
CHAPTER VII 

H a RING SPECTRA VIA SPACE-LEVEL HOMOTOPY THEORY 

J. E. McClure 

Our main goal in this chapter is to show that the spectrum KU representing 

periodic complex K-theory has an H~ structure. The existence of such a structure is 

important since it will allow us to develop a complete theory of Dyer-Lashof 

operations in K-theory, including the computation of K,(O3(); this program is carried 

out in chapter IX. Of course, we already know that the connective spectrum kU has 

an H structure since it has an E~ structure by [71, VIII. 2.1]. However, it is not 

known whether KU has an E structure, and the distinction between kU and KU is 

crucial for our work in chapter IX. We therefore require a new method for 

constructing H® ring spectra. 

As usual, the case of ordinary ring spectra provides a useful analogy. The 

easiest way to give KU a ring structure is to use Whitehead's original theory of 

spectra [108]. We use the term "prespectrum" for a spectrum in the sense of 

Whitehead [i08, p. 240], reserving the term "spectrum" for the stricter definition 

of I§i. The Bott periodicity theorem for BU gives rise at once to a prespectrum 

([108, p. 241]; more work is needed in order to get a spectrum), and the tensor 

product of vector bundles gives this prespectrum a ring structure in the sense of 

[108, p. 270]. Now the Whitehead category is not equivalent to the stable category 

h ~ , but it is a quotient of it, and one can lift structures in this category to 

~ as long as certain lim I terms vanish. These lim I terms do vanish for KU and we 

obtain the desired ring structure. 

In order to carry this through for H~ structures we must give the Bott 

prespectrum a "Whitehead" H structure (which is fairly easy) and show how to lift 

it to~ (which is considerably more difficult). Our nmin concern in this chapter 

is with the lifting process, which is called the cylinder construction and denoted 

by Z. We begin in Sections i and 2 by giving a careful development of the cases 

already mentioned, namely the passage from prespectra to spectra and from ring 

prespectra to ring spectra. Our account is based on that in [67] and [71, II §3] 

but is adapted to allow generalization to the H case to which we turn next. In 

section 3 we give a general result allowing construction of maps DE + F in~ from 

prespectrum-level data. Although the basic idea is similar to that of section 2 

this situation requires new hypotheses and methods. Section 4 is a digression which 

gives a convenient sufficient condition for the vanishing of the lim I terms 

encountered in sections l, 2, and 3. in section 5 we define H structures on 

prespectra (for technical reasons, these are called H d structures) and show that 

they lift to H structures in~ when the relevant lim terms vanish. In section 6 
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we observe that spectra obtained in this way actually have H~ structures as defined 

in 1.4.3 and that there is in fact an "approximate equivalence" between H~ 

structures on spectra and prespectra. Section 7 gives the application to K- 

theory. The necessary H~ structure on the Bott prespectrt~n is obtained from the E 

structure on kU; a more elementary construction not depending on E theory (but 

still using the results of this chapter) will be given in VIII §4. Section 8 gives 

a technical result which is used in section 3. Except for section 8 and one place 

in section 1 we use only the formal properties of h~ and D given in I§l and I§2. 

This chapter and the next are a revised version of my Ph.D. dissertation. 

I would like to take this opportunity to thank my advisor Peter ~&~y for his warm 

support and encouragement both in the course of this work and in the years since. I 

would also like to thank my colleagues Gaunce Lewis and Anne Norton, my friend 

Deborah Harrold, my parents, and a person who wishes to remain anonymous for their 

no less valuable support. However, the views expressed in these chapters are my own 

and do not necessarily reflect their opinions. 

§i. The Whitehead......category and the stable category 

In this section we describe the relation between the Whitehead category, 

denoted w~ , and the stable category ~ . The results are well-known, but we give 

them in some detail in order to fix notation and because we need particularly 

precise statements for our later work. 

We begin by defining w~ . An object T, called a prespectrum, is a sequence of 

spaces T i (for i ~ O) and maps oi:ZT i + Ti+ 1 in ~J (see I§l; the use of h--~ here 

is technically convenient but could be avoided by systematic use of CW- 

approximations). If the adjoints ~i:Ti + 2Ti+ 1 are weak equivalences we call T an 

2-prespectrum. A morphism f:T + U is a sequence of maps fi:Ti + U i such that 

fi+lOoi ~ a i o zfi in ~ " This should be compared with the much stricter 

definition of morphism in h~ given in I§l; it is precisely because morphisms in 

~ are defined in terms of homotopy that this category is a useful intermediate 

step between space-level and spectrum-level homotopy theory. The set of maps in 

~ from T to U is denoted IT,U] w. If U is an 2-prespectrum then this set is an 

abelian group and is equal to the inverse limit limiITi,UiJ with respect to the maps 

[Ti+l,Ui+l ] ~ ~ gi . [~Ti+l,~Ui+ 1 ] [Ti,gUi+ 1 ] * [Ti,Ui]. 

There is an evident forgetful functor z: K~ ÷ w~ . Although there is no 

useful functor in the other direction, there is an "approximately functorial" 

construction Z, called the cylinder construction. This can be defined in several 
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essentially equivalent ways (see I§6 of the sequel). 

to define 

ZT = Tel 2-1z~Ti , 
i 

For our purposes it is easiest 

where the telescope is taken with respect to the maps 

• -- ' -- -i-i oo -i-I "T 
Z-Iz'Ti Z-IZ-Izz~Ti ~ Z ZTi ~- ~ ~ i+l " 

We write 8 i for the inclusion z®T i ÷ ziZT. If f:T ÷ U is any map in w~ there 

exists a map F:ZT + ZU induced by f in the sense that the diagram 

Z z f. 
ZT.-- ~Z ZU, 

1 1 

~-lSi ~-lei 
F 

ZT ~ ZU 

commutes for all i > 0. Unfortunately, this map is not in general unique. To 

clarify the situation consider the Milnor lim I sequence 

0--~lim I [zl-Iz~Ti,ZU] --* [ZT,ZU] --~lim[Z Z Ti,ZU] --~ 0. 

Clearly, the map induced by f is unique if and only if the lim I term vanishes. We 

shall use the notation Zf for this map when this condition is satisfied (and not 

otherwise). We have Z(f o g) = Zf o Zg whenever all three are defined. 

The lim I term just mentioned is only the first of many which will arise in our 

work. For applications we wish to know when they vanish. This question will be 

considered in detail in §4; for the moment we simply remark that for the cases of 

interest to us (namely Bott spectra and certain bordism spectra) all relevant lim 1 

terms do in fact vanish. 

Although Z is not a functor, it has several useful properties. In fact, one 

may think of the pair (z,Z) as an "approximate adjoint equivalence" between ~ and 

the full subcategory of 2-prespectra in w~ . The following result makes this 

precise. 

Theorem I.i. For each T ~ w~ and E E h~ there exists mps <:T ÷ zZT and k:ZzE ÷ E 

with the following properties. 

(i) < is natural in the sense that zZf o < = K o f whenever Zf is 

defined. 

(ii) K is an equivalence whenever T is an 2-prespectrum. 
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(iii) 

(iv) 

(v) 

(vi) 

(vii) 

k is natural in the sense that f o ~ = k o Zzf whenever Zzf is 

defined. 

is an equivalence for all E e ~ 

zk o < is the identity map of zE. 

The map x:[ZT,E] + [T,zE] w defined by Tf = zf o K is an isomorphism 

whenever limlEi-lT i = 0. 

The map Zf, whenever it is defined, is uniquely determined by the 

equation ~(Zf) : < o f. 

The rest of this section gives the proof of I.i. In order to construct < and 

we need an alternative description of the i-th space functor from hl to ~ • 

Lemma 1.2. There is a natural equivalence E. = g~ZIE. 
1 

map ~ i ~iE then the following diagrams commute. 

f 

If e i denotes the adjoint 

• oo 

1 1 I 

= " ~E 0i+l-Ei+iE 
El+ 1 ~l+iE B i+l 

For the proof see I~7 of the sequel. The fact that such an equivalence exists 

should not be surprising since it is well-known that the reduced E-cohomology groups 

Eix of a based space X can be defined either as [Z~X, EiE] or as [X,Ei]. The 

diagrams of Lemma 1.2 (which are adjoints of each other) simply s8~ that one obtains 

the same suspension isomorphism with either of these two definitions. 

