
Glasgow Math. J. 56 (2014) 13–42. C© Glasgow Mathematical Journal Trust 2013.
doi:10.1017/S0017089512000882.

STABLE LEFT AND RIGHT BOUSFIELD LOCALISATIONS

DAVID BARNES
The University of Sheffield, School of Mathematics and Statistics,

Hicks Building, Sheffield S3 7RH, United Kingdom
e-mail: D.J.Barnes@sheffield.ac.uk

and CONSTANZE ROITZHEIM
University of Kent, School of Mathematics, Statistics and Actuarial Science,

Cornwallis, Canterbury, Kent CT2 7NF, United Kingdom
e-mail: C.Roitzheim@kent.ac.uk

(Received 10 October 2012; accepted 1 November 2012; first published online 25 February 2013)

Abstract. We study left and right Bousfield localisations of stable model
categories which preserve stability. This follows the lead of the two key examples:
localisations of spectra with respect to a homology theory and A-torsion modules over
a ring R with A a perfect R-algebra. We exploit stability to see that the resulting model
structures are technically far better behaved than the general case. We can give explicit
sets of generating cofibrations, show that these localisations preserve properness and
give a complete characterisation of when they preserve monoidal structures. We apply
these results to obtain convenient assumptions under which a stable model category
is spectral. We then use Morita theory to gain an insight into the nature of right
localisation and its homotopy category. We finish with a correspondence between left
and right localisation.

2010 Mathematics Subject Classification. 55P42, 55P60, 18E30, 16D90.

1. Introduction. Localisations of homotopy theories are one of the most useful
techniques in the tool kit of an algebraic topologist. Bousfield introduced this concept
by studying topological spaces up to E∗-equivalence for E∗ a homology theory.
This became known as left Bousfield localisation. Later, the dual concept known as
cellularisation, or right Bousfield localisation, was developed by Farjoun in [8]. A
particularly interesting example of right localisation is given by Dwyer and Greenlees
in [6]. Specifically, they consider A-torsion modules in the case of A a perfect algebra
over the ring R.

As these two notions of localisation and cellularisation were studied, it became
clear that there were advantages to phrasing these notions in the language of model
categories. It was therefore natural to ask if localisation or cellularisation can be
performed in a general model category. A good answer to this was given by Hirschhorn
in the book [10], which discusses general existence questions as well as studying
technical properties of left and right localisations. Left and right localisations are
dual notions, but the main results of the book are not dual. This creates some very
interesting differences in the behaviour of left and right localisations.

In this paper, we focus on stable model categories and stability-preserving left and
right localisations. A localisation of a stable model category is not necessarily again
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stable. We will briefly discuss some examples of this behaviour involving Postnikov
decomposition of spectra at the end of Section 2. Because of these examples, most of
the technical results in the literature on localisation do not take stability into account.
However, the most interesting examples from stable homotopy theory, namely E∗-
localisation and A-torsion R-modules, are localisations where the result is still stable.
We are going to isolate this phenomenon, giving a new approach to localisation.
Following this method has numerous immediate benefits, such as properness being
preserved by localisation and the existence of convenient generating sets of cofibrations
unlike in the general case. Moreover, our approach can be viewed as an improvement
on the existence results of left and right localisations as the stable case requires fewer
technical assumptions on the original model category.

We then exploit our new description of the generating sets to see that monoidal
structures interact very well with localisations of stable model categories. We then
return to the motivating example of spectra and see that left localisations behave
extremely well and are easily made stable and monoidal. We also obtain an even
simpler set of generating cofibrations and acyclic cofibrations. Analogously, we can
use our tools to deduce that the category of A-torsion modules is a monoidal model
category.

One further interesting consequence of the stable setting is that we are now able
to prove that any stable, proper and cellular model category is Quillen equivalent to
a spectral model category. Since we now know that stable left localisation preserves
properness, we are able to combine existing results to obtain a sleeker and more
tractable answer than previous results along these lines.

We continue by using Morita theory to show that for a set of homotopically
compact objects K , right localisation with respect to K is Quillen equivalent to
modules over the endomorphism ringoid spectrum of K . This shows that the
K-colocal homotopy category of C is the smallest localising subcategory of the
homotopy category of C containing K . We also provide an explicit description of
colocalisation in this case.

We further show that for any left localisation there is a corresponding right
localisation governing the acyclics of this left localisation and vice versa. This allows
us to restate the telescope conjecture in chromatic homotopy theory in terms of right
localisations.

Our results regarding properness, existence and monoidality of left and right
localisations as well as their applications show that stable localisations of stable model
categories have vast advantages over the general case. Furthermore, we have shown
that right localisations are not to be dreaded and hope that our work will encourage
others to use this powerful technique.

This paper is organised as follows. In Section 2, we establish the notions of left
and right Bousfield localisations of model categories. We then discuss some standard
examples, namely localisation of spectra with respect to a homology theory and A-
torsion R-modules where A is a perfect complex over the commutative ring R.

In Section 3, we recall some definitions in the context of model categories, namely
stability, framings, properness and cofibrant generation. These technical definitions
will play a crucial role in our work.

Section 4 contains the first key results concerning left Bousfield localisation
LSC. We define what it means for a set of maps S to be stable and then show that
under the assumption of stability of S, localisation preserves stability and properness.
Furthermore, we give a simple set of generating cofibrations and acyclic cofibrations
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for LSC. Section 5 deals with analogous results for the dual case of right Bousfield
localisation RKC, where K is a set of objects of C.

The following pair of Sections 6 and 7 examines the interaction of left and
right localisations with monoidal structures. More specifically, for a monoidal model
category C, we give necessary and sufficient conditions on S and K so that LSC and
RKC are again monoidal model categories and prove some universal properties. We
also apply our results to the leading examples of spectra and A-torsion R-modules.

Section 8 uses the fact that stable left localisations preserve properness to obtain
convenient conditions under which a stable model category is Quillen equivalent to a
spectral one.

In Section 9, we use the Morita theory of Schwede and Shipley to gain further
insight into right localisations when the object set K consists of homotopically compact
objects. In particular, we generalise the results of Dwyer and Greenlees [6] to a large
class of well-behaved monoidal model categories. Thus, for such a set of objects K ,
we find a set of maps S such that right localisation at K is Quillen equivalent to a left
localisation at S.

Finally, in Section 10, we update the important correspondence between
cellularisations and acyclicisations to the language of left and right localisations by
comparing colocal objects to acyclic objects, leading to an alternative description of
the telescope conjecture.

2. Examples of left and right Bousfield localisations. Let E∗ be a generalised
homology theory. In the 1970s, Bousfield considered the resulting homotopy categories
of spaces and spectra after inverting E∗-isomorphisms rather than π∗-isomorphisms.
These homotopy categories are especially sensitive with respect to phenomena related
to E∗. To talk about these constructions in a set-theoretically rigid manner, they were
increasingly placed in a model category context in the subsequent decades. We recall
some definitions and results in this section.

DEFINITION 2.1. A map f : X → Y of simplicial sets or spectra is an E-equivalence
if E∗(f ) is an isomorphism. A simplicial set or a spectrum Z is E-local if

f ∗ : [Y, Z] → [X, Z]

is an isomorphism for all E-equivalences f : X → Y . A simplicial set or spectrum A is
E-acyclic if [A, Z] consists of only the trivial map, for all E-local Z. An E-equivalence
from X to an E-local object Z is called an E-localisation.

These definitions then give rise to the following (see Bousfield [2] and [3]).

THEOREM 2.2. Let E be a homology theory and C be the category of simplicial sets
or spectra. Then, there is a model structure LEC on C such that

� the weak equivalences are the E∗-isomorphisms,
� the cofibrations are the cofibrations of C,
� the fibrations are those maps with the right lifting property with respect to

cofibrations that are also E∗-isomorphisms.

A map of simplicial sets or spectra is called an E-acyclic cofibration if it is a
cofibration that is an E∗-isomorphism. Similarly, an E-acyclic fibration is a fibration
that is an E∗-isomorphism.
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This result can be seen as a special case of a more general result by Hirschhorn.
For X, Y ∈ C, we let MapC(X, Y ) denote the homotopy function object, which is a
simplicial set (see Hirschhorn [10, chapter 17] and Section 3).

DEFINITION 2.3. Let S be a set of maps in C. Then, an object Z ∈ C is S-local if

MapC(s, Z) : MapC(B, Z) −→ MapC(A, Z)

is a weak equivalence in simplicial sets for any s : A −→ B in S. A map f : X −→ Y ∈ C

is an S-equivalence if

MapC(f, Z) : MapC(Y, Z) −→ MapC(X, Z)

is a weak equivalence for any S-local Z ∈ C. An object W ∈ C is S-acyclic if

MapC(W, Z) � ∗

for all S-local Z ∈ C.

A left Bousfield localisation of a model category C with respect to a class of maps S
is a new model structure LSC on C such that

� the weak equivalences of LSC are the S-equivalences,
� the cofibrations of LSC are the cofibrations of C,
� the fibrations of LSC are those maps that have the right lifting property with

respect to cofibrations that are also S-equivalences.

Hirschhorn proves that with some minor assumptions on C, LSC exists if S is a
set. In the case of homological localisation as in Theorem 2.2, the class S is initially the
class of E∗-isomorphisms, which is not a set. Hence, the key to proving the existence
of homological localisations is to show that there is a set S whose S-equivalences are
exactly the E∗-isomorphisms.

