CHAPTER VI

THE ADAMS SPECTRAL SEQUENCE of H_ RING SPECTRA

by Robert R. Bruner

In this chapter we show how to use an H_ ring structure on a spectrum Y to pro-
duce formulas for differentials in the Adams spectiral sequence of wyY. We shall
confine attention to the Adams spectral sequence based on mod p homology, although
it is clear that similar results will hold in generalized Adams speciral sequences

as well.

The differentials have two parts. The first is the reflection in the Adams
spectral sequence of relations in homotopy like those in Chapter V. For example,
when x ¢ m,Y and n = 1 (4), there is no homotopy operation PP*1ly since the n+l cell
of P: is attached to the n cell by a degree 2 map. In the Adams spectral sequence
therizis a Steenrod operation Sqn+1 X and a differential dZSqn+1 X = hOSgn X

= hOx . Therefore hd§2 = 0 in E_, This in itself only implies that 2x

filtration greater than that of hy¥ in the Adams spectral sequence, but by

has

examining its origin as a homotopy operation we see that 2x2 = 0. Thus, the
formulas we produce for differentials are most effective when combined with the
resulis about homotopy operations in Chapter V. The differential dZSqn+3 X =
hOSqn+2 Y, still assuming n = 1 {4), is a perfect illustration of this. The
corresponding relation in homotopy is 2P%*% = han*lx where hIPn+1 is an indecom-
posable homotopy operation detected by hlsqn+l in the Adams spectral segquence. The
differential on Sqn+3z'represented geometrically 1s the sum of maps representing

hOSqn+2f'and h18¢n+li; but since hISqn+li'has filtration one greater

-

st ix T \
n+2—

Sq° x \Sqn+33_(_
than does hOSqn+2x; it does not appear in the differential. This reflects a hidden
extension in the Adams spectral sequence: 2P0t 2y appears to be 0 in the Adams
spectral sequence (i.e. hOSqn*22"= 0 in E_) only because of the filtration shift.
In fact, 2PP*%x = han+lx. The moral of this is just the obvious fact mentioned
above: the differentials should not be considered in isolation but should be
combined with the homotopy operations of Chapter V. Further examples will be given
in section 1.

The second part of the differentials arises when we consider Steenrod opera-

tions on elements that are not permanent cycles. If x in filtration s survives
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until Er we can make x into a permanent cycle by truncating the spectiral sequence at
filtration s+*r. Thus the differentials of the type just discussed apply to x until
we get to E,. However, by analyzing the contribution of d.x we can show that it
wil} not affect the differentials on g®RJx until Epr—p+1
sePJdrx. Thus the differentials of the first type apply far beyond the range in

where it contributes

which we are justified in pretending that x is a permanent cycle. (To be precise we
should note that d.x can occasionally affect differentials on gPx through a term
)

P p_l N
containing x* *d x in E_ ;.

The first results of this type were established by D. S. Kahn [45] who showed

(2)

that the H_ ring map 52:W Xy S + S (obtained through coreductions of stunted

2
projective spaces) could be filiered to obtain maps representing the results of

Steenrod operations in ExtA{ZZ,Zz) and that some differentials were implied by this.
Milgram [81] extended Kaehn's work to the odd primary case and introduced the
spectral sequence of IV.6 which is by far the most effective tool for computing the
first part of the differential. His work was confined to the range in which it is
possible to act as if one is operating on a permanent cycle. Nonetheless he was
able to use the resulting formulas for differentials to substantially shorten
Mahowald and Tangora's calculation [61] of the first 45 stems at the prime 2 and to
catch a mistake in their cealculation. The next step was taken by Makinen [62], who
showed how to incorporate the contribution of drx in the differentials on qux for
p = 2. Unfortunately, he apparently did not apply his formulas to the known calcu-
lations of the stable stems, for one of his most interesting formulas {(published in
1973},

dBqux =089 %% + sfdx  ifn=1 (4),

combined with Milgram's calculation of Steenrod operations [81], implies that d361 =
hyt, contradicting Theorem 8.6.6 of Mahowald and Tangora [61]. This application was
left for the author to discover in 1983. Note that the differentisl is out of
Milgram's range since a nonzero d,x prevents us from calculating dBqux unless we
incorporate terms involving d2x. The argument in [61] that ey is a permanent cycle
is an intricate one, involving the existence of various Toda brackets, while the
proof that dBSqu = hIqu'zx + Sqqdzx if n z 1 (4) is relatively straightforward.
This appears to be convincing evidence that the H_ structure in the form of Steenrod

cperations in Ext is a powerful computational tool.

One other piece of related work is the thesis of Clifford Cooley [30}. He
obtains formulas similar to Milgram's [61] by using the speetral sequence connecting
homomorphism for a cofiber sequence of stunted projective spaces to reduce them to
dl’s which he gets from a lambda algebra resolution of the cohomology of the
appropriate stunted projective space. Calculating differentials this way or by the

spectral sequence of IV.6 is probably a matter of indifference. The most
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interesting aspect of Cooley's thesis is that he works unstably, examining the
interaction of the Steenrod operstions and the EHP sequence. As in all other
earlier work on this subject he views the H_  ring structure in terms of coreduetions
of stunted projective spaces. The interaction of the Steenrod operations and the
EHP sequence had been discovered by William Singer [97] using the algebraic EHP

sequence obtained from the lambda algebra.

In the work at hand, we extend the ideas of Makinen to the odd primary case to
obtain comprehensive formulas for the first nontrivial differential on BEij, which
we state in §1. These apply to the mod p Adams spectral sequence of any H_  ring
spectrum. The remainder of §1 consists of calculations using these formulas in the
Adams spectral sequence of a sphere, including the differential discussed above.
These are intended to illustrate especially the interaction between the homotopy
operations and the differentials, specifically to obtain better formulas in partic-
ular cases than hold in general. One of these is d3r = hldg, which forces hi to be
a permanent cycle. This is the shortest proof we know of this fact.

In §82 and 3 we describe the natural Zp equivariant cell decomposition of

(ZX)(P) and use it to relate extended powers of X and of zX.

In §4 we start the proof of the formulas in §1, using the results of §32 and 3.
We also prove that the geometry splits naturally into three cases, which we deal
with one at a time in the remaining §§5-7.

1. Differentials in the Adams spectral sequence

In this section we state our theorems concerning differentials, explain some of
the subtleties involved in understanding what they are really saying, and calculate
some examples in order to illustrate their use and demonstrate their power.

Localize everything at p. let Y be an H_ ring spectrum. Let Ei’n*s

{S,Y) =>
n,Y be the Adams spectiral sequence based on ordinary mod p homology. We shall adopt
the following shorthand notation for differentials. If A is in filtration s and Bl
and 82 are in filtrations 841y and s+r, respectively, then

dyA = B + B,

means that d;A = O for 1 < min{ry,r,) and

drlA = B1 if ry <r,
a.A = Bl + By if ry =r =ry and
dp A =B, if ry > 1,
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Note. This does not mean that this differential is necessarily nonzero. Nor does
it mean that if B, happens to be O, then drzA = B, regardless of whether r, > 1y or
not. More likely, B1 is zero because it comes from a map which lifts to filtration
s+ry+l or more and, hence, By could conceivably lead to a nonzero 4, ,jA. The point
is that you can't tell what B1 is contributing to the differential if all you know
is that it is zero in filiration s+ry. However, when we explicitly state that

Tp = 0 in Theorem 1.2 we mean that it is to be treated as having filtration =.

The geometry behind the formula dyA = By + B2 will make it clear exactly what
the formula can and cannot tell you. The formula means that for some rpy > max(rl,rz),
A is represented by a map whose boundary splits into & sum B1 + B2 + BO’ where each
B; lifts to filtration s+ry, and where‘Bl and B, represent By and B, respectively.

It is irrelevant what BO represents because B1 + B2 lies in a lower filtration.
This is fortunate, since in general By is very complicated. In particular cases
however, we can often analyze BO in order to get more complete information about
dgA. For examples of this, see Proposition 1.17(1i) (the formula d3ro = hldg) and
Proposition 1.6.

Two remaining points about the formula are best made using examples. The
formulas we will shortly prove say that, under appropriate circumstances,
Jy = sgd e
d*Sq x = 5qQ drx + axdrx
J -3 2
and d,5q drx a(drx)
where 8 e E,{S,5}). The algebra structure also implies that
- -7 2
dp(axd.x) = aldx)”.
If the filtration of qux is s, then the filtration of qudrx is s+2r-1, while that

of axd.x is s+#r+f+k (f is the filtration of a and k will be defined shortly).
The three ways these differentials can combine are illustrated below

r<f +k+l r=1f+k+1 r>f+k+1
alax)? a(d,x)?) aldx)?
. &
Y\ d N \rekel
\ T d \
\ — r \ j
\ axd x dp\ Sa'dpx
\
d \ e —
f+k+l\\‘ axdrx + Sq-jdrx axdrx
L
Sq:J dpx
d drrpax = \dor-1 drefk
2r-1

S@x S@x S@x
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Taken individually, the terms qu d,x and Exdrx do not always appear to survive long
enough for qux to be able to hit them. For example, when r > f+k+1, the
differential d..p.Soix = axdx is preceded by the differential d,(axd,x) = ald.x)?,
which would have prevented axdrx from surviving until Er+k*f’ had it not happened
that a still earlier differential (dg,y,Sd0d.x = a(d,x)?) had already hit a(d.x)?.
This is completely typical. The formula dyA = By " B,, as used here, carries with
it the claim that the right-hand side will survive long enough for this differential
to occur, and even shows the "coconspirator" which will meke this possible when it
seems superficially false.

The other point illustrated by this example occurs when qu dpx and xd.x are
permanent cycles and r > f+k+l. Then the differential d, +k*f8qj X = ;xdrx reflects
a hidden extension: a(xd.x) is zerc in E  because of a filtration shift. It is
actually detected by qu d.x. Relations among homotopy operations typically cause
such phenomena. Note that the cell which carries qux is also the cell which pro-
duces the relation in homotopy. In a suitably relative sense this is the meaning
of all differentials in the Adams spectral sequence ("relative" because the terms
in a relation corresponding to a differential will typlcally be relative homotopy
classes which do not survive to E_ to become absolute homotopy classes).

8,n+8

™ and consider the

We can now state our main theorems. Assume given x €E
element 8¢Pix (as usual, ¢ = 0 and B =qu if p= 2}, Let

j-n p=2
(2j-n)(p-1)-e p>2,

so that %R x eEgs‘-k,p(n*rs), which lies in the k+np stem. Using the functions v
and & of V.2.15, V.2.16 and V.2.17 we define v = vp(k+n(p-l)) and
a = &p(k+n(p-1)) ¢n,_1S. Recall that a 1is the top component of an attaching map
of a stunted lens space after the attaching map has been compressed into the lowest
possible skeleton. ILet

e Ef ,f+v-1

o0

(8,8}

detect a (this defines { as well}. BRecall that a, eEi’l detects the map of
degree p when p > 2.

**%
Theorem 1.1. There exists an element T €E2 (S,Y) such that

(1) if p = 2 then dySoix = Sdddx + 1,
(11) 4if p > 2 then

dppyPx = dp %P = agxPlax  if 2 =n,

P x = agaPlx if 2 > n, and

+
3
.

d*BPJx = —BPj d,x 3
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Theorem 1.2. .
0 v > k+tl or 2r-2 < v <Xk
T, = ¢ axd x v = k+1
asqd Vx v=k or (v<kandv <10)
If p > 2 then '
0 v >k+l or pr-p <v<k
T, = (-1)¢ Ekp-ldrx v = k+l
L(—l)e-l EBPJ'e-l X v <kand v <Dpq.

where e is the exponent of p in the prime factorization of J.
Note. When p > 2, k and v have opposite parity so that v = k never occurs.

Theorems 1.1 and 1.2 give complete information on the first possible nonzero

differential except when
pq < v < min(k,pr-p+l) if p > 2,
or 10 < v < min(k,2r-1) if p = 2.

The sketch of the proof given in Section 4 should make it clear what the obstruction
is in these cases. We do have some partial information which we collect in the

following theorem.