Given T E w~ we can now define <:T + zZT by letting the i-th component <i:T i + 

(ZT) i be the composite 

~e i 
T i ~ ~z~Ti ~ ~EIZT = (ZT) i. 

We note for later use that the following diagram commutes. 

Z-T. I ~E-(ZT). 
1 1 

The verification that < is in fact a~ -map is a routine diagram chase using 

diagram (1) above. It is clear that K satisfies 1.1(i); in fact it has the stronger 

property that zF o K = ~ o f whenever F:ZT + ZU is induced by f. For part (ii) we 

first compute 
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~k(ZT)i = ~k_iZT = colim ~k-i~ Z Tj 
J 

= colim colim 
j ~ ~k-i+j+~ 

zAT. . 
3 

A cofinality argument shows that the inclusion of 

group is an isomorphism. 

colim ~ . . T. in the last 
j k-~ j 

If T is an G-prespectrum, then the inclusion 

~iTk ÷ colim ~ . . T. 
j k-l+j J 

is an isomorphism and the result follows. 

Next we define l:ZzE ÷ E to be any map obtained by passage to the telescope 

from the maps 
• -i oo 

z-le! : z z E. + E. 
1 1 

Part (v) is immediate, and (iv) follows from (ii) and (v). For (iii) it suffices, 

by the definition of Zzf, to show that -1 o f o k : ZzE + ZzE' is induced by zf, 

i.e., that the diagram 

Z f. 
-i ~ 1 " 

I 1 

z-ioi [ z-ioi 

f 
ZzE ~E ~E' ~ ZzE' 

commutes for all i > O. This in turn follows from the definition of A and the 
! 

naturality of e i. 

For part (vi) consider the lim I sequence 

• T -i 
lim I[~z-I~Ti,E] ~ [ZT,E] ~lim[z Z Ti,E] 0 O. 

The map T agrees with x under the isomorphism 

-i 
lim[Z Z Ti ,E ]  ~ l i m [ T i , E i l  = [T,zE] w 

and the result follows. 

Finally for (vii) we calculate 

~{Zf) = zZf o K = k o f. 

The uniqueness follows from (vi). 
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§2. Pairings of spectra and prespectra. 

In this section we give a multiplicative version of the results of §i which in 

particular will allow us to produce a ring spectrum in h~ from suitable input in 

~ . Again the results are well-known. 

For the rest of the chapter we fix an integer d > 0 and consider prespectra 

indexed on nonnegative multiples of d. This is convenient in the present section 

(for dealing with Bott spectra) and will be crucial in §3. 

Let E,E',F ~ ~. By a pairing of E and E' into F we mean simply a map 

:EA E' + F. Although the category wp has no smash product, a suitable 

prespeetrum-level notion of pairing has been given by Whitehead [i¢~, p. 255]; we 

recall it here. 

Definition 2.1. Let T,T',U ~ w~ . A pairin~ @:(T,T') + U consists of a 

collection of maps 

~i,j :Tdi ̂ T~ ÷ Ud(i~) 

such that the following diagram commutes in~J for all i,j ~ O. 

, o i 1 

2dTdi ̂ Tdj p Td(i+l)^ T~ 

{~ (_~)dj ~i+l,j 
Ed~i,j °i+ j 

zd(Tdi ̂  T~ ) ~ zdUd(i+j ) -~ Ud(i+j +i) 

l~ .c< 
Tdi ̂  ~dT~ J T' +I '- Tdi ̂  d(j+l) 

If ¢:E^E' + F is a pairing in~ and f:E + E, f':E' + E', and g:F + 

maps in ~ there is an evident pairing 

Similarly, if ~:(T,T') + U is a pairing in w--~ and f:T + T, f':T' + T', and 

g:U + U are maps in w~ there is a composite pairing 

g o @ o (f,f'):(T,T') ÷ U. 

Next we show how to lift pairings from w~ to ~ . If ~: (T,T') + U is a 

pairing then ZT^ ZT' is equivalent to 

a r e  
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Tel E-2diE~'T di ̂  TS.)al 

and we can obtain an induced pairing ZT ̂ ZT' ÷ ZU by passage to telescopes from the 

maps z-2diE~. • The induced pairing is unique if the group 
l~l" 

liml(zu)2di-l(Tdi T~i) 

vanishes, and we denote it by Z~ when this condition is satisfied. Note that we now 

have two distinct, but analogous, meanings for the symbol Z, and we shall give 

another in section 3- There is no risk of confusion since the context will always 

indicate whether Z is being applied to a map in w~, a pairing, or an extended 

pairing as defined in section 3. Clearly we have 

Zg o Z~ o (Zf^ Zf') = Z(g o ~ o (f,f')) 

whenever both sides are defined. 

Next, given a pairing ¢:E^ E' ~ F in h~ we wish to define a pairing 

z¢:(zE,zE') + zF (again, this use of the notation z is distinct from that in section 

I). In contrast to section I, it is inconvenient to do this directly from the 

definitions since the definition of E^ E' is too complicated. Instead, we use the 

maps provided by Lemma 1.2. First let 

¢i,j 
be the composite 

E~(Edi ̂ E~) = E~Edi ̂  E~E~ 

Then the diagram 

: Z~(Edi ̂  E~) + Z d(i+j)F 

0! ^ 8: 
i J ~EdiE^zdJE ' = Z d(i+j)E^E' --~E d(i+j)F 

Z~(ZdEdi^ E~ ) 

E~(Ed(Edi ̂  E~ 

Z=(Edi ̂  EdE~ ) 

)) 

E~(Ed(i+l)^ E~ 

(_l) dj 

d = 
= E E (Edi^ Edj ) 

,J 

i,j ;zd(i+j+l)F 

// 
¢i,j +l 

E~(Edi a E~(j +I) 

commutes by Lemma 1.2. 

to be the composite 

We now define 

! 
(z¢)i, j :Edi ̂ Edj + Fd(i+ j) 
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¢i, j  ~ d  (i+j )F Edi ̂  E~ ~=Z=( ~ ' ) Edi Ed~ = Fd(i~ ) • 

The fact that z~ is a pairing follows from the diagram above and another application 

of Lemma 1.2. We clearly have 

z(g o ¢ o (f^ f')) = zg o z¢ o (zf,zf'). 

Finally, given a pairing ~:ZT a ZT' + F we can define a pairing 

T(@):(T,T') + zF by T(¢) = z¢ o (<,<). In analogy with Theorem I.I we have 

Proposition 2.2 (i) If ~ is a pairing in w~ then zZ~ o (<,<) = < o @ whenever Z~ 

is defined. 

(ii) If ~ is a pairing in K~ then ~ o Zz¢ = ¢ o (l l) whenever Zz¢ is 

defined. 

l ~ m l F 2 d i - l ( T d i ^  (iii) If T~i) = 0 then ~ is a one-to-one correspondence 

between pairings ZT^ ZT' + F and pairings (T,T') + zF. 

(iv) The pairing Z~, whenever it is defined, is uniquely determined by the 

equation ~(Z~) = < o ~. 

The proof is completely parallel to that of 1.1 and will be omitted. 

As a special case we consider ring spectra and prespectra. Let S be the zero- 

sphere in~ and let S be the prespectrum whose di-th term is S di (with the evident 

structural maps). A ring spectrum is a spectrum E with maps ¢:E^E + E and e:S + E 

satisfying the usual associativity, commutativity and unit axioms. Similarly, a 

ring prespectrum is a prespectrum T with a pairing ~:(T,T) * T and a map e:S_+ T 

satisfying associativity, commutativity and unit axioms. The unit axiom in this 

case is the con~nutativity of the following diagram in h ~ • 

s di T~ 
l^ % 

edl ̂ I Tdi~ TdJ . Tdi ̂ 

Td(i+j ) 

There are also evident notions of morphism for these structures. As a consequence 

of Proposition 2.2 we have the following. 

Corollary 2.3. (i) If E is a ring spectrum then zE is a ring prespectrum. If f is 

a ring map In K~ then zf is a ring map in w~ . 

