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ON THE SURJECTIVITY OF THE MAP OF SPECTRA
ASSOCIATED TO A TENSOR-TRIANGULATED FUNCTOR

PAUL BALMER

ABSTRACT. We prove a few results about the map Spc(F') induced on tensor-
triangular spectra by a tensor-triangulated functor F. First, F' is conservative
if and only if Spc(F') is surjective on closed points. Second, if F' detects tensor-
nilpotence of morphisms then Spc(F) is surjective on the whole spectrum. In
fact, surjectivity of Spc(F') is equivalent to F' detecting the nilpotence of some
class of morphisms, namely those morphisms which are nilpotent on their cone.

1. INTRODUCTION

Hypotheses 1.1. Throughout the paper, F': X — £ is a tensor-triangulated functor
between essentially small tensor-triangulated categories X and £. Assume that X
is rigid, i.e. every object has a dual (Remark 2.1).

Consider the induced map on spectra
© = Spe(F): Spe(L) — Spe(XK)
in the sense of tensor-triangular geometry | , , ]. Our first result
is a characterization of conservativity of F'.
Theorem 1.2. Under Hypotheses 1.1, the following properties are equivalent:
(a) The functor F': X — L is conservative, i.e. it detects isomorphisms.
(b) The induced map @: Spc(L) — Spe(XK) is surjective on closed points, i.e. for
every closed point P in Spc(X), there exists Q in Spc(L) such that ¢(Q) = P.

We can remove the assumption that X is rigid, at the cost of replacing (a) by:

(a’) F detects ®-nilpotence of objects, i.e. F(x) =0 = 2®" =0 for some n > 1.

Our main results are dedicated to surjectivity of ¢ on the whole of Spe(X).

Theorem 1.3. Under Hypotheses 1.1, suppose that the functor F': X — L detects
®-nilpotence of morphisms, i.e. every f: x — y in X such that F(f) = 0 satisfies
f®" =0 for somen > 1. Then the induced map p: Spc(L) — Spe(K) is surjective.

This result is clearly a corollary of (b)=-(a) in the following more technical result:

Theorem 1.4. Under Hypotheses 1.1, the following properties are equivalent:
(a) The morphism ¢: Spc(L) — Spc(XK) is surjective.
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2 PAUL BALMER

(b) The functor F: X — L detects ®-nilpotence of morphisms which are already
®-nilpotent on their cone, ie. every f: x — y in K such that F(f) = 0 and
such that f@™ @ cone(f) = 0 for some m > 1 satisfies f©" = 0 for somen > 1.

At this point, the Devinatz-Hopkins-Smith [ ] Nilpotence Theorem might
come to some readers’ mind. This celebrated result asserts that a morphism between
finite objects in the topological stable homotopy category SH must be ®-nilpotent
if it vanishes on complex cobordism. Hopkins and Smith used the Nilpotence The-
orem in the subsequent work | ] to prove the Chromatic Tower Theorem. A
reformulation of the latter, in terms of Spc(SH), can be found in | , §9]. From
the Nilpotence Theorem it follows that every prime of SH€ is the kernel of some
Morava K-theory. This implication is analogous to the surjectivity of Theorem 1.3
in the special case of SH.

Let us stress however that the scope of Theorems 1.2 and 1.3 is broader than the
topological example. In fact, SH plays among general tensor-triangulated categories
the same role that Z plays among general commutative rings. Commutative algebra
is not only the study of Z, and tt-geometry is not only the study of SH. For the
reader who never heard of tensor-triangulated categories and yet had the fortitude
to read thus far, let us recall that tt-categories also appear in algebraic geometry
(e.g. derived categories of schemes), in representation theory (e.g. derived and stable
categories of finite groups), in noncommutative topology (e.g. K K-categories of
C*-algebras), in motivic theory (e.g. stable A'-homotopy and derived categories of
motives), and in equivariant analogues (e.g. equivariant stable homotopy theory).
A good introduction can be found in [ , §1.2]. Tensor-triangular geometry is
an umbrella theory for all those examples. In particular, computing Spc(X) is the
fundamental problem for every tt-category X out there; see | , Thm. 4.10].

After this motivational digression, let us return to the development of our results.
It is interesting to know whether the converse of Theorem 1.3 holds true in glorious
generality: Does surjectivity of Spc(F') alone guarantee that F detects ®-nilpotence
of morphisms? By Theorem 1.4, this problem can be reduced as follows.

