A SPECTRUM WHOSE Z_p COHOMOLOGY IS THE ALGEBRA OF REDUCED p^{th} POWERS

EDGAR H. BROWN, JR. and FRANKLIN P. PETERSON[†]

(Received 3 September 1965)

§1. INTRODUCTION

LET p be a prime, A_p the mod p Steenrod Algebra, $Q_0 \in A_p$ the Bockstein cohomology operation and (Q_0) the two sided ideal generated by Q_0 . Note, when $p \neq 2$, $A_p/(Q_0)$ is isomorphic to the subalgebra of A_p generated by \mathcal{P}^i , $i \geq 0$. The main objective of this paper is to construct a spectrum [6] X such that, as an A_p module, $H^*(X; Z_p) \approx A_p/(Q_0)$.

Throughout this paper all cohomology groups will have Z_p coefficients unless otherwise stated. All spectra will be 0-connected. We will make various constructions on spectra, for example, forming fibrations and Postnikov systems, just as one does with topological spaces. For the details of this see [6]. If one wishes, one may read "spectrum" as N-connected topological space, N a large integer, add N to all dimensions in sight, and read all theorems as applicable in dimensions less than 2N.

Let \mathscr{R} be the set of sequences of integers $(r_1, r_2, ...)$ such that $r_i \ge 0$ and $r_i = 0$ for almost all *i*. If $R = (r_1, r_2, ...)$, let dim $R = \sum 2r_i(p^i - 1)$ and $l(R) = \sum r_i$. Let V_s be the graded free abelian group generated by $R \in \mathscr{R}$ such that l(R) = s. Let $K(V_s)$ be the Eilenberg MacLane spectrum such that $\pi(K(V_s)) = V_s$. Let $\alpha_R \in H^*(K(V_s); Z)$ be the generator corresponding to $R \in \mathscr{R}$. In [1] and [2] Milnor defined for each $R \in \mathscr{R}$ an element $\mathscr{P}^R \in A_p$ (including the case p = 2). Let $c : A_p \to A_p$ be the canonical antiautomorphism. Our main result is the following:

THEOREM 1.1. There is a sequence of spectra X_s , s = 0, 1, 2, ... and elements $1_s \in H^0(X_s)$ satisfying the following conditions: $X_0 = K(V_0)$. 1_0 is $\alpha_{(0,0,...)}$ reduced mod p. X_s is a fibration over X_{s-1} with fibre $K(V_s)$. $1_s = \pi_s^* 1_{s-1}$, where $\pi_s : X_s \to X_{s-1}$ is the projection. If $\tau_s : H^*(K(V_s); Z) \to H^*(X_{s-1}; Z)$ is the transgression,

$$p^{s-1}\tau_s(\alpha_R) = \delta c(\mathscr{P}^R)\mathbf{1}_{s-1},$$

where δ is the Bockstein operation associated with $0 \to Z \to Z \to Z_p \to 0$. (Note $\tau_s(\alpha_R)$ are the k-invariants.) For s > 0, (Q_0) is the kernel of the homomorphism $A_p \to H^*(X_s)$ given by $\alpha \to \alpha 1_s$. $H^*(X_s) = (A_p/(Q_0))1_s$ in dimensions less than 2(s+1)(p-1).

[†] The results of this paper were obtained while the authors were supported by an NSF grant and by the U.S. Army Research Office (Durham).

We prove 1.1 in §3.

Let $X = \lim_{s \to \infty} X_s$. Since $K(V_s)$ is 2s(p-1) - 1 connected, $H^q(X) \approx H^q(X_s)$ for q < 2(s+1)(p-1). Also $\pi_i(K(V_s)) = 0$ for *i* odd and hence

$$\pi_i(X_s) = \sum_{t \leq s} \pi_i(K(V_t)).$$

These facts together with (1.1) give the following:

COROLLARY 1.2. As an A_p module, $H^*(X) \approx A_p/(Q_0) \cdot \pi(X)$ is isomorphic to the free abelian group generated by \mathcal{R} .

(1.1) also yields:

THEOREM 1.3. If Y is a spectrum such that $H^*(Y; Z)$ has no p-torsion and $H^*(Y)$ is a free $A_p/(Q_0)$ module with generators $y_r \in H^{n_i}(Y)$, then there is a map $f: Y \to \prod S^{n_i} X$ ($S^{n_i} X$ is the n_i fold suspension) such that $f^*: H^*(\prod S^{n_i} X) \approx H^*(Y)$. In particular, $\pi(Y) \approx V \otimes U$ modulo C_p , where C_p is the class of finite groups of order prime to p and V and U are the graded free abelian groups generated by \mathscr{R} and $\{y_i\}$, respectively.

