A SPECTRUM WHOSE Z_{p} COHOMOLOGY IS THE ALGEBRA OF REDUCED $p^{\text {th }}$ POWERS

Edgar H. Brown, Jr. and Franklin P. Peterson \dagger

(Received 3 September 1965)

§1. INTRODUCTION

Let p be a prime, A_{p} the $\bmod p$ Steenrod Algebra, $Q_{o} \in A_{p}$ the Bockstein cohomology operation and (Q_{o}) the two sided ideal generated by Q_{o}. Note, when $p \neq 2, A_{p} /\left(Q_{o}\right)$ is isomorphic to the subalgebra of A_{p} generated by $\mathscr{P}^{i}, i \geqq 0$. The main objective of this paper is to construct a spectrum [6] X such that, as an A_{p} module, $H^{*}\left(X ; Z_{p}\right) \approx A_{p} /\left(Q_{o}\right)$.

Throughout this paper all cohomology groups will have Z_{p} coefficients unless otherwise stated. All spectra will be 0 -connected. We will make various constructions on spectra, for example, forming fibrations and Postnikov systems, just as onc does with topological spaces. For the details of this see [6]. If one wishes, one may read "spectrum" as N-connected topological space, N a large integer, add N to all dimensions in sight, and read all theorems as applicable in dimensions less than $2 N$.

Let \mathscr{R} be the set of sequences of integers $\left(r_{1}, r_{2}, \ldots\right)$ such that $r_{i} \geqq 0$ and $r_{i}=0$ for almost all i. If $R=\left(r_{1}, r_{2}, \ldots\right)$, let $\operatorname{dim} R=\sum 2 r_{i}\left(p^{i}-1\right)$ and $l(R)=\sum r_{i}$. Let V_{s} be the graded free abelian group generated by $R \in \mathscr{R}$ such that $l(R)=s$. Let $K\left(V_{s}\right)$ be the Eilenberg MacLane spectrum such that $\pi\left(K\left(V_{s}\right)\right)=V_{s}$. Let $\alpha_{R} \in H^{*}\left(K\left(V_{s}\right) ; Z\right)$ be the generator corresponding to $R \in \mathscr{R}$. In [1] and [2] Milnor defined for each $R \in \mathscr{R}$ an element $\mathscr{P}^{R} \in A_{p}$ (including the case $p=2$). Let $c: A_{p} \rightarrow A_{p}$ be the canonical antiautomorphism. Our main result is the following:

Theorem 1.1. There is a sequence of spectra $X_{s}, s=0,1,2, \ldots$ and elements $1_{s} \in H^{o}\left(X_{s}\right)$ satisfying the following conditions: $X_{O}=K\left(V_{O}\right) .1_{o}$ is $\alpha_{(0,0, \ldots)}$ reduced mod $p . X_{s}$ is a fibration over X_{s-1} with fibre $K\left(V_{s}\right) . \quad 1_{s}=\pi_{s}^{*} 1_{s-1}$, where $\pi_{s}: X_{s} \rightarrow X_{s-1}$ is the projection. If $\tau_{s}: H^{*}\left(K\left(V_{s}\right) ; Z\right) \rightarrow H^{*}\left(X_{s-1} ; Z\right)$ is the transgression,

$$
p^{s-1} \tau_{s}\left(\alpha_{R}\right)=\delta c\left(\mathscr{P}^{R}\right) 1_{s-1}
$$

where δ is the Bockstein operation associated with $0 \rightarrow Z \rightarrow Z \rightarrow Z_{p} \rightarrow 0$. (Note $\tau_{s}\left(\alpha_{R}\right)$ are the k-invariants.) For $s>0,\left(Q_{o}\right)$ is the kernel of the homomorphism $A_{p} \rightarrow H^{*}\left(X_{s}\right)$ given by $\alpha \rightarrow \alpha 1_{s} . H^{*}\left(X_{s}\right)=\left(A_{p} /\left(Q_{o}\right)\right) 1_{s}$ in dimensions less than $2(s+1)(p-1)$.

