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Abstract We extend the theory of ambidexterity developed by M. J. Hopkins
and J. Lurie and show that the ∞-categories of T (n)-local spectra are ∞-
semiadditive for all n, where T (n) is the telescope on a vn-self map of a type n
spectrum. This generalizes and provides a new proof for the analogous result of
Hopkins–Lurie on K (n)-local spectra.Moreover, we show that K (n)-local and
T (n)-local spectra are respectively, the minimal and maximal 1-semiadditive
localizations of spectra with respect to a homotopy ring, and that all such
localizations are in fact ∞-semiadditive. As a consequence, we deduce that
several different notions of “bounded chromatic height” for homotopy rings are
equivalent, and in particular, that T (n)-homology of π -finite spaces depends
only on the nth Postnikov truncation. A key ingredient in the proof of the
main result is a construction of a certain power operation for commutative
ring objects in stable 1-semiadditive∞-categories. This is closely related to
some known constructions forMorava E-theory and is of independent interest.
Using this power operation we also give a new proof, and a generalization,
of a nilpotence conjecture of J. P. May, which was proved by A. Mathew, N.
Naumann, and J. Noel.
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1 Introduction

1.1 Main results

Given an abelian group A with an action of a finite group G, summation along
the orbit provides a naturalmapNmG : AG → AG from the co-invariants to the
invariants. In general, this map may have both non-trivial kernel and cokernel.
However, when A is a rational vector space, NmG is always an isomorphism.
Similarly, given a spectrum X with an action of G, the spectra of homotopy
orbits XhG and homotopy fixed points XhG are also related by a canonical
norm map NmG : XhG → XhG , which, as before, is usually far from being
an equivalence. However, there are certain homology theories, such that when
working locally with respect to them, the analogous norm map is always a
local equivalence. For a spectrum E , let us denote by SpE the∞-category of
E-local spectra.

Theorem 1.1.1 (Greenlees–Hovey–Sadofsky, [17,22]) Let K (n) be Morava
K -theory of height n. For every X ∈ SpK (n) with an action of a finite group
G, the canonical norm map

NmG : XhG → XhG

becomes an equivalence after K (n)-localization.

Since K (0) = HQ, the case n = 0 follows easily from the invertibility of
NmG on rational representations ofG. However, for n > 0 this is a remarkable
fact, showcasing the intermediary behavior of K (n)-local homotopy theory,
interpolating between characteristic zero and positive characteristic.

Considering the classifying space BG as an∞-groupoid, the data of an E-
local spectrum with an action of G is equivalent to a functor F : BG → SpE .
In these terms, the homotopy orbits and homotopy fixed points of the action
are then just the colimit and limit of F respectively (again, in SpE ). In [20],
Hopkins andLurie extendedTheorem1.1.1 tomore general limits and colimits.
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Definition 1.1.2 Given m ≥ −2, a space A is called m-finite if it is m-
truncated, has finitely many connected components and all of its homotopy
groups are finite. It is called π -finite if it is m-finite for some m.1

Theorem 1.1.3 (Hopkins–Lurie, [20]) Let A be a π -finite space. For every
F : A→ SpK (n), there is a canonical (and natural) equivalence

NmA : lim−→
A

F ∼−→ lim←−
A

F ∈ SpK (n) .

The special case, where A = BG for a finite groupG, recovers Theorem 1.1.1.
The canonical norms of Theorem 1.1.3 (and Theorem 1.1.1) can be set in the
broader context of higher semiadditivity, developed in [20]. For C an ∞-
category that admits all (co)limits indexed by π -finite spaces and a π -finite
space A, we have two functors

lim−→
A

, lim←−
A

: Fun (A, C) −→ C.

In [20], the authors set up a general process for constructing canonical natural
transformations

NmA : lim−→
A

−→ lim←−
A

for all m-finite spaces A, by induction on m. The mth step of this process
requires that all canonical normmaps for (m − 1)-finite spaces, that were con-
structed in the previous step, are isomorphisms. The property of an∞-category
C, that these canonical norm maps can be constructed and are isomorphisms
for allm-finite spaces, is calledm-semiadditivity, see §1.2.We can thus restate
Theorem 1.1.1 as saying that the ∞-category SpK (n) is 1-semiadditive, and
Theorem 1.1.3 as saying that it is∞-semiadditive (i.e. m-semiadditive for all
m).

Kuhn extended Theorem 1.1.1 in a different direction, by replacing K (n)-
localization with the closely related telescopic localization. Namely, let T (n)

be a telescope on a vn-self map of some type n finite spectrum and let SpT (n)

be the corresponding Bousfield localization of Sp.

Theorem 1.1.4 (Kuhn, [29]) The∞-category SpT(n) is 1-semiadditive.

In view of Theorem 1.1.4 and Theorem 1.1.3, M. Hopkins asked whether the
∞-category SpT(n) is∞-semiadditive as well. Our first result is an affirmative
answer to this question.

1 For m = −2 this means that A is contractible and for m = −1 this means that A is either
contractible or empty, see Sect. 1.5.
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Theorem A (5.3.1) The∞-category SpT(n) is∞-semiadditive.

Our proof of Theorem A uses the general framework of higher semiaddi-
tivity developed by Hopkins and Lurie in [20], but is quite different from their
proof of Theorem 1.1.3, see Sect. 1.3 for an outline. Since the latter is implied
by the former, our argument provides an alternative proof for Theorem 1.1.3
as well.

Our next result concerns the classification of 1-semiadditive localizations
of p-local spectra with respect to homotopy rings.2 We show that the ∞-
categories SpK(n) and SpT(n) are precisely the minimal and maximal examples
of such localizations.

Theorem B (5.4.7) Let R be a non-zero p-local homotopy ring spectrum.
The∞-category SpR is 1-semiadditive if and only if there exists a (necessarily
unique) integer n ≥ 0, such that

SpK(n) ⊆ SpR ⊆ SpT(n) .

Equivalently, using the Nilpotence Theorem, we get that SpR is 1-
semiadditive if and only if R ⊗ HFp = 0 and there is exactly one integer
n ≥ 0 for which R⊗ K (n) 
= 0. Namely, SpR is 1-semiadditive if and only if
R is supported at a unique (finite) chromatic height.3

Combining Theorem A with Theorem B, and using the arithmetic square,
we show that for localizations of Sp with respect to homotopy rings, the entire
hierarchy of higher semiadditivity collapses.

Theorem C (5.4.9) Let R ∈ Sp be a homotopy ring spectrum. The ∞-
category SpR is 1-semiadditive if and only if it is∞-semiadditive.

This leads us to formulate the following general conjecture:

Conjecture 1.1.5 Every presentable, stable, and 1-semiadditive∞-category
is∞-semiadditive.

Another remarkable property of the localizations SpK(n) and SpT(n), is
the existence of the so-called Bousfield–Kuhn functor, i.e. a retract of
�∞: SpR → S∗. This phenomenon turns out to be also strongly connected
to higher semiadditivity. In [12], D. Clausen and A. Mathew gave a new (and
short) proof of Theorem 1.1.4, by showing that every localization of Sp, that
admits a Bousfield–Kuhn functor, is 1-semiadditive. Combining this obser-
vation with the above results, the situation can be pleasantly summarized as
follows:

2 In fact, all the results apply more generally to weak rings. That is, spectra equipped with a
multiplication map and a one-sided unit, and no associativity conditions, see Definition 5.1.4.
3 A detailed argument for this equivalence is given in the proof of Theorem D (5.4.7).
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Theorem D (5.4.7) Let R be a non-zero p-local homotopy ring spectrum. The
following are equivalent:

(1) R⊗HFp = 0 and there is exactly one integer n ≥ 0 for which R⊗K (n) 
=
0.

(2) There exists a (necessarily unique) integer n ≥ 0, such that SpK(n) ⊆
SpR ⊆ SpT(n) .

(3) Either SpR = SpHQ, or �∞: SpR → S∗ admits a retract.
(4) SpR is 1-semiadditive.
(5) SpR is∞-semiadditive.

It seems appropriate at this point to say a few words about the results sum-
marized in TheoremD, in light of the (still open) Telescope Conjecture, which
asserts that SpK(n) = SpT(n), see [38]. If this conjecture is true, the property of
higher semiadditivity characterizes completely the K (n)-local∞-categories
among localizations of Sp with respect to homotopy rings (as does the exis-
tence of the Bousfield–Kuhn functor). If it is false, the property of higher
semiadditivity fails to detect the difference, but on the upside, we are pro-
vided with more examples of∞-semiadditive∞-categories and new tools for
studying the telescopic localizations. At any rate, our results corroborate, the
by now well-established fact, that the Telescope Conjecture is rather subtle.

The 1-semiadditivity of the ∞-categories SpT (n) and SpK (n), has found
many applications in chromatic homotopy theory. For example, it was used in
[6] to analyze the Balmer spectrum in an equivariant setting, and in [19] to
generalize Quillen’s rational homotopy theory to higher chromatic heights.We
shall now describe an application of the∞-semiadditivity of SpT (n) to amatter
of chromatic homotopy theory, that does not refer to higher semiadditivity
explicitly.

Theorem E (5.4.4) Let R be a p-local homotopy ring spectrum and let d ≥ 0.
The following are equivalent:4

(1) R ⊗ K (m) = 0 for all m > d.
(2) R ⊗ F(d + 1) = 0 for a finite spectrum F(d + 1) of type d + 1.
(3) R ⊗�∞A = 0 for every d-connected π -finite space A.

Namely, we obtain an equivalence of three different notions of “height≤ d”
for a homotopy ring: (1) the “algebraic” one using Morava K -theories, (2) the
“geometric” one using finite complexes, and (3) the “categorical” one using π -
finite spaces. The categorical height of a spectrum (i.e. theminimal d for which
condition (3) holds) was considered, using different terminology, by Bousfield
in [9]. The most prominent example of such R is K (n), which by [45], has

4 The equivalence of (1) and (2) is well known. The new content is that they are both equivalent
to (3).
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categorical height n. Bousfield’s work also implies that for all n ≥ 0, the
spectrum T (n) has some finite categorical height, but determining its precise
value has been an open question.5 This can be now settled using Theorem E;
As the algebraic and geometric heights of T (n) are known to be equal to n,
the categorical height must be n as well.

The proof of the above results relies on establishing certain consequences
of 1-semiadditivity, especially in the context of stable∞-categories. The main
one, which is central to the proof of Theorem A, but is also of independent
interest, is the existence of certain power operations.

Theorem F (4.3.2, 5.2.2) Let E ∈ Sp, such that SpE is 1-semiadditive (e.g.
E = T (n)) and let X be an E∞-algebra in SpE . The commutative ring R =
π0X admits a canonical additive p-derivation δ : R→ R, seeDefinition 4.1.1.
In particular, the operation

ψ (x) = x p + pδ (x)

is an additive map, which is a canonical lift of the Frobenius endomorphism
modulo p. The operation δ (and hence ψ) is functorial with respect to maps
of E∞-algebras.

For K (1)-local E∞-rings, Hopkins has constructed in [21] similar look-
ing power operations denoted θ . Generalizations of these operations to higher
heights were studied by different authors including [42,47], and using them,
a canonical lift of Frobenius was constructed in [46] for the Morava E-theory
cohomology ring of a space. However, even for K (1)-local rings, our power
operation δ turns out to be different from the operation θ constructed by Hop-
kins. We refer the reader to [14], where a thorough study of these power
operations is carried out. We defer the detailed study of the wealth of power
operations on E∞-algebras in 1-semiadditive stable symmetric monoidal∞-
categories to a future work.

Employing the power operation δ we obtain a general relation between
torsion and nilpotence for E∞-algebras in a 1-semiadditive setting.

Theorem G (4.3.5) Let E ∈ Sp and let X be anE∞-algebra in SpE . If SpE is
1-semiadditive (e.g. E = T (n)), then every torsion element in the commutative
ring R = π0X is nilpotent. In particular, if Q⊗ R = 0, then R = 0.

As a corollary, we obtain a new proof of a conjecture of J. P. May, that was
proved in [35] (Corollary 5.2.5).

5 By comparing with K (n), it is clearly at least n, but not much has been known about it beyond
that.
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1.2 Background on higher semiadditivity

We shall now give an informal introduction to higher semiadditivity. The goal
is to motivate both the concept of higher semiadditivity introduced in [20, §4]
and the more general perspective on it, that we develop in this paper, using
abstract norms and integration.

1.2.1 From norms to integration

Since the construction of the canonical norm maps is inductive, it will be
helpful to begin with describing some consequences of having invertible norm
maps. This will also clarify their relation to the classical notion of semiaddi-
tivity. For an ordinary category C, semiadditivity is a property, whose main
feature is the ability to sum a finite family of morphisms between two objects.
Similarly, for an ∞-category C, being m-semiadditive is a property, whose
main feature is the ability to sum an m-finite family of morphisms between
two objects. Namely, given an m-finite space A and a map

ϕ : A→ MapC (X, Y ) ,

we define a map

∫

A

ϕ : X → Y,

which we should think of as the sum (or integral) of ϕ over A, as the compo-
sition

X
	−→ lim←−

A

X
lim←−ϕ

−−−→ lim←−
A

Y
Nm−1A−−−→ lim−→

A

Y
∇−→ Y.

Note, that for an ordinary semiadditive category, summation over a finite
set A is indeed obtained in this way using the canonical isomorphism

NmA :
∐
A

X ∼−→
∏
A

X.

As a special case, for every object X ∈ C, integrating the constant A-family
on IdX , produces an endomorphism |A| ∈ MapC (X, X). This generalizes
the “multiplication by k” endomorphism of X for an integer k and should be
thought of as multiplication by the “cardinality of A”.
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1.2.2 From integration to norms

We now turn things around and construct norm maps for m-finite spaces by
integrating some (m − 1)-finite families of maps. In general, given any space
A and a diagram F : A→ C, to specify a morphism

NmA : lim−→
A

F → lim←−
A

F,

roughly amounts to specifying a compatible collection of morphisms

a, b ∈ A : Nma,b
A : F (a)→ F (b) .

Fixing a, b ∈ A and denoting by Aa,b the space of paths from a to b, the
diagram F itself provides a family of candidates for Nma,b

A :

Fa,b : Aa,b → Map (F (a) , F (b)) .

That is, every path from a to b in A is mapped by F to a morphism from F(a)

to F(b) in C, which is a candidate for Nma,b
A . While there is a priori no obvious

(compatible) way to choose one such path, assuming we are able to integrate
maps over the spaces Aa,b, we can just “sum them all”

Nma,b
A =

∫

Aa,b

Fa,b.

This construction is somewhat easier to grasp when F is constant on an object
X . In this special case, a morphism

lim−→
A

X → lim←−
A

X,

is the same as a map of spaces

A × A→ MapC (X, X) .

That is, an “A× A matrix” of endomorphism of X , where the (a, b) ∈ A× A
entry corresponds to Nma,b

A . The construction sketched above specializes to

give Nma,b
A = |Aa,b|. The construction of the norm in the general case can be

thought of as a “twisted” version of the one for the constant diagram.
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1.2.3 The inductive process

To tie things up, we observe that if A is m-finite, then the path spaces Aa,b are
(m − 1)-finite. Thus, assuming inductively that we have invertible canonical
norm maps NmA for all (m − 1)-finite spaces A, we obtain a canonical way
to integrate (m − 1)-finite families of morphisms. As explained above, this
allows us to define norm maps for all m-finite spaces. It is now a property that
all those new normmaps are isomorphisms, which in turn induces an operation
of integration over m-finite spaces and so on. We spell out the situation for
small values of m.

(−2) We define every ∞-category to be (−2)-semiadditive. Indeed, if A is
(−2)-finite, then A � pt and the canonical norm map Nmpt is the iden-
tity natural transformation of the identity functor. In particular, we get a
canonical way to sum a one point family of maps, which is just taking the
value at the point itself.

(−1) The only non-contractible (−1)-finite space is A = Ø. The associated
norm map is the unique map

NmØ : 0C → 1C

from the initial object to the terminal object of C. Requiring this map to
be an isomorphism is to require the existence of a zero object. Thus, C
is (−1)-semiadditive if and only if it is pointed. This in turn allows us to
integrate an empty family of morphisms. Namely, given X, Y ∈ C, we get
a canonical zero map given by the composition

X → 1C ∼−→ 0C → Y.

(0) A 0-finite space is one that is equivalent to a finite set A. Given a collection
of objects {Xa}a∈A in a pointed∞-category C, we get a canonical map

NmA :
∐
a∈A

Xa →
∏
a∈A

Xa.

This map is given by the “identity matrix” (this uses the zero maps, which
in turn use the inverse of NmØ). Requiring thesemaps to be isomorphisms
is precisely the usual property of being semiadditive, which allows one to
sum a finite family of morphisms.

(1) A connected 1-finite space is of the form A = BG for a finite group G.
A diagram F : BG → C is equivalent to an object X ∈ C equipped with
an action of G. When C is semiadditive, one can construct the canonical
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norm map

NmBG : XhG → XhG

and it can be identified with the classical norm of G. If C is stable, then
NmBG is an isomorphism if and only if its cofiber, the Tate construc-
tion XtG , vanishes. It is in this form that Theorems 1.1.1 and 1.1.4 were
originally stated and proved.

1.2.4 Relative and axiomatic integration

Just like with ordinary semiadditivity, integration of m-finite families of maps
satisfies various compatibilities. These generalize associativity, changing sum-
mation order, distributivity with respect to composition, etc. To conveniently
manage those compatibility relations it is useful to extend the integral oper-
ation to the relative case. Given a map of m-finite spaces q : A → B, the
pullback along q functor

q∗ : Fun (B, C)→ Fun (A, C) ,

admits a left and right adjoint, whichwe denote by q! and q∗ respectively. If C is
(m − 1)-semiadditive, one can construct a canonical normmapNmq : q! → q∗
and it is an isomorphism when C is m-semiadditive. Similarly to the absolute
case, given objects X, Y ∈ Fun (B, C), one can use the inverse of Nmq to
define “integration along the fibers of q”,

∫

q

: MapFun(A,C)

(
q∗X, q∗Y

)→ MapFun(B,C) (X, Y ) .

The approach we take in this paper is to further generalize the situation and
to put it in an axiomatic framework. We define a normed functor

q : D � C,

to be a functor q∗ : C → D, that admits a left adjoint q!, a right adjoint q∗,
and is equipped with a natural transformation Nmq : q! → q∗. If this natural
transformation is an isomorphism, we can use the same formulas as above to
define an abstract integration operation

∫

q

: MapD
(
q∗X, q∗Y

)→ MapC (X, Y )
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for all X, Y ∈ C. We proceed to develop a general calculus of normed functors
and integration, which can then be applied to the context of higher semiaddi-
tivity. One advantage of this axiomatic approach, is that it separates the formal
aspects of this “calculus” from the rather involved inductive construction of
the canonical normmaps. Another advantage is that it unifies many seemingly
different phenomena as special cases of several general formal statements.
This renders the development of the theory more economic and streamlined.
Finally, we believe that this axiomatic framework might be of use elsewhere.

1.3 Outline of the proof

The core result of this paper is the∞-semiadditivity of SpT(n). For the conve-
nience of the reader, we shall now sketch the proof. The argument is inductive
on the level of semiadditivity m. The basis of the induction is m = 1, which
is given by Theorem 1.1.4. Assume that SpT (n) is m-semiadditive. In order
to show that SpT (n) is (m + 1)-semiadditive, we need to prove that for every
(m + 1)-finite space B, the natural transformation NmB : lim−→B

→ lim←−B
is an

isomorphism. We proceed by a sequence of reductions. First, since SpT (n) is
stable and p-local, by [20, Proposition 4.4.16], it suffices to show that

(1) The norm map NmB is an isomorphism for the single space B =
Bm+1Cp.

Now, consider a fiber sequence of spaces

(∗) A→ E → B,

where A and E are m-finite, and B is connected and (m + 1)-finite. We
prove that if the natural transformation |A| is invertible (we call such A
amenable), then NmB is an isomorphism (Proposition 3.1.18). In fact, it suf-
fices to show that the component of |A| at the monoidal unit ST (n) is invertible
(Lemma 3.3.5). By abuse of notation, we denote this component also by |A|.

In order to apply the above to B = Bm+1Cp, we introduce the following
class of “candidates” for A. We call a space A, m-good if it is connected,
m-finite with πm A 
= 0, and all homotopy groups of A are p-groups. Since
such A is in particular nilpotent, one can always fit it in a fiber sequence (∗)
with B = Bm+1Cp. Thus, we are reduced to showing that

(2) There exists anm-good space A, such that |A| ∈ π0ST (n) is invertible.

To detect invertibility in the ring π0ST (n), we transport the problem into a
better understood setting. Let En be the Morava E-theory E∞-ring spectrum
of height n, and let M̂odEn be the∞-category of K (n)-local En-modules. The
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functor

En⊗̂ (−) : SpT (n) → M̂odEn

is symmetric monoidal, and hence induces a map of commutative rings

f : π0ST (n) → π0En = Zp[[u1, . . . , un−1]].
Using the Nilpotence Theorem and standard techniques of chromatic homo-
topy theory, we show that an element of π0ST (n) is invertible, if and only if its
image under f is invertible (Corollary 5.1.17).Moreover, the functor En⊗̂ (−)

is colimit preserving. Thus, by general arguments of higher semiadditivity
we can deduce that M̂odEn is also m-semiadditive (Corollary 3.3.2(2)), and
moreover, f (|A|) coincides with the element |A| of π0En (Corollary 3.2.7).
Thus, we can replace SpT (n) with the more approachable∞-category M̂odEn .

Namely, it suffices to show

(3) There exists an m-good space A, such that |A| ∈ π0En is invertible.

By [5, Lemma 1.33], the image of f is contained in the constants Zp. Hence,
|A| is invertible, if and only if its p-adic valuation is zero. On Zp, we have the
Fermat quotient operation

δ̃ (x) = x − x p

p
,

with the salient property of reducing the p-adic valuation of non-invertible
non-zero elements. The heart of the proof comprises of realizing the algebraic
operation δ̃ in a way that acts on the elements |A| in an understood way. It
is for this step that it is crucial that our induction base is m = 1. Namely,
for a presentable, 1-semiadditive, stable, p-local, symmetric monoidal ∞-
category (C,⊗,1C), we construct a “power operation” (Definition 4.1.1 and
Theorem 4.3.2)

δ : π0 (1C)→ π0 (1C) ,

that shares many of the formal properties of δ̃. In particular, specializing to the
case C = M̂odEn , the operation δ coincides with δ̃ on Zp ⊆ π0En . Moreover,
for an m-good A, we have

δ (|A|) = |A′| − |A′′|,
where A′ and A′′ are also m-good (combine Definition 4.3.1 and Theo-
rem 4.2.13). It follows that if |A| is non-zero (and not already invertible),
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then at least one of |A′| and |A′′| has lower p-adic valuation than |A|. The
prototypical m-good space is the Eilenberg–MacLane space BmCp. Hence, it
suffices to show that

(4) The element |BmCp| ∈ π0En is non-zero.

To get a grip on the elements |A|, we reformulate them in terms of the symmet-
ric monoidal dimension, which does not refer at all to higher semiadditivity.6

Let us denote by A ⊗ En , the colimit of the constant A-shaped diagram on
En in M̂odEn . We show that A ⊗ En is a dualizable object,7 and that (Corol-
lary 3.3.12)

dim (A ⊗ En) = |AS1 | ∈ π0En.

Since

| (BmCp
)S1 | = |BmCp × Bm−1Cp| = |BmCp||Bm−1Cp|,

it suffices to show that

(5) The element dim
(
BmCp ⊗ En

) ∈ π0En is non-zero.

Finally, it can be shown that dim (A ⊗ En) equals the Euler characteristic of
the 2-periodic Morava K -theory (Lemma 5.1.7)8

χn (A) = dimFp K (n)0 A − dimFp K (n)1 A.

Hence, it suffices to prove that

(6) The integer χn
(
BmCp

)
is non-zero.

This is an immediate consequence of the explicit computation of K (n)∗
(BmCp), carried out in [45].

We alert the reader that at several points, this outline diverges from the
actual proof we give. Most significantly, we make use of the fact that the steps
(1)–(5) are completely formal and the ideas involved can be formalized in a
much greater generality. Instead of the functor En⊗̂ (−), we can consider any
colimit preserving symmetric monoidal functor F : C → D between stable,
p-local, symmetric monoidal∞-categories. Given such a functor F , we show
how to bootstrap 1-semiadditivity to higher semiadditivity under appropriate
conditions (Theorem 4.3.10). This necessitates some technical changes in the

6 Symmetric monoidal dimension is also commonly referred to as Euler characteristic.
7 We show that this follows from higher semiadditivity, but it can be also deduced directly from
the finite dimensionality of K (n)∗(A) [45]. See [24,43].
8 We prove this only for BmCp , as this suffices for our purposes, but this is true in general.
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argument outlined above.9 It is only in the final section that we specialize to
C = SpT (n), and verify the assumptions of this general criterion.