Theorem 1.3. If p > 2 and v > q then diBij =0 if 1 < v+2 < pr-p+l, while
dpp_ps18PIx = -gPJdpx if v+ 2 > prpsl. If p=2and v > 8 then d4;5¢%% = 0
if 1 < y+#2 < 2r-1, while &, S@x = Sgdd.x if v+2 > 2r-1.

To apply these results we must know the values of the Steenrod operations in
E, = ExtA_(Zp,H*Y). For our examples we will concentrate primarily on p = 2 and
Y = SO, since this ig a case in which there are many nontrivial examples. We cannot
resist also showing how useful the Steenrod operations are in the purely algebraic
task of determining the products in Ext.

n_ T
2’2 1 Gusl to the S¢° . Parts (i) and (iii)

of the following propositon may also be found in [88].

We begin with the elements hnc E

Proposition 1.4. (i) (Adams [3]) S¢°h_ = h ,; and S¢® ~tn, = 12
froposition lL.4. +]1 q hn hn'

(11) (Adems (2]) hhy,; = 0, b, =h’h . and h b2, = O.
n n
1z . 2.2 272 _ . 2 _
(iii) (Novikov [911}) hnhn+3 =0, hy n 5 = 0 and, if n > 0, hy h = 0.
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yil
Proof qu '1hn = hi because the first operation is always the square. If we let

S:ExtS* 5 ExtS* be S** on ExtS'1*S| then Proposition 11.10 of [68] shows that in
the cobar construction Slxyles|x;] = (x2

- 3= il

[gl ], it follows that qunhn = 8(h,) = h,,7+ For dimensional reasons, the Carian

--~]x§). Since hy is represented by

formula reduces to S(xy) = S(x}S8(y). Thus, to show (ii) we need only show hghy =

hi = hghg’ and h h2 0. These occur in such low dimensions that they may be

checked "by hand". In fact, only the first and third must be done this way since

5q%(hghy) = g h, + hl. The relation h2h2 .3 = 0 follows similarly from
g § Sq (h h2) = 0. The only nonzero operation on h2 o 18 Sq2n+3h§+2 = h§+3
since (ii) implies that hi+2 = hn+2(hn+1hn+3) = 0. The relation hgnhz w2 = 0 then
follows by induction from hghg = 0. Finally, hgnhn = 0 follows by induction from
h%hl = 0 since - 1

s mdn) =) h. .

As is well known, the preceding proposition implies the Hopf invariant one
differentials.

Corollary 1.5. dyhy,; = hgh2 for all n > O.

Proof. By Theorems 1.1 and 1.2 we find that

211 2!} . 2
dxhpey = dxSQ7 by = Sq7 dyhy + hohy
2
so that d2hn+1 = hohn
T
since qu dzhn is in filtration 4. (It follows, of course, that

n

Sq° @ = sq hohn_ hghi,)

The next result shows how we may use the relation with homotopy operations to
get stronger results than the differentials themselves give.

Proposition 1.6. hlh4 and h2h4 are permanent cycles.

Proof. Since hlh4 = ng(hOhB)’ it is carried by the 9-cell of P9 The attaching

e
map is n, to the 7-cell, and hence its boundary is n(2o)2 0. Similarly, h2h4
Sqlo(hlhB), s0 h2h4 is carried by the 10-cell of P;O xS V(Sg\JZ 10 }» The 9-cell
carries Pg(nc), which has order 2 by the Cartan formule in Theorem V.1.10. Thus,

the boundary of the 10-cell maps to O and h2h4 is a permanent cycle.
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Before turning to other families of elements we should note that the Hopf

invariant one differentials of Corollary 1.5 account for only a few of the non-
i

trivial differentials on the hOhn+1' In fact, Proposition 1.4 implies
i _ i+l 2 . io s n-2 i
d2h0hn+l = hO h 1is 0 if i1+l > 2°7°, On the other hand, hOhn+1 # 0 for

i< 2n+1’ and from the known order of Im J, there must be higher differentials on
i

many of the hOhn+l

higher differentials in terms of the Steenrod operations, though Milgram [81] has

indicated that it may be possible with a sufficiently good hold on the chain level

which survive to EB' It seems difficult ito determine these

operations. More disappointing is the fact that it doesn't seem possible to pro-
pagate these higher differentials. That is, even if we accept as given a differ-

ential like dshgh, = hydg, we don't seem to get any information on d3h3h5.

The operation we c¢all S in Proposition 1.4 will be very useful so we collect

its properties before proceeding.

Proposition 1.7. If S = Sq™*S:ExtS:™*S , mxtS:2(0*S) then

---IXZ] in the cobar construction

= X2 2

(1) S[x1]~--|x 11

k
S{x)S{y}

#

(i1} S{xy)
(ii1) Sgisx = 58I Sy
(1v)  S<xgyXq,vee,X5> € <Sxg,8%9,+0.,5%>

Proof. (i) is Proposition 11.10 of [68], while (ii) and (iii) are immediate from
the Cartan and Adem relationg since all the other terms must be O for dimensional

reasons. Part (iv} is proved in [78].

For our remaining sample calculations we will explore the consequences of the
squaring operations on the elements s do, eq and fo. The key elements we will be
concerned with are collected in Table 1.1 along with Massey product representations.

With the exception of fO and yg, the Massey products have no indeterminacy.
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8 n = t-8 Name Massey product
2
3 8 g <h,hy,h5>
2 2
4 14 dg <h0,h2,h0,h2>
2.2
4 17 eq <hy ,h3 shy,h >
2.2
4 18 £y <hg,h3,hy>
4 20 gl ———————
2.,2.2.2
6 30 Ty <h0’h3’h3’ho>
7 3 m <hg,hy,Tg>
6 36 tg e
> 3 Xg <hg,h,,do>
4.2
() 38 Yo <ho,h4,h3>
TABLE 1.1

Also, note that the elements Mshowald and Tangora call r,m,t,x and y, we are
calling ry, my, by, Xy and yn. The reason for the subscript will be apparent from
the following definition.

Definition 1.8. If i > O and a ¢ {c,d,e,f,g,r,m,t,x,y}, let ag = a and
84,9 = S84.

Applying Proposition 1.7{iv) we find immediately that

2
1427
2

By 054>

¢, e <h,

1€ Dyyqshgo0

2
dg € hy,hy5,

ee<h?h? h >

1€ Biohiegs
2 2

feDyhyghso>
2.2 2 2

Ty€ <hi’hi+3’hi+3’hi>

141704

h

ms € <hy,5,0547,75>
xi € <hi+3:hi+4:di>
4.2
and v € <hi’hi+4’hi+3> .

However, we shall not make any use of these Massey product representations here.
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From the calculations of Mukohda [88] or Milgram [81] we collect the values of
the Steenrod operations on co,do,eo and f. The following abbreviation will be very
convenient: if x eExtS™*S let S¢*(x) = (Sq®x, Sq®*%,...,5¢%"x) = (x2,...,5x)

*

Theorem 1.9. Sq e )

0~ (°o’ 0%07%1

* 2
8a'dy = (d3,0,14,0,d;)

)

* 2
Sq ey = (eo,m ,to,xo,e1

*
Sq fo = (O’hBrO’yO’O’fl)

The indeterminacy in the Massey product representations of fo and yq, suggests

that we should define them by the squaring operations above:
= Sqloco and yy = quofo.

Applying Proposition 1.7.(iii) we immediately obtain the following corollary.

¥ 2
Corollary 1.10. Sqey = (ci hiel,fl,c1+l}
¥ 0
Sq di = (di,O,ri,O,di+l)
* .2
Sqge, = (e elm by Xy, 1+1)

*
Sq fl = (O,hi+3ri,yi,0,fi+1).

Before computing the differentials that this corollary implies, it will be
useful to obtain a number of relations in Ext. This also gives us an opportunity to
illustrate how powerful the Steenrod operations are in propagating relations. The
relations we will assume known are all calculated by Tangora [103] by means of the
May speciral sequence. In general, this technique only yields relations modulo
terms of lower weight. However, the particular relations we need do not suffer from

this ambiguity, since there are no terms of lower weight in their bidegree.

Proposition 1.11 (i) hgeg = 0, hyey = O, hseq = 0, hgey = 0, Iyfy = 0,
hyry = 0, hymy = O.
(i1}

h.e h.e

2 .2 .
= hydgs Dydy = e, ey = bty

_ 2
g 14gs h h&l,hd P%
hzto = Clglo
(ii1) hér =0, hf. =0, hd- =0, h,d, =h g h6x = 0, h = b2
’ » g8y = B DR T Y, Bflg T Dgies

g0 40
_ L2
hOf1 = hlel’
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These relations are grouped as follows: (i) holds because the relevant bidegree is
0 or is not annihilated by hy, as multiples of hy must be; (ii) follows from [103]
since, again by [103], there are no elements of lower weight in the given bidegrees;
{iii) now follows either by applying Steenrod operations to relations in (i} and
(ii) or by the same argument as (ii). {(The point is that the relations in (iii) are
dependent on those in (i) and (ii) under the action of the Steenrod algebra.)

Corollary 1.12. (i) hye; = 0, hy,pe; = 0, hy, s = O, by jey = 0, by f; = 0,
hy,qTy = 0, hy,qmy = O.

iy L2 .2 _ _
(11) ef = h],;d;, b, ,d; = h.e,, h, e, = hf., h

1+2%1 T Di814q
Biaobs = C5418541-

(ii1) h, ,f. =0, h,.. 4% =0, h,..d. = = 1n%y., b2 .f, = h,.

ivgls 70 By g 70 By ady S By £y yomy = ByYys By Ty T Ry

Proof These are immediate from Proposition 1.11 since S is a ring homomorphism by

Proposition 1.7(ii).

A comparison of the preceding proposition and corollary will show that if we

view the periodicity operator as a Massey product

r 2r+1
Px = <hr+2’h0 JX>

b

then we have only Milgram's theorem (Proposition 1.7.(iv}) to use in calculating
S(PFx), and this generally leaves us with too much indeterminacy. For example,

1 I 1 - 2 _ R 1 =
PThyhg = cO so S(P h1h3) = Sco = cl. On the other hand, S(P hlhj) =

p
S<h3, O,hlh3>e <h ,0 h2h4> = 0 modulo indeterminacy which is divisible by hA' of
course, since c1 # 0, it follows that hoh g = c? since hA(th) is the only

possible nonzero element divisible by h,. This example shows that to calculate
S(Prx), we need another representation of P'x. It also shows that the Massey
product representation can lead to useful information (although in this case the
product h2h4g 2 was already true in the associated graded). Accordingly, we
provide the followzng formula for the interaction of the Sq and the periodicity
homomorphisms Pr.

Proposition 1.13. let Sq, = sa¥ et 5 Bttt Modulo the ideal generated

2
by {hr+1,hr+2,8q0x,...,Sqix} we have
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0 i< 2f
Squr_lx =
r 2 2r+1 T
P &q Xt <hr+1’h0 ,5q r x> i>2.
i-2 12" -1

If 1 = 0, the indeterminacy (of Sg, = S) is generated by h and Sqq%.
0 r+2 0

Proof. This is a special case of Milgram's general result [78], which, for three-

fold Massey products says

Sqob Sqoc
sq1.<a,b,c>c<<5qia,...,3qoa), : . R : > s
Sqib cee Sqob Sqic

since Sqhf = ) = 0 forn > 4, Sqnd - hg“,

1 and Sqihn = 0 otherwise.

0

»

8.2 2 _ .4 . . .
Corollary 1.14. <h4,h0,h3> P2h3 = hOrO with no indeterminacy.

Proof. By Proposition 1.11, Plhg = hgdo. By Theorem 1.9 we have

16,2 _ 4 22 _ .4 . 2 NP 22
Sq hod = horo + hldO = horo, since h;df must be divisible by hy so hydj = 0. By
Proposition 1.13, SqléPlh% = Sq4Plh§ = chg with indeterminacy generated by h% and

h4. For dimensional ressons the indeterminacy is O.

Combining Proposition 1.11 with Theorem 1.9 we can produce a number of

relations in Ext which do not hold in the associated graded calculated by Tangora.