Question 1.5. Under Hypotheses 1.1, if ¢: Spc(L) — Spe(XK) is surjective and if
f:x — y satisfies F(f) =0, is f necessarily ®@-nilpotent on its cone?
We do not know any counter-example. In fact, we can give a positive answer

under the assumption that F': X — £ admits a right adjoint. Since X and £ are
essentially small (typically the ‘compact’ objects of some big ambient category),

existence of such a right adjoint is rather restrictive. In the context of | ], it
would be equivalent to having ‘Grothendieck-Neeman’ duality. To give an example,
this right adjoint exists in the case of a finite separable extension, see [ ]. The

following are generalizations of some of the results in | ]

Theorem 1.6. Under Hypotheses 1.1, suppose that F': X — L admits a right
adjoint U: L — K. Then the map ¢: Spc(L) — Spce(K) is surjective if and only if
the functor F: X — L detects ®-nilpotence of morphisms.

Again, this is a special case of a sharper, slightly more technical result.

Theorem 1.7. Under Hypotheses 1.1, suppose that F': X — L admits a right
adjoint U: L — X and consider the image U(1l) € X of the ®-unit. Then the
image of the map ¢: Spc(L) — Spc(XK) is exactly the support of the object U(1):

im(Spe(F)) = supp(U(1)).-
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ON SURJECTIVITY ON TENSOR-TRIANGULAR SPECTRA 3

An example of the latter, not covered by the separable extensions of [ l,
can be obtained by ‘modding out’ coefficients in motivic categories, see [ ,
Chap. 5]. For instance, if X = DMy, (X;2Z) N DMgn (X;Z/p) = £ then we have
im(Spc(F)) = supp(Z/p). From these techniques, one can easily reduce the compu-
tation of the (yet unknown) spectrum of the integral derived category of geometric
motives DMy, (X, Z) to the case of field coefficients:

Spe(DMgm(X; Z)) = im(Spe(DMem(X;Q))) U | | im(Spe(DMgn(X:Z/p))) -
P
These considerations will be pursued elsewhere.
In the presence of a ‘big’ ambient category, our condition of detecting ®-nilpotence
could also be related to conservativity, as discussed in | , Thm. 4.19].

Let us now state a direct consequence of Theorem 1.3, that was apparently never
noticed despite its importance and simplicity. It is the case where F is faithful.

Corollary 1.8. Suppose that X C £ is a rigid tensor-triangulated subcategory.
Then every prime P € Spc(X) is the intersection of a prime Q € Spc(L) with XK.

A special sub-case of interest is that of ‘cellular’ subcategories, i.e. those X C £
generated by a collection of ‘nice’ objects of £, typically ®-invertible ones (spheres).
Such cellular subcategories X are commonly studied when the ambient £ appears
out-of-reach of known methods. For instance, Dell’Ambrogio | | used this
approach for equivariant K K-theory, and later with Tabuada | ] for non-
commutative motives. Peter | ] discusses the case of mixed Tate motives. Sim-
ilarly, Heller-Ormsby | ] consider cellular subcategories in their recent study
of tt-geometry in stable motivic homotopy theory. In all cases, Corollary 1.8 says
that whatever can be detected via these cellular subcategories X is actually rele-
vant information about the bigger and more mysterious ambient category £. In
particular, surjectivity of the comparison homomorphisms introduced in | ]
can be tested on the cellular subcategory:

Corollary 1.9. Let u € £ be a ®-invertible object and X the full thick triangulated
subcategory of L generated by {u®” | ne”z }, which is supposed rigid (*). Note that
the graded rings RS ,, and R}, ,, associated to u are the same in X and in £:

Ry, & Homg(L,u®) =Home(1,u®) ¥ Ry ,.

If the comparison map pj. ,, for X (recalled below) is surjective for the ‘cellular’

subcategory X then the comparison map p% ,, for the ambient £ is also surjective:

Spc(£) _Cor 1.8 Spc(X) > P

Pz,ul O J{p;{m ch,uI
Spec*(Ry,,,) == Spec*(Ry.,) > pi.(P) £ {f€Rs,|cone(f) ¢P}.

For an introduction to these comparison maps and their importance, the reader
is invited to consult the above references | , , , ] or | .