(ii)If T is a ring prespectrum with liml(ZT)2di-l(Tdi ̂  Tdi) = 0 then ZT 

is a ring spectrum and K:T ÷ zZT is a ring map. If in addition f:T + T' is a ring 
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map and 

liml(zT"2di-l(T) di ̂  Tdi) = liml(zT')2di-l(TdiATdi) = 0 

then Zf is a ring map. If E is a ring spectrum and limlE2di-l(Edi ̂  Edi) = 0 

X:ZzE + E is a ring map. 

then 

§3. Extended pairings of spectra and prespectra 

Let w be a fixed subgroup of Zj. In this section we generalize the results of 

section 2 by relating maps of the form f:D E ÷ F in ~ to certain structures in 

~ called extended pairings. This is our basic technical result, which will be 

applied in this chapter and the next to various problems in the theory of H ring 

spectra. 

First we need a generalization of Definition 2.1. The difficulty is that, 

unlike the smash product, D~ does not commute with suspension. The situation 

becomes clearer when one realizes that D zdx is a relative Thom complex. For if p 

is the bundle 

E~ × (R d ) j  + Bw 

and PX i s  the  p u l l back  of  t h i s  bundle  a long the  map 

E~ x xJ + B~, 

then Dw~dx is the quotient T(Px)/T(p,) , where * denotes the basepoint of X. The 

failure of D to commute with suspension arises from the fact that the bundle p is 

nontrivial. This suggests that we consider theories for which this bundle is at 

least orientable and replace the suspension isomorphisms which were implicitly 

present in section 2 with Thom isomorphisms. Note that the orientability of p with 

respect to a certain theory may well depend on the positive integer d. 

Definition 3.1. Let F be a ring spectrum. A w-orientation for F is a map 

~:D S d + ~dJF 
w 

such that the diagram 

(S d) (j) I ~ D.S d 
J 

Iv 
sd j dj e ~ E dj F 

commutes in ~ If U is a ring prespectrum, a w-orientation for U is a map 

d + % 
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such that the diagram 

(sd) (j) ~ p D S d 

U~ 

commutes in ~J A ring spectrum F or a ring prespectrum U with a fixed choice of 

~-orientation is called T-oriented. A ring map of ~-oriented spectra or prespectra 

is T-oriented if it preserves the orientation. 

It is now easy to give an analog for Definition 2.1. Recall the natural map 5 

defined in I§2. 

Definition 3.2. Let T be a prespectrum and let (U,v) be a T-oriented ring 

prespectrum. An extended pairing 

~: (~ ,T)  + (U,v) 
is a sequence of maps 

~i:DvTdi + Udi j 

such that the following diagram commutes in hJ for all i ~ O. 

D(Tdi ^ S d) ~ ^ D S d ..... ~ D Tdi 

I D o [~i ̂  

U ^ Udj D~Td(i÷l) dij 

Ud(i+l)j 

We shall usually suppress the orientation v from the notation. 

Definition 3.1 is general enough for our purposes, but it could be made more 

general by allowing U to be a module prespectrum over some T-oriented ring pre- 

spectrum. Everything which follows would work in this generality. 

If g:U ÷ U' is a n-oriented ring map and f:T' + T is any map in~ we define 

the composite 

g o ~ o (~,f):(~,T') ÷ U' 

by letting (g o ~ o (w'f))i = g~i o ~i o D (fdi). We also have composites in the 

~-variable: if p is a subgroup of ~ and U has a p-orientation consistent with its 

n-orientation then the maps 
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~i o 1:DpTdi + Udi j 

form an extended pairing denoted ~ o (l,l). 

There is an evident stable version of 3.2: if F is a ~-oriented ring spectrum 

we define an extended pairing from E to F to be a map ~:D E + F. We do not assume 

a~ relation between ~ and the orientation u, but the presence of ~ is necessary for 

the comparison with the prespectrum level. We can define composites 

g o ~ o D f and ~ o i as in the prespectrum case. 

To complete the program of section 2 must show how to define z~ and Z~ with 

suitable properties. Both of these will be defined by using a spectrum-level 

variant of the Thom homomorphism to which we turn next. If F is a ~-oriented ring 

spectrum s~d f:D E ÷ ~nF is any map we write ¢(f) for the composite 

D xdE ~D E^D S d -f^P~ZnF^ZdJF @~Z n+dJF. 

Since each class in Fn(D~E) is represented by some f we obtain a homomorphism 

¢:Fn(D~E) ÷ F n+dj (D zdE) 

called the Thom homomorphism. We write ¢(i) for the iterate 

Fn(D E) + F n+d~ (D zdiE). If E = Z~X for some space X then it is easy to see that 
w 

is the relative Thom homomorphism for the bundle PX and is therefore an isomorphism. 

Thus the following result should not be surprising. 

Theorem 3-3. ¢ is an isomorphism for every E e h $ . 

The proof of this result, while not difficult, involves the definition of D 

and not just its formal properties and is deferred until section 8. 

We can now define z~ for an extended pairing ~:D E + F. Give zF the 

orientation 

S d S d S d " z(~):D ~X~D~ = ~D~ ~ ~X dj F = Fdj 

For each i ~ O let (z~) i be the composite 

a~Dzedi ~¢(i)~ 
D Edi ~ D Z Edi ~=D zdiE ~ ~ ~ ~zdXJF = Fdi j 

i • 

The verification that z£ is in fact an extended pairing is completely similar to the 

analogous verification in section 2. Further, z is natural in the sense that 

z(g o ~ o D f) = zg o z~ o (~,zf) and z(~ o i) = z~ o (i,1). Note that z~ depends 

not just on the map ~ but also on the orientation u. 
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Unfortunately, Z~ cannot be constructed directly as in sections I and 2. 

Instead we observe that we could have used l.l(vi) and 2.2(iv) to define Zf and Z$ 

by means of the equations ~(Zf) = ~ o f and T(Z~) = ~ o ~. If $ is an extended 

pairing from ZT to F let ~(~) be the extended pairing 

z~ o (~,K): (~,T) + zF. 

At the end of this section we shall prove 

Theorem 3.4. If limlF-l(D~z-diZ=Tdi) = 0 then x is a bijection between extended 

pairings D~ZT ÷ F and extended pairings (#,T) + zF. 

We can now define ZC for an extended pairing C:(#,T) + U when the relevant lim 1 

terms vanish. Give ZU the #-orientation 

Z(v):D~S d = ~®D#S d ÷ ~Udj ÷ ~dJzu. 

and let Z(~) be -l(< o ~). 

Corollary 3.5. (i) zZ~ o (#,<) = K o ~ whenever Z~ is defined. 

(ii) Z(g o ~ o (~,f)) = Zg o Z~ o D Zf and Z(~ o (i,1)) = Z~ o t whenever 

both sides are defined. 

(iii) i o Zz~ = ~ o D i whenever Zz~ is defined. # 

Proof of 3.5. (i) is the definition of ZC. For the first equation in (ii) we 

calculate 

T(Zg o Z~ o D Zf) = zZg o zZ~ o (n,zZf) o (#,<) 
# 

= zZg o zZ~ o (~,K) o (~,f) 

= zZg o K O ~ O (~,f) 

= K O g O ~ O (#,f) 

= ~(Z(g o ~ o (~,f))); 

the result follows by 3.4. The verification of the other equation in (ii) is 

similar. For part (iii) we have 

~(I-io ~ o D i) = zl -I o z~ o (#,zl) o (#,~) 
# 

= K o z¢ = ~(Z~) 

with the second equality following from l.l(v); the result follows by 3.4- 
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Next we make some observations that will be important in sections 5 and 6. 

Part (iii) of our next result gives an alternate description of ZC which is similar 

to the definitions of Zf and Z~ in sections 1 and 2. 

Corolla~ 9.6. Let ~:D ZT + F be an extended pairing. 

(i) T(~) i is the composite 

2~D @. . 
D Tdi "2 D z~T di =~D~zdlzT 2~zdiJF = Fdi j 

(ii) 

(iii) 

If £':D ZT + F is another extended pairing and ~ is a bijection then 

= ~' if and only if 

¢(i)~ o D e i = ¢(i)g, o D 0 i 

for all i > O. 

