
CHAPTER VI 

THE ADAMS SPECTRAL SEQUENCE of H RING SPECTRA 

by Robert R° Bruner 

In this chapter we show how to use an H ring structure on a spectrum Y to pro- 

duce formulas for differentials in the Adams spectral sequence of ~,Y. We shall 

confine attention to the Adams spectral sequence based on mod p homology, although 

it is clear that similar results will hold in generalized Adams spectra] sequences 

as well. 

The differentials have two parts. The first is the reflection in the Adams 

spectral sequence of relations in homotopy like those in Chapter V. For example, 

when x c ~n Y and n ~ 1 (4), there is no homotopy operation pn+lx since the n+l cell 

of P~ is attached to the n cell by a degree 2 map. In the Adams spectral sequence 
n 

there is a Steenrod operation Sq n+l x and a differential d2sqn+l x = hoSqn 

= hoX~. Therefore hj 2 = 0 in E ~ This in itself only implies that 2x 2 has 

filtration greater than that of h(~ in the Adams spectral sequence, but by 

examining its origin as a homotopy operation we see that 2x 2 = O. Thus, the 

formulas we produce for differentials are most effective when combined with the 

results about homotopy operations in Chapter V. The differential d2sqn+3~= 

hOSqn+21~ , still assuming n ~ 1 (4), is a perfect illustration of this. The 

corresponding relation in homotopy is 2pn+2x = hlPU+lx where hl Pn+l is an indecom- 

posable homotopy operation detected by hlSqn+l in the Adams spectral sequence. The 

differential on sqn+Srrepresented geometrically is the st~ of maps representing 

hOSqn+~xand hlSqn+l~- , but since hlSqn+l~has filtration one greater 

jo 

+ JJ 

than does hOSqn+~ , it does not appear in the differential. This reflects a hidden 

extension in the Adams spectral sequence: 2pn+2x appears to be 0 in the Adams 

spectral sequence (i.e. hOSqn+2~ : 0 in E) only because of the filtration shift. 

In fact, 2pn+2x = hlPn+Ix. The moral of this is Just the obvious fact mentioned 

above: the differentials should not be considered in isolation but should be 

combined with the homotopy operations of Chapter V. Further examples will be given 

in section I. 

The second part of the differentials arises when we consider Steenrod opera- 

tions on elements that are not permanent cycles. If x in filtration s survives 
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until E r we can make x into a permanent cycle by truncating the spectral sequence at 

filtration s+r. Thus the differentials of the type just discussed apply to x until 

we get to F T • However, by analyzing the contribution of drX we can show that it 

will not affect the differentials on 8~x until Epr_p+l where it contributes 

8~P]drX. Thus the differentials of the first type apply far beyond the range in 

which we are justified in pretending that x is a permanent cycle. (To be precise we 

should note that drX can occasionally affect differentials on ~x through a term 

containing xP-ldrx in Er+ 1 . ) 

The first results of this type were established by D. S. Kahn [47] who showed 

that the H ring map ~2:W ~Z2 S (2) * S (obtained through coreductions of stunted 

projective spaces) could be filtered to obtain maps representing the results of 

Steenrod operations in ExtA(Zy,Zy) and that some differentials were implied by this. 

Milgram [81] extended Kahn's work to the odd primary case and introduced the 

spectral sequence of IV.6 which is by far the most effective tool for computing the 

first part of the differential. His work was confined to the range in which it is 

possible to act as if one is operating on a permanent cycle. Nonetheless he was 

able to use the resulting formulas for differentials to substantially shorten 

Mahowald and Tangora's calculation [61] of the first 47 stems at the prime 2 and to 

catch a mistake in their calculation. The next step was taken by Makinen [62], who 

showed how to incorporate the contribution of drX in the differentials on SqJx for 

p = 2. Unfortunately, he apparently did not apply his formulas to the known calcu- 

lations of the stable stems, for one of his most interesting formulas (published in 

1973), 

d~qJx = hlSqJ-Yx + SqJdyx if n - 1 (4), 

combined with Milgram's calculation of Steenrod operations [81], implies that d3e I = 

hlt , contradicting Theorem 8.6.6 of Mahowald and Tangora [61]. This application was 

left for the author to discover in 1983. Note that the differential is out of 

Milgram's range since a nonzero dyx prevents us from calculating d~x unless we 

incorporate terms involving dyx. The argument in [61] that e I is a permanent cycle 

is an intricate one, involving the existence of various Toda brackets, while the 

that d3SqJx = hlSqJ-Yx + SqJdyx if n ~ 1 (4) is proof relatively straightforward. 

This appears to be convincing evidence that the H= structure in the form of Steenrod 

operations in Ext is a powerful computational tool. 