Proof. Let $1 \in H^0(X)$ be the generator over A_p and let $1^n \in H^n(S^nX)$ and $1_s^n \in H^n(S^nX_s)$ be the *n*-fold suspensions of 1 and 1_s , respectively. There are maps $g_i: Y \to S^{n_i}X_0$ such that $g^*(1_0^n) = y_i$. Since $p^s\tau(\alpha_R) = p\delta c(\mathcal{P}^R) \mathbf{1}_{s-1} = 0$, all k-invariants in the construction of X have order a power of p. Hence g_i can be lifted to a map $f_i: Y \to S^{n_i}X$ such that $f_i^*1^{n_i} = y_i$. Let $f = \prod f_i$. Clearly, $f^*: H^*(\Pi S^{n_i}X) \approx H^*(Y)$.

In [2] Milnor showed that $H^*(MU)$, for all p, and $H^*(MSO)$, for $p \neq 2$, are free $A_p/(Q_0)$ modules. $H^*(MU; Z)$, for all p, and $H^*(MSO; Z)$, for odd p, have no p-torsion. Thus (1.3) implies the following result of Milnor [2] and Novikov [3]:

COROLLARY 1.4. The U-cobordism groups have no torsion and the oriented cobordism groups have no odd torsion.

In [5] Thom proved the following result. Let $z \in H_n(K)$, where K is a finite CW-complex. Let L be the N-dual of K, N large. Let $u \in H^{N-n-1}(L)$ be the Alexander dual of z. Then there is an oriented manifold M and a map $f: M \to K$ such that $f_*([M]) = z$ if and only if there is a map $g: L \to MSO(N - n - 1)$ such that $g^*(\alpha_{N-n-1}) = u$, where α_{N-n-1} is the Thom class. We show how our result relates to the existence of such an f.

The following is an easy corollary of (1.3).

THEOREM 1.5. Let Y be a spectrum satisfying the hypotheses of (1.3) and such that $H^{0}(Y) \approx Z_{p}$ is generated by α (for example, Y = MU, MSO). Let Y(q) be the qth term in the spectrum Y and $\alpha_{q} \in H^{q}(Y(q))$ the class corresponding to α . Let L be a finite CW complex and $u \in H^{q}(L)$ with $2q > \dim L$. Then there is a map $g: L \to Y(q)$ such that $q^{*}(\alpha_{q}) = u$ if and only if there is a map $h: L \to X(q)$ such that $h^{*}(1(q)) = u$. In particular, if H(L; Z) has no p torsion, $g: L \to Y(q)$ always exists.

Theorem 1.5 might suggest the following conjecture. Let L and u be as in (1.5). Then there is a map $h: L \to X(q)$ such that $h^*(1(q)) = u$ if and only if $\delta_{sc}(\mathscr{P}^R)u = 0$ for all R and s, where δ_s is sth order higher order Bockstein (i.e. $c(\mathscr{P}^R)u \in \text{Im}(H^*(L_1Z) \to H^*(L))$ for all A SPECTRUM WHOSE Z_p cohomology is the algebra of reduced p^{th} powers 151

R). In §4 we give a counterexample to this conjecture and thus a counterexample to the main theorem of [4]. \dagger

§2. PRELIMINARIES CONCERNING THE STEENROD ALGEBRA

In [1] and [2] Milnor defined elements Q_i and $\mathscr{P}^R \in A_p$ for i = 0, 1, 2, ..., and $R \in \mathscr{R}$ and proved the following facts about them.

If $U, V \in \mathcal{R}, U - V \in \mathcal{R}$ is defined if $u_i \ge v_i$ and is equal to $(u_1 - v_1, u_2 - v_2, ...)$. $\Delta_i \in \mathcal{R}$ denotes the sequence with 1 in the jth place and zeros elsewhere.

(2.1) dim $Q_i = 2p^i - 1$. dim $\mathcal{P}^R = \dim R$.

(2.2) $\{Q_i\}$ is the basis for a Grassmann subalgebra, A_0 of A_p , i.e. $Q_iQ_j = 0$ if and only if i = j and $Q_iQ_j + Q_jQ_i = 0$.