1.4 Organization

We now describe the content of each section of the paper.
In Sect. 2, we develop the axiomatic framework of normed functors and

integration. We begin by developing some general calculus for this notion and
study its functoriality properties. We then study the interaction of integration
with symmetric monoidal structures and the notion of duality. We conclude
with a discussion of the property of amenability.

In Sect. 3, we apply the axiomatic theory of Sect. 2 to the setting of local
systems valued in an m-semiadditive∞-category. We begin by recalling the
canonical norm on the pullback functor along an m-finite map (introduced in
[20, §4.1]), and its interaction with various operations. We then consider m-
finite colimit preserving functors betweenm-semiadditive∞-categories (a.k.a
m-semiadditive functors), and their behavior with respect to integration. We
continue with studying the interaction of m-semiadditivity with symmetric
monoidal structures, duality, and dimension. Finally, we study the behavior
of equivariant powers in 1-semiadditive ∞-categories, which is used in the
sequel in the construction of power operations.

In Sect. 4, we construct the above-mentioned power operations for 1-
semiadditive stable∞-categories. First, we introduce the algebraic notion of
an additive p-derivation and study some of its properties. We then construct
an auxiliary operation α in the presence of 1-semiadditivity. Specializing to
the stable (p-local) case, we construct from α the additive p-derivation δ and
establish its naturality properties. Finally, we formulate and prove the “boot-
strap machine”, that gives general conditions for a 1-semiadditive∞-category
to be ∞-semiadditive. We conclude the section with a discussion of “nil-
conservativity” which is a natural setup to which one can apply the bootstrap
machine. In Sect. 5, we apply the abstract theory of Sects. 2–4 to chromatic
homotopy theory. After some generalities, we use the additive p-derivation
of Sect. 4 to derive a generalization of a conjecture of May about nilpotence
in H∞-rings. We then apply the “bootstrap machine” to the 1-semiadditive
∞-category SpT(n), to show that it is∞-semiadditive, and deduce that T (n)-
homology of π -finite spaces depends only on the nth Postnikov truncation.
Finally, we consider localizations with respect to general weak rings. We
show, among other things, that in this setting 1-semiadditivity implies ∞-
semiadditivity, and that various notions of “bounded height” coincide.

9 In particular, we bypass [5] using a somewhat different and more general argument.
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1.5 Terminology and notation

Throughout the paper we work in the framework of∞-categories (a.k.a. qua-
sicategories), introduced by A. Joyal [27], and extensively developed by Lurie
in [31,32]. We shall also use the following terminology and notation:

(1) We use the term isomorphism for an invertible morphism of an ∞-
category (i.e. an equivalence).

(2) We say that a space A is
(a) (−2)-finite, if it is contractible.
(b) m-finite for m ≥ −1, if π0A is finite and all the fibers of the diagonal

map	A : A→ A× A are (m − 1)-finite (form ≥ 0, this is equivalent
to A having finitely many components, each of themm-truncated with
finite homotopy groups).

(c) π -finite, if it is m-finite for some integer m ≥ −2.
(3) We say that a π -finite space A is a p-space, if all the homotopy groups

of A are p-groups.
(4) Given a map of spaces q : A→ B, for every b ∈ B we denote by q−1 (b)

the homotopy fiber of q over b.
(5) For m ≥ −2, we say that a map of spaces q : A → B is m-finite (resp.

π -finite) if q−1(b) is m-finite (resp. π -finite) for all b ∈ B.
(6) Given an ∞-category C, we say that C admits all q-limits (resp. q-

colimits) if it admits all limits (resp. colimits) of shape q−1 (b) for all
b ∈ B.

(7) Given a functor F : C → D of∞-categories, we say that F preserves q-
colimits (resp. q-limits) if it preserves all colimits (resp. limits) of shape
q−1 (b) for all b ∈ B.

(8) We use the notation

f : X g−→ Y
h−→ Z

to denote that f : X → Z is the composition h ◦ g (which is well defined
up to a contractible space of choices). We use similar notation for com-
position of more than two morphisms.

(9) Given functors F,G : C → D and H, K : D → E , and natural trans-
formations α : F → G and β : H → K , we denote their horizontal
composition by β 
 α : HF → KG. The vertical composition of natural
transformations is denoted simply by juxtaposition.

(10) For a symmetric monoidal ∞-category C, we denote by CAlg(C) the
∞-category ofE∞-algebras in C. We denote coCAlg(C) = CAlg(Cop)op
the∞-category of E∞-coalgebras in C, where Cop is endowed with the
canonical symmetric monoidal structure induced from C.
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(11) For an abelian group A and k ≥ 0, we denote by Bk A the Eilenberg
MacLane space with kth homotopy group equal to A.

2 Norms and integration

In this section, we develop an abstract formal framework of norms on func-
tors between∞-categories and the operation of integration on maps, that such
norms induce. This framework abstracts, axiomatizes, and generalizes the the-
ory of norms and integrals arising from ambidexterity developed in [20, §4].
We develop a “calculus” for such integrals and study their functoriality prop-
erties and interaction with monoidal structures.

2.1 Normed functors and integration

2.1.1 Norms and iso-norms

We begin by fixing some terminology regarding adjunctions of∞-categories.

Definition 2.1.1 Let F : C → D be a functor of∞-categories.

(1) By a left adjoint to F , wemean a pair (L , u), where L : D→ C is a functor
and

u : IdD → F ◦ L

is a unit natural transformation in the sense of [32, Definition 5.2.2.7].
(2) By a right adjoint to F , we mean a pair (R, c), where R : D → C is a

functor and

c : F ◦ R→ IdD

a counit natural transformation (i.e. satisfying the dual of [32, Definition
5.2.2.7]).

Remark 2.1.2 Given a datum of a left adjoint (L , u), there exists a map c : L ◦
F → IdC , such that u and c satisfy the zig-zag identities up to homotopy. From
this also follows that c is a counit map exhibiting (F, c) as a right adjoint to L .
This counit map c is unique up to homotopy, and we shall therefore sometimes
speak of “the” associated counit map. In fact, the space of such maps together
with a homotopy witnessing one of the zig-zag identities is contractible [44,
Proposition 4.4.7]. We shall similarly speak of the unit map u : IdC → R ◦ F
associated with a right adjoint (R, c).
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Adjoint functors can be composed in the following (usual) sense:

Definition 2.1.3 As in [33, Tag 02ES], given a pair of composable functors

C F D F ′ E ,

with left adjoints (L , u) and
(
L ′, u′

)
respectively, the composite map

u′′ : IdE u′−→ F ′L ′ u−→ F ′FLL ′,

which is well defined up to homotopy, is a unit map exhibiting LL ′ as left
adjoint to F ′F . We define the counit map of the composition of right adjoints
in a similar way.

The central notion we are about to study in this section is the following:

Definition 2.1.4 Given∞-categories C and D, a normed functor

q : D � C,

is a functor q∗ : C → D together with a left adjoint
(
q!, uq!

)
, a right adjoint(

q∗, cq∗
)
, and a natural transformation

Nmq : q! → q∗,

which we call a norm. We say that q is iso-normed, if Nmq is a natural isomor-
phism. For X ∈ C, we also write Xq = q!q∗X , and denote by cq! : q!q∗ → Id
and uq∗ : Id → q∗q∗, the associated counit and unit of the respective adjunc-
tions. We drop the superscript q whenever it is clear from the context.

Iso-normed functors have also been called ambidextrous adjunctions in the
literature, see e.g. [30], and appear in classical mathematical contexts, such as
algebraic geometry and representation theory.

Example 2.1.5 For an inclusion of finite groups H ⊆ G, the restriction functor
from complex G-representations to H -representations extends naturally to an
iso-normed functor. Namely, there is a natural isomorphism between induction
and co-induction from H to G.

Remark 2.1.6 In subsequent sections, we shall sometimes abuse language and
refer to Nmq as a norm on q∗ and to q∗ itself (with the data of Nmq ) as a
normed functor. Since the left and right adjoints of q∗ are essentially unique
(when they exist), this seems to be a rather harmless convention.

There is a useful criterion for detecting when a normed functor is iso-
normed.
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Lemma 2.1.7 A normed functor q : D � C is iso-normed if and only if the
norm Nmq : q! → q∗ is an isomorphism at q∗X for all X ∈ C.
Proof The “only if” part is clear. For the “if” part, consider the two diagrams

q!q∗q∗
Nmq �

c∗ q!
Nmq

q∗
u∗ q∗q∗q∗

c∗ q∗,

q!
Nmq

u! q!q∗q!
� Nmq

c! q!

q∗
u! q∗q∗q!,

which commute by naturality of the (co)unit maps. By the zig-zag identities,
the composition along the bottom row in the left diagram is the identity. Thus,
the left diagramshows thatNmq has a right inverse. Similarly, the right diagram
shows that Nmq has a left inverse and therefore Nmq is an isomorphism. ��
Given a functor q∗ : C → D with a left adjoint

(
q!, uq!

)
and a right adjoint(

q∗, cq∗
)
, the data of a natural transformation Nmq : q! → q∗ is equivalent to

the data of its mate νq : q∗q! → Id, which is a candidate for a counit of a
“wrong way” adjunction q∗ � q!.

Lemma 2.1.8 Let q : D � C be a normed functor. For every Y ∈ D, the
map Nmq : q! → q∗ is an isomorphism at Y ∈ D if and only if the mate
νq : q∗q! → Id is a counit map at Y ; That is, for all X ∈ C, the composition

MapC (X, q!Y )
q∗−→ MapD

(
q∗X, q∗q!Y

) ν◦−−−→ MapD
(
q∗X, Y

)

is a homotopy equivalence.

Proof For every X ∈ C, consider the commutative diagram in the homotopy
category of spaces:

MapC (X, q!Y )

q∗

Nmq ◦−
MapC (X, q∗Y )

q∗ ∼

MapD (q∗X, q∗q!Y )
Nmq ◦−

νq◦−

MapD (q∗X, q∗q∗Y )
c∗◦−

MapD (q∗X, Y ) .

By the Yoneda lemma, Nmq is an isomorphism at Y if and only if the top
map in the diagram is an isomorphism for all X ∈ C. By 2-out-of-3, this is
the case if and only if the composition of the top map and the diagonal map
is an isomorphism for all X . Since the diagram commutes, this is if and only
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if the composition of the left vertical map with the long bottom map is an
isomorphism for all X , which is by definition if and only if νq is a counit at Y .

��
Notation 2.1.9 WhenNmq is an isomorphism at q∗X , and hence νq is a counit
at X , we denote the associated unit by μq,X : X → q!q∗X = Xq . If q is iso-
normed, we let μq : Id → q!q∗ be the unit natural transformation associated
with νq . As usual, we drop the subscript q, whenever the map is understood
from the context.

Remark 2.1.10 Wewill use the two points of view, that of a norm Nmq : q! →
q∗ and that of a “wrong way counit” νq : q∗q! → Id interchangeably. Each
point of view has its own advantages. We note that the definition using νq
seems to be slightly more general as it is available even if q∗ does not (a
priori) admit a right adjoint. In practice, we are mainly interested in situations
where νq is indeed a counit map for an adjunction, exhibiting q! as a right
adjoint of q∗. Thus, the gain in generality is rather negligible.

Definition 2.1.11 We define the identity normed functor and composition of
normed functors (up to homotopy) as follows.

(1) (Identity) For every∞-category C, the identity normed functor Id : C � C
consists of the identity functor Id : C → C viewed as a left and right adjoint
to itself using the identity natural transformation Id→ Id as the (co)unit
map and with the identity natural transformation Id→ Id as the norm.

(2) (Composition) Given a pair of composable normed functors

E p D q C ,

we define their composition qp : E � C by composing the adjunctions
(Definition 2.1.3)

(qp)∗ = p∗q∗, (qp)! = q! p!, (qp)∗ = q∗ p∗

and take the norm map to be the horizontal composition of the norms (the
order does not matter)

q! p!
Nmq−−→ q∗ p!

Nmp−−→ q∗ p∗.

We denote the norm of the composite by Nmqp. If p and q are iso-normed,
then so is qp.

Remark 2.1.12 It is possible to define an∞-category Ĉat
Nm
∞ , whose objects

are ∞-categories and morphisms are normed functors, such that the above
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constructions give the identity morphisms and composition in the homotopy
category. This ∞-category captures the higher coherences manifest in the
above definitions. We intend to elaborate on this point in a future work, but
for the purposes of this one, which will not use the higher coherences in any
way, we shall be content with the above explicit definitions up to homotopy.

2.1.2 Integration

Themain feature of iso-normed functors is that they allow us to define a formal
notion of “integration” of maps.

Definition 2.1.13 Let q : D � C be an iso-normed functor. For every X, Y ∈
C, we define an integral map

∫

q

: MapD
(
q∗X, q∗Y

)→ MapC (X, Y ) ,

which is natural in X and Y , as the composition

MapD
(
q∗X, q∗Y

) q∗−→ MapC
(
q∗q∗X, q∗q∗Y

)
Nm−1q−−−→ MapC

(
q∗q∗X, q!q∗Y

) c!◦−◦u∗−−−−→ MapC (X, Y ) .

Remark 2.1.14 Alternatively, using the wrong way unit μq : Id→ q!q∗, one
can define the integral as the composition

MapD
(
q∗X, q∗Y

) q!−→ MapC
(
q!q∗X, q!q∗Y

) c!◦−◦μ−−−−→ MapC (X, Y ) .

As a special case we have

Definition 2.1.15 Let q : D � C be an iso-normed functor. For every X ∈ C,
we define a map

|q|X : X → X

by

|q|X :=
∫

q

q∗ IdX =
∫

q

Idq∗X .

Remark 2.1.16 By unwinding the definition of the integral, the maps |q|X :
X → X are the components of the natural endomorphism |q| = cq! ◦ μq of
IdC .

123



1166 S. Carmeli et al.

Integration satisfies a form of “homogeneity”.

Proposition 2.1.17 (Homogeneity) Let q : D � C be an iso-normed functor
and let X, Y, Z ∈ C.
(1) For all maps f : q∗X → q∗Y and g : Y → Z we have

g ◦
⎛
⎝

∫

q

f

⎞
⎠ =

∫

q

(
q∗g ◦ f

) ∈ HomhC (X, Z) .

(2) For all maps f : X → Y and g : q∗Y → q∗Z we have

⎛
⎝

∫

q

g

⎞
⎠ ◦ f =

∫

q

(
g ◦ q∗ f ) ∈ HomhC (X, Z) .

Proof For (1), consider the commutative diagram

X

μ

μ
q!q∗X

f

f
q!q∗Y

g

c! Y

g

q!q∗X
f

q!q∗Y
g

q!q∗Z
c! Z .

The composition along the top and then right path is g◦∫
q

f , while the com-

position along the left and then bottom path is
∫
q

(q∗g ◦ f ), see Remark 2.1.14.

For (2), consider the diagram

X

f

μ
q!q∗X

f

f
q!q∗Y

g

g
q!q∗Z

c!

Y
μ

q!q∗Y
g

q!q∗Z
c! Z

and apply an analogous argument. ��
Integration also satisfies a form of “Fubini’s Theorem”.

Proposition 2.1.18 (Higher Fubini’s Theorem) Given a pair of composable
iso-normed functors

E p D q C ,
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for all X, Y ∈ C, and f : p∗q∗X → p∗q∗Y , we have

∫

q

⎛
⎝

∫

p

f

⎞
⎠ =

∫

qp

f ∈ HomhC (X, Y ) .

Proof Since q and p are iso-normed, we can construct the following diagram

q∗ p∗ p∗q∗X
f

q∗ p∗ p∗q∗Y

Nm−1p

Nm−1qp
q! p! p∗q∗Y

cqp!

X

uq∗

uqp∗

q∗ p! p∗q∗Y

cp!

Nm−1q
q! p! p∗q∗Y

cp!

Y.

q∗q∗X

up∗

∫
p
f

q∗q∗Y
Nm−1q

q!q∗Y
cq!

The triangles and the bottom right square commute for formal reasons. The top
right square commutes by the way norms are composed (Definition 2.1.11(2))
and the left rectangle commutes by definition of

∫
p
f . Thus, the composition

along the top path, which is
∫
qp

f , is homotopic to the composition along the

bottom path, which is
∫
q

(∫
p
f

)
. ��

Remark 2.1.19 Fubini’s theorem for Kan extensions is a special case when C
is the∞-semiadditive∞-category of co-complete∞-categories and colimit
preserving functors. This example is worked out in [13, §2.2].

2.2 Ambidextrous squares and Beck–Chevalley conditions

In this section we study functoriality properties of norms and integrals and
develop further the “calculus of integration”.

2.2.1 Beck–Chevalley conditions

We begin by recalling some standard material regarding commuting squares
involving adjoint functors (e.g. see beginning of [32, §7.3.1]). A commutative
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1168 S. Carmeli et al.

square of functors

C
q∗

FC C̃
q̃∗

D FD D̃

(�)

is a natural isomorphism

FDq∗ ∼−→ q̃∗FC .

If the vertical functors admit left adjoints q! � q∗ and q̃! � q̃∗ (suppressing
the units), we get a BC! (Beck–Chevalley) natural transformation

β! : q̃!FD
uq!−→ q̃!FDq∗q! ∼−→ q̃!q̃∗FCq!

cq̃!−→ FCq!.

Similarly, if the vertical functors admit right adjoints q∗ � q∗ and q̃∗ � q̃∗,
we get a BC∗ (Beck–Chevalley) natural transformation

β∗ : FCq∗ uq̃∗−→ q̃∗q̃∗FCq∗ ∼−→ q̃∗FDq∗q∗
cq∗−→ q̃∗FD.

Definition 2.2.1 We say that the square � satisfies the BC! (resp. BC∗) con-
dition, if q∗ and q̃∗ admit left (resp. right) adjoints and the map β! (resp. β∗)
is an isomorphism.

Example 2.2.2 A classical example of a square satisfying the BC∗ is given
by the proper-base change theorem, see [48, 095S] in the context of étale
cohomology, and [32, Introduction to §7] in the context of locally compact
Hausdorff spaces.

Warning 2.2.3 It may happen that in �, the horizontal functors FC and FD
also have left or right adjoints. In this case, there are other BC maps one can
write. To avoid confusion, we will always speak about the BC maps with
respect to the vertical functors.

Given a commutative square � as above, such that q∗ and q̃∗ admit right
adjoints, we denote u∗ = uq∗ and ũ∗ = uq̃∗ (and similarly for other (co)unit
maps). It is an easy verification using the zig-zag identities, that the BC-maps
are compatible with these units and counits in the following sense:

Lemma 2.2.4 Given a commutative square of functors �, such that q∗ and
q̃∗ admit left (resp. right) adjoints, the following four diagrams commute up
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to homotopy:

(1) FCq∗q∗

β∗

FC

u∗

ũ∗

q̃∗FDq∗

�

q̃∗q̃∗FC

(2) FDq∗q∗
� c∗

q̃∗FCq∗
β∗

FD

q̃∗q̃∗FD
c̃∗

(3) q̃∗q̃!FD
β!

FD

ũ!

u!

q̃∗FCq!
�

FDq∗q!

(4) q̃!q̃∗FC
� c̃!

q̃!FDq∗

β!

FC .

FCq!q∗
c!

The BC maps also satisfy some naturality properties with respect to hor-
izontal and vertical pasting, as well as multiplication and exponentiation of
squares. We begin with horizontal pasting. Given a commutative diagram of
∞-categories and functors

C
q∗

FC C̃
q̃∗

GC ˜̃C
˜̃q∗

D FD D̃ GD ˜̃D,

(∗)

we call the outer square the horizontal pasting of the left and right small
squares. The following is easy to verify.

Lemma 2.2.5 Given a horizontal pasting diagram (∗) as above,
(1) The BC!-map for the outer square is homotopic to the composition

˜̃q!GDFD → GC q̃!FD → GCFCq!

of the BC! maps for the left and right squares.
(2) The BC∗-map for the outer square is homotopic to the composition

GCFCq∗ → GC q̃∗FD → ˜̃q∗GDFD

of the BC∗ maps for the left and right squares.
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This immediately implies the following horizontal pasting lemma for BC
conditions.

Corollary 2.2.6 Given a horizontal pasting diagram (∗) as above, denote by
�L , �R and �, the left, right and outer squares respectively.

(1) If �L and �R satisfy the BC! (resp. BC∗) condition, then so does �.
(2) If�R and� satisfy the BC! (resp. BC∗) condition and GC is conservative,

the so does �L .

We now turn to vertical pasting. Given a commutative diagram of ∞-
categories and functors

C
q∗

FC C̃
q̃∗

D
p∗

FD D̃
p̃∗

E FE Ẽ,

(∗∗)

we call the big outer square (i.e. rectangle) the vertical pasting of the top and
bottom small squares. The following is easy to verify.

Lemma 2.2.7 Given a vertical pasting diagram (∗∗) as above,
(1) The BC!-map for the outer square is homotopic to the composition of the

BC! maps for the top and bottom squares

q̃! p̃!FE → q̃!FD p! → FCq! p!.

(2) The BC∗-map for the outer square is homotopic to the composition of the
BC∗ maps for the top and bottom squares

FCq∗ p∗ → q̃∗FD p∗ → q̃∗ p̃∗FE .

Again, this immediately implies the following vertical pasting lemma for
BC conditions.

Corollary 2.2.8 Given a vertical pasting diagram (∗∗) as above, denote by
�T , �B and �, the top, bottom, and outer squares respectively. If �T and �B
satisfy the BC! (resp. BC∗) condition, then so does �.

Finally, the BC conditions are also natural with respect to multiplication
and exponentiation.
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Lemma 2.2.9 Given a pair of squares corresponding under the adjunction
(−)× E � Fun(E,−),

C × E
q∗×Id

FC C̃
q̃∗

D × E FD D̃

(�1) ,

C
q∗

F̂C Fun(E, C̃)

(q∗)E

D F̂D Fun(E, D̃)

(�2) .

the square �1 satisfies the BC! (resp. BC∗) if and only if �2 satisfies the BC!
(resp. BC∗) condition.

Proof Under the canonical equivalence of∞-categories

Fun(D × E, C̃) � Fun(D,Fun(E, C̃)),

the BC! (resp. BC∗) map for �1 corresponds to the BC! (resp. BC∗) map of
�2 and isomorphisms correspond to isomorphisms. ��

2.2.2 Normed and ambidextrous squares

Wenowconsider commuting squares of∞-categories, where the vertical func-
tors are normed.

Definition 2.2.10 We define:

(1) A normed square is a pair of normed functors q : D � C and q̃ : D̃ � C̃,
together with a commutative diagram

C
q∗

FC C̃
q̃∗

D FD D̃.

(∗)

It is iso-normed if q and q̃ are iso-normed.
(2) Aweakly ambidextrous square is a normed square, such that the associated

norm diagram:

FCq!
Nmq

FCq∗
β∗

q̃!FD

β!
Nmq̃

q̃∗FD.

(�)
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commutes up to homotopy. An ambidextrous square is a weakly ambidex-
trous square that is iso-normed (note that an ambidextrous square satisfies
the BC! condition if and only if it satisfies the BC∗ condition).

Remark 2.2.11 We shall often abuse language and say that (∗) is a normed (or
ambidextrous) square implying by this that we also have normed functors q
and q̃ as in the definition.

As with any definition regarding norms, we can recast the definition of an
ambidextrous square in terms of wrong way counits. As this will be used in
the sequel, we shall spell this out.

Lemma 2.2.12 Let (∗) be a normed square as in Definition 2.2.10(1). Con-
sider the diagrams (where � is defined only when (∗) is iso-normed).

FDq∗q!
νq

q̃∗FCq!

�

FD

q̃∗q̃!FD

β! νq̃

(

�

) ,

q̃!q̃∗FC
�

FC

μq̃

μq

q̃!FDq∗

β!

FCq!q∗.