For example, this has been done for spectra, specifically for �-modules in the sense
of EKMM [7]. In their Section 8.1, they show that there is a set JE of generating E-
acyclic cofibrations. That is, a morphism of spectra is a fibration in the E-local model
structure if and only if it has the right lifting property with respect to all elements of JE .
This implies that LE = LJE as both localisations then possess the same fibrant objects
and in particular the same local objects. Similar results exist for symmetric spectra,
sequential spectra and orthogonal spectra and their equivariant counterparts.

We now turn to right Bousfield localisation. First, we note that Hirschhorn’s
existence theorem for right localisations [10, Theorem 5.1.1] is not entirely dual to the
left local analogue as it starts with a set of objects rather than a set of maps. Thus, we
always word right localisations in terms of a set (or class) of objects.

DEFINITION 2.4. Let C be a model category and K a class of objects of C. We say
that a map f : A −→ B of C is a K-coequivalence if

MapC(X, f ) : MapC(X, A) −→ MapC(X, B)

is a weak equivalence of simplicial sets for each X ∈ K . An object Z ∈ C is K-colocal
if

MapC(Z, f ) : MapC(Z, A) −→ MapC(Z, B)
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is a weak equivalence for any K-coequivalence f . An object A ∈ C is K-coacyclic if
MapC(W, A) � ∗ for any K-colocal W .

There are many other similar names for these terms, in particular Hirschhorn [10,
Definition 5.1.3] uses the term K-colocal equivalences for K-coequivalences.

A right Bousfield localisation of C with respect to K is a model structure RKC on C

such that
� the weak equivalences are K-coequivalences
� the fibrations in RKC are the fibrations in C
� the cofibrations in RKC are those morphisms that have the left lifting property

with respect to fibrations that are K-coequivalences.

When K is a set rather than an arbitrary class, Hirschhorn showed in [10, Theorem
5.1.1] that, under some assumptions on C, RKC exists. This is discussed in more detail
in Section 5.

An algebraic example of the right Bousfield localisation of modules over a ring
R was discussed by Dwyer and Greenlees in [6]. A perfect R-module A is isomorphic
to a differential graded R-module of finite length which is finitely generated projective
in every degree. This is equivalent to A being small, meaning that R HomR(A,−), the
derived functor of HomR(A,−), commutes with arbitrary coproducts.

Dwyer and Greenlees consider the right localisation of the category of R-modules
with respect to K = {A}, where A is perfect. In their paper, they call the thus arising
{A}-coequivalences ‘E-equivalences’, referring to the functor E(−) = R HomR(A,−).
The {A}-colocal objects are referred to as ‘A-torsion modules’. For example, in the
case of R = � and A = (�

·p−→ �) � �/p, an R-module X is �/p-torsion if and only if
it has p-primary torsion homology groups.

In [6], Dwyer and Greenlees also compare this version of right localisation with a
dual notion of left localisation. In the same set-up, they consider left localisation with
respect to the class S of R HomR(A,−)-isomorphisms. They call the resulting S-local
R-modules ‘A-complete’. In their Theorem 2.1, they show that the derived categories
of A-torsion and A-complete modules are equivalent. We will provide a generalisation
of this type of result in Section 9.

The localisations discussed in [6] and the E∗-localisation of spectra are examples of
localisations which preserve stability. Not all localisations have this property: there are
left (and right) localisations of stable model categories which are not themselves stable.
Two standard examples come from the Postnikov decomposition of the category of
spectra. Consider the left Bousfield localisation of spectra where we add the boundary
inclusion map Sn

+ → Dn+1
+ to the set of weak equivalences. A fibrant object X in this

homotopy category satisfies πi(X) = 0 for i � n; hence, the localisation is not stable.
The second example is the right Bousfield localisation of spectra at the object Sn

+. The
resulting homotopy category is the homotopy category of (n − 1)-connected spectra;
hence, this localisation is also not stable.

3. Some model category techniques. We will recall some technical facts about
stable model categories. The homotopy category of any pointed model category can
be equipped with an adjoint functor pair

� : Ho(C) −−→←− Ho(C) : �,
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where � is called the suspension functor and � the loop functor. Let X ∈ Ho(C) be
fibrant and cofibrant in C. We factor the map

X −→ ∗

into a cofibration and a weak equivalence

X � X
∼−→ ∗.

The suspension �X of X is defined as the pushout of the diagram

CX � X � CX.

Dually, the loops on X are defined as the pullback of

PX � X � PX,

where

∗ ∼−→ PX � X

is a factorisation of ∗ −→ X into a weak equivalence and a fibration. For example, in
the case of topological spaces, this gives the usual loop and suspension functors. For
chain complexes of R-modules, denoted Ch(R), the suspension and loop functors are
degree shifts of chain complexes.

DEFINITION 3.1. A model category C is stable if � and � are inverse equivalences
of categories.

Thus, topological spaces are not stable whereas Ch(R) is.

An alternative description of � and � uses the technique of framings which is a
generalisation of the notion of a simplicial model category. Recall that a simplicial
model category is a model category that is enriched, tensored and cotensored over the
model category of simplicial sets satisfying some adjunction properties. Furthermore,
these functors are supposed to be compatible with the respective model structures on
the model category C and simplicial sets sSet∗. Goerss and Jardine give an excellent
introduction to this notion in [9, Section 2.3]. Not every model category can be given
the structure of a simplicial model category, but framings at least give a similar structure
up to homotopy. For details, see Hovey [11, Chapter 5], Hirschhorn [10, Chapter 16]
or the authors’ work [1, Section 3].

Let C be a pointed model category and A ∈ C a fixed object. Framings give adjoint
Quillen functor pairs

A ⊗ (−) : sSet∗ −−→←− C : Mapl(A,−),
A(−) : sSetop

∗ ←−−−→ C : Mapr(−, A).

Unfortunately, the construction is not rigid enough to equip any model category with
the structure of a simplicial model category. The reason for this is that for two fixed
objects A and B the above defined ‘left mapping space’ Mapl(A, B) and ‘right mapping
space’ Mapr(A, B) only agree up to a zigzag of weak equivalences. However, the above
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functors possess total derived functors, giving rise to an adjunction of two variables

− ⊗L − : Ho(C) × Ho(sSet) −→ Ho(C),
R Map(−,−) : Ho(C)op × Ho(C) −→ Ho(sSet∗),

R(−)(−) : Ho(sSet)op × Ho(C) −→ Ho(C).

THEOREM 3.2 (Hovey). Let C be a pointed model category. Then its homotopy
category Ho(C) is a Ho(sSet∗)-module category.

In particular, the homotopy function complex MapC is weakly equivalent to
R Map. Hence, we will abuse notation and only write Map instead of R Map or MapC.
The suspension and loop functors can also be described using framings (see Hovey
[11, chapter 6]).

LEMMA 3.3. Let �1 ∈ sSet∗ denote the simplicial circle. Then

�X ∼= X ⊗L �1 and �X ∼= (RX)�1
.

�

Another model category notion relevant to this paper is properness. This definition
does not seem important at first sight but is crucial to many of the results about the
existence of a localisation.

DEFINITION 3.4. A model category is left proper if every pushout of a weak
equivalence along a cofibration is again a weak equivalence. Dually, it is said to be
right proper if every pullback of a weak equivalence along a fibration is again a weak
equivalence. It is proper if it is both left and right proper.

Recall that a model category C is said to be cofibrantly generated if there are sets of
maps (rather than classes) that generate the cofibrations and acyclic cofibrations of C.
More precisely,

DEFINITION 3.5. A model category C is cofibrantly generated if there exist sets of
maps I and J such that

� a morphism in C is a fibration if and only if it has the right lifting property with
respect to all elements in I ,

� a morphism in C is an acyclic fibration if and only if it has the right lifting property
with respect to all elements in J.

Furthermore, I and J have to satisfy the small object argument, that is, the domains
of the elements of I (and J) are small relative to I (respectively J).

For details of smallness and the small object argument, see Hirschhorn [10, Section
10.5.14]. The concept of cofibrant generation is crucial to some statements about model
categories and in general allows many proofs to be greatly simplified.

A cellular model category is a cofibrantly generated model category where the
generating cofibrations and acyclic cofibrations satisfy some more restrictive properties
regarding smallness (see [10, Definition 12.1.1]). Not every cofibrantly generated model
category is cellular, but many naturally occurring model categories are. Examples
include simplicial sets, topological spaces, chain complexes of R-modules, sequential
spectra, symmetric spectra, orthogonal spectra and EKMM �-modules.
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4. Stable left localisation. In this section, we introduce the notion of the left
Bousfield localisation with respect to a ‘stable’ class of morphisms. We then show that
in this framework, the left Bousfield localisation of a stable model category remains
stable. We will see that if C is a stable model category and S is a stable class of maps,
then LSC (provided it exists) is right proper whenever C is. Furthermore, if C is cellular
and proper, we can specify a very convenient set of generating cofibrations and acyclic
cofibrations for LSC.

In Section 2, we defined the notion of S-local objects and S-equivalences for a class
of maps S ⊂ C. Note that elements s ∈ S are automatically S-equivalences, although
the converse does not have to be true. For example, any weak equivalence in C is an
S-equivalence.

By Hirschhorn [10, Theorem 4.1.1], in well-behaved cases the S-local model
structure on C exists. In particular, this result requires S to be a set.

THEOREM 4.1 (Hirschhorn). Let C be a left proper, cellular model category. Let S
be a set of maps in C. Then there is a model structure LSC on the underlying category C

such that
� weak equivalences in LSC are S-equivalences,
� the cofibrations in LSC are the cofibrations in C.

The fibrations in this model structure are called S-fibrations.

Note that fibrant replacement US in LSC is a localisation, that is, an S-equivalence

X −→ US(X),

where US(X) is S-local. It is important to distinguish between fibrant in C, S-fibrant
and S-local. The first two are model category conditions, the third is a condition on
the homotopy type of an object. Note that an object is S-fibrant if and only if it is
S-local and fibrant in C.