(2.3)
$$A_p$$
 is a free right A_o -module and $\{\mathscr{P}^R\}$ is a Z_p basis for $A_p/(Q_o)$.

$$(2.4) \ (Q_0) = A_p Q_0 + A_p Q_1 + A_p Q_2 + \cdots$$

(2.5) $\mathscr{P}^{R}Q_{0} = Q_{0}\mathscr{P}^{R} + \sum Q_{j}\mathscr{P}^{R-\Delta j}.$

(2.6) If $c: A_p \to A_p$ is the canonical antiautomorphism, $c(Q_i) = -Q_i$.

LEMMA 2.6.
$$Q_0 c(\mathscr{P}^R) = \sum c(\mathscr{P}^{R-\Delta_j}) Q_0 c(\mathscr{P}^{\Delta_j}) + a Q_0$$
 where $a \in A_p$.

Proof. Applying c to (2.5) gives

$$Q_{O}c(\mathscr{P}^{R}) = c(\mathscr{P}^{R})Q_{O} + \sum c(\mathscr{P}^{R-\Delta_{j}})Q_{j}.$$

Taking $R = \Delta_i$, this yields:

$$Q_j = Q_o c(\mathscr{P}^{\Delta_j}) - c(\mathscr{P}^{\Delta_j}) Q_o.$$

Combining these two formulas gives (2.6).

Recall V_s is the graded abelian group generated by $R \in \mathscr{R}$ such that l(R) = s. Let $M_s = A_p/A_pQ_0 \otimes V_s$ and let $d_s: M_s \to M_{s-1}$ be the A_p homomorphism of degree +1 given by

$$d_s(1 \otimes R) = \sum Q_j \otimes (R - \Delta_j)$$
$$= Q_o \sum c(\mathscr{P}^{\Delta_j}) \otimes (R - \Delta^j).$$

Let $\alpha: M_0 \to A_p/(Q_0)$ be given $\alpha(1 \otimes (0, 0, ...)) = 1$.

LEMMA 2.7. The following is exact:

$$\to M_s \xrightarrow{a_s} M_{s-1} \to \cdots \to M_O \xrightarrow{a} A_p/(Q_O) \to 0.$$

Proof. Let B be the Grassman algebra $A_0/\{Q_0\}$. Then B is a Grassman algebra generated by Q_i , i > 0. It is well known that the following is a B-free acyclic resolution of Z_n :

$$(2.8) \qquad \rightarrow B \otimes V_s \xrightarrow{\sigma_s} B \otimes V_{s-1} \xrightarrow{\sigma_s} \cdots \xrightarrow{\sigma_s} B \otimes V_o \xrightarrow{\rho} Z_p \xrightarrow{\rho_s} 0$$

[†] The fact that the proof of the main theorem in [4] is not convincing was noted by A. DOLD: Math. Rev. 27 (1964), 2994.

where $d_s(1 \otimes R) = \sum Q_j \otimes (R - \Delta_j)$ and $\beta(1 \otimes (O, O, ...)) = 1$. $B \otimes V_s$ is an A_0 -module. Note

$$A_p \bigoplus_{A_o} Z_p = A_p / \Sigma A_p Q_i = A_p / (Q_o)$$

Applying the functor $A_p \otimes_{A_0}$ to (2.8) yields the sequence in (2.7). But A_p is a free A_0 -module and hence $A_p \otimes_{A_0}$ preserves exactness.

§3. PROOF (1.1)

In this section, if u is a cohomology class with integer coefficients, \tilde{u} will denote its reduction mod p.

We will need the following easily proved lemma.

LEMMA 3.1. If $F \to E \to B$ is a fibration of spectra, $\overline{\tau} : H^*(F) \to H^*(E)$ is the transgression, $v \in H^*(F)$, $u \in H^*(B; Z)$ and $\overline{\tau}(v) = \overline{u}$, then there is a $w \in H^*(E; Z)$ such that $\pi^*u = pw$ and $i^*w = \delta v$, where δ is the Bockstein operation associated to $0 \to Z \to Z \to Z_p \to 0$.

Note $H^*(K(V_s)) \approx A_p/A_p Q_0 \otimes V_s = M_s$. We identify $H^*(K(V_s))$ and M_s .

We construct by induction on s = 0, 1, 2, ... a sequence of spectra X_s , elements $1_s \in H^0(X_s)$ and $k_R^s \in H^*(X_s; Z)$, for $R \in \mathcal{R}$ and l(R) > s, and homomorphisms $\overline{\tau}_{s+1} : M_{s+1} \to H^*(X_s)$ satisfying the following conditions:

(3.2). If s > 0, X_s is a fibration over X_{s-1} with fibre $K(V_s)$. $1_s = \pi^* 1_{s-1}$ where π_s is the projection. $\tau_s(\alpha_R) = k_R^{s-1}$ where $\tau_s : H^*(K(V_s); Z) \to H^*(X_{s-1}; Z)$ is the transgression and $\alpha_R \in H^*(K(V_s); Z)$ is the generator corresponding to $R \in \mathcal{R}$, l(R) = s.