( � )

(1) The norm-diagram � commutes if and only if the diagram

�

commutes.
(2) If (∗) is iso-normed, satisfies the BC! condition and the norm-diagram �

commutes, then the diagram � commutes.
Proof We begin with (1). The norm-diagram � commutes if and only if the
two maps q̃!FD → q̃∗FD are homotopic. This holds if and only if their mates
q̃∗q̃!FD → FD are homotopic. To compute the mate, one applies q̃∗ and post-
composes with the counit c̃∗ : q̃∗q̃∗ → Id (of the right way adjunction). Now,
consider the diagram

FDq∗q!
Nmq

FDq∗q∗
� c∗

q̃∗FCq!

�
Nmq

q̃∗FCq∗
β∗

FD.

q̃∗q̃!FD

β!
Nmq̃

q̃∗q̃∗FD
c̃∗

The triangle on the right commutes by Lemma 2.2.4(2). The composition of
the top maps is FDνq and of the bottom maps is νq̃ FD. Hence, � commutes,
if and only if

�

commutes.
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We now turn to (2). To check the commutativity of � , we may replace β!
with its inverse. By assumption, all maps in � are isomorphisms. Thus, the
map β−1! in � is homotopic to the composition

FCq!
Nmq−−→ FCq∗

β∗−→ q̃∗FD
(Nmq̃)

−1
−−−−−→ q̃!FD.

Unwinding the definitions, this exhibits β−1! as the BC∗-map of thewrong way
adjunctions q∗ � q! and q̃∗ � q̃!. The commutativity of � now follows from
the compatibility of BC-maps with units (Lemma 2.2.4(1)). ��
Themain feature of ambidextrous squares is that they behave well with respect
to the integral operation.

Proposition 2.2.13 Let

C
q∗

FC C̃
q̃∗

D FD D̃

(�)

be an ambidextrous square that satisfies the BC! condition (and hence the
BC∗ condition). For all X, Y ∈ C and f : q∗X → q∗Y, we have

FC
(∫

q
f

)
=

∫
q̃
FD ( f ) ∈ HomhC̃ (FCX, FCY ) .

In particular, for all X ∈ C, we have

FC (|q|X ) = |q̃|FC(X) ∈ HomhC̃ (FCX, FCX) .

Proof Since � is iso-normed, we can construct the following diagram:

FCq∗q∗X

β∗ �

f
FCq∗q∗Y

β∗ �

Nm−1q
FCq!q∗Y

c!

FCX

u∗

ũ∗

q̃∗FDq∗X

�

f
q̃∗FDq∗Y

�

Nm−1q̃
q̃!FDq∗Y

�

�β!

FCY.

q̃∗q̃∗FCX
f

q̃∗q̃∗FCY
Nm−1q̃

q̃!q̃∗FCY
c̃!

The left and right triangles commute by the compatibility of BC maps with
(co)units (Lemma 2.2.4, diagrams (1), and (4) respectively). The top right
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square commutes by the assumption that the square � is ambidextrous and
satisfies the BC conditions and the rest of the squares commute for trivial
reasons. Hence, the composition along the top path is homotopic to the com-
position along the bottom path, which proves the first claim. The second claim
follows from the first applied to the map f = q∗ IdX . ��

2.2.3 Calculus of normed squares

As discussed before, squares of functors can be pasted horizontally and ver-
tically. We extend these operations to normed squares and consider their
compatibility with the notion of ambidexterity. We begin with horizontal past-
ing. Given normed functors

q : D � C, q̃ : D̃ � C̃, ˜̃q : ˜̃D � ˜̃C,

and a commutative diagram

C
q∗

FC C̃
q̃∗

GC ˜̃C
˜̃q∗

D FD D̃ GD ˜̃D,

(∗)

we call the big outer normed square the horizontal pasting of the left and right
small normed squares. We have the following horizontal pasting lemma for
ambidexterity.

Lemma 2.2.14 (Horizontal Pasting)Let (∗) be a horizontal pasting diagram
of normed squares as above. We denote by �L , �R and �, the left, right, and
outer normed squares respectively. If �L and �R are (weakly) ambidextrous,
then so is �.

Proof Consider the following diagram composed of whiskerings of the norm
diagrams of �L and �R (with all horizontal maps the respective BC-maps).

GCFCq!
Nmq

GC q̃!FD
Nmq̃

˜̃q!GDFD

Nm ˜̃q

GCFCq∗ GC q̃∗FD ˜̃q∗GDFD.

By Lemma 2.2.5, the outer square is the norm diagram for �, which implies
the claim. ��
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We now turn to vertical pasting. Given normed functors

q : D � C, q̃ : D̃ � C̃, p : E � D, p̃ : Ẽ � D̃

and a commutative diagram

C
q∗

FC C̃
q̃∗

D
p∗

FD D̃
p̃∗

E FE Ẽ,

(∗∗)

wecall the big outer normed square,with respect to the compositions of normed
functors qp and q̃ p̃, the vertical pasting of the top and bottom small normed
squares. We have the following vertical pasting lemma for ambidexterity:

Lemma 2.2.15 (Vertical Pasting) Let (∗∗) be a vertical pasting diagram of
normed squares as above. We denote by �T , �B and �, the top, bottom, and
outer normed squares respectively. If �T and �B are (weakly) ambidextrous,
then so is �.

Proof Consider the following diagram composed of whiskerings of the norm
diagrams of �T and �B (with all horizontal maps the respective BC-maps).

FCq! p!
Nmq

q̃!FD p!
Nmq̃

q̃! p̃!FE
Nmq̃

FCq∗ p!
Nmp

q̃∗FD p!
Nmp

q̃∗ p̃!FE
Nm p̃

FCq∗ p∗ q̃∗FD p∗ q̃∗ p̃∗FE .

By Lemma 2.2.7, the outer diagram is the norm diagram for �. Thus, it is
enough to check that all four small squares commute. The top right and bottom
left squares commute for trivial reasons. The top left and bottom right squares
are whiskerings of the norm diagrams of �T and �B respectively and hence
commute by assumption. ��
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2.3 Monoidal structure and duality

In this section,we study the interaction of norms and integrationwith (symmet-
ric) monoidal structures on the source and target∞-categories. Under suitable
hypotheses, this interaction allows us to reduce questions about ambidexterity
to questions about duality.

2.3.1 Tensor normed functors

Definition 2.3.1 Let C andD bemonoidal∞-categories. A⊗-normed functor
from D to C, is a normed functor q : D � C, such that q∗ is monoidal (and
hence q! is colax monoidal by the dual of [31, Corollary 7.3.2.7]) and for all
Y ∈ D and X ∈ C, the compositions of the canonical maps

q!
(
Y ⊗ (

q∗X
))→ (q!Y )⊗ (

q!q∗X
) Id⊗c!−−−→ (q!Y )⊗ X

and

q!
((
q∗X

)⊗ Y
)→ (

q!q∗X
)⊗ (q!Y )

c!⊗Id−−−→ X ⊗ (q!Y )

are isomorphisms.

Remark 2.3.2 The above definition does not dependon the normand is actually
just a property of the functor q∗. However, we shall only be interested in this
property in the context of normed functors.

Remark 2.3.3 The analogous property with q∗ instead of q! is commonly
referred to as the projection formula. A classical example is the projection
formula for coherent sheaves on schemes, see [48, 01E6].

Notation 2.3.4 Tomake diagrams involving (co)units more readable, we shall
employ the following graphical convention. When writing a unit map of an
adjunction whiskered by some functors, we enclose in parenthesis the effected
terms in the target. Similarly, when writing a counit map of an adjunction
whiskered by some functors, we underline the effected terms in the source.

We adopt the definitions and terminology of [20] regarding duality in
monoidal∞-categories. In the situation of Definition 2.3.1, substituting q∗1C
for Y , gives a natural isomorphism from the functor q!q∗ to the functor1q⊗−,
where 1q = q!q∗1C . We can therefore consider the map

ε : 1q ⊗ 1q � q!q∗q!q∗1C
ν−→ q!q∗1C

c!−→ 1C .
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Proposition 2.3.5 Let q : D � C be a ⊗-normed functor of monoidal ∞-
categories. The following are equivalent:
(1) Nmq is an isomorphism natural transformation (i.e. q is iso-normed).
(2) Nmq is an isomorphism at q∗1C .
(3) The map ε : 1q⊗1q → 1C is a duality datum (exhibiting 1q as a self dual

object in C).
Proof (1) �⇒ (2) is obvious. Assume (2). The map Nmq : q! → q∗ has
a mate ν : q∗q! → Id. By Lemma 2.1.8, since Nmq is an isomorphism at
q∗1C , the map ν is a counit map at q∗1C and has an associated unit map
μ1 : 1C → q!q∗1C . Let

η : 1C
μ1−→ (

q!q∗
)
1C

u!−→ q!
(
q∗q!

)
q∗1C = 1q ⊗ 1q .

We prove (3) by showing that ε and η satisfy the zig-zag identities. As
above, we identify 1q with q!q∗1C and 1q ⊗1q with q!q∗q!q∗1C . For the first
zig-zag identity, consider the diagram

q!q∗1C
μ1

η
Id

(q!q∗)q!q∗1C
u!

ν

q! (q∗q!) q∗q!q∗1C

ν

Id 
εq!q∗1C
u! q!(q∗q!)q∗1C

c!

q!q∗1C .

The square commutes by the interchange law for natural transformations. The
upper triangle by the definition of μ1 (i.e. the corresponding zig-zag identity
at 1C) and the bottom by the zig-zag identities for u! and c!. For the second
zig-zag identity, consider a similar diagram

q!q∗1C
μ1

Id 
η

q!q∗(q!q∗)1C
u!

ν

q!q∗q! (q∗q!) q∗1C

ν

ε
Idq!q∗1C
u! q!(q∗q!)q∗1C

c!

q!q∗1C .
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Assume (3). By Lemmas 2.1.7 and 2.1.8, it is enough to show that ν is a
counit at q∗X for all X ∈ C. Consider the following diagram

Map
(
Y,1q ⊗ X

)
∼

1q⊗−
Map

(
1q ⊗ Y,1q ⊗ 1q ⊗ X

)
∼

ε◦−Map (Y, q!q∗X)
q∗

Map
(
q∗Y, q∗q!q∗X

)

ν◦−

q! Map
(
q!q∗Y, q!q∗q!q∗X

)

ν◦−

Map (q∗Y, q∗X)
q!

∼

Map
(
q!q∗Y, q!q∗X

)

c!◦−

Map
(
1q ⊗ Y, X

)
∼

Map (q!q∗Y, X)

The triangles commute by definition and the rest by naturality. The composi-
tion along the top and then right path is an isomorphism since ε is an evaluation
map of a duality datum on 1q . Thus, the dashed arrow is an isomorphism by
2-out-of-3, which proves that ν is a counit at q∗X . ��
Remark 2.3.6 A similar result is given in [20, Proposition 5.1.8].

2.3.2 Tensor normed squares

The following is the analogous notion to a normed square in the monoidal
setting.

Definition 2.3.7 A⊗-normed square is a pair of⊗-normed functors q : D �
C and q̃ : D̃ � C̃ and a commutative square of monoidal ∞-categories and
monoidal functors

C
q∗

FC C̃
q̃∗

D FD D̃.

(∗)

For a⊗-normed square (∗) as above, we define a colax natural transforma-
tion of functors

θ : (−)q̃ FC = q̃!q̃∗FC � q̃!FDq∗
β!−→ FCq!q∗ = FC (−)q .

Using the isomorphisms from Definition 2.3.1 we define the natural isomor-
phisms

Lq : (X ⊗ Y )q

= q!q∗ (X ⊗ Y ) � q!
(
q∗X ⊗ q∗Y

) ∼−→ q!q∗X ⊗ Y
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= Xq ⊗ Y,

Rq : (X ⊗ Y )q

= q!q∗ (X ⊗ Y ) � q!
(
q∗X ⊗ q∗Y

) ∼−→ X ⊗ q!q∗Y
= X ⊗ Yq .

We shall need a technical lemma regarding the compatibility of the maps
L , R, and θ .

Lemma 2.3.8 Let (∗) be a ⊗-normed square as above. For all X, Y ∈ C, the
following diagram:

FC (X ⊗ Y )q̃q̃

θX⊗Y

∼
(FC (X)⊗ FC (Y ))q̃q̃

Rq̃ (
FC (X)⊗ FC (Y )q̃

)
q̃

Id⊗θY

Lq̃
FC (X)q̃ ⊗ FC (Y )q̃

Id⊗θY

FC
(
(X ⊗ Y )q

)
q̃

θ(X⊗Y )q

Rq
FC

(
X ⊗ Yq

)
q̃

θX⊗Yq

∼ (
FC (X)⊗ FC

(
Yq

))
q̃

Lq̃
FC (X)q̃ ⊗ FC

(
Yq

)

θX⊗Id

FC
(
(X ⊗ Y )qq

) Rq
FC

((
X ⊗ Yq

)
q

) Lq
FC

(
Xq ⊗ Yq

) ∼ FC
(
Xq

)⊗ FC
(
Yq

)

commutes up to homotopy.

Proof The top right square commutes by naturality of Lq̃ and the bottom left
square commutes by naturality of θ .We now show the commutativity of the top
left rectangle (the commutativity of the bottom right rectangle is completely
analogous).Byunwinding the definition of Rq , the top left rectangle is obtained
by applying (−)q̃ to the following diagram

(FC (X)⊗ FC (Y ))q̃

�

Rq̃

FC (X)q̃ ⊗ FC (Y )q̃

θX⊗θY

c̃!⊗Id FC (X)⊗ FC (Y )q̃

Id⊗θY

FC (X ⊗ Y )q̃

θX⊗Y

FC
(
Xq

)⊗ FC
(
Yq

)
�

c!⊗Id FC (X)⊗ FC
(
Yq

)
�

FC
(
(X ⊗ Y )q

)

Rq

FC
(
Xq ⊗ Yq

) c!⊗Id FC
(
X ⊗ Yq

)
.
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The left rectangle commutes by the monoidality of θ and the bottom right
square commutes by naturality. The top right square is a tensor product of two
squares

FC (X)q̃

θX

c̃!
FC (X)

Id

FC
(
Xq

) c!
FC (X)

(�1) ,

FC (Y )q̃

θY

Id
FC (Y )q̃

θY

FC
(
Yq

) Id
FC

(
Yq

)
.

(�2)

The square �2 commutes for trivial reasons and the square �1 commutes by
the compatibility of BC-maps with counits (Lemma 2.2.4(4)). ��

The main fact we shall use about ⊗-normed squares is the following:

Proposition 2.3.9 Let (∗) be a⊗-normed square as above. Assume that (∗) is
weakly ambidextrous and satisfies the BC!-condition. If q is iso-normed, then
q̃ is iso-normed and the BC∗ condition is satisfied as well.

Proof By the assumption of the BC!-condition, the operation θ is an isomor-
phism. Observe that 1q̃ � FC (1C)q̃ and consider the following diagram:

1q̃ ⊗ 1q̃

θ⊗θ �

L−1q̃ R−1q̃
q̃!q̃∗q̃!q̃∗FC (1C)

θ
θ

ν̃
q̃!q̃∗FC (1C)

θ

c̃!

FC
(
1q

)⊗ FC
(
1q

)

�

FC (1C) � 1C̃ .

FC
(
1q ⊗ 1q

) L−1q R−1q
FC

(
q!q∗q!q∗1C

)
ν

FC
(
q!q∗1C

)
c!

The middle rectangle and the triangle commute by the compatibility of BC
mapswith counits (Lemma 2.2.4(4)). The left rectangle commutes by applying
Lemma 2.3.8 with X = Y = 1C . By Proposition 2.3.5, εq : 1q ⊗ 1q → 1C is
a duality datum and since FC is monoidal,

FC
(
εq

) : FC (
1q

)⊗ FC
(
1q

)→ FC (1C) � 1C̃

is a duality datum as well. The commutativity of the above diagram, identifies
FC

(
εq

)
with εq̃ and hence εq̃ is a duality datum for 1q̃ . By Proposition 2.3.5

again, q̃ is iso-normed. Finally, the BC∗ condition is satisfied by 2-out-of-3
for the norm diagram. ��
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2.4 Amenability

Definition 2.4.1 An iso-normed functor q : D � C is called amenable, if
|q| = ∫

q Id : X → X is an isomorphism for every X ∈ C.
Remark 2.4.2 The name is inspired by the notion of amenability in geometric
group theory. Given an object X ∈ C, the integral operation

∫

q

: Map
(
q∗X, q∗X

)→ Map (X, X)

can be thought of intuitively as “summation over the fibers of q”. Amenabil-
ity allows us to “average over the fibers of q” by multiplying the integral
with |q|−1. This is especially suggestive in the prototypical example of local-
systems, which we study in the next section.

Lemma 2.4.3 Let

C
q∗

FC C̃
q̃∗

D FD D̃
be an ambidextrous square, such that FC is conservative. If q̃ is amenable,
then q is amenable.

Proof Given X ∈ C, since the square is ambidextrous, we have by Proposi-
tion 2.2.13,

FC (|q|X ) = |q̃|FC(X).

The claim follows from the assumption that FC is conservative. ��
The next result demonstrates how can amenability be profitably used for “aver-
aging”.

Theorem 2.4.4 (Higher Maschke’s Theorem) Let q : D � C be an iso-
normed functor. If q is amenable, then for every X ∈ C the counit map
c! : q!q∗X → X has a section (i.e. right inverse) up to homotopy. In par-
ticular, every object of C is a retract of an object in the essential image of
q!.

Proof By definition, |q|X is given by the composition

X
u∗−→ q∗q∗X

Nm−1−−−→ q!q∗X
c!−→ X.
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Hence, if |q|X is an isomorphism, then (c!)X has a section up to homotopy s,
given by

s := Nm−1 ◦u∗ ◦ |q|−1X .

��
Theorem 2.4.5 [Cancellation Theorem] Let

E p D q C

be a pair of normed functors. If p is amenable and qp is iso-normed, then q
is iso-normed.

Proof This is essentially the same argument as the one used in the proof of
[20, Proposition 4.4.16], but let us recall it for the convenience of the reader.
The map Nmqp is given by the composition

q! p!
Nmq−−→ q∗ p!

Nmp−−→ q∗ p∗.

Since Nmqp and Nmp are isomorphisms, so is q! p!
Nmq−−→ q∗ p!. By Theo-

rem 2.4.4, every X ∈ D is a retract of p!Y for some Y ∈ E . Isomorphisms are
closed under retracts, and so Nmq is an isomorphism for every X ∈ D. ��

3 Local-systems and ambidexterity

The main examples of normed functors that we are interested in are the ones
provided by the theory of higher semiadditivity developed in [20] and further
in [18]. In what follows, we first briefly recall the relevant definitions and
explain how they fit into the abstract framework developed in the previous
section. Then we apply the theory of the previous section to this special case.
The theory developed in [20] is set up in a rather general framework of Beck–
Chevalleyfibrations. Even though this frameworkfits into our theory of normed
functors, for concreteness and clarity, we shall confine ourselves to the special
case of local systems.

3.1 Local-systems and canonical norms

Let C be an∞-category and let A be a space viewed as an∞-groupoid.We call
Fun (A, C) the∞-category of C-valued local systems on A. Let q : A → B
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be a map of spaces and assume that C admits all q-limits and q-colimits [as
defined in Sect. 1.5(6)]. The functor of precomposition with q, denoted by

q∗ : Fun (B, C)→ Fun (A, C) ,

admits both a left adjoint q! and a right adjoint q∗ (given by left and right
Kan extension respectively). We shall define, after [20, §4.1], a class of
weakly C-ambidextrous maps q, to which we associate a canonical norm map
Nmq : q! → q∗. This norm map gives rise to a normed functor

qcan : Fun (A, C) � Fun (B, C) .

A map q is called C-ambidextrousif it is weakly C-ambidextrous and the
associated canonical norm is an isomorphism (i.e. qcan is iso-normed).

3.1.1 Base change and canonical norms

We begin with some terminology regarding the operation of base change for
local-systems.

Definition 3.1.1 Given an∞-category C and a pullback diagram of spaces

Ã

q̃

sA A

q

B̃
sB B

(∗)

the associated base-change square (of C-valued local-systems) is

Fun (B, C)

q∗

s∗B Fun(B̃, C)

q̃∗

Fun (A, C)
s∗A Fun( Ã, C).

(�)

Lemma 3.1.2 Let C be an ∞-category and let (∗) be a pullback diagram
of spaces as in Definition 3.1.1 above. If C admits all q-colimits (resp. q-
limits), then the associated base-change square� satisfies the BC! (resp. BC∗
condition).

Proof For BC! this is [20, Proposition 4.3.3] (note we only need q-colimits).
The claim for BC∗ follows by replacing C with Cop. ��
The construction of the canonical norm rests on the following more general
construction.
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Definition 3.1.3 Let q : A→ B be a map of spaces and let δ : A→ A ×B A
be the diagonal of q. Let C be an∞-category that admits all q-(co)limits and
δ-(co)limits. Given an isomorphism natural transformation

Nmδ : δ! ∼−→ δ∗,

we define the diagonally induced norm map

Nmq : q! → q∗

as follows. Consider the commutative diagram

A
δ

A ×B A

π2

π1 A

q

A
q

B.

To the iso-norm Nmδ , corresponds a wrong way unit map μδ : Id→ δ!δ∗.
By Lemma 3.1.2, the base change square associated with (∗) satisfies the BC!
condition, and so we can define the composition

νq : q∗q!
β−1!−−→ (π2)! π∗1

μδ−→ (π2)! δ!δ∗π∗1 ∼−→ Id .

We define Nmq : q! → q∗ to be the mate of νq under the adjunction q∗ � q∗.

Remark 3.1.4 In light of [20, Remark 4.1.9], we can informally say that the
diagonally induced norm map on q is obtained by integrating the identity map
along the diagonal δ. Though we shall not use this perspective, it is helpful to
keep it in mind.

Note that if q : A→ B ism-truncated for somem ≥ −1, then δ is (m − 1)-
truncated. This allows us to define canonical norm maps inductively on the
level of truncatedness of the map.

Definition 3.1.5 Let C be an∞-category and m ≥ −2 an integer. A map of
spaces q : A→ B is called

(0) (−2)-C-ambidextrous if it is (−2)-truncated, i.e., an isomorphism.
(1) weakly m-C-ambidextrous, if q is m-truncated, C admits q-(co)limits and

either of the two holds:
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• m = −2, in which case the inverse of q∗ is both a left and right adjoint
of q∗. We define the canonical norm map on q∗ to be the identity of
some inverse of q∗.
• m ≥ −1, and the diagonal δ : A → A ×B A of q is (m − 1)-C-
ambidextrous. In this case we define the canonical norm on q∗ to be
the diagonally induced one from the canonical norm of δ.

(2) m-C-ambidextrous, if it is weakly m-C-ambidextrous and its canonical
norm map is an isomorphism.

Amap of spaces q : A→ B is called (weakly) C-ambidextrous if it is (weakly)
m-C-ambidextrous for some m.

By [20, Proposition 4.1.10 (5)], the canonical norm associated with a map
q : A→ B, that is m-truncated for some m, is independent of m.

Remark 3.1.6 In fact, one can define the (weak-)ambidexterity property of a
truncated map q : A → B without referring explicitly to the truncation level
(as suggested in [13, Defintiion 2.1.1]). Namely, one simply defines the class of
(weakly) ambidextrous maps recursively over the iterated diagonal. One has to
verify only that for an isomorphism, the norm induced by the diagonal (which
is also an isomorphism) coincides with the identification q! � (q∗)−1 � q∗.

Definition 3.1.7 In the situation of Definition 3.1.5, given a map q : A→ B
that is weakly C-ambidextrous, we define the associated canonical normed
functor

qcanC : Fun (A, C) � Fun (B, C) ,

by

(
qcanC

)∗ = q∗,
(
qcanC

)
! = q!,

(
qcanC

)
∗ = q∗,

and the norm map Nmq : q! → q∗ the canonical norm of Definition 3.1.5.

Note that the normed functor qcanC is iso-normed if and only if q is C-
ambidextrous. We add the following definition.

Definition 3.1.8 Let C be an∞-category. A C-ambidextrous map q : A→ B
is called C-amenable if qcan is amenable.

Notation 3.1.9 Given a weakly C-ambidextrous map of spaces q : A → B,
we write qcan for qcanC if C is understood from the context. We also write (−)q ,∫
q and |q| instead of (−)qcan ,

∫
qcan and |qcan|. For a map q : A → pt, we

shall also say that A is (weakly) C-ambidextrous or amenable if q is, and write
(−)A,

∫
A , and |A| instead of (−)q ,

∫
q and |q|.
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The next proposition ensures that the canonical norms are preserved under
base change, compositions and identity as in Definition 2.1.11.