1 This is automatic if £ lives in a ‘big’ ambient category with internal hom, where rigid objects
are closed under triangles. See [ , Thm. A.2.5 (a)].
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2. THE PROOFS

The tensor ®: K x K — K is exact in each variable and 1 stands for the ®-unit
in K. Recall that a tt-ideal J C X is a triangulated, thick, ®-ideal subcategory, i.e.
it is non-empty, is closed under taking cones, direct summands and under tensoring
by any object of K. For £ C X, we denote by (£) C X the tt-ideal it generates.

A proper tt-ideal P C K is prime if x ® y € P implies © € P or y € P. The
spectrum Spc(X) = {P C K |P is prime } has a topology whose basis of open
is given by the subsets U(z) = {P € Spc(K) |z € P}, for every z € K. The
closed complement supp(z) = { P € Spc(X) |z ¢ P} is called the support of the
object z. A tensor-triangulated functor F': X — £ induces a continuous map
¢ = Spe(F): Spe(L) — Spe(K) given explicitly by ¢(Q) = F~1(Q), for every
prime Q C L.

Remark 2.1. Our assumption that the tensor category X is rigid, means that there
exists an exact functor called the dual

(—)V:KP—XK

that provides an adjoint to tensoring with any object x € X as follows:

X
(2.2) x®_va®-
X
Some authors call such objects x strongly dualizable, e.g. | ]. The adjunc-

tion (2.2) comes with units (coevaluation) and counits (evaluation)
(2.3) ne:l—a' @z and €rrx@x’ — 1
which satisfy the relation

(2.4) (@)oo (z®@Mnz) =15.

It follows from (2.4) that x is a direct summand of * ® ¥ ®@ z =2 29? @ xV.

It is a general fact that any tensor functor F': X — £ preserves rigidity, since
we can use F(zV) as F(x)Y with F(n,) and F(e;) as units and counits. See for
instance [ , Prop.3.1]. In particular, although we do not assume £ rigid,
every object we use below will be rigid as long as it comes from X.

Remark 2.5. In a not-necessarily rigid tt-category, an object x with empty support,
supp(z) = &, is ®-nilpotent, i.e. z®" = 0 for some n > 1. See | , Cor. 2.4].
When z is rigid, 22" = 0 forces = = 0 since x is a summand of 22" @ (zV)®"~1),

We begin with Theorem 1.2, which is relatively straightforward. We only need
a few standard facts from basic tt-geometry, which do not use rigidity, namely:
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ON SURJECTIVITY ON TENSOR-TRIANGULAR SPECTRA 5

(A) Given a ®-multiplicative class S of objects in X (i.e. 1 € S and z,y € § =
r®y € S5) and a tt-ideal § C XK such that J N S = &, then there exists a
prime P € Spc(X) such that J C P and P NS = @. This fact uses that X is

essentially small and is proven in | , Lemma 2.2].

(B) A point P € Spc(X) is closed if and only P is a minimal prime for inclusion
inX (ie. P CP= P =DP). See | , Prop.2.9].

(C) Any non-empty closed subset, for instance {P} for a point P, or supp(z) for a
non-trivial object x, contains a closed point. See [ , Cor.2.12].

(D) For F': X — £ and ¢ = Spc(F): Spc(L) — Spe(X), and every object x € K,
we have supp(F(z)) = ¢~ (supp(z)) in Spc(L). See [ , Prop. 3.6].

Proof of Theorem 1.2. Suppose that F': X — £ is conservative and let P € Spc(XK)
be a closed point, i.e. a minimal prime. Consider its complement S = K\ P. Since
P is prime, S is ®-multiplicative in X and does not contain zero. Since F' is a
conservative tensor functor, the same holds for the class F'(S) in £. (Recall that
for a triangulated functor F', conservativity is equivalent to F(xz) = 0 = z = 0,
since a morphism is an isomorphism if and only if its cone is zero.) By the general
fact (A) recalled above, for the ®-multiplicative class F(S) and for the tt-ideal
Jd = 0 in £, there exists a prime Q € Spc(L) such that QN F(S) = @. This
relation implies that F~1(Q) C P. By minimality of the closed point P, see (B),
this inclusion F~1(Q) C P forces P = F~1(Q) = ¢(Q).

