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On the ring of cooperations for 2-primary connective
topological modular forms
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This paper is dedicated to the memory of Mark Mahowald

Abstract

We analyze the ring tmf∗tmf of cooperations for the connective spectrum of topological modular
forms (at the prime 2) through a variety of perspectives: (1) the E2-term of the Adams spectral
sequence for tmf ∧ tmf admits a decomposition in terms of Ext groups for bo-Brown–Gitler
modules, (2) the image of tmf∗tmf in TMF∗TMFQ admits a description in terms of 2-variable
modular forms, and (3) modulo v2-torsion, tmf∗tmf injects into a certain product of copies of
π∗TMF0(N), for various values of N . We explain how these different perspectives are related, and
leverage these relationships to give complete information on tmf∗tmf in low degrees. We reprove
a result of Davis–Mahowald–Rezk, that a piece of tmf ∧ tmf gives a connective cover of TMF0(3),
and show that another piece gives a connective cover of TMF0(5). To help motivate our methods,
we also review the existing work on bo∗bo, the ring of cooperations for (2-primary) connective
K-theory, and in the process give some new perspectives on this classical subject matter.
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1. Introduction

The Adams–Novikov spectral sequence based on a connective spectrum E (E-ANSS) is perhaps
the best available tool for computing stable homotopy groups. For example, HFp and BP give
the classical Adams spectral sequence and the Adams–Novikov spectral sequence, respectively.

To begin to compute with the E-ANSS, one needs to know the structure of the smash powers
E∧k. When E is one of HFp, MU, or BP, the situation is simpler than in general, since in
this case E ∧ E is an infinite wedge of suspensions of E itself, which allows for an algebraic
description of the E2-term. This is not the case for bu,bo, or tmf, in which case the E2 page
is harder to describe, and in fact, has not yet been described in the case of tmf.

Mahowald and his collaborators have studied the 2-primary bo-ANSS to great effect: it gives
the only known approach to the calculation of the telescopic 2-primary v1-periodic homotopy in
the sphere spectrum [30, 32]. The starting input in that calculation is a complete description of
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bo ∧ bo as an infinite wedge of spectra, each of which is a smash product of bo with a suitable
finite complex (as in [34] and others). The finite complexes involved are the so-called integral
Brown–Gitler spectra. (See also the related work of [5, 16, 17].)

Mahowald has worked on a similar description for tmf ∧ tmf, but concluded that no
analogous result could hold. In this paper, we use his insights to explore four different
perspectives on 2-primary tmf-cooperations. While we do not arrive at a complete and closed-
form description of tmf ∧ tmf, we believe our results have the potential to be very useful as a
computational tool.

The four perspectives are the following.

(1) The E2 term of the 2-primary Adams spectral sequence for tmf ∧ tmf admits a splitting
in terms of bo-Brown–Gitler modules:

Ext(tmf ∧ tmf) ∼=
⊕
i

Ext(Σ8itmf ∧ boi).

(2) Modulo torsion, TMF∗TMF is isomorphic to a subring of the ring of integral two variable
modular forms.

(3) K(2)-locally, the ring spectrum (TMF ∧ TMF)K(2) is given by an equivariant function
spectrum:

(TMF ∧ TMF)K(2) � Mapc(G2/G48, E2)hG48 .

(4) By our Theorem 7.1, TMF∗TMF injects into a certain product of homotopy groups of
topological modular forms with level structures:

TMF ∧ TMF ↪→
∏
i∈Z,
j�0

TMF0(3j) × TMF0(5j).

The purpose of this paper is to describe and investigate the relationship between these different
perspectives. As an application of our method, in Theorems 7.14 and 7.16, we construct
connective covers t̃mf0(3) and t̃mf0(5) of the periodic spectra TMF0(3) and TMF0(5),
respectively, recovering and extending previous results of Davis, Mahowald, and Rezk [22, 33].

Others have also investigated the ring of cooperations for elliptic cohomology. Clarke and
Johnson [18] conjectured that TMF0(2)∗TMF0(2) was given by the ring of 2-variable modular
forms for Γ0(2) over Z[1/2]. Versions of this conjecture were subsequently verified by Baker
[3] (in the case of TMF[1/6]) and Laures [27] (for all TMF(Γ)[S−1] associated to congruence
subgroups, where S is a large enough set of primes to make the theory Landweber exact).
This previous work clearly feeds into perspective (2) (indeed Laures’ work is cited as an initial
step to establishing perspective (2)). In retrospect, Baker’s work also contains observations
related to perspective (4): in [3], he observes that the ring of 2-variable modular forms can
be regarded as a certain space of functions on a space of isogenies of elliptic curves. Finally,
since the writing of this paper, Culver has produced a similar (but more complete) analysis of
tmf1(3)∗tmf1(3) (a.k.a. BP 〈2〉∗BP 〈2〉) [21].

1.1. A tour of the paper

For the reader’s convenience, we take some time here to outline the contents of the paper.

Section 2

This section reviews Brown–Gitler comodules and Brown–Gitler spectra, splittings associated
to these, and exact sequences which relate the various comodules.

Sections 2.1 and 2.2 begin with a review of mod 2, integral, and bo-Brown–Gitler spectra.
Our interest stems from the fact (Section 2.3) that the E2-term of the Adams spectral sequence
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for bo ∧ bo (respectively, tmf ∧ tmf) splits as a direct sum of Ext-groups for the integral
(respectively, bo) Brown–Gitler spectra. Section 2.4 recalls some exact sequences used in [9]
which allow for an inductive approach for computing Ext of bo-Brown–Gitler comodules, and
introduces related sequences which allow for an inductive approach to Ext groups of integral
Brown–Gitler comodules.

Section 3

This section is devoted to the motivating example of bo ∧ bo. Sections 3.1–3.3 are primarily
expository, based upon the foundational work of Adams, Lellmann, Mahowald, and Milgram.
We make an effort to consolidate their theorems and recast them in modern notation and
terminology, and hope that this will prove a useful resource to those trying to learn the classical
theory of bo-cooperations and v1-periodic stable homotopy. To the best of our knowledge,
Sections 3.4 and 3.5 provide new perspectives on this subject.

Section 3.1 is devoted to the homology of the HZi and certain ExtA(1)∗ -computations relevant
to the Adams spectral sequence computation of bo∗bo.

We shift perspectives in Section 3.2 and recall Adams’s description of KU∗KU in terms of
numerical polynomials. This allows us to study the image of bu∗bu in KU∗KU as a warm-up
for our study of the image of bo∗bo in KO∗KO.

We undertake this latter study in Section 3.3, where we ultimately describe a basis of KO0bo
in terms of the ‘9-Mahler basis’ for 2-adic numerical polynomials with domain 2Z2. By studying
the Adams filtration of this basis, we are able to use the above results to fully describe bo∗bo
mod v1-torsion elements.

In Section 3.4, we link the above two perspectives, studying the image of bo∗HZi in KO∗KO.
Theorem 3.6 provides a complete description of this image (mod v1-torsion) in terms of the
9-Mahler basis.

We conclude with Section 3.5 which studies a certain map

KO ∧ KO
∏

ψ̃3k

−−−−→
∏
k∈Z

KO

constructed from Adams operations. We show that this map is an injection after applying π∗
and exhibit how it interacts with the Brown–Gitler decomposition of bo ∧ bo.

Section 4

In Section 4, we recall certain essential features of TMF and tmf, the periodic and connective
topological modular forms spectra.

Section 4.1 reviews the Goerss–Hopkins–Miller sheaf of E∞-ring spectra, Otop, on the moduli
stack of smooth elliptic curves M. One can use this sheaf to construct TMF (sections on M
itself), TMF1(n) (sections on the moduli stack of Γ1(n)-structures after inverting n), and
TMF0(n) (sections on the moduli stack of Γ0(n)-structures after inverting n). We consider the
maps

f, q : TMF[1/n] → TMF0(n)

induced by forgetting the level structure and taking the quotient by it, respectively. We use
these maps to produce a TMF[1/n]-module map

Ψn : TMF[1/n] ∧ TMF[1/n] → TMF0(n)

important in our subsequent studies.
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Section 4.2 reviews Lawson and Naumann’s work on the construction of BP〈2〉 as the E∞-ring
spectrum tmf1(3). We use formal group laws and some computer calculations to compute the
maps

BP∗ → tmf1(3)∗, BP∗BP → tmf1(3)∗tmf1(3).

We isolate the lowest Adams filtration portion of this map in Section 4.4 via our computation
of π∗f : TMF∗ → TMF1(3)∗ in Section 4.3.

Finally, we review the K(2)-local version of TMF ∧ TMF in Section 4.5.

Section 5

With the stage set, our work begins in earnest in Section 5. Here we study the Adams spectral
sequence for tmf ∧ tmf.

We study the rational behavior of this spectral sequence in Section 5.1, observing that it
collapses after inverting v0. This provides a precise computation of the map

v−1
0 Ext(tmf ∧ Σ8jboj) → v−1

0 Ext(tmf ∧ tmf).

In Section 5.2, the exact sequences of Section 2.4 are used to perform an inductive
computation of Ext(tmf ∧ Σ8jboj) relative to Ext(tmf ∧ bo∧k

1 ). We produce detailed charts
for Ext(tmf ∧ Σ8jboj) for j � 6.

Sections 5.3 and 5.4 are concerned with identifying the generators of the lattice

Ext(tmf ∧ Σ8jboj)/v0-torsion

inside of the ‘vector space’

v−1
0 Ext(tmf ∧ Σ8jboj).

In Section 5.3, we produce an inductive method compatible with the exact sequences of
Section 2.4. Section 5.4 completes the task of computing said generators.

Section 6

In Section 6, we study the role of 2-variable modular forms in tmf-cooperations. Baker and
Laures have proved that, after inverting 6, TMF-cooperations are precisely the 2-variable Γ(1)
modular forms (meromorphic at the cusp).

After reviewing the Baker–Laures work in Section 6.1, we adapt it to the study of TMF∗TMF
modulo torsion in Section 6.2. In particular, we prove that 2-integral 2-variable Γ(1)-modular
forms (again meromorphic at the cusp) are exactly the 0-line of a descent spectral sequence
for TMF∗TMF.

The efficacy of this result becomes apparent in Section 6.3 where we prove that tmf∗tmf
modulo torsion injects into the ring of 2-integral 2-variable modular forms with nonnegative
Adams filtration. Moreover, the injection is a rational isomorphism; once again we are primed
to identify the generators of a lattice inside a vector space.

Sections 6.4 and 6.5 undertake the task of detecting 2-variable modular forms in the Adams
spectral sequence for tmf ∧ tmf, resulting in a table of 2-variable modular form generators of
Ext(tmf ∧ tmf)/torsion in dimensions � 64.

Section 7

Our final section studies the level structure approximation map

Ψ : tmf ∧ tmf →
∏

i∈Z,j�0

TMF0(3j) × TMF0(5j).
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The first theorem of Section 7.1 is that the analogous map

ψ : TMF ∧ TMF →
∏

i∈Z,j�0

TMF0(3j) × TMF0(5j)

induces an injection on homotopy groups. The proof is quite involved. It includes a reduction to
a K(2)-local variant of the theorem, whose proof in turn requires the key technical Lemma 7.4
on detecting homotopy fixed points of profinite groups using dense subgroups.

In Section 7.2, we compute the effect of the maps

Ψ3 : π∗tmf ∧ tmf → π∗TMF0(3),

Ψ5 : π∗tmf ∧ tmf → π∗TMF0(5)

on a certain submodules of π∗tmf ∧ tmf.
In Section 7.3, we observe that these computations allow us to deduce differentials and hidden

extensions in the corresponding portion of the ASS for tmf ∧ tmf using the known homotopy
of TMF0(3) and TMF0(5).

Davis, Mahowald, and Rezk [22, 33] observed that one can build a connective cover

t̃mf0(3) → TMF0(3)

out of tmf ∧ bo1 and a piece of tmf ∧ bo2. In Section 7.4, we reprove this result, and relate this
connective cover to our map Ψ3. We also show that similar methods allow us build a connective
cover

t̃mf0(5) → TMF0(5)

out of the other part of tmf ∧ bo2, tmf ∧ bo3, and a piece of tmf ∧ bo4. Note that neither
t̃mf0(3) nor t̃mf0(5) coincide with the Hill–Lawson connective covers of TMF0(N). The
connective covers we consider are 7-connected and 23-connected, respectively.

1.2. Notation and conventions

In this paper, unless we say explicitly otherwise, we shall always be implicitly working 2-locally.
We denote homology by H∗, and it will be taken with mod 2 coefficients, unless specified
otherwise. We let A = H∗H denote the mod 2 Steenrod algebra, and

A∗ = H∗H ∼= F2[ξ1, ξ2, . . .]

denotes its dual. In any Hopf algebra, we let x denote the antipode of x. We let A(i) denote
the subalgebra of A generated by Sq1, . . . ,Sq2i

. Let A//A(i) be the Hopf algebra quotient of
A by A(i) and let (A//A(i))∗ be the dual of this Hopf algebra.

We will use Ext(X) to abbreviate ExtA∗(F2, H∗X), the E2-term of the Adams spectral
sequence (ASS) for π∗X and will let C∗

A∗(H
∗X) denote the corresponding cobar complex.

Given an element x ∈ π∗X, we shall let [x] denote the coset of the ASS E2-term which detects
x. We let AF (x) denote the Adams filtration of x.

We write bu for the connective complex K-theory spectrum, bo for the connective real
K-theory spectrum, and bsp for the connective symplectic K-theory spectrum, so that Σ4bsp
is the 3-connected cover of bo.

2. Brown–Gitler comodules and spectra

Mod 2 Brown–Gitler spectra were introduced in [14] to study obstructions to immersing
manifolds, but immediately found use in studying the stable homotopy groups of spheres (for
example, [19, 31] and many other places). Mahowald, Milgram, and others have used integral
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Brown–Gitler modules/spectra to decompose the ring of cooperations of bo [32, 34], and much
of the work of Davis, Mahowald, and Rezk on tmf-resolutions has been based on the use of
bo-Brown–Gitler spectra [9, 22, 33]. In this section, we collect the things about Brown–Gitler
comodules and spectra that pertain to the subject matter of this paper.

2.1. Brown-Gitler comodules

Consider the subalgebras of the dual Steenrod algebra

(A//A(i))∗ = F2[ξ̄2i+1

1 , ξ̄2i

2 , . . . , ξ̄2
i+1, ξ̄i+2, . . . ].

The first few of these arise as the homology of spectra:

H∗HF2
∼= A∗ = (A//A(−1))∗,

H∗HZ ∼= (A//A(0))∗,

H∗bo ∼= (A//A(1))∗,

H∗tmf ∼= (A//A(2))∗.

The algebra (A//A(i))∗ admits an increasing filtration by defining wt(ξ̄j) = 2j−1; every element
has filtration divisible by 2i+1. The Brown–Gitler subcomodule Ni(j) is defined to be the
F2-subspace spanned by all monomials of weight less than or equal to 2i+1j, which is also an
A∗-subcomodule as the coaction cannot increase weight.

2.2. Brown–Gitler spectra

The modules N−1(j) through N1(j) are known to be realizable by the mod-2 (classical),
integral, and bo-Brown–Gitler spectra, respectively [25], which we will denote by (HF2)j ,
HZj , and boj , since we have

HF2 � lim−→(HF2)j ,

HZ � lim−→HZj ,

bo � lim−→ boj .

To clarify notation, we shall underline a spectrum to refer to the corresponding subcomodule
of the dual Steenrod algebra, so that we have

(HF2)j := H∗(HF2)j = N−1(j),

HZj := H∗HZj = N0(j),

boj := H∗boj = N1(j).

It is not known if tmf-Brown–Gitler spectra tmfj exist in general, though we will still define

tmfj := N2(j).

The spectrum N3(1) is not realizable, by the Hopf-invariant one theorem.

2.3. Algebraic and topological splittings

There are algebraic splittings of A(i)∗-comodules

(A//A(i))∗ ∼=
⊕
j

Σ2i+1jNi−1(j).
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This splitting is given by the sum of maps:

Σ2i+1jNi−1(j) → (A//A(i))∗
ξ̄i11 ξ̄i22 · · · 	→ ξ̄a1 ξ̄

i1
2 ξ̄i23 · · · , (2.1)

where the exponent a above is chosen such that the monomial has weight 2i+1j. It follows that
there are algebraic splittings

Ext(HZ ∧ HZ) ∼=
⊕

ExtA(0)∗(Σ
2j(HF2)j), (2.2)

Ext(bo ∧ bo) ∼=
⊕

ExtA(1)∗(Σ
4jHZj), (2.3)

Ext(tmf ∧ tmf) ∼=
⊕

ExtA(2)∗(Σ
8jboj). (2.4)

These algebraic splittings can be realized topologically for i � 1 [32]:

HZ ∧ HZ �
∨
j

Σ2jHZ ∧ (HF2)j ,

bo ∧ bo �
∨
j

Σ4jbo ∧ HZj .

However, the corresponding splitting fails for tmf as was shown by Davis, Mahowald, and Rezk
[22, 33], so

tmf ∧ tmf 
�
∨
j

Σ8jtmf ∧ boj .

Indeed, they observe that in tmf ∧ tmf the homology summands

Σ8tmf ∧ bo1, and Σ16tmf ∧ bo2

are attached nontrivially. We shall see in Section 7.4 that our methods recover this fact.

2.4. Short exact sequences relating Brown–Gitler comodules

The E2 terms of the Adams spectral sequences

ExtA(1)∗((A//A(1))∗) ⇒ bo∗bo

ExtA(2)∗((A//A(2))∗) ⇒ tmf∗tmf

split, by (2.3), (2.4) into summands of the form

ExtA(1)∗(HZj),

ExtA(2)∗(boj).

It is therefore desirable to compute the above Ext groups. In [9], this is accomplished inductively
by means of a certain exact sequences relating these Brown–Gitler comodules [9, Lemmas 7.1,
7.2].

We begin by pointing out that a similar set of exact sequences interrelates the integral
Brown–Gitler comodules.

Lemma 2.5. There are short exact sequences of A(1)∗-comodules

0 → Σ4jHZj → HZ2j → boj−1 ⊗ (A(1)//A(0))∗ → 0, (2.6)

0 → Σ4jHZj ⊗ HZ1 → HZ2j+1 → boj−1 ⊗ (A(1)//A(0))∗ → 0. (2.7)
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Proof. The proof is almost identical to that given in [9]. On the level of basis elements, the
map

Σ4jHZj → HZ2j

is given by

ξ̄2i1
1 ξ̄i22 · · · 	→ ξ̄a1 ξ̄

2i1
2 ξ̄i23 · · · ,

where the integer a is 4j − wt(ξ̄2i1
2 ξ̄i23 · · · ). The map

Σ4jHZj ⊗ HZ1 → HZ2j+1

is determined by

ξ̄2i1
1 ξ̄i22 · · · ⊗ 1 	→ (ξ̄a1 ξ̄

2i1
2 ξ̄i23 · · · ) · 1,

ξ̄2i1
1 ξ̄i22 · · · ⊗ ξ̄2

1 	→ (ξ̄a1 ξ̄
2i1
2 ξ̄i23 · · · ) · ξ̄2

1 ,

ξ̄2i1
1 ξ̄i22 · · · ⊗ ξ̄2 	→ (ξ̄a1 ξ̄

2i1
2 ξ̄i23 · · · ) · ξ̄2.

We abbreviate this by writing

ξ̄2i1
1 ξ̄i22 · · · ⊗ {1, ξ̄2

1 , ξ̄2} 	→ (ξ̄a1 ξ̄
2i1
2 ξ̄i23 · · · ) · {1, ξ̄2

1 , ξ̄2}. (2.8)

The maps

HZ2j → boj−1 ⊗ (A(1)//A(0))∗,

HZ2j+1 → boj−1 ⊗ (A(1)//A(0))∗

are given by

ξ̄4i1+2ε1
1 ξ̄2i2+ε2

2 ξ̄i33 · · · 	→
{
ξ̄4i1
1 ξ̄2i2

2 ξ̄i33 · · · ⊗ ξ̄2ε1
1 ξ̄ε22 , wt(ξ̄4i1

1 ξ̄2i2
2 ξ̄i33 · · · ) � 4j − 4,

0, otherwise,

where εs ∈ {0, 1}. The proof is now a direct computation. �

The exact sequences of [9] which relate the different bo-Brown–Gitler comodules take the
form:

0 → Σ8jboj → bo2j → (A(2)//A(1))∗ ⊗ tmfj−1 → Σ8j+9boj−1 → 0, (2.9)

0 → Σ8jboj ⊗ bo1 → bo2j+1 → (A(2)//A(1))∗ ⊗ tmfj−1 → 0 (2.10)

Remark 2.11. Technically speaking, as is addressed in [9], the comodules (A(2)//A(1))∗ ⊗
tmfj−1 in the above exact sequences have to be given a slightly different A(2)∗-comodule
structure from the standard one arising from the tensor product. However, this different
comodule structure ends up being Ext-isomorphic to the standard one. As we are only interested
in Ext groups, the reader can safely ignore this subtlety.

We briefly recall how the maps in the exact sequences (2.9) and (2.10) are defined. On the
level of basis elements, the maps

Σ8jboj → bo2j ,

Σ8jboj ⊗ bo1 → bo2j+1

are given, respectively, by
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ξ̄4i1
1 ξ̄2i2

2 ξ̄i33 · · · 	→ ξ̄a1 ξ̄
4i1
2 ξ̄2i2

3 ξ̄i34 · · · ,
ξ̄4i1
1 ξ̄2i2

2 ξ̄i33 · · · ⊗ {1, ξ̄4
1 , ξ̄

2
2 , ξ̄3} 	→ (ξ̄a1 ξ̄

4i1
2 ξ̄2i2

3 ξ̄i34 · · · ) · {1, ξ̄4
1 , ξ̄

2
2 , ξ̄3},

where a is taken to be 8j − wt(ξ̄4i1
2 ξ̄2i2

3 ξ̄i34 · · · ). Here, we are using the notation introduced in
(2.8). The maps

bo2j → (A(2)//A(1))∗ ⊗ tmfj−1, (2.12)

bo2j+1 → (A(2)//A(1))∗ ⊗ tmfj−1 (2.13)

are given by

ξ̄8i1+4ε1
1 ξ̄4i2+2ε2

2 ξ̄2i3+ε3
3 ξ̄i44 · · ·

	→
{
ξ̄8i1
1 ξ̄4i2

2 ξ̄2i3
3 ξ̄i44 · · · ⊗ ξ̄4ε1

1 ξ̄2ε2
2 ξ̄ε33 , wt(ξ̄8i1

1 ξ̄4i2
2 ξ̄2i3

3 ξ̄i44 · · · ) � 8j − 8,

0, otherwise,

where εs ∈ {0, 1}. The only change from the integral Brown–Gitler case is that while the map
(2.13) is surjective, the map (2.12) is not. The cokernel is spanned by the submodule

F2{ξ̄4
1 ξ̄

2
2 ξ̄3} ⊗ Σ8j−8boj−1 ⊂ (A(2)//A(1))∗ ⊗ tmfj−1.