Proposition 3.1.10 Let C be an∞-category.

(1) (Identity) Given an isomorphism of spaces q : A ∼−→ B, the functor q∗ is
C-ambidextrous and its canonical norm is the identity of the left and right
adjoint inverse of q∗.

(2) (Composition) Given (weakly) C-ambidextrous maps q : A → B and
p : B → C, the composition pq : A → C is (weakly) C-ambidextrous
and (pq)can can be identified with pcanqcan.

(3) (Base-change) Let (∗) be a pullback diagram of spaces as in Defi-
nition 3.1.1. If q is (weakly) C-ambidextrous, then q̃ is (weakly) C-
ambidextrous and the associated base-change square

Fun (B, C)

q∗

s∗B Fun(B̃, C)

q̃∗

Fun (A, C)
s∗A Fun( Ã, C)

is (weakly) ambidextrous.

Proof (1) follows directly from the definition. (2) is the content of [20, Remark
4.2.4]. (3) is a restatement of [20, Remark 4.2.3]. ��
The following is a central notion for this paper.

Definition 3.1.11 Let m ≥ −2 be an integer. An∞-category C is called m-
semiadditive, if it admits all m-finite limits and m-finite colimits and every
m-finite map of spaces is C-ambidextrous. It is called∞-semiadditive if it is
m-semiadditive for all m.

Remark 3.1.12 Our definition ofm-semiadditivity agrees with [18, Definition
3.1] and differs slightly from [20, Definition 4.4.2] in that we do not require
C to admit all small colimits, but only m-finite ones. Note that using the
“wrong way counit” perspective, one could phrase m–semiadditivity without
the assumption that C admits m-finite limits, but this would then be a direct
consequence. Thus, Definition 3.1.11 is somewhat more general then [20,
Definition 4.4.2].

3.1.2 Base change and integration

We can now apply the theory of integration developed in the previous section
to the canonically normed functors associated with ambidextrous maps.
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Example 3.1.13 (see [20, Remark 4.4.11]) Let C be a 0-semiadditive ∞-
category (e.g. C is stable). For every finite set A, the map q : A → pt is
C-ambidextrous. Given X, Y ∈ C, a map of local systems f : q∗X → q∗Y ,
can be viewed as a collection of maps { fa : X → Y }a∈A. We have

∫

A

f =
∑
a∈A

fa ∈ HomhC (X, Y ) .

We now apply the general theory of integration to base change squares.

Proposition 3.1.14 Let C be an∞-category and let (∗) be a pullback diagram
of spaces as in Definition 3.1.1, such that q (and hence q̃) is C-ambidextrous.
For all X, Y ∈ Fun (B, C) and f : q∗X → q∗Y , we have

s∗B
∫

q

f =
∫

q̃

s∗A f ∈ Hom
h Fun

(
B̃,C

) (
s∗B X, s∗BY

)
.

In particular, for all X ∈ Fun (B, C) we have

s∗B |q|X = |q̃|s∗B X ∈ Hom
h Fun

(
B̃,C

) (
s∗B X, s∗B X

)
.

Proof Denote by� the associatedbase-change square.ByProposition3.1.10(3),
� is ambidextrous and by Lemma 3.1.2, it satisfies the BC! condition. Now,
the result follows from Proposition 2.2.13. ��
As a consequence, we get a form of “distributivity” for integration.

Corollary 3.1.15 Let C be an∞-category and let q1 : A1→ B and q2 : A2→
B be two C-ambidextrous maps of spaces. Consider the pullback square

A2 ×B A1

π2

π1

q2×Bq1

A1

q1

A2
q2

B.

The map q2 ×B q1 is C-ambidextrous and for all X, Y, Z ∈ Fun (B, C) and
maps

f1 : q∗1 X → q∗1Y, f2 : q∗2Y → q∗2 Z ,
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we have
∫

q2×Bq1

(
π∗2 f2 ◦ π∗1 f1

) =
∫

q2

f2 ◦
∫

q1

f1 ∈ Homh Fun(B,C) (X, Z) .

In particular, for every X ∈ Fun (B, C), we have

|q2 ×B q1|X = |q2|X ◦ |q1|X ∈ Homh Fun(B,C) (X, X) .

Proof The map π2 is C-ambidextrous by Proposition 3.1.10(3) and therefore
q2 ×B q1 = q2π2 is C-ambidextrous by Proposition 3.1.10(2). We now start
from the left hand side and use Proposition 2.1.18, Proposition 2.1.17(1),
Proposition 3.1.14 and Proposition 2.1.17(2) (in that order).

∫

q2×Bq1

(
π∗2 f2 ◦ π∗1 f1

) =
∫

q2π2

(
π∗2 f2 ◦ π∗1 f1

) =
∫

q2

∫

π2

(
π∗2 f2 ◦ π∗1 f1

)

=
∫

q2

⎛
⎝ f2 ◦

∫

π2

π∗1 f1

⎞
⎠ =

∫

q2

⎛
⎝ f2 ◦ q∗2

∫

q1

f1

⎞
⎠ =

∫

q2

f2 ◦
∫

q1

f1.

The second claim follows from applying the first to f2 = q∗2 IdX and f1 =
q∗1 IdX . ��
As another consequence, we obtain the additivity property of the integral.

Proposition 3.1.16 (Integral Additivity) Let C be a 0-semiadditive ∞-
category and let qi : Ai → B for i = 1, . . . , k be C-ambidextrous maps.
Then,

(q1, . . . , qk) : A1 � · · · � Ak → B

is C-ambidextrous and for all X, Y ∈ Fun (B, C) and maps fi : q∗i X → q∗i Y
for i = 1, . . . , k, we have

∫

(q1,...,qk)

( f1, . . . , fk) =
k∑

i=1

⎛
⎝

∫

qi

fi

⎞
⎠ ∈ Homh Fun(B,C) (X, Y ) .

Proof By induction, we may assume k = 2. Write (q1, q2) as a composition

A1 � A2
q1�q2−−−→ B � B

∇−→ B,
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where ∇ is the fold map. By [20, Proposition 4.3.5], the map q1 � q2 is C-
ambidextrous. Consider the pullback square of spaces, with j1 the natural
inclusion inclusion of the first summand,

A1

q1

j1
A1 � A2

q1�q2
B

j1
B � B.

(∗)

By Proposition 3.1.14 applied to the base-change square of (∗), we get that

j∗1

⎛
⎝

∫

q1�q2
( f1, f2)

⎞
⎠ �

∫

q1

f1.

Applying the analogous argument to the second component, we get

∫

q1�q2
( f1, f2) =

⎛
⎝

∫

q1

f1,
∫

q2

f2

⎞
⎠ .

Since ∇ : B � B → B is 0-finite and C is 0-semiadditive, ∇ is C-
ambidextrous and the map (q1, q2) is C-ambidextrous as a composition of two
such (Proposition 3.1.10(2)). Using Fubini’s Theorem (Proposition 2.1.18),
and a direct computation from the definition of the integral over ∇ (identical
to Example 3.1.13) we get

∫

(q1,q2)

( f1, f2) �
∫

∇

∫

q1�q2
( f1, f2) =

∫

∇

⎛
⎝

∫

q1

f1,
∫

q2

f2

⎞
⎠ =

∫

q1

f1 +
∫

q2

f2.

��

3.1.3 Amenable spaces

Ambidexterity of the base-change square has also a corollary for the notion of
amenability.

Corollary 3.1.17 Let C be an∞-category and let (∗) be a pullback diagram
of spaces as in Definition 3.1.1. If sB is surjective on connected components
and q̃ is C-amenable, then q is C-amenable.
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Proof Since sB is surjective on connected components, the C-ambidexterity of
q̃ implies the C-ambidexterity of q by [20, Corollary 4.3.6]. Thus, by Proposi-
tion 3.1.10(3), the diagram � of Definition 3.1.1 is ambidextrous. Since sB is
surjective on connected components, s∗B is conservative and the claim follwos
from Lemma 2.4.3. ��
The following two propositions give the core properties of amenable spaces.

Proposition 3.1.18 Let C be an∞-category and let A→ E
p−→ B be a fiber

sequence of weakly C-ambidextrous spaces, where B is connected. If E is C-
ambidextrous and A is C-amenable (and hence also C-ambidextrous), then B
is C-ambidextrous.
Proof By assumption, A is C-amenable and B is connected, hence by Corol-
lary 3.1.17, the map p is C-amenable. Denote q : B → pt and consider the
pair of composable canonically normed functors

Fun (E, C)
pcan

Fun (B, C)
qcan

Fun (pt, C) .

Since pcan is amenable and (qp)can = qcan pcan is iso-normed, by Theo-
rem 2.4.5, qcan is iso-normed. In other words, the map q (namely, the space
B) is C-ambidextrous. ��
Proposition 3.1.19 Let C be an∞-category and let A be a connected space,
such that C admits all A-(co)limits and �A-(co)limits. Denoting q : A→ pt,
if �A is C-amenable, then the counit map

cq! : q!q∗ → Id,

is an isomorphism.

Proof Let e : pt→ A be a choice of a base point. The composition

Id = q!e!e∗q∗
ce!−→ q!q∗

cq!−→ Id

is the counit of the adjunction

Id = q!e! � e∗q∗ = Id,

and hence an isomorphism. Thus, the whiskering q!ce! q
∗ is a right inverse

of cq! up to isomorphism. It therefore suffices to show that ce! has itself a
right inverse. Since A is connected and �A is C-amenable, the map e is C-
amenable by Corollary 3.1.17. Thus, by Theorem 2.4.4, the map ce! has a right
inverse. ��
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3.1.4 Higher semiadditivity and spans

We conclude with recalling from [18] some results regarding the universality
of spans ofm-finite spaces amongm-semiadditive∞-categories. These results
are useful in reducing questions about general m-semiadditive categories to
the universal case, in which they are sometimes easier to solve.

Let Sm ⊆ S be the full subcategory spanned by m-finite spaces and let Sm
m

be the∞-category of spans of m-finite spaces, see [3]. Roughly,

• The objects of Sm
m are m-finite spaces.

• A morphism from A to B is a span A← E → B, where E is m-finite as
well.
• Composition, up to homotopy, is given by pullback of spans.

By [18, §2.2], the∞-category Sm
m of spans of m-finite spaces inherits a sym-

metricmonoidal structure from theCartesian symmetricmonoidal structure on
Sm . While this symmetric monoidal structure is not itself Cartesian, the unit is

pt ∈ Sm
m and the tensor of two maps A1

q1←− E1
r1−→ B1 and A2

q2←− E2
r2−→ B2

is equivalent to

A1 × A2
q1×q2←−−− E1 × E2

r1×r2−−−→ B1 × B2.

One of the main results of [18] is that Sm
m canonically acts on any m-

semiadditive ∞-category (and the existence of such an action is in fact
equivalent to m-semiadditivity).

Theorem 3.1.20 (Harpaz, [18, Corollary 5.2]) For every m-semiadditive
C, there is a unique monoidal m-finite colimit preserving functor Sm

m →
Fun (C, C), with respect to the symmetric monoidal structure on Sm

m discussed
above.

Unwinding the definition of this action, we get that

• The image of an m-finite space a : A→ pt is equivalent to the functor

(−)A = a!a∗ : C → C

(i.e. colimit over the constant A-shaped diagram).
• The image of a “right way” arrow A

=←− A
r−→ B is homotopic to the right

way counit map

(−)A = a!a∗ � b!r!r∗b∗
cr!−→ b!b∗ = (−)B ,

where a : A→ pt and b : B → pt are the unique maps (i.e. it is the natural
map induced on colimits).
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• The image of a “wrong way” arrow B
q←− A

=−→ A is homotopic to the
wrong way unit map

(−)B = b!b∗
μq−→ b!

(
q!q∗

)
b∗ � a!a∗ = (−)A

(which can informally be thought of as “integration along the fibers of q”).
• The natural transformation |A| at pt ∈ Sm

m , is given by the span pt← A→
pt .

Remark 3.1.21 If one is only interested in this functor on the level of homotopy
categories (as we are),

hSm
m → h Fun (C, C) ,

one can use the above formulas as a definition. The compatibility with com-
position can be verified using [20, Proposition 4.2.1 (2)].

3.2 Higher semiadditive functors

In this section, we study m-finite colimit preserving functors between m-
semiadditive∞-categories and study their behaviorwith respect to integration.
We call such functors m-semiadditive.

Definition 3.2.1 Let F : C → D be a functor of∞-categories and q : A→ B
a map of spaces. We define the (F, q)-square to be the commutative square

Fun (B, C)

q∗

F∗ Fun (B,D)

q∗

Fun (A, C)
F∗ Fun (A,D) ,

where the horizontal functors are post-composition with F and the vertical
functors are pre-composition with q. If q is weakly C and D ambidextrous,
then this square is canonically normed.

Proposition 3.2.2 Let F : C → D be a functor of∞-categories and q : A→
B a map of spaces. If C and D admit, and F preserves, all q-colimits (resp.
q-limits), then the (F, q)-square satisfies the BC! (resp. BC∗) condition.

Proof To check that the BC-map is an isomorphism, it suffices to verify this
after pulling back to each of the points of B. By Lemma 3.1.2, this reduces the
claim to the case B = pt and A = q−1(b) for some b ∈ B. This case follows
from the the assumption that F is q-(co)limit preserving. ��
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The following is the main result of this section.

Theorem 3.2.3 Let F : C → D be a functor of∞-categories which preserves
(m − 1)-finite colimits. Let q : A → B be an m-finite map of spaces. If q
is (weakly) C-ambidextrous and (weakly) D-ambidextrous, then the (F, q)-
square is (weakly) ambidextrous.

Proof The statement about ambidexterity follows immediately from the
ambidexterity of q and the statement about weak ambidexterity.We shall prove
the latter by induction on m. For m = −2, both vertical maps in the (F, q)-
square are isomorphisms, and so the claim follows from Proposition 3.1.10(1).
We therefore assume m ≥ −1. Consider the diagram

A
δ

A ×B A

π2

π1 A

q

A
q

B.

(♥)

The square in the diagram induces a BC! map β! : (π2)! π∗1 → q∗q!, which
is an isomorphism by Lemma 3.1.2. By definition, νCq is the composition of
maps

q∗q!
β−1−−→ (π2)! π∗1

μδ−→ (π2)! δ!δ∗π∗1 � Id .

By Lemma 2.2.12(1), it suffices to show that the wrong way counit diagram
of q commutes. Thiswill follow from the commutativity of the (solid) diagram:

q∗q!F∗

β!

β−1
(π2)! (π1)

∗ F∗

�

μD
δ

(π2)! δ!δ∗ (π1)
∗ F∗

� ∼
(π2)! δ!δ∗F∗ (π1)

∗

�

q∗F∗q!

�

(π2)! F∗ (π1)
∗

μD
δ

μC
δ

(π2)! δ!F∗δ∗ (π1)
∗ ∼

F∗.

(π2)! F∗δ!δ∗ (π1)
∗

F∗q∗q!
β−1

F∗ (π2)! (π1)
∗ μC

δ
F∗ (π2)! δ!δ∗ (π1)

∗

∼
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The two trapezoids and the upper triangle commute for formal reasons. The
bottom triangle commutes by Lemma 2.2.7(1) and the fact thatπ2◦δ = Id. For
the rectangle on the left, is enough to prove the commutativity of the following
diagram:

q∗q!F∗
β!

(π2)! (π1)
∗ F∗

�

β

q∗F∗q!
�

(π2)! F∗ (π1)
∗ (∗)

F∗q∗q! F∗ (π2)! (π1)
∗ .

β

For this we consider the following commutative cubical diagram:

Fun (B, C)

q∗

F∗
q∗

Fun (B,D)

q∗

q∗

Fun (A, C)

π∗2

F∗ Fun (A,D)

π∗2
Fun (A, C)

F∗
π∗1

Fun (A,D)
π∗1

Fun (A ×B A, C)
F∗ Fun (A ×B A,D) .

(♠)

Applying Lemma 2.2.5(1) once to the back and then right face of (♠) and
once to the left and then front face of (♠), we get two presentations of the BC!
map of the diagram

Fun(B, C)

q∗

Fun(A,D)

π∗2

Fun(A, C) Fun(A ×B A,D).

These two presentations correspond precisely to the two paths in (∗).
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It is left to check the commutativity of the triangle in the middle, which is
a whiskering of the diagram

δ!δ∗F∗
�

F∗

μD
δ

μC
δ

δ!F∗δ∗

β!

F∗δ!δ∗.

( � )

The map δ is an (m − 1)-finite map that is both C-ambidextrous and D-
ambidextrous. By assumption, F preserves (m − 1)-finite colimits and so, by
the inductive hypothesis, the norm diagram of the (F, δ)-square commutes.
Thus, � commutes by Lemma 2.2.12(2). ��
As a corollary, we get a higher analogue of a known fact about 0-semiadditive
categories.

Corollary 3.2.4 Let F : C → D be a functor ofm-semiadditive∞-categories.
The functor F preserves m-finite colimits if and only if it preserves m-finite
limits.

Proof We proceed by induction on m. For m = −2, there is nothing to prove.
For m ≥ −1, assume by induction the claim holds for m − 1. Since C and
D are in particular (m − 1)-semiadditive and F preserves either (m − 1)-
colimits or (m − 1)-limits, we deduce that F preserves both. For everym-finite
A, consider the map q : A → pt. Since C and D are in particular (m − 1)-
semiadditive and F preserves (m − 1)-colimits, by Theorem 3.2.3, the (F, q)-
square is weakly ambidextrous. Since C andD arem-semiadditive, the (F, q)-
square is in fact ambidextrous. It follows that the (F, q)-square satisfies the
BC! condition if and only if it satisfies the BC∗ condition. Namely, F preserves
A-shaped colimits if and only if it preserves A-shaped limits. ��
Corollary 3.2.5 Let {Ci }i∈I be a collection of m-semiadditive∞-categories.
The∞-category C :=∏

i∈I Ci is m-semiadditive.

Proof We proceed by induction on m. For m = −2 there is nothing to prove,
and so we may assume that m ≥ −1. Let q : A → B be an m-finite map of
spaces. By induction, C is (m − 1)-semiadditive, and hence q is weakly C-
ambidextrous. In particular, the map NmC

q is defined and it is left to show that
it is an isomorphism. For every i ∈ I , the map q is Ci -ambidextrous and the
projectionπi : C → Ci preserves colimits. Thus, byTheorem3.2.3, the (πi , q)-
square is weakly ambidextrous. Additionally, as πi commutes with limits and
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colimits, the (πi , q)-square satisfies both the BC! and BC∗ conditions. The
Ci -ambidexterity of q implies now that the natural transformation

πi Nm
C
q : πi q! → πi q∗

is a natural isomorphism. Finally, since the collection {πi }i∈I is jointly con-
servative, we deduce that NmC

q is an isomorphism. ��

Definition 3.2.6 Let C and D be m-semiadditive ∞-categories. A functor
F : C → D is called m-semiadditive, if it preserves m-finite (co)limits.

The following gives the fundamental property of m-semiadditive functors,
which justifies their name.

Corollary 3.2.7 Let F : C → D be anm-semiadditive functor and let q : A→
B be an m-finite map of spaces. For all X, Y ∈ Fun (B, C) and f : q∗X →
q∗Y , we have

F

⎛
⎝

∫

q

f

⎞
⎠ =

∫

q

F ( f ) ∈ Homh Fun(B,D) (FX, FY ) .

In particular, for all X ∈ Fun (B, C) we have

F (|q|X ) = |q|F(X) ∈ Homh Fun(B,D) (FX, FX) .

Proof The (F, q)-square is ambidextrous by Theorem 3.2.3 and satisfies the
BC conditions by Proposition 3.2.2, and so the claim follows form Proposi-
tion 2.2.13. ��

Remark 3.2.8 In view of Remark 3.1.4, one can reinterpret Theorem 3.2.3
informally, as saying that

∫

δ

F (Id) = F

⎛
⎝

∫

δ

Id

⎞
⎠ ,

where δ : A→ A×B A is the diagonal of q : A→ B. Since δ is (m − 1)-finite,
this in turn follows inductively from Corollary 3.2.7. Turning this argument
into a rigorous proof requires some categorical maneuvers that we preferred
to avoid.
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3.2.1 Multivariate functors

We now discuss a multivariate version of higher semiadditive functors.

Definition 3.2.9 Let C1, . . . , Ck and D be∞-categories and F : ∏k
i=1 Ci →

D a functor. Given a collection of diagrams Xi : Ai → Ci for i = 1, . . . , k,
their external product X1 � · · ·� Xk is defined to be the composition

k∏
i=1

Ai

∏k
i=1 Xi−−−−→

k∏
i=1

Ci F−→ D.

This assembles to give a functor

� :
k∏

i=1
Fun (Ai , Ci )→ Fun

(
k∏

i=1
Ai ,D

)
.

Given a collection of maps of spaces qi : Ai → Bi for i = 1, . . . , k, we obtain
the associated external product square:

k∏
i=1

Fun (Bi , Ci )

k∏
i=1

q∗i

� Fun

(
k∏

i=1
Bi ,D

)

(
k∏

i=1
qi

)∗

k∏
i=1

Fun (Ai , Ci ) � Fun

(
k∏

i=1
Ai ,D

)
.

(∗)

Proposition 3.2.10 LetC1, . . . , Ck andD be∞-categories and F : ∏k
i=1 Ci →

D a functor. Additionally, let qi : Ai → Bi for i = 1, . . . , k be a collection
of maps of spaces. If F preserves all qi -colimits (resp. qi -limits) in the i th
coordinate, then the external product square (∗) satisfies the BC! (resp. BC∗)
condition.

Proof We proceed by a sequence of reductions. First, by induction on k and
horizontal pasting (Corollary 2.2.6), we can reduce to k = 2. Write q1× q2 as
a composition

A1 × A2
q1×Id−−−→ B1 × A2

Id×q2−−−→ B1 × B2.
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The diagram

Fun (B1, C1)× Fun (B2, C2)
Id×q∗2

� Fun (B1 × B2,D)

(Id×q2)∗

Fun (B1, C1)× Fun (A2, C2)
q∗1×Id

� Fun (B1 × A2,D)

(q1×Id)∗

Fun (A1, C1)× Fun (A2, C2) � Fun (A1 × A2,D)

exhibits (∗) as a vertical pasting of the top and bottom squares. Hence, by
Corollary 2.2.8, it is enough to show that each of them satisfies the BC! (resp.
BC∗) condition. We will focus on the bottom square (the argument for the
top square is analogous). Since (co)limits in A2-local systems are computed
point-wise, the external product functor

FA2 : C1 × Fun (A2, C2)→ Fun (A2,D)

preserves in each coordinate the (co)limits which are preserved by F . By
replacing the ∞-category C2 with Fun (A2, C2), the ∞-category D with
Fun (A2,D) and the functor F with FA2 , we may assume without loss of
generality that A2 = 	0. The bottom square becomes

Fun (B1, C1)× C2
q∗1×Id

� Fun (B1,D)

q∗1

Fun (A1, C1)× C2 � Fun (A1,D) .

By the exponential rule (Lemma 2.2.9), it is enough to show that the left
square in the following diagram satisfies the BC! (resp. BC∗) condition:

Fun (B1, C1)
q∗1

� Fun (C2,Fun (B1,D))
(
qC1

)∗
∼ Fun (B1,Fun (C2,D))

q∗1

Fun (A1, C1) � Fun (C2,Fun (A1,D))
∼ Fun (A1,Fun (C2,D)) .

Equivalently, it is enough to show that the outer square � satisfies the BC!
(resp. BC∗) condition. Observe that � is the

(
F∨, q1

)
-square for the functor

F∨ : C1→ Fun (C2,D) ,
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which is the mate of F . From the assumption on F , the functor F∨ preserves
q1-colimits (resp. q1-limits) and therefore � satisfies the BC! (resp. BC∗)
condition by the univariate version of Proposition 3.2.2. ��

The following definition is needed to state a corollary to Proposition 3.2.10.

Definition 3.2.11 Let C1, . . . , Ck andD be m-semiadditive∞-categories. An
m-semiadditive multi-functor F : ∏k

i=1 Ci → D is a functor that preserves
m-finite colimits in each coordinate separately.

Corollary 3.2.12 Let C1, . . . , Ck andD be m-semiadditive∞-categories. Let
F : ∏k

i=1 Ci → D be an m-semiadditive multi-functor. For every collection of
m-finite maps qi : Ai → Bi for i = 1, . . . k, the external product square (∗)
from Definition 3.2.9 satisfies both BC-conditions.