If ~:(~,T) ÷ U is an extended pairing and Z~ is defined then Z~ is the 

unique map for which the following diagram commutes for all i ~ O. 

D~Z=Tdi 

Z'D~Tdi 

Z~Udij 

D~edi 
D dizT 

¢(i)z~ 

8dij ~ zdiJzu 

Proof of 3.6. Part (i) is immediate from the definition of ~ and diagram (3) of 

section I. Part (ii) follows at once from part (i). In part (iii) the 

commutativity follows from part (i) and the definition of Z~, while the fact that Z~ 

is the only such map follows from (ii). 

Remark 3.7. Let D be a functor which is naturally equivalent to D for some ~. 

More precisely, we assume that there are space and spectrum level functors , both 

called D and compatible with E ~, and space and spectrum level equivalences D = D~ 

which are also compatible under Z~; the cases of interest are %^ D k and %D k. We 

can clearly carry through everything in this section with D w replaced everywhere 

by D. The necessary maps 

and 

6:D(X^Y) + DX^DY 

I:X (j) + DX 
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may be obtained from those for D by means of the given natural equivalence. Of 

course, D may already possess transformations ~ and i compatible with those for D; 

this is the case for D = ~^ D k and D = ~D k. If ~ is a subgroup of p C Zj and i' 

denotes the composite 

D = D i ~D 
p 

then (provided that ~' preserves the orientations) we can compose an extended 

pairing ~:DpE + F with i' to get an extended pairing in the new sense from DE to F. 

Clearly z and Z will preserve such composites. The examples of interest for ~' are 

the maps ~j,k and Bj, k defined in I§2. 

We conclude this section with the proof of 3.4. If ~:D ZT + F is an extended 

pairing we write [~] for the element of FOD~ZT represented by ~. Now D~ preserves 

telescopes by l.l.2(iii) so 

D ZT = Tel D z-diZ=Tdi . 

Hence the lim I hypothesis implies 

F0D ZT ~ lim FOD z-diZ~Tdi . 

The image of I~] in the i-th term of the limit is (D z-disi)*[~]. 

On the other hand if ~:(~,T) + zF is an extended pairing then each ~i 

represents an element [~i ] e F dij D Tdi , and Definition 3.2 says precisely that 

¢[[i ] = (D a)*[~i+l]. 

Hence the extended pairings (~,T) + zF are in one-to-one correspondence with the 

elements of 

lim F dij D Tdi , 

where the maps of the inverse system are the composites 

Fd(i+l)j (D ~) ~ F d(i+l)j D zdT 
D~Td(i+l) ~ di Fdlj D Tdi • 

Thus z gives a map 

lim F°(D z-diZ~Tdi ) lim F dij (DTdi). 

We claim this map is lim ¢(i), from which the result follows by 3.3. 

and the naturality of ¢ we have 

[(~)i ] = (D 8di)*¢(i)[~] = ¢(i)((D %di)*[~]). 

For by 3.6(i) 
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§4. A vanishing condition for lim I terms 

In order to apply the results of sections 1,2, and 3, one must have some way of 

showing that the relevant lim I terms vanish. In this section, which is based on a 

paper of D. W. Anderson [lO], we give a simple sufficient condition which is 

satisfied in our applications. 

If F is a spectrum and X is a space we denote the F-cohomology Atiyah- 

Hirzebruch spectral sequence of X by Er(X;F). We say that the pair (X,F) is Mittag- 

Leffler (abbreviated M-L) if for each p and q there is an r with 

E~'q(X;F) = E~'q(X;F); in particular this is true if the spectral sequence 

collapses. 

Definition 4.1. A pair (T,F) with T t w~ and F E ~$ is liml-free if 

(i) F and each Tdi have finite type. 

(ii) The pair (Tdi,F) is M-L for each i > 0. 

(iii) If d is odd then Hn(Tdi) and ~n F are finite for all n. If d is even 

they are finite for odd n. 

We say that T E w~ is liml-free if the pair (T,ZT) is. 

The integer d in part (iii) is the one which was fixed at the beginning of 

section 2. 

In practice it is easy to see whether a particular pair satisfies (i) and 

(iii). It is sometimes easier to deal with condition (ii) in the following 

equivalent form ((10, p. 291]). 

Proposition 4.2. Suppose E2(X;F) has finite type. Then the pair (X,F) is M-L if 

and only if for each p and q the infinite cycles z~'q(X;F) have finite index in 

E~'q(X;F). 

Proof. Fix p and q. Let C p'q be the quotient of E p'q by its infinite cycles. If 
r r 

Z p'q has finite index in E p'q then C p'q is finite. Since C p'q is a subquotient of 
r r+l 

:2Cp,q C p'q there must be an r 0 with C p'q for all r > r O. But then clearly 
r r - 

C p'q = O, hence E p'q = E p'q. ro 
r 0 r 0 

For the converse we recall that the rationalization F ÷ FQ induces a rational 

isomorphism of E 2 terms. Since FQ splits as a wedge of rational Eilenberg-Mac Lane 

spectra the spectral sequence Er(X;F Q) collapses. Hence an element of infinite 

order in EP'q(X;F) cannot have as boundary another element of infinite order. It 
r 

follows that Z p'q has finite index in E p'q and that the projection Z p'q ÷ E p'q has 
r r r r+l 

finite kernel. But if E p'q = E p'q then C p'q = 0 and hence C p,q is finite as 
r 0 r r 0 2 

required. 
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Corollary 4.3. Suppose Er(X;F) and Er(X';F') have finite type. If 

f:Er(X;F) + Er(X';F') is a map of spectral sequences which induces a rational 

epimorphism in each bidegree of the E2-terms , and if the pair (X,F) is M-L, then so 

is the pair (X',F'). 

As a consequence we get a way of generating new liml-free pairs from known 

ones. 

Corollary 4.4. Let (T,F) be a liml-free pair and let f:F + F' and g:T' + T be maps 

inducing rational epimorphisms onto ~,F' and H Tdi for each i. If F' and each Tdi 

have finite type then the pair (T',F') is liml-free. 

Proof. 

since 

The pair (T',F') clearly satisfies 4.1(iii), and it also satisfies 4.1(ii) 

f, gdi:E2(Tdi;F) + E2(T~i;F') 

is a rational epimorphism in each bidegree. 

In the remainder of this section we show that lim I terms arising in previous 

sections do in fact vanish for liml-free pairs. The reader willing to believe this 

can proceed to section 5. 

By a filtered group we mean an abelian group A with a descending filtration 

A = A0 D AI) A2D .... 

A is complete if the map A ÷ lim A/A n is an isomorphism (this includes the Hausdorff 

property), or equivalently if lim A n = limlA n = 0. Filtered groups form a category 

whose morphisms are the filtration preserving maps. 

n Let {Ai}i~ 0 be an inverse system of filtered groups, and let A i be the n-th 

filtration of A i Let GnAi n n+l • = A~/A i . We need an algebraic fact ([10, Lemma 

1.13]). 

Proposition 4.5. Suppose that limlGnA = O 
1 

each i. Then lim I A i = O. i 

for each n and that A i is complete for 

Using this we can prove the standard result about convergence of the Atiyah- 

Hirzebruch spectral sequence ([lO, Theorem 2.1}). Recall that the skeletal 

filtration of Fmx has as its n-th filtration the kernel of the restriction to the 

(n-1)-skeleton X(n-1). The associated graded groups of this filtration are the ELy- 

term of the Atiyah-Hirzebruch spectral sequence. 
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Corollary 4.6. If the pair (X,F) is M-L then 

(i) lim Fmx(n) = 0 for each m, 
n 

(ii) The map Fmx + lim Fmx(n) is an isomorphism, and 
n 

(iii) The skeletal filtration of FaX is complete. 