The functors � and � interact well with homotopy function complexes since all
three can be defined via framings. In particular, we have weak equivalences as below:

Map(�X, Y ) � Map(X,�Y ) � � Map(X, Y ).

Combining this adjunction with Definition 2.3, we obtain the following pair of facts:
� The class of S-equivalences is closed under �.
� The class of S-local objects is closed under �.

DEFINITION 4.2. Let S be a class of maps in C. We say that S is stable if the
collection of S-local objects is closed under �.

EXAMPLE 4.3. Let C be either the category of pointed simplicial sets or the category
of spectra. Let S be the class of E∗-isomorphisms for a generalised homology theory E.
Then S is not a set in either of these two cases, but it is stable and LSC exists.

A simple adjunction argument shows the following.

LEMMA 4.4. If C is a stable model category, then a class of maps S is stable if and
only if the collection of S-equivalences is closed under �. In particular, if the class S is
closed under �, then the class S is stable. �

REMARK 4.5. The definitions of S-equivalences and S-local objects are given in
terms of homotopy function complexes, denoted Map(−,−). However, since we work
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in a stable context we can rewrite these definitions into more familiar forms involving
[−,−]C∗ , the graded set of maps in the homotopy category of C.

By Hirschhorn [10, Theorem 17.7.2], there is a natural isomorphism

π0 Map(X, Y ) ∼= [X, Y ]C.

It follows that

πn Map(X, Y ) ∼= [X, Y ]Cn for n � 0.

Similarly,

πn Map(�kX, Y ) ∼= [X, Y ]Cn−k for n, k � 0.

It follows that f : X → Y is an S-equivalence if and only if the map

[f, Z]C∗ : [Y, Z]C∗ −→ [X, Z]C∗

is an isomorphism of graded abelian groups for every S-local Z.

PROPOSITION 4.6. Let C be a stable model category, let S be a class of maps and
assume that LSC exists. Then, LSC is a stable model category if and only if S is a stable
class of maps.

Proof. The homotopy category of LSC is equivalent to the full subcategory of
Ho(C) with object class given by the S-local objects. In Section 3, we defined the
functor � in terms of framings. In particular, the restriction of the functor

� : Ho(C) → Ho(C)

to Ho(LSC) is naturally isomorphic to the desuspension functor on Ho(LSC) coming
from framings on the model category LSC. We thus see that

� : Ho(LSC) → Ho(LSC)

is a fully faithful functor as it is the restriction of an equivalence to a full subcategory.
We must show that it is essentially surjective. Consider some S-local X , then the
suspension �X of X is also S-local as S is a stable class of maps. Hence, �X is in
Ho(LSC) and the unit of the adjunction (�,�) on Ho(C) gives an isomorphism

X → ��X

in Ho(C) and hence in Ho(LSC).

For the converse, assume that LSC is stable, and consider some S-local X . Then

� : Ho(LSC) → Ho(LSC)

is an essentially surjective functor. Hence, there is some S-local Y such that �Y is
isomorphic to X in Ho(LSC). It follows that �Y is isomorphic to X in Ho(C). Then by
stability of C, ��Y ∼= Y is isomorphic to �X in Ho(C). Since Y is S-local, it follows
that �X must also be S-local; hence, S is a stable class of maps. �

Therefore, for a stable class S, the homotopy category of Ho(LSC) is triangulated,
which is the vital ingredient of the next proposition. By Hirschhorn [10, Proposition
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3.4.4] we know that LSC is left proper if C is left proper. However, we now also have
the following.

PROPOSITION 4.7. Let C be a stable, right proper model category and S a stable class
of maps. If LSC exists, then it is right proper.

Proof. We consider the following pullback square:

X ′

u

��

p′
�� Y ′

v

��
X p

�� Y

where p is an S-fibration (and hence a fibration in C) and v is an S-equivalence. Our
goal is to show that u is also an S-equivalence.

The fibre of a map p : X −→ Y is defined as the pullback of the diagram

X
p−→ Y ←− ∗.

Since C is right proper, Hirschhorn [10, Proposition 13.4.6] tells us that the fibre of p
is also the homotopy fibre of p, Fp. Similarly, the fibre of p′ is also its homotopy
fibre Fp′. The fibres are isomorphic since we started with a pullback square; hence,
the homotopy fibres are weakly equivalent. Now consider the comparison of exact
triangles in Ho(C)

�Y ′ ��

�v

��

Fp′ ��

∼=
��

X ′ ��

u

��

Y ′

v

��
�Y �� Fp �� X �� Y.

Since S is stable, this is also a morphism of exact triangles in Ho(LSC). Furthermore, �v

is an S-equivalence. Hence, the five lemma for triangulated categories implies that u
is also an S-equivalence, which is what we wanted to show. �

We now need a pair of technical lemmas, the second of which gives a useful
characterisation of S-fibrations.

LEMMA 4.8. Let C be a stable model category and S a stable class of maps. Assume
that LSC exists and that we have a commutative triangle in C

X
u ��

p
���

��
��

��
Y

q
����

��
��

�

B

such that the homotopy fibres of p and q are S-local. Then, u is an S-equivalence if and
only if it is a weak equivalence in C.
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Proof. The above gives a distinguished triangle in Ho(C) and hence in Ho(LSC),

�B �� Fp ��

v

��

X
p ��

u

��

B

�B �� Fq �� Y
q �� B

Since S-equivalences between S-local objects are weak equivalences, the result
follows. �

LEMMA 4.9. Let C be a stable right proper model category such that LSC exists.
Consider a fibration p : X −→ Y in C. Then, p is an S-fibration if and only if the fibre of p
is S-fibrant.

Proof. Since pullbacks of fibrations are fibrations, the fibre of an S-fibration is
S-fibrant. Conversely, assume that the fibre Fp is S-fibrant. Since C is assumed to be
right proper, Fp is also the homotopy fibre of p. We factor p in LSC as follows:

X

p
���

��
��

��
�
�� j

∼ �� B

q������
��

��
�

Y

Since the homotopy fibres of p and q are both S-fibrant and hence S-local, j is a weak
equivalence in C by Lemma 4.8. As p is a fibration in C, it has the right lifting property
with respect to j :

X
��

∼ j

��

X

p
����

B q
��

f

��

Y.

The commutative diagram

X
j ��

p

��

B
f ��

q

��

X

p

��
Y Y Y

shows that p is a retract of the S-fibration q and hence an S-fibration itself, which is
what we wanted to show. �

We are now almost ready to prove our main theorem for this section which gives
a very convenient description of the generating cofibrations and acyclic cofibrations
of LSC when S is assumed to be stable. For technical reasons, we want S to consist
of cofibrations between cofibrant objects. Any map is weakly equivalent to such a
map and changing the maps in S up to weak equivalence does not alter the weak
equivalences of LSC, so this is no restriction.

Before we give the theorem, we need an extra piece of terminology (see Hirschhorn
[10, Definition 3.3.8]. Recall that in Section 3 we defined the action of simplicial sets
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on C via framings, which gives a bifunctor

− ⊗ − : C × sSet∗ −→ C.

In particular, if the model category C is simplicial, then this agrees with the given
simplicial action on C.

DEFINITION 4.10. Let f : A → B be a map of C and let in : ∂�[n]+ → �[n]+ be the
standard inclusion of pointed simplicial sets. Then we define a set of horns on a set of
maps S in C to be the set of maps of C below.

�S =
{

f �in : A ⊗ �[n]+ �
A⊗∂�[n]+

B ⊗ ∂�[n]+ → B ⊗ �[n]+| (f : A → B) ∈ S, n � 0
}
.

In the above definition, one has to choose cosimplicial resolutions of A and B
such that f induces a Reedy cofibration between the resolutions. However, the theorem
below is independent of these choices. Note that if S consists of cofibrations between
cofibrant objects, so does �S.

THEOREM 4.11. Let C be a stable, proper, cellular model category with generating
cofibrations I and generating acyclic cofibrations J. Let S be a stable set of cofibrations
between cofibrant objects. Then, LSC is cellular with respect to the sets I and J ∪ �S.
Hence, in particular, J ∪ �S is a set of generating acyclic cofibrations for the S-local
model structure on C.

Proof. Note that our assumptions imply that LSC exists and is cellular with respect
to the set I and some set of generating acyclic cofibrations that is constructed in
Hirschhorn [10, Proposition 4.5.1]. Our task is to show that the triple (C, I, J ∪ �S)
satisfies the conditions of the definition of a cellular model category (see [10, Definition
12.1.1]). Hence, we must show that I and J ∪ �S are generating sets for the S-local
model structure on C and that these sets satisfy the additional smallness conditions of
Hirschhorn’s definition.

First of all, let us prove the following claim. Assume that T is a set of cofibrations
that are also S-equivalences. Furthermore, assume that Z ∈ C is S-fibrant if and only
if the map Z −→ ∗ has the right lifting property with respect to J ∪ T . Then a map f
is an S-fibration if and only if it has the right lifting property with respect to J ∪ T .

If f is an S-fibration, then of course it has the right lifting property with respect to
both J and T . So let us assume conversely that f : X −→ Y is a map that has the right
lifting property with respect to J ∪ T . We want to use Lemma 4.9 and show that F ,
the fibre of f , is S-fibrant. Take some j : A → B in J ∪ T and consider a lifting square
between j and F → ∗. We may extend that square to include f , as below.