3.3 Symmetric monoidal structure

In this section, we study the interaction of higher semiadditivity with (sym-
metric) monoidal structures.

3.3.1 Monoidal local systems

Let (C,⊗,1) be a (symmetric) monoidal∞-category. For every space A, the
∞-category Fun (A, C) acquires a point-wise (symmetric) monoidal structure.
Moreover, given a map of spaces q : A→ B, the functor

q∗ : Fun (B, C)→ Fun (A, C)

is (symmetric) monoidal in a canonical way ([31, Example 3.2.4.4]).

Proposition 3.3.1 Let (C,⊗,1) be a monoidal∞-category. Let q : A → B
be a weakly C-ambidextrous map of spaces, such that ⊗ distributes over q-
colimits. The normed functor

qcan : Fun (A, C) � Fun (B, C)

is ⊗-normed in a canonical way, see Definition 2.3.1.
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Proof Consider the diagram

q!(q∗X ⊗ Y )
u!,X⊗u!,Y

q!((q∗q!)q∗X ⊗ (q∗q!)Y )

�

c!,X⊗Id
q!(q∗X ⊗ q∗q!Y )

�

q!q∗(q!q∗X ⊗ q!Y )

c!,(X⊗q!Y )

c!,X⊗Id
q!q∗(X ⊗ q!Y )

c!,(X⊗q!Y )

q!q∗X ⊗ q!Y
c!,X⊗Id

X ⊗ q!Y.

The triangle on the left commutes by definition, where the dashed arrow is
induced by the colax monoidality of q!. The rest of the diagram commutes for
formal reasons. The composition along the bottom path of the diagram is the
second map in Definition 2.3.1 and we shall show it is an isomorphism (the
proof for the first one follows by symmetry). Since the diagram commutes,
it suffices to show that the composition along the top and then right path
is an isomorphism. By the zig-zag identities, the latter is homotopic to the
composition

q!(q∗X ⊗ Y )
Id⊗u!,Y

q!(q∗X ⊗ q∗q!Y ) ∼−→ q!q∗(X ⊗ q!Y )

c!,(X⊗q!Y )
X ⊗ q!Y.

Finally, this composition is by definition the BC! map β! for the square

Fun(B, C)

q∗

X⊗(−)
Fun(B, C)

q∗

Fun(A, C)
q∗X⊗(−)

Fun(A, C).

To see that β! is an isomorphism, it is enough to check this after pulling back to
every point b ∈ B. This in turn follows from the assumption that⊗ distributes
over q-colimits. ��

This allows us to apply the general results about ⊗-normed functors to the
setting of local systems.

Corollary 3.3.2 Let F : C → D be an m-finite colimit preserving monoidal
functor between monoidal categories that admit, and the tensor product dis-
tributes over, m-finite colimits.
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(1) An m-finite map of spaces q : A→ B, that is C-ambidextrous and weakly
D-ambidextrous, is D-ambidextrous.

(2) If C is m-semiadditive, then D is also m-semiadditive.

Proof By Proposition 3.3.1, qcan is⊗-normed. By Theorem 3.2.3, the (F, q)-
square isweakly ambidextrous. Since F preservesm-finite colimits, the (F, q)-
square satisfies the BC!-condition. (1) now follows from Proposition 2.3.9.
We prove (2) by induction on m. For m = −2, there is nothing to prove, and
so we assume m ≥ −1. By the inductive hypothesis, we may assume D is
(m − 1)-semiadditive. In this case, every m-finite map q : A → B is weakly
D-ambidextrous and C-ambidextrous, hence by (1), is D-ambidextrous. ��
Remark 3.3.3 For m = −1, the above corollary follows from the fact that
F(0C) is a zero object of D. Indeed, since F is colimit preserving, F(0C) is
initial. Furthermore, 0C is self-dual and since F is monoidal, F(0C) is self dual
as well. It follows that F(0C) is also terminal and hence a zero object of D.

The following definition is the natural notion of (symmetric)monoidal struc-
ture in the realm of m-semiadditive∞-categories.

Definition 3.3.4 An m-semiadditively (symmetric) monoidal∞-category, is
an m-semiadditive (symmetric) monoidal∞-category C, such that the tensor
product distributes over m-finite colimits.

Lemma 3.3.5 Let (C,⊗,1) be an m-semiadditively monoidal ∞-category
and A an m-finite space.

(1) For every X ∈ C, we have |A|X � IdX ⊗|A|1.
(2) A is C-amenable if and only if |A|1 is an isomorphism.

Proof We start with (1). Given an object X ∈ C, the functor FX : C → C,
given by

FX (Y ) = X ⊗ Y,

preserves m-finite colimits. Thus, by Corollary 3.2.7 we have:

IdX ⊗|A|1 = FX (|A|1) = |A|FX (1) = |A|X .

(2) is an immediate corollary of (1). ��
Notation 3.3.6 For an m-semiadditively symmetric monoidal ∞-category
(C,⊗,1) and an m-finite space A, we abuse notation by identifying |A|1
with |A|. If we want to emphasize the ∞-category C, we write |A|C . By
Lemma 3.3.5, this conflation of terminology is rather harmless.

We also have the following consequence for dualizability:
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Proposition 3.3.7 Let (C,⊗,1) be a monoidal ∞-category. For every C-
ambidextrous space A such that ⊗ distributes over A-colimits, the object
1A (see Notation 3.1.9) is dualizable. In particular, if (C,⊗,1) is m-
semiadditively monoidal∞-category, then 1A is dualizable for every m-finite
space A.

Proof By Proposition 3.3.1, the map q : A→ pt corresponds to a ⊗-normed
functor

qcan : Fun (A, C) � C

and by definition 1A = 1q = q!q∗1. Thus, the claim follows from Proposi-
tion 2.3.5. ��
3.3.2 Symmetric monoidal dimension

We now specialize to the symmetric monoidal case. We begin with recalling
the definition of dimension for a dualizable object of a symmetric monoidal
∞-category. As in [20, §5.1], a dualizable object X in a symmetric monoidal
∞-category (C,⊗,1) has a notion of dimension, which is defined as follows.
Let X∨ be the dual of X and let

ε : X∨ ⊗ X → 1, η : 1→ X ⊗ X∨

be the evaluation and coevaluation maps respectively.

Definition 3.3.8 We denote by

dimC (X) ∈ EndC (1)

the composition

1
η−→ X ⊗ X∨ σ−→ X∨ ⊗ X

ε−→ 1,

where σ is the swap map of the symmetric monoidal structure. We say that a
space A is dualizable in C, if 1A is dualizable in C and we denote

dimC (A) = dimC (1A) .

This generalizes the classical notion of dimension from linear algebra.

Example 3.3.9 In the category of vector spaces over a field F, the dualizable
objects are precisely the finite dimensional vector spaces. Moreover, the sym-
metric monoidal dimension of a finite dimensional vector space V is the image
of the dimension of V in the usual sense under the map Z→ F.
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Dualizability of m-finite spaces in the ∞-category of spans of m-finite
spaces Sm

m assumes a particularly simple form.

Proposition 3.3.10 Every m-finite space A is self dual in Sm
m and satisfies

dimSm
m

(A) = (pt← AS1 → pt) = |AS1 | ∈ EndSm
m

(pt) .

Proof It is straightforward to check that the spans

ε : (A × A
	←− A→ pt)

η : (pt← A
	−→ A × A),

satisfy the zig-zag identities and therefore ε is a duality pairing exhibiting A as
self dual. Moreover, since ε ◦σ is homotopic to ε, where σ : X × X → X × X
is the symmetric monoidal swap, we get dim (A) = ε ◦ η. Computing the
relevant pullback explicitly,

AS1

A A

pt A × A pt

we obtain the desired result. ��
As a symmetric monoidal ∞-category, Sm

m has also the following universal
property.

Theorem 3.3.11 (Harpaz, [18, Corollary 5.8]) Let (C,⊗,1) be an m-
semiadditively symmetric monoidal ∞-category. There exists a unique m-
semiadditive symmetric monoidal functor Sm

m → C and its underlying functor
is 1(−).

Corollary 3.3.12 Let (C,⊗,1) be an m-semiadditively symmetric monoidal
∞-category. Every m-finite space A is dualizable in C and

dimC (A) = |AS1 | ∈ HomhC (1C,1C) .

In particular, if A is a loop space (e.g. A = BkCp), we have

dimC (A) = |A||�A|.
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Proof By Theorem 3.3.11, there is a canonical m-finite colimit preserving
symmetric monoidal functor F : Sm

m → C. Since F (A) = 1A and F is sym-
metric monoidal, we have

F
(
dimSm

m
A
) = dimC (1A) .

Since F also preserves m-finite colimits, we have by Corollary 3.2.7, that

F
(|B|pt) = |B|F(pt) = |B|1C

for all m-finite B. We are therefore reduced to the universal case C = Sm
m ,

which is given by Proposition 3.3.10. The last claim follows from the fact that
if A is a loop-space, then AS1 � A ×�A and Corollary 3.1.15. ��

3.4 Equivariant powers

Let C be a symmetric monoidal∞-category and p a prime. As we shall recall
below, for every object X ∈ C, the pth tensor power X⊗p carries a natural
action of the cyclic group Cp ⊆ �p. Moreover, given a map f : X → Y ,
we get a Cp-equivariant morphism f ⊗p : X⊗p → Y⊗p. Namely, there is a
functor

�p : C → Fun
(
BCp, C

)
,

whose composition with e∗ : Fun (
BCp, C

) → C (where e : pt → BCp) is
homotopic to the pth power functor (−)⊗p : C → C. In this section, we study
the functor �p, its naturality and additivity properties.

3.4.1 Functoriality and integration

We begin by describing �p formally. It will be useful to work in the greater
level of generality of C-valued local-systems instead of single objects. Given a
simplicial set K wedefine theCp-equivariant p-power of K to be the simplicial
set K p

hCp
= (K p × ECp)/Cp. For K = C a quasi-category, one can easily

varify that C p
hCp

is a quasi-category as well. Moreover, since the Cp action on

C p × ECp is free, the quasi-category C p
hCp

is a model for the∞-categorical

quotient of C p by Cp.10 In particular, we can consider this construction for
every A ∈ S, which we also denote by A � Cp = (Ap)hCp

.

10 Compare [31, §6.1.4], where the analogous construction of �n-equivariant powers is dis-
cussed.
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Lemma 3.4.1 The functor (−) � Cp : S → S preserves fiber products.

Proof The functor (−) � Cp can be identified with the composition

S e∗−→ Fun(BCp,S) � S/BCp

π−→ S,

where pt
e−→ BCp is a choice of a base point. The functor e∗ preserves limits

as it is a right adjoint, and the canonical projection π preserves limits of
contractible shape [31, Proposition 4.4.2.9] ��

The construction (−) � Cp induces a functor

(−)
p
hCp
: Fun (A, C)→ Fun(

(
Ap)

hCp
,
(C p)

hCp
).

Using this we have the following:

Definition 3.4.2 Given a symmetric monoidal ∞-category C, we define the
functor

�
p
A : Fun (A, C)→ Fun

(
A � Cp, C

)

to be the composition of (−)
p
hCp

with

(C p)
hCp
→ (C p)

h�p

⊗−→ C.

We shall suppress the subscript A in �A when the space A is understood from
the context.

The �p operation is functorial in the following sense:

Lemma 3.4.3 Let F : C → D be a symmetric monoidal functor between sym-
metric monoidal∞-categories. For every space A, the diagram

Fun (A, C)

F∗

�p
Fun

(
A � Cp, C

)
F∗

Fun (A,D)
�p

Fun
(
A � Cp,D

)

commutes up to homotopy.
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Proof The square in question is the outer square of the following diagram

Fun (A, C)

F∗

Fun(A � Cp, C p
hCp

)

F∗

⊗
Fun

(
A � Cp, C

)

F∗

Fun (A,D) Fun(A � Cp,D p
hCp

)
⊗

Fun
(
A � Cp,D

)
.

The left square commutes by the functoriality of C �→ C p
hCp

and the right,
since F is symmetric monoidal. ��
Definition 3.4.4 For a map of spaces q : A → B, the naturality of Defini-
tion 3.4.2 gives a commutative square

Fun (B, C)

q∗

�
p
B Fun

(
B � Cp, C

)

(q�Cp)
∗

Fun (A, C)
�

p
A Fun

(
A � Cp, C

)
.

We call this the �p-square of q. If q is m-finite, then so is q � Cp. If
additionally C is (m − 1)-semiadditive and admitsm-finite (co)limits, the�p-
square is canonically normed.

Example 3.4.5 Given a space A, the space A � Cp is defined as the homotopy
quotient of Ap by the action of Cp. Thus, we obtain a fiber sequence

Ap → A � Cp
π−→ BCp.

The �p-square of q : A→ pt is

Fun (pt, C)

q∗

�p
Fun

(
BCp, C

)

π∗

Fun (A, C)
�p

Fun
(
A � Cp, C

)
.

Lemma 3.4.6 Let q : A → B be a map of spaces and let (C,⊗,1) be a
symmetric monoidal∞-category that admits all q-(co)limits. If ⊗ distributes
over all q-colimits (resp. q-limits), then the �p-square satisfies the BC! (resp.
BC∗) condition.
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Proof We horizontally paste the �p-square for q with the square induced by
the pullback diagram

Ap

q p

πA A � Cp

q�Cp

B p πB B � Cp,

to obtain

Fun (B, C)

q∗

�
p
B Fun

(
B � Cp, C

)

(q�Cp)
∗

π∗B Fun (B p, C)

(q p)∗

Fun (A, C)
�

p
A Fun

(
A � Cp, C

) π∗A Fun (Ap, C) .

(∗)

The right square �R satisfies both BC-conditions by Lemma 3.1.2. Since
π∗B is conservative (πB is surjective on connected components), by Corol-
lary 2.2.6(2), it is enough to show that the outer square � satisfies the BC!
(resp. BC∗) condition. We can now write � as a horizontal pasting of two
squares �′L and �′R in a different way:

Fun (B, C)

q∗

	 Fun (B, C)p

(q∗)p

�p
Fun (B p, C)

(q p)∗

Fun (A, C)
	 Fun (A, C)p

�p
Fun (Ap, C) .

The square �′L satisfies the BC-conditions trivially and �′R by Proposi-
tion 3.2.10. ��

Proposition 3.4.7 Let (C,⊗,1) be an m-semiadditively symmetric monoidal
∞-category and let q : A→ B be an m-finite map of spaces. The correspond-
ing �p-square is ambidextrous.

Proof Since C ism-semiadditive, the�p-square for q is iso-normed and hence
it suffices to show that it is weakly ambidextrous. Namely, that the associated
norm-diagram commutes. The proof is very similar to the argument given in
Theorem 3.2.3, and therefore we shall use similar notation and indicate only
the changes that need to be made. We proceed by induction on m using the
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1208 S. Carmeli et al.

diagram of spaces

A
δ

A ×B A

π2

π1 A

q

A
q

B.

(♥)

Denoting ˜(−) = (−)�Cp, we consider the diagram of functors fromFun(A, C)

to Fun(A � Cp, C) (where all unnamed arrows are BC-maps)

q̃∗q̃!�p
A

β!

β−1
(π̃2)! (π̃1)

∗�
p
A

�

μ
δ̃

(π̃2)! δ̃! δ̃∗ (π̃1)
∗�

p
A

�
∼

(π̃2)! δ̃! δ̃∗�
p
A×B A (π1)

∗

�

q̃∗�p
Bq!

�

(π̃2)!�
p
A×B A (π1)

∗

μ
δ̃

μδ

(π̃2)! δ̃!�
p
Aδ∗ (π1)

∗ ∼
�

p
A .

(π̃2)!�
p
A×B Aδ!δ∗ (π1)

∗

�
p
Aq
∗q!

β−1
�

p
A (π2)! (π1)

∗ μδ

�
p
A (π2)! δ!δ∗ (π1)

∗

∼

By Lemma 2.2.12(1), it suffices to show that the above (solid) diagram com-
mutes. As in the proof of Theorem 3.2.3, all the parts except for the rectangle
on the left and the triangle in the middle, commute for formal reasons. The
functor (−) � Cp : S → S preserves fiber products (Lemma 3.4.1) and there-
fore δ̃ can be identifiedwith the diagonal of q̃. By Lemma 3.4.6, the BC!map in
the middle triangle is an isomorphism. Thus, the middle triangle commutes by
the inductive hypothesis and Lemma 2.2.12(2). As for the rectangle, we apply
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a similar argument to the one in Theorem 3.2.3, using again that the functor
(−) � Cp preserves fiber products, and the commutative cubical diagram

Fun (B,C)

q∗

�
p
B

q∗
Fun

(
B � Cp,C

)

q̃∗

q̃∗

Fun (A,C)

π∗2

�
p
A

Fun
(
A � Cp,C

)

π̃∗2
Fun (A,C)

�
p
A

π∗1
Fun

(
A � Cp,C

)
π̃∗1

Fun (A ×B A,C)

�
p
A×B A

Fun
(
(A ×B A) � Cp,C

)
.

(♠)

��
Theorem 3.4.8 Let C be an m-semiadditively symmetric monoidal ∞-
category and q : A → B an m-finite map of spaces. For every X, Y ∈
Fun (B, C) and f : q∗X → q∗Y , we have

�
p
B

⎛
⎝

∫

q

f

⎞
⎠ =

∫

q�Cp

�
p
A ( f ) ∈ Homh Fun(B�Cp,C)

(
�pX, �pY

)
.

Proof By Lemma 3.4.6, the �p-square satisfies the BC conditions, and by
Proposition 3.4.7, it is ambidextrous. Thus, the claim follows from Proposi-
tion 2.2.13. ��
3.4.2 Additivity of theta

We now investigate the interaction of �p with addition of morphisms. Let
C be a 0-semiadditively symmetric monoidal∞-category. Given two objects
X, Y ∈ C and twomaps f, g : X → Y ,we can express f+g as an integral of the
pair ( f, g) over q : pt � pt→ pt, see Example 3.1.13.ApplyingTheorem3.4.8
to this special case and analyzing the result, we will derive a formula of the
form

�p ( f + g) = �p ( f )+�p (g)+ “induced terms”.

The �p-square for q : pt � pt→ pt is

Fun (pt, C)

q∗

�
p
pt

Fun
(
BCp, C

)

(q�Cp)
∗

Fun (pt � pt, C)
�

p
pt � pt

Fun
(
(pt � pt) � Cp, C

)
.

(∗)
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Our first goal is to make this diagram more explicit. First, we can identify q∗
with the diagonal

	 : C → C × C.

Next, let S be the set

S = {
w ∈ {x, y}p | w 
= x p, y p

}
,

with x, y formal variables and let S is the set of orbits of S under the action
of Cp by cyclic shift. We have a homotopy equivalence of spaces

(pt � pt) � Cp � BCp � BCp � S,

and therefore an equivalence of∞-categories

Fun
(
(pt � pt) � Cp, C

) � CBCp × CBCp ×
∏
w∈S

C.

Choosing a base point map e : pt→ BCp, we see that up to homotopy, we
have

q � Cp = (Id, Id, e, . . . , e).

Similarly, the bottom arrow of (∗) can be identified with a functor

� : C × C → CBCp × CBCp ×
∏
w∈S

C,

which we now describe. For each w ∈ S, let

ew : pt→ (pt � pt) � Cp

be the map choosing the point w ∈ S and let ew : pt → w be the map
choosing the point w ∈ w. Given an element w ∈ {x, y}p we define a functor
w (−,−) : C × C → C as the composition

Fun (pt � pt, C)
	 Fun (pt � pt, C)p

� Fun
(
(pt � pt)p , C) w∗ Fun (pt, C) .
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Informally, for objects X, Y ∈ C, we have

w (X, Y ) = Z1 ⊗ Z2 ⊗ · · · ⊗ Z p, Zi =
{
X if wi = x

Y if wi = y
.

Lemma 3.4.9 There is a natural isomorphism of functors

� � (
�p ◦ p1, �p ◦ p2, {w (−,−)}w∈S

)
,

where pi : C×C → C is the projection to the i th component (it does not matter
which representative w we take for each w ∈ S).

Proof The claim about the first two components follows from the commuta-
tivity of the �p-square applied to the two inclusion maps pt ↪→ pt � pt. The
pullback square

w (pt � pt)p
σ

pt
ew

(pt � pt) � Cp

induces the commutative square in the following diagram

Fun (pt � pt,C)
�

p
pt � pt

Fun
(
(pt � pt) � Cp,C

)

e∗w

σ ∗
Fun

(
(pt � pt)p ,C)

w∗

Fun (pt,C)
	

Fun (w,C)
e∗w

Fun (pt,C) .

Observe that the composition of the leftmost horizontal functor and the left
vertical functor is the w component of �. Since the composition of the two
bottom horizontal functors is the identity, it suffices to show that the resulting
functor

Fun (pt � pt, C)→ Fun (pt, C) ,

obtained from the composition along the entire bottom path of the diagram,
is naturally isomorphic to w (−,−). Since the diagram commutes, this is
isomorphic to the composition along the top path of the diagram, which is
w (−,−) by definition. ��

123



1212 S. Carmeli et al.

Summing up, we have identified the �p-square (∗) with the following square

C
	

�p CBCp

(Id,Id,e,...,e)∗

C × C (�p◦p1,�p◦p2,{w(−,−)}w∈S) CBCp × CBCp × ∏
w∈S

C.

(∗∗)

Using this we can compute the effect of �p on the sum of two maps.

Proposition 3.4.10 Let C be a 0-semiadditively symmetric monoidal ∞-
category, Given X, Y ∈ C and a pair of maps f, g : X → Y, we have

�p ( f + g) = �p ( f )+�p (g)+
∑
w∈S

⎛
⎝

∫

e

w ( f, g)

⎞
⎠ .

Proof The pair ( f, g) can be considered as a map ( f, g) : q∗X → q∗Y .
By Theorem 3.4.8, Lemma 3.4.9 and the additivity of the integral (Propo-
sition 3.1.16) we have

�p ( f + g) = �p

⎛
⎝

∫

q

( f, g)

⎞
⎠

=
∫

(Id,Id,e,...,e)

(
�p ( f ) , �p (g) , {w ( f, g)}w∈S

)

= �p ( f )+�p (g)+
∑
w∈S

⎛
⎝

∫

e

w ( f, g)

⎞
⎠ .

��

4 Higher semiadditivity and additive derivations

Let C be a stable symmetric monoidal∞-category such that the tensor product
distributes over finite coproducts. For every pair of objects X, Y ∈ C, the set

HomhC (X, Y ) = π0 MapC (X, Y )

has a canonical structure of an abelian group. Furthermore, if

X ∈ coCAlg (C) , Y ∈ CAlg (C) ,
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then the set HomhC (X, Y ) acquires a commutative ring structure in the fol-
lowing way. Given f, g : X → Y , we define their product as the composition

X
co−mult−−−−→ X ⊗ X

f⊗g−−→ Y ⊗ Y
mult−−→ Y.

Fixing a prime p and assuming further that C is 1-semiadditively symmetric
monoidal, we will construct in this section an operation (which depends on p)

δ : HomhC (X, Y )→ HomhC (X, Y ) ,

and show that it is an “additive p-derivation”. We begin with a general dis-
cussion of the algebraic notion of an additive p-derivation, and then proceed
to construct an auxiliary operation α (which does not require stability) and
study its properties. After that, we specialize to the stable case, construct
the operation δ above, and study its behavior on elements of the form |A|.
Finally, we shall use the properties of the operation δ to provide a general cri-
terion for deducing∞-semiadditivity of a presentably symmetric monoidal,
1-semiadditive, stable, p-local∞-category.

4.1 Additive p-derivations

This section is devoted to the algebraic notion of an additive p-derivation. We
recall the definition and establish some of its basic properties.

4.1.1 Definition and properties

The following is a variant on the notion of a p-derivation (e.g. see [11, Defi-
nition 2.1]), in which we do not require the multiplicative property.

Definition 4.1.1 Let R be a commutative ring. An additive p-derivation on
R, is a function of sets

δ : R→ R,

that satisfies:

(1) (additivity) δ (x + y) = δ (x)+ δ (y)+ x p+y p−(x+y)p
p for all x, y ∈ R.

(2) (normalization) δ (0) = δ (1) = 0.

The pair (R, δ) is called a semi-δ-ring. A semi-δ-ring homomorphism from
(R, δ) to

(
R′, δ′

)
, is a ring homomorphism f : R→ R′, that satisfies f ◦ δ =

δ′ ◦ f .
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Remark 4.1.2 The expression

x p + y p − (x + y)p

p

is actually a polynomial with integer coefficients in the variables x and y
and does not involve division by p. In particular, this is well defined for all
x, y ∈ R, even when R has p-torsion.