[^0]We prove 1.1 in $\S 3$.
Let $X=\varliminf X_{s}$. Since $K\left(V_{s}\right)$ is $2 s(p-1)-1$ connected, $H^{q}(X) \approx H^{q}\left(X_{s}\right)$ for $q<2(s+1)(p-1)$. Also $\pi_{i}\left(K\left(V_{s}\right)\right)=0$ for i odd and hence

$$
\pi_{i}\left(X_{s}\right)=\sum_{i \leq s} \pi_{i}\left(K\left(V_{t}\right)\right) .
$$

These facts together with (1.1) give the following:
Corollary 1.2. As an A_{p} module, $H^{*}(X) \approx A_{p} /\left(Q_{o}\right) \cdot \pi(X)$ is isomorphic to the free abelian group generated by \mathscr{R}.
(1.1) also yields:

Theorem 1.3. If Y is a spectrum such that $H^{*}(Y ; Z)$ has no p-torsion and $H^{*}(Y)$ is a free $A_{p} /\left(Q_{o}\right)$ module with generators $y_{r} \in H^{n_{i}}(Y)$, then there is a map $f: Y \rightarrow \Pi S^{n_{i}} X\left(S^{n_{i}} X\right.$ is the n_{i} fold suspension) such that $f^{*}: H^{*}\left(\Pi S^{n_{i}} X\right) \approx H^{*}(Y)$. In particular, $\pi(Y) \approx V \otimes U$ modulo C_{p}, where C_{p} is the class of finite groups of order prime to p and V and U are the graded free abelian groups generated by \mathscr{R} and $\left\{y_{i}\right\}$, respectively.

Proof. Let $1 \in H^{o}(X)$ be the generator over A_{p} and let $1^{n} \in H^{n}\left(S^{n} X\right)$ and $1_{s}^{n} \in H^{n}\left(S^{n} X_{s}\right)$ be the n-fold suspensions of 1 and 1_{s}, respectively. There are maps $g_{i}: Y \rightarrow S^{n_{i}} X_{O}$ such that $g^{*}\left(1_{o}^{n_{i}}\right)=y_{i}$. Since $p^{s} \tau\left(\alpha_{R}\right)=p \delta c\left(\mathscr{P}^{R}\right) 1_{s-1}=0$, all k-invariants in the construction of X have order a power of p. Hence g_{i} can be lifted to a map $f_{i}: Y \rightarrow S^{n_{i}} X$ such that $f_{i}^{*} 1^{n_{i}}=y_{i}$. Let $f=\Pi f_{i}$. Clearly, $f^{*}: H^{*}\left(\Pi S^{m_{i}} X\right) \approx H^{*}(Y)$.

In [2] Milnor showed that $H^{*}(M U)$, for all p, and $H^{*}(M S O)$, for $p \neq 2$, are free $A_{p} /\left(Q_{o}\right)$ modules. $H^{*}(M U ; Z)$, for all p, and $H^{*}(M S O ; Z)$, for odd p, have no p-torsion. Thus (1.3) implies the following result of Milnor [2] and Novikov [3]:

Corollary 1.4. The U-cobordism groups have no torsion and the oriented cobordism groups have no odd torsion.

In [5] Thom proved the following result. Let $z \in H_{n}(K)$, where K is a finite $C W$-complex. Let L be the N-dual of K, N large. Let $u \in H^{N-n-1}(L)$ be the Alexander dual of z. Then there is an oriented manifold M and a map $f: M \rightarrow K$ such that $f_{*}([M])=z$ if and only if there is a map $g: L \rightarrow M S O(N-n-1)$ such that $g^{*}\left(\alpha_{N-n-1}\right)=u$, where α_{N-n-1} is the Thom class. We show how our result relates to the existence of such an f.

The following is an easy corollary of (1.3).
Theorem 1.5. Let Y be a spectrum satisfying the hypotheses of (1.3) and such that $H^{0}(Y) \approx Z_{p}$ is generated by α (for example, $\left.Y=M U, M S O\right)$. Let $Y(q)$ be the $q^{\text {th }}$ term in the spectrum Y and $\alpha_{q} \in H^{q}(Y(q))$ the class corresponding to α. Let L be a finite CW complex and $u \in H^{q}(L)$ with $2 q>\operatorname{dim} L$. Then there is a map $g: L \rightarrow Y(q)$ such that $q^{*}\left(\alpha_{q}\right)=u$ if and only if there is a map $h: L \rightarrow X(q)$ such that $h^{*}(1(q))=u$. In particular, if $H(L ; Z)$ has no p torsion, $g: L \rightarrow Y(q)$ always exists.