Proposition 1.15. (1) barg = 8g and hence hsry = 84

i
(i)  hgrg = hyty + h%xo and hence hy,gry = By by + h%xi
(ii1)  hped = ndx, and hence  hy,.ef = 0if 1 >0
(iv) h%dl = hyxg and hence h§+1di = hyXy 4
(v} hyyg = hotg and hence hy3¥ = hyaoty
{(vi)  hpxg =0 and hence hs0%3 = O
(vii) hyfy = h%cz and hence hyfy = h§_101+l
(viii) hoyp =0 and hence hi,oy; = O

: 2
tix)  haxy = higy and hence hi, qx; = higs4n
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Note. Mahowald and Tangora [61] found (i)-(iii) by other techniques. Barratt,
Mahowald and Tangora [20] also found (iv), (vii), and (ix) by other techniques.
Milgram [81] found (i) and (ii) by using the Steenrod operations. Mukohda [88]
found (iv)-(vi) and (ix), partly by using the Steenrod operations and the cobar

construction, and partly by means of a minimal resolution.

Proof. Given (ii), (i) follows because hohgrq = hgxo # 0, from which it follows
that horo # 0. The only possibility is hary = s3.  To prove (11), apply Sq20 to the
relation hody = hgeg. To prove (iii), apply Sq,l9 to the relation

hleo = hOfO and use the fact that hlmo = 0. To prove (iv)}), apply qul to the
relation hody = hgey and use the fact that h%e1 = 0. To prove (v), apply qu1 to
the relation hleO = hOfO and use (iv) to show that h%xo = hl(hgdl) = 0. To prove

2

(vi), apply S¢°° to the relation hjey = hyfy to show that hoxy = hie; + h3f, and

apply Proposition 1.11.(iii) to show that this is O. For (vii), we apply Sq22 to

hoe; = O. Similarly, Sqt

applied to hyfy = 0 yields (viii). Finally, (ix) follows
by applying Sq24 to the relation h2eo = hogl to get h%g2 = h3xo + h%el, and noting
that h%el = hy(hyfy) = 0. The calcultion of Sq24(hogl) is possible because Sq24gl =

g, by definition, while Sq23g1 = 0 for dimensional reasons.

Now we examine the differentials implied by the squaring operations in the s
d;, e; and f; families. The results we obtain for t-s > 45 are all new. In the
range t-s < 45 they are due to May [66], Maunder [65], Mahowald and Tangora [61],
Milgram [81] and Barratt, Mahowald and Tangora [20] with the exception of dgeq =
h,t, which is new and corrects a mistake in [20]. As noted by Milgram [81] the
proof's using Steenrod operations are usually far simpler and more direct than the
original proofs. In addition, when they replace proofs which relied on prior
knowledge of the relevant homotopy groups we obtain independent verification of the
calculation of those homotopy groups.

s,n+s : .
If xe Er’ , let us write xe (s,n) or xe (s,n), for convenience. Theorems

1.1, 1.2 and 1.3 imply that

0 v > k+l or 2r-2 < v < k
B D s = -
dySQx = Sq drx + axdrx v = k+1
asq? Vx v=kor (v <kandv <10

where kX = j-n, v = 8a + 2P if j*l = 2[“a+b(odd), and a detects a generator of Im J
; 0
in 'nv_lS .

We start with a general observation about families {a;} with a;,q = S(a;). If
ay e(s,ni) then

n; +s =255 +s) = 25ng + ).
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If N is the integer such that M1 ¢ ose2 < 2% then the differentials on the elements
quai depend on the congruence class of n; modulo 2N. Clearly, n; = -s modulo 2N if
i > N. Thus, the differentials on all but the first N members of such a family
follow a pattern which depends only on the filtration in which the family lives.

Consider the c¢; family. We have cqy €(3,8),, so in general c; e(3,21-1l~3).

w?

Proposition 1.16. (i} ¢ €E_ while dyey = hpfy 5 for i 22

(i1) dyfy = hfey, f; €Eg, and dgfy = Mqyg g for 122

(111) dgef = ndhy,ors ) for 1> 2

. _ .2 . cas
Note. We will shgw shortly that thOyi—l = hOhi+2ri-1' This, together with (iii)
implies that dBGi = 0.
Corollary 1.17. d2e0 = c% and ve4 # 0, where 94 is the Arf invariant one element
detected by hi.

Proof. Since cy¢(3,8),, Sq*co = (c%,hoeo,fo,cl) is carried by

28P21= 16v (Slikjb e18)\1819. Therefore cq ¢E_and dzfo = hgeo. Applying
Proposition 1.11 we find that dyhjeq = dyhgfy = hfeg = hidy = hyef, from which it

follows that d2e0 = c%.

Since ¢4 € (3,19) , Sq*cl = (c%,hlel,fl,cz} is carried by ZlgPig =
(838 —, e?? A *0) Vs L. Therefore dyey = hofy and dafy = hlc% = hlh%dl = 0,

8o that f;e¢ E5 for dimensional reasons. Since ¢, = <h3,h2,h§> and ey (E@, the Toda
bracket <c,v,64> does not exist. We shall show in the next proposition that hie E”
so that 8y exists. Since gv = 0, it follows that v, # 0.

Now assume for induction that d,ey = and that 1 > 2. We can arrange the

2
hofia
relevant information in the following table.

- Joy I (n £° a
j (mod 4) Sqey Sq (hofi_l) X v a
2 2
1 ey hOhi+2ri—l 0 2 hy
2
2 hse; hoyi-l + hlhi+2ri-1 1 1 hg
3 £5 By 2 24
2

4 Ci+l hafy 3 1 hg
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2 _ .2 2 B
It follows that dBCi h0h1+2 io10 dzhle1 h s 3f‘ hiys 1 and dpeyyq =

hofi. This completes the inductive step and flnlshes the proof of Propositon 1.16
and Corollary 1.17 Note that we have omitted d2hiei

proposition because it will follow from our calculation of dses below.

from the statement of the

Proposition 1.18. (i} dyk = hodg

2
(11) dgrg = hydy and Y €,
(1i1) vy €E; for i > 1

(iv) djeEy for i1

Note. Mahowald and Tangora show [61] that d; is actually in E_, not just E3' Also,
the proof given here that hA is much simpler than the proof in [61].

Proof. Since djye (4,14),, Sq*do = (d%, 0, rg, O, d1) is carried by 214Pi§, which
has attaching maps as shown

18 dl
17
16 Ty
15

2
14 dO

Now d3hoh4 = hpdy implies hod% = (0 in E4. The only possibility is that dk =

hOdS. This implies that 2n29 = 0. Since the boundary of the 16 cell carries hld%
plus twice something, we get dqrg = hld%. Nothing is left for n? to hit, so n? €E .
Finally, dy{dj) = hp+0 = O s0 dy ¢ EB‘ Now assume for induction that 1 > 1 and

dy e E3' The terms SquBdi in the differentials on Squi will not contribute until
E5, so will not affect the proof of {(iii) and {iv). Since Sq*d (d 50,74 ,0 d1+1)
we find that dyry = hyeO = O and dy{(d;,4) = G0 = O, proving (1ii) and (iv) and
completing the induction.

Proposition 1.19. (i) dymy = hoed, t, €E;; and dge; = hyty
(11) ef eEs5, dgmy = Sa¥n %y, dyty = hgmy, dgx; = hymy and dgep = hgxy.
(131) If 1 > 2 and n = 25221 - 4 then d362 = nle.x, | + Sa™n
n+

- 1 R = as D+ -
dgng =S¢ hgxy g, dpty = hgmy, dgxg; = S Ingx; p, and dge; = hoxg .

0%i-1’

Proof. By Corollary 1.17, doey = c%. The information needed to calculate the

differentials on the SqJeO is most conveniently presented in a table.



J queo k v a qucz conclusion

17 & o 5 By 0 dged = 0

18 m, 1 1 hg nged  domg = hgeh

19 tO 2 4 h2 0 d3to = 0

20 %0 3 1 ho 0 do%o = hglp = O
21 e 4 2 hy 0 dgeq = Dytg

We omit d3e02 and doxy = 0 from the proposition because they also follow simply for
dimensional reasons. Similarly, since ty is in E 5, it must be in E,q for dimensional
reasons. Thus (i) is proved.

Since d3e1 = hytg, the term quhlto will contribute to d5quel if quel lives
that long. Again, the information is most conveniently organized into a table.

J quel k v " conclusion
2 2
38 ey 0 1 by d_{}el = hoelhlto =0
39 my 1 8 hy dgmy = 5a%%n 1
40 ty 2 1 hy dpty = homy
41 X 3 2 hy de1 = hlml
42 e, 4 1 hO d2e2 = hoxl

A1l of (ii) follows immediately . Now assume for induction that doeq = hpxy 1 and
1 > 2. Again we organize the information in tabular form. Ilet n = 21-21 - 4 so

that e; ¢ (4,n),.

J quei k v N conclusion

n e? 0 1 ng dge? = ndesx; 1 + SaPhoxs )
n+l my 1 2 hy dqmy = Sqn*lhoxi_l

n+2 by 2 1 hy dyty = hymy

n+3 x4 3 4 hy dqxg = Sqn*Bhoxi_l

nHe ein 4 1 ho 428541 = ho¥g

This establishes (iii) and completes the induction.
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Hote that three of the 5 entries in the above table satisfy v = k+1. The
corresponding differentials therefore contain terms of the form gkdrx, specifically

;hoeixi—l in this instance.

Only one of the differentials on the qufi is interesting.

Proposition 1.20. For all i > 0, dyyy = hghs 447y

Proof. The terms in d*qux involving d.x do not contribute to d28qjx.
If n = 21.22 - 4 so that fj € (4,n) then Sq"*1f; = hy,4r; and S*2r; = y;. Since
n+2 is even the proposition follows immediately.

This completes our sampler. We have calculated only about one fourth of the
differentials found by Mshowald and Tangora, but they include some of the most
difficult. The remaining differentials follow more or less directly from those

calculated here just as in Mahowald and Tangora's original paper [61].

2. Extended Powers of Cells

In order to study Steenrod operations on elements of the Adams spectral
sequence which are not permanent cycles, we need a relative version of the extended
power construction. The extended power functor En " X(P), for = ¢ zp, factors as
the composite of the functors

Xi___u,'x(p)
and Y+ Enr x“ Y

If we replace X by a pair (X,A) then X(p) is replaced by a length p+l filtration

X1y o YaP) of 1 spectra and we may apply En x_ (7) to this termwise. The

resulting diagram is the relstivization which we nee;. While the formalism applies
to any pair {X,A), we will confine attention to pairs (CX,X), where CX is the cone
on X, both for notational simplicity and because the pth power of such a pair has
special properties which we shall exploit. In particular, note that lemma 2.4 is
the geometric analog of the fact that & +trivial one-dimensional representation
splits off the permutation representation of « ¢ I, on RP. Most of this section is

P
devoted to this fact and its consequences.

+
An element xe¢ Es,n 8

v (X,Y) can be represented by a map of pairs

(CX,X) — (Y_,Y_, ).

Extended powers of (CX,X) can be used to construct a map representing gSPJx. The
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final bit of the section establishes the facts about extended powers which will

enable us to construct and analyze such a map.

We shall work first in the category of based w-spaces and based r-maps and the
homotopy category of based n-spaces and n-homotopy classes of based n-maps with weak
equivalences inverted. The results are then transferred to the category of n-spectra

by small smash products, desuspensions, and colimits.

Let I be the unit interval. We choose O as the basepoint, justifying our
choice by the resulting simplicity of the formulas in the proof of lLemma 2.4. For a
space or spectrum X, let CX = X al. The isomorphism X = X A{0,1} and the
cofibration {0,1} € I induce a cofibration X » CX with cofiber IX.

Definition 2.1. For a space X, define a I -space I;(X) by

p

ri(X) = {e A cseA cp e(CX)(p) | at least i of the c3 lie in X}.

If X is a spectrum, define a Iy spectrum T, (X) = x(PIa ri(SO).

lemma 2.2. (i) For a space X, I';(X) is naturally and I equivariantly homeomorphic

P
to X(Pla 1, (s9).

n

(ii) r4(2%X) = £™ry(X) if X is a space.