Remark 4.1.3 In fact, the condition δ (0) = 0 is superfluous, as it follows from
the additivity property, and we include it in the definition only for emphasis.

The following follows immediately from the definitions:

Lemma 4.1.4 Let δ : R → R be an additive p-derivation on a commutative
ring R. The function ψ : R→ R given by

ψ (x) = x p + pδ (x)

is an additive lift of Frobenius, i.e. it is a homomorphism of abelian groups
and agrees with the Frobenius modulo p.

Example 4.1.5 The following are some examples of additive p-derivations.

(1) For R a subring of Q, the Fermat quotient

δ̃ (x) = x − x p

p

is an additive p-derivation (we shall soon show that it is the unique additive
p-derivation on any such R).

(2) The same formula as for the Fermat quotient defines the unique additive
p-derivation on the ring of p-adic integers Zp.

Definition 4.1.6 For every x ∈ Q, we denote by vp (x) ∈ Z∪{∞} the p-adic
valuation of x .

The fundamental property of the Fermat quotient is that it reduces the p-adic
valuation.

Lemma 4.1.7 For every x ∈ Q, if 0 < vp (x) <∞, then

vp

(
δ̃ (x)

)
= vp (x)− 1.
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Proof Since vp (x) > 0, we have

vp
(
x p) = pvp (x) > vp (x) .

Thus,

vp

(
x − x p

p

)
= vp

(
x − x p)− 1 = vp (x)− 1.

��
Definition 4.1.8 Let R be a commutative ring. Let φ0 : Z→ R be the unique
ring homomorphism and let SR be the set of integersm, such that φ0(m) ∈ R×.
We denote

QR := Z[S−1R ] =
{
k

m
| k ∈ Z, m ∈ SR

}
⊆ Q

and φ : QR → R, the unique extension of φ0. We call an element x ∈ R
rational if it is in the image of φ. By Example 4.1.5(1), (QR, δ̃) is a semi-δ-
ring.

The following elementary lemma will have several useful consequences.

Lemma 4.1.9 Let (R, δ) be a semi-δ-ring and let δ̃ denote the Fermat quotient
on QR. For all t ∈ QR and x ∈ R, we have

δ (t x) = tδ (x)+ δ̃ (t) x p.

Proof Fix x ∈ R and consider the function ϕ : QR → R given by

ϕ (t) = δ (t x)− δ̃ (t) x p.

Since

δ (t x + sx)

= δ (t x)+ δ (sx)+ (t x)p + (sx)p − (t x + sx)p

p

= δ (t x)+ δ (sx)+
(
δ̃ (t + s)− δ̃ (t)− δ̃ (s)

)
x p

= ϕ (t)+ ϕ (s)+ δ̃ (t + s) x p.

we get

ϕ (t + s) = δ (t x + sx)− δ̃ (t + s) x p = ϕ (t)+ ϕ (s) .
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Hence, ϕ is additive and ϕ (1) = δ (x). Since QR is a localization of Z, ϕ is a
map of QR-modules and we deduce that ϕ (t) = tδ (x) for all t ∈ QR . ��
4.1.2 p-Local rings

In the case where R is a p-local commutative ring, which is the case we are
mainly interested in, the existence of an additive p-derivation on R has several
interesting implications.

Proposition 4.1.10 Let (R, δ) be a p-local semi-δ-ring. If x ∈ R is torsion,
then x is nilpotent.

Proof Since R is p-local, if x is torsion, then there is d ∈ N, such that pdx = 0.
By Lemma 4.1.9, we have

0 = δ (0) = δ
(
pdx

)
= pdδ (x)+ δ̃

(
pd

)
x p.

Multiplyingby x ,weobtain δ̃
(
pd

)
x p+1 = 0.ByLemma4.1.7,vp

(
δ̃
(
pd

)) =
d − 1, and since R is p-local, we get pd−1x p+1 = 0. Iterating this d times we
get x (p+1)d = 0. ��
Proposition 4.1.11 Let (R, δ) be a non-zero p-local semi-δ-ring. The map
φ : QR → R is an injective semi-δ-ring homomorphism. In particular δ̃ is the
unique additive p-derivation on QR.

Proof Applying Lemma 4.1.9 to x = 1, we see that φ ◦ δ̃ = δ ◦ φ. If φ

is non-injective, then so is φ0 : Z → R and hence 1 ∈ R is torsion. By
Proposition 4.1.10, 1 is nilpotent and hence R = 0. ��
Remark 4.1.12 For a non-zero p-local semi-δ-ring (R, δ), we abuse notation
by identifying QR with the subset of rational elements of R. There are two
options:

(1) If p ∈ R×, then QR = Q ⊆ R and all non-zero rational elements are
invertible.

(2) If p /∈ R×, then QR = Z(p) ⊆ R, and x ∈ QR is invertible if and only if
vp (x) = 0.

Proposition 4.1.13 Let (R, δ) be a p-local semi-δ-ring. The ideal Itor ⊆ R of
torsion elements is closed under δ.

Proof For x ∈ Itor, there is d ∈ N, such that pdx = 0. By Lemma 4.1.9,

0 = δ
(
pd+1x

)
= pd+1δ (x)+ δ̃

(
pd+1

)
x p.
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By Lemma 4.1.7, vp

(
δ̃
(
pd+1

)) = d and therefore δ̃
(
pd+1

)
x p = 0. We get

pd+1δ (x) = 0 and hence δ (x) ∈ Itor. ��
Definition 4.1.14 For every commutative ring R, we define Itor ⊆ R to be the
ideal of torsion elements, and Rtf = R/Itor to be the torsion free ring obtained
from R.

The following proposition will allow us to “ignore torsion” when dealing
with questions of invertibility in p-local semi-δ-ring. First,

Definition 4.1.15 Given a ring homomorphism f : R → S, we say that f
detects invertibility if for every x ∈ R, if f (x) is invertible, then x is invertible.

Proposition 4.1.16 Let (R, δ) be a p-local semi-δ-ring. There is a unique
additive p-derivation δ on Rtf , such that the quotient map g : R � Rtf is a
homomorphism of semi-δ-rings. In addition, g detects invertibility.

Proof Let x ∈ R and y ∈ Itor. We have

δ (x + y)− δ (x) = δ (y)+
(
x p + y p − (x + y)p

p

)
∈ Itor

since δ (y) ∈ Itor by Proposition 4.1.13 and the expression in parenthesis is a
multiple of y. Thus,

δ (x + Itor) := δ (x)+ Itor

is a well defined function on Rtf . The operation δ is an additive p-derivation
and makes g a homomorphism of semi-δ-rings. The operation δ is unique by
the surjectivity of g. For the second claim, the kernel of g consists of nilpotent
elements by Proposition 4.1.10 and hence g detects invertibility. ��

4.2 The alpha operation

Let C be a 0-semiadditively symmetric monoidal∞-category and let

X ∈ coCAlg (C) , Y ∈ CAlg (C) .

Fix a prime p. The set

HomhC (X, Y ) = π0 MapC (X, Y )

has a structure of a commutative rig. That is, it posses addition and multipli-
cation operations which satisfy all the ring axioms except for the existence
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of additive inverses (e.g., the natural numbers N form a rig which is not a
ring). Assuming further that C is 1-semiadditively symmetric monoidal, we
construct an operation α (which depends on p) on HomhC (X, Y ) and study
its properties and interaction with the rig structure.

Throughout the section we denote

pt
e−→ BCp

r−→ pt .

4.2.1 Definition and naturality

The E∞-coalgebra and E∞-algebra structures, on X and Y respectively, pro-
vide symmetric comultiplication and multiplication maps:

t X : X →
(
X⊗p)hCp = r∗�p (X)

mY : r!�p (Y ) = (
Y⊗p)

hCp
→ Y.

These maps have mates

tX : r∗X → �p (X) , mY : �p (Y )→ r∗Y,

such that

e∗tX : X = e∗r∗X → e∗�p (X) = X⊗p

e∗mY : Y⊗p = e∗�p (Y )→ e∗r∗Y = Y,

are the ordinary comultiplication and multiplication maps.

Definition 4.2.1 LetC be a 1-semiadditively symmetricmonoidal∞-category
and let

X ∈ coCAlg (C) , Y ∈ CAlg (C) .

(1) Given g : �p (X) → �p (Y ), we define α (g) : X → Y to be either of
the compositions in the commutative diagram

X
tX r∗�p (X)

g

Nm−1r r!�p (X)

g

r∗�p (Y )
Nm−1r r!�p (Y )

mY Y.

(2) Given f : X → Y , we define α ( f ) = α (�p ( f )).
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Remark 4.2.2 The most common use of Definition 4.2.1 is for X = 1. In
this case, we can describe the operation α in terms of integration. A map
f : 1 → Y is a point in the space Map(1, Y ). Rising f to the pth power,
taking the equivariance with respect to the cyclic action of Cp into account,
we obtain a map f p : BCp → Map(1, Y ). The element α( f ) is just

∫
BCp

f p.
We shall prove this for Y = 1 in Proposition 4.2.12. The general case can be
reduced to that by replacing C with ModY (C).

Remark 4.2.3 In fact, the definition of α uses only the equivariant (co)multi-
plication maps X → X⊗p and Y⊗p → Y . Namely, only the H∞-algebra
structure ofY and the H∞-coalgebra structure of X as defined in [7].Moreover,
everything we state and prove in this section about the properties of α holds
when we replace E∞ with H∞.

Lemma 4.2.4 The map α : π0 Map(�pX, �pY ) → π0 Map(X, Y ) is addi-
tive.

Proof Since r∗ is an additive functor, it induces an additive map

π0 Map(�pX, �pY )→ π0 Map(r∗�pX, r∗�pY ).

The operation ᾱ consists of the application of this followed by pre- and post-
composition with fixed maps in a 0-semiadditive∞-category. ��

The operation α is natural with respect to (co)algebra homomorphisms in
the following sense:

Lemma 4.2.5 Let C be a 1-semiadditively symmetric monoidal ∞-category
and let

X, X ′ ∈ coCAlg (C) , Y, Y ′ ∈ CAlg (C) .

Given maps g : Y → Y ′ and h : X ′ → X of commutative algebras and coal-
gebras respectively, for every map f : X → Y , we have

α (g ◦ f ◦ h) = g ◦ α ( f ) ◦ h ∈ HomhC
(
X ′, Y ′

)
.
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Proof Consider the diagram

X ′
t X ′

h

r∗�pX ′
Nm−1r

h

r!�pX ′

h

X
t X r∗�pX

Nm−1r

f

r!�pX

f

r∗�pY
Nm−1r

g

r!�pY
mY

g

Y

g

r∗�pY ′
Nm−1r r!�pY ′

mY ′ Y ′.

The squares in the middle column commute by the naturality of the normmap.
The homotopy rendering the bottom right square commutative is provided by
the data that makes g into a morphism of commutative algebras and similarly
for the upper left square and h. The composition along one of the dotted paths
is α (g ◦ f ◦ h), while composition along the other dotted path is g ◦α ( f )◦h,
which completes the proof. ��
The operation α is also functorial in the following sense:

Lemma 4.2.6 Let F : C → D be a 1-semiadditive symmetric monoidal func-
tor between two 1-semiadditively symmetric monoidal∞-categories, and let
X ∈ coCAlg (C) and Y ∈ CAlg (C). The induced map of commutative rings

F : HomhC (X, Y )→ HomhD (FX, FY ) ,

commutes with the operation α.

Proof Given a map g : X → Y , consider the following diagram:

F (r∗�p (X))

� β∗

Nm−1r
F (r!�p (X))

g
F (r!�p (Y ))

mY

FX

t X

t FX

r∗F (�p (X))

�

Nm−1r
r!F (�p (X))

�

�β!

g
r!F (�p (Y ))

�

�β!

FY.

r∗�p (FX)
Nm−1r

r!�p (FX)
g

r!�p (FY )

mFY

Thevertical isomorphisms in the bottomsquares are definedbyLemma3.4.3
and the squares commute by the interchange law. The top left square commutes
by the ambidexterity of the (F, r)-square (Theorem 3.2.3) and the top right
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square by naturality of the BC! map. The triangles commute by the definition
of the commutative coalgebra (resp.algebra) structure on F (X) (resp.F (Y )).
Thus, the composition along the top path, which is F (α (g)), is homotopic to
the composition along the bottom path, which is α (F (g)). ��

4.2.2 Additivity of alpha

Our next goal is to understand the interaction of α with sums. For this, we first
need to describe the effect of α on “induced maps”. Recall the notation

pt
e−→ BCp

r−→ pt .

Lemma 4.2.7 Let C be a 1-semiadditively symmetric monoidal ∞-category
and let X ∈ coCAlg (C) and Y ∈ CAlg (C). For every map

h : X⊗p = e∗�p (X)→ e∗�p (Y ) = Y⊗p,

the map α

(∫
e
h

)
is homotopic to the composition

X
e∗tX−−→ X⊗p h−→ Y⊗p e∗mY−−−→ Y.

Proof Unwinding the definition of the integral, the map
∫
e
h is homotopic to

the composition of the following maps

�p (X)
ue∗−→ e∗e∗�p (X)

h−→ e∗e∗�p (X)
Nm−1e−−−→ e!e∗�p (X)

ce!−→ �p (X) .

Plugging this into the definition of α, we get that α

(∫
e
h

)
equals the com-

position along the top and then right path in the following diagram

X

e∗ tX

t X
r∗�p (X)

ue∗
r∗e∗e∗�p (X)

h
r∗e∗e∗�p (Y )

Nm−1e
r∗e!e∗�p (Y )

Nm−1r

ce!
r∗�p (Y )

Nm−1r

e∗�p (X)
h

e∗�p (Y )

e∗mY

r!e!e∗�p (Y )
ce!

r!�p (Y )

mY

Y.
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We denote this diagram by (∗). The left square commutes for trivial reasons,
the right square by the interchange law and the middle by

Nm−1r ◦Nm−1e = (Nme ◦Nmr )
−1 = (Nmre)

−1 = Id .

To see that the left triangle commutes, consider the diagram

X

ur∗

t X r∗�p (X)
ue∗ r∗e∗e∗�p (X)

r∗r∗X

tX

ue∗ r∗e∗e∗r∗X

tX

X.

e∗tX

The square commutes by naturality, and the left triangle by the definition of
mates. Note that the composition along the bottom path is the unit of the
composite adjunction

Id = e∗r∗ � r∗e∗ = Id,

and hence is the identitymap. It follows that the left triangle in (∗) is commuta-
tive. The proof that the right triangle in (∗) commutes is completely analogous.

Thus, (∗) is commutative and α

(∫
e
h

)
equals the composition along the bot-

tom diagonal path in (∗), which completes the proof. ��
The main property of α is that it satisfies the following “addition formula”.

Proposition 4.2.8 Let C be a 1-semiadditively symmetric monoidal ∞-
category and let

X ∈ coCAlg (C) , Y ∈ CAlg (C) .

For every f, g : X → Y , we have

α ( f + g) = α ( f )+ α (g)+ ( f + g)p − f p − gp

p
∈ HomhC (X, Y )

(as in Remark 4.1.2, this expression does not actually involve division by p).

Proof Since, by Lemma 4.2.4, α is additive, we get by Proposition 3.4.10,

α ( f + g) = α
(
�p ( f + g)

)

= α

⎛
⎝�p ( f )+�p (g)+

∑
w∈S

⎛
⎝

∫

e

w ( f, g)

⎞
⎠

⎞
⎠
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= α ( f )+ α (g)+
∑
w∈S

α

⎛
⎝

∫

e

w ( f, g)

⎞
⎠ .

Now, by Lemma 4.2.7, the map α

(∫
e

w ( f, g)

)
is homotopic to the composi-

tion

X
e∗tX−−→ X⊗p w( f,g)−−−−→ Y⊗p e∗mY−−−→ Y.

This is by definition f wx gwy , where wx and wy are the number of x-s and
y-s in w respectively and this completes the proof. ��
4.2.3 Alpha and the unit

We shall now apply the above discussion of the operation α to the special case
where X = Y = 1 is the unit of a symmetric monoidal∞-category C. The
unit 1 ∈ C has a uniqueE∞-algebra structure and this structure makes it initial
in CAlg (C). The same argument applied to Cop shows that 1 has also a unique
E∞-coalgebra structure and it is terminal with respect to it.

Definition 4.2.9 Let (C,⊗,1) be a symmetric monoidal ∞-category. We
denote

RC = HomhC (1,1)

as a commutative monoid. If C is 0-semiadditive, then R is naturally a commu-
tative rig and if C is stable, then it is a commutative ring. Given a symmetric
monoidal functor F : C → D, the induced map ϕ : RC → RD is a monoid
homomorphism. It is also a rig (resp. ring) homomorphism, when C andD are
0-semiadditive (resp. stable) and F is a 0-semiadditive functor.

The goal of this section is to study the operation α on RC . We begin with a
few preliminaries. Recall the notation

pt
e−→ BCp

r−→ pt .

Lemma 4.2.10 Let (C,⊗,1) be a symmetric monoidal ∞-category. The
action of Cp on 1⊗p � 1 is trivial. Namely, �p (1) = r∗1.

Proof First, observe that the terminal∞-category pt is the unit for the Carte-
sian symmetric monoidal structure of Cat∞. Thus, by [31, Corollary 3.2.1.9],
it is the initial symmetric monoidal∞-category. Thereofore, we have a sym-
metric monoidal functor pt → C taking the unique element of pt, and hence
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all of its powers, to 1. This reduces the claim to the case C = pt in which it
holds trivially.

��
If C admits BCp-shaped limits and colimits, then it follows by the above

that r!�p (1) � r!r∗1 and r∗�p (1) � r∗r∗1.
Lemma 4.2.11 Let (C,⊗,1) be a symmetric monoidal ∞-category which
admits BCp-shaped limits and colimits. The maps

t1 : 1→ r∗�p (1) , m1 : r!�p (1)→ 1,

induced from the commutative algebra and coalgebra structures on 1, are
equivalent to the unit and counit maps (respectively)

u∗ : 1→ r∗r∗1, c! : r!r∗1→ 1.

Proof This is equivalent to showing that the mate (in both cases) is the identity
map r∗1→ r∗1. The algebra structure on 1 ∈ C is induced from the algebra
structure on 1 ∈ CAlg (C), where CAlg (C) is endowed with the coCartesian
symmetric monoidal structure in which 1 is initial ([31, Corollary 3.2.1.9]).
Now, the object r∗1 is initial in Fun

(
BCp,CAlg (C)

)
, and therefore the only

map r∗1 → r∗1 is the identity. A similar argument applies for the comulti-
plication map. ��
As a consequence, we can describe the effect of α on any element of RC using
the integral operation.

Proposition 4.2.12 Let (C,⊗,1) be a 1-semiadditively symmetric monoidal
∞-category. For every f ∈ RC , we have

α ( f ) =
∫

BCp

�p ( f ) ∈ RC .

Proof Unwinding the definition of α (Definition 4.2.1) in this case and using
Lemma 4.2.11, we get α (−) = ∫

BCp

(−). Hence,

α ( f ) = α
(
�p ( f )

) =
∫

BCp

�p ( f ) .

��
In particular, we get an explicit formula for the operation α on elements of the
form |A| ∈ RC .
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Theorem 4.2.13 Let C be an m-semiadditively symmetric monoidal ∞-
category for m ≥ 1. For every m-finite space A, we have

α (|A|) = |A � Cp| ∈ RC .

Proof Consider the maps

q : A→ pt, π = q � Cp : A � Cp → BCp, r : BCp → pt .

By definition of α, Proposition 4.2.12, the definition of |A|, the ambidex-
terity of the �p-square (Theorem 3.4.8) and Fubini’s Theorem (Proposi-
tion 2.1.18) (in that order) we have

α (|A|) = α
(
�p (|A|)) =

∫

r

�p (|A|) =
∫

r

�p

⎛
⎝

∫

q

Id1

⎞
⎠

=
∫

r

∫

π

�p (Id1) =
∫

rπ

Id1 = |A � Cp|.

��
As a consequence, we can identify the action of α on the identity element of
the rig HomhC (X, Y ), for any X ∈ coCAlg (C) and Y ∈ CAlg (C).

Lemma 4.2.14 Let C be a 1-semiadditively symmetric monoidal∞-category
and let

X ∈ coCAlg (C) , Y ∈ CAlg (C) .

DenotingR = HomhC (X, Y ), we have

α (1R) = |BCp| ◦ 1R ∈ R,

where 1R ∈ R is the multiplicative unit element.

Proof The map 1R : X → Y is the composition of the canonical maps X
x−→

1
y−→ Y , encoding the counit and unit of the coalgebra and algebra structures

of X and Y respectively. The maps x and y are naturally maps of commutative
coalgebras and commutative algebras respectively. By Lemma 4.2.5, we have

α (1R) = α (y ◦ 1 ◦ x) = y ◦ α (1) ◦ x,
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where 1 ∈ RC is the multiplicative unit element. Observing that 1 = | pt | and
using Theorem 4.2.13, we get (we can commute |BCp| because it is a natural
transformation)

y ◦ α (1) ◦ x = y ◦ α (| pt |) ◦ x = y ◦ |BCp| ◦ x = |BCp| ◦ y ◦ x
= |BCp| ◦ 1R.

��

4.3 Higher semiadditivity and stability

In this section, we specialize to the stable case. Using the operation α and sta-
bility, we construct additive p-derivations and use their properties to formulate
a general detection principle for higher semiadditivity.

4.3.1 Stability and additive p-derivations

Definition 4.3.1 Let C be a stable 1-semiadditively symmetric monoidal∞-
category with

X ∈ coCAlg (C) , Y ∈ CAlg (C) ,

and so R = HomhC (X, Y ) is a commutative ring. We define an operation
δ : R→ R by

δ ( f ) = |BCp| f − α ( f ) ,

for every f ∈ R. In particular, this applies to RC = HomhC (1,1).

Theorem 4.3.2 Let C be a stable 1-semiadditively symmetric monoidal ∞-
category with

X ∈ coCAlg (C) , Y ∈ CAlg (C) .

The operation δ from Definition 4.3.1 is an additive p-derivation on R =
HomhC (X, Y ).

Proof The additivity condition follows from Proposition 4.2.8 and the nor-
malization follows from Lemma 4.2.14. ��
The additive p-derivation of Theorem 4.3.2 is natural in the following sense:
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Proposition 4.3.3 Let C be a stable 1-semiadditively symmetric monoidal∞-
category with

X, X ′ ∈ coCAlg (C) , Y, Y ′ ∈ CAlg (C) .

Given maps g : Y → Y ′ and h : X ′ → X of commutative algebras and coal-
gebras respectively, the function

g ◦ (−) ◦ h : HomhC (X, Y )→ HomhC
(
X ′, Y ′

)

is a homomorphism of semi-δ-rings.

Proof This follows from Lemma 4.2.5 and naturality of |BCp|. ��
The additive p-derivation of Theorem 4.3.2 is also functorial in the following
sense:

Proposition 4.3.4 Let F : C → D be a symmetric monoidal 1-semiadditive
functor between stable 1-semiadditively symmetric monoidal ∞-categories.
Given

X ∈ coCAlg (C) , Y ∈ CAlg (C) ,

the map

F : HomhC (X, Y )→ HomhD (FX, FY ) ,

is a homomorphism of semi-δ-rings.

Proof By Lemma 4.2.6, F preserves α, and by Corollary 3.2.7, F preserves
multiplication by |BCp|. Combined with ordinary additivity, it follows that F
preserves δ. ��

The theory of p-local semi-δ-rings implies the following abstract incar-
nation of May’s conjecture, from which we shall deduce May’s original
conjecture using the higher semiadditivity of the K (n)-local categories (Corol-
lary 5.2.5).

Theorem 4.3.5 Let C be a stable, p-local, 1-semiadditively symmetric
monoidal∞-category with

X ∈ coCAlg (C) , Y ∈ CAlg (C) ,

and consider the commutative ring R = HomhC (X, Y ). Every torsion element
of R is nilpotent. In particular, if Q⊗ R = 0, then R = 0.
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Proof The commutative ring R is p-local and admits an additive p-derivation
by Theorem 4.3.2, and so the result follows by Proposition 4.1.10. The last
claim follows by considering the element 1 ∈ R. ��
4.3.2 Detection principle for higher semiadditivity

We now formulate the main detection principle for m-semiadditivity for sym-
metric monoidal, stable, p-local∞-categories. For convenience, we formulate
these results for presentable ∞-categories and colimit preserving functors,
though what we actually use is only the existence and preservation of certain
limits and colimits.