Theorem 1.5 might suggest the following conjecture. Let L and u be as in (1.5). Then there is a map $h: L \rightarrow X(q)$ such that $h^{*}(1(q))=u$ if and only if $\delta_{s} c\left(\mathscr{P}^{R}\right) u=0$ for all R and s, where δ_{s} is $s^{\text {th }}$ order higher order Bockstein (i.e. $c\left(\mathscr{P}^{\mathrm{R}}\right) u \in \operatorname{Im}\left(H^{*}\left(L_{1} Z\right) \rightarrow H^{*}(L)\right.$) for all

A SPECTRUM WHOSE Z_{p} COHOMOLOGY IS THE ALGEBRA OF REDUCED $p^{\text {th }}$ POWERS 151
R). In $\S 4$ we give a counterexample to this conjecture and thus a counterexample to the main theorem of [4]. \dagger

§2. PRELIMINARIES CONCERNING THE STEENROD ALGEBRA

In [1] and [2] Milnor defined elements Q_{i} and $\mathscr{P}^{R} \in A_{p}$ for $i=0,1,2, \ldots$, and $R \in \mathscr{R}$ and proved the following facts about them.

If $U, V \in \mathscr{R}, U-V \in \mathscr{R}$ is defined if $u_{i} \geqq v_{i}$ and is equal to $\left(u_{1}-v_{1}, u_{2}-v_{2}, \ldots\right)$. $\Delta_{j} \in \mathscr{R}$ denotes the sequence with 1 in the $j^{\text {th }}$ place and zeros elsewhere.
(2.1) $\operatorname{dim} Q_{i}=2 p^{i}-1, \operatorname{dim} \mathscr{P}^{R}=\operatorname{dim} R$.
(2.2) $\left\{Q_{i}\right\}$ is the basis for a Grassmann subalgebra, A_{o} of A_{p}, i.e. $Q_{i} Q_{j}=0$ if and only if $i=j$ and $Q_{i} Q_{j}+Q_{j} Q_{i}=0$.
(2.3) A_{p} is a free right A_{o}-module and $\left\{\mathscr{P}^{R}\right\}$ is a Z_{p} basis for $A_{p} /\left(Q_{o}\right)$.
(2.4) $\left(Q_{0}\right)=A_{p} Q_{o}+A_{p} Q_{1}+A_{p} Q_{2}+\cdots$.
(2.5) $\mathscr{P}^{R} Q_{o}=Q_{o} \mathscr{P}^{R}+\sum Q_{j} \mathscr{P}^{K-\Delta j}$.
(2.6) If $c: A_{p} \rightarrow A_{p}$ is the canonical antiautomorphism, $c\left(Q_{i}\right)=-Q_{i}$.

LEMMA 2.6. $Q_{o} c\left(\mathscr{P}^{R}\right)=\sum c\left(\mathscr{P}^{R-\Delta_{j}}\right) Q_{o} c\left(\mathscr{P}^{\Delta j}\right)+a Q_{o}$ where $a \in A_{p}$.
Proof. Applying c to (2.5) gives

$$
Q_{o} c\left(\mathscr{P}^{R}\right)=c\left(\mathscr{P}^{R}\right) Q_{o}+\sum c\left(\mathscr{P}^{R-\Delta_{j}}\right) Q_{j}
$$

Taking $R=\Delta_{j}$, this yields:

$$
Q_{j}=Q_{o} c\left(\mathscr{P}^{\Delta_{j}}\right)-c\left(\mathscr{P}^{\Delta_{j}}\right) Q_{o}
$$

Combining these two formulas gives (2.6).
Recall V_{s} is the graded abelian group generated by $R \in \mathscr{H}$ such that $l(R)=s$. Let $M_{s}=A_{p} / A_{p} Q_{o} \otimes V_{s}$ and let $d_{s}: M_{s} \rightarrow M_{s-1}$ be the A_{p} homomorphism of degree +1 given by

$$
\begin{aligned}
d_{s}(1 \otimes R) & =\sum Q_{j} \otimes\left(R-\Delta_{j}\right) \\
& =Q_{o} \sum c\left(\mathscr{P}^{\Delta_{j}}\right) \otimes\left(R-\Delta^{j}\right)
\end{aligned}
$$

Let $\alpha: M_{o} \rightarrow A_{p} /\left(Q_{o}\right)$ be given $\alpha(1 \otimes(O, O, \ldots))=1$.
Lemma 2.7. The following is exact:

$$
\rightarrow M_{s} \stackrel{d_{s}}{\rightarrow} M_{s-1} \rightarrow \cdots \rightarrow M_{o} \xrightarrow{\alpha} A_{p} /\left(Q_{0}\right) \rightarrow 0 .
$$