We therefore have an exact sequence

bo2j → (A(2)//A(1))∗ ⊗ tmfj−1 → Σ8j+9boj−1 → 0.

Remark 2.14. The authors do not know if analogues of the exact sequences (2.6), (2.7),
(2.9), (2.10) exist in general the Brown–Gitler comodules Ni(j). Culver [21] constructs analogs
of these in the context of BP 〈2〉-cooperations in [21].

3. Motivation: analysis of bo∗bo

In analogy with the four perspectives described in the introduction, there are four primary
perspectives on the ring of cooperations for real K-theory.

(1) There is a decomposition (at the prime 2)

bo ∧ bo �
∨
j�0

Σ4jbo ∧ HZj .

(2) There is an isomorphism KO∗KO ∼= KO∗ ⊗KO0 KO0KO, and KO0KO is isomorphic to
a subring of the ring of numerical functions.

(3) K(1)-locally, the ring spectrum (KO ∧ KO)K(1) is given by the function spectrum

(KO ∧ KO)K(1) � Map(Z×
2 /{±1},KO∧

2 ).

(4) By evaluation on Adams operations, KO∗KO injects into a product of copies of KO:

KO ∧ KO ↪→
∏
i∈Z

KO.

In this section, we will recall results from the literature which relate these four perspectives.
Our discussion of bo∗bo will frame our subsequent treatment of tmf∗tmf.

3.1. The Adams spectral sequence for bo∗bo

In this section, we will compute the Adams spectral sequence

ExtA(1)∗((A//A(1))∗) ⇒ bo∗bo. (3.1)



586 M. BEHRENS, K. ORMSBY, N. STAPLETON AND V. STOJANOSKA

The splitting (2.3) reduces the understanding of the Adams E2-term for bo ∧ bo to an
understanding of ExtA(1)∗(HZj).

Define
ExtA(1)∗(X)

v1-tor
:= Image

(
ExtA(1)∗(X) → v−1

1 ExtA(1)∗(X)
)
.

The following lemma follows from a simple induction (for instance, using the algebraic Atiyah–
Hirzebruch spectral sequence), using the fact that HZ1 is given by the following cell diagram.

Lemma 3.2. We have

ExtA(1)∗(HZ⊗i
1 )

v1-tor
∼=
{

Ext(bo〈i〉), i even,

Ext(bsp〈i−1〉), i odd.

Here, X〈i〉 denotes the ith Adams cover.

We deduce the following well-known result (cf. [30, Theorem 2.1]).

Proposition 3.3. For a nonnegative integer j, denote by α(j) the number of 1’s in the
dyadic expansion of j. Then,

ExtA(1)∗(HZj)
v1-tor

∼=
{

Ext(bo〈2j−α(j)〉), j even,

Ext(bsp〈2j−α(j)−1〉), j odd.

Proof. This may be established by induction on j using the short exact sequences of
Lemma 2.5, by augmenting Lemma 3.2 with the following facts.

(1) All v0-towers in ExtA(1)∗(HZi) are v1-periodic. This can be seen as ExtA(1)∗(HZj) is a
summand of Ext(bo ∧ bo), and after inverting v0, the latter has no v1-torsion. Explicitly, we
have,

v−1
0 Ext(bo ∧ bo) = F2[v±1

0 , u2, v2].

(2) We have,

ExtA(1)∗((A(1)//A(0))∗ ⊗ boj)
v0-tors

∼= ExtA(0)∗(boj)
v0-tors

∼= F2[v0]{1, ξ4
1 , . . . , ξ

4j
1 }.

This follows from the fact that
ExtA(0)∗(HZj)

v0-tors
∼= F2[v0],

which, for instance, can be established by induction using the short exact sequences of
Lemma 2.5. �

It turns out the v1-torsion is all concentrated in Adams filtration 0 (see, for instance, [32]).
It follows that for dimensional reasons, the only possible nontrivial differentials in spectral
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sequence (3.1) go from v1-torsion classes to v4
1-periodic classes. This is not possible, so we

deduce

Corollary 3.4. The Adams spectral sequence for bo∗bo collapses at E2.

3.2. The cooperations of KU and bu

In order to put the ring of cooperations for bo in the proper setting, we briefly review the story
for bu. We begin by recalling the Adams–Harris determination of KU∗KU [1, Section II.13].
We have an arithmetic square

which results in a pullback square after applying π∗

Setting w = v/u, the bottom map in the above square is given on homogeneous polynomials
by

f(u, v) = unf(1, w) 	→ (λ 	→ unf(1, λ)).

We therefore deduce that KU∗KU = KU∗ ⊗KU0 KU0KU, and continuity implies that

KU0KU = {f(w) ∈ Q[w±1] : f(k) ∈ Z(2), for all k ∈ Z×
(2)}.

Note that we can perform a similar analysis for KU∗bu: since bu and KU are K(1)-locally
equivalent, applying π∗ to the arithmetic square yields a pullback square with the same terms
on the right hand edge

Consequently, KU∗bu = KU∗ ⊗KU0 KU0bu, with

KU0bu = {g(w) ∈ Q[w] : g(k) ∈ Z(2), for all k ∈ Z×
(2)}.

Consider the related space of 2-local numerical polynomials:

NumPoly(2) := {h(x) ∈ Q[x] : h(k) ∈ Z(2), for all k ∈ Z(2)}.
The theory of numerical polynomials states that NumPoly(2) is the free Z(2)-module generated
by the basis elements

hn(x) :=
(
x

n

)
=

x(x− 1) · · · (x− n + 1)
n!

.
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We can relate KU0bu to NumPoly(2) by a change of coordinates. A function on Z×
(2) can be

regarded as a function on Z(2) via the change of coordinates

Z(2)
≈−→ Z×

(2)

k 	→ 2k + 1.

Observe that

k(k − 1) · · · (k − n + 1)
n!

=
2k(2k − 2) · · · (2k − 2n + 2)

2nn!

=
((2k + 1) − 1)((2k + 1) − 3) · · · ((2k + 1) − (2n− 1))

2nn!
.

We deduce that a Z(2)-basis for KU0bu is given by

gn(w) =
(w − 1)(w − 3) . . . (w − (2n− 1))

2nn!
.

(Compare with [1, Proposition 17.6(i)].)
From this, we deduce a basis of the image of the map

bu∗bu ↪→ KU∗KU,

as we now explain. In [1, p. 358], it is shown that this image is the ring

bu∗bu
v1-tor

= (KU∗bu ∩ Q[u, v])AF�0,

where AF � 0 means the elements of Adams filtration � 0. Since the elements 2, u, and v have
Adams filtration 1, this image is equivalently described as

bu∗bu
v1-tor

= KU∗bu ∩ Z(2)[u/2, v/2].

To compute a basis for this image, we need to calculate the Adams filtration of the elements
of the basis {gn(w)} for KU0bu. Since w has Adams filtration 0, we need only compute the
2-divisibility of the denominators of the functions gn(w). As usual in this subject, for an integer
k ∈ Z, let ν2(k) be the largest power of 2 that divides k and let α(k) be the number of 1’s in
the binary expansion of k. Then,

ν2(n!) = n− α(n)

and so

AF(gn) = α(n) − 2n.

The following is a list of the Adams filtration of the first few basis elements:

n binary AF(gn)

0 0 0
1 1 −1
2 10 −3
3 11 −4
4 100 −7
5 101 −8
6 110 −10
7 111 −11
8 1000 −15
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Figure 3.1 (colour online). bu∗bu.

It follows (compare with [1, Proposition 17.6(ii)]) that the image of bu∗bu in KU∗KU is the
free module:

bu∗bu
v1-tor

= Z(2){2max(0,2n−m−α(n))umgn(w) : n � 0,m � n}.

The Adams chart in Figure 3.1 illustrates how the Mahler basis can be used to identify
bu∗bu/v1 − tors as a bu∗-module inside of KU∗KU. Namely:

(1) start with the Mahler basis gn(w) (on the negative s-axis);
(2) draw u-towers on each of the gn(w)′s;
(3) for each m � n, add a v0-tower on umgn(w), starting in nonnegative Adams filtration.

Restricted to the first quadrant, this gives the v1-torsion-free summand of the Adams spectral
sequence for bu∗bu.

3.3. The cooperations of KO and bo

Adams and Switzer computed KO∗KO along similar lines [1, Section II.17]. There is an
arithmetic square
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which results in a pullback when applying π∗

(One can use the fact that KU∧
2 is a K(1)-local C2-Galois extension of KO∧

2 to identify the
upper right hand corner of the above pullback.) Continuing to let w = v/u, the bottom map
in the above square is given by

f(u2, v2) = u2nf(1, w2) 	→ (
[λ] 	→ u2nf(1, λ2)

)
.

We therefore deduce that KO∗KO = KO∗ ⊗KO0 KO0KO, with

KO0KO = {f(w2) ∈ Q[w±2] : f(λ2) ∈ Z×
2 , for all [λ] ∈ Z×

2 /{±1}}.
Again, KO∗bo is similarly determined: since bo and KO are K(1)-locally equivalent, applying

π∗ to the arithmetic square yields a pullback square with the same terms on the right hand
edge:

We therefore deduce that KO∗bo = KO∗ ⊗KO0 KO0bo, with

KO0bo = {f(w2) ∈ Q[w2] : f(λ2) ∈ Z2, for all [λ] ∈ Z×
2 /{±1}}.

To produce a basis of this space of functions, we use the q-Mahler bases developed in [20],
which we promptly recall. First note that there is an exponential isomorphism

Z2

∼=−→ Z×
2 /{±1} : k 	→ [3k].

Taking w = 3k, we have w2 = 9k, or in other words, the functions f(w2) that we are concerned
with can be regarded as functions on 2Z2. They take the form

f(9k) : 2Z2
∼= 1 + 8Z2 −→ Z2,

where 1 + 8Z2 ⊂ Z×
2 is the image of 2Z2 under the isomorphism given by 3k.

To obtain a q-Mahler basis as in [20] with q = 9 it is important that ν2(9 − 1) > 0. The
q-Mahler basis is a basis for numerical polynomials with domain restricted to 2Z2. In the
notation of [20], we have that

f(9k) =
∑
n�0

cn

(
k

n

)
9

,

where cn ∈ Z(2) are coefficients and(
k

n

)
9

=
(9k − 1)(9k − 9) · · · (9k − 9n−1)
(9n − 1)(9n − 9) · · · (9n − 9n−1)

.

Let us set

fn(w2) =
(w2 − 1)(w2 − 9) · · · (w2 − 9n−1)
(9n − 1)(9n − 9) · · · (9n − 9n−1)

; (3.5)
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Figure 3.2 (colour online). bo∗bo.

then any f ∈ KO0bo is given by

f(w2) =
∑
n

cnfn(w2), cn ∈ Z(2),

that is, a basis for KO0bo is given by the set {fn(w2)}n�0.
As in the KU-case, it turns out that the image of bo∗bo in KO∗KO is given by

bo∗bo
v1-tor

= (KO∗bo ∩ Q[u2, v2])AF�0.

In order to compute a basis for this, we once again need to know the Adams filtration of fn.
One can show that

ν2((9n − 1)(9n − 9) · · · (9n − 9n−1)) = ν2(n!) + 3n

= 4n− α(n).

It follows that we have
bo∗bo
v1-tor

= Z(2){2max(0,4n−2m−α(n))u2mfn(w2) : n � 0, m � n, m ≡ 0 mod 2}

⊕ Z(2){2max(0,4n−2m−1−α(n))2u2mfn(w2) : n � 0, m � n, m ≡ 0 mod 2}

⊕ Z/2

{
u2mfn(w2)ηc :

n � 0, m � n, m ≡ 0 mod 2,
c ∈ {1, 2}, α(n) − 4n + 2m + c � 0

}
.

Here is a list of the Adams filtration of the first several elements in the q-Mahler basis:

n fn in terms of gi AF(fn)

0 g0 0
1 g2 + g1 −3
2 1

15
g4 + 2

15
g3 + 1

15
g2 −7

With this information, we can now give the Adams chart (Figure 3.2) of bo∗bo modulo
v1-torsion.
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3.4. Calculation of the image of bo∗HZj in KO∗KO

We now compute the image (on the level of Adams E∞-terms) of the composite

bo∗HZj → bo∗bo → KO∗KO.

Since v−1
1 bo∗Σ4jHZj

∼= KO∗, it suffices to determine the image of the generator

e4j ∈ bo4j(Σ4jHZj).

Because the maps

bo ∧ Σ4jHZj → bo ∧ bo

are constructed to be bo-module maps, everything else is determined by 2 and v1, that is,
u-multiplication. Consider the commutative diagram induced by the maps bo → bu, bu → HF2,
and BP → bu

On the level of homotopy groups the bottom row of the above diagram takes the form

F2{ξ̄4j
1 , . . .} ↪→ F2[ξ̄4

1 , ξ̄
2
2 , ξ̄3, . . .] ↪→ F2[ξ̄1, ξ̄2, ξ̄3, . . .].

Since we have

bo∗Σ4jHZj → (HF2)∗Σ4jHZj

e4j 	→ ξ̄4j
1 ,

it suffices to find an element bj ∈ bo4jbo such that

bo∗bo → (HF2)∗bo

bi 	→ ξ̄4j
1 .

Clearly we can take b0 = 1 ∈ bo0bo. Note that we have

BP∗BP → (HF2)∗HF2

t1 	→ ξ̄2
1 .

From the equation

ηR(v1) = v1 + 2t1

and the fact that the map BP∗BP → bu∗bu is one of Hopf algebroids, we deduce that we have

BP∗BP → bu∗bu

t1 	→ v − u

2
= ug1(w).

Hence, we get that

bu∗bu → (HF2)∗HF2

v − u

2
	→ ξ̄2

1
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and thus,

bu∗bu → (HF2)∗HF2(
v2 − u2

4

)j

	→ ξ̄4j
1 .

Since

22j−α(j)u2jfj(w2) =
(
v2 − u2

4

)j

modulo terms of higher AF

by (3.5) we see that we have

bo∗bo → (HF2)∗bo

22j−α(j)u2jfj(w2) 	→ ξ̄4j
1 ,

so that we can take

bj = 22j−α(j)u2jfj(w2).

We have therefore arrived at the following well-known theorem (see [30, Corollary 2.5(a)]).

Theorem 3.6. The image of the map

Ext(bo ∧ Σ4jHZj)
v1-tors

→ Ext(bo ∧ bo)
v1-tors

is the submodule

F2[v0]{vmax(0,4j−2m−α(j))
0 u2mfj(w2) : m � j, m ≡ 0 mod 2}

⊕ F2[v0]{vmax(0,4j−2m−1−α(j))
0 v0u

2mfj(w2) : m � j, m ≡ 0 mod 2}

⊕ F2

{
u2mfj(w2)ηc :

m � j, m ≡ 0 mod 2,
c ∈ {1, 2}, α(j) − 4j + 2m + c � 0

}
.

Remark 3.7. For each j � 0, this theorem describes a submodule of Ext(bo∧bo)
v1-tors

. These
submodules are represented by the different colors in Figure 3.2.

3.5. The embedding into
∏

KO

The final step is to consider the maps of KO-algebras given by the composite

ψ̃3k

: KO ∧ KO
1∧ψ3k

−−−−→ KO ∧ KO
μ−→ KO

where ψ3k

is the 3k th Adams operation. Together, they result in a map of KO-algebras

KO ∧ KO
∏

ψ̃3k

−−−−→
∏
k∈Z

KO.

Remark 3.8. The map above has a modular interpretation. Let Mfg denote the moduli
stack of formal groups, and let

(Spec Z)//C2 → Mfg
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classify Ĝm with the action of [−1]. This map equips (Spec Z)//C2 with a sheaf of E∞-rings,
such that the derived global sections are KO; the reader is referred to[29, the Appendix] for
details. The spectrum KO ∧ KO is the global sections of the pullback(

Spec Z ×Mfg
Spec Z

)
//(C2 × C2).

For k ∈ Z, we may consider the map of stacks

(Spec Z)//C2 → (
Spec Z ×Mfg

Spec Z
)
//(C2 × C2)

sending Ĝm to the object [3k] : Ĝm → Ĝm. As k varies, this induces the map
∏

ψ̃3k

.

Proposition 3.9. The map

KO∗KO
∏

ψ̃3k

−−−−→
∏
k∈Z

KO∗

is an injection.

Proof. Consider the diagram

where the bottom horizontal map is the map induced from the inclusion of groups

3Z ↪→ Z×
2 /{±1}.

The vertical maps are injections, since⋂
i

2iKO∗KO = 0, and
⋂
i

2iKO∗ = 0.

The bottom horizontal map is an injection since 3Z is dense in Z×
2 /{±1}. The result follows. �

We investigated the Brown–Gitler wedge decomposition∨
j

bo ∧ Σ4jHZj
�−→ bo ∧ bo,

and we now end this section by explaining how the map

KO ∧ KO
∏

ψ̃3k

−−−−→
∏
k∈Z

KO

is compatible with the above decomposition.

Proposition 3.10. The composites

bo ∧ HZj → bo ∧ bo → KO ∧ KO
ψ̃3j

−−→ KO

are equivalences after inverting v1.
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Proof. This follows from the fact that fj(9j) = 1. �

Remark 3.11. In fact, the ‘matrix’ representing the composite∨
j

bo ∧ HZj → bo ∧ bo → KO ∧ KO
∏

ψ̃3k

−−−−→
∏
k∈Z

KO

is upper triangular, as we have

fj(9k) =

{
0, k < j,

1, k = j.
(3.12)

This is related to a result of Barker and Snaith [6] in the following way. They prove that with
respect to the decomposition

bu ∧ bo �
∨
j

Σ4jbu ∧HZj (3.13)

the automorphism

1 ∧ ψ3 : bu ∧ bo → bu ∧ bo

is represented by a matrix conjugate to⎛⎜⎜⎜⎝
1 1 0 0 · · ·
0 9 1 0 · · ·
0 0 92 1 · · ·
...

...
...

. . . . . .

⎞⎟⎟⎟⎠ .

Therefore, 1 ∧ ψ3k

corresponds to a matrix of the form⎛⎜⎜⎜⎜⎝
k−1︷ ︸︸ ︷∗ · · · ∗ 1 0 0 · · ·
...

...
...

...
...

...
...

...

⎞⎟⎟⎟⎟⎠ . (3.14)

Using the fact that the composite

bu ∧ bo → bu ∧ bu
μ−→ bu

corresponds to projection on the j = 0 summand of (3.13), it follows that (3.12) is consistent
with the top row of the matrix (3.14).

4. Recollections on topological modular forms

4.1. Generalities

In this subsection, we work integrally. The remainder of this paper is concerned with
determining as much information as we can about the cooperations in the homology theory
tmf of connective topological modular forms, following our guiding example of bo. Even more
than in the bo case, an extensive cast of characters will play supporting roles. First of all, we
will extensively use the periodic spectrum TMF, which is the analogue of KO. In particular,
we will use the fact that this periodic form of topological modular forms arises as the global
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sections of the Goerss–Hopkins–Miller sheaf of ring spectra Otop on the moduli stack of smooth
elliptic curves M. As the associated homotopy sheaves are

πkOtop =

{
ω⊗k/2, if k is even,
0, if k is odd,

there is a descent spectral sequence

Hs(M, ω⊗t) ⇒ π2t−sTMF.

Morally, the connective tmf should arise as global sections of an analogous sheaf on the
moduli stack of all cubic curves (that is, allowing nodal and cuspidal singularities); however,
this has not been formally carried out. Nevertheless, tmf can be constructed as an E∞-ring
spectrum from TMF as a result of the gap in the homotopy of a third, nonconnective and
nonperiodic, version of topological modular forms associated to the compactification of M.

Rationally, every smooth elliptic curve C/S is locally isomorphic to a cubic of the form

y2 = x3 − 27c4x− 54c6,

with the discriminant Δ = c34 − c26 invertible. Here ci is a section of the line bundle ω⊗i over
the étale map S → M classifying C. This translates to the fact that MQ

∼= Proj Q[c4, c6][Δ−1],
which in turn implies that (TMF∗)Q = Q[c4, c6][Δ−1]. The connective version has
(tmf∗)Q = Q[c4, c6].

The spectrum of topological modular forms is, of course, not complex orientable, and just like
in the case of bo, we will need the aid of a related complex orientable spectrum. The periodic
spectrum TMF admits ring maps to several families of orientable (as well as nonorientable)
spectra which come from the theory of elliptic curves. Namely, an elliptic curve C is an abelian
group scheme, and in particular it has a subgroup scheme C[n] of points of order n for any
positive integer n. When n is invertible, C[n] is locally isomorphic to the constant group (Z/n)2.
Based on this observation, there are various additional structures that one can assign to an
elliptic curve. In this work, we will be concerned with two types, the so-called Γ1(n) and Γ0(n)
level structures.

A Γ1(n) level structure on an elliptic curve C is a specification of a point P of (exact) order
n on C, whereas a Γ0(n) level structure is a specification of a cyclic subgroup H of C of order
n. The corresponding moduli problems are denoted M1(n) and M0(n). Assigning to the pair
(C,P ) the pair (C,HP ), where HP is the subgroup of C generated by P , determines an étale
map of moduli stacks

g : M1(n) → M0(n).

Moreover, there are two morphisms

f, q : M0(n) → M[1/n]

which are étale; f forgets the level structure whereas q quotients C by the level structure
subgroup. Composing with g, we obtain analogous maps from M1(n). We can take sections
of Otop over the forgetful maps and obtain ring spectra TMF1(n) and TMF0(n), ring maps
TMF[1/n] → TMF0(n) → TMF1(n) as well as maps of descent spectral sequences

obtained by pulling back. In particular, for any odd integer n, we have such a situation 2-locally.
We use the ring map f : TMF[1/n] → TMF0(n) induced by the forgetful

f : M0(n) → M[1/n] to equip TMF0(n) with a TMF[1/n]-module structure. With this
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convention, the map q : TMF[1/n] → TMF0(n) induced by the quotient map on the moduli
stacks does not respect the TMF[1/n]-module structure. However, one can uniquely extend
q to

(4.1)

Another way to define Ψn is as the composition of f ∧ q with the multiplication on TMF0(n).
Finally, we will be interested in the morphism

φ[n] : M[1/n] → M[1/n],

which is the étale map induced by the multiplication-by-n isogeny on an elliptic curve, and the
induced map φ[n] : TMF[1/n] → TMF[1/n] is an Adams operation on TMF[1/n].