(iii) 1,

j+1(X) » 1;(X) is & z -cofibration.

P
{1v) ry{%)/r3,1(X) is equivalent to the wedge of all (i,p-i) permutations

of X(i)'\(ZX)(p_i). In particular, if (p) is the permutation

representation of £_ on RP then ro(X)/ry(x) = (zx){P) = gipixlp)

P

and r,(X) = x(P)-
(v) 1(X) = P-1x(P) 4q Lp Spaces or spectra, where SP=1 nas the Ip action
inherited from the p-cell FO(SO) = 1{P),

Proof. (i) follows immediately from the shuffle map

A ses A see ees .
(xl tl)A (XPAtP)k~+(xlh Axp}n{tlu Atp)

(ii) 1is a consequence of the commutation of £* and smash products.

(iii) follows for spectra if it holds for spaces. By (i) it holds for spaces
if it holds for 0. For SO, it follows because Fi{SO) is the {p-1i) skeleton of a CW
decomposition of FO(SO) = 1P,

Similarly, (iv) holds in general if it holds for SO, for which it is immediate.

(v) follows from the fact that r1(S%) is the boundary of the p-cell Io(s?).
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Remark 2.3: We will complete what we have begun in (iv) and (v) above in Lemma 3.5,
which shows that

P (X) = \Y pip-iy (p),
i A
(p-i,i-1)

The next lemms is the key result of this section. ILet I and S1 have trivial g

el

actions so that if X is a Ep space or spectrum then CX = XAl and X = Xast are

also.
Lemma 2.4. There are natural equivariant equivalences I'p(X) = Crq(X) and
irq(X) = (2X) (P} such that the triangle
Cr, (X)
C 1
ry(X) It
commutes. ¢ FO(X)

Proof. By definition and by 2.2(i) we may assume X = SO. We define a Ip
homeomorphism FO(SO) > CFI(SO) by

’Ll _tP_
1;1A ...Atp e (TA.”A‘t At

where t = max{tj}. The inverse homecmorphism is given by

tyA e AL )AL P2ttt AL, Aces AL
{1y p) P

—t

2

Commutativity of the triangle is immediate. The equivalence IT({X) = (zX)(P)
follows since Iry{X) = Cr{(X)/r{(X) = r{X)/r(X) = (EX)(p), the latter equivalence
by 2.2(iv).

Lemma 2.5. For any 7 c:zp and any w-free n space W, there are natural equivalences
w % FO(X) z C(W x rl(X))
" (p)
and Wk T (X)) 2 W (2X)
T 1 4

such that the following triangle commutes.

W xn rl(X)

/WK" PO(X)
iy
C(w x rl(X))
Proof. By Lemma 2.4, W o PO(X)
W (I (X)AI) = (We_ T (X))AI
1 ¥ 1

similarly. Commutativity of the triangle follows from naturality with respect to
{0,1} € 1.

i

W« (I7(X)aT) and by I.1.2.(i1)
c(w i Fl(X)). The second equivalence follows

i
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In the remainder of this section we shall restrict attention to the special
case of interest in section 4. The general case presents no additional difficulties

but is notatiocnally more cumbersome.

et n C zp be cyclic of order p and let W = S° with the cell structure which

makes G W = W, the usual Zin] resolution of Z. Let WX be the k-skeleton of W.
As in V 2, Wk/w is the lens space Lk and, by I.1.3.{(i1), if r =T (Sn l then
W LR /W = zkri. By lemmas 2.2 and 2.5 we then have the follow1ng

i
corollary of Theorems V.2.6 and V.2.14.

_ . 01 »(n-1)(p-1)+k
Corollary 2.6: W P Tp = 2 (n-1)(p-1)
. 0" -1 »n(p-1)+k
and Wktxn Iy =1z t(p 1) "

Now note that lLemma 2.5 also implies that wE LI U Wt o is the

-1 0
cofiber of the inclusion Wk ry Wk kT Ey Corollary 2.6 or by Lemma 2.2
and I.1.3.(ii) it follows that

R

17

To get this equivalence in a maximally useful form, first consider a more general
situation. In order to analyze the Barratt-Puppe sequence of a map a:A + X one

constructs the diagram below.

A
\
{2.1)

X CA = X\ CA
l “a
CA B P . ¥ i{i(a})
a
az\» 2
CX +(Ci{a) = X\_ﬁ CAV:.(&) cx

In disgram (2.1) the front and back squares are pushouts, &g is an equivslence,
a2 = Ca = aal, a; is the obvious natural inclusion, and the maps a, i{s), and

-1 1(i(a)) are the beginning of the cofiber sequence of a. The following obvious
fact about such diagrams will be used repeatedly.

lemma 2.7. Let B+ Y Ve a cofibration and let n:Y » Y/B be the natural map. For
any map
f:(Ci(a),X) » (Y,B),

we have nfa3 = ?55 - ?Eé in [$A,Y/B], where ?Eg is the mep A » Y/B induced by

(fa;,fa):(CA,A) » (Y,B).
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Proof. The only question is whether we should get ?Ei - Taé or its negative. We
choose ?Ei - ?Eé for consistency with the Barratt-Puppe sequence signs. The point
is that a3 is a homotopy inverse ito the map from Ci{a) to fA which collapses CX,

and the orientations on the two cones are determined by this fact.

Returning to the special case which prompted these generalities, let
.ghptk-2 | k-l s X
a: > o ry be the attaching mep of the top cell of W" & TIy. Then
diagram (2.1) becomes diasgram (2.2} below.

Snp+k~2 . enp+k—1
a
ka—l N
(2.2) kn I|l W " r1
enp+k-1 . Snp+k—1
NKmN\\\\\~ , a3
a -1 TSNk -1
2 Wk % N w o rlxzwk 6 Ty
Corollary 2.8. let B+ Y and n:Y » Y/B be as in Lemms 2.7. For any map
W ok oW, Wl 1) s (Y B) we have nfa, = fa, - fa, in
: 7 1 T 0’ 7 1 ’ 3 1 2

Tfnp+k_l(Y/B) .

Let v = vp(n(p~l)+k) in the notation of Definition V.2.15, so that

-1 k-v
ace "np+k—2 Ko rl factors through W &  Ty. Then we may replace the front

face of diagram (2.2) by

W 1 WY pou MR
w1 1

-V K-V np+k-1
Wk xn rO » W K" ro\je

in which the np+k-l cell is attached by a 1ift of a. This gives us a version of
Corollary 2.8 in which f need only map wk—v % Ty into B and the map ?Eé factors
through W % Tpe
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§3. Chain Level Calculations

In this section we define and study certain elements in the cellular chains of
W % ro(Sn'l). In sections 5-7 they will be used to investigate the homotopy groups
of various pairs of subspaces of W ix FO(Sn'l). Here we use them to determine the
effeet in homology of a compression (1ift) of the natural map wk X FP(Sn'l) >
W e T (1),

Let 15 = Fi(Sn_l). Give &% = C(Sn"l) the cell structure with one n-cell x and
one (n-l)-cell dx. Let Cx{?) denote cellular chains and C4(?;R} = C4{?) ® R. Then

C*ro = <x,dx>P, the p-fold tensor product of copies of C*(en) = <x,dx>, and
C,T i < np-j

0 i>np-j .
We shall find it convenient to omit the tensor product sign in writing elements of
C*I‘j , so that, for example, xP~1ax denotes X®X® »++ ®X®dx. Let W = 5° with
the usual n-equivariant cell structure. Then CyW is the minimal resolution W of 2
over Z(x]. Let
I
)Y(k)j =

so that W(k) = Cy(WX), where WX is the k-skeleton of W. Then by I.2.1,
C*(Wk " I‘i) = wik) ®" C_)eI‘i .

Let o be the p-cycle (1 2 e+« p) in w ¢ L., and let v and Zp act on

p
Cyly by permuting factors. Following (68, Theorem 3.1] we define elements
t; & C4Ty as follows. Define a contracting homotopy for Cyl'y by s(ax) = O

and s(adx) = (—l)lalax.

Definition 3.1. If p = 2, let tg = dxz, ty = xdx, and ty = x2. If p > 2, let

2 + e + ap—l. let

N=1+a+q
to = axP ty = dxp—lx,
tyy = sla™t - 1)ty 1), and

t21+1 = S(Ntzi)‘

Lemma 3.2. (i) If p = 2 then d(ty) = (a + (-1)™)t; and d(ty) = tg.

(ii) If p > 2 then d(tl) = tg,
- -1
d(t’Zi) = (Q - l)tZi—-l
and d(t21+1) = NtZi if 1 » O.
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(11i) If p > 2 then t; = (-1)™nixP  and

tpy = nixPlax + (m-1)1(a"? - 1)axPlax
T2
where m= (p-1}1/2 and Q = (a+l} 7§ dia" .
i=1

Proof. (i) and (ii) are easy calculations, by induction on i for d{t,;) and
d(tpy,1) using (a™1-1)N = 0 = N(a™1-1) end ds + sd = 1.

= (=1)™nixP and that

P2, Since P =m + (a”! - 1),

In [68,Theorem 3.1} it is shown that t

3 %

tp—l = (m-—l)!Pxp'ldx, where P =qa + 07 + see @

(iii) follows.

Lemma 3.3. If p = 2, then in Cy(W "l & 1)

(-n'e, ® atx®) n#i(2)
2
€41 ® 4dx" ~ . )
(-1) ei®d(x ) - 29i®xdx nzi (2)
Proof. We have d(ei) = (a0 + (-1)i)ei“1 and d(x2) = dx x + (-1)® x dx. Therefore
dle;, ®xdx) = (a + (-l)i+l)ei®xdx + (—1)i+1ei+1® ax®

i+1 2

i+l
ei®xdx + (-1) ei+1® ax” ,

ei®dx x + (~-1)

from which we obtain

2 i
€y, @& ~ (-1)7e; ®dx x - e, ® xdx

= (bl ®at®) - 1+ (-1 Me, @ xax

i+p-1 x

lemma 3.4. et p > 2. If i is odd then, in C,(W . I'i),

)mnﬂn

€ip1 ® axf ~ (-1 mle, @ d(x").

If i is even then, in C*(Wl+p"l x_ I‘l),

p-1 s
® a ~ (1™t e @axP) -p § (-1)H/2le

®t,
=1 B

“14p-1 1+p-j

Hence, for any i,

P Tm+m P
€{4p-y ® I ~ (1) m! e, ® d(x)

in o, WP 1, Z).
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Proof. By Lemma 3.1 and the definition of W we find that if i is even then

[ Niej,, s 1@ty * ey @t q) Jodd, § £
d(ei+p—j ® tj) = T(ei+p—j—l ® tj - ei+p-j ® tj-l) j even
L Neiip2 @t * ey 1®% J=1
and if i is odd then
( Tei+P_J_l ®1 - Nes o 3 ® t 1 jodd, j #1
d(ei+p—j ® tj) =9 Nei‘rp—j—l ® tJ_ + :L+p -3 ® t j even
[ Teap2 ® b - €541 ® B i=1,

where N=l+a+a2+---+up_l and T = o - 1.

Suppose i is odd. We define

(-1)97
1

Q
1l
ne~—1g

; €iap-2j+1 @ o517 Cqup_oy @ oyl

A routine calculation then shows that

= m
d(e) = 'ei+p-l® tg + (1) ei®N1:p_1 s

and hence, by Lemma 3.2.(ii) and (iii)
m _ m _ m-+m p
Ci4p-1 @ Bp v (-1, @NL ;= (-1)7ey @ dlt) = (-1) m! e; @ d(x").

This establishes the result for odd i.