Proof. Let B be the Grassman algebra $A_{o} /\left\{Q_{o}\right\}$. Then B is a Grassman algebra generated by $Q_{i}, i>0$. It is well known that the following is a B-free acyclic resolution of Z_{p} :

$$
\begin{equation*}
\rightarrow B \otimes V_{s} \xrightarrow{d_{s}} B \otimes V_{s-1} \rightarrow \cdots \rightarrow B \otimes V_{O} \xrightarrow{\beta} Z_{p} \rightarrow 0 \tag{2.8}
\end{equation*}
$$

[^1]where $d_{s}(1 \otimes R)=\sum Q_{j} \otimes\left(R-\Delta_{j}\right)$ and $\beta(1 \otimes(O, O, \ldots))=1 . B \otimes V_{s}$ is an A_{o}-module. Note
$$
A_{p} \oplus_{A o} Z_{p}=A_{p} / \Sigma A_{p} Q_{i}=A_{p} /\left(Q_{o}\right)
$$

Applying the functor $A_{p} \otimes_{A_{o}}$ to (2.8) yields the sequence in (2.7). But A_{p} is a free $A_{0^{-}}$ module and hence $A_{p} \otimes_{A_{o}}$ preserves exactness.

§3. PROOF (1.1)

In this section, if u is a cohomology class with integer coefficients, \tilde{u} will denote its reduction $\bmod p$.

We will need the following easily proved lemma.
Lemma 3.1. If $F \xrightarrow{i} E_{\rightarrow}^{\pi} B$ is a fibration of spectra, $\bar{\tau}: H^{*}(F) \rightarrow H^{*}(E)$ is the transgression, $v \in H^{*}(F), u \in H^{*}(B ; Z)$ and $\bar{\tau}(v)=\bar{u}$, then there is $a w \in H^{*}(E ; Z)$ such that $\pi^{*} u=p w$ and $i^{*} w=\delta v$, where δ is the Bockstein operation associated to $0 \rightarrow Z \rightarrow Z \rightarrow Z_{p} \rightarrow 0$.

Note $H^{*}\left(K\left(V_{s}\right)\right) \approx A_{p} / A_{p} Q_{o} \otimes V_{s}=M_{s}$. We identify $H^{*}\left(K\left(V_{s}\right)\right)$ and M_{s}.
We construct by induction on $s=0,1,2, \ldots$ a sequence of spectra X_{s}, elements $1_{s} \in H^{o}\left(X_{s}\right)$ and $k_{R}^{s} \in H^{*}\left(X_{s} ; Z\right)$, for $R \in \mathscr{R}$ and $l(R)>s$, and homomorphisms $\bar{\tau}_{s+1}: M_{s+1} \rightarrow H^{*}\left(X_{s}\right)$ satisfying the following conditions:
(3.2). If $s>0, X_{s}$ is a fibration over X_{s-1} with fibre $K\left(V_{s}\right) .1_{s}=\pi^{*} 1_{s-1}$ where π_{s} is the projection. $\tau_{s}\left(\alpha_{R}\right)=k_{R}^{s-1}$ where $\tau_{s}: H^{*}\left(K\left(V_{s}\right) ; Z\right) \rightarrow H^{*}\left(X_{s-1} ; Z\right)$ is the transgression and $\alpha_{R} \in I I^{*}\left(K\left(V_{s}\right) ; Z\right)$ is the generator corresponding to $R \in \mathscr{R}, l(R)=s$.
(3.3). $\bar{\tau}_{s+1}(1 \otimes R)=k_{R}^{s}$.
(3.4). If $s>0$ and $\alpha \in A_{p}$, then $\alpha 1_{s}=0$ if and only if $\alpha \in\left(Q_{o}\right)$. Coker $\bar{\tau}_{s+1}=\left(A_{p} /\left(Q_{o}\right)\right) 1_{s}$.
(3.5). The following sequence is exact.

$$
M_{s+2} \xrightarrow{d_{s+2}} M_{s+1} \xrightarrow{\bar{\tau}_{s+1}} H^{*}\left(X_{s}\right) .
$$

(3.6). $p^{s} k_{R}^{s}=\delta c\left(\mathscr{P}^{R}\right) 1_{s}$ for $l(R)>s$.
(3.7). If $l(R)>s$

$$
\bar{k}_{R}^{s}=\sum c\left(\mathscr{P}^{U}\right) \bar{k}_{R-U}^{s}
$$

where the sum ranges over U such that $R-U$ is defined and $l(R-U)=s+1$.
Note (3.2), (3.4) and (3.6) imply (1.1).
Let $X_{O}=K\left(V_{o}\right), 1_{o}=1 \otimes(O, O, \ldots), k_{R}^{o}=\delta c\left(P^{R}\right) 1_{o}$ and $\bar{\tau}_{1}=d_{1}$. (3.3), (3.4) and (3.5) follow from (2.7). (3.6) is immediate. (3.7) is (2.6).