Conversely, suppose that ¢: Spc(L) — Spc(K) is surjective on closed points and
let z € X be such that F(x) = 0. We want to show that = 0. Suppose ab absurdo
that  # 0. Then we have supp(z) # @. By (C), we know that there exists a closed
point P € supp(z), which by assumption belongs to the image of ¢, say P = p(Q).
But then Q € ¢~ !(supp(z)) = supp(F(z)) by (D). This last statement contradicts
supp(F'(x)) = supp(0) = @. So x = 0 as claimed. O

Remark 2.6. The proof also gives a statement for X not rigid. In that case, the
property supp(z) = @ does not necessarily imply that z = 0 but that z is ®-
nilpotent, as an object. See Remark 2.5. Surjectivity of ¢ onto closed points is
therefore equivalent to F' detecting ®-nilpotence of objects. See Theorem 1.2 (a’).

Remark 2.7. In complete generality, if a closed point P € Spc(X) belongs to the
image of ¢: Spc(L) — Spe(K), say P = ¢(Q), then P is also the image of a closed
point Q’, which can be chosen in the closure of Q. Indeed, there exists a closed
point Q" € {Q} by (C) and continuity of ¢ implies p(Q') € {P} = {P}.

* % %

We now turn to the slightly more tricky Theorem 1.4. Let us clarify the following:

Definition 2.8. A morphism f: x — y is called ®-nilpotent if f&": z®" — y®" is
zero for some n > 1. We say that f: x — y is ®-nilpotent on an object z in X if there
exists n > 1 such that f®"®z is the zero morphism 2" ®z — y®"®z. In particular,
[ is ®-nilpotent on its cone if there exists n > 1 such that f®" ® cone(f) = 0.

The following useful fact was already observed in [ , Prop.2.12]:
Proposition 2.9. Let f: x — y be a morphism in K. Then
{z eX | f is ®-nilpotent on z}

forms a tt-ideal, even if X is not rigid.
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6 PAUL BALMER

Closure under direct summands and ® is clear from the definition. The trick for
closure under cones, is that if f®% ® z; = 0 for i = 1,2 and if 2; — 23 — 23 — X2y
is an exact triangle, then f®("1t72) @ 25 will vanish. This is the place where the
same statement would fail with f vanishes on 2’ (instead of ‘f ®-nilpotent on z’).

Proposition 2.10. Let &: w — 1 be a morphism in X (not necessarily rigid) such
that € @ cone(€) = 0. Then the cone of £™ generates the same ti-ideal, for all n:

(cone(£)) = { z € K| is ®-nilpotent on z } = (cone(£5™)).

Proof. The assumption £ @ cone(§) = 0 implies that the object cone(§) belongs
to { z € X | ¢ is ®-nilpotent on z }, which is a tt-ideal by Proposition 2.9. On the
other hand, if the morphism %" ® z is zero then the exact triangle

¥ @z=0

W @ z cone(®") ® z — Juw®" @ z

implies that z is a summand of cone(¢®") ® z. Hence z belongs to (cone(£®™)).
Finally, in the Verdier quotient X/{cone(¢)), the morphism £ is an isomorphism,
hence so is £€¥™. Therefore cone(£¥™) € (cone(¢)). In short, we have obtained

(cone(§)) € {2z € X |£®"®z =0 for some n > 1} C Up>1{cone((¥™)) C (cone(€)).
This proves the claim. Compare [ , §2]. O
We can now establish the key observation of the paper:

Corollary 2.11. Let x € X be a rigid object in a (not necessarily rigid) tt-
category K. Choose &, a ‘homotopy fiber’ of the coevaluation morphism n, of (2.3),
i.e. choose an exact triangle in K

£a

(2.12) wzéleV@)x%sz

for a morphism &,. Then the tt-ideal (x) generated by our object is exactly the
subcategory on which &, is ®-nilpotent:

(2.13) () ={2€X|"®2=0 for somen>1}.
Moreover, for every n > 1 the morphism 5™ is @-nilpotent on its cone.
Proof. Consider the exact triangle obtained by tensoring (2.12) with x:

TREs QRN RCx
T R Wy x 1Rz Rr — 3 ® w,

By the unit-counit relation (2.4), the morphism z ® 7, is a monomorphism. This
forces z ® & = 0. Hence & ® cone(&,) ~ & @ 2Y @ x = 0 and we can apply
Proposition 2.10 to £ = &,. It gives us (2.13) since (cone(&,)) = (z¥ @ z) = (z)
by rigidity of . The ‘moreover part’ also follows from Proposition 2.10 where we
proved that £ is ®-nilpotent on cone(£%™). O

The above result allows us to translate questions about tt-ideals into a ®-
nilpotence problem. We isolate a surjectivity argument that we shall use twice.