Proof. Clearly (i) ~ (ii) ~ (iii) so we need only prove (i). Let A i = Fmx(i) 

with its skeletal filtration. This filtration is discrete, hence certainly 

complete, so by 4.5 it suffices to show lim I E~'q(x(i);F) = O for each p and q. 
i 

Now the restriction 

E~'q(X;F) + E~'q(x(i);F) 

is an isomorphism for p ~ i, hence the map 

E~'q(X;F) ÷ E~'q(x(i);F) 

is an isomorphism for p ~ i-r+l. Thus, if r O is such that EP'q(X;F) = EP'q(X;F) 
r O 

we see that E~'q(X;F) + E~'q(x(i);F) is an isomorphism for i ~ P+rO-i , so that 

limlE~'q(x(i);F) = O. 
i 

Now we can deal with the lim I term of section I. 

Corollary 4.7. If the pair (T,F) is liml-free then llm I Fdi-iTdi = O. 

Proof. Give Fdi-lTdi the skeletal filtration, which is complete by 4.6. Then each 

group of the associated graded is finite by 4.1(iii), hence the hypothesis of 4.5 is 

satisfied and we conclude that lim I Fdi-lTdi = 0. 

Next we consider the relation with multlplicative structures. 

Proposition 4.8. [I0, p. 291] Suppose that F is a spectrum of finite type having 

the form ZU for a ring prespectrum U (in particular F may be a ring spectrum). If X 

and Y are spaces of finite type and the pairs (X,F) and (Y,F) are M-L, then so is 

(X^Y,F). 

Proof. The hypothesis on F makes F-cohomology a ring-valued theory on spaces (but 

not necessarily on spectra). For each p and q the resulting product map 

I 0 l i  

p,+ p,,= p 

zp" 
is a rational epimorphism. Now Z p' 'O(x;F) and 'q(Y;F) have finite index in 

E 2p''O(X;F) and E p''q(Y;F) by 4.2, and the image of Z p''O~ ® Z p"'q~ is contained in 

ZP'q(xAY;F). Hence ZP'q(x^Y;F) has finite index in E p,q (X^Y;F) and the result 
2 

follows by 4.2. 
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This allows us to handle the lim I term in section 2. 

Corollary 4.9. If (T,F) and (T',F) are liml-free and F has the form ZU for a ring 

prespectrum U then lim I ~di-l(Tdi^ T~i ) = O. 

Proof. The skeletal filtration of F2di-l(Tdi^ T~i) is complete by 4.6 and 4.8, 

and each group of the associated graded is finite by 4.1(iii). The result follows 

by 4.5. 

We now consider extended powers. 

Corollary 4.10. If X and F have finite type, F has the form ZU for a ring 

prespectrum U, and the pair (X,F) is M-L, then so is (D X,F) for any ~ C Zj • 

Proof. The transfer, which is a stable map from D X to X (j), gives a rational 

epimorphism 

E~'q(x(J);F) + E~'q(D X;F). 

The result follows by 4.2 and 4.8. 

Next we dispose of the lim I term of section 3. 

Corollary 4.11. If (T,F) is liml-free and F is a ~-oriented ring spectrum then 

limlF-iD ~-di~Tdi = O. 

Proof. The proof of 3.4 shows that the given inverse system is isomorphic to the 

inverse system Fdij-iDTdi with structural maps ¢-I 
o (D o) . Now the Thom 

isomorphism ¢ preserves the skeletal filtration so we have a filtered inverse system 

of groups which are complete by 4.10. The associated graded groups are finite by 

4.1(iii) and the proof of 4.10. The result follows by 4.5. 

Finally, we record a result of Anderson which generalizes 4.6. 

Proposition 4.12 [I0, Corollary 2.4]. Suppose that X and F have finite type and 

(X,F) is M-L. If X is a countable CW-complex then the map 

Fnx + lim Fnx , 

where  {Xc~ } i s  t h e  s e t  o f  f i n i t e  s u b c o m p l e x e s  o f  X, i s  an i s o m o r p h i s m  f o r  e a c h  n .  
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~5. H~ ring spectra and prespectra 

In this section we show that H ring spectra can be obtained by lifting the 

following structures in w~ . 

Definition 5.1. An H~ ring prespectrum is a ring prespectrum U with maps 

~j,i:~Udi + Udi j 

for all i,j > O such that each ~l,i is the identity map and the following diagrams 

commute in h~ for all i,j ,k > O. 

~di ̂  D~Udi ~ ~ Dj +~Udi Oj D#d i ~ ; 5~Udi 

D. ~j ,ik 
Udij ^ Udik ~ Udi (j +k) j Udlk ; Udij k 

Dk(Udi ̂  Ud j ) 6 ~DkUdi ̂  DkU4 j 

~IDk ¢ [ ~k,i ̂  ~k,j 

DkUd(i+j ) Udik ̂  Udj k 

Ud(i+j )k / 

A ring map f:U ÷ U' between H d~ ring prespectra is an < ring map if 

~j,i o Djfdi = fdij o ~j,i for all i,j ~ O. 

The significance of the positive integer d in this definition is that a 

prespectrum may have an H d structure but not an H d' structure for d' < d. (Some 

examples of this phenomenon are given in the next section.) The third diagram in 

Definition 5.1 has no analog in the definition of H ring spectrum since in that 

situation the analog of the third diagram follows from the other two by (ii) and 

(iii) of 1.3.4. 

Definition 5.1 has several consequences. The first diagram implies the 

con~nutativity of 
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(j) 
( Udi ) -- Dj Udi 

Udij 

for all i and j. In particular the composite 

Djsd ~ed [ j , 1  
~j Dj U d ~ U~ 

is a Zj-orientation for U. These orientations are consistent in the sense that the 

diagrams 

Dj sd^ D~S d ~ ,~ oj ÷~s d Dj D~s d ~ ,- Dj ~S d 

^ ? D. [~ ~k 
Udj Udk ~ Ud (J +k ) J Udk P Udj k 

commute for all j and k. Now the unit diagram in the definition of a ring 

prespectrum and the third diagram in Definition 5.1 imply that for each fixed j the 

maps ~j,i give an extended pairing 

~j:(~j,U) + (U,vj). 

Theorem 5.2. If U is a liml-free ~ ring prespectrum then the maps 

z(~j) :~zu ÷ zu 

give  ZU an H r i n g  s t r u c t u r e .  I f  f :U + U' i s  an ~ r i n g  map and U,U' and the  p a i r  

(U,ZU') a re  l i m l - f r e e  then Zf i s  an H r i ng  map. 

The proof will occupy the rest of this section. We write F for ZU, ~j for 

Z(~j) and ¢ for the multiplication Z¢. Let ~j be the orientation 

Z(v.):D.S d + zdJzu = zdJF, 
J S 

as defined after Theorem 3.4. First we claim that the ~j are consistent in the 

following sense. 
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Lemma 5.3. The diagrams 

S d ̂  DkSd a ~ Dj +k Sd % DkSd 

(3) ~j ^Uk ~j÷k (4) k (k) 
~d(j +k)~ ¢ 

zdJF ̂  zdkF '~ D.~ F zd(j +k) F 
J 

commute for all j ,k ~ O. 

Proof. For diagram (4) recall that ui is the composite @di o Z~vi , 
zdiF. @di is the natural map Z~Udi + Hence 

Pjko S = @dj k o Z'(Vjk o 

= @dj k o ~®(~j,k ) o Z~%v k 

= o %%k o 

= ¢(k)(~j) o %pk " 

by diagram (2) 

by Corollary 3.6(iii) 

The proof for diagram (3) is similar. 

% k Sd 

~j k 
zdjkF 

where 

Next we need another preliminary result. 

Lemma 5.4. The diagram 

Dk(F^ F) DkF ̂  DkF 

I ~k ̂  ~k 
F^F 

F 

con~nutes for all k > O. 

In order to prove 5.4 we need the following variant of 3.6(ii). 

Lemma 5.5. Let n I and n2 be two maps 

D (ZTAZT') + F, 
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where F is a ~-oriented ring spectrum and the pairs (T,F) and (T',F) are lim l- 

free. Then n I = n 2 if and only if the equation 

(5) ¢(2i)(ni) o D (0 i^ 0i) = ¢(2i)(n2) o D (0 i^0 i) 

holds for all i > 0. 

Proof of 5.5. The composite isomorphism 

FODz-2di(Tdi FO(D~ (ZT ̂  ZT')) ~--~Lim ^ T~i) 
lim¢ 

(2i) 
• lira F 2dij D(Tdi ̂  T~i) 

takes n I to ¢(2i)(n I) o D (0 i^ 0i) , and similarly for n 2. 