A ��

j
��

F ��

��

X

f
��

B ��

��

∗ �� Y

Since f is assumed to have the right lifting property with respect to j, the lift in the
diagram exists. By the universal property of the pullback, there is also a map B −→ F
making the left square commute. Thus, F also has the right lifting property with respect
to J ∪ T . Hence, by our assumptions and Lemma 4.9, f is an S-fibration.
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Now that we have proved our claim, we are ready to prove that J ∪ �S is indeed
a set of generating acyclic cofibrations of LSC. Thus, we have to show that the
assumptions of the above claim hold for J ∪ �S. This means we have to show that an
object Z is S-fibrant if and only if the map Z −→ ∗ has the right lifting property with
respect to J ∪ �S.

The maps of J ∪ �S are cofibrations that are S-local equivalences by Hirschhorn
[10, Proposition 4.2.3]. Hence, if Z is S-fibrant, then Z −→ ∗ has the right lifting
property with respect to J ∪ �S. For the converse, we use [10, Proposition 4.2.4],
noting that our naming conventions are slightly different from the reference. Thus, we
have shown that (C, I, J ∪ �S) is a cofibrantly generated model category.

Finally, we must show that I and J ∪ �S satisfy the additional smallness conditions
of [10, Definition 12.1.1]. Since C is cellular, this amounts to proving that the domains
of �S are small relative to I . The domains of �S are cofibrant; hence, they are small
with respect to I by [10, Lemma 12.4.2]. �

REMARK 4.12. The work of Hirschhorn [10] uses in an essential manner the
assumption that C is cellular to obtain a set of generating set of acyclic cofibrations for
LSC. The reference then uses this set to show that LSC exists. We have used stability
to find such a set and then used the assumption that C is cellular to see that this set
satisfies the conditions of the small object argument.

Hence, we have a partial refinement of the above theorem to the case when C is not
cellular. Assume that C is a stable, proper cofibrantly generated model category and S
is a stable set of cofibrations. If the domains of J ∪ �S are small relative to the class
of transfinite compositions of pushouts of J ∪ �S, then LSC exists and is cofibrantly
generated by the sets I and J ∪ �S. Furthermore, it is stable and proper.

Theorem 4.11 is a considerable improvement on the general situation where C has
not been assumed to be stable. Without stability, the results of Hirschhorn [10] only
prove the existence of some set of generating acyclic cofibrations. Indeed, the set J ∪ �S
is not always a generating set of acyclic cofibrations for LSC, as shown by [10, Example
2.1.6], which we will spell out below. The proof that LSC exists and is cofibrantly
generated in the unstable case uses the Bousfield-Smith cardinality argument. So in
general it is all but impossible to obtain a useful description of the generating acyclic
cofibrations from the proof.

EXAMPLE 4.13. Consider the model category of topological spaces with weak
equivalences the weak homotopy equivalences. Let n > 0 and let f : Sn → Dn+1 be the
inclusion. We now look at localisation with respect to S = {f }.

The path space fibration

p : PK(�, n) → K(�, n)

has the right lifting property with respect to J ∪ �{f }. Hence, every J ∪ �{f }-
cofibration has the left lifting property with respect to p. But the cofibration ∗ → Sn

does not have this left lifting property. The composite map ∗ → Sn → Dn+1 is clearly
an {f }-local equivalence as is f itself. Hence, ∗ → Sn is a cofibration and an {f }-local-
equivalence that is not a J ∪ �{f }-cofibration.

We can also use Theorem 4.11 to consider smashing localisations of spectra. Recall
that Bousfield localisation of a model category of spectra S, such as symmetric spectra
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or EKMM �-modules is called smashing if for every spectrum X the map

λ ∧L IdX : X −→ X ∧L LE�

is an E-localisation.

LEMMA 4.14. If localisation with respect to E is smashing, then LES = L	S for

	 = {�nλ : �n −→ LE�n | n ∈ �}.

Proof. Every element in 	 is an E-equivalence; hence, every 	-equivalence is
an E-equivalence. Let us now consider the following commutative diagram, where
f : X −→ Y is a map of spectra and Z is 	-local:

[Y, Z]∗
f ∗

�� [X, Z]∗

[Y ∧L LE�, Z]∗
(f ∧LLE�)∗ ��

∼=
		

[X ∧L LE�, Z]∗

∼=
		

The vertical arrows are isomorphisms because the map X −→ X ∧L LE� is a
	-equivalence and Z is 	-local. To see this, note that the class of objects X for which
this is a 	-equivalence is closed under coproducts and exact triangles, and contains the
sphere.

Now let f be an E-equivalence. By assumption, this is equivalent to f ∧L LE�

being a weak equivalence. This implies that the bottom row of the commutative
square is an isomorphism. Hence, the top row is an isomorphism and thus f is a
	-equivalence. �

COROLLARY 4.15. Let S be the model category of symmetric spectra or EKMM �-
modules with generating cofibrations I and acyclic cofibrations J. Let LE be a smashing
Bousfield localisation with respect to a homology theory E. Then, LES is proper,
stable and cellular with generating cofibrations I and generating acyclic cofibrations
J ∪ �	. �

A further refinement on the generating sets appears as Corollary 6.7.

5. Stable right localisations. In this section, we introduce the notion of right
Bousfield localisation with respect to a stable class of objects. We then proceed by
showing that in this framework, the right Bousfield localisation of a stable model
category remains stable. We will see that if C is a stable model category and K is
a stable class of maps, then RKC (provided it exists) is left proper whenever C is.
Furthermore, if C is cellular and right proper, we can specify a very convenient set of
generating cofibrations and acyclic cofibrations for RKC.

Right Bousfield localisation is the dual notion to left Bousfield localisation, as
we have mentioned above. We defined K-coequivalences and K-colocal objects in
Section 2. Note that our definitions imply that any object of K is K-colocal, but the
converse is not necessarily true. Also, any weak equivalence of C is a K-coequivalence.

In well-behaved cases, it is possible to construct a right localisation of C with
respect to K . We state the general result [10, Theorem 5.1.1] below.
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THEOREM 5.1 (Hirschhorn). Let C be a right proper cellular model category and K
a set of objects in C. Then there exists a model structure RKC on the underlying category C

such that
� the weak equivalences in RKC are the K-coequivalences
� the fibrations in RKC are the fibrations of C.

One has to distinguish between K-cofibrant, cofibrant in C and K-colocal. Note
that an object is K-cofibrant if and only if it is K-colocal and cofibrant in C. The
cofibrant replacement functor QK of RKC provides a colocalisation for an object X ,
that is, a K-coequivalence

QK (X) −→ X

with QK (X) a K-colocal object of C.

EXAMPLE 5.2. Let us again return to the example where C = Ch(R) and A is
a perfect R-module. In this special case, the cofibrant replacement QA provides the
A-cellular approximation

CellA(M) −→ M.

This means that CellA(M) is ‘built’ from A using exact triangles and coproducts (see
Dwyer and Greenless [6, Section 4]). In this setting, cellular approximation satisfies

CellA(M) ∼= CellA(R) ⊗L
R M,

giving rise to the cofibrant replacement map

CellA(R) ⊗L
R M

∼−→ M.

Analogous to the definition of a smashing left localisation, we can call this right
localisation right smashing: a right localisation of a monoidal model category C with
unit S is right smashing if

QK S ⊗L X −→ X

is a K-cofibrant approximation for all X .

Dually to the local case, we see that the class of K-coequivalences is closed under �.
Also, the class of K-colocal objects is closed under �.

DEFINITION 5.3. Let K be a class of objects in C. We say that K is stable if the class
of K-colocal objects is also closed under �.

We also have the dual result to Lemma 4.4: if C is a stable model category, then a
class of objects K is stable if and only if the collection of K-coequivalences objects is
closed under �. In particular, if K is closed under �, then it is stable.

REMARK 5.4. As with Remark 4.5, we see that if K is a stable set of objects, then a
map f : X → Y is a K-coequivalence if and only if

[k, f ]C∗ : [k, X ]C∗ −→ [k, Y ]C∗
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is an isomorphism of graded abelian groups for all k ∈ K . Similarly, A is K-colocal if
and only if for all K-coequivalences f : X → Y , the map

[A, f ]C∗ : [A, X ]C∗ −→ [A, Y ]C∗

is an isomorphism of graded abelian groups.

EXAMPLE 5.5. The case of A-torsion modules for a perfect R-module A provides
an example of a class of stable colocal objects.

PROPOSITION 5.6. Let C be a stable model category and K a stable class of objects.
Assume that RKC exists. Then, RKC is also stable. �

We omit the proof since it is very similar to the proof of Proposition 4.6.
We can always make a set of objects stable, but this usually changes the resulting

model structure and homotopy category drastically.

LEMMA 5.7. Let K be a class of cofibrant objects in a stable model category C. Define
�∞K to be the collection of objects Q�nX for X ∈ K and n � 0. Then, provided it exists,
L�∞KC is a stable model category. Furthermore, K is stable if and only if L�∞KC is equal
to LKC. �

We know that the right localisation of a right proper model category is again right
proper by Hirschhorn [10, Theorem 5.1.5]. If K is stable, then we also see that RKC is
left proper whenever C is.

PROPOSITION 5.8. Let C be a stable left proper model category. Let K be a stable
class of objects. If RKC exists, then it is left proper.

Proof. Consider a pushout

A

f
��

p �� C

g

��
B q

�� P

where p is a K-cofibration and f is a K-coequivalence. We see immediately that q is a
K-cofibration. We would like to show that g is a K-coequivalence.

Since C is left proper, the cofibre of p (the pushout of p along A → ∗) is also the ho-
motopy cofibre Cp of p. Similarly, the cofibre of q agrees with the homotopy cofibre Cq
of q. Since we have a pushout, the two cofibres are isomorphic; hence, the map c below
is a weak equivalence in RKC. By Proposition 5.6, RKC is stable, so the following is a
morphism of exact triangles:

A ��

f∼
��

C ��

g

��

Cp ��

c∼
��

�A

�f∼
��

B �� P �� Cq �� �B.