In Section 7, we will make heavy use of the maps Ψ3 and Ψ5. Their usefulness is due to the
relative ease with which their behavior on nontorsion homotopy groups can be computed.

Remark 4.2. There is a subtlety in defining the maps

q :TMF[1/n] → TMF0(n),

φ[n] :TMF[1/n] → TMF[1/n]

which is glossed over in the above discussion. The definition of the map q presupposes a
canonical identification of the sections of Otop on the étale opens f and q, and the definition
of the map φ[n] somehow associates a map of spectra to an isogeny of elliptic curves. The real
origin of these maps of spectra comes from Lurie’s generalization of the Goerss–Hopkins–Miller
theorem (see [11]), which actually presents the p-completions of the sheaf Otop as a sheaf on
the étale site of the moduli stack of height two 1-dimensional p-divisible groups Mpd. The
p-torsion of an elliptic curve C gives a p-divisible group C[p∞]. Let

u : M?(n)∧p → Mpd

denote the map which forgets level structure and outputs the p-divisible group of the underlying
elliptic curve (where (p, n) = 1). The Serre–Tate theorem implies this map is étale, and
TMF?(n)∧p is the associated spectrum of sections. Given a cyclic subgroup H of order n,
the isogeny

C → C/H

induces an isomorphism of associated p-divisible groups, and hence gives a 2-cell making the
following diagram of stacks homotopy commute:

This induces a map on sections

q : TMF∧
p → TMF0(n)∧p

(see, for instance, [23, Chapter 5]). The map

q : TMF[1/n] → TMF0(n)
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is then obtained by constructing the map rationally, and assembling over an arithmetic square.
The map

φ[n] : TMF[1/n] → TMF[1/n]

is obtained using the diagram

induced by the isogeny

[n] : C → C.

A different perspective on these maps between TMF-spectra can be found in [8], but that
treatment also secretly relies on Lurie’s generalized Goerss–Hopkins–Miller theorem. The
reader uncomfortable with relying on unpublished work could also obtain the morphisms q and
φ[n] using the obstruction theoretic construction of TMF described in [23, Chapter 12]: the
isogenies induce isomorphisms on formal groups, and the functoriality of the Goerss–Hopkins–
Miller theorem gives maps on the K(2) localizations of TMF. An explicit map of θ-algebras
corresponding to the respective isogenies gives, via K(1)-local E∞ obstruction theory, a map
of the K(1)-localizations of TMF. These assemble via chromatic fracture to give a map on the
p-completions of TMF for (p, n) = 1, and these then assemble via the arithmetic square to give
the desired maps.

4.2. Details on tmf1(3) as BP〈2〉
We return to the convention that everything is 2-local. The significance of bu in the computation
of bo∗bo was that at the prime 2, bu is a truncated Brown–Peterson spectrum BP〈1〉 with a
ring map bo → bu which upon K(1)-localization becomes the inclusion of homotopy fixed
points (KU2̂)hC2 → KU2̂. In particular, the image of KO2̂ → KU2̂ in homotopy is describable
as certain invariant elements. By work of Lawson–Naumann [28], we know that there is a
2-primary form of BP〈2〉 obtained from topological modular forms; this will be our analogue
of bu in the tmf-cooperations case.

Lawson–Naumann study the (2-local) compactification of the moduli stack M1(3). Given
an elliptic curve C (over a 2-local base), it is locally isomorphic to a Weierstrass curve of the
form

y2 + a1xy + a3y = x3 + a4x + a6.

A point P = (r, s) of order 3 is an inflection point of such a curve; transforming the curve so
that the given point P is moved to have coordinates (0,0) puts C in the form

y2 + a1xy + a3y = x3. (4.3)

This is the universal equation of an elliptic curve together with a Γ1(3) level structure. The
discriminant of this curve is Δ = (a3

1 − 27a3)a3
3, and M1(3) � Proj Z(2)[a1, a3][Δ−1]. Conse-

quently, π∗TMF1(3) = Z(2)[a1, a3][Δ−1]. Lawson–Naumann show that the compactification
M̄1(3) � Proj Z(2)[a1, a3] also admits a sheaf of E∞-ring spectra, giving rise to a nonconnective
and nonperiodic spectrum Tmf1(3) with a gap in its homotopy allowing to take a connective
cover tmf1(3) which is an E∞-ring spectrum with

π∗tmf1(3) = Z(2)[a1, a3].
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This spectrum is complex oriented such that the composite map of graded rings

Z(2)[v1, v2] ⊂ BP∗ → (MU(2))∗ → tmf1(3)∗

is an isomorphism [28, Theorem 1.1], where the vi are Hazewinkel generators. Of course, the
map BP∗ → tmf1(3)∗ classifies the p-typicalization of the formal group associated to the curve
(4.3), which starts as [36, IV.2; 37]:

F (X,Y ) = X + Y − a1XY − 2a3X
3Y − 3a3X

2Y 2 + −2a3XY 3

− 2a1a3X
4Y − a1a3X

3Y 2 − a1a3X
2Y 3 − 2a1a3XY 4 + O(X,Y )6.

We used Sage to compute the logarithm of this formal group law, from which we read off the
coefficients li [35, A2.1.27] in front of X2i

as

l1 =
a1

2
, l2 =

a3
1 + 2a3

4
,

l3 =
a7
1 + 30a4

1a3 + 30a1a
2
3

8
. . . .

Now the formula [35, A2.1.1] pln =
∑

0�i<n liv
2i

n−i (in which l0 is understood to be 1) allows
us to recursively compute the map BP∗ → tmf1(3)∗. For the first few values of n, we have
that

v1 	→ a1, v2 	→ a3, v3 	→ 7a1a3(a3
1 + a3) . . . .

We can do even more with this orientation of tmf1(3), as

BP∗BP → tmf1(3)∗tmf1(3)Q

is a morphism of Hopf algebroids. Recall that BP∗BP = Z(2)[v1, v2, . . . ][t1, t2, . . . ] with vi
and ti in degree 2(2i − 1) and the right unit is ηR : BP∗ → BP∗BP determined by the fact
[35, A2.1.27] that

ηR(ln) =
∑

0�i�n

lit
2i

n−i

with l0 = t0 = 1 by convention. On the other hand,

tmf1(3)∗tmf1(3)Q = Q[a1, a3, ā1, ā3]

and the right unit tmf1(3)∗ → tmf1(3)∗tmf1(3) sends ai to āi. With computer aid from Sage,
we can recursively compute the images of each ti in tmf1(3)∗tmf1(3). As an example, we include
here the first three values

t1 	→ 1
2 (ā1 − a1),

t2 	→ 1
8 (4ā3 + 2ā3

1 − a1ā
2
1 + 2a2

1ā1 − 4a3 − 3a3
1),

t3 	→ 1
128

(
480ā1ā

2
3 − 16a1ā

2
3 + 480ā4

1ā3 − 16a1ā
3
1ā3 + 8a2

1ā
2
1ā3 − 16a3

1ā1ā3

+ 32a1a3ā3 + 24a4
1ā3 + 16ā7

1 − 4a1ā
6
1 + 4a2

1ā
5
1 − 4a3ā

4
1 − 11a3

1ā
4
1 + 32a1a3ā

3
1

+ 24a4
1ā

3
1 − 32a2

1a3ā
2
1 − 22a5

1ā
2
1 + 32a3

1a3ā1 + 20a6
1ā1 − 496a1a

2
3 − 508a4

1a3 − 27a7
1

)
(4.4)

and rather than urging the reader to analyze the terms, we simply point out the exponential
increase of their number. In Section 4.4, we will use the Adams filtration to extract leading
terms from these expressions, allowing us to extract meaningful information from these
formulas.
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Remark 4.5. Just as we used bu∗bu as a means of porting formulas in BP∗BP to bo∗bo,
so we are using tmf1(3)∗tmf1(3) to analyze tmf∗tmf. The reader might wonder why we do
not give a complete analysis of tmf1(3)∗tmf1(3). In fact, such an analysis has recently been
completed by Culver [21].

4.3. The relationship between TMF1(3) and TMF and their connective versions

As we mentioned already, the forgetful map f : M1(3) → M is étale; moreover, f∗ω = ω. As
a consequence, we have a Čech descent spectral sequence

E1 = Hp(M1(3)×M(q+1), ω⊗∗) ⇒ Hp+q(M, ω⊗∗).

With it, the modular forms H0(M, ω⊗∗) can be computed as the equalizer of the diagram

(4.6)

in which p1 and p2 are the left and right projection maps. The interpretation is that the
M-modular forms MF∗ are precisely the invariant M1(3)-modular forms.

To be more explicit, note that M1(3) ×M M1(3) classifies tuples ((C,P ), (C ′, P ′), ϕ) of
elliptic curves with a point of order 3 and an isomorphism ϕ : C → C ′ of elliptic curves which
does not need to preserve the level structures. These data are locally given by

C : y2 + a1xy + a3y = x3,

C ′ : y2 + a′1xy + a′3y = x3,

ϕ : x 	→ u−2x + r y 	→ u−3y + u−2sx + t,

(4.7)

such that the following relations hold

sa1 − 3r + s2 = 0,

sa3 + (t + rs)a1 − 3r2 + 2st = 0,

r3 − ta3 − t2 − rta1 = 0,

a′1 = ηR(a1),

a′3 = ηR(a3).

(4.8)

(Note: For more details on this presentation of M1(3), see the beginning of [38, § 4]; the
relations follow from the general transformation formulas in [36, III.1] by observing that the
coefficients aeven must remain zero. See also [7], where M1(3) is implicitly used to compute
the 2-primary descent spectral sequence for tmf.)

Hence, the diagram (4.6) becomes

Z(2)[a1, a3] ⇒ Z(2)[a1, a3][u±1, r, s, t]/(∼)

(where ∼ denotes the relations (4.8)) with p∗1 being the obvious inclusion and p∗2 determined
by

a1 	→ u(a1 + 2s),

a3 	→ u3(a3 + ra1 + 2t),

which is in fact a Hopf algebroid representing M(2). Note that we do not need to localize at 2
but only to invert 3 to obtain this presentation.
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As a consequence of this discussion, we can explicitly compute that the modular forms MF∗
are the subring of MF1(3)∗ generated by

c4 = a4
1 − 24a1a3, c6 = a6

1 + 36a3
1a3 − 216a2

3, and Δ = (a3
1 − 27a3)a3

3, (4.9)

which, in particular, determines the map TMF∗ → TMF1(3)∗ on nontorsion elements.

4.4. Adams filtrations

The maps BP∗ → tmf1(3)∗ and BP∗BP → tmf1(3)∗tmf1(3) respect the Adams filtration, which
allows us to determine the Adams filtration on the right-hand sides. Recall that

AF (vi) = 1, i � 0

where as usual, v0 = 2. Consequently, AF (a1) = AF (a3) = 1, which in turn implies via (4.9)
that

AF (c4) = 4, AF (c6) = 5, and AF (Δ) = 4. (4.10)

More precisely, modulo higher Adams filtration (we use ∼ to denote equality modulo terms in
higher Adams filtration) we have

c4 ∼ a4
1, c6 ∼ 216a2

3 ∼ 8a2
3, Δ ∼ a4

3. (4.11)

Note that the Adams filtration of each ti is zero.

4.5. Supersingular elliptic curves and K(2)-localizations

At the prime 2, there is a unique isomorphism class of supersingular elliptic curves; one
representative is the Weierstrass curve

C : y2 + y = x3

over F2. Recall that a supersingular elliptic curve is one whose formal completion at the identity
section Ĉ is a formal group of height two†. Under the natural map M → Mfg from the moduli
stack of elliptic curves to the one of formal groups sending an elliptic curve to its formal
completion at the identity section, the supersingular elliptic curves (in fixed characteristic) are
sent to the (unique up to isomorphism, by Cartier’s theorem [35, Appendix B]) formal group
of height two in that characteristic.

Let Mss denote a formal neighborhood of the supersingular point C of M, and let Ĥ(2)
denote a formal neighborhood of the characteristic 2 point of height two of Mfg. Formal
completion yields a map Mss → Ĥ(2) which is used to explicitly describe the K(2)-localization
of TMF (or equivalently, tmf) in terms of Morava E-theory.

The formal stack Ĥ(2) has a pro-Galois cover by Spf W(F4)[[u1]] for the extended Morava sta-
bilizer group G2. The Goerss–Hopkins–Miller theorem implies in particular that this quotient
description of Ĥ(2) has a derived version, namely the stack Spf E2//G2, where E2 is a Lubin–
Tate spectrum of height two. As we are working with elliptic curves, we take the Lubin–Tate
spectrum associated to the formal group Ĉ over F4, and G2 = AutF4(Ĉ) � Gal(F4/F2).

Let G denote the automorphism group of C; it is a finite group of order 48 given as an
extension of the binary tetrahedral group with the Galois group of F4/F2. Then, G embeds
in G2 as a maximal finite subgroup and Spf E2 is a Galois cover of Mss for the group G. In

†As opposed to an ordinary elliptic curve whose formal completion has height one. These two are the
only options.
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particular, taking sections of the structure sheaf Otop over Mss gives the K(2)-localization of
TMF which is equivalent to EhG

2 . Moreover, we have K(2)-local equivalences

(TMF ∧ TMF)K(2) � Homc(G2/G,E2)hG �
∏

x∈G\(G2)/G

Eh(G∩xGx−1)
2 .

The decomposition on the right-hand side is interesting though we will not pursue it further
in this work. The interested reader is referred to Peter Wear’s explicit calculation of the double
cosets in [40].

5. The Adams spectral sequence for tmf∗tmf and bo-Brown–Gitler modules

Recall that we are concerned with the prime 2, hence everything is implicitly 2-localized.

5.1. Rational calculations

Recall that we have

tmf∗tmfQ ∼= Q[c4, c6, c̄4, c̄6]

and consider the (collapsing) v0-inverted ASS⊕
j

v−1
0 ExtA(2)∗(Σ

8jboj) ⇒ tmf∗tmf ⊗ Q2.

In this section, we explain the decomposition imposed on the E∞-term of this spectral sequence
from the decomposition on the E2-term. In particular, given a torsion-free element x ∈ tmf∗tmf,
this will allow us to determine which bo-Brown–Gitler module detects it in the E2-term of the
ASS for tmf ∧ tmf.

Recall from Section 4 that tmf1(3) � BP〈2〉. In particular, we have,

H∗(tmf1(3)) ∼= A//E[Q0, Q1, Q2].

We begin by studying the map between v0-inverted ASS’s induced by the map tmf → tmf1(3)

We have

v−1
0 Ext∗,∗E[Q0,Q1,Q2]∗

(F2) ∼= F2[v±1
0 , v1, v2],

where the generators vi have (t− s, s) bidegrees:

|v0| = (0, 1),

|v1| = (2, 1),

|v2| = (6, 1).

Recall from Section 4 that π∗tmf1(3)Q = Q[a1, a3], and that

v1 = [a1],

v2 = [a3].
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Of course π∗tmfQ = Q[c4, c6], with corresponding localized Adams E2-term

v−1
0 Ext∗,∗A(2)∗

(F2) ∼= F2[v±1
0 , c4, c6],

where the generators [ci] have (t− s, s) bidegrees

|[c4]| = (8, 4),

|[c6]| = (12, 5).

Recall also from Section 4 that the formulas for c4 and c6 in terms of a1 and a3 imply that the
map of E2-terms of spectral sequences above is injective, and is given by

[c4] 	→ [a4
1],

[c6] 	→ [8a2
3].

(5.1)

Corresponding to the isomorphism

π∗tmfQ ∼= HQ∗tmf

there is an isomorphism of localized Adams E2-terms

v−1
0 ExtA(2)(F2) ∼= v−1

0 ExtA(0)((A//A(2))∗).

Since the decomposition

A//A(2)∗ ∼=
⊕
j

Σ8jboj

is a decomposition of A(2)∗-comodules, it is in particular a decomposition of A(0)∗-comodules,
and therefore there is a decomposition

v−1
0 ExtA(2)∗(F2) ∼=

⊕
j

v−1
0 ExtA(0)∗(Σ

8jboj). (5.2)

Proposition 5.3. Under the decomposition (5.2), we have

v−1
0 ExtA(0)∗(Σ

8jboj) = F2[v±1
0 ]{[ci14 ci26 ] : i1 + i2 = j}

⊂ v−1
0 ExtA(2)∗(F2).

Proof. Statement (2) of the proof of Lemma 3.3 implies that we have

v−1
0 ExtA(0)∗(boj) ∼= F2[v±1

0 ]{ξ̄4i
1 : 0 � i � j}.

Using the map (2.1), we deduce that we have

v−1
0 ExtA(0)∗(Σ

8jboj) ∼= F2[v±1
0 ]{ξ̄8i1

1 ξ̄4i2
2 : i1 + i2 = j}

⊂ ExtA(0)∗((A//A(2))∗).

Consider the diagram:

(5.4)
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The map

BP∗BP → H∗tmf1(3) ∼= F2[ξ̄2
1 , ξ̄

2
2 , ξ̄

2
3 , ξ̄4, . . .]

sends ti to ξ̄2
i . Thus, the elements

ξ̄8i1
1 ξ̄4i2

2 ∈ H∗tmf,

t4i11 t2i22 ∈ BP∗BP

have the same image in H∗tmf1(3). However, using the formulas of Section 4, we deduce that
the images of t1 and t2 in

tmf1(3)∗tmf1(3)Q = Q[a1, a3, ā1, ā3]

are given by

t1 	→ (ā1 + a1)/2,

t2 	→ (4ā3 − a1ā
2
1 − 4a3 − a3

1)/8 + terms of higher Adams filtration.

Since the map

tmf1(3)∗tmf1(3)Q → HQ∗tmf1(3) = Q[a1, a3]

of diagram (5.4) sends āi to ai and ai to zero, we deduce that the image of t1 and t2 in
HQ∗tmf1(3) is

t1 	→ a1/2,

t2 	→ a3/2 + terms of higher Adams filtration.

It follows that under the map of v0-localized ASS’s induced by the map tmf → tmf1(3)

v−1
0 ExtA(2)∗(F2) → v−1

0 ExtE[Q0,Q1,Q2]∗(F2),

we have,

ξ̄8i1
1 ξ̄4i2

2 	→ [a1/2]4i1 [a3/2]2i2 .

Therefore, by (5.1), we have the equality (in v−1
0 ExtA(0)∗((A//A(2))∗))

ξ̄8i1
1 ξ̄4i2

2 = [c4/16]i1 [c6/32]i2

and the result follows. �

Corresponding to the Künneth isomorphism for HQ, there is an isomorphism

v−1
0 ExtA(0)∗(M ⊗N) ∼= v−1

0 ExtA(0)∗(M) ⊗F2[v
±1
0 ] v

−1
0 ExtA(0)∗(N).

In particular, since the maps

v−1
0 Ext(tmf ∧ Σ8jboj) → v−1

0 Ext(tmf ∧ tmf)

can be identified with the maps

v−1
0 ExtA(0)∗((A//A(2))∗) ⊗F2[v

±1
0 ] v

−1
0 ExtA(0)∗(Σ

8jboj)

→ v−1
0 ExtA(0)∗((A//A(2))∗) ⊗F2[v

±1
0 ] v

−1
0 ExtA(0)∗((A//A(2))∗),

we have the following corollary.

Corollary 5.5. The map

v−1
0 Ext(tmf ∧ Σ8jboj) → v−1

0 Ext(tmf ∧ tmf)
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Figure 5.1. bo1.

obtained by localizing (2.4) is the canonical inclusion

F2[v±1
0 , [c4], [c6]]{[c̄4]i1 [c̄6]i2 : i1 + i2 = j} ↪→ F2[v±1

0 , [c4], [c6], [c̄4], [c̄6]].

5.2. Inductive computation of ExtA(2)∗(boj)

The exact sequences (2.9), (2.10) provide an inductive method of computing ExtA(2)∗(boj) in
terms of ExtA(1)∗ -computations and ExtA(2)∗(boi1).

We give some low-dimensional examples. We shall use the shorthand

M ⇐
⊕

Mi[ki]

to denote the existence of a spectral sequence⊕
Exts−ki,t+ki

A(2)∗
(Mi) ⇒ Exts,tA(2)∗

(M).

In the notation above, we shall abbreviate Mi[0] as Mi. We have

Σ16bo2 ⇐ Σ16(A(2)//A(1))∗ ⊕ Σ24bo1 ⊕ Σ32F2[1],

Σ24bo3 ⇐ Σ24(A(2)//A(1))∗ ⊕ Σ32bo2
1,

Σ32bo4 ⇐ (A(2)//A(1))∗ ⊗
(
Σ32tmf1 ⊕ Σ48F2

)⊕ Σ56bo1 ⊕ Σ56bo1[1] ⊕ Σ64F2[1],

Σ40bo5 ⇐ (A(2)//A(1))∗ ⊗
(
Σ40tmf1 ⊕ Σ56bo1

)⊕ Σ64bo2
1 ⊕ Σ72bo1[1],

Σ48bo6 ⇐ (A(2)//A(1))∗ ⊗
(
Σ48tmf2 ⊕ Σ72F2 ⊕ Σ80F2[1]

)
⊕Σ80bo2

1 ⊕ Σ88bo1[1] ⊕ Σ96F2[2],

Σ56bo7 ⇐ (A(2)//A(1))∗ ⊗
(
Σ56tmf2 ⊕ Σ80bo1

)⊕ Σ88bo3
1,

Σ64bo8 ⇐ (A(2)//A(1))∗ ⊗
(
Σ64tmf3 ⊕ Σ96tmf1 ⊕ Σ112F2 ⊕ Σ104F2[1]

)
⊕Σ112bo2

1[1] ⊕ Σ120bo1 ⊕ Σ120bo1[1] ⊕ Σ128F2[1].

(5.6)

In practice, these spectral sequences tend to collapse. In fact, in the range computed explicitly
in this paper, there are no differentials in these spectral sequences, and the authors have not
yet encountered any differentials in these spectral sequences. These spectral sequences collapse
with v0-inverted, for dimensional reasons.

In principle, the exact sequences (2.9) and (2.10) allow one to inductively compute
ExtA(2)∗(boj) given ExtA(2)∗(bo⊗k

1 ), where bo1 is depicted in Figure 5.1. The problem is that,
unlike the A(1)-case, we do not have a closed form computation of ExtA(2)∗(bo⊗k

1 ). These
computations for k � 3 appeared in [9] (the cases of k = 0, 1 appeared elsewhere). We include
in Figures 5.2 through 5.5 the charts for Σ8jboj , for 0 � j � 6, as well as Σ8bo2

1 in dimensions
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Figure 5.2.
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Figure 5.3 (colour online).
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Figure 5.4 (colour online).
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Figure 5.5 (colour online).
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� 64. In these figures, the different contributions to boj coming from the different summands
of the E1-term of the spectral sequences 5.6 are denoted with different colors.