Suppose $X_{s-!}, 1_{s-1}, k_{R}^{s-1}$ and $\bar{\tau}_{s}$ have been defined and satisfy (3.2)-(3.7). (3.2) defines X_{s} and 1_{s}. If $l(R)>s$

$$
\begin{aligned}
\bar{\tau}_{s}\left(\sum_{l(R-U)=s} c\left(\mathscr{P}^{U}\right) \otimes(R-U)\right) & =\sum_{l(R-U)=s} c\left(P^{U}\right) \bar{k}_{R-U}^{s-1} \\
& =\bar{k}_{R}^{s-1} .
\end{aligned}
$$

A SPECTRUM whose Z_{p} COhomology is the algebra of reduced $p^{\text {th }}$ powers 153
Therefore by (3.1), there are elements $k_{R}^{s} \in H^{*}\left(X_{s} ; Z\right)$ such that

$$
\begin{aligned}
\pi_{s}^{*} k_{R}^{s-1} & =p k_{R}^{s} \\
i^{*} k_{R}^{s} & =\delta \sum_{l(R-U)=s} c\left(\mathscr{P}^{U}\right) \otimes(R-U)
\end{aligned}
$$

Let $\bar{\tau}_{s+1}$ be defined by (3.3).

$$
\begin{aligned}
p^{s} k_{R}^{s} & =\pi_{s}^{*}\left(p^{s-1} k_{R}^{s-1}\right) \\
& =\pi_{s}^{*}\left(\delta c\left(\mathscr{P}^{R}\right) 1_{s-1}\right) \\
& =\delta c\left(\mathscr{P}^{R}\right) 1_{s} .
\end{aligned}
$$

Hence (3.6) is satisfied.
Consider the following diagram:

The two horizontal sequences are exact. $i^{*} \bar{\tau}_{s+1}=d_{s+1}$, for if $l(R)=s+1$

$$
\begin{aligned}
i^{*} \bar{\tau}_{s+1}(1 \otimes R) & =i^{*} k_{R}^{s} \\
& =Q_{o} \sum c\left(\mathscr{P}^{\Delta_{j}}\right) \otimes\left(R-\Delta_{j}\right) \\
& =d_{s+1}(1 \otimes R) .
\end{aligned}
$$

Kernel $i^{*}=\left(A_{p} /\left(Q_{o}\right)\right) 1_{s}$ since coker $\bar{\tau}_{s}=\left(A_{p} /\left(Q_{o}\right)\right) 1_{s-1}$.
We now prove (3.7).

$$
\begin{aligned}
i^{*} \sum_{l(R-U)=s+1} c\left(\mathscr{P}^{U}\right) \bar{k}_{R-U}^{s} & =\sum_{l(R-U)=s+1, j} c\left(\mathscr{P}^{U}\right) Q_{o} c\left(\mathscr{P}^{\Delta_{j}}\right) \otimes\left(R-U-\Delta_{j}\right) \\
& =\sum_{l(V)=s} c\left(\mathscr{P}^{V}\right) \otimes(R-V) \\
& =i^{*} k_{R}^{s} .
\end{aligned}
$$

The second equality follows from (2.6). Kernel i^{*} contains only even dimensional elements and \bar{K}_{R}^{s} has odd dimension. Therefore (3.7) holds. From the above diagram one sees that to verify (3.4) and (3.5) it is sufficient to show that $\bar{\tau}_{s+1} d_{s+2}=0$. If $l(R)=s+2$,

$$
\begin{aligned}
\bar{\tau}_{s+1} d_{s+2}(1 \otimes R) & =\bar{\tau}_{s+1} \sum_{j} Q_{o} c\left(\mathscr{P}^{\Delta_{j}}\right) \otimes\left(R-\Delta_{j}\right) \\
& =Q_{o} \sum c\left(\mathscr{P}^{\Delta_{j}}\right) \bar{K}_{R-\Delta_{j}}^{s} \\
& =Q_{o} \bar{k}_{R}^{s} \\
& =0 .
\end{aligned}
$$

This completes the inductive step.