Now suppose i is even. We define

m 21
e = (-1)97 (e, ; ® by )

4 1+p-2] iep-2j+1 @ t251
where M = 4P + 2,073 4 L 4 (p-2)a + (p-1). One easily checks that
N=TM + p = Ml + p. A routine calculation then shows that

m
j-1
8(e) =ey 1@ty +p ] (=1)97 ®t

1 ®14p-2) @ Y251 7 Ciepzy-1 @ boy)

m
- (-1) ei®th_l ,

from which the result follows for even i by lemma 3.2.(ii) and (iii) just as for
odd i.
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In order to prove the compression result {(lLemma 3.6) we need to show that,

ignoring the 1, action, ry{x) is just a wedge of suspensions of x{p),

1Y

Lema 3.5. T nd ornd, 1 x)~ VPP
(p-i,1-1)

Proof. By Definition 2.1 and lemma 2.2.{i) we may assume X = 0. Again let
ry = 1;(89). Since Io = ¢ is contractible, CyIy is exact. It follows that

CuT'y is exact except in dimension np-i and that

Q k # np-i

Hry =

ker(C } k = np-i

np~iPO T cnp-i-lFO

Thus th-iri is free abelian, being a subgroup of the free abelian group Cnp—irO'
By the Hurewicz and Whitehead theorems ry is a wedge of np-i spheres. Splitting

CxI'y into short exact sequences shows that

rank th-iri + rank an-i-lri+l = rank Cnp-iro = (p-i,1i).
(Recall (a,b) = (a+b)!/albl). Since an—lrl has rank 1 by Lemma 2.2(v), we see by

induction on i that

rank an_.ll‘l = (p~—i,i—l).

We are now prepared to prove the key result.

Lemma 3.6. The natural inclusion Wj'\*l X Pj*l > Wi+l " rj is homotopic to a map

il i . _ Atp-1 i
e:W o rj+l > W x rj. In integral homology e = ee «»» et u“rp + W x Iy
satisfies

. Py . 4 imm P . .

(i) e*(ei*p_1 @ (d&x)F) = (-1) mle; ® d{x*) if p > 2 and i is odd,

(1) e le . ® (a0?) = (-Die, ® a(x¥ ifp=2edndi (2)

¥ Ui+ i >

where we denote homology classes by representative cycles. In mod p homology, (i)
and (ii} hold for all i and n. In integral homology e:WP—1 > rp > WO x Ty=T,
satisfies

s Py . o7yl .

(ii1) e,‘(ep_2 ® (dx)7) = (-1)" "Tey ® tp2 if p > 2.

1

Proof. The map compresses because Wt x is np+i-j dimensional while

r.
- . A T o J+l
W1+lun I‘J./W1 Lo rj =V gPPr gl by the preceding lemma. In order to evaluate ey,

first assume p > 2 and consider the commutative triangle,
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i+p-1 % T
ki

in which the unlabelled maps are the natural inclusions. In mod p homology the
vertical map is an isomorphism, so it suffices to note that
L ® &P~ (-1) by 3.4.

1 D
ei+p— mle, ® d(x*)
map is the quotient map Z » ZP’ and the mod p case implies ey is correct up to a
i+l i
to W x r

Now assume i is odd. The vertical

multiple of p. The indeterminacy of the 1ift from W ®o rl 1
consists of maps

Wi+p—1 ® T _c_’sanri—l __b_,snpﬁ—l _a_’wi‘x r

TP T 1

in which ¢ is projection onto the top cell, b is arbitrary, and a is the attaching
map of the np+i cell. On integral homology ¢y is the identity and ay is multiplica-
tion by p. Thus it is possible to choose the 1ift e such that ey is as stated in
integral homology. (This is a general fact about maps obtained by cellular approxi-

mation, but we only need it here so do not bother with the general statement.)

The argument for p = 2 is exactly analogous to that just given.

§4. Reduction to three cases

In this section we start with an overview of the
notations which we shall use in the remainder of this
proof of Theorems 1.1, 1.2 and 1.3 by showing that it

proving some results which will be used in all three.

If r. =
FJ

proof, then establish
chapter, and finally start the
splits into three parts and by

rj(Sn”l) as in Section 2, we would like to prove Theorems 1.1, 1.2 and

1.3 by doing appropriate calculations in a spectral sequence E.(S, P) where D is an

inverse sequence constructed from the wh o r,'s.

difficulties which have prevented this.

lines, it should immediately imply that Tp

However, there are technical

If a proof can be constructed along these

(see Theorem 1.2) is a linear combination

of 881y ang xp'k(drx)k for various §, i and k, with coefficients in E,(8,S). The

coefficient of the lowest filtration term would be g;
other coefficients would give complete information on

gifferential on 8€Pix.

The proof we give runs as follows.

of W o r.,nCcz:2 ecyclic of order p.

The spectrum W T,

and the determination of the
the first possible nonzero

5 is a wedge summand

In a very convenieRt abuse of notation, we

will write DT, for the np + i-j skeleton of this summand. There is a homotopy
equivalence of (ek+np, SK*IP=1) yin (DkrO,Dk"er &;Dkrl). The element 8¥PVx is
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represented by a map of {Dkro, Dk'lro y)Dxrl) intc the Adams resoluton of our H_
ring spectrum Y. Thus, we must study lifts of the boundary Dk'lro \/Dkrl in order
to compute d*BEPJx. Since Dkrl is homotopy equivalent to the stunted lens space

n(p-1)+k K. . X k-1 koo k-1,
Ln(p-l) and D°Ty is the cone on D°ry, D Iy w D Ty = Dkrl/D Ty = S

Now Dk+p‘11‘p is also a stunted lens space and the natural inclusion

k+np-1
2:n np-=L .

k+p~1r

D D

1 factors through Dkrl (Lemma 3.6). The resulting map

Dk+P-1Fp > Dkrl is equivalent to the cofiber of the inclusion of the boitom cell of

k+p-1
T
p+

Dk*P‘lrp. Thus Dkrlka—lrl = Dk+p_lfp/Dk*p"2rp. The top cell of DK+P'1rp carries

the element SePddrx and this is where this term comes from. The other term comes in
because we are given a map of Dk'lro\d Dkrl, not Dkrl/Dk‘lrl, into the Adams
resolution. Thus we must find another cell whose boundary is the same as the
boundary of the top cell of DXy or DK*P‘lrp, and we must 1ift it until it detects
an element in homotopy or until it has filtration higher than that of BEPUdrx.

Since Diro 3 CDirl, we can simply cone off the attaching map of the top cell of Dkr1
as long as this cell is nontrivially attached. This produces the terms gﬁj'vx,
EéPj'e'lx and aOBFJx. If the top ecell of Dki’1 is unattached, the top cell of
DP7lr may still be attached to the cell s
ecell in Ty which carries xp'ldrx. This is the source of the terms ﬁxp'ldrx.

. There is a nullhomotopy of this

Finally, when the top cell of Dk+p'lrp is unattached, it carries the entire
boundary.

There are two complications to the above picture. First, the map Dk+p'1rp >
Dkrl is & lift of the natural inclusion Dk+p‘lrp > Dk+p'lr1 and does not commute
with the maps into the Adams resolution until we pass tc a lower filtration. This
necessitates extra work at some points. Second, the attaching map ataches the top
cell to the whole lens space, not just to the cell carrying pI=Vy or BPj"e'lx. As
the filtration of & increases, the possibility arises that a piece of the attaching
map which attaches to a lower cell will show up in a lower filtration than the term
7P Vx or EBPJ'e‘lx. This possibility accounts for the cases in which we do not

have complete information.

Now let us establish notation to be used in this and the remaining sections.
As in section 1 we assume given a p-local H, ring spectrum Y and an element

S,n+s
X e E’
r

(S,Y), the E. term of the ordinary Adams spectral sequence converging to
7xL. We wish to describe the first nontrivial differential on Berx in terms of x

and d.x. (Here ¢ = 0 if p = 2.) Recall from §1 the definition

J-n p=2

(2j-n)(p-1) -~ ¢ p>2
Let
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Y :YO‘—-Y].Q'-—Yz-G"- Ry

be an Adams resolution of Y and let

{p) _ ,{p) _ —-—
Y —YO —FO-*--Fl F24— sen

be its pth power as in IV.4. Represent x by a map (en,Sn"l) > (Ys’Ys+r) and let
ry = 1;(s%71) ve the i*M filtration of Iy = €% as in Definition 2.1. Recall that

the spectrum W “E Fi is a wedge summsnd of W x I‘i where 7 C ):p is cyclic of

order p. In the remainder of this chapter, DkI‘i will denote the np+k-i skeleton of

this summand. Let us use g generically to denote the composites

(1 wxp):Dkl’i +Wko<ﬁ T, +Wkp<

Ex,ps+ir i x Tps+ir * Tpe+ir-k
2

the maps of pairs and unions constructed from them, and their composites with the
maps Yj T YJ- . We will use the following conseguence of Lemma 3.6 repeatedly.
Recall that e is defined in Lemma 3.6.

lemma 4.1. The following diagram commutes.

Dk+p-l r e X

——» ']
P
|
€

Ypsﬂ‘-k

1

B b

Yps+pr—k—p+1 ps+r-k-1

Proof. 1In the diagram below, the triangle commutes because r > 1 and the
quadrilateral commutes by Lemma 3.6.

k+1 k

st ost e GO
Dl 1’j +1 Dlr‘j
Yps+(j +1ljr-k-1 Y1:>s+j r-k

|

Yps+ (j+1)r-k-2 Yps+,j r-k-1
The lemma follows by composing the diagrams for j = 1,2,...,p-1.
In IV.2 we constructed a chain homomorphism &: W ® Cp + [ , where is the

cobar construction, which we used to construct Steenrod operations, and in IV.5 we

showed that ¢ induces such s homomorphism. In particular, Definition IV.2.4 says
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gEpiyx

j D

(-1)v(n)ey(e, @ x°)  p > 2
and Sq‘jx=¢ (e ®x2) P = 2.

¥ 7k
The following relative version of Corollary IV.5.4 gives us maps which represent
these elements. In it we let { be the cobar construction C(Zp,/{p,H*Y) so that
€s,nvs = T {¥e/ Mg & ny (¥, Yo ) and let W= Cy(W) so that My = C (W)
WALy = W)

13

lemma 4.2. If e ¢ JVk is represented by e e nk(wk,wk’1> then ¢,(e ®@ ®) s
represented by the composite

P
?.(e ®x%)
np+k np+k-L 0 ¥ =" "
(e IZ,S ) Rl LA SRR
- A
(eklx ro,ek [ l‘lusk 1y ro)

e x 1
' 1 £

(Wk x FO,Wk‘x rlx/Wk- u FO)
u

Vr —l
(Wk x ro,Wk X I‘lu\‘a’k KT

) —— (W F W oW lu )
O ho! k4 7

1« x ps’ i Fps+f ps
X

where u is the passage to orbits map.

Note: If e ¢ M is a Z[w] generator (e.g. e = qiek for eome 1) then the vertical
composite in the diagram is an equivalence by the same argument which was used to
construct diagrams (2.1) and (2.2).

Proof. This is simply the relative version of Corollary IV.5.4. The natural
isomorphism n4{X,A) g ny(X/A) for cofibrations A » X enable one to pass freely

between this version and the absoclute version of IV.5.4.

We shall refer to the boundary of the map in Lemma 4.2 so frequently that we
give it a name.

Definition 4.3. let 8¢ € my .\ 1Y 4,y De the restriction to SP™8~1 of the map

ox(ex ® xP) of Lemma 4.2. Let 1 e "np+k-1(DkrluDk~lFO) be the map with Hurewicz

image
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0 k=0 or k odd, p > 2
0 k+n odd, p = 2
(-1)kek ®d(xp) + 9 Pey 1 @xp O# keven, p>2
k 2 _
L(«l) 2e, | ®x k+n even, p = 2

Lemma 4 .4. (1) 8@ = gx(1)
(ii) 1 is an equivalence
{(iii) Orienting the top cell of Dkrl correctly, the homotopy class 1

contains the map a, of diagram (2.2).

Proof (i) holds because we are in the Hurewicz dimension of Dkrl\J Dkﬁlro = goprk-l
so the Hurewicz image of 1 is suffieient to determine 1, and iis Hurewicz image is
the boundary of the cell ¢ ® P, Statement (ii) is immediate from the Hurewicz
isomorphism, and statement (iii) is immediate from the fact that ag is an

equivalence.