5.3. Rational behavior of the exact sequences

We finish this section with a discussion on how to identify the generators of
ExtA(2)∗ (Σ8jboj)

v0−tors .
On one hand, the inclusion

discussed in Section 5.1 informs us that the h0-towers of ExtA(2)∗(Σ
8jboj) are all generated

by

hk
0 [c4]p[c6]q ξ̄8i1

1 ξ̄4i2
2

for appropriate (possibly negative) values of k depending on i1, i2, p, and q.
The problem is that the terms

v−1
0 ExtA(2)(Σ16j(A(2)//A(1))∗ ⊗ tmfj−1) ⊂ v−1

0 ExtA(2)∗(Σ
16jbo2j), (5.7)

v−1
0 ExtA(2)(Σ16j+8(A(2)//A(1))∗ ⊗ tmfj−1) ⊂ v−1

0 ExtA(2)∗(Σ
16j+8bo2j+1) (5.8)

in the short exact sequences (2.9), (2.10) are not free over F2[v±1
0 , [c4], [c6]] (however, they are

free over F2[v±1
0 , [c4]]).

We therefore instead identify the generators of v−1
0 ExtA(2)∗((A//A(2))∗) corresponding to

the generators of (5.7) and (5.8) as modules over F2[v±1
0 , [c4]], as well as those generators

coming (inductively) from

v−1
0 ExtA(2)∗(Σ

24jboj) ⊂ v−1
0 ExtA(2)∗(Σ

16jbo2j), (5.9)

v−1
0 ExtA(2)∗(Σ

24j+8boj ⊗ bo1) ⊂ v−1
0 ExtA(2)∗(Σ

16j+8bo2j+1) (5.10)

in the following two lemmas, whose proofs are immediate from the definitions of the maps in
(2.9), (2.10).

Lemma 5.11. The summands (5.7) (respectively, (5.8)) are generated, as modules over
F2[v±1

0 , [c4]], by the elements

ξ̄a1 ξ̄
8i1
2 ξ̄4i3

3 , ξ̄a−8
1 ξ̄8i1+4

2 ξ̄4i3
3 ∈ (A//A(2))∗,

with i1 + i2 � j − 1 and a = 16j − 16i1 − 16i2 (respectively a = 16j + 8 − 16i1 − 16i2).

Lemma 5.12. Suppose inductively (via the exact sequences (2.9), (2.10)) that the summand

v−1
0 ExtA(2)∗(Σ

8jboj) ⊂ v−1
0 ExtA(2)∗((A//A(2))∗)

has generators of the form

{ξ̄i11 ξ̄i22 . . .}.
Then, the summand (5.9) is generated by

{ξ̄i12 ξ̄i23 · · · }
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and the summand (5.10) is generated by

{ξ̄i12 ξ̄i23 · · · } · {ξ̄8
1 , ξ̄

4
2}.

The remaining term

v−1
0 ExtA(2)∗(Σ

24j+8boj−1[1]) ⊂ v−1
0 ExtA(2)∗(bo2j) (5.13)

coming from (2.9) is handled by the following lemma.

Lemma 5.14. Consider the summand

v−1
0 ExtA(1)∗(Σ

24j−8boj−1) ⊂ v−1
0 ExtA(1)∗(Σ

16jtmfj−1) ⊂ v−1
0 ExtA(2)∗(Σ

16jbo2j)

generated as a module over F2[v±1
0 , [c4]] by the generators

ξ̄16
1 ξ̄8i1

2 ξ̄4i2
3 , ξ̄8

1 ξ̄
8i1+4
2 ξ̄4i2

3 ∈ (A//A(2))∗,

with i1 + i2 = j − 1. Let xi (0 � i � j − 1) be the generator of the summand (5.13), as a
module over F2[v±1

0 , [c4], [c6]] corresponding to the generator ξ̄4i
1 ∈ boj−1. Then, we have,

[c6]ξ̄8
1 ξ̄

8i1+4
2 ξ̄4i2

3 = v4
0xi2 + · · ·

in v−1
0 ExtA(2)∗(Σ

16jbo2j), where the additional terms not listed above all come from the
summand

v−1
0 ExtA(2)∗(Σ

24jboj) ⊂ v−1
0 ExtA(2)∗(Σ

16jbo2j).

Proof. This follows from the definition of the last map in (2.9), together with the fact that
with v0 inverted, the cell ξ̄4

1 ξ̄
2
2 ξ̄3 ∈ (A(2)//A(1))∗ attaches to the cell ξ̄4

1 with attaching map
[c6]/v4

0 . �

Lemmas 5.11, 5.12, and 5.14 give an inductive method of identifying a collection of generators
for v−1

0 ExtA(2)∗(boj), which are compatible with the exact sequences (2.9), (2.10). We tabulate
these below for the decompositions arising from the spectral sequences (5.6). For those
summands of the form (A(2)//A(1))∗ ⊗−, these are generators over F2[v±1

0 , [c4]], for the other
summands, these are generators over F2[v±1

0 , [c4], [c6]].

bo0 : F2 : 1

Σ8bo1 : Σ8bo1 : ξ̄8
1 , ξ̄

4
2

Σ16bo2 : Σ16(A(2)//A(1))∗ : ξ̄16
1 , ξ̄8

1 ξ̄
4
2

Σ24bo1 : ξ̄8
2 , ξ̄

4
3

Σ32F2[1] : v−4
0 [c6]ξ̄8

1 ξ̄
4
2 + · · ·

Σ24bo3 : Σ24(A(2)//A(1))∗ : ξ̄24
1 , ξ̄16

1 ξ̄4
2

Σ32bo2
1 : {ξ̄8

2 , ξ̄
4
3} · {ξ̄8

1 , ξ̄
4
2}

Σ32bo4 : Σ32(A(2)//A(1))∗ ⊗ tmf1 : ξ̄3
12, ξ̄24

1 ξ̄4
2 , ξ̄

16
1 ξ̄8

2 , ξ̄
8
1 ξ̄

12
2 , ξ̄16

1 ξ̄4
3 , ξ̄

8
1 ξ̄

4
2 ξ̄

4
3

Σ48(A(2)//A(1))∗ : ξ̄16
2 , ξ̄8

2 ξ̄
4
3

Σ56bo1 : ξ̄8
3 , ξ̄

4
4

Σ64F2[1] : v−4
0 [c6]ξ̄8

2 ξ̄
4
3 + · · ·
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Σ56bo1[1] : v−4
0 [c6]ξ̄8

1 ξ̄
12
2 + · · · , v−4

0 [c6]ξ̄8
1 ξ̄

4
2 ξ̄

4
3 + · · ·

Σ40bo5 : Σ40(A(2)//A(1))∗ ⊗ tmf1 : ξ̄40
1 , ξ̄32

1 ξ̄4
2 , ξ̄

24
1 ξ̄8

2 , ξ̄
16
1 ξ̄12

2 , ξ̄24
1 ξ̄4

3 , ξ̄
16
1 ξ̄4

2 ξ̄
4
3

Σ56(A(2)//A(1))∗ ⊗ bo1 : {ξ̄16
2 , ξ̄8

2 ξ̄
4
3} · {ξ̄8

1 , ξ̄
4
2}

Σ64bo2
1 : {ξ̄8

3 , ξ̄
4
4} · {ξ̄8

1 , ξ̄
4
2}

Σ72bo1[1] : {v−4
0 [c6]ξ̄8

2 ξ̄
4
3 + · · · } · {ξ̄8

1 , ξ̄
4
2}

Σ48bo6 : Σ48(A(2)//A(1))∗ ⊗ tmf2 : ξ̄48
1 , ξ̄40

1 ξ̄4
2 , ξ̄

32
1 ξ̄8

2 , ξ̄
24
1 ξ̄12

2 , ξ̄32
1 ξ̄4

3 , ξ̄
24
1 ξ̄4

2 ξ̄
4
3 ,

ξ̄16
1 ξ̄16

2 , ξ̄8
1 ξ̄

20
2 , ξ̄16

1 ξ̄8
2 ξ̄

4
3 , ξ̄

8
1 ξ̄

12
2 ξ̄4

3 , ξ̄
16
1 ξ̄8

3 , ξ̄
8
1 ξ̄

4
2 ξ̄

8
3

Σ72(A(2)//A(1))∗ : ξ̄24
2 , ξ̄16

2 ξ̄4
3

Σ80bo2
1 : {ξ̄8

3 , ξ̄
4
4} · {ξ̄8

2 , ξ̄
4
3}

Σ80bo2[1] v−4
0 [c6]ξ̄8

1 ξ̄
20
2 + · · · , v−4

0 [c6]ξ̄8
1 ξ̄

12
2 ξ̄4

3 + · · · ,
v−4
0 [c6]ξ̄8

1 ξ̄
4
2 ξ̄

8
3 + · · ·

Σ56bo7 : Σ56(A(2)//A(1))∗ ⊗ tmf2 : ξ̄56
1 , ξ̄48

1 ξ̄4
2 , ξ̄

40
1 ξ̄8

2 , ξ̄
32
1 ξ̄12

2 , ξ̄40
1 ξ̄4

3 , ξ̄
32
1 ξ̄4

2 ξ̄
4
3 ,

ξ̄24
1 ξ̄16

2 , ξ̄16
1 ξ̄20

2 , ξ̄24
1 ξ̄8

2 ξ̄
4
3 , ξ̄

16
1 ξ̄12

2 ξ̄4
3 , ξ̄

24
1 ξ̄8

3 , ξ̄
16
1 ξ̄4

2 ξ̄
8
3

Σ80(A(2)//A(1))∗ ⊗ bo1 : {ξ̄24
2 , ξ̄16

2 ξ̄4
3} · {ξ̄8

1 , ξ̄
4
2}

Σ88bo3
1 : {ξ̄8

3 , ξ̄
4
4} · {ξ̄8

2 , ξ̄
4
3} · {ξ̄8

1 , ξ̄
4
2}

Σ64bo8 : Σ64(A(2)//A(1))∗ ⊗ tmf3 : ξ̄64
1 , ξ̄56

1 ξ̄4
2 , ξ̄

48
1 ξ̄8

2 , ξ̄
40
1 ξ̄12

2 , ξ̄48
1 ξ̄4

3 , ξ̄
40
1 ξ̄4

2 ξ̄
4
3 ,

ξ̄32
1 ξ̄16

2 , ξ̄24
1 ξ̄20

2 , ξ̄32
1 ξ̄8

2 ξ̄
4
3 , ξ̄

24
1 ξ̄12

2 ξ̄4
3 , ξ̄

32
1 ξ̄8

3 , ξ̄
24
1 ξ̄4

2 ξ̄
8
3 ,

ξ̄16
1 ξ̄24

2 , ξ̄8
1 ξ̄

28
2 , ξ̄16

1 ξ̄16
2 ξ̄4

3 , ξ̄
8
1 ξ̄

20
2 ξ̄4

3 , ξ̄
16
1 ξ̄8

2 ξ̄
8
3 , ξ̄

8
1 ξ̄

12
2 ξ̄8

3 ,

ξ̄16
1 ξ̄12

3 , ξ̄8
1 ξ̄

4
2 ξ̄

12
3

Σ96(A(2)//A(1))∗ ⊗ tmf1 : ξ̄3
22, ξ̄24

2 ξ̄4
3 , ξ̄

16
2 ξ̄8

3 , ξ̄
8
2 ξ̄

12
3 , ξ̄16

2 ξ̄4
4 , ξ̄

8
2 ξ̄

4
3 ξ̄

4
4

Σ112(A(2)//A(1))∗ : ξ̄16
3 , ξ̄8

3 ξ̄
4
4

Σ120bo1 : ξ̄8
4 , ξ̄

4
5

Σ128F2[1] : v−4
0 [c6]ξ̄8

3 ξ̄
4
4 + · · ·

Σ120bo1[1] : v−4
0 [c6]ξ̄8

2 ξ̄
12
3 + · · · , v−4

0 [c6]ξ̄8
2 ξ̄

4
3 ξ̄

4
4 + · · ·

Σ104bo3[1] : v−4
0 [c6]ξ̄8

1 ξ̄
28
2 + · · · , v−4

0 [c6]ξ̄8
1 ξ̄

20
2 ξ̄4

3 + · · · ,
v−4
0 [c6]ξ̄8

1 ξ̄
12
2 ξ̄8

3 + · · ·

5.4. Identification of the integral lattice

Having constructed useful bases of the summands

v−1
0 ExtA(2)∗(Σ

8jboj) ⊂ v−1
0 ExtA(2)∗(A//A(2)∗),
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it remains to understand the lattices

ExtA(2)∗(Σ
8jboj)

v0 − tors
⊂ v−1

0 ExtA(2)∗(Σ
8jboj).

This can accomplished inductively; the rational generators we identified in the last section are
compatible with the exact sequences (2.9), (2.10), and ExtA(2)∗

v0−tors of the terms in these exact

sequences are determined by the ExtA(1)∗
v0−tors -computations of Section 3, and knowledge of

ExtA(2)∗(bok1)
v0 − tors

.

Unfortunately the latter requires separate explicit computation for each k, and hence does not
yield a general answer.

Nevertheless, in this section, we will give some lemmas which provide convenient criteria for
identifying the i so that given a rational generator x ∈ (A//A(2))∗ (as in the previous section),
we have

vi0x ∈ ExtA(2)∗((A//A(2))∗)
v0 − tors

⊂ v−1
0 ExtA(2)∗((A//A(2))∗).

We first must clarify what we actually mean by ‘rational generator’. The generators identified
in the last section originate from the exact sequences (2.9), (5.7). More precisely, they come
from the generators of v−1

0 ExtA(2)∗(M) where M is given by

Case 1: M = bok1 ,

Case 2: M = (A(2)//A(1))∗ ⊗ tmfj .

In Case 1, a generator x of v−1
0 ExtA(2)∗(M) is a generator as a module over F2[v±1

0 , [c4], [c6]],
using the isomorphisms

v−1
0 ExtA(2)∗(bok1)
∼= v−1

0 ExtA∗((A//A(2))∗ ⊗ bok1)
α−→∼= v−1

0 ExtA(0)∗((A//A(2))∗ ⊗ bok1)
∼= v−1

0 ExtA(0)∗((A//A(2))∗) ⊗F2[v
±1
0 ] v

−1
0 ExtA(0)∗(bok1)

∼= F2[v±1
0 , [c4], [c6]] ⊗F2 F2{1, ξ̄4

1}⊗k.

(5.15)

The rational generators in this case correspond to the generators

x ∈ {1, ξ̄4
1}⊗k.

In Case 2, a generator x of v−1
0 ExtA(2)∗(M) is a generator as a module over F2[v±1

0 , [c4]]
using the isomorphisms

v−1
0 ExtA(2)∗((A(2)//A(1))∗ ⊗ tmfj)
∼= v−1

0 ExtA(1)∗(tmfj)
∼= v−1

0 ExtA∗((A//A(1))∗ ⊗ tmfj)
α−→∼= v−1

0 ExtA(0)∗((A//A(1))∗ ⊗ tmfj)
∼= v−1

0 ExtA(0)∗((A//A(1))∗) ⊗F2[v
±1
0 ] v

−1
0 ExtA(0)∗(tmfj)

∼= F2[v±1
0 , [c4]]{1, ξ̄4

1} ⊗F2 F2{ξ̄8i1
1 ξ̄4i2

2 : i1 + i2 � j}.

(5.16)

The rational generators in this case correspond to the generators

x = ξ̄4ε
1 ⊗ ξ̄8i1

1 ξ̄4i2
2 .
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In either case, the maps α in both (5.16) and (5.15) arise from surjections of cobar complexes

C∗
A∗(N) → C∗

A(0)∗(N)

induced by the surjection

A∗ → A(0)∗.

Thus, a term vi0x ∈ C∗
A(0)∗(N) representing an element in v−1

0 ExtA(0)∗(N) corresponds (for i

sufficiently large) to a term [ξ̄1]ix + · · · ∈ C∗
A∗(N). Then, we have determined an element of

the integral lattice [
[ξ̄1]ix + · · · ] ∈ ExtA∗(N)

v0 − tors
⊂ v−1

0 ExtA∗(N).

Lemma 5.17. Suppose that the A(2)∗-coaction on x ∈ (A//A(2))∗ satisfies

ψ(x) = 1 ⊗ x + ξ̄4
1 ⊗ y

with y primitive, as in the following ‘cell diagram’:

Then,

v3
0x ∈ ExtA(2)∗((A//A(2))∗)

v0 − tors
⊂ v−1

0 ExtA(2)∗((A//A(2))∗)

and is represented by

[ξ̄1|ξ̄1|ξ̄1]x +
(
[ξ̄1|ξ̄2|ξ̄2] + [ξ̄1|ξ̄1|ξ̄2

1 ξ̄2] + [ξ̄1|ξ̄1ξ̄2|ξ̄2
1 ] + [ξ̄2|ξ̄2

1 |ξ̄2
1 ]
)
y

in the cobar complex C∗
A(2)∗((A//A(2))∗).

Proof. Since the cell complex depicted agrees with A(2)//A(1) through dimension 4,
ExtA(2)∗ of this comodule agrees with ExtA(1)∗(F2) through dimension 4. In particular,
v3
0x + · · · generates an ExtA(2)∗

v0−tors -term in this dimension. To determine the exact representing
cocycle, we note that

[ξ̄1|ξ̄2|ξ̄2] + [ξ̄1|ξ̄1|ξ̄2
1 ξ̄2] + [ξ̄1|ξ̄1ξ̄2|ξ̄2

1 ] + [ξ̄2|ξ̄2
1 |ξ̄2

1 ]

kills h3
0h2 in ExtA(2)∗(F2). �

Example 5.18. Let α = ξ̄8j1
i1

ξ̄8j2
i2

· · · be a monomial with exponents all divisible by 8. A
typical instance of a set of generators of (A//A(2))∗ satisfying the hypotheses of Lemma 5.17
is

The following corollary will be essential to relating the integral generators of Lemma 5.17 to
2-variable modular forms in Section 6.
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Corollary 5.19. Suppose that x satisfies the hypotheses of Lemma 5.17. The image of
the corresponding integral generator

v3
0x + · · · ∈ ExtA(2)∗((A//A(2)∗))

in ExtE[Q0,Q1,Q2]∗((A//E[Q0, Q1, Q2])∗) is given by

v3
0x + v0[a1]2y.

Proof. Note the equality

E[Q0, Q1, Q2]∗ = F2[ξ̄1, ξ̄2, ξ̄3]/(ξ̄2
1 , ξ̄

2
2 , ξ̄

2
3).

Therefore, the image of the integral generator of Lemma 5.17 under the map

C∗
A(2)∗((A//A(2))∗) → C∗

E[Q0,Q1,Q2]∗((A//E[Q0, Q1, Q2])∗)

is

[ξ̄1|ξ̄1|ξ̄1]x + [ξ̄1|ξ̄2|ξ̄2]y
and this represents v3

0x + v0[a1]2y. �

Similar arguments provide the following slight refinement.

Lemma 5.20. Suppose that the A(2)∗-coaction on x ∈ (A//A(2))∗ satisfies

ψ(x) = 1 ⊗ x + ξ̄4
1 ⊗ y

with y primitive, and that there exists w and z satisfying

ψ(z) = 1 ⊗ z + ξ̄2
1 ⊗ y

and

ψ(w) = 1 ⊗ w + ξ̄1 ⊗ z + ξ̄2 ⊗ y

as in the following ‘cell diagram’:

Then,

v0x ∈ ExtA(2)∗((A//A(2))∗)
v0 − tors

⊂ v−1
0 ExtA(2)∗((A//A(2))∗)

is represented by

[ξ̄1]x + [ξ̄2
1 ]w +

(
[ξ̄3

1 ] + [ξ̄2]
)
z + [ξ̄2

1 ξ̄2]y

in the cobar complex C∗
A(2)∗((A//A(2))∗).
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Example 5.21. Let α = ξ̄8j1
i1

ξ̄8j2
i2

· · · be a monomial with exponents all divisible by 8. A
typical instance of a set of generators of (A//A(2))∗ satisfying the hypotheses of Lemma 5.20
is

Corollary 5.22. Suppose that x satisfies the hypotheses of Lemma 5.20. The image of
the corresponding integral generator

v0x + · · · ∈ ExtA(2)∗((A//A(2)∗))

in ExtE[Q0,Q1,Q2]∗((A//E[Q0, Q1, Q2])∗) is given by

v0x + [a1]z.

6. The image of tmf∗tmf in TMF∗TMFQ: two variable modular forms

6.1. Review of Baker–Laures work on cooperations

In this brief subsection, we do not work 2-locally, but integrally.
For N > 1, the spectrum TMF1(N) is even periodic, with

TMF1(N)2∗ ∼= M∗(Γ1(N))[Δ−1]Z[1/N ].

In particular, its homotopy is torsion-free. As a result, there is an embedding

TMF1(N)2∗TMF1(N) ↪→ TMF1(N)2∗TMF1(N)Q

∼= M∗(Γ1(N))[Δ−1]Q ⊗M∗(Γ1(N))[Δ−1]Q.

Consider the multivariate q-expansion map

M∗(Γ1(N))[Δ−1]Q ⊗M∗(Γ1(N))[Δ−1]Q → Q((q, q̄)).

In [27, Theorem 2.10], Laures uses it to determine the image of TMF1(N)∗TMF1(N) under
the embedding above.

Theorem 6.1 (Laures). The multivariate q-expansion map gives a pullback

Therefore, elements of TMF1(N)∗TMF1(N) are given by sums∑
i

fi ⊗ gi ∈ M∗(Γ1(N))[Δ−1]Q ⊗M∗(Γ1(N))[Δ−1]Q
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with ∑
i

fi(q) ⊗ gi(q̄) ∈ Z[1/N ]((q, q̄)).

We shall let M2−var
∗ (Γ1(N))[Δ−1, Δ̄−1] denote this ring of integral 2-variable modular forms

(meromorphic at the cusps). We shall denote the subring of those integral 2-variable modular
forms which have holomorphic multivariate q-expansions by M2−var

∗ (Γ1(N)).

Remark 6.2. Baker [3] showed that in the case of N = 1, with 6 inverted, we have

TMF∗TMF[1/6] ∼= M2−var
∗ (Γ(1))[1/6,Δ−1, Δ̄−1].

Laures’s methods also apply to this case.