By the five lemma for triangulated categories g is a K-coequivalence. �
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We know that RKC has the same fibrations (and hence acyclic cofibrations) as C but
fewer cofibrations. Generally, it is very hard to specify a set of generating cofibrations
for RKC. However, if C and K are stable, we obtain a convenient description.

Following the previous section, a set of horns on K is defined as

�K = {X ⊗ ∂�[n]+ −→ X ⊗ �[n]+ | n � 0, X ∈ K}.

Remember that the operation ⊗ is defined via framings in C as in Section 3. We have
assumed that the set K consists of cofibrant objects, so �K consists of cofibrations of C.

THEOREM 5.9. Let C be a stable, right proper, cellular model category with a set of
generating cofibrations I and generating acyclic cofibrations J. Let K be a stable set of
cofibrant objects. Then, RKC is cellular with generating cofibrations J ∪ �K and acyclic
cofibrations J.

Proof. We know that the model structure exists, is stable and is right proper. We
prove that RKC is a cellular model category, via Hirschhorn [10, Theorem 12.1.9].
The various smallness and compactness arguments follow from the corresponding
statements for C and the fact that K consists of cofibrant objects.

All that remains is to show that a map f is a trivial K-fibration if and only if it has
the right lifting property with respect to J ∪ �K . By [10, Proposition 5.2.5] the maps
of J ∪ �K are cofibrations of RKC. Hence, if f is a fibration and K-coequivalence,
then f has the right lifting property with respect to J ∪ �K . Now assume that f has
the right lifting property with respect to J ∪ �K . Since f has the right lifting property
with respect to J, it is a fibration in C and hence it is a fibration in RKC. Now we want
to show that f is a K-coequivalence.

By [10, Proposition 5.2.4], a map g : A −→ B with B fibrant has the right lifting
property with respect to J ∪ �K if and only if g is a fibration and a K-coequivalence.
But this is not true for general B and we cannot simply assume B to be fibrant.

However, we are working in a stable setting. Since RKC is stable, f being a K-
coequivalence is equivalent to asking for its fibre (which in our setting is also its
homotopy fibre) to be K-coacyclic. The fibre F is the pullback of the diagram

∗ −→ B
f←− A.

As f has the right lifting property with respect to J ∪ �K and F is a pullback, F −→ ∗
also has this right lifting property. The terminal object ∗ is fibrant, so by [10, Proposition
5.2.4] F is K-coacyclic, which is what we needed to prove. �

REMARK 5.10. Just as with Remark 4.12 we can replace the assumption that C is
cellular with the assumption that C is cofibrantly generated and the domains of J ∪ �K
are small with respect to the class of transfinite compositions of pushouts of J ∪ �K .
Thus, the theorem also provides a refinement of the general existence theorem of right
localisations for the stable case.

The theorem is again an improvement on the general setting where C has not been
assumed to be stable. Without stability, the results of Hirschhorn [10] only prove the
existence of some set of generating cofibrations. Indeed, the set J ∪ �K is not always a
generating set of cofibrations for LSC, as shown by [10, Example 5.2.7], which we will
spell out now.
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EXAMPLE 5.11. Consider the model category of pointed simplicial sets sSet∗. Let A
be the quotient of �[1] obtained by identifying the the vertices of �[1]. The geometric
realisation of this simplicial set is homeomorphic to the circle. We consider the right
localisation of sSet∗ with respect to K = {A}, having one 0-simplex and one 1-simplex.

Let Y be ∂�[2], whose geometric realisation is also homeomorphic to the circle.
Let X be the simplicial set built from six 1-simplices with vertices identified so that the
geometric realisation of X is a circle. There is a fibration p : X → Y , whose geometric
realisation is the double covering of the circle.

Now let F(A, X) denote the simplicial set of maps from A to X . We observe that
F(A, X) has only one simplex in each degree. The reason for this is the fact that the
only pointed map from A to X is the constant map to the basepoint. By induction, this
also holds for maps from A ∧ �[n]+ to X . The same is true for F(A, Y ), so

F(A, p) : F(A, X) −→ F(A, Y )

is an isomorphism.
The map p is a fibration, so it has the right lifting property with respect to J. The

above argument shows that p also has the right lifting property with respect to �(A);
hence, it has the right lifting property with respect to J ∪ �(A).

But p is not a K-coequivalence as we shall show now. Consider the map below,
which is induced by p :

sing hom(|A|, |p|) : sing hom(|A|, |X |) −→ sing hom(|A|, |Y |),
where hom(|A|, |X |) denotes the space of maps between the topological spaces |A| and
|X | and sing the singular complex functor. However, since |p| is a double cover of the
circle, the map

π0(sing hom(|A|, |p|)) : π0(sing hom(|A|, |X |)) −→ π0 sing(hom(|A|, |Y |))
is multiplication by 2 on the integers. Thus, sing hom(|A|, |p|) is not a weak equivalence.
Now we note that for any simplicial sets P and Q, Map(P, Q) is naturally weakly
equivalent to sing hom(|P|, |Q|). Thus, Map(A, p) is not a weak equivalence as claimed.

6. Monoidal left localisations. Let C be a cellular and left proper model category
and let S be a set of maps in C. Then we can ask the following: if C is monoidal, when
is LSC also monoidal? When C is stable, we can use our preceding results to examine
monoidality in a convenient way.

For this we need to know that LSC satisfies the pushout product axiom. Recall
that the pushout product of two maps f : A → B and g : C → D is defined as

f �g : A ⊗ D
∐
A⊗C

B ⊗ C −→ B ⊗ D.

A model category with monoidal product and unit (C,⊗, �) is a monoidal model
category if the pushout product of two cofibrations is again a cofibration which is
trivial if either f or g is. Furthermore, the unit � of C has to satisfy a cofibrancy
condition (see Hovey [11, Definition 4.2.6]).

Thus, the usual method to examine monoidality of a model category is to examine
its sets of generating cofibrations and generating acyclic cofibrations. By Theorem 4.11
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we know that if C is stable and proper and that S is a stable set of cofibrations between
cofibrant objects, then the generating acyclic cofibrations of LSC have the form J ∪ �S.
Since C is assumed to be monoidal, we know that J�I consists of weak equivalences
in C. Thus, if �S�I is a set of S-equivalences, then LSC is monoidal. Conversely, if
LSC is monoidal, then �S�I consists of S-equivalences.

Now we apply Hovey [11, Theorem 5.6.5], which essentially states that framings
and monoidal products interact well, to see that the image of the set �S�LI in Ho(C) is
isomorphic to the image of the set �(S�LI) in Ho(C). If we assume that the domains of I
are cofibrant, then the derived pushout product S�LI is equal to the actual
pushout product S�I . Similarly, �S�LI = �S�I . Thus, �S�I consists of
S-equivalences if and only if �(S�I) consists of S-equivalences. Furthermore, S�I
consists of S-equivalences if and only if �(S�I) consists of S-equivalences. Hence, we
have the following result and definition.

LEMMA 6.1. Let C be a proper, cellular and monoidal stable model category. Let S
be a stable set of cofibrations between cofibrant objects. Assume that the domains of
the generating cofibrations I are cofibrant. Then the set S�I is contained in the class of
S-equivalences if and only if LSC is a monoidal model category. �

DEFINITION 6.2. A stable set of cofibrations S in a monoidal model category C is
said to be monoidal if S�I is contained in the class of S-equivalences.

We can use this to restate a well-known fact.

EXAMPLE 6.3. The generating set J of E∗-equivalences in MS, the model category
of EKMM �-modules, is monoidal. This follows from the fact that if f is an
E∗-equivalence and A is a cofibrant spectrum, then f ⊗ A is also an E∗-equivalence.
Hence, by Lemma 6.1, LE(MS) is a monoidal model category.

LEMMA 6.4. Let C be a proper, stable, cellular, monoidal model category. Assume
that S is a stable set of cofibrations between cofibrant objects and that the domains of the
generating cofibrations I are cofibrant. Then S�I is a monoidal stable set of maps. Hence,
LS�IC is a stable monoidal model category in which the maps S are weak equivalences.

Proof. Take any s ∈ S and any cofibration a. Then the map a is a retract of pushouts
of transfinite compositions of maps in I . Hence, s�a a retract of pushouts of transfinite
compositions of maps in the set S�I . Thus, s�a is an S�I-equivalence.

We need to check that S�I is still stable, so consider some s�i. Let �−1 be some
cofibrant desuspension of the unit � of C. We know that (s�i) ⊗ �−1 is isomorphic to
s�(i ⊗ �−1), which, by the above, is an S�I-equivalence. It follows immediately that
the S�I-equivalences are closed under desuspension, so our set is stable.

Now, we must check that (�(S�I))�I consists of S�I-equivalences. But every
element in (�(S�I)�I) is weakly equivalent to an element in �(S�(I�I)) by Hovey
[11, Theorem 5.6.5] and our assumption on the domains of I . We know that any map
in S�(I�I) is an S�I-equivalence and a cofibration. Furthermore, a horn on such a
map is still an S�I-equivalence.

Finally, to see that S consists of S�I-equivalences, consider the cofibration η : ∗ →
Q�. For any s ∈ S, s�η is isomorphic to s ⊗ Q�, which is weakly equivalent to s since
the domains and codomains of S are cofibrant. �

We may also conclude that if S is monoidal, then LS�IC is equal to LSC. Usually,
however, localising at S�I and S gives different model categories. While the above
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result makes more maps into weak equivalences than we might want, it actually does
so in quite a minimal way, as the result below shows. We can think of this as saying
that LS�IC is the monoidal left Bousfield localisation of C at the stable set S.

