\mathfrak{p}_{U, p}$ and any prime ideal containing $\mathfrak{p}_{U, p}$ for $p \neq 0$ is equal to $\mathfrak{p}_{U, p}$, because $\mathfrak{p}_{\boldsymbol{U}, p}$ is maximal.
(c) It is enough to prove $\mathfrak{I}-\left(\mathfrak{I} \cap \mathfrak{p}_{U, 0}\right)=\{T \in \mathfrak{I} \mid U<T\}$, but this is just a restatement of (6).
(d) If $W \unlhd U$ and U / W a p-group, then obviously $\langle U, M\rangle \equiv\langle W, M\rangle \bmod p$ for all M because $M^{U} \subseteq M^{W}, M^{W}$ is U-invariant and $M^{W}-M^{U}$ is a disjoint union of nontrivial U / W-orbits. Therefore $U^{p} \sim V^{p}$ implies $\langle U, M\rangle \equiv\left\langle U^{P}, M\right\rangle$ $=\left\langle V^{p}, M\right\rangle \equiv\langle V, M\rangle \bmod p$, i.e. $p_{U, p}=p_{V, p}$.

Now assume $\mathfrak{p}_{U, p}=\mathfrak{p}_{V, p}=p$ and $T=T_{p}$.
Obviously $T=W$ if and only if $\langle U, M\rangle \equiv\langle W, M\rangle \bmod p$ for all M and $\langle U, W\rangle \equiv\langle W, W\rangle=\left(N_{G}(W), W\right) \neq 0 \bmod p$. But this is just the case for the preimage U_{p} of any p-Sylow subgroup of $N_{G}\left(U^{p}\right) / U^{p}$ because $U^{p}=\left(U_{p}\right)^{p}$ is characteristic in U_{p}, therefore $N_{G}\left(U_{p}\right) \subseteq N_{G}\left(U^{p}\right)$ and a fortiori $p \nless\left(N_{G}\left(U_{p}\right): U_{p}\right)$ and on the other hand $\langle U, M\rangle \equiv\left\langle U^{p}, M\right\rangle \equiv\left\langle U_{p}, M\right\rangle \bmod p$. Therefore $\mathfrak{p}_{U, p}=$ $p_{V, p}$ implies $U_{p} \sim V_{p}$ and then $\left(U_{p}\right)^{p}=U^{p} \sim\left(V_{p}\right)^{p}=V^{p} \quad$ q.e.d.

We can now prove the final result. To put it a little bit more general, we define for a finite group U the subgroup U^{s} to be the (well defined!) minimal normal subgroup of U with U / U^{s} solvable. Then we have

Proposition 2. Two prime ideals $\mathfrak{p}_{U, p}$ and $\mathfrak{p}_{V, q}$ are in the same connected component of $\operatorname{Spec}(\Omega(G))$ if and only if $U^{s} \sim V^{s}$. The connected components of $\operatorname{Spec}(\Omega(G))$ are therefore in a one-one correspondence with the classes of conjugate subgroups $U \leqq G$ with $U=[U, U]$. The number of minimal primes in the connected component of $\mathrm{p}_{U, p}$ equals the number of classes of conjugate subgroups $V \leqq G$ with $V^{s} \sim U^{s}$.

Proof. It is enough to prove the first statement. Let A be a noetherian ring. For any prime ideal $p \in \operatorname{Spec} A$ let $\bar{p}=\{q \mid q \in \operatorname{Spec} A, p \subseteq q\}$ be the closure of p in $\operatorname{Spec} A$. Then two prime ideals p and q are in the same connected component of Spec A, if and only if there exists a series of minimal prime ideals p_{1}, \ldots, p_{n} with $\mathfrak{p} \in \bar{p}_{1}, q \in \bar{p}_{n}, \bar{p}_{i} \cap \bar{p}_{i+1} \neq \emptyset(i=1, \ldots, n-1)$. But for $A=\Omega(G)$ we have $\bar{p}_{U, 0} \cap \bar{p}_{V, 0} \neq \emptyset$ if and only if $U^{p} \sim V^{p}$ for some p, which implies $U^{s}=\left(U^{p}\right)^{s} \sim$ $\left(V^{p}\right)^{s}=V^{s}$.

Therefore if $p_{U, p}$ and $p_{V, q}$ are in the same connected component of Spec $\Omega(G)$, we have $U^{s} \sim V^{s}$.

On the other hand $p_{U, p}$ and $p_{U s, 0}$ always are in the same connected component, because we can find a series of normal subgroups of U : $U={ }_{0} U \triangleright_{1} U \triangleright_{2} U \triangleright \cdots \square_{n} U=U^{s}$ with ${ }_{i-1} U / i U$ a p_{i} group for some prime $p_{i}(i=1, \ldots, n)$, which implies:

$$
\mathfrak{p}_{U, p} \in \overline{\mathrm{p}}_{0 U, 0} ; \quad \overline{\mathfrak{p}}_{i-1, i, 0} \cap \overline{\mathrm{p}}_{i U, 0} \neq \emptyset \quad \text { for } i=1, \ldots, n . \quad \text { q.e.d. }
$$

Proposition 2 yields obviously the wanted characterisation of solvable groups. As another corollary one gets: G is minimal simple if and only if $\Omega(G) \cong \not{Z} \oplus \Omega^{\prime}(G)$ for some $\Omega^{\prime}(G)$ with spec $\Omega^{\prime}(G)$ connected.

One also has the obvious generalisation:
Let π be a set of prime numbers. Define $Z_{\pi} \subseteq Q$ to be the subring of the rationals, containing all rational numbers with denominators prime to π : $\mathbb{Z}_{\pi}=\mathbb{Z}\left[p^{-1}[p \notin \pi]\right.$ and define for a group U the subgroup U^{π} to be the smallest
normal subgroup of U with U / U^{π} a solvable π-group. Then the connected components of $\operatorname{Spec} \Omega_{\pi}(G)$ with $\Omega_{\pi}(G)=\Omega(G) \otimes \underset{\mathbb{Z}}{\otimes} \mathbb{Z}_{\pi}$ are in 1-1 correspondence with the classes of conjugate subgroups $U \leqq G$ with $U=U^{\pi}$, i.e. $(U$: $[U, U])$ π-prime. Especially $\operatorname{Spec} \Omega_{\pi}(G)$ is connected if and only if G is a solvable π-group and $\Omega_{p}(G)$ is a local ring if and only if G is a p-group. In general $\Omega_{p}(G)$ is a direct product of local rings, isomorphic to a ring of the form $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}$ if and only if p does not divide the order of G.

Dr. Andreas Dress
The Institute for Advanced Study Princeton, New Jersey 08540, USA

[^0]: 1. It is perhaps interesting to observe, that dually G operates primitive on a G-set M if and only if G acts non-trivial on M and any G-homomorphism $M \rightarrow N$ into any G-set N is either injective or sends M into just one (G-invariant) element.