Lemma 4.3.6 Let m ≥ 1 and let C be an m-semiadditive presentably symmet-
ric monoidal, stable, p-local∞-category. If there exists a connected m-finite
p-space A, such that πm (A) 
= 0 and |A|1 is an isomorphism, then C is
(m + 1)-semiadditive.

Proof Since m ≥ 1, the space Bm+1Cp is connected. Since the∞-category
C is m-semiadditive, the map q : Bm+1Cp → pt is weakly C-ambidextrous.
By [20, Corollary 4.4.23], it suffices to show that q is C-ambidextrous. Since
m-finite p-spaces are nilpotent, and we assumed that πm(A) 
= 0, there is a
fiber sequence A → B

π−→ Bm+1Cp with B an m-finite space. Since |A|1 is
invertible, by Lemma 3.3.5(2), A is C-amenable. Hence, by Proposition 3.1.18,
the space Bm+1Cp is C-ambidextrous. ��

We can exploit the extra structure given by the additive p-derivation onRC
to find a space A as in Lemma 4.3.6.

Proposition 4.3.7 Let m ≥ 1 and let C be anm-semiadditive presentably sym-
metricmonoidal, stable, p-local∞-category. Let h : RC → S be a semi-δ-ring
homomorphism that detects invertibility, and such that h

(|BCp|
)
, h

(|BmCp|
)

∈ S are rational and non-zero. Then C is (m + 1)-semiadditive.

Proof A space A will be called h-good if

(a) A is a connected m-finite p-space, such that πm (A) 
= 0.
(b) h (|A|) is rational.
By Lemma 4.3.6, it is enough to show that there exists an h-good space A,
such that |A| is invertible in RC . Since h detects invertibility, it suffices to find
such A with h (|A|) invertible in S. By assumption, h

(|BmCp|
)
is rational and

therefore BmCp is h-good. If p ∈ S×, then all non-zero rational elements in S
are invertible and we are done by the assumption that h

(|BmCp|
) 
= 0. Hence,

we assume that p /∈ S×. In this case, a rational element x ∈ S is invertible if
and only if vp (x) = 0. Denoting v (A) = vp (h (|A|)), it is enough to show
that there exists an h-good space A with v (A) = 0.
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Since h
(|BmCp|

)
is non-zero and p is not invertible, we get 0 ≤

v
(
BmCp

)
< ∞. It therefore suffices to show that given an h-good space A

with 0 < v (A) <∞, there exists an h-good space A′ with v
(
A′

) = v (A)−1.
For this, we exploit the operation δ. We compute using Theorem 4.2.13 and
Corollary 3.1.15:

δ (|A|) = |BCp||A| − α (|A|) = |BCp||A| − |A � Cp|
= |BCp × A| − |A � Cp|.

Thus,

δ (h (|A|)) = h (δ (|A|)) = h
(|BCp × A|)− h

(|A � Cp|
)
.

Since by assumption h
(|BCp|

)
is rational, then by Corollary 3.1.15 we get

that

h
(|BCp × A|) = h

(|BCp|
)
h (|A|)

is also rational, and moreover, as p /∈ S×, we obtain v(A) ≤ v
(
BCp × A

)
.

Furthermore, since h (|A|) is rational, by Proposition 4.1.11, the same is true
for δ (h (|A|)). Therefore,

h
(|A � Cp|

) = h
(|BCp × A|)− h (δ (|A|))

is also rational. It is clear that A � Cp satisfies (a), and so is h-good. Since
0 < v (A) <∞, by Lemma 4.1.7, we get vp (δ (h (|A|))) = v (A)− 1. Thus,
v

(
A � Cp

) = v (A)− 1 and this completes the proof. ��
Remark 4.3.8 The proof did not actually use anything specific to the space
BmCp. It would have sufficed to have some good space Awith h (|A|) rational
and non-zero. The space BmCp is just the “simplest” one.

In practice, the situation of Proposition 4.3.7 arises as follows:

Proposition 4.3.9 Let m ≥ 1, and let F : C → D be a colimit preserving
symmetric monoidal functor between presentably symmetric monoidal, stable,
p-local, m-semiadditive∞-categories. Assume that the map ϕ : RC → RD,
induced by F, detects invertibility and that the images of |BCp|D, |BmCp|D ∈
RD in the ring Rtf

D are rational and non-zero. Then C and D are (m + 1)-
semiadditive.

Proof It is enough to prove that C is (m + 1)-semiadditive, since by Corol-
lary 3.3.2, this implies that D is (m + 1)-semiadditive. We shall apply
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Proposition 4.3.7 to the composition

RC
ϕ−→ RD

g−→ Rtf
D,

where g is the canonical projection. By Proposition 4.3.4, ϕ is a semi-δ-ring
homomorphism and it detects invertibility by assumption. On the other hand,
g is a semi-δ-ring homomorphism and it detects invertibility by Proposi-
tion 4.1.16. It is only left to observe that ϕ (|A|C) = |A|D, which follows
from Corollary 3.2.7. ��
We conclude with a variant of Proposition 4.3.9, in which the condition on the
elements |BmCp|D, is replaced by a condition on the closely related elements
dimD

(
BmCp

)
, and which assembles together the individual statements for

different m ∈ N.

Theorem 4.3.10 (Bootstrap Machine) Let 1 ≤ m ≤ ∞ and let F : C →
D be a colimit preserving symmetric monoidal functor between presentably
symmetric monoidal, stable, p-local∞-categories. Assume that

(1) C is 1-semiadditive.
(2) The map ϕ : RC → RD, induced by F, detects invertibility.
(3) For every 0 ≤ k < m, if the space BkCp is dualizable inD, then the image

of dimD
(
BkCp

)
in Rtf

D is rational and non-zero.

Then C and D are m-semiadditive.

Proof It suffices to show that C is m-semiadditive, since by Corollary 3.3.2,
D is then also m-semiadditive. We prove by induction on k, that the images
of the elements |BiCp|D in Rtf

D are rational and non-zero for all 0 ≤ i < k,
and that C is k-semiadditive. The base case k = 1 holds by assumption (1)
and the fact that |Cp|D = p is rational and nonzero in Rtf

D, since the unique
ring homomorphism Z → Rtf

D is injective by Proposition 4.1.11. Assuming
the inductive hypothesis for some k < m, we first prove that |BkCp|D in Rtf

D
is rational and non-zero. By Corollary 3.3.12, BkCp is dualizable in D, and
we have

dimD
(
BkCp

)
= |BkCp|D|Bk−1Cp|D ∈ Rtf

D.

By assumption (3), dimD
(
BkCp

)
is rational and non-zero and by the inductive

hypothesis, the image of |Bk−1Cp|D in Rtf
D is rational and non-zero as well.

Consequently, the image of |BkCp|D inRtf
D must also be rational and non-zero

since Rtf
D is torsion-free. We shall now deduce that C is (k + 1)-semiadditive

by applying Proposition 4.3.9 to the functor F . Since |BkCp|D is rational and
non-zero, it suffices to show that |BCp|D is rational and non-zero. For k = 1
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there is nothing to prove and for k ≥ 2 this follows by the inductive hypothesis.
��

Remark 4.3.11 The proof shows that the assumptions of the theorem above
imply that the spaces BkCp are dualizable in D. Thus, in retrospect, the “if”
in assumption (3) is superfluous.

4.4 Nil-conservativitiy

In this subsection we introduce and study a natural condition on a sym-
metric monoidal functor C → D, which ensures that the induced map
RC → RD detects invertibility. For simplicity, we shall work throughout
under the assumption of presentability, though most of the arguments do not
require the full strength of this assumption.

Definition 4.4.1 We call a monoidal colimit preserving functor F : C → D,

between stable presentably monoidal ∞-categories nil-conservative, if for
every ring R ∈ Alg(C), if F(R) = 0 then R = 0.11

The fundamental example of nil-conservativity in chromatic homotopy the-
ory is provided by theNilpotenceTheorem (Proposition 5.1.15). The following
is immediate from the definitions.

Lemma 4.4.2 Let F : C → D and G : D→ E bemonoidal colimit preserving
functors between stable presentably monoidal∞-categories.

(1) If F is conservative it is nil-conservative.
(2) If F and G are nil-conservative then GF is nil-conservative.
(3) If GF is nil-conservative then F is nil-conservative.

The property of nil-conservativity has a useful equivalent characterization
in terms of conservativity on dualizable modules. For this we shall need a
non-symmetric version of the known fact that dualizable objects are closed
under cofibers in the stable setting.

Lemma 4.4.3 Let C be a stable presentably monoidal ∞-category and let
R, S ∈ Alg(C). For every cofiber sequence

X → Y → Z ∈ S BModR(C),

if two out of X, Y , and Z are right dualizable, then so is the third.

11 This notion is closely related to the notion of “nil-faithfulness” defined in [1].
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Proof We treat the case that X and Y are right dualizable (the other cases are
analogous). GivenM ∈ LModC(PrL) we have a functor

X ⊗R (−) : LModR(M)→ LModS(M).

Moreover, given a morphism M′ U−→ M′′ in LModC(PrL), we have a com-
mutative diagram

LModR(M′)

U

X⊗R(−)
LModS(M′)

U

LModR(M′′) X⊗R(−)
LModS(M′′).

By the dual of [31, Proposition 4.6.2.10], the module X is right dualizable
if and only if for every M ∈ LModC(PrL) the functor X ⊗R (−) admits a

left adjoint FX , and for every map M′ U−→ M′′ in LModC(PrL) the Beck–

Chevalley map F ′′XU
βX−→ UF ′X in the above diagram is an isomorphism.12

Since C is stable, so is every M ∈ LModC(PrL) and LModS(M). For every
suchM, we have a cofiber sequence of functors

X ⊗R (−)→ Y ⊗R (−)→ Z ⊗R (−).

Since thefirst two admit left adjoints FX and FY respectively, so does Z⊗R(−).
Moreover, we have a cofiber sequence of functors

FZ → FY → FX .

Unwinding the definitions, for everyM′ →M′′ in LModC(PrL), we have
a commutative diagram of Beck–Chevalley maps:

F ′′ZU

βZ

F ′′YU

βY

F ′′XU

βX

U F ′Z U F ′Y U F ′X .

Hence, if βX and βY are isomorphisms then so is βZ . ��

12 The statement of [31, Proposition 4.6.2.10] considers more general C-left tensored ∞-
categoriesM. The proof however uses only the special casesM = RModT (C) for T ∈ Alg(C).
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Proposition 4.4.4 Amonoidal colimit preserving functor F : C → D between
stable presentably monoidal ∞-categories is nil-conservative, if and only if
for every S ∈ Alg(C), the induced functor

F : LModS(C)→ LModF(S)(D)

is conservative when restricted to the full subcategories of right dualizable
modules.

Proof The ‘if’ part follows from the fact that every ring R is right dualizable
as a left module over itself. Conversely, let f : N1 → N2 be a map of right
dualizable left S-modules and let M be the cofiber of f , which is also right
dualizable (Lemma 4.4.3). It suffices to show that if FM = 0, then M = 0.
Let M∨ ∈ RModS(C) denote the right dual of M . We have

M∨ ⊗S M = HomS(M, M) ∈ C

the ring of endomorphisms of M . Since F is monoidal and preserves all, and
in particular sifted, colimits we have

F(HomS(M, M)) = F(M∨ ⊗S M) = FM∨ ⊗FS FM = 0.

By assumption, we get HomS(M, M) = 0 and hence M = 0. ��
Applying Proposition 4.4.4 to S = 1C, we see that a nil-conservative functor
is in particular conservative on right dualizable objects of C itself.

Corollary 4.4.5 Let F : C → D be a nil-conservative functor. The induced
ring homomorphism RC → RD detects invertibility. In particular, if A is a
C-ambidextrous and D-amenable space, then it is also C-amenable.
Proof This follows from Proposition 4.4.4, as 1C is a dualizable object. ��

5 Applications to chromatic homotopy theory

In this final section, after fixing some notation and terminology, we apply the
general theory developed in the previous sections to chromatic homotopy the-
ory. We begin by studying the consequences of 1-semiadditivity to nilpotence
in the homotopy groups of E∞ (and H∞)-ring spectra and May’s conjecture.
Then, we prove the main theorem regarding the∞-semiadditivity of SpT (n)

and derive some corollaries. Finally, we study higher semiadditivity for local-
izations with respect to general weak rings (a generalization of a homotopy
ring) and the various notions of “bounded height” for them.
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Throughout, we fix a prime p which will be implicit in all definitions that
depend on it, except when explicitly stated otherwise. We refer the reader
to [4,37,41], for comprehensive treatments of the fundamentals of chromatic
homotopy theory.

5.1 Generalities of chromatic homotopy theory

We begin with some generalities, mainly to fix terminology and notation.
Let (Sp,⊗, S) be the symmetric monoidal ∞-category of spectra, see [31,
Corollary 4.8.2.19].13

5.1.1 Localizations, rings and modules

Recall from [32, §5.2.7] that a functor L : Sp → Sp is called a localization
functor if it factors as a composition Sp → SpL → Sp, where the second
functor is fully faithful and the first is its left adjoint. We abuse notation and
denote by L also the left adjoint Sp→ SpL itself. We call a map f in Sp an L-
equivalence, if L( f ) is an isomorphism.As in [31, Definition 2.2.1.6, Example
2.2.1.7], a functor L : Sp→ Sp is said to be compatible with the symmetric
monoidal structure, if L-equivalences are closed under tensor product with all
objects of C.
Definition 5.1.1 A localization functor L : Sp → Sp is called a ⊗-
localization if L is compatible with the symmetric monoidal structure.

Note that a localization functor L : Sp → Sp is a ⊗-localization, if and
only if the L-acyclic objects are closed under desuspension.

Proposition 5.1.2 For every ⊗-localization L : Sp → Sp, the ∞-category
SpL is stable, presentable and admits a structure of a presentably symmetric
monoidal∞-category

(
SpL , ⊗̂, LS

)
, such that the functor L : Sp → SpL is

symmetric monoidal. Moreover, the inclusion SpL ↪→ Sp admits a canonical
lax symmetric monoidal structure. Finally, for all X, Y ∈ SpL we have

X⊗̂Y � L (X ⊗ Y ) .

Proof Applying [32, Proposition 5.5.4.15] to the collection of L-equivalences,
we deduce that SpL is presentable. Since L is a ⊗-localization, all claims
except for the stability of SpL follow from [31, Proposition 2.2.1.9]. Now,
since Sp is pointed, so is SpL (e.g. from Corollary 3.3.2). To show the stability
of SpL by [31, Corollary 1.4.2.27] it is enough to show that � : SpL → SpL

13 This ∞-category can be also obtained using a symmetric monoidal model category as in
[15] or [25].
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is an equivalence. Indeed, this functor has an inverse, given by tensoring with
L

(
�−1S

)
. ��

For every spectrum E ∈ Sp,we denote by LE : Sp→ Sp the⊗-localization
with essential image the E-local spectra.14 We denote SpLE

by SpE and LE (S)

by SE . For a prime p, we shall consider also ⊗-localizations L : Sp(p) →
Sp(p). The analogous results and notation apply to the p-local case as well.

Proposition 5.1.3 Let E ∈ Sp and let R be an E-local E∞-ring. The
∞-category Mod(E)

R of left modules over R in the symmetric monoidal ∞-
category SpE , is presentable and admits a structure of a presentably symmetric
monoidal∞-category. Moreover, we have a free-forgetful adjunction

FR : SpE � Mod(E)
R : UR,

in which FR is symmetric monoidal.

Proof [31, Corollary 4.5.1.5] identifies modules over R as an E∞-ring with
left modules over R as anE1-ring. By [31, Theorem 4.5.3.1] and [31, Corollary
4.2.3.7] this∞-category is equipped with a presentably symmetric monoidal
structure. By [31, Remark 4.2.3.8] and [31, Remark 4.5.3.2] applied to the
map of algebras SE → R, we have the adjunction FR � UR , such that FR is
symmetric monoidal. ��

We shall also consider the following much weaker notion of a “ring” spec-
trum:

Definition 5.1.4 A weak ring15 is a spectrum R ∈ Sp, together with a “unit”
map u : S → R and a “multiplication” map μ : R ⊗ R → R, such that the
composition

R
u⊗Id

R ⊗ R
μ

R,

is homotopic to the identity.

Example 5.1.5 Every homotopy-ring is a weak ring.

Lemma 5.1.6 Let R and S be weak rings. Then R ⊗ S is a weak ring.

Proof This follows directly from the definition. ��
Our interest in weak rings stems from the fact that they include a large class

of spectra of interest and have just enough structure to invoke the Nilpotence
Theorem, see Theorem 5.1.14.

14 This functor is also called Bousfield localization after Bousfield who originally constructed
it in [8].
15 It is called μ-spectrum in [24, Definition 4.8]
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5.1.2 Morava theories

Given an integer n ≥ 0, let En be a 2-periodic Morava E-theory of height n
with coefficients (for n ≥ 1)

π∗En � Zp[[u1, . . . , un−1]][u±1], |ui | = 0, |u| = 2,

and let K (n) be a 2-periodic Morava K -theory of height n with coefficients
(n ≥ 1)

π∗K (n) = Fp[u±1], |u| = 2.

The spectrum En admits an E∞-ring structure in Sp (by [16]). The spectrum
K (n) is obtained from the evenE∞-ring En by taking the quotient with respect
to the (regular) sequence (p, u1, . . . , un−1) and hence admits anE1-ring struc-
ture with an E1-ring map En → K (n), see e.g. [26]. Since En is K (n)-local,
we can also view it as an E∞-ring in the∞-category SpK (n). We shall use the

notation M̂odEn for Mod(K (n))
En

.
We shall make an essential use of the dualizability and dimension of

Eilenberg–MacLane spaces in M̂odEn . First, we recall a general criterion for
a space to be dualizabe in M̂odEn .

Lemma 5.1.7 Let n ≥ 0 and let X be a space. If

dimFp (K (n)0 (X)) = d <∞ and K (n)1 (X) = 0,

then X is dualizable in M̂odEn and

dimM̂odEn
(X) = d.

Proof By [20, Proposition 3.4.3] (see also [24, Proposition 8.4]), there is an
isomorphism of En-modules

LK (n)

(
En ⊗�∞X+

) � Ed
n ,

from which the claim follows immediately. ��
Remark 5.1.8 Using [20, Proposition 3.4.3] together with [34, Proposition
10.11], one can deduce that for every dualizable object M ∈ M̂odEn , we have

dimM̂odEn
(M) = dimFp

(
π0

(
K (n)⊗En M

))− dimFp

(
π1

(
K (n)⊗En M

))
.

But we shall not need this fact.
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Using the classical computations of Ravenel and Wilson we get the follow-
ing dimension formula:

Corollary 5.1.9 For all k ∈ N, we have

dimM̂odEn

(
BkCp

)
= p(

n
k) ∈ π0 (En) .

In particular, these are all rational and non-zero.

Proof By [45, Theorem 9.2], we have

dimFp K (n)0

(
BkCp

)
= p(

n
k) and K (n)1

(
BkCp

)
= 0.

Hence, the result follows from Lemma 5.1.7. ��
5.1.3 Telescopic localizations

Recall that a finite p-local spectrum is a compact object in the ∞-category
Sp(p). Equivalently, it is a p-localization of a suspension spectrum of a finite
cell complex up to (de)suspension.

Definition 5.1.10 Afinite p-local spectrum X is said to be of type n, if K (n)⊗
X 
= 0 and K ( j)⊗ X = 0 for j = 0, . . . , n − 1.

Let F(n)be afinite p-local spectrumof typen. LetDF(n) = Hom
(
F(n) , S(p)

)
be the Spanier-Whitehead dual of F(n). The finite p-local spectrum

R = DF(n)⊗ F(n) = Hom (F(n) , F(n)) ,

is also of type n by the Künneth isomorphism. By replacing F(n) with R, we
may assume that F(n) is an E1-ring, see [31, §4.7.1].

Finite p-local spectra of type n control the various periodic phenomena in
stable homotopy theory and in particular in the stable homotopy groups of
spheres. Every type n spectrum F(n) admits a vn-self map, which is a map

v : �k F(n)→ F(n) ,

that is an isomorphism on K (n)∗ X and zero on K ( j)∗ (X) for j 
= n. Taking
the telescope on v,

T (n) = v−1F(n) = lim−→
k

(
F(n)

v−→ �−k F(n)
v−→ �−2k F(n)

v−→ . . .
)

,

singles out the “v-periodic part” of F(n). The canonical map F(n) → T (n)

exhibits T (n) as the T (n)-localization of F(n) (e.g. [36, Proposition 3.2]).
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Since the functor LT (n) is symmetric monoidal, we can consider T (n) =
LT (n)F(n) as an E1-ring in SpT (n). By the Thick Subcategory and Periodicity
theorems [23], the localization SpT (n) depends only on the prime p and the
height n and in particular is independent of the choice of F(n) and v. It is
known (e.g. [36, §6 (4)]) that

SpK (n) ⊆ SpT (n) ⊆ Sp .

Thus, both En and K (n) are also T (n)-local, and so we can consider them as
anE∞-ring and anE1-ring in SpT (n) respectively. The question of whether the
inclusion SpK (n) ⊆ SpT (n) is strict is a celebrated open question in chromatic
homotopy theory known as the telescope conjecture [38].

5.1.4 Nilpotence theorem

Morava K -theories are used in the following definition of support:

Definition 5.1.11 Let L : Sp(p) → Sp(p) be a ⊗-localization functor. The
(chromatic) support of L is the set

supp(L) = {0 ≤ n ≤ ∞ | L (K (n)) 
= 0} ⊆ N ∪ {∞}.
For E ∈ Sp(p) we denote supp(E) = supp(LE ).

Note that LE (X) = 0 if and only if E ⊗ X = 0 and so supp(E) coincides
with the usual notion of chromatic support of a spectrum. By the Künneth
Theorem we have

supp(E ⊗ E ′) = supp(E) ∩ supp(E ′).

Lemma 5.1.12 Let L : Sp(p) → Sp(p) be a ⊗-localization functor and let
0 ≤ n ≤ ∞. Then n ∈ supp (L) if and only if SpK(n) ⊆ SpL .

Proof If SpK(n) ⊆ SpL then in particular K (n) ∈ SpL and hence

L(K (n)) = K (n) 
= 0.

Conversely, we need to show that if L (X) = 0, then K (n) ⊗ X is zero. We
have

L (K (n)⊗ X) � L (K (n)) ⊗̂ L (X) = 0.

Since K (n)⊗X is a direct sum of suspended copies of K (n), if K (n)⊗X 
= 0,
then up to a suspension, K (n) is a retract of K (n)⊗ X . This would imply that
L (K (n)) = 0 in contradiction to the hypothesis. ��
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Example 5.1.13 The following are examples for the support of some particular
types of localization:

(1) For a finite spectrum F(n) of type n, we have by definition

supp(F(n)) = {n, n + 1, . . . ,∞}.
(2) For every integer n ≥ 0, we have

supp(K (n)) = supp(T (n)) = {n},
see e.g. [39, Proposition A.2.13].

(3) For a non-zero smashing localization L , we have

supp(L) = {0, . . . , n}
for some 0 ≤ n ≤ ∞, see e.g. [2, Lemma 4.1].

(4) For the Brown-Comenetz spectrum IQ/Z, we have supp(IQ/Z) = Ø, see
e.g. [40, Proposition 7.4.2].

When considering localizations with respect to non-zero weak rings, the
Nilpotence Theorem of Devintaz–Hopkins–Smith guarantees that the support
can not be empty. Since it is not usually stated in this generality, we include
the argument for deriving it from the standard version.

Theorem 5.1.14 (Devinatz–Hopkins–Smith) Let R be a p-local weak ring.
Then R = 0 if and only if supp(R) = Ø.

Proof Consider the unit map u : S→ R. If K (n)⊗ R = 0 for all 0 ≤ n ≤ ∞,
then by [23, Theorem 3(iii)], the map u is smash nilpotent. Namely, u⊗r : S→
R⊗r is null for some r ≥ 1. The commutative diagram

S⊗ S

Id⊗u

u⊗u
R ⊗ R

μ

S⊗ R

u⊗Id

Id R

shows that u factors through u ⊗ u. Applying this iteratively, we can factor u
through the null map u⊗r and deduce that u itself is null. Consequently, the
factorization of the identity map of R as the composition

R
u⊗Id

R ⊗ R
μ

R,

implies that it is null and thus R = 0. ��
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This provides the main example of a nil-conservative functor.