THEOREM 6.5. Let

F : C −−→←− D : G

be a lax monoidal Quillen pair between monoidal model categories C and D. Assume that C

is proper, stable and cellular and that the domains of its generating cofibrations I are
cofibrant. Let S be a stable set of cofibrations between cofibrant objects in C. If F(s) is a
weak equivalence in D for all s ∈ S, then this adjoint pair factors uniquely over the change
of model structures adjunction between C and LS�IC. That is, we have a commutative
diagram of left adjoints of weak monoidal Quillen pairs

C
F ��

Id 

��
��

��
��

� D

LS�IC

F̄

����������

Proof. We must show that the image under F of every element S�I is an
isomorphism in Ho(D). We must show that for any s ∈ S, F(s�i) is a weak equivalence
in D. We have a weak monoidal Quillen pair and the domain and codomain of s�i are
cofibrant. Thus, we see that F(s�i) is weakly equivalent to Fs�Fi. Since D is monoidal,
this is an acyclic cofibration of D.

Hence, we have the desired factorisation of Quillen functors via the universal
property of left Bousfield localisations (see Hirschhorn [10, Definition 3.1.1]).
Furthermore, the thus obtained F̄ and its right adjoint Ḡ form a lax monoidal Quillen
pair between the monoidal model categories LS�IC and D. �

If we restrict ourselves to spectra, then we can use the above to obtain a very
concise description of the generating sets of a monoidal stable localisation. For the
result below we can use EKMM �-modules, symmetric spectra, orthogonal spectra or
their equivariant versions for a compact Lie group.

PROPOSITION 6.6. Let S be a monoidal model category of spectra from the list above.
Let S be some set of cofibrations between cofibrant objects in C. Then LS�IS exists, is
cellular, proper, stable and monoidal. It has generating sets given by I and J ∪ (S�I).

Proof. The model category of spectra S comes equipped with a collection of
evaluation functors

UV : C −→ sSet∗

for each V of the indexing category (such as the non-negative integers or finite
dimensional real inner product spaces). Let FV be the left adjoint to UV .

We see that the set of generating cofibrations I of S can be chosen to consist of
maps of the form FV l, where l is some generating cofibration for simplicial sets. It
follows immediately that they have cofibrant domains and S�I is stable. Hence, by
Lemma 6.4, we know that LS�IS is monoidal. By the results of Section 4 we know that
it is also stable, proper and cellular and cofibrantly generated by I and J ∪ �(S�I).
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We now need to show that a map f has the right lifting property with respect to
�(S�I) if and only if it has the right lifting property with respect to S�I .

Because S is a simplicial model category, we can assume that an element in �(S�I)
is of the form (s�FV l)�k, where l and k are generating cofibrations for simplicial sets
and s ∈ S. But this is isomorphic to S�FV (l�k). It follows that the sets �(S�I) and
S�(I�I) agree.

We have I ⊆ I�I because ι�FV l = FV l, where

ι = (F0∂�[0]+ −→ F0�[0]+).

Thus,

S�I ⊆ S�(I�I) = �(S�I)

and hence if we define A–cof to be the class of maps with the left lifting property with
respect to all maps with the right lifting property with respect to A, then we see that

(S�I)–cof ⊆ �(S�I)–cof.

For the other inclusion, we know that model category S is monoidal, so I�I ⊆
I–cof. Thus,

�(S�I) = S�(I�I) ⊆ S�(I–cof) ⊆ (S�I)–cof.

�
Recall from Section 6 that in the case of a smashing localisation we have LES = L	S

for

	 = {�nλ : �n� −→ �nLE� | n ∈ �}.

Together with Corollary 4.15, we achieve the following.

COROLLARY 6.7. Let S be a monoidal model category of spectra with generating
cofibrations I and acyclic cofibrations J. Let LE be a smashing Bousfield localisation.
Then LES is proper, cellular, stable and monoidal with generating cofibrations I and
generating acyclic cofibrations J ∪ (	�I). �

7. Monoidal right localisations. Let C be a cellular and right proper model
category and let K be a set of objects in C. Then we can ask the following: if C is
monoidal, when is RKC also monoidal? We can use our preceding work on stability
and generating cofibrations to give a compact and useful answer. We will then apply
this to some examples.

We start with an observation. Recall that an object in C is K-cofibrant if and only
if it is K-colocal and cofibrant in C. The elements of K are K-cofibrant. Thus, if RKC is
monoidal, then any element of the form k ⊗ k′ for k, k′ ∈ K will also be K-cofibrant.
We show that this necessary condition is almost sufficient for monoidality of RKC.

DEFINITION 7.1. Let K be a set of cofibrant objects in a right proper, cellular,
monoidal model category C. We say that K is monoidal if the following two conditions
hold:
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� Any object of the form k ⊗ k′, for k, k′ ∈ K , is K-colocal.
� For QK � a K-cofibrant replacement of the unit � of C and any k ∈ K , the map

QK � ⊗ k → k is a K-coequivalence.

Note that if the first condition holds, then the domain and codomain of QK � ⊗
k → k are both K-cofibrant. Hence, this map is a K-coequivalence if and only if it is
a weak equivalence of C. Obviously, if the monoidal unit is an element of K , then the
second condition holds automatically.

Recall that a model category satisfies the monoid axiom if all transfinite
compositions of pushouts of maps of the from j ⊗ Z, for j an acyclic cofibration and Z
any object of C, are weak equivalences. This is a very useful tool for considering the
category of modules over a monoid R in C: if C is cofibrantly generated, monoidal and
satisfies the monoid axiom (and some smallness assumptions hold), then the category
of R-modules in C is also a cofibrantly generated model category by Schwede and
Shipley [15, Theorem 4.1].

THEOREM 7.2. Let C be a stable, proper, cellular and monoidal model category. Let K
be a stable collection of cofibrant objects. Then RKC is monoidal if and only if K is
monoidal.

Furthermore, if K is monoidal and C also satisfies the monoid axiom, then so does
RKC.

Proof. If RKC is monoidal, then the pushout product axiom implies that K is
monoidal. For the converse, assume that K is monoidal. To show that RKC is monoidal,
we must verify the two conditions of Hovey [11, Definition 4.2.6]. The second of these,
namely that

QK � ⊗ k → k

is a K-coequivalence, holds by assumption.

Remember from Theorem 5.9 that RKC has generating cofibrations �K ∪ J and
acyclic cofibrations J. Hence, we must check that (�K ∪ J)�(�K ∪ J) consists of
K-cofibrations. This amounts to proving that the following three collections �K��K ,
�K�J and J�J consist of K-cofibrations. For the first, consider

i = (∂�[n]+ ⊗ k → �[n]+ ⊗ k)�(∂�[m]+ ⊗ k′ → �[m]+ ⊗ k′) ∈ �K��K,

which is a cofibration in C since C was assumed to be monoidal. We can rewrite i, up to
weak equivalence, as the following map which is a cofibration of C between K-colocal
objects:

((∂�[n]+ → �[n]+)�(∂�[m]+ → �[m]+)) ⊗ (k ⊗ k′).

Thus, the domain and codomain of i are K-colocal, so by Hirschhorn [10, Proposition
3.3.16] i is also K-cofibration.

Let us now look at the second collection, �K�J. A map in this set is contained
in the class of maps I�J–cof, which consists of acyclic cofibrations of C. Any such
map is a K-cofibration. The same argument holds for the third collection, J�J. Thus,
the pushout product of two K-cofibrations is again a K-cofibration which is acyclic if
either of the two maps is.
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The monoid axiom holds in RKC if it holds in C, since the set of generating acyclic
cofibrations has not changed. �

We can apply this to Dwyer and Greenlees’ example of right Bousfield localisation,
where C = Ch(R) and K = {A} a perfect R-module (see Section 2).

COROLLARY 7.3. The model category R{A}(Ch(R)) of A-torsion R-modules is a
monoidal model category.

Proof. We consider Ch(R) with the projective model structure. Since A is a perfect
chain complex of R-modules, it is of finite length and is degreewise projective. Hence,
A is cofibrant in Ch(R). We are now going to check that K = {A} satisfies the two
conditions of Definition 7.1.

We remember from Example 5.2 that in this case the cofibrant replacement is the
same as cellular approximation and that cellular approximation is given by the weak
equivalence

CellA(R) ⊗L
R M −→ CellA(M).

For the unit condition, we must prove that

CellA(R) ⊗L
R CellA(M) −→ CellA(M)

is an {A}-coequivalence for any M. But this map is simply cellular approximation of a
cellular object; hence, it is a weak equivalence.

We now have to check that A ⊗ A is {A}-colocal. For this, we have to show that

MapCh(R)(A ⊗ A, N) � ∗ for any N with MapCh(R)(A, N) � ∗.

But in this case, MapCh(R)(X, Y ) � ∗ is equivalent to R HomR(X, Y ) = 0 as

πk(MapCh(R)(X, Y )) ∼= [S0, MapCh(R)(�
−kX, Y )] ∼= R Hom−k

R (X, Y ).

We also have by adjunction

R HomR(A ⊗ A, N) ∼= R HomR(A, R HomR(A, N)),

so our claim follows. �

Just as we may make any set of objects K stable, we may also make any stable set
into a monoidal stable set. Let K̄ denote the collection of objects k1 ⊗ k2 · · · ⊗ kn for
all n � 0, with the zero-fold product being the cofibrant replacement of the unit. This
set is clearly monoidal so RK̄C is a monoidal model category. However, RK̄C has fewer
weak equivalences, so in general a K-coequivalence is not a K̄-coequivalence. So this
notion of replacing K by K̄ is perhaps less useful than the version for left localisations.