Proof of 5.4. Let nl be the counterclockwise composite in the diagram and n 2 the 

clockwise composite. Consider the following diagram of spectra, where we have 

suppressed Z~ to simplify the notation and the unlabeled arrows are all induced by 

maps edi. 

Ok~ 

Dk(Udi ̂  Udi) 

-.... 
nk(ZdiF^ zdiF) 

® l DkX2di* 

6 

® 
6 

J" DkUdi ̂  DkUdi 

/ -  
~- DkZdiF ADkZdiF 

l ¢(i)(~k) ^¢(i)(~k) ® ~k,i A ~k,i 

DkZ2diF zdikF^ zdikF 

/ 
°~U2di£ ® © Udik 

U2dik 

^ Udi k 

It is easy to see that the counterclockwise and clockwise composites in the 

pentagon are ¢(2i)(n I) and ¢(2i)(02). To verify equation (5) it suffices to inner 

show that the outer pentagon and parts A, B, C, D and E commute. But the outer 
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pentagon is the third diagram of Definition 5.1. Part A commutes by naturality of 

6, parts C and E by definition of ¢ = Z~, and parts B and D by 3.6(iii). 

We now turn to the main part of the proof of 5.2. We shall show that the 

following diagram commutes; the other is similar. 

(6) 
DjDkF S ~ Dj k F 

~j 
D. F ~-F 

J 

We shall apply Remark 3.7 with D : ~D k. First orient %DkSd using either of the 

two equal composites in diagram (4) of Lemma 5.3, and denote the associated Thom 

isomorphism by ~. We write nl and n 2 for the counterclockwise and clockwise 

composites in diagram (6); these are extended pairings in the sense of Remark 3.7. 

By 3.6(ii) it suffices to show 

(7) Y(i)n~ o DiOde i = T(i)n2 o OjO~0 i 

for each i ~ O. Consider the following diagram, where we have again suppressed 

Z~ and the unlabeled arrows are all induced by maps edi. 

DjDkUdi -.... 
~k,i Q 

j 

Udik 

® 
Dj DkzdiF 

~ ¢(i)¢$ k ) 

m!~dik F o(ik)(~j 

~j ,ik 

5  diF Y 5 Udi 

[¢(i) (~jk) Q ~jk,i 

) 
zdij k F 

~ Udij k 

square the clockwise composite is clearly ~-(i)(n2). Using Lemma 5.4 In the inner 

one can show that the counterclockwise composite is ~-(i)(nl). To verify equation (7) 

we must show that the outer square and parts A, B, C and D commute. The outer 

square is the second diagram of Definition 5.1. Part A commutes by naturality of 8 

and parts B,C, and D by 3.6(iii). This completes the proof. 
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§6. H~ ring spectra. 

Theorem 5.2 gives a useful relation between H structures in h~ and H d 

structures in w~ . However, it does not provide a satisfactory analog for 

Corollary 2.3 since an arbitrary H ring spectrum F need not possess the Zj- 

orientations necessary to give an H d structure for zF. For example, if F = S then 

zF is net an H d prespectrum for any d > 0 (cf. Proposition 6.1). What is needed 

is a notion of H~ ring spectrum with built-in orientations. It turns out that the 

right objects to look at are H d ring spectra as defined in 1.4.3. 

If F is an H~ ring spectrum we say that a sequence of Zj-orientations is 

consistent if the diagrams of Lemma 5.3 commute. If F has an H d® structure let ~j 

be the composite D. zde 

D.S d J ~D. zdF-~---~dJF. 
J J 

Then each uj is a Zj-orientation by 1.4.4(iii) and an easy diagram chase shows that 

the uj are consistent. On the other hand, some ~ ring spectra do not even have Z 2- 

orientations, and thus are certainly not H d . This is illustrated by our next 

result. 

Proposition 6.1. (i) The sphere spectrum S is not an H d ring spectrum for any 

d>0. 

(ii) If F is an H d ring spectrum for d odd, then ~,F has characteristic 2. 

If, in addition, F is connective and ~0 F is augmented over Z 2 then F splits as a 

wedge of suspensions of HZ 2. 

Proof. Let pd be the bundle 

EZ 2 Xz2(Rd)2 ÷ BZ 2. 

Then pd is the d-fold Whitney sum of pl with itself, and pl is the sum of the Hopf 

bundle with a trivial bundle. The Thom complex of pd is D2 Sd, and so pd is F- 

orientable if and only if F has a Z2-orientation (for the given value of d). 

For (i) we recall (e.g. from [71, III.2.7]) that a bundle is S-orientable if 

and only if it is stably fibre-homotopy trivial. But pd clearly has nontrivial 

Stiefel-Whitney classes for every d > 1. 

(ii) Let R = ~0 F and observe that F-orientability implies HR-orientability by 

virtue of the canonical map F + HR. Consider the spectral sequence with 

EP,q = HP(z2;Hq(sd sd;R)) 
2 

converging to H*(D2sd;R). There is only one nonzero row and so H2d(D2Sd;R) is 

isomorphic to HO(z2;H2(S d^ sd;R)), which is the Z2-fixed subgroup of 
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H2d(sd^sd;R) ~ R. But Z 2 acts on R as multiplication by -1, so we conclude that 

H2d(D2Sd;R) is isomorphic to the 2-torsion subgroup of R. If on the other hand pl 

has an HR-orientation then H2d(D2Sd;R) ~ R, so that R must have characteristic 2. 

If in addition F is connective and R is augmented over Z 2 then the proof of 

Steinberger's splitting theorem III.4.1 gives the splitting of F. 

Now let F be an H d ring spectrum. An easy diagram chase shows that the 

equation 

~j,i = ¢(i)(~j,O):DjzdiF + Z dijF 

holds for each i and j, where ¢(i) is the Thom isomorphism determiend by the induced 

Zj-orientation of F. Thus the H d~ structure on F is uniquely determined by its 

underlying H structure and the set of induced Zj-orientations. Conversely, we have 

Propositiqn6.2. If F is an H ring spectrum with consistent Zj-orientations then 

the maps ~j,i defined by ~j,i = ¢(i)(~j) give F an H d® structure. 

Using this, we can give a precise analog of 2.3. 

Corollary 6.3 (i) If F is an H E ring spectrum then zF is an ~ ring prespectrum. 

If f is an H~ ring map in h~then zf is an H~ ring map in w'~. 

(ii) If U is a liml-free ~ ring prespectrum then ZU is an ~ ring spectrum 

and K:U ÷ zZU is an H~ d ring map. If in addition f:U + U' is an H~ ring map and U' 

and (U,ZU') are liml-free then Zf is an ~ ring map. If F is an ~ ring spectrum 

and zF is liml-free then X:ZzF + F is an H d ring map. 

Proof of 6.3. For part (i), the adjoint of the composite 

® oj e~i ~j ,i " "  

is a map ~j ,i:DjFdi + Fdi j . An easy diagram chase shows that the ~j ,i satisfy 

Definition 5.1. Part (ii) is immediate from 5.2, 5.3 and 6.2. 

The rest of this section gives the proof of 6.2. 

D. e ~j _ 
D.S J ,-D.F -F 
J J 

Let ~j denote the composite 

(i) = ¢(i) .j :D.S diJ + zdiJF; in particular ~ = ~j Then ~j,i is the and let Ul 

composite ( i ) 
^ zdij 

D. zdiF 6,-D.F^D.sdi ~J ~J ~ F^zd~F @r- zdiJF. 
J J J 
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It clearly suffices to show the commutativity of the following diagrams for all 

i,j ,k. 