(3.3). $\bar{\tau}_{s+1}(1 \otimes R) = \bar{k}_R^s$.

(3.4). If s > 0 and $\alpha \in A_p$, then $\alpha l_s = 0$ if and only if $\alpha \in (Q_0)$. Coker $\overline{\tau}_{s+1} = (A_p/(Q_0))l_s$.

(3.5). The following sequence is exact.

$$M_{s+2} \xrightarrow{d_{s+2}} M_{s+1} \xrightarrow{\tau_{s+1}} H^*(X_s).$$

- (3.6). $p^{s}k_{R}^{s} = \delta c(\mathcal{P}^{R})\mathbf{1}_{s}$ for l(R) > s.
- (3.7). If l(R) > s

$$k_R^s = \sum c(\mathscr{P}^U) k_{R-U}^s$$

where the sum ranges over U such that R - U is defined and l(R - U) = s + 1.

Note (3.2), (3.4) and (3.6) imply (1.1).

Let $X_0 = K(V_0)$, $1_0 = 1 \otimes (0, 0, ...)$, $k_R^0 = \delta c(P^R) 1_0$ and $\bar{\tau}_1 = d_1$. (3.3), (3.4) and (3.5) follow from (2.7). (3.6) is immediate. (3.7) is (2.6).

Suppose X_{s-1} , 1_{s-1} , k_R^{s-1} and $\overline{\tau}_s$ have been defined and satisfy (3.2)-(3.7). (3.2) defines X_s and 1_s . If l(R) > s

$$\bar{\tau}_s\left(\sum_{l(R-U)=s} c(\mathscr{P}^U) \otimes (R-U)\right) = \sum_{l(R-U)=s} c(P^U) \bar{k}_{R-U}^{s-1}$$
$$= \bar{k}_R^{s-1}.$$

152

Therefore by (3.1), there are elements $k_R^s \in H^*(X_s; Z)$ such that

$$\pi_s^* k_R^{s-1} = p k_R^s$$
$$i^* k_R^s = \delta \sum_{l(R-U)=s} c(\mathcal{P}^U) \otimes (R-U).$$

Let $\bar{\tau}_{s+1}$ be defined by (3.3).

$$p^{s}k_{R}^{s} = \pi_{s}^{*}(p^{s-1}k_{R}^{s-1})$$
$$= \pi_{s}^{*}(\delta c(\mathcal{P}^{R})\mathbf{1}_{s-1})$$
$$= \delta c(\mathcal{P}^{R})\mathbf{1}_{s}.$$

Hence (3.6) is satisfied.

Consider the following diagram:

$$\begin{array}{c} M_{s+2} \xrightarrow{d_{s+2}} M_{s+1} \\ \hline \\ \bar{\tau}_{s+1} \\ \hline \\ \bar{\tau}_{s} \\ M_{s} \xrightarrow{\pi_{s}} H^{*}(X_{s-1}) \xrightarrow{\pi_{s}} H^{*}(X_{s}) \end{array}$$

The two horizontal sequences are exact. $i^* \overline{\tau}_{s+1} = d_{s+1}$, for if l(R) = s + 1

$$\begin{split} i^* \bar{\tau}_{s+1} (1 \otimes R) &= i^* \bar{k}_R^s \\ &= Q_O \sum c(\mathscr{P}^{\Delta_j}) \otimes (R - \Delta_j) \\ &= d_{s+1} (1 \otimes R). \end{split}$$

Kernel $i^* = (A_p/(Q_0))\mathbf{1}_s$ since coker $\bar{\tau}_s = (A_p/(Q_0))\mathbf{1}_{s-1}$.

