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$1. INTRODUCTION 

LET p be a prime, A, the mod p Steenrod Algebra, Q, E A, the Bockstein cohomology 
operation and (PO) the two sided ideal generated by Q,. Note, when p # 2, A,/(Qo) is 

isomorphic to the subalgebra of A, generated by pi, i 2 0. The main objective of this paper 
is to construct a spectrum [6] X such that, as an A, module, H*(X; Z,> x AJ(Qo). 

Throughout this paper all cohomology groups will have 2, coefficients unless otherwise 
stated. All spectra will be O-connected. We will make various constructions on spectra, for 
example, forming fibrations and Postnikov systems, just as one does with topological spaces. 
For the details of this see [6]. If one wishes, one may read “spectrum” as iv-connected 
topological space, iV a large integer, add N to all dimensions in sight, and read all theorems 
as applicable in dimensions less than 2N. 

Let $? be the set of sequences of integers (pi, r2, . ..) such that ri 2 0 and ri = 0 for 
almost all i. If R = (rI, r2, . ..), let dim R = c 2ri(p’ - 1) and l(R) = c ri. Let V, be the 
graded free abelian group generated by R E W such that l(R) = s. Let K(V,) be the Eilen- 
berg MacLane spectrum such that z(K(V,)) = VS. Let aR E H*(K(V,); Z) be the generator 
corresponding to R E 9. In [1] and [2] Milnor decked for each R E W an element BR E A, 
(including the case p = 2). Let c : A, + A, be the canonical antiautomorphism. Our main 

result is the following: 

THEOREM 1.1. There is a sequence of spectra X,, s = 0, 1, 2, . . . and elements 1, E H’(XJ 
satisfying thefollowing conditions: X0 = K( V,). lo is u(O,~,...) reduced modp. X, is ajibration 
over X, _ 1 with jibre K( V,). 1, = x,*1,_ 1, where xS : X, + X,_ 1 is the projection. If 
f, : H*(K( VJ; Z) + H*(X,_ i ; Z) is the transgression, 

pS-%S(cxR) = 6c(BR)1,_ 1, 

where 6 is the Bockstein operation associated with 0 -+ Z + Z + Z, + 0. (Note ~,(a,) are the 
k-invariants.) For s > 0, (Q,) is the kernel of the homomorphism A, + H*(XJ given by 

a +al,. H*(XJ = (Ad(Qo))l, in dimensions less than 2(s + I)($ - 1). 

7 The results of this paper were obtained while the authors were supported by an NSF grant and by the 
U.S. Army Research Oflke (Durham). 
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We prove 1.1 in $3. 

Let X=liIJX,. Since K(V,) is 2$p - 1) - 1 connected, Hq(X) = Hg(X,) for 
q < 2(s + l)(p - 1). Also rri(K(Vs)) = 0 for i odd and hence 

ni(Xs) = t5s:Sni(K(V))* 
_ 

These facts together with (1.1) give the following: 

COROLLARY 1.2. As un A,, module, H*(X) x A&Q,)* n(X) is isomorphic to thefree 
abelian group generated by 9. 

(1.1) also yields : 

TH~~REEA 1.3. Zf Y is a spectrum such that H*( Y; Z) has no p-torsion and H*(Y) is a 
free AJ(Q,) module with generators y, E H”‘( Y), then there is a map f : Y + IIS”‘X (FX is 

the nr fold suspension) such that f * : H*(llS”‘X) x H*(Y). In particular, u(Y) x V 8 U 

modulo C,, where C, is the class of finite groups of order prime to p and V and U are the 
graded free abelian groups generated by W and { yr}, respectively. 

Proof. Let 1 E Ho(X) be the generator over A, and let 1” E H”(S”X) and 1: E H”(S”X,) 

be the n-fold suspensions of 1 and I,, respectively. There are maps gi : Y + S”‘X, such that 
g*(l$) = yr. Sincep”r(a,) = pGc(PR)l,_ 1 = 0, all k-invariants in the construction of X have 
order a power of p. Hence gi can be lifted to a map fi : Y + PX such that fi* 1”’ = yi. Let 
f = llfi. Clearly, f * : H*(IIS”‘X) B H*(Y). 

In [2] Milnor showed that H*(MU), for all p, and H*(MSU), for p # 2, are free 
AP/(Qo) modules. H*(MU; Z), for all p, and H*(MSO; Z), for odd p, have no p-torsion. 
Thus (1.3) implies the following result of Milnor [2] and Novikov [3]: 

COROLLARY 1.4. The U-cobordism groups have no torsion and the oriented cobordism 

groups have no odd torsion. 

In [5] Thorn proved the following result. Let z E H,(K), where Kis a finite CW-complex. 
Let L be the N-dual of K, N large. Let u E HN-“-’ (L) be the Alexander dual of z. Then 
there is an oriented manifold A4 and a map f: A4 + K such that f*([M]) = z if and only if 
there is a map g:L+MSO(N-n- 1) such that g*(@N-“-1) = u, where uN_-r is the 
Thorn class. We show how our result relates to the existence of such anf. 