6.2. Representing TMF∗TMF/tors with 2-variable modular forms

From now on, everything is again implicitly 2-local.
We now turn to adapting Laures’s perspective to identify TMF∗TMF/tors. To do this, we

use the descent spectral sequence for

TMF → TMF1(3).

Let (B∗,ΓB∗) denote the Hopf algebroid encoding descent from M1(3) to M, with

B∗ = π∗TMF1(3) = Z[a1, a3,Δ−1],

ΓB∗ = π∗TMF1(3) ∧TMF TMF1(3) = B∗[r, s, t]/(∼),

(see Section 4) where ∼ denotes the relations (4.8). The Bousfield–Kan spectral sequence
associated to the cosimplicial resolution

TMF → TMF1(3) ⇒ TMF1(3)∧TMF2 � TMF1(3)∧TMF3 · · ·
yields a Baker–Lazarev spectral sequence [4]

Exts,tΓB∗
(B∗) ⇒ πt−sTMF.

We can use parallel methods to construct a Baker–Lazarev spectral sequence for the
extension

TMF ∧ TMF → TMF1(3) ∧ TMF1(3).

Let (B(2)
∗ ,Γ

B
(2)
∗

) denote the associated Hopf algebroid encoding descent, with

B
(2)
∗ = π∗TMF1(3) ∧ TMF1(3),

Γ
B

(2)
∗

= π∗(TMF1(3)∧TMF2 ∧ TMF1(3)∧TMF2).

The Bousfield–Kan spectral sequence associated to the cosimplicial resolution

TMF∧2 → TMF1(3)∧2 ⇒ (
TMF1(3)∧TMF2

)∧2 �
(
TMF1(3)∧TMF3

)∧2 · · ·
yields a descent spectral sequence

Exts,tΓ
B

(2)
∗

(
B

(2)
∗
) ⇒ TMFt−sTMF.

Lemma 6.3. The map induced from the edge homomorphism

TMF∗TMF/tors → Ext0,∗
Γ

(2)
B∗

(
B

(2)
∗
)
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is an injection.

Proof. This follows from the fact that the map

TMF ∧ TMF → TMF ∧ TMFQ

induces a map of descent spectral sequences

and the rational spectral sequence is concentrated on the s = 0 line. �

The significance of this homomorphism is that the target is the space of 2-local two-variable
modular forms for Γ(1).

Lemma 6.4. The 0-line of the descent spectral sequence for TMF∗TMF may be identified
with the space of 2-local two-variable modular forms of level 1 (meromorphic at the cusp):

Ext0,2∗
Γ

(2)
B∗

(B(2)
∗ ) = M2−var

∗ (Γ(1))[Δ−1, Δ̄−1].

Proof. This follows from the composition of pullback squares

The bottom square is a pullback by Theorem 6.1. Note that since TMF1(3) ∧TMF TMF1(3) is
Landweber exact, Γ

B
(2)
∗

is torsion-free. Thus, an element of B(2)
∗ is Γ

B
(2)
∗

-primitive if and only

if its image in B
(2)
∗ ⊗ Q is primitive. This shows that the top square is a pullback. �

6.3. Representing tmf∗tmf/tors with 2-variable modular forms

Recall from equation (4.10) that the Adams filtration of c4 is 4 and the Adams filtration of c6
is 5. Regarding 2-variable modular forms as a subring

M2−var
∗ (Γ(1)) ⊂ Q[c4, c6, c̄4, c̄6],

we shall denote by M2−var
∗ (Γ(1))AF�0 the subring of 2-variable modular forms with non-

negative Adams filtration. The results of the previous section now easily give the following
result.

Proposition 6.5. The composite induced by Lemmas 6.3 and 6.4

tmf2∗tmf/tors → TMF2∗TMF/tors ↪→ M2−var
∗ (Γ(1))[Δ−1, Δ̄−1]
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induces an injection

tmf2∗tmf/tors ↪→ M2−var
∗ (Γ(1))AF�0

which is a rational isomorphism.

Proof. Consider the commutative cube

(The dotted arrow exists because the front face of the cube is a pullback.) The commutativity
of the diagram, and the fact that rationally the top face is isomorphic to the bottom face give
an injection

tmf2∗tmf/tors ↪→ M2−var
∗ (Γ(1))

that is a rational isomorphism. Since all of the elements of the source have Adams filtration
� 0, this injection factors through the subring

tmf2∗tmf/tors ↪→ M2−var
∗ (Γ(1))AF�0.

�

6.4. Detecting 2-variable modular forms in the ASS

Definition 6.6. Suppose that we are given a class

x ∈ Ext(tmf ∧ tmf)

and a 2-variable modular form

f ∈ M2−var
∗ (Γ(1))AF�0.

We shall say that x detects f if the image of x in v−1
0 Ext(tmf ∧ tmf) detects the image of f

in M2−var
∗ (Γ(1)) ⊗ Q2 in the localized ASS

v−1
0 Ext(tmf ∧ tmf) ⇒ tmf∗tmf ⊗ Q2

∼= M2−var
∗ (Γ(1)) ⊗ Q2.

Remark 6.7. Suppose x as above is a permanent cycle in the unlocalized ASS

Ext(tmf ∧ tmf) ⇒ tmf∗tmf∧2 ,

and detects ζ ∈ tmf∗tmf∧2 . If f is the image of ζ under the map

tmf∗tmf∧2 → [M2−var
∗ (Γ(1))∧2 ]AF�0,

then x detects f in the sense of Definition 6.6.
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Given a class x ∈ Ext(tmf ∧ tmf), we wish to find a 2-variable modular form it detects. To
accomplish this, we contemplate the following diagram

(6.8)

and the associated ‘Ext version’:

(6.9)

Here, EAF
0 M2−var

∗ denotes the associated graded with respect to Adams filtration (AF), where,
as usual (see Section 4.4), we set

AF (2) = AF (a1) = AF (a3) = 1, AF (c4) = 4, AF (c6) = 5.

As indicated, in both of the above diagrams, all of the arrows are injections. To determine
whether a class x ∈ Ext(tmf ∧ tmf) detects f ∈ M2−var

∗ (Γ(1)), it suffices to determine whether
the image of x in Ext(tmf1(3) ∧ tmf1(3)) detects the image of f in M2−var

∗ (Γ1(3)).
The following lemma follows immediately from (4.11).

Lemma 6.10. The map (1) of Diagram (6.9) is given by

[c4] 	→ [a1]4,

[c6] 	→ v3
0 [a3]2.

Given a 2-variable modular form f ∈ M2−var
∗ (Γ(1)), let f(ai, āi) denote its image in

M2−var
∗ (Γ1(3)) ⊗ Q2

∼= Q2[a1, a3, ā1, ā3] ∼= tmf1(3)∗tmf1(3) ⊗ Q2.

and let

[f(ai, āi)] ∈ v−1
0 Ext(tmf1(3) ∧ tmf1(3)) ∼= F2[v±1

0 , [a1], [a3], [ā1], [ā3]]

denote the element which detects it in the (collapsing) v0-localized ASS.
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Similarly, let tk(ai, āi) denote the images of tk in tmf1(3)∗tmf1(3) ⊗ Q2 (as in Section 4.2),
and let [tk(ai, āi)] denote the elements of Ext which detect these images in the v0-localized
ASS for tmf1(3)∗tmf1(3) ⊗ Q2.

The map (2) of Diagram (6.9) is essentially determined by the following lemma.

Lemma 6.11. The subalgebra

F2[ξ̄2
k : k � 1] ⊂ (A//E[Q0, Q1, Q2])∗ = F2[ξ̄2

1 , ξ̄
2
2 , ξ̄

2
3 , ξ̄4 · · · ]

is contained in

Ext0E[Q0,Q1,Q2]∗((A//E[Q0, Q1, Q2])∗) = Ext(tmf1(3) ∧ tmf1(3)).

Furthermore, map (2) of Diagram (6.9) is determined by

ξ̄2
k 	→ [tk(ai, āi)].

Proof. The elements ξ̄2
k are easily checked to be primitive with respect to the E[Q0, Q1, Q2]∗-

coaction. The second part follows from the fact that in the diagram

tk is mapped to ξ̄2
k by the top horizontal map. �

Remark 6.12. In fact, Lemma 6.11 completely determines map (2). This is because
Ext(tmf1(3) ∧ tmf1(3))/v0 − tors is generated as an F2[v0, a1, a3]-algebra by the elements ξ̄2

k

(see [21]).

We assemble these observations to give the following convenient criterion for determining
when a particular element z ∈ Ext(tmf ∧ tmf) detects a 2-variable modular form f .

Proposition 6.13. Suppose that we are given an element z ∈ Ext(tmf ∧ tmf) whose image
in

Ext(tmf1(3) ∧ tmf1(3)) = ExtE[Q0,Q1,Q2]∗((A//E[Q0, Q1, Q2])∗)

is given by

z̄ =
∑
j

z̄j ξ̄
2k1,j
1 ξ̄

2k2,j
2 · · ·

with z̄j ∈ Ext(tmf1(3)). The element z detects a 2-variable modular form

f ∈ M2−var
∗ (Γ(1))AF�0

if and only if

[f(ai, āi)] =
∑
j

z̄j [t1(ai, āi)]k1,j [t2(ai, āi)]k2,j · · · .

6.5. Low-dimensional computations of 2-variable modular forms

Below is a table of generators of Ext(tmf ∧ tmf)/tors, as a module over F2[v0, [c4]], through
dimension 64, with 2-variable modular forms they detect. The columns of this table are:

dim: dimension of the generator,
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bok: indicates generator lies in the summand ExtA(2)∗(bok) (see the charts in Section 5),
AF: the Adams filtration of the generator,
cell: the name of the image of the generator in v−1

0 ExtA(2)∗(bok), in the sense of Section 5.3,
form: a two-variable modular form which is detected by the generator in the v0-localized ASS

(where fk are defined below).

The table below also gives a basis of M2−var
∗ (Γ(1)) as a Z[c4]-module: In dimension 2k, a form

αg in the last column, with α ∈ Q and g a monomial in Z[c4, c6,Δ, fk] not divisible by 2,
corresponds to a generator g of M2−var

k (Γ(1))†.
The 2-variable modular forms fk ∈ M2−var

∗ (Γ(1)) in the above table are the generators of
M2−var

∗ (Γ(1)) as an M∗(Γ(1))-algebra in this range, and are defined as follows.

f1 := (−c̄4 + c4)/16

f2 := (−c̄6 + c6)/8

f3 := (5f1c6 + 21f2c4)/8

f4 := (5f2c6 + 21f1c
2
4)/8

f5 := (−f2
1 c4 + f2

2 )/16

f6 := (−c24c6 + c24c6 + 544f2c
2
4 + 768f3c4 + 1792f1f2c4)/2048

f7 := (4f2Δ + f5c6 + 5f2c
3
4 + 6f3c

2
4 + 5f1f2c

2
4 + 7f6c4 + 4f2

1 f2c4)/8

f8 := (4f1c4Δ + f6c6 + 5f1c
4
4 + 5f2

1 c
3
4 + 7f5c

2
4 + 2f4c

2
4 + 4f3

1 c
2
4)/8

f9 := (32f1Δ + f1f2c6 + 33f2
1 c

2
4 + 8f5c4 + 32f4c4 + 32f3

1 c4)/64

f10 := (2f2c
3
4 + f1f2c

2
4 + 2f6c4 + 3f2

1 f2c4 + f1f6 + f2f5)/4

f11 := (4f1c4Δ + 11f2
1 c

3
4 + 34f5c

2
4 + 28f4c

2
4 + 23f3

1 c
2
4 + 4f9c4 + f1f5c4 + 4f4

1 c4

+ 4f8 + f2f6)/8

f12 := (f1f5c6 + 8f2c
4
4 + 8f3c

3
4 + 8f1f2c

3
4 + 8f6c

2
4 + 8f2

1 f2c
2
4 + f2f5c4)/8

f13 := (8f3Δ + 80f2c
4
4 + 56f3c

3
4 + 80f1f2c

3
4 + 76f6c

2
4 + 55f2

1 f2c
2
4 + 4f10c4

+ 18f2f5c4 + 11f3
1 f2c4 + 4f12 + f2

1 f6 + f1f2f5 + 4f4
1 f2)/8

f14 := (21f1c
2
4Δ + 8f5Δ + 16f4Δ + 20f3

1 Δ + f10c6 + 11f1c
5
4 + 36f2

1 c
4
4 + 591f5c

3
4

+ 490f4c
3
4 + 437f3

1 c
3
4 + 119f9c

2
4 + 140f1f5c

2
4 + 75f4

1 c
2
4 + 10f11c4 + 11f8c4

+ 32f5
1 c4 + 8f1f2f6)/16

f15 := (4f6Δ + f2
1 f2Δ + 76f2c

5
4 + 54f3c

4
4 + 90f1f2c

4
4 + 73f6c

3
4 + 50f2

1 f2c
3
4 + 3f10c

2
4

+ 8f7c
2
4 + 20f2f5c

2
4 + 8f3

1 f2c
2
4 + 7f12c4 + 4f1f2f5c4)/8

f16 := (2f1Δ2 + 24f1c
3
4Δ + 9f5c4Δ + 18f4c4Δ + 4f3

1 c4Δ + 2f9Δ + f1f5Δ

†There is one exception: there is a 2-variable modular form ˜c4f10 which agrees with c4f10 modulo terms of
higher Adams filtration, but which is 2-divisible. See Example 7.12.
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+ 36f2
1 c

5
4 + 480f5c

4
4 + 402f4c

4
4 + 359f3

1 c
4
4 + 94f9c

3
4 + 112f1f5c

3
4 + 55f4

1 c
3
4

+ 12f11c
2
4 + 14f8c

2
4 + 20f5

1 c
2
4 + 2f14c4 + 5f2f7c4 + f2

5 c4 + 4f3
1 f5c4 + f1f14

+ f5f9 + f1f2f7)/2

f17 := (2f2Δ2 + 22f3c
2
4Δ + 11f6c4Δ + f2f5Δ + 19f9c

2
4c6 + 682f2c

6
4 + 480f3c

5
4

+ 768f1f2c
5
4 + 648f6c

4
4 + 462f2

1 f2c
4
4 + 30f10c

3
4 + 63f7c

3
4 + 185f2f5c

3
4

+ 84f3
1 f2c

3
4 + 12f13c

2
4 + 27f12c

2
4 + 29f1f2f5c

2
4 + 16f4

1 f2c
2
4 + 4f15c4 + 4f5f6c4

+ 2f2
1 f2f5c4 + f2f14 + f6f9)/2

f18 := (4f2Δ2 + 168f3c
2
4Δ + 96f6c4Δ + 8f2f5Δ + 168f9c

2
4c6 + 5880f2c

6
4

+ 4140f3c
5
4 + 6648f1f2c

5
4 + 5592f6c

4
4 + 3980f2

1 f2c
4
4 + 248f10c

3
4 + 560f7c

3
4

+ 1586f2f5c
3
4 + 744f3

1 f2c
3
4 + 112f13c

2
4 + 220f12c

2
4 + 265f1f2f5c

2
4

+ 136f4
1 f2c

2
4 + 40f15c4 + 4f1f13c4 + 34f5f6c4 + 19f2

1 f2f5c4 + 8f5
1 f2c4

+ 4f6f9 + f1f5f6 + f2f
2
5 )/4.

We shall now indicate the methods used to generate Table 1, and make some remarks about
its contents.

The short exact sequences (2.9), (2.10) were used in Section 5.2 to give an inductive scheme
for computing ExtA(2)∗(bok), and the charts in that section display the computation through
dimension 64. In Section 5.3, these short exact sequences are used to give an inductive
scheme for identifying the generators of v−1

0 ExtA(2)∗(bok), and appropriate multiples of these
generators generate the image of ExtA(2)∗(bok)/tors in these localized Ext groups. These
generators are listed in the fourth column of Table 1.

The two variable modular forms in the last column of Table 1 are detected by the generators
in the fourth column, in the sense of the previous section. In each instance, if necessary, we use
Corollary 5.19 or 5.22 to find the image of the generator in Ext(tmf1(3) ∧ tmf1(3)) and then
apply Proposition 6.13.

The 2-variable modular forms were generated by the following inductive method. Let {zi}
be a basis of

Ext∗,∗+2n(tmf ∧ tmf)
v0 − tors

as an F2[v0]-module. We wish to produce a basis

{fzi} ⊂ MF 2−var
n (Γ(1))

such that for appropriate n(zi) � 0, the zi detects 2n(zi)fzi . Suppose inductively that we have
found such 2-variable modular forms fzi for all zi with Adams filtration (AF) greater than s,
and let z ∈ {zi} be a basis element with AF (z) = s. We wish to produce a 2-variable modular
form fz such that z detects 2n(z)fz, and so that

fz 
∈ F2{fzi : AF (zi) > s} ⊆ MF 2−var
n (Γ(1)) ⊗ F2.

This will be accomplished by writing a finite sequence of approximations

f (0)
z , f (1)

z , . . . , f (l)
z
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Table 1. Table of generators of Ext(tmf ∧ tmf)/tors.

dim bok AF cell form

8 1 0 ξ̄81 f1

12 1 3 [8]ξ̄42 2f2

16 2 0 ξ̄161 f2
1

20 1 3 [c6/4] · ξ̄81 2f3

20 2 3 [8]ξ̄81 ξ̄
4
2 2f1f2

24 1 4 [c6/2] · ξ̄42 f4

24 2 0 ξ̄82 f5

24 3 0 ξ̄241 f3
1

28 2 3 [8]ξ̄43 2f6

28 3 3 [8]ξ̄161 ξ̄42 2f2
1 f2

32 1 4 [Δ]ξ̄81 Δf1

32 2 1 [c6/16] · ξ̄81 ξ̄42 + [c4/8] · ξ̄82 f9

32 3 0 ξ̄81 ξ̄
8
2 f1f5

32 4 0 ξ̄321 f4
1

36 1 7 [8Δ]ξ̄42 2Δf2

36 2 3 [c6/4] · ξ̄82 2f7

36 3 3 [8]ξ̄122 2f2f5

36 3 0 ξ̄81 ξ̄
4
3 + ξ̄122 f10

36 4 3 [8]ξ̄241 ξ̄42 2f3
1 f2

40 2 4 [c6/2] · ξ̄43 f8

40 3 1 [2]ξ̄42 ξ̄
4
3 f11

40 4 0 ξ̄161 ξ̄82 f2
1 f5

40 5 0 ξ̄201 f5
1

44 1 7 [Δc6/4] · ξ̄81 2Δf3

44 2 7 [c6/4]([c6/16] · ξ̄81 ξ̄42 + [c4/8] · ξ̄82) c6f9/4

44 3 3 [c6/4] · ξ̄81 ξ̄82 2f1f7

44 4 3 [8]ξ̄81 ξ̄
12
2 2f1f2f5

44 4 0 ξ̄161 ξ̄43 + ξ̄81 ξ̄
12
2 2f13

44 5 3 [8]ξ̄321 ξ̄42 2f4
1 f2

48 1 8 [Δc6/2] · ξ̄42 Δf4

48 2 4 [Δ]ξ̄82 Δf5

48 3 4 [c6/2] · ξ̄122 f2f7

48 3 1 [c6/16] · (ξ̄81 ξ̄43 + ξ̄122 ) f14

48 4 0 ξ̄162 f2
5

48 4 1 [2]ξ̄81 ξ̄
4
2 ξ̄

4
3 f1f11

48 5 0 ξ̄241 ξ̄82 f3
1 f5

48 6 0 ξ̄481 f6
1

52 2 7 [8Δ]ξ̄43 2Δf6

52 3 4 [c6/2] · ξ̄42 ξ̄43 2f15

52 4 3 [8]ξ̄82 ξ̄
4
3 2f5f6

52 5 3 [8]ξ̄161 ξ̄122 2f2
1 f2f5

52 5 0 ξ̄241 ξ̄43 + ξ̄161 ξ̄122 2f1f13

52 6 3 [8]ξ̄401 ξ̄42 2f5
1 f2

56 1 8 [Δ2ξ̄81 Δ2f1

56 2 8 [Δ]([c6/2] · ξ̄81 ξ̄42 + [c4] · ξ̄82) 8Δf9

(Continued)
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Table 1. Continued.

dim bok AF cell form

56 3 4 [Δ]ξ̄81 ξ̄
8
2 Δf5f1

56 4 1 [c6/16] · ξ̄81 ξ̄122 + [c4/8] · ξ̄162 f5f9

56 4 0 ξ̄83 f16

56 5 0 ξ̄81 ξ̄
16
2 f1f2

5

56 5 1 [2]ξ̄161 ξ̄42 ξ̄
4
3 f2

1 f11

56 6 0 ξ̄321 ξ̄82 f4
1 f5

60 1 11 [8Δ2] · ξ̄42 2Δ2f2

60 2 7 [Δc6/4] · ξ̄82 2Δf7

60 3 7 [8Δ]ξ̄122 2Δf5f2

60 3 4 [Δ](ξ̄81 ξ̄
4
3 + ξ̄122 ) Δf10

60 4 4 [c6/2] · ξ̄81 ξ̄42 ξ̄43 + [c4] · ξ̄82 ξ̄43 2f6f9

60 4 3 [8]ξ̄44 2f17

60 5 0 ξ̄202 + ξ̄81 ξ̄
8
2 ξ̄

4
3 f18

60 5 3 [8]ξ̄81 ξ̄
8
2 ξ̄

4
3 2f1f5f6

60 6 3 [8]ξ̄241 ξ̄122 2f3
1 f2f5

60 6 0 ξ̄321 ξ̄43 2f2
1 f13

60 7 3 [8]ξ̄481 ξ̄42 2f6
1 f2

64 2 8 [Δc6/2] · ξ̄43 Δf8

64 3 5 [2Δ]ξ̄42 ξ̄
4
3 Δf11

64 4 2 [c6/16] · ξ̄82 ξ̄43 + [c4/8] · ξ̄83 f2
9 /2

64 5 1 [2]ξ̄122 ]ξ̄43 f1f5f9

64 5 0 ξ̄81 ξ̄
8
3 f1f16

64 6 0 ξ̄161 ξ̄162 f2
5 f

2
1

64 6 1 [2]ξ̄241 ξ̄42 ξ̄
4
3 f11f3

1

64 7 0 ξ̄401 ξ̄82 f5
1 f5

64 8 0 ξ̄641 f8
1

with

f (j)
z ∈ 1

2k−j
M2−var

∗ (Γ(1)) ⊂ M2−var
∗ (Γ(1)) ⊗ Q.

and

[f (j)
z ] = z.

We will then take n(z) := l − k and fz := 1
2n(z) f

(l)
z .