§4. APPLICATIONS OF THEOREM 1.1

In this section we give our counterexample to the conjecture stated in $\S 1$.
We construct a counterexample for the case $p=3$. Let $L^{q+4}=S^{q} \cup e^{q+4}$ attached by a map of degree 3. Let $f: S^{q+7} \rightarrow L^{q+4}$ be an element of order 9. Extend $3 f$ to a map $h: S^{q+7} \cup_{9} e^{q+8} \rightarrow L^{q+4}$. Define $L=L^{q+9}=L^{q+4} \cup_{h} C\left(s^{q+7} \cup_{9} e^{q+8}\right)$. Let $u \in H^{q}(L)$ be a generator, and let $q>9$. Then u satisfies the hypotheses of conjecture given in $\S 1$, i.e. $c\left(\mathscr{P}^{R}\right)(u) \in \operatorname{Im}\left(H^{*}(L ; Z) \rightarrow H^{*}(L)\right)$ for all $R \in \mathscr{R}$ as $c\left(\mathscr{P}^{\Delta}\right)(u)$ and $c\left(\mathscr{P}^{O}\right)(u)$ are the only non-zero $c\left(\mathscr{P}^{R}\right)(u)$. Let $g: L \rightarrow K(Z, q)$ be such that $u=g^{*}(l) \bmod 3 . K(Z, q)=X_{o}(q)$, and we wish to show that g does not factor through $X_{2}(q)$. The cells of $X_{1}(q)$ which contribute to the mod 3 homology of $X_{1}(q)$ in dimensions $\leqq q+10$ are the following: $W=S^{q} \cup$ $e^{q+4} \cup_{h} C\left(S^{q+7} \cup_{9} e^{q+8}\right)$, where $\hbar: S^{9+7} \cup_{9} e^{q+8} \rightarrow L^{q+4}$ extends f and we assume $h=3 \hbar$. Let $\bar{g}: L \rightarrow W$ be the obvious map. $H^{q+9}(W ; Z)=Z_{9}$, let k be agenerator. This is part of the k-invariant for $X_{2}(q)$. Then $\bar{g}^{*}(k)=3 v, v$ a generator of $H^{q+9}(L ; Z) \approx Z_{9}$. Let $\overline{\bar{g}}: L \rightarrow W$ be another map such that $\pi_{1} \overline{\bar{g}} \simeq \pi_{1} \bar{g} \simeq g$. Then $\tilde{g}=\bar{g}-i x$ where $x: L \rightarrow K(Z, q+4)$ and $i: K(Z, q+4) \rightarrow X_{1}(q)$. Now $(i x)^{*}(k)=\delta \mathscr{P}^{1} x^{*}\left(l_{q+4}\right)=0 \quad$ as $\quad \mathscr{P}^{1}\left(x^{*}\left(l_{q+4}\right)\right)=0$. Thus $\overline{\bar{g}}^{*}(k)=\bar{g}^{*}(k) \neq 0$ and \vec{g} cannot be extended to $X_{2}(q)$.

We conclude by conjecturing that Theorem 1.3 can be generalized. That is, if Y is a spectrum such that $H^{*}(Y)$ is a free $A_{p} /\left(Q_{o}\right)$ module, then a knowledge of the Bockstein spectral sequence of $H^{*}(Y)$ would determine $\pi(Y)$. A case of interest is $Y=M S P L$.

REFERENCES

1. J. Milnor: On the cobordism ring Ω^{*} and a complex analogue, Am. J. Math. 82 (1960), 505-521.
2. J. Milnor: The Steenrod algebra and its dual, Ann. Math., 67 (1958), 150-171.
3. S. P. Novikov: Some problems in the topology of manifolds connected with the theory of Thom spaces, Soviet Math. Dokl. (1960), 717-720.
4. Y. Shikata: On the realizabilities of integral homology classes by orientable submanifolds, J. Math. Osaka City Univ. 12 (1961), 79-87.
5. R. Thом: Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86.
6. G. W. Whitehead: Generalized homology theories, Trans. Am. Math. Soc. 102 (1962), 227-283.

Brandeis University,

M.I.T.

[^0]: \dagger The results of this paper were obtained while the authors were supported by an NSF grant and by the U.S. Army Research Office (Durham).

[^1]: \dagger The fact that the proof of the main theorem in [4] is not convincing was noted by A. Dold: Math. Rev. 27 (1964), 2994.