(i) 

Oj sdIA DkSdZ ~' Dj +k Sdi 

(i) (i) I (i) Uj ^ U k Uj +k 

zdiJF^zdikF zdi(j+k)@~ ~di(j+k) F 

(2) 

6 ~ D S di Dj Dk Sdi j k 

¢(ik) (~j) 
D. ~dikF ~dij k F 
J 

(3) 

Dk(Sdi ̂ S dj ) 6 ~DkSdiA DkSdJ 

. . ) zd ik  F A~d~k F DkSd ( z +,3 

~ zd(i+j)~ / +j)k¢ 

In diagram (3) the clockwise composite is ¢(j ) k(i) = ¢(j )¢(i) k = ¢(i+j )~k" Hence 

the diagram commutes. Diagrams (1) and (2) commute when i = O since 

e:S + F is an H ring map. They commute when i = 1 by the consistency of the ~j, 

and for i > 1 by induction. A similar induction shows that they will commute for 

all negative i if they do for i = -1. We prove commutativity of (2) when i = -1; 

the proof for (I) is similar. We apply Remark 3.7 with D = DiD k. Give DjDk Sd 

either of the two equal orientations indicated in the second diagram of Lemma 5.3 

and let ¢ denote the associated Thom isomorphism. Let nl be the counterclockwise 

composite in diagram (2) and let n2 be the clockwise composite. Clearly, we have 

@(q2) = ~jk o 6, and since ~jk o 6 = Sj o Dj~ k (this is the case i = 0 of diagram 

(2)) it suffices to show 

¢-(nl) = ~j o Dj~ k. 

This is demonstrated by the following commutative diagram. 



241 

5 (Dsd,, DkSd) 6 " 5 DkS-d ̂ 5 DkSd 

5 ® 5 c1-1 ® k 
• Dj (r.-dkF ^ r.d-kF) 6 ..... ~ D. z - d k F j  ^ D. i ;dkFj 

~ k  / ~ j  ¢ Q t¢(-k)(~j)^¢(k)(~j 

~j 
D.F ~'F ~ ¢ _ _  I;- kF^ r .  kF d.] d] 

J 

Here part Q is ~ applied to one case of diagram (3), part Q commutes by 

naturality of 5, and part Q follows from diagram (3) and the fact that ~ is an H 

ring map (see parts (ii) and (iii) of 1.3.4). This completes the proof. 

§7. K-theory spectra 

For our work in chapter IX with Dyer-Lashof operations in K-theory it will be 

essential to know that the spectrum KU representing periodic complex K-theory is an 

H® ring spectrum. This is immediate from Corollary 6.3 once one has the necessary 

space-level input. We begin this section with a quick proof using as input the fact 

that the connective spectrum kU has an E® ring structure. This in turn raises a 

consistency question which is settled in the remainder of the section. In VIII §4 

we shall use Atiyah's power operations as input to give a more leisurely and 

elementary proof that KU is an H ring spectrum. Although we concentrate on the 

complex case in this section, everything goes through in the orthogonal case with 

the usual changes. 

First recall from [71, VIII ~2] that the spectrum kU representing connective 

complex K-theory is an E~ ring spectrum. Hence (as explained in 1§4) it is an H 

ring spectrum. Throughout this section we will write ~j for the structural maps 

DjkU + kU. Now by 1.3.9 the zero-th space of kU, which we denote by X, is an H~O 

space with structural maps 5X + X which will be denoted by ~j. The space X is of 

course equivalent to BU × Z, and by Bott periodicity we can define an ~-prespectrum 

• U with ~U2i = X. We give ~U an H 2 structure by letting each map 

DjKU2i + J<U2i j be ~j :D~X + X. We define KU to be Z2~U. At this point we need to 

know something about lira ~ terms. 

Proposition 7.1. 9tU and ~O are liml-free. 

Proof. The pair (~U,KU) clearly satisfies 4.1(i) and (iii). Since Er(BU × Z;KU) 

collapses for dimensional reasons it also satisfies 4.1(ii) and hence is llm I- 
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free. The result for ~0 follows from 4.4 by letting f:KU + K0 be realification and 

g:gt0 ÷ T~U be complexification. 

Now we can apply 6.3 to get 

Theorem 7.2. KU is an ~ ring spectrum and K0 is an H 8 ring spectrum. 

Remark 7.3. (i) We shall see in VIII§6 that the H 8 structure of K0 extends to an 

H 4 structure. 

(ii) It is shown in [71, Vlll. 2.6 and Vlll. 2.9] that the Adams operation ~k 

induces an E ring map of kU when completed away from k. We shall see in VIII§7 

that @k also induces an H~ ring map of KU(p) for p prime to k but that this is not 

an ~ ring map. Since the methods of the present section can only give H 2 ring 

maps they cannot be applied directly to this question. 

Next we wish to show that the H~ structure on KU is consistent with the 

original structure on kU. The point is that (as we shall see in a moment) kU 

inherits an H structure from that just given for KU, and we would like to know that 

the inherited structure is its original one. The proof will occupy the rest of this 

section. 

First recall the n-connected-cover functors in ~ ([71, II.2.11]). We write c 

for the connective (i.e., -1-connected) cover functor. These functors have the 

usual property that any map from an n-connected spectrum lifts uniquely to the n- 

connected cover of its target ([71, II.2.10]). In particular, we have 

Proposition 7.4. If F is an H~ ring spectrum then cF has a unique H structure for 

which the map cF + F is H. 

We shall prove 

Proposition 7.5. There is an H ring map from kU (with its E structure) to cKU 

(with the H structure given by 7.2 and 7.4) which is an equivalence. 

The analogous comparison of ring structures was given in ]71, II§3]. 

First we observe that the iterated Bott map 

B:Z2ikU + kU 

is equivalent to the (2i-1)-connected cover of kU. We can therefore define 

:D,S 2 + Z2JkU ~j 
J 
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to be the unique lift of the composite 

5 ~ 5 Fe ~ 5 F~u ~ B ~j D~ kU ; kU. 

The ~j are consistent Zj-orientations in the sense of 6.2 and hence kU is an ~ 

r ~ g  spec t rum.  I t  f o l l o w s  t h a t  zkU i s  an H 2 r i n g  p r e s p e c t r u m .  We w r i t e  

n j , i : D j ( k U ) 2 i  + (kU)2i j 

for its structural maps. 

Now define a map 

y:zkU ÷ MU 

by letting Y2i be the composite 

(zkU)2 i = ~-Z2ikU ~'B ~ ~kU : X = (9(U)2i. 

We claim that ¥ is an ~ ring map. This is demonstrated by the commutativity of 

the following diagram. 

Dj (kU)2i .............. ~i .......... 

,,, ® / 
a~7.~DJ (kU)2i a 7 Djy i ~a®~DJ (kU)0 

~ ~,,,,,",i 
~ ® Z~(kU)o ~Dj Z (kU)2i ,-~ D.j 

® J~D. ' 

n~D. z2ikU 
J 

i a~ j,i 

~2ikU -/ 
(kU)2~ 

~" D.B 
J ® ~-e D. kU 

J 

a~B ,- a~kU 

~'D.X 
J 

~j 

@ 

........ Yij 
~X 

Parts F and G commute by definition of nj, i and ~j. Parts A and B commute by 

naturality, parts C and E by the definition of y. Commutativity of part D follows 

from the definitiion of ~i" 

Next we need more lim I information. 
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Proposition 7.6. zkU, zk0 and the pairs (zkU,KU) and (zk0,K0) are lim I free. 

Proof. The Serre spectral sequence shows that the pairs (zkU,kU) and (zkU,KU) 

satisfy the finiteness requirement of 4.1(i) and (iii). Now by [I0,4.3] and the 

proof of [10,3.13] (specifically the fifth line on p.301) we see that the pair 

((kU)2i,kU) is M-L for each i and hence zkU is liml-free. Since 

E~'q((kU)2i;KU) = ~'q((kU)2i;kU) 

for q ~ 0 it follows that ZP'q((kU)2i);KU)~ has finite index in E~'q((kU)2i;KU) 

for q ~ O, hence for all q by Bott periodicity. Thus the pair (kU,KU) is lim l- 

free. The orthogonal case follows as in the proof of 7.1. 

We can now define 

r:kU + KU 

to be Z o k-i where Z and ~ are as in §i. Then fl is an ~ ring map by 6.3 and 
Y 

is clearly an equivalence of zeroth spaces. Hence the unique lift of F to cKU is an 

H 2 ring map and an equivalence. This completes the proof of 7.5. 

The fact that F is an ~ ring map, and thus preserves the orientations, has 

the following additional consequence which will be used in VIII §4. 