Proposition 5.1.15 Let R be a p-local weak ring. The functor

L : SpR →
∏

n∈supp(R)

SpK (n),

whose nth component is K (n)-localization, is nil-conservative.

Proof Let S be an R-local ring spectrum. If L(S) = 0, then S ⊗ K (n) = 0
for all n ∈ supp(R). On the other hand, by definition, R ⊗ K (n) = 0 for all
n /∈ supp(R). Consequently, S ⊗ R ⊗ K (n) = 0 for all n ∈ N ∪ {∞}. By
Lemma 5.1.6, S ⊗ R is a weak ring and hence by the Nilpotence Theorem
(Theorem 5.1.14) we get S ⊗ R = 0. Finally, since S is R-local, S = 0. ��
Definition 5.1.16 Let Ên[−] be the composition

SpT (n)

LK (n)−−−→ SpK (n)

FEn−−→ M̂odEn ,

where we abuse notation and write LK (n) also for the left adjoint of the inclu-
sion SpK (n) ⊆ SpT (n). The functor Ên[−] is a colimit preserving symmetric
monoidal functor as a composition of two such.

Corollary 5.1.17 For every 0 ≤ n <∞, the functor

Ên[−] : SpT (n) → M̂odEn ,

is nil-conservative. Consequently, the canonicalmapπ0ST (n) → π0En detects
invertibility.

Proof By Proposition 5.1.15 and the fact that supp(T (n)) = {n} (Exam-
ple 5.1.13(2)), we get that LK (n) : SpT (n) → SpK (n) is nil-conservative. Since

En ⊗̂ (−) : SpK (n) → M̂odEn

is conservative, it is in particular nil-conservative and hence the composition
SpT (n) → M̂odEn is nil-conservative. The claim now follows from Corol-
lary 4.4.5. ��
Remark 5.1.18 The fact that the functor Ên[−] : SpT (n) → M̂odEn is con-
servative on dualizable objects is what gives us the handle on SpT (n), which
will allow us to prove the∞-semiadditivity of SpT (n). However, it has other
uses as well. As a consequence of the ∞-semiadditivity of SpT (n), we have
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a large supply of dualizable objects in SpT (n), including for example all π -
finite spaces. In an upcoming work, we shall exploit this fact together with
nil-conservativity to lift the maximal abelian Galois extension of SpK (n) to
SpT (n).

5.2 Consequences of 1-semiadditivity

In this section, we discuss some applications of the theory of 1-semiadditivity
in stable∞-categories to chromatic homotopy theory.

5.2.1 Power operations

Definition 5.2.1 We denote by CRing the category of commutative rings and
by CRingδ the category of semi-δ-rings and semi-δ-ring homomorphisms.

Theorem 5.2.2 The functor

π0 : CAlg(SpT (n))→ CRing

has a lift to a functor

CAlg(SpT (n))→ CRingδ

along the forgetful functor CRingδ → CRing.

Proof The∞-category SpT (n) is 1-semiadditive by [29] and therefore satisfies
the conditions of Theorem 4.3.2. Thus, for every R ∈ CAlg(SpT (n)), the
commutative ring

π0R = Homh SpT (n)
(ST (n), R)

admits an additive p-derivation δ. The functoriality follows from Proposi-
tion 4.3.3. ��

Note that for a semi-δ-ring (R, δ), the operation

ψ(x) := x p + pδ(x) : R→ R

is an additive group homomorphism which satisfies ψ(1) = 1 and ψ(x) ≡
x p ∈ R/pR. Thus, Theorem 5.2.2 also provides a functorial additive lift of
Frobenius for T (n)-lcoal commutative ring spectra.
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Remark 5.2.3 For every R ∈ CAlg(SpK (1)), Hopkins defined in [21] a p-
derivation

θ : π0(R)→ π0(R).

Wewarn the reader that our operation δ is not the same as this θ . Indeed, these
two operations can be expressed in terms of the operation α as follows:

δ(x) = |BCp|x − α(x),

θ(x) = 1

p − 1

(
α(x)− |BCp|x p) ,

see [14, Corollary 5.2.13].

5.2.2 May’s conjecture

Applying our results from §4.3, regarding commutative algebras in stable
1-semiadditive∞-categories, to the chromatic world, we obtain May’s con-
jecture:

Proposition 5.2.4 Let R be an E∞-ring. If HF ⊗ R = 0 for F = Q and
F = Fp for every prime p, then R = 0.

Proof By the Nilpotence Theorem, to show that R = 0, it suffices to show that
for all primes p and 0 ≤ n ≤ ∞, we have K (n) ⊗ R = 0. The assumption
covers the cases n = 0 and n = ∞, so it remains to treat the case 0 < n <∞.
The assumption HQ ⊗ R = 0 implies also that the unit 1 ∈ π0R is torsion.
Since we have a ring map π0R→ π0LK (n)R, the unit 1 ∈ π0LK (n)R must be
torsion as well. Since LK (n)R is a commutative algebra in the 1-semiadditive
∞-category SpK (n), by Theorem 4.3.5, we get that LK (n)R = 0 and hence
K (n)⊗ R = 0. ��
Corollary 5.2.5 ([35, Theorem B]) Let R be an E∞-ring and let x ∈ π∗R. If
the image of x is nilpotent in π∗ (HF⊗ R) for F = Q and F = Fp for every
prime p, then x is nilpotent.

As explained in [35], this immediately implies the version with F = Z

instead of Q and Fp (i.e., [35, Theorem A]), as in the original formulation
given by May.

Proof First, observe that

π∗ (HQ⊗ R) � Q⊗ π∗R.
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Replacing x with a suitable power,we can assume that x is torsion inπ∗R. Since
the homogeneous components of a torsion element are torsion, wemay assume
without loss of generality that x ∈ πk R for some k (i.e. x is homogeneous).
Consider the corresponding map |x | : R→ �−k R given by multiplication by
x . The telescope

x−1R = lim−→
(
R
|x |−→ �−k R |x |−→ �−2k R |x |−→ . . .

)

carries a structure of anE∞-ring and themap R→ x−1R induces the localiza-
tion by x map on π∗. Hence, it would suffice to show that x−1R = 0. However,
if the image of x is nilpotent in π∗ (HF⊗ R), then

HF⊗ (x−1R) = x−1(HF⊗ R) = 0.

Thus, the claim follows by Proposition 5.2.4 applied to x−1R. ��
Remark 5.2.6 We could have replaced E∞ by H∞ in the above proposition
and its corollary, see Remark 4.2.3.

5.3 Higher semiadditivity of T(n)-local spectra

In this section, we prove the main theorem of the paper. Namely, we show
that the∞-category SpT (n) is∞-semiadditive for all n ≥ 0 and draw some
consequences from this. Our strategy is to apply the “Bootstrap Machine”
(Theorem 4.3.10) to the functor Ên[−] given in Definition 5.1.16.
Theorem 5.3.1 For all n ≥ 0, the∞-categories SpT (n) and M̂odEn are∞-
semiadditive.

Proof We verify the assumptions (1)-(3) of Theorem 4.3.10 for the colimit
preserving symmetric monoidal functor

Ên[−] : SpT (n) → M̂odEn .

Namely, we need to show that

(1) The∞-categories SpT (n) are 1-semiadditive.
(2) The functor Ên[−] detects invertibility.
(3) The symmetric monoidal dimensions of the spaces BkCp in M̂odEn are

rational and non-zero.

Claim (1) is proved in [29], claim (2) follows from Corollary 5.1.17, and claim
(3) is given by Corollary 5.1.9. ��
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This readily implies the original result of [20].

Corollary 5.3.2 Forall0 ≤ n <∞, the∞-categorySpK (n) is∞-semiadditive.

Proof Apply Corollary 3.3.2 to the localization functor LT (n) : SpT (n) →
SpK (n). Alternatively, one could just use the same argument as in Theo-
rem 5.3.1. ��
By Theorem 5.3.1, both∞-categories SpT (n) and M̂odEn are∞-semiadditive.
Hence, for every π -finite space A, we have an element |A| ∈ π0ST (n), which
maps to the corresponding element |A| ∈ π0En (since the map is induced by
a colimit preserving functor). We shall make some computations regarding
these elements and use them to deduce some new facts about SpT (n).

Lemma 5.3.3 For every k, n ≥ 0 we have

|BkCp|M̂odEn
= p(

n−1
k ) ∈ π0En.

Proof By Corollary 3.3.12 and Corollary 5.1.9, we have

p(
n
k) = dimM̂odEn

(
BkCp

)
= |BkCp||Bk−1Cp|.

The result now follows by induction on k, using the identity

(
n − 1

k

)
+

(
n − 1

k − 1

)
=

(
n

k

)

and the fact that the ring π0En is torsion free. ��
Lemma 5.3.4 For every k ≥ n ≥ 0 the element |BkCp|SpT(n)

∈ π0ST (n) is
invertible.

Proof For n = 0 this is clear, so we may assume n ≥ 1. By Corollary 5.1.17,
the map

f : π0ST (n) → π0En

detects invertibility and by Lemma 5.3.3,

f
(
|BkCp|

)
= p(

n−1
k ) = 1.

��
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Theorem 5.3.5 Let n ≥ 0 and let f : A → B be a map with π -finite n-
connected homotopy fibers. The induced map �∞+ f : �∞+ A → �∞+ B is a
T (n)-equivalence.

Proof We begin with a standard general argument that reduces the statement
to the case B = pt, by passing to the fibers. Consider the equivalence of
∞-categories

S/B
∼−→ Fun (B,S) ,

given by the Grothendieck construction. Let X ∈ Fun (B,S) be the local
system of spaces on B, that corresponds to f and let Y ∈ Fun (B,S) be
the constant local system with value pt ∈ S. As Y is terminal, there is an
essentially unique map X → Y , which at each point b ∈ B, is the essentially
unique map from Xb, the homotopy fiber of f at b, to Yb = pt. We recover f ,
up to homotopy, as the induced map on colimits

A � lim−→ X → lim−→ Y � B.

For each E ∈ Sp, the functor

E ⊗�∞+ (−) : S → Sp

preserves colimits. Therefore, if the induced map for each homotopy fiber

E ⊗�∞+ Xb → E ⊗�∞+ pt,

is an isomorphism, then the induced map on colimits is also an isomorphism

E ⊗�∞+ A ∼−→ E ⊗�∞+ B.

Now, if B = pt, we have that A is a π -finite n-connected space. For n = 0,
the claim is obvious, and so wemay assume that n ≥ 1. Therefore, A is simply
connected and in particular nilpotent. Thus, we can refine the Postnikov tower
of A to a finite tower

A = A0→ A1→ · · · → Ad = pt,

such that the homotopy fiber of each Ai → Ai+1 is of the form BkCq , for q a
prime and k ≥ n + 1. It thus suffices to show that the map

�∞+ BkCq → �∞+ pt � S,
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induced by

g : BkCq → pt,

is a T (n)-equivalence. For q 
= p this is clear. For q = p we apply Proposi-
tion 3.1.19 to the map g. For this, we need to check that

|�BkCp| = |Bk−1Cp|
is invertible in π0ST (n), which follows from Lemma 5.3.4. Alternatively,
BkCq is dualizable in SpT (n) by Theorem 5.3.1 and Corollary 3.3.12, and
LK (n) : SpT (n) → SpK (n) in nil-conservative by Proposition 5.1.15 andExam-
ple 5.1.13(2). Thus, by Proposition 4.4.4, it suffices to check that the map g
is a K (n)-equivalence, which follows from the computation of K (n)∗BkCq
carried out in [45]. ��
Remark 5.3.6 The analogous result for K (n) instead of T (n) is a consequence
of the [45] computation of the K (n)-homology of Eilenberg–MacLane spaces.
A weaker result for T (n), namely that the conclusion holds if the homotopy
fibers of f are π -finite and k-connected for k  0, can be deduced from [9,
Theorem 3.1].

Corollary 5.3.7 Let n ≥ 0 and let f : A → B be a map with π -finite n-
connected homotopy fibers. For every localization L : Sp(p) → Sp(p) such
that L (F(n + 1)) = 0, the induced map

L
(
�∞+ f

) : L (
�∞+ A

)→ L
(
�∞+ B

)

is an isomorphism.

Proof The condition L (F(n + 1)) = 0 ensures that L : Sp(p) → SpL factors

through the finite chromatic localization L f
n : Sp(p) → Sp

L f
n
, which is also

the localization with respect to the spectrum T (0)⊕ · · · ⊕ T (n). Hence, the
claim follows from Theorem 5.3.5. ��

5.4 Higher semiadditivity and weak rings

In this section, we study higher semiadditivity formore general localizations of
spectra. In particular, with respect toweak rings, which are a veryweak version
of a homotopy ring, see Definition 5.1.4. We begin by studying the chromatic
support of a localization and show that three different notions of “bounded
chromatic height” for weak rings coincide. We then study localizations of
the ∞-category Sp with respect to weak rings, which are 1-semiadditive.
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We show that p-locally, those are precisely the intermediate localizations
between SpK (n) and SpT (n). We deduce that such localizations are always
∞-semiadditive and also derive a characterization of higher semiadditivity in
terms of the Bousfield–Kuhn functor.

5.4.1 General localizations

We begin with a discussion regarding general ⊗-localizations. The following
result relates the 1-semiadditivity of a ⊗-localization and the support of the
corresponding localization functor. In a sense, a 1-semiadditive⊗-localization
of Sp(p) is monochromatic of finite height.

Proposition 5.4.1 Let L : Sp(p) → Sp(p) be a ⊗-localization functor. If SpL
is 1-semiadditive, then either supp(L) = Ø or supp(L) = {n} for some 0 ≤
n <∞.

Proof We start by showing that ∞ /∈ supp(L). Assuming the contrary, by
Lemma 5.1.12, we get that

HFp = K (∞) ∈ SpK(∞) ⊆ SpL .

This is a contradiction to Theorem 4.3.5 as HFp is an E∞-ring.
It remains to show that supp(L) cannot contain two different natural num-

bers. We shall prove this by contradiction. Suppose that there are 0 ≤ m <

n < ∞ such that m, n ∈ supp(L). By Lemma 5.1.12 again, it follows that
SpK(m),SpK(n) ⊆ SpL . In particular, we get Em, En ∈ SpL . Consider the
object

En⊗̂Em = L (En ⊗ Em) ∈ SpL .

We begin by showing that En⊗̂Em 
= 0. Indeed, since SpK(m) ⊆ SpL we
have

LK(m)

(
En⊗̂Em

) � LK(m)L (En ⊗ Em) � LK(m) (En ⊗ Em) .

The spectrum LK(m) (En ⊗ Em) is non-zero by the Künneth isomorphism and
the fact that

K (m)⊗ Em, K (m)⊗ En 
= 0.

The object En⊗̂Em is an E∞-ring in the 1-semiadditive∞-category SpL
and therefore we have a well defined element a = |BCp| ∈ π0

(
En⊗̂Em

)
. By

naturality, a is the image of the elements

an = |BCp| ∈ π0 (En) , am = |BCp| ∈ π0 (Em)
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under the canonical maps of E∞-rings En → En⊗̂Em and Em → En⊗̂Em
respectively. However, the computation in Lemma 5.3.3 shows that an = pn−1
and am = pm−1. Hence, their equality is a contradiction to the injectivity of
the unit map Z→ π0(En⊗̂Em), which follows from Proposition 4.1.11. ��
Remark 5.4.2 The definition of an as |BCp| ∈ π0 (En) is unambiguous, since
by Corollary 3.2.7 for the symmetric monoidal localization functor SpL →
SpK(n), it does not matter whether we consider En as an object of SpL or
SpK(n).

Remark 5.4.3 We are not aware of any example of a non-zero 1-semiadditive
⊗-localization L , for which supp(L) = Ø. The techniques of this paper can be
used to show that if no such examples exist (aswe suspect), thenCorollary 5.4.9
can be generalized to every ⊗-localization. Namely, a ⊗-localization of Sp is
1-semiadditive if and only if it is∞-semiadditive.

5.4.2 Weak rings

There are several notions of being “of height ≤ n” for the Bousfield class of
a weak ring. The following theorem shows that they are all equivalent.

Theorem 5.4.4 Let R be a non-zero p-local weak ring and let 0 ≤ n < ∞.
The following are equivalent:

(1) F(n + 1)⊗ R = 0 for some finite spectrum F(n + 1) of type n + 1.
(2) �∞Bn+1Cp ⊗ R = 0.
(3) supp(R) ⊆ {0, . . . , n}.
Proof We prove the equivalence by showing first that the implications labeled
by solid arrows in the diagram below hold for a general ⊗-localization L ,
where the condition R ⊗ X = 0 is interpreted as L (X) = 0. Then we turn to
the remaining implication, labeled by the dashed arrow in the diagram.

(1) (2) (3)

The implication (1) (2) follows from Corollary 5.3.7. Given (2),
assume by contradiction that L (K (m)) 
= 0 for some n < m ≤ ∞. On
the one hand, by Lemma 5.1.12, we have

�∞Bn+1Cp ⊗ K (m) ∈ SpK (m) ⊆ SpL .
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On the other hand, by assumption, L
(
�∞Bn+1Cp

) = 0 and hence (using
[45]), we have

0 
= �∞Bn+1Cp ⊗ K (m) = L(�∞Bn+1Cp ⊗ K (m))

= L(�∞Bn+1Cp)⊗̂L (K (m)) = 0.

It now suffices to show that for a localization with respect to a non-zero p-
local weak ring R, the implication (3) (1) holds as well. By Example
5.1.5, wemay assume that F(n + 1) is a weak ring and hence by Lemma 5.1.6,
the spectrum F(n + 1)⊗ R is a weak ring as well. Moreover, we have

supp(F(n + 1)⊗ R) = supp(F(n + 1)) ∩ supp(R) = Ø

and thus by Theorem 5.1.14, we get F(n + 1)⊗ R = 0. ��
Remark 5.4.5 Condition (2) in Theorem 5.4.4 has an alternative formulation.
As in the proof of Theorem 5.3.5, if E is a p-local spectrum, �∞Bn+1Cp ⊗
E = 0 if and only if the following condition is satisfied:(
2′

)
For everymap f : A→ B ofπ -finite spaces, that induces an isomorphism
on the nth Postnikov truncation, the map

�∞+ f ⊗ E : �∞+ A ⊗ E → �∞+ B ⊗ E

is an isomorphism.

Wenowshow that for localizationwith respect to aweak ring, beingmonochro-
matic is even more closely related to higher semiadditivity. For this we need
the following general lemma.

Lemma 5.4.6 Let E ∈ Sp(p). For every n ≥ 0, the spectrum E is Bousfield
equivalent to

(T (0)⊗ E)⊕ (T (1)⊗ E)⊕ · · · ⊕ (T (n)⊗ E)⊕ (F(n + 1)⊗ E) .

Note that the Bousfield class of X⊗Y depends only on the Bousfield classes
of X and Y . Hence, in the statement and proof of the above lemma, we are
free to choose the T (i)-s and F(n + 1) as we please.

Proof Using the Periodicity Theorem [23] we can construct a sequence of
finite type n spectra F(n) with vn-self maps

vn : �dn F(n)→ F(n) ,

such that
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(1) F(0) = S(p)
(2) F(n + 1) is the cofiber of vn .
(3) T (n) = v−1n F(n).

The claim now follows from a repeated application of [38, Lemma 1.34]. ��
Theorem 5.4.7 Let R be a non-zero p-local weak ring. The following are
equivalent:

(1) There exists a (necessarily unique) integer n ≥ 0, such that SpK(n) ⊆
SpR ⊆ SpT(n) .

(2) Either SpR = SpHQ, or �∞: SpR → S∗ admits a retract.
(3) SpR is∞-semiadditive.
(4) SpR is 1-semiadditive.
(5) supp(R) = {n} for some 0 ≤ n <∞.

Moreover, the integer n in (1) and (5) is the same one.

Proof Consider the following slight variant of condition (5):

(5)’ Either supp(R) = Ø or supp(R) = {n} for some 0 ≤ n <∞.

We shall prove the theorem by verifying all the implications in the following
diagram:

(2)

(1) (4) (5′) (5)

(3)

In fact, we show that the implications labeled by solid arrows hold for a general
⊗-localization L , and those labeled by dashed arrows hold for LR , where R
is a non-zero p-local weak ring.

We start by showing that (1) (2) . If n = 0 then

SpK(0) = SpT(0) = SpQ

and we are done. Otherwise, let �n : S∗ → SpT (n) be the Bousfield–Kuhn
functor, see [10,28]. We get that L ◦ �n is a retract of �∞: SpL → S∗. To
show that (1) (3) , consider the symmetricmonoidal colimit preserving
functor L : SpT (n) → SpL . The claim now follows from Theorem 5.3.1 and

Corollary 3.3.2. The implication (2) (4) is proved in [12, Theorem2.6].

Finally, (3) (4) is trivial and (4) (5) is Proposition 5.4.1.

It is left to show the implications (5)′ (5) and (5) (1) , where
L = LR for a non-zero p-local weak ring R. The first implication follows from
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Theorem 5.1.14. For the second, let 0 ≤ n <∞ be such that supp(R) = {n}.
By Lemma 5.1.12, we have SpK(n) ⊆ SpR . It remains to show that SpR ⊆
SpT(n). By Lemma 5.4.6, the spectrum R is Bousfield equivalent to

(T (0)⊗ R)⊕ (T (1)⊗ R)⊕ · · · ⊕ (T (n)⊗ R)⊕ (F(n + 1)⊗ R) .

From the assumption supp (R) = {n} and Theorem 5.4.4, we get that
F(n + 1) ⊗ R = 0. By Example 5.1.5 and Lemma 5.1.6 we may assume
that the spectra T (m)⊗ R form < n are weak rings. Now, form 
= n we have

supp(T (m)⊗ R) = supp(T (m)) ∩ supp(R) = {m} ∩ {n} = Ø

and therefore T (m)⊗ R = 0 by Theorem 5.1.14. It follows that

SpR � SpT(n)⊗R ⊆ SpT(n) .

��
We conclude by showing that the equivalence of conditions (3) and (4) in

Theorem 5.4.7 holds for general, not necessarily p-local, weak rings.

Lemma 5.4.8 Let E be a spectrumand let � be an integer such that E
×�−→ E is

null. The canonical functor F : SpE →
∏

p|� SpE(p)
is an equivalence, where

E(p) is the p-localization of E at the prime p.

Proof The functor F admits a right adjoint G given on objects by

(X p){p|�} �→
⊕
p|�

X p.

It suffices to show that F is conservative and that the counit of the adjunction
is an isomorphism. Sincemultiplication by � is null on E , all homotopy groups
of E are �-torsion. It follows that the canonical map E → ⊕

p|� E(p) is an
isomorphism on homotopy groups and hence an isomorphism. Thus, F is
conservative. The components of the counit are given by

LE(p)

⎛
⎝⊕

q|�
Xq

⎞
⎠→ X p.

Since LE(p) is exact, it is enough to show that LE(p) (Xq) = 0 for all q 
= p.
Indeed, multiplication by p acts invertibly on Xq and nilpotently on E(p),
hence E(p) ⊗ Xq = 0. ��
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Corollary 5.4.9 Let R ∈ Sp be a (not necessarily p-local) weak ring. Then
SpR is 1-semiadditive if and only if it is∞-semiadditive.

Proof Denote by R(p) the p-local weak ring R ⊗ S(p). By Corollary 3.3.2
applied to the localization functor Fp : SpR → SpR(p)

, the∞-category SpR(p)

is 1-semiadditive and hence by Theorem 5.4.7 it is∞-semiadditive. We divide
into cases according to whether R ⊗ HQ vanishes or not. If R ⊗ HQ = 0,
then the unit uR : S→ R has finite order � in π0R. Hence,

� · IdR = � · μR(uR ⊗ IdR) = μR((� · uR)⊗ IdR) = 0.

By Lemma 5.4.8 we have

Sp(R)
∼=

∏
p|�

SpR(p)

and by Corollary 3.2.5 it is ∞-semiadditive. Now, consider the case where
HQ⊗ R 
= 0. For every prime p, since SpR(p)

is 1-semiadditive and

K (0)⊗ R(p) = HQ⊗ R 
= 0,

we get from Theorem 5.4.7 that supp(R(p)) = {0}. By Theorem 5.4.4 applied
to the Moore spectrum M(p) = F(1), we obtain

R ⊗ M(p) � R(p) ⊗ M(p) = 0.

It follows that R ∈ SpHQ = ModHQ and hence SpR = SpHQ is ∞-
semiadditive. ��
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