Step 1. Find an element

f (0)
z ∈ Q[c4, c6, c̄4, c̄6]

so that

[f (0)
z ] = z ∈ v−1

0 Ext(tmf ∧ tmf).

Such an f
(0)
z can be produced in one of two ways:

Technique (a) Find a representative

z̄ =
∑
j

z̄j ξ̄
2k1,j
1 ξ̄

2k2,j
2 · · ·
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for the image of z in Ext(tmf1(3) ∧ tmf1(3)) using Corollary 5.19 or 5.22. Then, by Lemma 6.11,
we have

z̄ =
∑
j

z̄j [t1(ai, āi)k1,j t2(ai, āi)k2,j · · · ].

Then, use Lemma 6.10 to find f
(0)
z so that

[f (0)
z ] 	→

∑
z̄j [t1(ai, āi)k1,j t2(ai, āi)k2,j · · · ]

under map (1) of Diagram 6.9.

Technique (b) If z =
∑

j v
−ij
0 [c

i′j
4 ][c

i′′j
6 ]z1,jz2,j · · · , where inductively you already have

2-variable modular forms fzk,j
which zk,j detect, you may also take f

(0)
z to be

f (0)
z =

∑
j

2−ij c
i′j
4 c

i′′j
6 fz1,jfz2,j · · · .

Step 2. Write the q-expansion of f (0)
z as

f (0)
z (q, q̄) = g(0)(q, q̄)/2k,

where g(0)(q, q̄) is the q-expansion of 2-integral 2-variable modular form.

Step 3. Write g(0)(q, q̄) as a linear combination of the q-expansions of the 2-variable modular
forms of Adams filtration greater than s + k already produced mod 2:

g(0)(q, q̄) ≡
∑
i

hi(q, q̄) mod 2.

Step 4. Set

f (1)
z = f (0)

z +
1
2k

∑
i

hi.

Then,

[f (1)
z ] = [f (0)

z ] = z

and

f (1)
z (q, q̄) = g(1)(q, q̄)/2k−1,

where g(1) is a 2-integral 2-variable modular form.

Step 5. Repeat steps 3 and 4 to inductively produce f
(i)
z .

We explain all of this by working it through some low degrees:

f1: The corresponding generator of Ext0,8A(2)∗
(Σ8bo1) is ξ̄8

1 . Using ‘Technique (a)’, we compute
the image of ξ̄8

1 in Ext(tmf1(3) ∧ tmf1(3)) to be

[t1(ai, āi)4] =
[
ā4
1 + a4

1

24

]
.

Using Lemma 6.10, we take

f
(0)

ξ̄8
1

:=
−c̄4 + c4

24
.

We find that f
(0)

ξ̄8
1

has an integral q-expansion, and therefore take

f1 := f
(0)

ξ̄8
1
.
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2f2: The corresponding generator of Ext3,15A(2)∗
(Σ8bo1) is [8]ξ̄4

2 . Using ‘Technique (a)’, we
compute (appealing to Corollary 5.19) its image in Ext(tmf1(3) ∧ tmf1(3)) to be

[8t2(ai, āi)2 + 2a2
1t1(ai, āi)

4] =
[
2ā2

3 + 2a2
3

]
Using Lemma 6.10, we take

f
(0)

[8]ξ̄4
2

:=
−c̄6 + c6

4
.

We find that f
(0)

ξ̄8
1

has an integral q-expansion. In fact,

f
(0)

[8]ξ̄4
2
(q, q̄) ≡ 0 mod 2,

so, f (1)

[8]ξ̄4
2

= f
(0)

[8]ξ̄4
2

and we define

f2 := f
(1)

[8]ξ̄4
2
/2.

f21 : The corresponding generator of Ext0,16A(2)∗
(Σ16bo2) is ξ̄16

1 . Since ξ̄8
1 detects f1, we can

simply use ‘Technique (b)’ to get

f
(0)

ξ̄16
1

:= f2
1 .

The process terminates here, as f2
1 is 2-integral since f1 is.

2f1f2: The corresponding generator of Ext3,23A(2)∗
(Σ16bo2) is ξ̄8

1 ξ̄
4
2 . Again, we use ‘Technique

(b)’. Since ξ̄8
1 detects f1 and [8]ξ̄4

2 detects 2f2, [8]ξ̄8
1 ξ̄

4
2 detects 2f1f2.

2f3: The corresponding generator of Ext3,23A(2)∗
(Σ8bo1) is [c6/4]ξ̄8

1 . Since ξ̄8
1 detects f1, we use

‘Technique (b)’ to begin with

f
(0)

[c6/4]ξ̄8
1

:= c6f1/4.

This 2-variable modular form is not 2-integral, but the form

g(0) := c6f1

is 2 integral (‘Step 2’). Moving on to ‘Step 3’, we find

c6(q)f1(q, q̄) ≡ f2(q, q̄)c4(q) ≡ 0 mod 2.

We define

f
(1)

[c6/4]ξ̄8
1

:=
c6f1

2
+

f2c4
2

.

It turns out (‘Step 4’)

f
(1)

[c6/4]ξ̄8
1
(q, q̄) ≡ 0 mod 2.

Therefore, we define

f
(2)

[c6/4]ξ̄8
1

:=
c6f1 + f2c4

4
.

In fact,

5c6(q)f1(q, q̄) + 21f2(q, q̄)c4(q) ≡ 0 mod 8,

so we set

f
(3)

[c6/4]ξ̄8
1

:=
5c6f1 + 21f2c4

4
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and

f3 := 1
2f

(3)

[c6/4]ξ̄8
1
.

7. Approximating by level structures

Recall from Section 4 the maps

Ψn : TMF[1/n] ∧ TMF[1/n] → TMF0(n)

and

φ[n] : TMF ∧ TMF[1/n] → TMF ∧ TMF[1/n].

Here Ψn is induced by the forgetful and quotient maps f, q : M0(n) → M[1/n], while φ[n] = 1 ∧
[n] where [n] : TMF[1/n] → TMF[1/n] is the ‘Adams operation’ associated to the multiplication
by n isogeny on M[1/n]. For reasons which will become clear in the next section, we are
interested in the composite map Ψ given as

where

ψ =
∏

i∈Z,j�0

Ψ3jφ[3i] × Ψ5jφ[5i].

We will abuse notation and refer to the composite

tmf ∧ tmf → TMF ∧ TMF Ψn−−→ TMF0(n)

(for (2, n) = 1) as Ψn as well; these are the i = 0 factors of Ψ.
In order to study Ψn, we consider the square

Here the left-hand vertical map is the composite

tmf∗tmf → tmf∗tmf/tors ↪→ M2−var
∗ (Γ(1))AF�0 ↪→ M2−var

∗ (Γ(1)),

and M∗(Γ0(n)) is the ring of level Γ0(n)-modular forms. The bottom horizontal map is also
induced by f and q; if we consider a 2-variable modular form as a polynomial p(c4, c6, c̄4, c̄6),
then ψn(p) = p(f∗c4, f∗c6, q∗c4, q∗c6).

We are especially interested in the cases n = 3, 5. Recall from [33] (or [12, § 3.3]) that
M∗(Γ0(3)) has a convenient presentation as a subalgebra of M∗(Γ1(3)). More precisely,
M∗(Γ1(3)) = Z[a1, a3,Δ−1] with Δ = a3

3(a
3
1 − 27a3), and M∗(Γ0(3)) is the subring

M∗(Γ0(3)) = Z[a2
1, a1a3, a

2
3,Δ

−1].

Using the formulas from loc. cit., we may compute

f∗(c4) = a4
1 − 24a1a3, q∗(c4) = a4

1 + 216a1a3,

f∗(c6) = −a6
1 + 36a3

1a3 − 216a2
3, q∗(c6) = −a6

1 + 540a3
1a3 + 5832a2

3.
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There are similar formulas for the n = 5 case which we recall from [12, § 3.4]. Here the ring
of Γ0(5)-modular forms takes the form

M∗(Γ0(5)) = Z[b2, b4, δ,Δ−1]/(b24 = b22δ − 4δ2),

where |b2| = 2 and |b4| = |δ| = 4. (These are the algebraic, rather than topological, degrees.)
The discriminant takes the form

Δ = δ2b4 − 11δ3

and we have

f∗(c4) = b22 − 12b4 + 12δ, q∗(c4) = b22 + 228b4 + 492δ,

f∗(c6) = −b32 + 18b2b4 − 72b2δ, q∗(c6) = −b32 + 522b2b4 + 10008b2δ.

7.1. Faithfulness of ψ

In this section, we will prove the following theorem.

Theorem 7.1. The map on homotopy

ψ∗ : TMF∗TMF →
∏

i∈Z,j�0

π∗TMF0(3j) × π∗TMF0(5j)

induced by the map ψ defined in the last section is injective.

Theorem 7.1 will be proven in two steps. Consider the following diagram

(7.2)

where the vertical maps are the localization maps. We will first argue that the left vertical map
in (7.2) is injective, and we will observe that the same argument shows the right-hand vertical
map is injective. Second, we will show that the bottom horizontal map of (7.2) is injective.
Theorem 7.1 then follows from the commutativity of (7.2) and these injectivity results.

Lemma 7.3. The localization map

TMF∗TMF → TMF∗TMFK(2)

is injective.

Proof. Since TMF ∧ TMF is E(2)-local, we have

(TMF ∧ TMF)K(2) � holim
i,j

TMF ∧ TMF ∧M(2i, vj1),

where (i, j) above run over a suitable cofinal range of N+ × N+. In order to conclude that there
is an isomorphism

π∗(TMF ∧ TMF)K(2)
∼= TMF∗TMF∧

(2,c4)

and for the map

TMF∗TMF → TMF∗TMF∧
(2,c4)
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to be injective we must show that no element of TMF∗TMF is infinitely divisible by elements of
the ideal (2, c4). Consider the Adams–Novikov spectral sequence for TMF∗TMF. This spectral
sequences converges since TMF ∧ TMF is E(2)-local [26, Theorem 5.3]. The E1-term of this
spectral sequence is easily seen to not be infinitely divisible by elements of the ideal (2, c4).
Therefore, any infinite divisibility in TMF∗TMF would have to occur through infinitely many
hidden extensions. This would result in elements in negative Adams–Novikov filtration, which
is impossible. �

The same argument shows that the various maps

π∗TMF0(N) → π∗TMF0(N)K(2)

are injections. The only remaining step to proving Theorem 7.1 is to show the bottom arrow
of Diagram (7.2) is an injection. This is the heart of the matter.

Lemma 7.4. The map

π∗(TMF ∧ TMF)K(2)

(ψK(2))∗−−−−−→
∏

i∈Z,j�0

π∗TMF0(3j)K(2) × π∗TMF0(5j)K(2)

is an injection.

In order to prove this lemma, we will need the following technical observation.

Lemma 7.5. Suppose that G is a profinite group, H is a finite subgroup of G, and U is an
open subgroup of G containing H. Then, there is a finite set of open subgroups Ui � U which
contain H, and a corresponding finite set {yk} of elements in G such that

(1) {ykUk} forms an open cover of G, and
(2) H ∩ ykUky

−1
k = H ∩ ykHy−1

k .

Proof. We have

H =
⋂

H�V�oU

V

(where we use �o to denote ‘open subgroup’). Therefore, for each y ∈ G, we have

H ∩ yHy−1 =
⋂

H�V�oU

H ∩ yV y−1.

Therefore, for each z ∈ H with z 
∈ yHy−1, there must be a subgroup H � Vz �o U so that
z 
∈ yVzy

−1. Define

Uy =
⋂
z

Vz.

(If the set of all such z is empty, define Uy = U .) Since H is finite, this is a finite intersection,
hence Uy is open. Note that Uy has the property that H � Uy �o U and

H ∩ yUyy
−1 = H ∩ yHy−1.

Consider the cover {yUy}y where y ranges over the elements of G. Since G is compact, there
is a finite subcover {ykUyk

}. We may therefore take Uk = Uyk
. �

Proof of Lemma 7.4. Let S2 denote the second Morava stabilizer group, and let Ē2 denote
the version of Morava E-theory associated to a height 2 formal group over F̄2. The spectrum
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Ē2 admits an action by the group S2 � Gal where Gal is the Galois group of F̄2 over F2, and
we have

TMFK(2) �
(
ĒhG24

2

)hGal

,

where G24 is the group of automorphisms of the (unique) supersingular elliptic curve C over
F̄2. In [24], it is shown that this homotopy fixed point description of TMFK(2) gives rise to the
following description of (TMF ∧ TMF)K(2)

(TMF ∧ TMF)K(2) �
(
Mapc(S2/G24, Ē2)hG24

)hGal
.

There is a subtlety being hidden with the above notation: the Galois group is acting on the
continuous mapping spectrum with the conjugation action, where it acts on the source through
the left action on

(S2 � Gal)/(G24 � Gal) ∼= S2/G24.

For N coprime to 2, let Mss
0 (N)(F̄2) denote the groupoid whose objects are pairs (C,H) where

C is a supersingular elliptic curve over F̄2 and H � C(F̄2) is a cyclic subgroup of order N , and
whose morphisms are isomorphisms of elliptic curves which preserve the subgroup. Then, we
have

TMF0(N)K(2) �
⎛⎝ ∏

[C,H]∈Mss
0 (N)(F̄2)

Ē
hAut(C,H)
2

⎞⎠hGal

.

For a prime � 
= 2, let Isogss� (F̄2) denote the groupoid whose objects are quasi-isogenies

φ : C1 → C2

with C1, C2 supersingular curves over F̄2, and whose morphisms from φ to φ′ are pairs of
isomorphisms (α1, α2) making the following square commute

It is easy to see that there is an equivalence of groupoids∐
i∈Z,j�0

Mss
0 (�j)(F̄2)

�−→ Isogss� (F̄2)

given by sending a pair (C,H) to the quasi-isogeny φ given by the composite

φ : C
[�i]−−→ C → C/H.

However, since there is a unique supersingular elliptic curve C over F̄2, the category Isogss� (F̄2)
admits the following alternative description (we actually only need that C is unique up to
�-power isogeny). Let Γ� denote the group of quasi-isogenies φ : C → C whose order is a power
of �. There is an inclusion

Γ� ↪→ S2

given by associating to a quasi-isogeny φ the associated automorphism φ̂ of the formal group
Ĉ. Then, there is a bijection between the isomorphism classes of objects of Isogss� (F̄2) and the
double cosets

G24\Γ�/G24.
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Moreover, given an element [φ] ∈ G24\Γ�/G24, the corresponding automorphisms of the
associated object φ in Isogss� (F̄2) is the group

G24 ∩ φG24φ
−1 ⊂ Γ�.

Putting this all together, we have

(
Map(Γ�/G24, Ē2)hG24

)hGal �
⎛⎝ ∏

[φ]∈G24\Γ�/G24

ĒhG24∩φG24φ
−1

2

⎞⎠hGal

�
⎛⎝ ∏

[φ]∈Isogss
� (F̄2)

Ē
hAut(φ)
2

⎞⎠hGal

�
⎛⎝ ∏

i∈Z,j�0

∏
[(C,H)]∈Mss

0 (�j)(F̄2)

Ē
hAut(C,H)
2

⎞⎠hGal

�
∏

i∈Z,j�0

TMF0(�j)K(2)

and under the equivalences described above, the map

ψK(2) : (TMF ∧ TMF)K(2) →
∏

i∈Z,j�0

TMF0(3j)K(2) × TMF0(5j)K(2)

can be identified with the map(
Mapc(S2/G24, Ē2)hG24

)hGal → (
Map(Γ3/G24 � Γ5/G24, Ē2)hG24

)hGal
(7.6)

induced by the map

Γ3/G24 � Γ5/G24 → S2/G24. (7.7)

In [10], it is shown that the image of the above map is dense. Intuitively, one would like to say
that this density implies that a continuous function on S2/G24 is determined by its restrictions
to Γ3/G24 and Γ5/G24, and this should imply that the map (7.6) is injective on homotopy.
The difficulty lies in making this argument precise.

Before we make the argument precise (which is rather technical) we pause to give the reader
an idea of the intuition behind the argument. An element in

π∗ Mapc(S2/G24, Ē2)hG24

is something like a section of a sheaf over G24\S2/G24 whose stalk over [x] ∈ G24\S2/G24 is

π∗ĒhG24∩xG24x
−1

2 .

One would like to say a section of this sheaf is trivial if its values on the stalks are trivial.
However, the actual space of continuous maps is a (K(2)-local) colimit of maps

Mapc(S2/G24, Ē2)hG24 � lim−→
G24�U�oS2

Map(S2/U, Ē2)hG24

� lim−→
G24�U�oS2

∏
[x]∈G24\S2/U

ĒhG24∩xUx−1

2 ,
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so an element of the homotopy of the continuous mapping space is actually represented by a
kind of locally constant section with constant value over G24xU lying in the group

π∗ĒhG24∩xUx−1

2 .

The difficulty is that there are only maps

π∗ĒhG24∩xUx−1

2 → π∗ĒhG24∩xG24x
−1

2

and these maps are not necessarily injections. The point of Lemma 7.5 is that the open cover
of S2 given by the double cosets G24xU admits a finite refinement, over which the ‘constant
sections’ have values in one of the stalks, and hence the vanishing of a value at a stalk implies
the vanishing of the constant section.

We now make this argument completely precise. We have

π∗
(
Mapc(S2/G24, Ē2)hG24

)hGal ∼= lim←−
i,j

lim−→
G24�U�oS2

(
π∗ Map(S2/U, Ē2)hG24

(2i, vj1)

)Gal

∼= lim←−
i,j

lim−→
G24�U�oS2

⎛⎝ ∏
[x]∈G24\S2/U

π∗ĒhG24∩xUx−1

2

(2i, vj1)

⎞⎠Gal

and

π∗
(
Map(Γ�/G24, Ē2)hG24

)hGal ∼= lim←−
i,j

(
π∗ Map(Γ�/G24, Ē2)hG24

(2i, vj1)

)Gal

∼= lim←−
i,j

⎛⎝ ∏
[x]∈G24\Γ�/G24

π∗ĒhG24∩xG24x
−1

2

(2i, vj1)

⎞⎠Gal

for suitable pairs (i, j). Consider the natural maps

φ� : lim−→
G24�U�oS2

∏
[x]∈G24\S2/U

π∗ĒhG24∩xUx−1

2

(2i, vj1)
→

∏
[x]∈G24\Γ�/G24

π∗ĒhG24∩xG24x
−1

2

(2i, vj1)
.

Lemma 7.4 will be proven if we can show that if we are given an open subgroup G24 � U �o S2

and a sequence in the product

(zG24xU )[x] ∈
∏

[x]∈G24\S2/U

π∗ĒhG24∩xUx−1

2

(2i, vj1)

such that

φ�(zG24xU ) = 0

for � = 3, 5, then there is another subgroup G24 � U ′ �o U such that the associated sequence

(zG24xU ′)[x] ∈
∏

[x]∈G24\S2/U ′

π∗ĒhG24∩xU ′x−1

2

(2i, vj1)

is zero, where zG24xU ′ is the restriction to U ′ of zG24xU .
Suppose that (zG24xU )[x] is such a sequence in the kernel of φ3 and φ5. Take a cover {ykUk}

of S2 as in Lemma 7.5, and let U ′ = ∩kUk. Regarding Γ3 and Γ5 as subgroups of S2, the density
of the image of the map (7.7) implies that the map

Γ3/U
′ � Γ5/U

′ → S2/U
′
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is surjective. We therefore may assume without loss of generality that the elements yk are
either in Γ3 or Γ5. We need to show that the associated sequence (zG24xU ′)[x] is zero. Take a
representative x of a double coset [x] ∈ G24\S2/U

′. Then, x ∈ ykUk for some k. Note that we
therefore have

G24 ∩ xU ′x−1 � G24 ∩ xUkx
−1 = G24 ∩ ykUky

−1
k = G24 ∩ ykG24y

−1
k � G24 ∩ xUx−1.

Consider the associated composite of restriction maps

π∗ĒhG24∩xUx−1

2

(2i, vj1)
→ π∗Ē

hG24∩ykG24y
−1
k

2

(2i, vj1)
→ π∗ĒhG24∩xU ′x−1

2

(2i, vj1)
.

The element zG24xU ′ is the image of zG24xU under the above composite. However, since zG24xU

is in the kernel of φ3 and φ5, it follows that the image of zG24xU is zero in

π∗Ē
hG24∩ykG24y

−1
k

2

(2i, vj1)
.

We therefore deduce that zG24xU ′ is zero, as desired. �

7.2. Computation of Ψ3 and Ψ5 in low degrees

Using the formulas for f∗ and q∗ for Γ0(3) and Γ0(5) in the beginning of this section, we now
compute the effect of the maps Ψ3 and Ψ5 on a piece of tmf ∧ tmf. Using the notation of (5.6),
we have decompositions:

Ext∗,∗A(2)∗
(Σ16bo2) ∼= Ext∗,∗A(1)∗

(Σ16F2) ⊕ Ext∗,∗A(2)∗
(Σ24bo1)︸ ︷︷ ︸

Ext∗,∗
A(2)(Σ

16b̃o2)

⊕Ext∗,∗A(2)∗
(Σ32F2[1])︸ ︷︷ ︸

Ext∗,∗
A(2)∗ (Σ16˜̃bo2)

,

Ext∗,∗A(2)∗
(Σ24bo3) ∼= Ext∗,∗A(1)∗

(Σ24F2) ⊕ Ext∗,∗A(2)∗
(Σ32bo2

1),

Ext∗,∗A(2)(Σ
32bo4) ∼= Ext∗,∗A(2)∗

(Σ64F2[1])︸ ︷︷ ︸
Ext∗,∗

A(2)∗ (Σ32b̃o4)

⊕
(

Ext∗,∗A(1)∗

(
Σ32tmf1 ⊕ Σ48F2

)
⊕Ext∗,∗A(2)∗

(Σ56bo1 ⊕ Σ56bo1[1])

)
.

As indicated by the underbraces above, we shall refer to the first piece of bo2 as b̃o2, and the

second piece as ˜̃bo2, and the first piece of bo4 as b̃o4.
We define a tmf∗-lattice of π∗TMF0(�) to be a π∗tmf-submodule I < π∗TMF0(�) which is

finitely generated as a π∗tmf-module, and has the property that

Δ−1I = π∗TMF0(�).