Dually to Theorem 6.5 we can show that RK̄C is the best we can achieve. The
following result essentially says that RK̄ is the ‘closest’ right localisation to RKC for an
arbitrary stable K that is also monoidal.

PROPOSITION 7.4. Let C be a right proper, stable, cellular monoidal model category.
Then the identity adjunction gives Quillen pairs as below where the right hand adjunction
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is a monoidal Quillen pair.

RKC −−→←− RK̄C −−→←− C

Proof. Every object of K is cofibrant in C. Since C is monoidal, every object of
the form k1 ⊗ k2 ⊗ · · · ⊗ kn for ki ∈ K and n � 0 is also cofibrant in C. It follows
that RKC −−→←− C factors over RK̄C as required, giving a monoidal Quillen pair
RK̄C −−→←− C. �

8. Replacing stable model categories by spectral ones. Model categories are
fundamentally linked to simplicial sets via framings. But framings are only well
behaved on the homotopy category. For many tasks, it is preferable to have a simplicial
model category. Hence the question: when is a model category Quillen equivalent to a
simplicial one? The paper [4] by Dugger provides an answer to this question.

Stable model categories are fundamentally linked to spectra via stable framings (see
Lenhardt [13]). Stable framings are even more poorly behaved on the model category
level than framings. Hence, we would like an answer to the question: when is a model
category Quillen equivalent to a spectral one?

DEFINITION 8.1. A spectral model category is a model category that is enriched,
tensored and cotensored over symmetric spectra. Furthermore, it satisfies the analogue
of Quillen’s SM7 with simplicial sets replaced by symmetric spectra �S. In the language
of Hovey [11, Definition 4.2.18], it is a �S-model category.

We can now use our work on left localisations to weaken the known assumptions
that a model category has to satisfy in order to be Quillen equivalent to a spectral one.
Because of Proposition 4.7 we can now combine results from Dugger and Schwede-
Shipley to acquire the following result.

THEOREM 8.2. If C is a model category that is stable, proper and cellular, then it is
Quillen equivalent to a spectral model category that is also stable, proper and cellular.

Proof. Because C is cellular and left proper, Dugger [4, Theorem 1.2] states that C is
Quillen equivalent to a simplicial model category. Specifically, C is Quillen equivalent
to a non-standard model structure on the category of simplicial objects in C, which we
write as sChc.

In more detail, one starts by equipping the category of simplicial objects in C

with the Reedy model structure. A Reedy weak equivalence is a map of simplicial
objects f : A → B such that on each level fn is a weak equivalence of C. Every Reedy
cofibration is a levelwise cofibration and every Reedy fibration is a levelwise fibration
(see Hirschhorn [10, 15.3.11]). It follows immediately that sC is still stable. Since C is
cellular and proper, so is sC by [10, Theorems 15.7.6 and 15.3.4].

The model category sChc is defined as a left Bousfield localisation of sC at a set S
of maps defined just above Theorem 5.2 in [4]. Since sChc is Quillen equivalent to C,
it must also be stable. Hence, by Proposition 4.7, sChc is right proper. Thus, we now
know that sChc is a proper, cellular, stable model category.

We now use the results of Schwede and Shipley [16] to replace this by a Quillen
equivalent spectral model category. We rename sChc as D and denote the category of
symmetric spectra in D, by �S(D, S1). We can equip this category with the levelwise
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(or projective) model structure, where fibrations and weak equivalences are defined
levelwise. This model structure is cellular, proper and stable.

We then left localise the model structure at a set of cofibrations to obtain the
‘stable’ model structure on �S(D, S1). By [16, Theorem 3.8.2], this model structure is
spectral and there is a Quillen equivalence between D and �S(D, S1) equipped with the
stable model structure. Our previous results also show that this stable model structure
on �S(D, S1) is proper. �

Results along this line have been proved by Dugger in [5]. In that paper, it is
shown that a stable, presentable model category is Quillen equivalent to a spectral
model category. We replace the notion of presentable (which essentially means Quillen
equivalent to a combinatorial model category) with the more familiar notion of cellular.
While we have to add proper to our list of assumptions, our method of replacing a
model category by a spectral one involves no choices and requires much less technical
work to understand the resulting category and model structure.

9. Right localisation and Morita theory. In [6, Theorem 2.1], Dwyer and
Greenlees show that the category of A-torsion R-modules (with A a perfect R-module)
is equivalent to the derived category of the ring EndR(A). In this section, we prove a
more general version of this, namely that for a set of well-behaved objects K , the model
category RKC is Quillen equivalent to the category of modules over the endomorphism
ring spectrum with several objects mod– End(K).

We say that an object X in a stable model category C is homotopically compact if
for any family of objects {Ya}a∈A the canonical map below is an isomorphism:

⊕
a∈A

[X, Ya]C → [X,
∐
a∈A

Ya]C

Homotopically compact objects have obvious technical advantages over general ones,
so it is natural to ask what happens if one right localises at a set of homotopically
compact objects. We show that, with some minor assumptions, such right localisations
are well understood, and we identify their homotopy categories.

Let C be a stable, cellular, right proper, spectral model category and let K be a
stable set of homotopically compact cofibrant–fibrant objects of C. The assumption
that C be spectral is less demanding than it appears, by Theorem 8.2.

Define End(K) to be the category enriched over symmetric spectra with object set
given by K and morphism spectra given by hom(k, k′) defined using the enrichment of C

in symmetric spectra. Consider the category of contravariant enriched functors from
End(K) to symmetric spectra, with morphisms the enriched natural transformations.
We call this category mod– End(K). It has a model structure with weak equivalences
and fibrations defined termwise (see Schwede and Shipley [16, Theorem A.1.1]).

There is a Quillen pair

mod– End(K) −−→←− C

whose right adjoint takes X ∈ C to hom(−, X) in mod- End(K). We call this right
adjoint hom(K,−) and we write − ∧End(K) K for its left adjoint.

We are almost ready to start relating mod– End(K) and RKC, but we first need a
technical result.
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LEMMA 9.1. Let C a stable, cellular right proper spectral model category and let K
be a stable set of cofibrant objects in C. Then RKC is a spectral model category.

Proof. Since C is spectral, all we must show is the spectral analogue of (SM7),
namely that if a is a cofibration of RKC and i is a cofibration of �S, then a�i is a
cofibration of RKC. It suffices to prove this for a ∈ �K and i a generating cofibration
of �S. We know that a�i is a cofibration of C. We must show that it is in fact a
K-cofibration.

Consider a generating cofibration i. It is of the form FnA → FnB for A and B
simplicial sets and Fn the left adjoint to evaluation at level n. If X ∈ C is K-colocal,
then X ⊗ FnA is weakly equivalent to (�−nX) ⊗ A. Since K is stable, �−nX is K-colocal
and hence so is (�−nX) ⊗ A. It follows that the domain and codomain of a�i are both
K-colocal. By Hirschhorn [10, Proposition 3.3.16] a cofibration between K-colocal
objects is a K-cofibration. Hence, a�i is a K-cofibration, which is what we wanted to
prove. �

We need some new terms in order to state the main result of this section.

DEFINITION 9.2. Let C be a stable model category. A full triangulated subcategory
of Ho(C) with shift and triangles induced from Ho(C) is called localising if it is closed
under coproducts in Ho(C). A set P of objects of Ho(C) is called a set of generators if
the only localising subcategory which contains the objects of P is Ho(C) itself.

THEOREM 9.3. Let C a stable, cellular right proper spectral model category and let K
be a stable set of cofibrant–fibrant objects of C. Then the Quillen pair

− ∧End(K) K : mod– End (K) −−→←− C : hom(K,−)

factors over RKC. Hence, one has a diagram of Quillen pairs as below:

mod– End (K)
−∧End(K)K ��

RKC
hom(K,−)

�� Id ��
C

Id
��

If the set K consists of homotopically compact objects, then the left-hand Quillen pair
in this diagram is a Quillen equivalence. Furthermore, the homotopy category of RKC is
triangulated equivalent to the localising subcategory of Ho(C) generated by K.

Proof. A generating cofibration of mod– End K takes form hom(−, k) ∧ i, where i
is a generating cofibration in symmetric spectra, ∧ is the smash product in symmetric
spectra and hom(−, k) ∈ mod- End K . The functor − ∧End K K sends this to k ∧ i,
which is a cofibration of the spectral model category RKC. Hence, we have a
factorisation of the Quillen functors as above.

It is easy to check that if k is compact in C, then it is also compact in RKC. The
set of cofibres of �K ∪ J (the generating cofibrations for RKC) is a generating set for
the homotopy category of RKC. Since the cofibres of J are contractible, we may ignore
these. The cofibres of the sets �K are simply suspensions of K up to weak equivalence;
hence, it follows that K is a generating set for the homotopy category of RKC. We
now apply Schwede and Shipley [16, Theorem 3.9.3] to see that we have a Quillen
equivalence and that the statement on homotopy categories holds. �

Thus, we have shown that in good circumstances a right localisation is Quillen
equivalent to the simpler notion of modules over an endomorphism ringoid. In this
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setting, we can identify Ho RKC as the smallest localising subcategory of C

containing K . Hence, it is perfectly correct to think of RKC as modelling the homotopy
theory of objects of C built from K via coproducts, shifts and triangles. Thus, right
localisation in these circumstances simply alters which objects we think of as generators
for the homotopy category. We also obtain an explicit description of K-colocalisation.
If X is fibrant in C, then K-colocalisation is given by

hom(K, X) ∧L
End K K −→ X.