We now prove (3.7).

$$i^* \sum_{l(R-U)=s+1} c(\mathscr{P}^U) \bar{k}^s_{R-U} = \sum_{l(R-U)=s+1,j} c(\mathscr{P}^U) Q_0 c(\mathscr{P}^{\Delta_j}) \otimes (R-U-\Delta_j)$$
$$= \sum_{l(V)=s} c(\mathscr{P}^V) \otimes (R-V)$$
$$\stackrel{\bullet}{=} i^* \bar{k}^s_R.$$

The second equality follows from (2.6). Kernel i^* contains only even dimensional elements and \bar{k}_R^s has odd dimension. Therefore (3.7) holds. From the above diagram one sees that to verify (3.4) and (3.5) it is sufficient to show that $\bar{\tau}_{s+1}d_{s+2} = 0$. If l(R) = s + 2,

$$\begin{split} \bar{\tau}_{s+1} d_{s+2} (1 \otimes R) &= \bar{\tau}_{s+1} \sum_{j} Q_{O} c(\mathscr{P}^{\Delta_{j}}) \otimes (R - \Delta_{j}) \\ &= Q_{O} \sum c(\mathscr{P}^{\Delta_{j}}) \bar{k}_{R-\Delta_{j}}^{s} \\ &= Q_{O} \bar{k}_{R}^{s} \\ &= 0. \end{split}$$

This completes the inductive step.

§4. APPLICATIONS OF THEOREM 1.1

In this section we give our counterexample to the conjecture stated in §1.

We construct a counterexample for the case p = 3. Let $L^{q+4} = S^q \cup e^{q+4}$ attached by a map of degree 3. Let $f: S^{q+7} \to L^{q+4}$ be an element of order 9. Extend 3f to a map $h: S^{q+7} \cup_9 e^{q+8} \to L^{q+4}$. Define $L = L^{q+9} = L^{q+4} \cup_h C(s^{q+7} \cup_9 e^{q+8})$. Let $u \in H^q(L)$ be a generator, and let q > 9. Then u satisfies the hypotheses of conjecture given in §1, i.e. $c(\mathscr{P}^R)(u) \in \operatorname{Im}(H^*(L; Z) \to H^*(L))$ for all $R \in \mathscr{R}$ as $c(\mathscr{P}^{\Delta_1})(u)$ and $c(\mathscr{P}^0)(u)$ are the only non-zero $c(\mathscr{P}^R)(u)$. Let $g: L \to K(Z, q)$ be such that $u = g^*(\iota) \mod 3$. $K(Z, q) = X_0(q)$, and we wish to show that g does not factor through $X_2(q)$. The cells of $X_1(q)$ which contribute to the mod 3 homology of $X_1(q)$ in dimensions $\leq q + 10$ are the following: $W = S^q \cup$ $e^{q+4} \cup_h C(S^{q+7} \cup_9 e^{q+8})$, where $\overline{h}: S^{9+7} \cup_9 e^{q+8} \to L^{q+4}$ extends f and we assume $h = 3\overline{h}$. Let $\overline{g}: L \to W$ be the obvious map. $H^{q+9}(W; Z) = Z_9$, let k be agenerator. This is part of the k-invariant for $X_2(q)$. Then $\overline{g}^*(k) = 3v$, v a generator of $H^{q+9}(L; Z) \approx Z_9$. Let $\overline{g}: L \to W$ be another map such that $\pi_1 \overline{g} \simeq \pi_1 \overline{g} \simeq g$. Then $\overline{g} = \overline{g} - ix$ where $x: L \to K(Z, q+4)$ and $i: K(Z, q+4) \to X_1(q)$. Now $(ix)^*(k) = \delta \mathscr{P}^1 x^*(l_{q+4}) = 0$ as $\mathscr{P}^1(x^*(l_{q+4})) = 0$. Thus $\overline{g}^*(k) = \overline{g}^*(k) \neq 0$ and \overline{g} cannot be extended to $X_2(q)$.

We conclude by conjecturing that Theorem 1.3 can be generalized. That is, if Y is a spectrum such that $H^*(Y)$ is a free $A_p/(Q_0)$ module, then a knowledge of the Bockstein spectral sequence of $H^*(Y)$ would determine $\pi(Y)$. A case of interest is Y = MSPL.

REFERENCES

- 1. J. MILNOR: On the cobordism ring Ω^* and a complex analogue, Am. J. Math. 82 (1960), 505-521.
- 2. J. MILNOR: The Steenrod algebra and its dual, Ann. Math., 67 (1958), 150-171.
- 3. S. P. NOVIKOV: Some problems in the topology of manifolds connected with the theory of Thom spaces, Soviet Math. Dokl. (1960), 717-720.
- 4. Y. SHIKATA: On the realizabilities of integral homology classes by orientable submanifolds, J. Math. Osaka City Univ. 12 (1961), 79-87.
- 5. R. THOM: Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86.
- 6. G. W. WHITEHEAD: Generalized homology theories, Trans. Am. Math. Soc. 102 (1962), 227-283.

Brandeis University,

M. I. T.