The following is an easy corollary of (1.3). 

THEOREM 1.5. Let Y be a spectrum satisfying the hypotheses of (1.3) and such that 
Ho(Y) z Zt, is generated by a (for example, Y = MU, MSO). Let Y(q) be the q”’ term in the 
spectrum Y and aq E Hq( Y(q)) the class corresponding to u. Let L be a finite CW complex 
and u E Hq(L) with 2q > dim L. Then there is a map g : L -+ Y(q) such that q*(u,) = u if and 

only if there is a map h : L + X(q) such that h*(l(q)) = u. In particular, if H(L; Z) has no 
p torsion, g : L + Y(q) always exists. 

Theorem 1.5 might suggest the following conjecture. Let L and u be as in (1.5). Then 
there is a map h : L + X(q) such that h*(l(q)) = u if and only if 6,c(BR)u = 0 for all R and 
s, where 6, is 8’ order higher order Bockstein (i.e. c(BR)u E Im(H*(L,Z) + H*(L)) for all 
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R). In $4 we give a counterexample to this conjecture and thus a counterexample to the 
main theorem of [4].t 

52. PRELIMINARIES CONCERNING THE STEBNROD ALGEBRA 

In [I] and [2] Milnor defined elements Qi and BR E A, for i = 0, 1,2, . . . . and R E 4e 

and proved the following facts about them. 

If U,VEW, U-VEW is defined if UiaUi and is equal to (u~-v~,u~-v~,...). 

Aj E W denotes the sequence with 1 in the jth place and zeros elsewhere. 

(2.1) dim Qi = 2~’ - 1. dim qR = dim R. 

(2.2) (Qi} is the basis for a Grassmann subalgebra, Ao of A,, i.e. QiQj = 0 if and only 
if i =j and QiQj + QjQi = 0. 

(2.3) A, is a free right A,-module and (9”“} is a Z, basis for A,/(Q,). 

(2.4) (Qo)= A,Qo+A,Ql +APQz+.-.- 

(2.5) BRQo = Qo~R + C Qj~‘-“. 

(2.6) If c: A,+A, is the canonical antiautomorphism, c( QJ = - Qi. 

LEMMA 2.6. Qoc(gR) = c c(~‘“-~~)Q,c(~*~) -I- aQo where a E A,. 

Proof. Applying c to (2.5) gives 

Qoc(g’) = c(BR)Qo + C c(P’“-“‘)Qj* 

Taking R = Aj, this yields: 

Qj = Q~c(~*‘) - c(~*‘)Qo. 

Combining these two formulas gives (2.6). 

Recall V, is the graded abelian group generated by R E W such that I(R) = s. Let 
M,=A,/A,Q,@V, and let d,:M,-tM,_, be the A, homomorphism of degree + 1 
given by 

d.Jl@R)=CQj@(R-Aj) 

= Q. 2 ~(9~‘) @ (R - Aj). 

Let a : MO + A,/(Qo) be given a(1 @ (0, 0, . ..)) = 1. 

LEMMA 2.7. The following is exact: 

~~,~M,_,-r...-rM,~A,~(Q,)-rO. 

Proof. Let B be the Grassman algebra A,/{ Q,}. Then B is a Grassman algebra genera- 
ted by Qi, i > 0. It is well known that the following is a B-free acyclic resolution of Z,,: 

B 
(2.8) +B@ V&36 V,_l +...-rB@ V,-+Z,+O 

t The fact that the proof of the main theorem in [41 is not convincing was noted by A. D~LD: Math. Rev. 
27 (1964), 2994. 
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where d&l @ R) = 1 Qj 0 (R - Aj) and P(1 0 (0, 0, . . .)) = 1. B 0 V, is an &-module. 
Note 

A, OAR Z, = A,P ApQi = ApI 
Applying the fimctor A, OAO to (2.8) yields the sequence in (2.7). But A, is a free Ao- 
module and hence A, @I~,, preserves exactness. 

$3. PROOF (1.1) 

In this section, if u is a cohomology class with integer coefficients, zi will denote its 
reduction mod p. 

We will need the following easily proved lemma. 

LEMMA 3.1. If FL E : B is afibration of spectra, i : H*(F) + H*(E) is the transgression, 
u E H*(F), u E H*(B; Z) and T(v) = fi, then there is a w E H*(E; Z) such that TC*U = pw and 
i*w = 60, where 6 is the Bockstein operation associated to 0 + Z + Z + Z, + 0. 

Note H*(K( VS)) x A,/A,Q, 8 V, = MS. We identify H*(K( V,)) and M,. 

We construct by induction on s = 0, 1,2, . . . a sequence of spectra X,, elements 
1,~ H”(XS) and ki E H*(X,;Z), for R E 9 and 1(R) > s, and homomorphisms 

r,+i * *Ms+, --f H*(X,) satisfying the following conditions: 

(3.2). Ifs > 0, X, is a fibration over X,_, with fibre K( V,). 1, = x*1,_ r where n, is the 
projection. r,(+) = ki- 1 where z s : H*(K(V,); Z) + H*(X,_, ; Z) is the transgression and 
aR E H*(K( V,); Z) is the generator corresponding to R E 9, Z(R) = s. 