Note that the first condition forces I to be concentrated in π�NTMF0(�) for some N .
We will show that a portion I3 of tmf∗tmf detected by

Ext∗,∗A(2)∗
(Σ8bo1 ⊕ Σ16b̃o2)

in the ASS maps isomorphically onto a tmf∗-lattice of π∗TMF0(3), recovering an observation
of Davis, Mahowald, and Rezk [22, 33]. Similarly, we will show that a portion I5 of tmf∗tmf
detected by

Ext∗,∗A(2)∗
(Σ16˜̃bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4)

in the ASS maps isomorphically onto a tmf∗-lattice of π∗TMF0(5). This is a new phenomenon.
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Actually, Davis, Mahowald, and Rezk proved something stronger in [22, 33]: they showed
(2-locally) that there is actually a tmf-module

t̃mf0(3) := tmf ∧ (Σ16bo1 ∪ Σ24b̃o2) ∪β Σ33tmf

which maps to TMF0(3) as a connective cover, in the sense that on homotopy groups it gives
the aforementioned tmf∗-lattice. In the last section of this paper, we will reprove and strengthen
their result, and show that there is also a (2-local) tmf-module

t̃mf0(5) := Σ32tmf ∪ Σ24tmf ∧ bo′3 ∪ Σ64tmf

(where tmf ∧ bo′3 is a tmf-module whose cohomology is isomorphic to the cohomology of tmf ∧
bo3 as an A-module) which maps to TMF0(5) as a connective cover, topologically realizing the
corresponding tmf∗-lattice of π∗TMF0(5).

It will turn out that to verify these computational claims, it will suffice to compute the
maps

Ψ3 : I3 → π∗TMF0(3)

Ψ5 : I5 → π∗TMF0(5)

rationally. The behavior of the torsion classes will then be forced.

The case of TMF0(3).
Observe that we have

v−1
0 Ext∗,∗A(2)∗

(Σ8bo1 ⊕ Σ16b̃o2)

= v−1
0 Ext∗,∗A(2)∗

(Σ8bo1)

⊕ v−1
0 Ext∗,∗A(1)∗

(Σ16F2)

⊕ v−1
0 Ext∗,∗A(2)∗

(Σ24bo1)

= F2[v±1
0 , [c4], [Δ]]{[f1], [f2], [f3], [f4]}

⊕ F2[v±1
0 , [c4]]{[f2

1 ], [f1f2]}
⊕ F2[v±1

0 , [c4], [Δ]]{[f5], [f6], [f7], [f8]}.
Recall that

M∗(Γ0(3)) = Z[a2
1, a1a3, a

2
3]

(regarded as a subring of Z[a1, a3]). For a Γ0(3) modular form f , we will write

f = 2iaj1a
k
3 + · · · ,

where we have

(1) f ≡ 0 mod (2i), and
(2) f ≡ 2iaj1a

k
3 mod (2i+1, aj+1

1 ).

We shall refer to 2iaj1a
k
3 as the leading term of f .

The forgetful map

f∗ : M∗(Γ(1)) → M∗(Γ0(3))
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is computed on the level of leading terms by

f∗(c4) = a4
1 + · · · ,

f∗(c6) = a6
1 + · · · ,

f∗(Δ) = a4
3 + · · · .

Using the formulas for f∗ and q∗ given in the beginning of this section, we have

Ψ3(f1) = a1a3 + · · · Ψ3(f2) = a3
1a3 + · · ·

Ψ3(f3) = a1a
3
3 + · · · Ψ3(f4) = a3

1a
3
3 + · · ·

Ψ3(f2
1 ) = a2

1a
2
3 + · · · Ψ3(f1f2) = a4

1a
2
3 + · · ·

Ψ3(f5) = a4
3 + · · · Ψ3(f6) = a4

3a
2
1 + · · ·

Ψ3(f7) = a6
3 + · · · Ψ3(f8) = a6

3a
2
1 + · · · .

(7.8)

It follows that on the level of leading terms, the (tmf∗)Q-submodule of tmf∗tmfQ given by

Q[c4,Δ]{f1, f2, f3, f4}
⊕Q[c4]{f2

1 , f1f2}
⊕Q[c4,Δ]{f5, f6, f7, f8}

maps under Ψ3 to the (tmf∗)Q-lattice given by the ideal

(I3)Q := (a1a3, a
2
3) ⊂ M∗(Γ0(3))Q

expressed as

Q[a4
1, a

4
3]{a1a3, a

3
1a3, a1a

3
3, a

3
1a

3
3}

⊕Q[a4
1]{a2

1a
2
3, a

4
1a

2
3}

⊕Q[a4
1, a

4
3]{a4

3, a
4
3a

2
1, a

6
3, a

6
3a

2
1}.

The case of TMF0(5).
Observe that we have

v−1
0 Ext∗,∗A(2)∗

(Σ16˜̃bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4)

= v−1
0 Ext∗,∗A(2)∗

(Σ32F2[1])

⊕ v−1
0 Ext∗,∗A(1)∗

(Σ24F2)

⊕ v−1
0 Ext∗,∗A(2)∗

(Σ32bo2
1)

⊕ v−1
0 Ext∗,∗A(2)∗

(Σ64F1
2)

= F2[v±1
0 , [c4], [Δ]]{[f9], [c6f9]}

⊕ F2[v±1
0 , [c4]]{[f3

1 ], [f2
1 f2]}

⊕ F2[v±1
0 , [c4], [Δ]]{[f5f1], [f5f2], [f10], [f11], [f7f1], [f7f2], [f14], [f15]}

⊕ F2[v±1
0 , [c4], [Δ]]{[f2

9 ], [c6f2
9 ]}.

Recall that

M∗(Γ0(5)) = Z[b2, b4, δ]/(b24 = b22δ − 4δ2).
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For a Γ0(5) modular form f , we will write

f = 2ibj2δ
kbε4 + · · · ,

where ε ∈ {0, 1} and

(1) f ≡ 0 mod (2i), and
(2) {

f ≡ 2ibj2(δ
k + αδk−1b4) mod (2i+1, bj+1

2 ), ε = 0,
f ≡ 2ibj2δ

kb4 mod (2i+1, bj+1
2 ), ε = 1.

We shall refer to 2ibj2δ
kbε4 as the leading term of f .

The forgetful map

f∗ : M∗(Γ(1)) → M∗(Γ0(5))

is computed on the level of leading terms by

f∗(c4) = b22 + · · · ,
f∗(c6) = b32 + · · · ,
f∗(Δ) = δ3 + · · · .

Unlike the case of Γ0(3), the M∗(Γ(1))-submodule of 2-variable modular forms generated by
the forms listed above in

v−1
0 Ext∗,∗A(2)∗

(Σ16˜̃bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4)

does not map nicely into M∗(Γ0(5)). Rather, we choose different generators as listed below.
These generators were chosen inductively (first by increasing degree, and second, by decreasing
Adams filtration) by using a row echelon algorithm based on leading terms (see Examples 7.11
and 7.12). In every case, a generator named x̃ agrees with x modulo terms of higher Adams
filtration:

f̃9 = f9 + Δf1 + c24f
2
1 ,

c̃6f9 = c6f9 + c4Δf2 + c34f1f2,

f̃3
1 = f3

1 + f4 + c4f
2
1 ,

f̃2
1 f2 = f2

1 f2 + c4f3 + c4f1f2,

f̃5f1 = f1f5 + Δf1,

f̃5f2 = f5f2 + Δf2,

f̃7f1 = f1f7 + Δf3 + c4f7 + c4Δf2 + c24f6 + c34f1f2 + c44f2,

f̃7f2 = f2f7 + Δf4 + c4f8 + c24Δf1 + c44f
2
1 ,

f̃14 = f14 + Δf4 + c34f5 + c34f4,

f̃15 = f15 + c4Δf3 + c34f6 + c44f3.

(7.9)

The following forms, while not detected by Ext∗,∗A(2)∗
(Σ16˜̃bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4), will be

needed:

f̃4
1 = f4

1 + c4f5 + c4f4 + c24f
2
1 ,

f̃3
1 f2 = f3

1 f2 + c4f6 + c24f3 + c34f2.
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We now define:

f̃10 = f10 + f7 + c4f6 + c24f1f2,

f̃11 = f11 + f8 + c4Δf1 + c24f5,

c̃4f10 = c4f̃10 + c̃6f9 + c4f̃3
1 f2 + c24f̃

2
1 f2.

Again, the following forms are not detected by Ext∗,∗A(2)∗
(Σ16˜̃bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4), but will

be needed:

f̃4
1 f2 = f4

1 f2 + c4Δf2 + c24f6 + c34f3 + c44f2 + c4f̃5f2,

f̃13 = f13 + Δf3 + c4f7 + c4Δf2 + c24f6 + c34f3 + c34f1f2 + c44f2 + f̃7f1 +
c̃4f10

2

+ c̃6f9 + c4f̃5f2 + f̃4
1 f2 + c24f̃

2
1 f2.

We then define:

f̃2
9 = f̃9

2
,

c̃4f2
9 = c4f̃9

2
+ Δf̃7f2 + c4Δf̃11 + c24Δf̃5f1 + c34f̃14 + c54f̃9 + c54f̃5f1 + c54f̃

4
1 ,

c̃6f2
9 = c6f̃2

9 + c4Δf̃7f1 + c4Δ
c̃4f10

2
+ c4Δc̃6f9 + c24Δf̃5f2 + c44

c̃4f10

2
+ c44f̃

4
1 f2

+ c54f̃
3
1 f2 + c44f̃13.

Using the formulas for f∗ and q∗ given in the beginning of this section, we have

Ψ5(f̃9) = δ4 + · · · Ψ5(c̃6f9) = b32δ
4 + · · ·

Ψ5(f̃3
1 ) = b22δ

2 + · · · Ψ5(f̃2
1 f2) = b32δ

2 + · · ·
Ψ5(f̃5f1) = δ3b4 + · · · Ψ5(f̃5f2) = b2δ

3b4 + · · ·
Ψ5(f̃7f1) = b2δ

5 + · · · Ψ5(f̃7f2) = b22δ
5 + · · ·

Ψ5(f̃14) = δ6 + · · · Ψ5(f̃15) = b2δ
6 + · · ·

Ψ5(f̃4
1 ) = b22δ

2b4 + · · · Ψ5(f̃3
1 f2) = b32δ

2b4 + · · ·
Ψ5(f̃10) = b2δ

4 + · · · Ψ5(f̃11) = δ4b4 + · · ·
Ψ5(c̃4f10) = 2b2δ4b4 + · · · Ψ5(f̃4

1 f2) = b52δ
3 + · · ·

Ψ5(f̃13) = b92δ + · · · Ψ5(f̃2
9 ) = δ8 + · · ·

Ψ5(c̃4f2
9 ) = 2δ8b4 + · · · Ψ5(c̃6f2

9 ) = b2δ
8b4 + · · · .

(7.10)

Example 7.11. We explain how the above generators were produced by working through
the example of f̃10.

Step 1. Add terms to f10 of higher Adams filtration to ensure that Ψ3(f̃10) ≡ 0 mod 2. For
example, we compute

Ψ3(f10) = a6
3 + · · · .
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According to (7.8), we have Ψ3(f7) = a6
3 + · · · . Since f7 has higher Adams filtration, we can

add it to f10 without changing the element detecting it in the ASS to cancel the leading term
of a6

3. We compute

Ψ3(f10 + f7) = a6
1a

4
3 + · · · .

Again, using (7.8), we see that Ψ3(c4f6) (of higher Adams filtration) also has this leading term,
so we now compute:

Ψ3(f10 + f7 + c4f6) = a12
1 a2

3 + · · · .
We see that Ψ3(c24f1f2) also has this leading term, and

Ψ3(f10 + f7 + c4f6 + c24f1f2) ≡ 0 mod 2.

Step 2. Add terms to f10 + f7 + c4f6 + c24f1f2 to ensure that the leading term of Ψ5(f̃10) is
distinct from those generated by elements in lower degree, or higher Adams filtration. In this
case, we compute

Ψ5(f10 + f7 + c4f6 + c24f1f2) = b2δ
4 + · · · .

By induction, we know the leading term of Ψ5 on generators in lower degree and higher Adams
filtration, and in particular (7.10) tells us that this leading term is distinct from leading terms
generated from elements of lower degree. We therefore define

f̃10 = f10 + f7 + c4f6 + c24f1f2.

Example 7.12. We now explain a subtlety which may arise by working through the example
of c̃4f10.

Step 1. We would normally add terms to c4f10 of higher Adams filtration to ensure that
Ψ3(c̃4f10) ≡ 0 mod 2. Of course, because we already know that Ψ3(f̃10) ≡ 0 mod 2, we have

Ψ3(c4f̃10) ≡ 0 mod 2.

Step 2. We now add terms to c4f̃10 to ensure that the leading term of Ψ5(c̃4f10) is distinct
from those generated by elements in lower degree. In this case, we compute

Ψ5(c4f̃10) = b32δ
4 + · · · .

By induction, we know the leading term of Ψ5 on generators in lower degree and higher Adams
filtration, but now (7.10) tells us that

Ψ5(c̃6f9) = b32δ
4 + · · · .

Since c6f9 has higher Adams filtration, we add it to c4f̃10 and compute

Ψ5(c4f̃10 + c̃6f9) = b52δ
2b4.

We inductively know that Ψ5(f̃3
1 f2) = b32δ

2b4 + · · · , and we compute

Ψ5(c4f̃10 + c̃6f9 + c4f̃3
1 f2) = b72δ

2.

We inductively know that Ψ5(f̃2
1 f2) = b32δ

2 + · · · , and we compute

Ψ5(c4f̃10 + c̃6f9 + c4f̃3
1 f2 + c24f̃

2
1 f2) = 2b2δ4b4 + · · · .

In other words, the expression above is congruent to 0 mod 2, and therefore the leading term
is divisible by 2! However, this leading term is distinct from leading terms generated from
elements of lower degree, so we define

c̃4f10 = c4f̃10 + c̃6f9 + c4f̃3
1 f2 + c24f̃

2
1 f2
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and record the leading term of Ψ5(c̃4f10) as 2b2δ4b4. (In fact, the 2-variable modular form

c̃4f10 is 2-divisible, and this is why some of the equations in (7.9) involve the term c̃4f10
2 .)

In light of the form the leading terms of (7.10) take, we rewrite

v−1
0 Ext∗,∗A(2)∗

(Σ16˜̃bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4)

= F2[v±1
0 , [c4], [Δ]]{[f9], [c6f9]}

⊕ F2[v±1
0 , [c4]]{[f3

1 ], [f2
1 f2]}

⊕ F2[v±1
0 , [c4], [Δ]]{[f5f1], [f5f2], [f10], [f11], [f7f1], [f7f2], [f14], [f15]}

⊕ F2[v±1
0 , [c4], [Δ]]{[f2

9 ], [c6f2
9 ]}

in the form

F2[v±1
0 , [c4], [Δ]]{[f̃9], [c̃6f9]}⊕

F2[v±1
0 , [c4]]{[f̃3

1 ], [f̃2
1 f2]}⊕

F2[v±1
0 , [c4], [Δ]]{[f̃5f1], [f̃5f2], [f̃11], [c̃4f10], [f̃7f1], [f̃7f2], [f̃14], [f̃15]} ⊕ F2[v±1

0 , [Δ]]{[f̃10]}

⊕F2[v±1
0 , [c4], [Δ]]{[c̃4f2

9 ], [c̃6f2
9 ]} ⊕ F2[v±1

0 , [Δ]]{[f̃2
9 ]}.

It follows from (7.10) that on the level of leading terms, the (tmf∗)Q submodule of tmf∗tmfQ
given by

Q[c4,Δ]{f̃9, c̃6f9}

⊕Q[c4]{f̃3
1 , f̃

2
1 f2}

⊕Q[c4,Δ]{f̃5f1, f̃5f2, f̃11,
c̃4f10

2
, f̃7f1, f̃7f2, f̃14, f̃15} ⊕ Q[Δ]{f̃10}

⊕Q[c4,Δ]{ c̃4f
2
9

2
, c̃6f2

9 } ⊕ Q[Δ]{f̃2
9 }

maps under Ψ5 to the (tmf∗)Q-lattice

(I5)Q = Q[b2, δ3]{b22δ2, δ3b4, δ
4, δ4b4, b2δ

5, δ6, δ8, δ8b4} ⊂ M∗(Γ0(5))Q

expressed as

Q[b22, δ
3]{δ4, b32δ

4}
⊕Q[b22]{b22δ2, b32δ

2}
⊕Q[b22, δ

3]{δ3b4, b2δ
3b4, δ

4b4, b2δ
4b4, b2δ

5, b22δ
5, δ6, b2δ

6} ⊕ Q[Δ]{b2δ4}
⊕Q[c4,Δ]{δ8b4, b2δ

8b4} ⊕ Q[Δ]{δ8}.

7.3. Using level structures to detect differentials and hidden extensions in the ASS

In the previous section, we observed that Ψ3 maps a tmf∗-submodule of tmf∗tmf detected in
the ASS by

Ext∗,∗A(2)∗
(Σ8bo1 ⊕ Σ16b̃o2)
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to a tmf∗-lattice I3 ⊂ π∗TMF0(3), and Ψ5 maps a tmf∗-submodule of tmf∗tmf detected in the
ASS

Ext∗,∗A(2)∗
(Σ16˜̃bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4)

to a tmf∗-lattice I5 ⊂ π∗TMF0(5).
We now observe that using the known structure of π∗TMF0(3) and π∗TMF0(5), we can

deduce differentials in the portion of the ASS detected by

Ext∗,∗A(2)∗
(Σ8bo1 ⊕ Σ16bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4).

We begin with Σ8bo1 ⊕ Σ16b̃o2. Figure 7.1 displays this portion of the E2-term of the ASS for
tmf∗tmf, with differentials and hidden extensions. The v−1

0 ExtA(2)-generators in the chart are
also labeled with Γ0(3)-modular forms. These are the leading terms of the Γ0(3)-modular forms
that they map to under the map Ψ3 (see (7.8)). The Adams differentials and hidden extensions
are all deduced from the behavior of Ψ3 on these torsion-free classes, as we will now explain.
We will also describe how the h0-torsion in this portion of the ASS detects homotopy classes
which map isomorphically under Ψ3 onto torsion in π∗TMF0(3). We freely make reference to
the descent spectral sequence

Hs(M0(3), ω⊗t) ⇒ π2t−sTMF0(3),

as computed in [33].

Stem 17. We have

Ψ3(ηf4) = ηa3
1a

3
3 + · · · .

Mahowald and Rezk [33] define a class x in π17TMF0(3) such that

c4x = ηa3
1a

3
3 + · · · .

There is a class z17 in Ext1,18A(2)∗
(Σ8bo1) such that

[c4]z17 = h1[f4].

The class z17 is a permanent cycle, and detects an element y17 ∈ tmf17tmf. We deduce

Ψ3(y17) = x,

Ψ3(ηy17) = ηx,

Ψ3(νy17) = νx.

Stem 24. The modular form a4
3 is not a permanent cycle in the descent spectral sequence

for TMF0(3). It follows that the corresponding element of ExtA(2)∗(b̃o2) must support an ASS
differential. There is only one possible target for this differential.

Stem 33. There is a class z33 ∈ Ext1,34A(2)∗
(Σ16b̃o2) satisfying

[c4]z33 = h1[f8].

There are no possible nontrivial differentials supported by h1z33. Dividing both sides of

Ψ3(η2f8) = η2a2
1a

6
3 + · · ·

by c4, we deduce that there is an element y34 ∈ tmf34tmf detected by h1z33 satisfying

Ψ3(y34) = x2.
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Figure 7.1 (colour online). Differentials and hidden extensions in the portion of the ASS for

tmf∗tmf detected by Σ8bo1 ⊕ Σ16
˜bo2 coming from TMF0(3).
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Since x2 is not η-divisible, we deduce that z33 must support an Adams differential, and there
is only one possible target for such a differential. Since

Ψ3(κ̄y17) = κ̄x = νx2,

it follows that the element gy17 ∈ Ext5,42A(2)∗(bo1) detects νy33, which maps to νx2 under Ψ3.
We then deduce that

Ψ3(〈η, ν, νy33〉) = 〈η, ν, νx2〉 = a1a3x
2.

Stem 48. Let z48 ∈ Ext4,52A(2)∗
(b̃o2) denote the unique nontrivial class with h1z48 = 0, so

that [Δf5] + z48 is the unique class in that bidegree which supports nontrivial h1 and h2-
multiplication. Note that there is only one potential target for an Adams differential supported
by [δf5] or z48. Since a8

3 supports nontrivial η and ν multiplication, it follows that [Δf5] + z48

must be a permanent cycle in the ASS, detecting an element y48 ∈ tmf∗tmf satisfying

Ψ3(y48) = a8
3.

Since ν2a8
3 is not η-divisible, we conclude that h2,1z48 cannot be a permanent cycle. We deduce

using h2,1-multiplication (that is, application of 〈ν, η,−〉) that

d3(hi
2,1z48) = hi−1

2,1 d3(h2,1z48)

for i � 1, and that

d3(z48) = d3([δf5]) 
= 0.

We now proceed to analyze Σ16˜̃bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4. Figure 7.2 displays this portion of
the E2-term of the ASS for tmf∗tmf, with differentials and hidden extensions. The v−1

0 ExtA(2)-
generators in the chart are also labeled with Γ0(5)-modular forms. These are the leading terms
of the Γ0(5)-modular forms that they map to under Ψ5 (see (7.10)). As in the case of Σ8bo1 ⊕
Σ16b̃o2, the Adams differentials and hidden extensions are all deduced from the behavior of
Ψ5 on these torsion-free classes. We will also describe how the h0-torsion in this portion of the
ASS detects homotopy classes which map isomorphically under Ψ5 onto torsion in π∗TMF0(5).
We freely make reference to the descent spectral sequence

Hs(M0(5), ω⊗t) ⇒ π2t−sTMF0(5),

as computed in [12], for instance. Most of the differentials and extensions follow from the fact
that the element [f9] which generates

ExtA(2)∗(Σ
16˜̃bo2) ∼= ExtA(2)∗(Σ

32F2[1])

must be a permanent cycle in the ASS, and that the ASS for tmf ∧ tmf is a spectral sequence
of modules over the ASS for tmf

Ext∗,∗A(2)∗
(F2) ⇒ π∗tmf∧2 .

Below we give some brief explanation for the main differentials and hidden extensions which
do not follow from this.

Stem 36. We have

Ψ5(f10) = b2δ
4 + · · · .

Since b2δ
4 is not a permanent cycle in the descent spectral sequence for TMF0(5), we deduce

that f10 must support a differential. There is only one possibility (taking into account the
differential d3(h2z33) coming from TMF0(3)),

d4([f10]) = h3
1[f9].
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Figure 7.2 (colour online). Differentials and hidden extensions in the portion of the ASS for

tmf∗tmf detected by Σ16˜
˜bo2 ⊕ Σ24bo3 ⊕ Σ32

˜bo4 coming from TMF0(5).
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This is especially convenient, in light of the fact that η3δ4 = 0.