Lemma 2.14. Under Hypotheses 1.1, choose for every x € KX an ezxact triangle
as in (2.12). Let P € Spc(X) be a prime. Suppose that P satisfies the following
technical condition:

(2.15)  Forallz € P, all s € X\P and all n > 1, we have F(2" ® s) # 0.
Then P belongs to the image of ¢: Spc(L) — Spe(X).
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ON SURJECTIVITY ON TENSOR-TRIANGULAR SPECTRA 7

Proof. Consider the complement S = KX\ P. Let J C £ be the tt-ideal generated
by F(P), just viewed as a class of objects in £. We claim that J = (F(P)) equals

3" := {y € £ |there exists x € P such that y € (F(z)) }.

Indeed, since we have F(P) C J° C J directly from the definitions, it suffices to
show that J’ is a tt-ideal. It is clearly thick and a ®-ideal. For closure under cones,
if y1 = y2 — y3 — Ty; is exact in £ and y; € (F(x;)) for x; € P and i = 1,2, then
y3 € (y1,y2) C(F(x1), F(x2)) = (F(z1 ® x2)) and x1 ® x5 still belongs to P.

Now, for every object x € K, the tt-functor F': X — £ sends an exact triangle
over the unit 7, as in (2.12) to an exact triangle in £:

Flwy) —& 1 "9 L pe)Y @ Fz) — s SF(w,).

Here we use that F'(1,) = np) which is another way of saying that F' preserves
duals. See Remark 2.1. Using this last exact triangle in Corollary 2.11 for the rigid
object F(z) in the tt-category £, we see that

(F(z)) ={y € L|F(&)®*" ®y=0for somen>1}.
Combining this with the description of J = (F(P)) as J’ above, we obtain
(F(P)) ={y€L|F(&)®" ®y=0for somen >1and some z € P }.

It follows that if s € S = KX\ P then F(s) cannot belong to J = (F(P)). Indeed,
if F(s) € (F(P)) then by the above there exists z € P and n > 1 such that
0=F(&)®"® F(s) 2 F(£$™ @ s) since F is a ®@-functor. This contradicts (2.15).

In short, we have shown that the ®-multiplicative class F(S) = F(X\P) does
not meet the tt-ideal J = (F/(P)), in the tt-category L. By the existence trick (A)
again, there exists a prime Q satisfying the following two relations: J C Q and
F(S)NQ = @. Unpacking the definition of S = X\ P and J = (F(P)), these two
relations mean respectively P C F~1(Q) and F~1(Q) C P. Hence P = F~1(Q) =
»(Q) as wanted. O

We are now ready to prove our main result.
Proof of Theorem 1.4.

(a)=-(b): Suppose that ¢: Spc(L) — Spc(X) is surjective and let f:xz — y
be a morphism such that F(f) = 0 and which is ®-nilpotent on its cone, say

F®™ @ cone(f) = 0. It follows from the exact triangle x EN y — cone(f) — Xz in K
and from F(f) = 0 that F(cone(f)) ~ F(y) ® XF(z) in £. Taking supports, we
have supp(F'(cone(f))) = supp(F(x)) Usupp(F(y)). By (D), this translates into

¢~ (supp(cone(f))) = ¢~ (supp(z)) U ™ ! (supp(y)) = ¢~ (supp(x) Usupp(y)) -

Since ¢ is surjective, this implies supp(cone(f)) = supp(z) U supp(y). Therefore
x,y € (cone(f)). But we assumed that f is ®-nilpotent on cone(f) and it follows
from Proposition 2.9 that f is also ®-nilpotent on = and on y. This means that
there exists n > 1 such that f®" @ z = 0: 22+ — y®" @ . But then f&(+1)
decomposes as

f®("+1)

Qn+1 Qn ®(n+1)
T — Y RT Y
e @z=0 yoref

and is therefore also zero, that is, f®("*1) =0 as wanted.
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8 PAUL BALMER