(3.3). f,+,(l @R) = f& 

(3.4). Ifs > Oanda E A,, then al, = Oif andonlyif aE(Qo). Coker fs+, = (A,/(Qo))l,. 

(3.5). The following sequence is exact. 

ds+z f.+, 
M s+2 ---,K+, --+H*(X,). 

(3.6). p”k; = &(Y’)l, for Z(R) > s. 

(3.7). If Z(R) > s 

1;; = c C(9”)&_” 

where the sum ranges over U such that R - U is defined and I(R - U) = s -t 1. 

Note (3.2), (3.4) and (3.6) imply (1.1). 

LetXo=K(Vo),lc=l@(O,O ,... >,k::= Sc(PR)lo and ?I = dl. (3.3), (3.4) and (3.5) 
follow from (2.7). (3.6) is immediate. (3.7) is (2.6). 

Suppose X,_ ‘, l,_ r, k;-’ and 7, have been defined and satisfy (3.2)-(3.7). (3.2) defines 
X, and 1,. If Z(R) > s 
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Therefore by (3.1), there are elements kR E H*(X,; Z) such that 

z:ks; ’ = pk;, 

i*ki = 6 c ~(9’) @(R - u). 
l(R-U)=s 

Let Y,+ 1 be defined by (3.3). 

Hence (3.6) is satisfied. 

p”k”, = nf(ps- ‘k;- ‘) 

= nf(Gc(@)l,_ 1) 

= &(P)l,. 

Consider the following diagram : 
&+z 

M s+2 --,M,+, 

\ 
\&+I i 

L 

z .+I 
MS-=+ H*(X,_ I) 

i*/ 
7 

The two horizontal sequences are exact. i*T,+ 1 = d,, 1, for if I(R) = s + 1 

i*?,+l(l @ R) = i*& 

= Qo CC(~*‘) 6 (R - Aj) 

= A+ 1(1@ R). 

Kernel i* = (A,/(Qd))l, since coker ?, = (A,/( Q,))l,- 1. 

We now prove (3.7). 

.* 1 c c(p”)& _ u = C ~(9’“>Qoc(S*‘) 0 CR - TV - Aj) 
I(R-U)=s+l I(R-U)=s+l,j 

= r(&_@‘v) 6 CR - V 

L i*pR. 

The second equality follows from (2.6). Kernel i* contains only even dimensional elements 
and ki has odd dimension. Therefore (3.7) holds. From the above diagram one sees that to 
verify (3.4) and (3.5) it is sufficient to show that Ts+,d,+2 = 0. If Z(R) = s + 2, 

?s+ids+2(l@R)=fs+i CQOC(@')O(R-A~) 

= Qo ~Jc(sP*J)]EBR_A, 

= Q&x 

= 0. 
This completes the inductive step. 
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$4. APPLICATIONS OF THEOREM 1.1 

In this section we give our counterexample to the conjecture stated in $1. 

We construct a counterexample for the case p = 3. Let Lq+4 = Sq v eq+4 attached by 
a map of degree 3. Let f: Sq” + Lq+4 be an element of order 9. Extend 3f to a map 
h . s4+7 ug eq+8 + Lq’4. Define L = Lq+9 = Lq+4 u,, C(.P+’ u9 eq”). Let u E Hq(L) be a 
generator, and let q > 9. Then u satisfies the hypotheses of conjecture given in $1, i.e. 
c(PR)(u) E Im(H*(L; 2) --) H*(L)) f or all R E W as c(gA1)(u) and c(P’“)(u) are the only 
non-zero c(PR)(n). Let g : L --f K(Z, q) be such that u = g*(r) mod 3. K(Z, q) = X,(q), and 
we wish to show that g does not factor through X,(q). The cells of X,(q) which contribute 
to the mod 3 homology of X,(q) in dimensions 5q + 10 are the following: IV= 6 u 
eq’4 vh C(Sqf7 v9 eq+8), where h : S9” u9 eq+8 + Lqf4 extends f and we assume h = 3h. 
Let g : L + W be the obvious map. H q+9( W; Z) = Z,, let k be agenerator. This is part of 
the k-invariant for X,(q). Then g*(k) = 3u, Y a generator of Hq+9(L; Z) w Z,. Let?: L + W 

be another map such that rr,; N rrr S 21 g. Then y = g - ix where x: L -+ K(Z, q + 4) and 

i : K(Z, q + 4) + X,(q). Now (ix)*(k) = &?3”~*(1,+~) = 0 as .@(x*(Z,+,)) = 0. Thus 
g*(k) = g*(k) # 0 and 2 cannot be extended to X,(q). 

We conclude by conjecturing that Theorem 1.3 can be generalized. That is, if Y is a 
spectrum such that H*(Y) is a free AP/( Qo) module, then a knowledge of the Bockstein 
spectral sequence of H*( Y) would determine a(Y). A case of interest is Y = MSPL. 
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