Stem 41. The hidden extension follows from dividing

Ψ5(η[f̃7f2]) = ηb22δ
5 + · · ·

by c4.

Stem 54. The three hidden extensions to the element [κc4f̃9] all follow from the fact that
ν2(2δ6) is nontrivial, and that

2(ν2δ6) = η2κ̄δ2.

Stem 56. The hidden extension follows from the Toda bracket manipulation

2〈ν, 2κ̄, 2f̃9〉 = 〈2, ν, 2κ̄〉2f̃9.

Stem 64. The differential on [f̃2
9 /2] follows from the fact that δ8 is not 2-divisible. The hidden

extensions follow from the fact that ηδ8 
= 0 and ν2δ8 
= 0.

Stem 65. The hidden η-extension follows from the fact that δ4κκ̄ is η-divisible, and ν(δ4κκ̄) =
(2δ6)κ̄.

7.4. Connective covers of TMF0(3) and TMF0(5) in the tmf-resolution

In this section, we will topologically realize the summands

Ext∗,∗A(2)∗
(Σ8bo1 ⊕ Σ16b̃o2),

Ext∗,∗A(2)∗
(Σ16˜̃bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4)

of Ext(tmf ∧ tmf), which we showed detect tmf∗-submodules that map to tmf∗-lattices of
π∗TMF0(3) and π∗TMF0(5) under the maps Ψ3 and Ψ5, respectively. From now on, everything
is implicitly 2-local.

For the purposes of context, we shall say that a spectrum

X → tmf

over tmf is a tmf-Brown–Gitler spectrum if the induced map

H∗X → H∗tmf

maps H∗X isomorphically onto one of the A∗-subcomodules tmfi ⊂ H∗tmf defined in Section 5.
Not much is known about the existence of tmf-Brown–Gitler spectra, but the most optimistic

hope would be that the spectrum tmf admits a filtration by tmf-Brown–Gitler spectra tmfi.
The case of i = 0 is trivial (define tmf0 = S0) and the case of i = 1 is almost as easy: a spectrum
tmf1 can be defined to be the 15-skeleton:

tmf1 := tmf [15] ↪→ tmf.

In light of the short exact sequences

0 → tmfi−1 → tmfi → Σ8iboi → 0,

one would anticipate that such tmf-Brown–Gitler spectra would be built from bo-Brown–Gitler
spectra, so that

tmfi � bo0 ∪ Σ8bo1 ∪ · · · ∪ Σ8iboi.

Davis, Mahowald, and Rezk [22, 33] nearly construct a spectrum tmf2; they show that there
is a subspectrum

Σ8bo1 ∪ Σ16bo2 ↪→ tmf
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(where tmf is the cofiber of the unit S0 → tmf) realizing the subcomodule

Σ8bo1 ⊕ Σ16bo2 ⊆ H∗tmf.

We will not pursue the existence of tmf-Brown–Gitler spectra here, but instead will consider
the easier problem of constructing the beginning of a potential filtration of tmf ∧ tmf by tmf-
modules, which we denote tmf ∧ tmfi even though we do not require the existence of the
individual spectra tmfi. We would have

tmf ∧ tmfi � tmf ∧ bo0 ∪ Σ8tmf ∧ bo1 ∪ · · · ∪ Σ8itmf ∧ boi,

such that the map

H∗tmf ∧ tmfi → H∗tmf ∧ tmf

maps H∗tmf ∧ tmfi onto the sub-comodule

(A//A(2))∗ ⊗ tmfi ⊂ H∗tmf ∧ tmf.

Note that in the case of i = 0, we may take

tmf ∧ tmf0 := tmf
ηL−−→ tmf ∧ tmf.

Since this is the inclusion of a summand, with cofiber denoted tmf, it suffices to instead look
for a filtration

tmf ∧ tmf1 ↪→ tmf ∧ tmf2 ↪→ · · · ↪→ tmf ∧ tmf

of tmf-modules. Our previous discussion indicates that the cases of i = 1 is easy, and now the
work of Davis–Mahowald–Rezk fully handles the case of i = 2. In this section, we will address
the case of i = 3, and a ‘piece’ of the case of i = 4. We state a proposition and two theorems
before moving onto their proofs.

Proposition 7.13. (1) There is a tmf-module

tmf ∧ tmf3 � Σ8tmf ∧ bo1 ∪ Σ16tmf ∧ bo2 ∪ Σ24tmf ∧ bo′3 ↪→ tmf ∧ tmf

which realizes the submodule

(A//A(2))∗ ⊗ (Σ8bo1 ⊕ Σ16bo2 ⊕ Σ24bo3) ⊂ H∗tmf ∧ tmf

where tmf ∧ bo′3 is a tmf-module with

H∗(tmf ∧ bo′3) ∼= (A//A(2))∗ ⊗ bo3

(but which may not be equivalent to tmf ∧ bo3 as a tmf-module).
(2) There is a map of tmf-modules

Σ63tmf α−→ tmf ∧ tmf3

and an extension

(3) There is a modified Adams spectral sequence

Ext∗,∗A(2)∗
(Σ8bo1 ⊕ Σ16bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4) ⇒ π∗tmf ∧ tmf3 ∪α Σ64tmf,



ON THE RING OF COOPERATIONS FOR tmf 647

and the map ι induces a map from this modified ASS to the ASS for tmf ∧ tmf such that the
induced map on E2-terms is the inclusion of the summand

Ext∗,∗A(2)∗
(Σ8bo1 ⊕ Σ16bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4) ↪→ Ext∗,∗A(2)∗

((A//A(2))∗).

In [22, 33], Davis, Mahowald, and Rezk construct a map

Σ32tmf
β−→ tmf ∧ tmf2

such that cofiber tmf ∧ tmf2 ∪β Σ33tmf has an ASS with E2-term

E∗,∗
2

∼= Ext∗,∗A(2)∗
(Σ8bo1 ⊕ b̃o2)

and there is an equivalence

v−1
2 (tmf ∧ tmf2 ∪β Σ33tmf) � TMF0(3).

What they do not address is how this connective cover is related to tmf ∧ tmf and the map Ψ3

to TMF0(3).

Theorem 7.14. (1) There is a choice of attaching map β such that the tmf-module

t̃mf0(3) := Σ8tmf ∧ tmf2 ∪β Σ33tmf

fits into a diagram

(7.15)

(2) The E2-term of the ASS for t̃mf0(3) is given by

E∗,∗
2 = Ext∗,∗A(2)∗

(Σ8bo1 ⊕ Σ16b̃o2).

(3) The map tmf ∧ tmf2 → t̃mf0(3) of Diagram (7.15) induces the projection

Ext∗,∗A(2)∗
(Σ8bo1 ⊕ Σ16bo2) → Ext∗,∗A(2)∗

(Σ8bo1 ⊕ Σ16b̃o2)

on Adams E2-terms.
(4) The map t̃mf0(3) → TMF0(3) of Diagram (7.15) makes t̃mf0(3) a connective cover of

TMF0(3).

We also will provide the following analogous connective cover of TMF0(5).

Theorem 7.16. (1) There is a tmf-module

t̃mf0(5) := Σ32tmf ∪ Σ24tmf ∧ bo′3 ∪ Σ64tmf

which fits into a diagram

(7.17)



648 M. BEHRENS, K. ORMSBY, N. STAPLETON AND V. STOJANOSKA

(2) There is a modified ASS

Ext∗,∗A(2)∗
(Σ16˜̃bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4) ⇒ π∗(t̃mf0(5)).

(3) The map t̃mf0(5) → tmf ∧ tmf3 ∪α Σ64tmf of Diagram (7.17) induces a map of modified
ASS’s, which on E2-terms is given by the inclusion

Ext∗,∗A(2)∗
(Σ16˜̃bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4) ↪→ Ext∗,∗A(2)∗

(Σ8bo1 ⊕ Σ16bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4).

(4) The composite t̃mf0(5) → TMF0(5) of Diagram (7.17) makes t̃mf0(5) a connective cover
of TMF0(5).

The remainder of this section will be devoted to proving Proposition 7.13, Theorem 7.14, and
Theorem 7.16. The proofs of all of these will be accomplished by taking fibers and cofibers of a
series of maps, using brute force calculation of the ASS. These brute force calculations boil down
to having low-degree computations of the groups ExtA(2)∗(boi,boj) for various small values
of i and j. The computations were performed using Bruner’s Ext-software [15]. The software
requires module definition input that completely describes the A(2)-module structure of the
modules H∗boi. The first author was fortunate to have an undergraduate research assistant,
Brandon Tran, generate module files using Sage.

Proof of Proposition 7.13. Endow tmf ∧ tmf with a minimal tmf-cell structure correspond-
ing to an F2-basis of H∗tmf. Let tmf ∧ tmf

[46]
denote the 46-skeleton of this tmf-cell module,

so we have

H∗(tmf ∧ tmf
[46]

) ∼= (A//A(2))∗ ⊗ (Σ8bo1 ⊕ Σ16bo2 ⊕ Σ24bo3 ⊕ Σ32bo[14]
4 ⊕ Σ40bo[6]

5 ).

(7.18)

We first wish to form a tmf-module X1 with

H∗X1
∼= (A//A(2))∗ ⊗ (Σ8bo1 ⊕ Σ16bo2 ⊕ Σ24bo3 ⊕ Σ32bo[14]

4 ) (7.19)

by taking the fiber of a suitable map of tmf-modules

γ5 : tmf ∧ tmf
[46] → tmf ∧ Σ40bo[6]

5 .

We use the ASS

Exts,tA(2)∗
(H∗tmf

[46]
,Σ40bo6

5) ⇒ [Σt−stmf ∧ tmf
[46]

,Σ40tmf ∧ bo[6]
5 ]tmf .

The decomposition (7.18) induces a corresponding decomposition of Ext groups. The
only nonzero contributions near t− s = 0 come from Σ40bo[6]

5 , Σ32bo[14]
4 , and Σ24bo3; the

corresponding Ext charts are depicted below.
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The generator [γ5] ∈ Ext0,0A(2)∗
(Σ40bo[6]

5 ,Σ40bo[6]
5 ) would detect the desired map γ5. We just

need to show that this generator is a permanent cycle in the ASS. As the charts indicate, the
only potential target is the nontrivial class

x ∈ Ext2,−1+2
A(2)∗

(Σ24bo3,Σ
40bo[6]

5 ).

We shall call x the potential obstruction for γ5; if d2(γ5) = x, then we will say that γ5

is obstructed by x. The key observation is that in the vicinity of t− s = 0, the groups
ExtA(1)∗(Σ

24bo3,Σ
40bo[6]

5 ) are depicted below.

Under the map of ASS’s

the potential obstruction x maps to the nonzero class

y ∈ Ext2,−1+2
A(1)∗

(Σ24bo3,Σ
40bo[6]

5 ).

Therefore, if γ5 is obstructed by x, then y is the obstruction to the existence of a corresponding
map of bo-modules

bo ∧tmf γ5 : bo ∧ tmf
[46] → Σ40bo ∧ bo[6]

5 .

However, Bailey showed in [2] that there is a splitting of bo-modules

bo ∧ tmf �
∨
i

Σ8ibo ∧ boi.

In particular, the map bo ∧tmf γ5 is realized by restricting the splitting map

bo ∧ tmf → Σ40bo ∧ bo5

to 46-skeleta (in the sense of bo-cell spectra). Therefore, bo ∧tmf γ5 is unobstructed, and we
deduce that γ5 cannot be obstructed.

The tmf-module tmf ∧ tmf3 may then be defined to be the fiber of a map

γ4 : X1 → Σ32bo[14]
4 ,

which on homology is the projection on the summand

H∗X1 → Σ32(A//A(2))∗ ⊗ bo[14]
4 .

Again, we use the ASS

Exts,tA(2)∗
(tmf3 ⊕ Σ32bo[14]

4 ,Σ32bo[14]
4 ) ⇒ [Σt−sX1,Σ32bo[14]

4 ]tmf .
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The E2-term is computed using the decomposition (7.19). The only nonzero contributions come
from the following summands:

We discover that the only potential obstruction to the existence of γ4 is the nontrivial class

z ∈ Ext2,−1+2
A(2)∗

(Σ24bo3,Σ
32bo[14]

4 ).

Unfortunately, we cannot simply imitate the argument in the previous paragraph, because z
is in the kernel of the homomorphism

Ext2,−1+2
A(2)∗

(Σ24bo3,Σ
32bo[14]

4 ) → Ext2,−1+2
A(1)∗

(Σ24bo3,Σ
32bo[14]

4 ).

Nevertheless, a more roundabout approach will eliminate this potential obstruction. We first
observe that there is a map of tmf-modules

γ′
4 : X1 → Σ32(bo4)

[14]
[9]

(with (bo4)
[14]
[9] denoting the quotient bo[14]

4 /bo[8]
4 ), which on homology is the canonical

composite

H∗X1 → Σ32(A//A(2))∗ ⊗ bo[14]
4 → Σ32(A//A(2))∗ ⊗ (bo4)

[14]
[9] .

The existence of γ′
4 is verified by the ASS

Exts,tA(2)∗
(tmf3 ⊕ Σ32bo[14]

4 ,Σ32(bo4)
[14]
[9] ) ⇒ [Σt−sX1,Σ32(bo4)

[14]
[9] ]tmf .

The E2-term is computed using the decomposition (7.19). The only nonzero contributions in
the vicinity of t− s = 0 come from the following summands:
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We see that there are no potential obstructions for the existence of γ′
4. Let X2 denote the fiber

of γ′
4, so that we have

H∗X2
∼= (A//A(2))∗ ⊗ (Σ8bo1 ⊕ Σ16bo2 ⊕ Σ24bo3 ⊕ Σ32bo[8]

4 ). (7.20)

We instead contemplate the potential obstructions to the existence of a map of tmf-modules

γ′′
4 : X2 → Σ32tmf ∧ bo[8]

4 ,

which on homology induces the projection

H∗X2 → Σ32(A//A(2))∗ ⊗ bo[8]
4 .

The E2-term of the ASS

Exts,tA(2)∗
(tmf3 ⊕ Σ32bo[8]

4 ,Σ32bo[8]
4 ) ⇒ [Σt−sX2,Σ32bo[8]

4 ]tmf

is computed using the decomposition (7.20), and in particular the contribution coming from
the summand Σ24bo3 ⊂ tmf3 gives the following classes in the vicinity of t− s = 0:

We see that there are many potential obstructions to the existence of γ′′
4 in

Ext2,−1+2
A(2)∗

(Σ24bo3,Σ
32bo[8]

4 ).

The potential obstructions for the related map

bo ∧tmf γ
′′
4 : X2 → Σ32tmf ∧ bo[8]

4

of bo-modules in the ASS

Exts,tA(1)∗
(tmf3 ⊕ Σ32bo[8]

4 ,Σ32bo[8]
4 ) ⇒ [Σt−sX2,Σ32bo[8]

4 ]bo
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may be analyzed, and the contribution coming from the summand Σ24bo3 ⊂ tmf3 gives the
following classes in the vicinity of t− s = 0:

We see that there is one potential obstruction to the existence of bo ∧tmf γ
′′
4 in

Ext2,−1+2
A(1)∗

(Σ24bo3,Σ
32bo[8]

4 ).

We analyze these potential obstructions through the following zig-zag of ASS’s:

In the above diagram, the potential obstruction z to the existence of γ4 maps under r to a
nontrivial class, so that if z obstructs γ4, then r(z) obstructs the composite

γ4|X2 : X2 → X1
γ4−→ Σ32tmf ∧ bo[14]

4 .

The key fact to check using Bruner’s Ext-software is that in bidegree (t− s, s) = (−1, 2), the
maps i and j are both surjective, with the same kernel. It follows that if γ4|X2 is obstructed
by r(z), then the map

bo ∧tmf γ
′′
4 : bo ∧tmf X2 → Σ32bo ∧ bo[8]

4

is obstructed. We may now avail ourselves of the Bailey splitting of bo ∧ tmf: the map bo ∧tmf

γ′′
4 is unobstructed, because it is realized by the projection

bo ∧tmf X2 � bo ∧ (Σ8bo1 ∨ Σ16bo2 ∨ Σ24bo3 ∨ Σ32bo[8]
4 ) → Σ32bo ∧ bo[8]

4 .

We conclude that z cannot obstruct the existence of γ4. We may therefore define tmf ∧ tmf3
to be the fiber of the map γ4.
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We now need to show that the tmf-module tmf ∧ tmf3 is built as

Σ8tmf ∧ bo1 ∪ Σ16tmf ∧ bo2 ∪ Σ24tmf ∧ bo′3.

In order to establish this decomposition, our first task is to construct a map of tmf-modules

γ3 : tmf ∧ tmf3 → Σ24tmf ∧ bo3

by analyzing the ASS

Exts,tA(2)∗
(tmf3,Σ

24bo3) ⇒ [Σt−stmf ∧ tmf3,Σ24bo3]tmf .

The only contributions in the vicinity of t− s = 0 come from the summands Σ16bo2 and Σ32bo3

of tmf3:

As we see from the charts above, there is a potential obstruction to the existence of γ3 in

Ext2,−1+2
A(2)∗

(Σ24bo3,Σ
24bo3).

The Bailey splitting does not eliminate this potential obstruction, as

Ext2,−1+2
A(1)∗

(Σ24bo3,Σ
24bo3) = 0.

However, by Toda’s Realization Theorem [13, Section 3; 39], this potential obstruction also
corresponds to the existence of a different ‘form’ of the tmf-module tmf ∧ bo3, with the same
homology. Since Exts,−2+s

A(2)∗
(bo3,bo3) = 0 for s � 3, both forms are realized. It follows that if γ3

is obstructed with the standard form, then it is unobstructed for the other form. Let tmf ∧ bo′3
be the unobstructed form, so that there exists a map

γ3 : tmf ∧ tmf3 → Σ24tmf ∧ bo′3.

The fiber of γ3 is tmf ∧ tmf2, where

tmf2 � Σ8bo1 ∪ Σ16bo2

is the spectrum constructed by Davis, Mahowald, and Rezk. We note that there is a fiber
sequence

Σ8tmf ∧ bo1 → tmf ∧ tmf2 → Σ16tmf ∧ bo2
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since a quick check of Exts,−1+s(boi,boi) reveals there are no exotic ‘forms’ of tmf ∧ boi for
i = 1, 2, and Σ8bo1 is the 15-skeleton of the tmf-cell complex tmf ∧ tmf2.

We now must produce the map of tmf-modules

α : Σ63tmf → tmf ∧ tmf3.

This just corresponds to an element α ∈ π63tmf ∧ tmf3. In the ASS,

Exts,tA(2)∗
(tmf3) ⇒ πt−s(tmf ∧ tmf3),

there is a class

x63 ∈ Ext4,4+63
A(2)∗

(Σ24bo3) ⊆ Ext4,4+63
A(2)∗

(tmf3)

(see Figure 5.4). Moreover, according to Figures 5.3 and 5.4, there are no possible targets of an
Adams differential supported by this class. Therefore, x63 corresponds to a permanent cycle:
take α to be the element in homotopy detected by it. The factorization

exists because the element x63, when regarded as an element of the ASS

Exts,tA(2)∗
(H∗tmf) ⇒ πt−s(tmf ∧ tmf),

is the target of a differential

d3([f̃2
9 /2]) = x63

(see Figure 7.2).
The modified ASS

Ext∗,∗A(2)∗
(Σ8bo1 ⊕ Σ16bo2 ⊕ Σ24bo3 ⊕ Σ32b̃o4) ⇒ π∗tmf ∧ tmf3 ∪α Σ64tmf

is constructed by taking the modified Adams resolution

where the map ρ is the composite

ρ : tmf ∧ tmf3 ∪α Σ64tmf → H ∧ tmf ∧ tmf3 ∪α Σ64tmf s−→ H ∧ tmf ∧ tmf3,

s is a section of the inclusion

H ∧ tmf ∧ tmf3 ↪→ H ∧ tmf ∧ tmf3 ∪α Σ64tmf,

Y1 is the fiber of ρ, and Yi is the fiber of the map

Yi−1 → H ∧ Yi−1.

The map from this modified ASS to the ASS for tmf ∧ tmf arises from the existence of a
commutative diagram
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(This diagram commutes since the class [f̃2
9 /2] killing x63 in the ASS for tmf ∧ tmf has Adams

filtration 1.) �

Proof of Theorem 7.14. Define a 2-variable modular form˜̃
f9 = f9 − 212

315c4f4 − 34
441c4f5 + 2501

11025f
2
1 c

2
4 − 851f1Δ

so that [ ˜̃f9] = [f9] and Ψ3(
˜̃
f9) = 0. (This form was produced by executing an integral variant

of the ‘row-reduction’ method outlined in Step 1 of Example 7.11.) Then, we may take the
attaching map

β : Σ32tmf → tmf ∧ tmf

to be the map of tmf-modules corresponding to the homotopy class

˜̃
f9 ∈ π32tmf ∧ tmf.

We define

t̃mf0(3) := Σ8tmf ∧ tmf2 ∪β Σ33tmf.

Since Ψ3(
˜̃
f9) = 0, there is a factorization

The rest of the theorem is fairly straightforward given this, and our analysis of Ψ3 in the
previous section. �

Proof of Theorem 7.16. An analysis of the Adam E2-terms in low dimensions reveals that
the only nontrivial attaching map of tmf-modules

υ : Σ23tmf ∧ bo′3 → tmf ∧ tmf2

must factor as

υ : Σ23tmf ∧ bo′3
υ′
−→ Σ32tmf

β−→ tmf ∧ tmf2, (7.21)

where υ′ is the unique nontrivial class in that degree. The existence of differentials in

Figure 7.2 from bo3-classes to ˜̃bo2-classes implies that in tmf ∧ tmf3, tmf ∧ bo3 must be
attached nontrivially to tmf ∧ tmf2, and we therefore have

tmf ∧ tmf3 � tmf ∧ tmf2 ∪υ Σ24tmf ∧ bo′3.

When applied to the factorization (7.21), Verdier’s Axiom implies that there is a fiber sequence

Σ32tmf ∪υ′ Σ24tmf ∧ bo′3 → tmf ∧ tmf3 → t̃mf0(3).

Now, an easy check with the ASS reveals that the composite

Σ63tmf α−→ tmf ∧ tmf3 → t̃mf0(3)
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is null, from which it follows that there is a lift

Define

t̃mf0(5) := Σ32tmf ∪υ′ Σ24tmf ∧ bo′3 ∪α′ Σ64tmf.

Verdier’s axiom, applied to the factorization above, gives a fiber sequence

t̃mf0(5) → tmf ∧ tmf3 ∪α Σ64tmf → t̃mf0(3).

Given our analysis of Ψ5, the rest of the statements of the theorem are now fairly
straightforward. �
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