Corollary 7.7. ~j :DjS 2 + r2JKu is the composite 

D. S2 Dj~2e D.B 
-~ D.~2KU "] :~D. KU ~J 

J 3 3 
,~KU B-2Jp Z2JKu. 

~8. A Thom isomorphism for spectra 

In this section we prove Theorem 3.3. This is the only place in our work where 

we need the actual definition of D~, instead of just its formal properties. We 

accordingly begin by giving a form of the definition; for a general discussion see 

the sequel. 

Let ~(j) be the space of linear isometries from CRY) j to R ~. Then ~(j) is a 

free contractible ~-space and hence there is a ~-map ×:E~ + •(j ). Choose an 

increasing sequence W i of finite ~-subcomplexes of E~ with ~ W i = E~. If 

V c (R~)J is a finite-dimensional subspace then (since W i is iompaet) the union 

× ( w ) ( V )  C It ~ 
W. 

1 



245 

is contained in a finite-dimensional subspace. In particular, if we let A i be the 

standard copy of R di in R ~ then there is a finite-dimensional subspace A! of 1~ 
i 

with 

×(w)(Ai~).'. ~A i) C A~ 

for every w E W i. Let a i be the dimension of ~. We may assume that the ~ form an 
t 

increasing sequence, and we write B i and B i for the orthogonal complements of A i in 

Ai+ 1 and of ~ in ~+i" 

Now consider the map from W i × (Ai)J to W i × A!I which takes (W,Xl,...,x j to 

(w,x(W)(Xl(~) ... ~)xj)). This gives an embedding of the trivial bundle 

(I) W i x (Ai)J + W i 

in the trivial bundle 

(2) W i x A~l ÷ Wi " 

The orthogonal complement is a nontrivial vector bundle over W i. We let n i be the 

associated sphere bundle (obtained by fibrewise one-point compactification). We 

write S(n i) and T(ni) for the total space and the Thom complex of n i. If we let # 

act through permutations on (Ai)J and trivially on A~ we obtain diagonal actions 
1 

on the bundles (i) and (2) and hence on S(n i) and T(n i 

Next observe that the diagram of embeddings 

W i × (Ai)J "Wi+ I 

W i x A! z Wi+l 

W i x A'i+ 1 ............ ~ Wi+ I 

(Ai)J 

x (Ai+l)j 

x A w 
i+l 

commutes. Hence there is a bundle map 

niQBE + Q (Bi)J i ni+l 

covering the inclusion W i + Wi+ I . The induced map 

B! B i 
T(n i)~S 1 ~T(ni+ I)^ (S )(J) 

of Thom complexes is a ~-map if we give each side the diagonal ~-action; here S Bi is 

the one-point eompactification of Bi, etc. 

Now let U be a prespectrum (indexed on multiples of d as usual). We define a 

new prespectrum U × indexed on the set {ai} as follows (we haven't previously 

considered prespectra indexed on sets like {ai} , but everything in section i goes 
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with the obvious modifications), let (U×)ai be the through space 

T(n i) A n (Udi)(j) 

with the structural maps o indicated in the following diagram. 

BI Bi)(j 
a. -a. (j) I )(j )__b(T(ni+l)^(S )) ̂  )(j ) Z i+1 iT(ni)A (Udi) ~ (T(ni)^S )^ (Udi (Udi 

T(ni+l)^ (Ud(i+l)(J) zdu '(J ) T(ni+ I (S i^ " ) ~-- T(ni+l)^~( di ) ~ ~ Udi )(J 

Finally, given E ~ ~ we choose a prespectrum U with ZU = E (for example, we could 

let U = zE) and define 

X -a. 
D E = Z(U ) = Tel Z IZ~[T(ni) ̂  (Udi)(J)]- 

This agrees up to weak equivalence with the more sophisticated definition given in 

the sequel, and in particular it does not depend on the choice of × or U. 

Now we can give the proof off 3.3. First we observe that the Thom isomorphism 

theorem holds in F-cohomology of spaces for any F-orientable bundle. This is well- 

known when the base space is finite-dimensional (see e.g. [71,III. 1.4]) and the 

general case follows since the Thom homomorphism induces a map of Miluor lim 1 

sequences. Similarly, the relative Thom isomorphism theorem holds for any F- 

oriented bundle over a pair (X,Y). For example, let U be a prespectrum, let 

X = S(n i) x (Udi)j 

and let Y be the subspace in which at least one coordinate is a point at ~ or the 

basepoint of Udi. Note that X/Y is (U×)ai . let q be the pullback of the bundle 

p:Z~ × (Rd) j + B~ 

along the map 

X = S(~ i) x (Udi)j + E~ × = B~. 
W 

Then the relative Thom complex T(q)/T(q{Y) is 

T(n i) (ZdUdi)(j) = (zdu)~ 
i 

Let 6 i denote the composite indicated in the following diagram. 
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([du)~. : T(ni ) ̂  (ZdUdi](j) A ̂ I ~(T(ni )^E +) ^ (ZdUdi)(j) 

6 i 

UXa.^D~S d = [T(n i) ̂  (Udi)(j)I~[E~ +^~(Sd) (j)] 
1 

If F is a n-oriented ring spectrum then the relative Thom isomorphism for q is the 

composite 

1 1 1 

where the first map is multiplication by the n-orientation ~. We denote this 

composite by ¢i" 

Next, we note that if E = ZU then zdE = z(zdu). It is shown in the sequel 

that the map 

~:D zdE + D E^D S d 

is obtained by passage to telescopes from the 6 i . We therefore have a map of Milnor 

lim I sequences 

n + a .  - 1  n + a .  
O----,plim I F 1 (U X ) ~ FnD E ~ lim F I(uX ) ~O 

i ai ~ i ai 

lliml ¢i ~¢ llim ¢i 

n+~+a. 
0 ~l~m I ;+dj+ai-l((zdu)~. ~Fn+~D~dE =limF l((~du)~.) 

i l i l 
----~0 

The result follows by the five lemma. 

We conclude this section with a technical fact which will be needed in VIII §6. 

Let ~:(~,T) + U be an extended pairing and suppose that the pair (T,ZU) is lim l- 

free. Then Z~ exists and is clearly determined by the composites 

(Z~)a. 

T '(J) = T × < ~(D ZT) l (ZU)a. T(ni) ~( di ) a. ~ a. 
1 1 1 

for i > O. It is natural to ask for an explicit description of the elements 

ai ")) 
z i E (ZU) (T(ni) ^,(Tdi )(3 

represented by these composites. We shall give such a description by calculating 

the image of z i under the relative Thom isomorphism 

a.+dij 
ai(T(ni) (j) z ^ (zdiTdi)(j) ~:(ZU) ^ (Tdi) ) -(ZU) (T(~ i) ~ ). 
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Let Yi ~ (zu)diJ(w~ ~(Tdi )(j )) be represented by the composite 

W+h )(j) ~ ~ ~i 
i ~(Tdi D Tdi --- Udi ~ - ~ -'- (ZU) d~ 

and recall the homeomorphism 

T(q i) ̂  (zdiTdi)(j) 

a. 

Proposition 8.1. Wz i = ~ly . 

a. + (j) 
z iw i ̂ (Tdi) 

Proof. Write a for a i. It will be shown in the sequel that the following diagram 

commutes for any space X. 

T(ni )^ (zdix)(j) ~a ~ (D Z~X)a 
W 

a + (j) ~a 
Z (Wi^ (Tdi) ) I ~ZaD Tdi =(z~D X)a 

Letting X = Tdi gives the commutativity of the left square in the next diagram. 

ZaD e~. 
~(T(ni) ^ (zdiTdi)(j)) 8a a ~ ~ al ~Z D Z Tdi r ZaD zdizT 

a + (j) ~a~(i)z~ 
~ (W i ~ (Tdi) ) = 

a ~ ~a~i a ~ ~aed'~ za+dij 
~®ZaD Tdi = J ~ ~ D Tdi ~Z ~ Udi j ~ ZU 

The right square commutes by Corollary 3.6(iii), and we therefore have equality of 

the two composites around the outside. But the counterclockwise composite is 

clearly zayi' and the proof of Theorem 3.3 given in this section shows that the 

clockwise composite is Wz.. This completes the proof. 
1 