(b)=-(a): Suppose that F: X — L detects ®-nilpotence of those morphisms
which are already zero on their cone. Let P € Spce(X) be a prime and let us show
that property (2.15) in Lemma 2.14 is satisfied. Let g = £¥™ ® s be the morphism
in (2.15) for some objects z € P and s € KX~\P and for n > 1. Suppose ab absurdo
that F(g) = 0. The cone of g = £2" ® s is simply cone(£5")® s. By Corollary 2.11,
£2™ is @-nilpotent on its cone. Hence g is ®@-nilpotent on its cone as well. We can
therefore apply our assumption (b) to g and deduce from the (absurd) assumption
F(g) = 0 that ¢ = £2" ® s is @-nilpotent. In other words, &, is ®-nilpotent
on s®™ for some m > 1. By Corollary 2.11 again, this implies that s®™ belongs
to (x) C P, and therefore s € P since P is prime, a contradiction with the choice
of s in S = KX\ P. In short, we have verified property (2.15) of Lemma 2.14 for the
prime P, which tells us that P belongs to the image of ¢ as claimed. O

* ok ok

Let us now prove Theorems 1.6 and 1.7. We therefore assume the existence of
an adjoint U: £ — X to our tensor-triangulated functor F:

X
(2.16) Fl—!TU
L

By general theory, U must satisfy a projection formula

(2.17) UF(x)@z)=2xeU(z)
for all x € X and z € £. The latter is an easy consequence of rigidity of  and the
adjunctions (2.2) and (2.16). See for instance | , Prop. 3.2].

Proof of Theorem 1.7. Let P € Spc(X). We need to show that P € im(p) if and
only if P € supp(U(1)). The latter means U(1) ¢ P.

Suppose first that P = ¢(Q) for some Q € Spc(£). Then P = F~1(Q). To show
U(1) ¢ P it therefore suffices to show that FU(1) ¢ Q. This is easy since, by the
unit-counit relation for (2.16), the object FU(1;) & FUF (1) admits F'(1gx) = 1,
as a direct summand and 1 cannot belong to any prime.

The reverse inclusion is the interesting one. So, let P € supp(U(1)), meaning
U(1) ¢ P. Let us show that P satisfies condition (2.15) of Lemma 2.14. Take objects
z € P and s € X\ P, and suppose ab absurdo that F(g) = 0 where g = (2" ® s
for some n > 1 as before. By the projection formula (2.17) for z = 1, the property
UF(g) = U(0) = 0 implies g ® U(1) = 0. Consequently we have an exact triangle
wé ® 5 @ U(1) 22X,
in K. This proves that s®U (1) is a direct summand of cone(g)®@U (1) € (cone(g)) C
(cone(£2™)). By Proposition 2.10, the latter is contained in (z) C P. In short, we
have s ® U(1) € P. Since P is prime this forces s € P or U(1) € P, which are both
absurd. So we have proven (2.15) for P and we conclude by Lemma 2.14 again. O

s®U(1) — cone(g) @ U(1) — Tuwl" @ s ® U(1)

Proof of Theorem 1.6. In view of Theorem 1.7 it suffices to prove that F': X — £
detects ®-nilpotence if and only if supp(U(1)) = Spc(X), which means (U(1)) = XK.
This is a standard argument, as in [ , Prop. 3.15] for instance. Let us outline
it for completeness. The point is that A := U(1) is a ring-object (for U is lax-

monoidal). Let J 5 1% A — %J be an exact triangle over the unit u: 1 — A
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(the unit of the F' 4 U adjunction at 1). We have A ® £ = 0 (since A ® u is
a split monomorphism, retracted by multiplication A ® A — A). A morphism

[+ x — ysatisfies F'(f) = 0 if and only if the composite x EN y By A®y is zero (by
adjunction and the projection formula: A® — ~ UF(—)); this is in turn equivalent
to the morphism f: x — y factoring via £ @ y: J ® y — y (by the exact triangle

J®y@y@A®y—)ZJ®y). So we are down to proving that £: J — 1 is
®-nilpotent if and only if (A) = K. This is now immediate from Proposition 2.10,
which says that (4) = {z € X|¢ is ®-nilpotent on z }. Indeed, 1 € (A) if and
only if £ is ®-nilpotent on 1. U
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