The differentials on g x are given by the successive lifts of (-1)d v(n)as
when p > 2, and of 3¢ when p = 2. Corollary 2.8 and the discussion following it
show that the attaching maps of lens spaces, and hence elements of Im J, enter into
the question of lifting this boundary. In the remainder of this section we
establish various facts about the numerical relations between the filtrations and
dimensions involved, the last of which will enable us to split our proof into three

very natural special cases.

lemma 4.5. If p > 2, the generator of Im J in dimension jg-1 has filtration < j.
If p = 2 the generator of Im J in dimension 8a+e (e = 0,1,3,7) has filtration ¢
batg if ¢ # 7, and € 4a+4 if ¢ = 7.

Proof. The vanishing theorem for Ext g (ZP’ZP) says that xtSt = 0 ir
0 < t-s < U{s}, where U{s) = gqs-2 if p ? 2 and

8a - 1 e=0

8a + 1 e =1
Ul4a+e) =

8a + 2 e = 2

8a + 3 e=3

if p = 2 by [4] and [56]. First suppose p > 2. The Im J generator in dimension

ts,t

jg-1 is detected by an element of Ex where t-s = jg-1. Hence jg-1 > U{s) =

s8q-2, which implies j > s. Now, suppose p = 2. A trivial calculation shows that if
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8>4a +e,e=0,1,3,4, then U(s) > 8a + ¢ if ¢ # 4, 8a + 7 if ¢ = 4. This
immediately implies the lemma.

We apply this to prove the following three lemmas. As in §1 let v be
vplk + n(p-1)), and let f be the Adams filtration of the generator of Im J in
m SO

v-1* *

Lemma 4.6. Assume p > 2. If v = k+1 and f > r-1 then pr-p-k+1 < 2r-1.

Proof. Equivalently, we must show k > {p-2){r-1). By Lemma 4.5

k+1

q

.

£

0 |

Thus k+1 > qf > q(r-l) and hence it is sufficient to show that

q(r-1) - 1 > (p=2)(r-l). This is immediate since r > 1.

Llemma 4.7. Either min{pr-p+l,v+f} < v+¢r-l orr =p =2 and v = 1 or 2.

Proof. Suppose p > 2. Then f < v/q. If pr-p+l > v+r-l then
v < {p-1)(r-1) + 1 and hence

o

r-1
2

f < + =< r-1,

fte]

Now suppose p = 2. We must show that if r > v then f < r-1. It suffices to
show f < v-l. This follows from Lemma 4.5 except when v = 1,2, or 4. In these
cases £ = 1 so the lemma holds when v = 4. If v =1 or 2 then £ < r-1 unless
r = 2. This completes the lemma.

Lemma 4.8. Exactly one of the following holds:
(a) v >k + p-1,
(b) v

(e) v < k.

#

k+1l and if p > 2 then n is even,

Proof. There is nothing to prove if p = 2, so assume p > 2. We must show that if
k <v < k+p-1 then v = k+1 and n is even. Reeall that k = (2j-n}(p-1)-c and

v = vp{k+n(p~l)) = vp(23(p—l)-s)- If ¢ = Othen v =1, Hence Xk = Oand n = 2j so
thet {b) holds as required. If ¢ = 1 then v = g{1 + ep(j}). Dividing the
inequalities k < v < k+p-1 by p-1 yields

1 : s
2j-n- 'ﬁ < 2(1+€p(,])) i 2J‘n -

which has only one solution: 2(1 + ap(j)) = 2j-n. Hence n is even and
v = allvey(j)) = (2§-n)(p-1) = k+l.
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Lemma 4.8 is a consequence of the splitting of the mod p lens space into wedge
summands, the summand of interest to us being the zp extended power of a sphere. To

see the relation, recall that v tells us how far we can compress the attaching map
of the top cell of wE x Ty = gh-t iggg:i§+k
Wk'v u“ rl and no further. When v > k it is not attached to Wk un Tye However,

. When v < k, it compresses to

recall that there are equivalences

+p=-1 . n-1 =n(p-1)+k
WI o TN Mae-n)

R

n-1 ~n(p-1)+k
Wk M Tl I Ln(p-l)

by Corollary 2.6, and that the top cell of Wk 3 rl is the image of the top cell
-l "

of x_ T
TP

The first possibility is that it goes no further, and in this case the wedge summand

vy Lemms 3.6. When v > X this cell compresses to Wp—2 u“ Pp.

of the lens space we are interested in has cells in dimensions n(p-l) and n{(p-1)-1
so that n must be even. By the splitting of the lens space into wedge summands, the
next possibility is v = k+p-1, which would have the top cell of Wk+p—l up Fp
attached to the bottom cell. In fact this cannot happen because the attaching map
is in Im J and thus is not in an even stem. So v > k+p-l is the only possibility if
v > k+1, and this says that top cells of WPl b Ty and WS x Ty
This "geometry" explains why the differentials on g€Px are so different in these
three cases. We shall start with the simplest of the three cases, and proceed to
the most complicated.

are unattached.

§5. Case {a): v > k+p-1

Since v > k+p-1 > 1, it follows that ¢ = 1 if p > 2. Thus Theorems 1.1 and 1.2
say that

d

1
[AS]

Zr_lP}x = PJdrx if p

i )
and dpr”p+18PJx gp drx if p > 2.

Theorem 1.3 follows automatically from these facts, so these are what we shall
establish.
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By Lemma 4.1, the following diagram commutes.

k+p-1 e k k k-1
———
D I‘p D ry D I‘l\JD g
£ 13 £
Eps+r—k

. :

————i B e
Eps+pr»k~p+l pe+r-k+1 ps-k+1

Because v > k+p-1, the top cell of pk+p-1 Ty is not attached {(Corollary 2.6 and
Definition V.2.15}. Thus there exists a reduction p "np+k-1(Dk+p_1rp) whose
Hurewicz image is ek+p-—1 ® axP (it is easy to check that ek+p—l (] ax? generates
an+k—1)' Also, v > k+p-1 > 1 immplies that k is odd if p > 2 and that k+n is odd
if p = 2 by Proposition V.2.16. Combining lemmas 3.6 and 4.4 we find that g£4(p) is
a 1ift of 3¢ when p = 2, and of (-1)™*=Lp ) 55 when p > 2. Applying Lemma 4.2 or
Corollary IV.5.4 we see that g4(p) represents ®*(ek+p"l ® ax®). Thus, if p = 2 we
have

2, pq)
x dx)™= P d Xy

dy. 1Px = gyl0) = ley

If p > 2, we have

= 3 mn+m~1 1
dpr_pﬂspjx = (1) win) (-1) ST £y (p)
_ mn+m-1 PJ
= (-1} (v(n)/mlvin-1})8P d x.
It is easy to check that v(n)/m!v{n-1) = (-1)™™ mod p so that d_._ gPlx =
pr-p+l

Yy dpx.

§6., Case (b): v = k+1

We will begin by considering p = 2. Theorems 1.1 and 1.2 say that

d2r_lex = P'jdrx if 2r-1 < r + £ + Xk,
dpp Mx = Pax +amdx if 2r -1 =r+f +k and

g x = Txd_x if 2r-1> 71 + £ + k.

Since the filtration f of ¥ is positive and r > 2, Theorem 1.3 follows from Theorems
1.1 and 1.2.

Let N = k+2n-1 and let C, ¢ my(DX*1ry,r,) be the top cell of DE"lr, with its

boundary compressed as far as it will go. Then the Hurewicz image
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S2n—2

= 2 = = = Y i =

n{Cs) el?fxﬁl® d§n~ind 302 a az(km) e my 4oz 1S, Since r, and
I‘:‘_/l"2 = S v S by Lemma 2.2, the Hurewicz homomorphisms in

w, AT ,T,) —— B o H (r,,I.)

2n-1""17"2 2n-1""1°"2

aJ' )
h

"on-212 Hon-2l2
are isomorphisms. Let R ¢ "2n-l(F1’F2) satisfy h(R) = x dx = eg® x dx in the
notation of §3. Then 3R ¢ Ton-olo is an equivalence since h(3R) = dx2 = e0® dx2.

Let a also denote (Ca,a) ¢ “N(e2n-l’52n—2)_ Let i be the natural inclusion
1:(ry,Tp) » (057lrg,rp) 4f k > 0 and let 1 = 1:(ry,Fp) » (Pq,Fp) if k = 0. Let eC,
denote (e,1)4{C,) ¢ “N(Dkrl'r,?)'

Lemma 6.1: 8¢ = gx(eCy o iRa) in my¥o 1 .q-

Proof. First note that eCyu iRa is defined since 3C, = 8{iRa) = a ¢ .10 BY

Lemma 4.4, 3¢ = E*(eczu iRa} will follow if e82 iRa ¢ wN(Dkl‘lv Dk_lro) has

Hurewicz image (-1)kek ® d(xz), since v2(k+n) = k+1 implies that either k+n is odd

or k= 0. If k # O then n:DkI‘lu Dk_lro > Dkl“l/Dk_lI‘l is an equivalence and Lemma

= k k-1
2.7 says that ﬂ(eC2 w iRa) = e02 € myD I‘l/D r

DE"1r.. Then h(sC.) = e h(C.) = (-l)ke ® d(xz) by Lemma 3.6 (since k+n is odd)
1 2 * 2 k

since iRa factors through

and we are done. If k = O then n is even, since v,(n) =1, and eCy s Raeny, 7.
- . 2 2
Also, a = - 2¢ 1r2n_282n 2 since h(aCz) = d(e1® dx™) = (a—l)eo® dx”~ =
2 R .
= —2e0® dx”. To compute h(eC, (,Ra), project to I'y/T, sinee H, Iy » Hy 1I1/T,
is the monomorphism which sends e ® d(xz) to e ® xdx + eq ® dx X. By Lemma 2.7,
2n-1 N =

1‘1 +r1/r2 equals eC, - Ra so

n(eCzu Ra}:8 5

i

h(n(eC,  Ra)) h('e_czz - h{Ra)

#

e*(e1 ® dxz) + Zeo ® xdx

= ey ® (dx)x - ey @ xdx + 2e, ® xdx

#

eo® (dx)x + eo® xdx.

Therefore h(eC, . Ra) = en ® d(x?) and we're done, proving lemma 6.1.
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Since £43C, € my¥oq,on, Ex(eCy U iRa) = g4(eCy) - £4(iRa) in
T Yog k41 Tngepp)+ By Lemma 4.1 (or 3.6), £y(eCy) and £4Cy have the same image
i 1 (Yog_y1,Ypgepp)e Since D(C,) = ey 1 ® dx%, £4C5 € 1x(Yog 1ion 1/ Y0gs0p)
represents Pddrx by lemma 4.2. Similarly, h(R) = e;® x dx implies that
ExR e me(Yoqin, Yo 00,) represents xd x, and hence gx{Ra) € myu(Yoo rirsToginp)
represents Exdrx. This completes case (b} when p = 2.

When p > 2 (and v = k+1) we will treat k = O and k > O separately. First
suppose k = 0. Thenv =1, n=2j ande = 0. Also, f =1, a = a, ¢ Ei’l(S,S) and
ae "OS is the map of degree p. Thus, we must show

dpayx® = aoxp'ldrx.

Heuristically this is exactly what one would expect from the fact that drxp =
p(xp'ldrx). That this is too casual is shown by the fact that we have just proved
(for p = 2) that

d3x2 = hoxdyx + Pldox.

The extra term arises because when we 1ift the map representing 2xd,x to the next
filtration, we find also the map representing Pndgx which we added in order to

replace xdox + (dzx)x by 2xd2x. Thus, our task for p > 2 is to show the analogous
elements can always be lifted to s higher filtration than that in which aoxp'ldrx

lies. The following lemma will do this for us.

lemma 6.2. There exists elements
1 1
Cl € ’irnp__lrl Y ¢ Tlnp_l(D Tz,rzuD TB)
1
X emy 1(0,Tp) Z ¢ my 1 (DPrg,D ryD?r,)
such that

_ . 1 2 2 1 2
Cy=pX +pY +Z in wnp_l(D TpoDT,, I D I‘BVD I‘A},

h(Cy) = eq ® d(xP), and

n(X) = eg ® Plax.