This leads to questions for future research: if the set K is not homotopically
compact, how well does RKC model mod– End(K)? Similarly, if C is spectral but not
cellular or right proper, and K is a stable set of homotopically compact objects, how
well does mod– End(K) model RKC, which may not exist?

EXAMPLE 9.4. One half of [6, Theorem 2.1] by Dwyer and Greenlees is the statement
that the category of A-torsion R-modules is equivalent to the derived category of
modules over EndR(A), for A a perfect complex. We are now able to give a model
category level version of that result: the right localisation of Ch(R) at the perfect
complex A is Quillen equivalent to mod– EndR(A).

We now use a duality argument to show that in some special cases, RKC is Quillen
equivalent to a left localisation of C at a set of maps S. In particular, this applies to
the case of A-torsion R-modules. For the rest of this section, assume that C is a stable
model category whose homotopy category Ho(C) is monoidal with product ∧ and
unit �. Furthermore, we require � to be a homotopically compact generator. We also
assume that Ho(C) is closed in the sense that it possesses function objects F(−,−). For
example, any smashing localisation of EKMM �-modules satisfies these assumptions.

Recall that X ∈ Ho(C) is said to be strongly dualisable if the natural map

F(X, �) ∧ Y −→ F(X, Y )

is an isomorphism for all Y (see [12, Definition 1.1.2] by Hovey, Palmieri and
Strickland). In our setting, the class of homotopically compact objects is equal to
the class of strongly dualisable objects by [12, Theorem 2.1.3].

Let K be a set of objects in C. By DX := F(X, �) we denote the dual of an object X .
Furthermore, we define

DK :=
∐
k∈K

Dk.

DEFINITION 9.5. We say that a morphism f : X −→ Y in C is a DK∗-equivalence if

DK ∧ f : DK ∧ X −→ DK ∧ Y

is an isomorphism in Ho(C).
We let LDK∗C denote the left Bousfield localisation of C at the class of DK∗-

equivalences, provided it exists.

It is now easy to prove the proposition below, which we combine with Theorem
9.3 to obtain the subsequent corollary.
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PROPOSITION 9.6. Let C be a monoidal, stable, cellular, proper model category with
unit � a homotopically compact generator. Let K be a set of homotopically compact
cofibrant objects in C. Then the class of K-coequivalences is precisely the class of
DK∗-equivalences. Furthermore, if LDK∗C exists, then the identity functors provide a
Quillen equivalence

RKC −−→←− LDK∗C.

�
COROLLARY 9.7. Let C be a monoidal, stable, cellular, proper, spectral model category

with unit � a homotopically compact generator. Assume that K is a set of homotopically
compact cofibrant–fibrant objects in C such that LDK∗C exists. Then the model categories
RKC, LDK∗C and mod– End(K) are Quillen equivalent.

This can be applied to the special case of A-torsion and A-complete R-modules for
a perfect R-module A, obtaining Theorem 2.1 of Dwyer and Greenlees [6]. In this case,
we consider A-torsion modules RA Ch(R) and A-complete R-modules LDA∗ Ch(R).
Hence, we recover Dwyer and Greenlees’ result that A-torsion and A-complete
R-modules are Quillen equivalent.

We can further specify to the case of R = � and A = (�
·p−→ �) ∼= �/p. In this case,

we obtain that DA ∼= A[1]. Since DA∗-equivalences form a stable set, we recover Dwyer
and Greenlees’ ‘paradoxical’ result that left and right localisations at �/p agree.

10. A correspondence between left and right localisations. We now turn to
comparing left and right localisations. We show that given any left localisation, there
is a corresponding right localisation and vice versa. These two localisations can be
thought as ‘opposite’ to each other the sense of Proposition 10.3.

LEMMA 10.1. Let C be a cellular, proper, stable model category and S be a stable set
of maps in C. Now let T be the set of maps ∗ → Cs, where s ∈ S and Cs is the cofibre of s.
Then, T is a stable set of maps and LSC = LTC.

Proof. Consider the exact triangle in Ho(C) :

X
s−→ Y −→ �Cs −→ �X

for s ∈ S. Applying the graded homotopy classes of maps functor [−, Z]C∗ gives a long
exact sequence. Remark 4.5 now proves the claim. �

One advantage of replacing S by the set T is that we can see that the generating
cofibrations for LSC can be taken to be the set �T ∪ J, where

�T = {Cs ⊗ ∂�[n]+ −→ Cs ⊗ �[n]+ | n � 0, s ∈ S}.
We also see that S is monoidal if and only if T is monoidal, which might be easier to
check in practice. Thus, localising at S is the same as making the set of objects of the
form Cs acyclic. This is why left localisations are sometimes known as acyclicisations.

Another advantage is that this description of left localisation illuminates the
relation between left and right localisations. Let C be a cellular, proper, stable model
category with generating sets I and J and let K be a stable set of cofibrant objects
of C. Then we can see that the difference between left and right localising is whether
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to take �K ∪ J as the set of generating acyclic cofibrations or the set of generating
cofibrations. This is the model category version of choosing to declare a set of objects
to be trivial, or declaring a set of objects to be generators.

DEFINITION 10.2. For a set of maps S, define a set of objects KS = {Cs | s ∈ S}.
Conversely, given a set of objects K define a set of maps SK := {∗ → k | k ∈ K}.

Clearly, if S is stable, then so is KS. Similarly, if K is stable, so is SK . We immediately
see that right localising at the set KSK is the same as right localising at the set K .
Similarly, left localising at SKS gives the same model category as left localising at S.

PROPOSITION 10.3. Choose some stable set of cofibrations S and let K = KS or choose
a set of cofibrant objects K and let S = SK . Assume that C is stable, proper and cellular.
Then there is a diagram of Quillen pairs

RKC −−→←− C −−→←− LSC

such that the composite adjunction Ho(RKC) −−→←− Ho(LSC) is trivial in the sense that
both functors send every object to ∗.

Proof. Every object in Ho(RKC) is isomorphic to a K-colocal object while
every object in Ho(LSC) is isomorphic to an S-local one. By construction, being
KS-colocal is equivalent to being S-acyclic and being K-colocal is equivalent to being
SK -acyclic. �

The above adjunctions give a decomposition of the homotopy category of C into
two pieces which are orthogonal in the sense that if A is K-colocal and Z is S-local,
then [A, Z]C = 0. More clearly, the K-colocal objects are precisely the S-acyclic objects.
Similarly, the K-acyclic objects are exactly the S-local objects.

Let us now turn to the subject of chromatic homotopy theory. A left localisation
at a spectrum E is said to be finite if the class of E-acyclic objects is generated, in the
sense of triangulated categories, by a set of finite spectra.

This is especially interesting in the case of the Johnson–Wilson theories E(n). The
Johnson–Wilson theories are Landweber exact modules over BP with

E(n)∗ ∼= �(p)[v1, ..., vn, v
−1
n ], |vi| = 2pi − 2, p prime.

Localisation with respect to E(n) is smashing and is usually denoted by Ln instead
of LE(n). These localisations are of great importance to stable homotopy theory as
they play a role in major structural results concerning the stable homotopy category
such as the nilpotency theorem, periodicity theorem, chromatic convergence theorem
and thick subcategory theorem. Furthermore, L1 equals localisation with respect to p-
local complex topological K-theory whereas L2 is related to elliptic homology theories.
One of the great open conjectures in stable homotopy theory, the telescope conjecture,
claims that localisation with respect to E(n) is finite in the above sense.

REMARK 10.4. This conjecture can be put into an even more concrete setting.
Ravenel showed in [14] that the only finite localisations of spectra are of the form LLf

n�
S,

where Lf
n� is a finite localisation of the sphere. This is also a smashing localisation.

We can restate this in the language of right localisations. By Lemma 4.14, we have

LnS = L	S for 	 = {�kλ : �k −→ Ln�k | k ∈ �}.
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By Proposition 10.3, the question of whether LnS is finite is now equivalent to the
question of whether RK	

is finite. Hence, we can now use the tools of right localisation
to study the telescope conjecture in future research.

ACKNOWLEDGEMENTS. We would like to thank Denis-Charles Cisinski and John
Greenlees for motivating conversations. We would further like to thank the referee
of this paper. The first and second authors were supported by EPSRC grants
EP/H026681/1 and EP/G051348/1, respectively.

REFERENCES

1. D. Barnes and C. Roitzheim, Local framings, New York J. Math. 17 (2011), 513–552.
2. A. K. Bousfield, The localization of spaces with respect to homology, Topology 14

(1975), 133–150.
3. A. K. Bousfield, The localization of spectra with respect to homology, Topology 18(4)

(1979), 257–281.
4. D. Dugger, Replacing model categories with simplicial ones, Trans. Amer. Math. Soc.

353(12) (2001), 5003–5027.
5. D. Dugger, Spectral enrichments of model categories, Homology Homotopy Appl. 8(1)

(2006), 1–30.
6. W. G. Dwyer and J. P. C. Greenlees, Complete modules and torsion modules, Amer. J.

Math. 124(1) (2002), 199–220.
7. A. D. Elmendorf, I. Kriz, M. A. Mandell and J. P. May, Rings, modules, and algebras

in stable homotopy theory, in Mathematical Surveys and Monographs, vol. 47 (American
Mathematical Society, Providence, RI, 1997). With an appendix by M. Cole.

8. E. D. Farjoun, Cellular spaces, null spaces and homotopy localization, in Lecture Notes
in Mathematics, vol. 1622 (Springer, Berlin, 1996).

9. P. Goerss and J. Jardine, Simplicial homotopy theory, in Progress in Mathematics,
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