Proof. Since np-1 is the Hurewicz dimension of all the spectra or pairs of spectra
involved, we may define Cl,X,Y and Z by their Hurewicz images. Thus C1 and X are
given, and we let

nY) =fe ®MEPNax - ire @ t, » and

.
MZ) = -iTe, ®N .
; m . .
As in section 3, N = § of and Q= (a+1) ] ia°*. We also let M = J 1aP"1-! ang
i=1
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note that M(a-1) = N-p. Define
=1 bl p-1
C—mI (Mel®tp_l+e2®tp_2) +mel@Q,x dx

in C*(Dlrl\, D2P2,F1 \)I}F \,DZP }. By lLemma 3.2 it follows that

2 3

a{C} = hiCy) -ph{X) - ph(Y) - n(Z)

which shows that Cl =pX + pY + 2.

By lemmas 4.4 and 6.2, 3¢ € wyY Lemma 6.2

pe+l is the image of g*cle iyl

ps+r’®
glso implies that

) and

s+21

in Tr*(Yp g+2r-1?

sr-1Ypgrop) s Since &Y & my(Y) 1,

Egd € my(Y ) it follows that g,C; = pg,X in mylY ) and

ps+3r—2’Yps+3r—1 ps+r—1’Yps+2r

that 8¢ = pgxX in “*(Yps+1:Yps+2r)‘ lemma 4.2 implies that

ExK e my(Y

ps+r’Yps+2r) represents xp'ldrx and hence pgyX 1lifts to wy(Y Y )

ps+r+l’ ps+2r

where it represents aoxp'ldrx. Finally, IV.3.1 implies
j -1
dr+1FJx = dr+1xP = aoxp d.x.

Now suppose that k > O. Then v = k+1 is greater than 1 and hence congruent to
0 mod 2({p-1) by V.2.16. Also by V.2.16, ¢ = 1 and k = (2j-n)(p-1)-c is therefore
odd. Lemma 4.4 then implies 3¢ = £4(1) with h(1) = -e, ® d(xP). The next three
lemmas describe the pieces into which we will decompose 3¢. In the first we define

an element of Tap-1 of the cofiber of e:DP™°r_ » Ty, which we think of as an element

P
of a relative group nnp_l(rl,Dp'2rp}. In order to specify the image of such an

element under the Hurewicz homomorphism, we use the cellular chains of the cofiber
in the guise of the mapping cone of e*:C*DP'er + Cyl'y» That is, we let
-2 _ -2
Cy(ry,DP7*ry) = €47y ® G5 1 DP~ 1y

with d(a,b) = {(d(a) - eyx(b), - d(b)).

Lemma 6.3. There exists R ¢ "np—l(rl»Dp-zrp) such that
(1) n(R) = (-1 Teg@t, 1, e, ® t) ¢ Helry,DP7r))
(i1) h(aR) = e, > ® by = ep , ® (dx)P, and

(i1i) 3R ¢ "np—2Dp_2r is an equivalence.

p
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Proof. S8ince dleng® tp-l) =Teqg ® tp__2 by lemma 3.2 and e*(ep_2 ® tg) =
m-1 s _ .
(-1) Teo C)tp_2 by lemma 3.6.(iii), and since d(ep_2 ® tyl = 0, it follows that

((-l)me0 @)tp_l,ep_2 @)to) is a cycle of (rl,DP'zrp). Since ry = Snp—l

and
Dp—ZTp = Snp—2’ the Hurewicz homomorphism is onto and R satisfying (i) exists. Now
{ii) is obvious since the boundary homomorphism simply projects onto the second

caay s : -2
factor. Part (iii) is immediate from the fact that ep-2 ® 1ty generates an_sz rp.
Now we split R into a piece we want and another piece modulo Ty

Iemma 6.4. There exist X ¢ wnp_l(rl,rz) and Y ¢ nnp_l(Dlrz,rz) such that

(1) h(X) = (-1)®lnle; ® xP~lax, and
(i1) (i,e)4(R) = 3,X + J,¥ in ny(Dlry,r,) where
i:Ty » Dlrl, j:D1r2 > lel and e:Dp"2I'p + Io.

Proof. We are working in the Hurewicz dimension of all the pairs involved so it

suffices to work in homology. We define X by (i) and define Y by
n(Y) = (-1)™ N m-1)le; ® Qa(xP1)ax.
On cellular chains, the map (i,e):(rl,Dp'2rp) + (Dlrl,rz} induces the homomorphism

i
*
= C. Dll"

-2 1
€l ® ck_lr)p I, —= 0T, KD Ty —= G DT /C, T,

in which the unlabelled maps are the obvious quotient maps. Thus, denoting
equivalence classes by representative elements,

1

h(i,e),R) = (-1)" e @t

]

p-1

m-1

= (D)™ Mmtey ® x*lax + (1) m-1)1Te, ® & Hax

by Lemma 32.2. Since
dle; ® @Pldx) = Tey ® axPlax - e; ® Qa(xP1)ax,

it follows that h{(i,e)xR) = h{iyX + jyY).

In our last lemma we split 3¢ into two pieces modulo Dp‘zrp. Let N = k+np-1.

Lemma 6.5. If v = k+1 and k > 0, and if C_ e wy(DX*P~Ir_ DP=2r ) is the top cell
LETmE .2 P N P P

(h(Cp) = exup-1 ® dxP) with its boundary compressed as far as possible, then aCp =
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3Ra in my_DP~2r and

m-1 1

3¢ = (-1) o E*(eCp v iRa) in #,¥

pe-k+1 °

Proof. Since v = k+l, the attaching map of the top cell factors through Dp'zrp.
Since 3R is an equivalence by Lemma 6.3.(iii), the definition of a = ap(k+n(p—l))
ensures that an = (3R}a = 3Ra. Now Dkrl\; Dk_lro = Dkr /Dk_lr

Ra factors through i C Dk“lrl. Hence, in H*(Dkrl\; Dk"lro),

1 and, since k > O,

h(eC
(e P)

= P
e*(ek+p-1 ® dx*)

h(eC iRa
( pt )

i

(-1)mm1ek® a(x™)

by Lemma 3.6 {since k is odd and n is even). By Lemma 4.4, it follows that

m-1 1 .
3e = (-1) ﬁﬁ‘g*(ecpkj iRa).

We are now ready to prove Theorems 1.1, 1.2, and 1.3 in this remaining case
(p>2, v =ktl, and ¥ » 0). We must show that

d*BFJX = -SPJdrx $-n® g'xp_ldrx.

By lemma 6.5, d*BFdx is obtained by lifting

(-1 vmyae = (-1 um) Lr gy (ec w iRa)
from “*(Yps—k+
common boundary in Yps+pr—p+2’ g*(ecp \JiRa) = g*(ecp) - £x(iRa} in

"*(Yps—k+1’Yps+pr—p+2)'

1)} to the highest filtration possible. Since g*(eCp) and f£y{iRa} have

By naturality of g, £4(iRa}) is the image of

gyRa € "*(Yps+r’Yps+pr—p+2)

and by Lemma 4.1, 5*(eCp) is the image of

&% & M pgupr gpe1 Tpssprope2’”

Lemma 6.4 implies that 4R = £4X in wy(Y Yps+2r—l) since g£xY is in filtration

pe+r-12
2r-1 or higher. (Note that since 3R is mapped into T, by e in 6.4.{1ii), Lemma 4.1
forces us to work modulo filtration 2r-1l, the filiration into which ¢ maps D1F2.)

Thus
g*(eCka iRa) = g*Cp - gyXa in “*{Yps-k*l’yps+2r—l)’

and, since @ has filtration f, gyXa comes from "*(Yps+r+f’Yps+2r)' By lemma 4.6,
either r+f or pr-k-p+l is less than 2r-l, so that at least one of g*Cp and £,Xa is
nentrivial in "*(Yps—k+l’Yps+2r—1) in general. Since h(cp) = ek+p-1 ® ax® and

n(x) = (-1)™* nle, ® ¥ 7'dx, Lemma 4.2 implies that
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g*CP represents (19 (1 BPJdrx , and

vin-1)
g% represents (-1 Im1 Ekp‘ldrx.

It then follows that

4,8Px = (-1)3v(n)ae
= DI hm) L (5,0, - g%a)
=t el Logpla x - i) @ P
= -glax (1% 7 Ll x
since v(n)/vin-1) = (-1)® m! (mod p) and since v = k+1 implies 2(e+l)(p-1) =

(2j-n}(p-1) so that n = 2(j-e-1) and hence
-y = ittt - e,

This completes case (b)}.

§7. Case (c): v < k.

In this case the boundary 3¢ splits into a piece which represents the same
operation (Pj or BQPJ) on d.x and another piece which is an operation of lower
degree applied to x times an attaching map of a stunted lens space. We begin with
the lemma needed to identify this latter piece exactly. Recall the spectral
sequence of IV.6, and recall the notations established in §1.

Lemma 7.1. let o ¢ nk+np“lnk‘vsn(p} be the attaching map of the top cell of

DXs™(P) gng 1et £ be the filtration of pyla) = a?(k+n(p—l)), where p:Dk—vSn{p) >

SE*DP-V 5 projection onto the top cell. Let £ be the sequence

pk-venlp)  pk-v-lgnip} . .., . gnlp},
In the spectral sequence E.(3,0) the following hold:

(a) 1 < filtla) < f,
(b) if filt(a) = £ then o is detected by

k-v-1

ae + c. e,
k-v .Z i7i
i=0

for some ¢; ¢ EZ(S,S),
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(¢) if p=2and v <10 or p > 2 and v < pq then filt(qa) = f

and o is detected by aék—v'

Proof. (a) Since oy = O in mod p homology, filt(a) > O. Note that this fact
(applied to all the attaching maps of Dk—vsn(p)) ensures that the spectral sequence
can be constructed. Since p induces a homomorphism from Er(S,I3) to ET(S,S), and

px{a) has filtration f, o must have filtration < f.

(b) By IV.6.1(i), every element has the form
k-v
Y e.e,
i=0 *
for some c;. If filt(a) = f then the element detecting o projects to & in the Adams
spectral sequence of the top cell. Hence Cpy = s (In fact this argument shows
that if ¢y . # O then filt{a) = £ and ¢y, = &.)

(¢} Under the stated hypothesis, aey_, is the only element of filtration < f
in degree k+np-1l.

To prove Theorems 1.1, 1.2 and 1.3, let us first assume that v = 1. Then k is

even and ¢ = 0 if p > 2, and k+n is even if p = 2. Theorems 1.1 and 1.2 say that

a,Mx = ngP ~Ix if p = 2, and
d,Px = aerx if p > 2.

Theorem 1.3 follows from Theorems 1.1 and 1.2 in this case. The first step is to

split the element 1 of Definition 4.3 into two pieces. Recall that

nh(1) = (—l)k(ek ® alxP) + pe, , x zP).

Lemma 7.2: If k>v =1and C e nkmp_l(nkrl,nk‘lrl) is the top cell, oriented so

- Lk D . k-1, k-1
that h(Cy) = (~1)%e) ® d(xP), there exists Ae "k+np-1(D Iy,D" 7r;)  such that
h(A) = (—l)k'lpek_l ® xP
- k k-1
and 1= Cpuhe "k+np-1(D ryuD FO).

Proof. Let N = k+np-l. To see that A exists, consider the boundary maps and

Hurewicz homomorphisms

—_—— -— -
my(D" T, DTy 5 "™w-1D T 3 my(D7ry, D)
h h h =
k-1 k-1 = Y1 k. k-1
- _ = ¥~ -
Hy(D™ "ry, D™ 7rp) 5 T Hy D e Hy(D'ry, D" 7ry)
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The isomorphisms are isomorphisms because Dk—l‘? = ¥ by Lemma 2.4 and because

0
D “l/Dk' r, = S¥™1. Certainly A exists satisfying A = 3C;. It follows that

3(n(A) = 3(n(0))) = 3((-1)"Tpe, @ xP),

showing that h(A) = (-1)¥lpe, ; ® xP.

To show that 1 = C; « A, it 1s enough to show h(:) = h(C; A), since

D WDy = 8PTL With N = kenp-1, note that EyD*"lry = 0. This implies
that the homomorphism
i,
Kool el
Hy Dkr ro —~w-H (bt D fysD rl)

is injective, so that we need only show ixh{:1) = i4h{C;._ &). By lemma 2.7,
i4h(C) «+A) = h(C]) - h(A) and the result follows.
We now have 3% = gy1 = £,(C; s A) = £,0) - g4A modulo Vg, 4y since

E*(Dk_ll‘ Y ¢ Y Applying Lemma 7.1 we find that gyA represents

ps+r-k+1°

k-1 R . s
(-1} <i>*(ek 1 ® L) in ny (Y ps—k+27 ps+r-k+1) (with ag = hy if p = 2). Sorting
out the constants, we find usmg Definition IV.2.4 that -f£4A contributes aOsPJ x, if
P> 2, and hOPJ lx, if p = 2, to the differential on Pix. Thus, it remains only to
show that g£4C; is in a higher filtration than gyA.

lemma 7.3. If i1 and 12 are the maps

(Dkrl,Dk'lr

(D Ty D 1 \,E%r )

then there exists X such that i14Cq = p(iseX).

Proof. Since k+np-1 is the Hurewicz dimension of the domain and codomain of 12, it
suffices to work in homology. First suppose p > 2. We let hi{X) = e, ® xp'ldx,
which is obviously a cyecle modulo Dk'lrluDkrz. Then, in the codomain of i1 and 12
we have
Py . p-1
ek®d(x ) ek® Nx* ~dx

Tek ® Mxp-ldx + pek ® xp-ldx

?

-1, ..p-1 -1
ey ®M AT )ax + pe, @ ¥ Tax

p-1

pek®x dx,
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p-1

where N = § «f, T=a-1, and M = ) 1P 17 e homology is due to
d(ek+1 ® Ivhcp~ldx) and the congruen%e holds modulo Dk ! Ty Dk-lrl. This implies

Now suppose p = 2. We ggain let h{X) = e ® xdx and again this is obviously a

cycle. By lemma 3.3 we have

4

k 2 2
(-1} ek®d(x ) €y ® dx” + 2ek® xdx

th

2ek ® xdx,

where the congruence holds modulo Dk+1r2 kL

ry. This implies that 174Cq = 2i,4X.

We can now finish the proof of Theorems 1.1-1.3 for v = 1. By Lemma 7.3, the
image of £4Cy in n*(Yps-kﬂ’Yps-k-r-r«Ll) is zero, since it is the image of £,pX,
with £, X €1 (Yoo yar s Tpsoker+l ps-k+r+1?Tpg_ker+1) - O- THUS
the entire differentisl is given by -f4A and we are done.

} so that £,pX en (Y

Now suppose 1 < v < k. Then, since v = vp(km(p—-l)), Lemma V.2.16 implies that
k+n is odd if p = 2 and that k is odd and ¢ = 1 if p > 2. Also, by Definition 4.3,

h{1) = (—l)kek® a(xP). Let N = k+np-1.

Lemma 7.4. If Cp e myl Dk*"p -1p Dk+p -1-vp p is the top cell, oriented so that h(C )
= Cpep-1® dxP, then there ex1sts Ae nN(Dk VI‘O DX~ Vl‘l) such that 34 = e*ac and

1€ nN(Dkrl\,/Dk 11‘0) is the image of

k+mm—]—'—-(ec\,A} D> 2

(-1}
k -
€ “N(D Fl\JD r

eCzuA p=2

Proof. To see that A exists consider the following diagram, whose upper square

commutes and whose lower square anticommutes.

k+p~lev_ 3 k+p~1 k+p-1-v
"N'lD rp 'KN(D I‘p,D I‘p)
le* = |{e,e]),
kv 3 k. kv
"Nl Ty MERFTLEIR Y
ET 3 (-1} 19
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The isomorphisms are isomorphisms because Dkro = ¥ o= Dk'vro

is an equivalence by lemma 3.6. Thus, we may define A = a'le*acp. To see that 1 is
the image of the claimed elements, it suffices to work in homology, as in Lemma 7.2.

by lemma 2.4 and (e,e)

Here, h(eCP\J A) = e*h(Cp) - h{4a} = e*h(Cp} since HN_IDk'vrl = O for dimensional
reasons. By hypothesis, h(CP) = ek+p_]'Q§ axP, so

mi+m

{-1} m!ek(a al?) P

v
N

h(eC A) =
(epu )

(-1)%e, ® a(x*) P

t
™o

by Lemma 3.6. Comparing this with h(i)= (-1)kek(9 a(xP) finishes the proof.

Now,
(-1)Jv(n)5*1 p>2

Exl p=2

so, up to a scalar multiple, our differential is g*iecp A e "Nyps—k+1' By
Corollary 2.8 and lemma 4.1 we find that

#

£4(eC_ts4A)

D g,eC - g,A in # (Y

ol N ps—k+1’Yps—k+r+v)

= g*cp T Exh in "N(Yps-k+1’Yps-k+r+v-l)'

It follows from the definition of Cp that g*Cp lifts to “*(Yps~k+pr~p+1’ ps-k+r+v)‘
p : epd

k+p-1.6§ ax”), which equals 8 Fﬂdrx up Fo a

scalar multiple. When p = 2 this shows that Ex0y contributes derx to d*PJx. When

p > 2, the coefficient of BPJdrx is

Y
By Lemma 4.2, E*Cp represents ¢,(e

2j+k+m+m _v(n) -
(-1} Sy ET G -1 {mod p}.

The congruence follows from the definition of v, v{2a+b) = (-1)%m1HP if b = 0 or 1,
and the congruence (m!)2 = (-1)™1 (mod p). This almost proves Theorem 1.1, with
Tp consisting of -g,A ¢ "N(Yps-k+l’Yps—k+r+v
“N(Yps-k+r+v-1’Yps—k+r+v) coming from the use of lemma 4.1 above. "Almosi" because
this decomposition is only valid modulo filtration ps-k+r+v and we must still show
that either BSPJdrx or Tp will be a filtration lower than this in order to finish
the proof of Theorem 1l.1. To do this, we must identify g4A. Referring to the

) plus a possible "error term" in
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diasgram in the proof of lemma 7.4, the element C_ in the upper right corner goes to

P
A in the lower left corner if we follow the top and left arrows, while it goes to

(_1)k+mn+mm!a p>2

[V1 p =2,

where a is the attaching map of the cell ey ® xp, if we follow the bottom and right
arrows. Since the lower square anticommutes and since k is odd if p > 2, it follows

that (-1)™" g1 p>2

-0 p=2.

Applying lemma 7.1(a) we see that ¢£,A has filtration less than or equal to ps-k+v+f.
lemma 4.7 implies that, unless r =p = 2 and v =1 or 2, one of g*Cp and gyA will
occur in a filtration less than ps-k+v+r-l. Thus Theorem 1.1 is proved unless
r=p=v =2 (since v = 1 has already been deslt with). Applying the rest of Lemma
7.1 we find that

m+m

(-1 B oyle, @ xP) p> 2

Eyh =

F oy le,_ ® 1) p=2

if v =k (since Dk'vI'O/I‘l = Sn(p) has only one cell in this case) or if'p = 2 and
v <10 or if p > 2 and v < pg. Combining constants, we find that T, = a9 Vx and
that T = (-1% L 389 Ly if p > 2 (recall that e = ep(d)). The constant in the
odd primary case comes from the fact that v = vp(k+n(p—1)) = vp(ZJ(p—l) -1) =
2(p-1){(1+e) by V.2.16, so k-v = (2(j-e-1) =~ n)(p-1) - 1. This completes the proof
of Theorem 1.2 except when r = p = v = 2 (as noted above} or when pr-p < v <k. In

the latter case, Lemma 7.1.{a) still ensures us that

filt(g*A) > ps-k + v+l

> ps-k + pr - p+l

£116(g,C ).
ilt(g, p)

Hence the term contributed to d*seFJx by g*cp appears alone in this case. This
completes the proof of Theorem 1.2 except when r = p = v = 2. Deferring the latter
case until the end, we shall now prove Theorem 1.3. If p = 2 we may assume v > 8,
while if p > 2 we may assume v > q. The attaching map o of Lemma 7.1 must then have

filtration 2 or more. This is so because

(i) all but the top two cells are in filtration 2 or more,
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(ii) +the next to top cell component is the product of a positive dimensional
element of E,(S,8) (since v > 0) and a cell in filtration 1, so has
filtration at least 2,

(iii) +the top cell component is a permanent cycle (being the image of the
permanent cycle o), hence has filtration at least 2 by the nonexistence

of Hopf invariant one elements in dimension v-1.

This implies that gyA has filtration ps-k + v+2 or more. Since E*Cp has filtration
ps-k + pr - p+l and 3¢ splits into these pieces modulo filtration ps-k + r +v-1, we
have d;8°Plx = 0 if

i < min{v+l,pr-p,v+r-2}

min{v+l,pr-p} ,

the equality holding because v+r-2 < v+l implies r = 2, so that pr-p = p < v = v+r-2

by our assumption on v. This proves Theorem 1.3.

It remains only to prove Theorems 1.1 and 1.2 when r = p = v = 2. Together,

they say d;Px = Playx + 1P 2x. Let N = k+2n-1 and let cp ¢ wN(Dkrl,Dk_zl“l)
11‘2,Dk_11‘2) be the top cells, oriented so that h(C;) = (-l)kek(g a(x?)

and

c, ¢ nN(Dk+

and h(Cz) = e ® ax2.

k-2r k-

Lemma 7.5. There exists A ¢ nN(D O,D —2r1) such that sA = 301 and

1= 0w A in my(D¥ry O D% g

Proof. Since Dk'zro ~ ¥ we may define A = a"lBC

1
k k-2 3 k-2 3 k-2 k-2
nN(D rl,D rl) _—’"N-lD I, <z nN(D rO,D rl).

Clearly, h(A) = 0, so h(C{ «w A) = h(Cy) = h(x). Thus 1 = C; A,

It follows that

3¢ = g1 = g*(cluA) = 5*01 - E4A € "N(st-k+1’Y2s—k+4)'

As before, we wish to replace Cy by C, plus an error term which we can ignore.
ExLy Exlo

The following lemma is what we need in order to do this.

Lemma 7.6. Let i,:D°°r, + D r2 oD T

and J:D T, » DT



214

k-1 k-1 k-2

be the natural inclusions. Then there exists X ¢ wN(D rl,D r, R rl) with
positive filtration in the Adams spectral sequence, such that in
nN(DkI’l,D ’11“2 uDk'Zrl)
(l,il)*cl = (e,iz)*cz + {J,10,X
Proof. Since p:(Dkrl,Dk‘2r1\‘/Dk‘1r2) > (Dkrl,Dk—lrl) is the cofiber of (j,1), we

need only show p*(l,il)*C1 = p*(e,iz)*C2 in order to establish the existence of X
satisfying

(1,1)),0; = (e,1,),C, + (§,1),X.

The filtration of X is necessarily positive because

Dk'lrl/Dk'lr2 uDk‘?'r1 = Vatt

by I.1.3 and lemma 2.2. Since N is the Hurewicz dimension of (D¥r,,DX~lp) it
suffices to show h(p*(e,iz)*cz) = hip,(1,i )*Cl)' This is immediate from Lemma 3.6.
With Lemma 7.6 we can now finish the proof of Theorems 1.l and 1.2. The
element £4X is in “N(Y2s-k+3’YZS-k+4)’ but since X has filtration greater than O,
ExX = 0 in “N(Y2s~k+3’Y28~k+4)' Thus 5*01 = g*(l,il)*ol = g*(e,i2)*02 in
“N(YZS-k+2’Y2S—k+4). By lemma 4.1, tx{e,is)xCs = £4Cs %n ”N(Y2s-k+1’Y2s-k+4)’ and
£xCy 1ifts to "N(YES-k*B’Y2s-k+4) where it represents Fddzx by lemma 4.2. Finally,
ExA also lifts to “N(Y2s-k+3'Y2s—k+4) where it represents hlPJ"gx by Lemma 7.1.
Thus

d3P3x = Pdayx + nyp 7.