One other piece of related work is the thesis of Clifford Cooley [30]. He 

obtains formulas similar to Milgram's [61] by using the spectral sequence connecting 

homomorphism for a cofiber sequence of stunted projective spaces to reduce them to 

dl'S which he gets from a lambda algebra resolution of the cohomology of the 

appropriate stunted projective space. Calculating differentials this way or by the 

spectral sequence of IV.6 is probably a matter of indifference. The most 
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interesting aspect of Cooley's thesis is that he works unstably, examining the 

interaction of the Steenrod operations and the EHP sequence. As in all other 

earlier work on this subject he views the H ring structure in terms of coreductions 

of stunted projective spaces. The interaction of the Steenrod operations and the 

EHP sequence had been discovered by William Singer [97} using the algebraic F~P 

sequence obtained from the lambda algebra. 

In the work at hand, we extend the ideas of Makinen to the odd primary case to 

obtain comprehensive formulas for the first nontrivial differential on ~Epjx, which 

we state in §I. These apply to the mod p Adams spectral sequence of any H ring 

spectrum. The remainder of §I consists of calculations using these formulas in the 

Adams spectral sequence of a sphere, including the differential discussed above. 

These are intended to illustrate especially the interaction between the homotopy 

operations and the differentials, specifically to obtain better formulas in partic- 

2 to be 2 which forces h 4 ular cases than hold in general. One of these is d3r = hld0, 

a permanent cycle. This is the shortest proof we know of this fact. 

In §§2 and 3 we describe the natural Zp equivariant cell decomposition of 

(ZX) (p) and use it to relate extended powers of X and of zX. 

in §4 we start the proof of the formulas in §i, using the results of ~§2 and 3. 

We also prove that the geometry splits naturally into three cases, which we deal 

with one at a time in the remaining §§5-7. 

i. Differentials in the Adams spectral sequence 

In this section we state our theorems concerning differentials, explain some of 

the subtleties involved in understanding what they are really saying, and calculate 

some examples in order to illustrate their use and demonstrate their power. 

Localize everything at p. Let Y be an H ring spectrum. Let Es'n+S(s,Y) 
r 

~n Y be the Adams spectral sequence based on ordinary mod p homology. We shall adopt 

the following shorthand notation for differentials. If A is in filtration s and B 1 

and B 2 are in filtrations s+r I and s+r 2 respectively, then 

d,A = B 1 ~ B 2 

means that diA = 0 for i < min(rl,r 2) and 

drlA = B 1 if r I < r 2 

drA = B 1 + B 2 if r I = r = r2, and 

dr2A = ~ if r I > r 2 
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Note. This does not mean that this differential is necessarily nonzero. Nor does 

it mean that if ~ happens to be 0, then dr2A = ~ regardless of whether r 2 > r I or 

not. More likely, B 1 is zero because it comes from a map which lifts to filtration 

s+rl+l or more and, hence, B 1 could conceivably lead to a nonzero drl+lA. The point 

is that you can't tell what B 1 is contributing to the differential if all you know 

is that it is zero in filtration s+r I . However, when we explicitly state that 

Tp = 0 in Theorem 1.2 we mean that it is to be treated as having filtration ~. 

The geometry behind the formula d,A = ~ ~ B 2 will make it clear exactly what 

the formula can and cannot tell you. The formula means that for some r 0 > max(rl,r2) , 

A is represented by a map whose boundary splits into a sum B I + B2 + B0' where each 

Bi lifts to filtration s+ri, and where B-- 1 and B2 represent B 1 and B 2 respectively. 

It is irrelevant what B-- 0 represents because Bl+ B2 lies in a lower filtration. 

This is fortunate, since in general B 0 is very complicated. In particular cases 

however, we can often analyze B 0 in order to get more complete information about 

d,A. For examples of this, see Proposition 1.17(ii) (the formula d3r 0 = hld ~) and 

Proposition 1.6. 

Two remaining points about the formula are best made using examples. The 

formulas we will shortly prove say that, under appropriate circumstances, 

and 

where a E E~(S,S). 

d, Jx =  JdrX : 

d,SqJdrx = ~(drXl 2 

The algebra structure also implies that 

dr(~XdrX) =~(drX) 2 . 

If the filtration of S~x is s, then the filtration of SqJdrx is s+2r-l, while that 

of~xdrx is s÷r+f+k (f is the filtration of~and k will be defined shortly}. 

The three ways these differentials can combine are illustrated below 

r < f ÷k+l r = f +k+l r > f +k+l 

~(drX)2 

\axdrx 

d ~ f+k+l~ 

Sq J d rx  

2r-I 

s~x 

~(drX)2) ~(drX) 2 

\ 
\ +k+l 
\ 

d r ~ SqJ drX 
\ 

axdrx + @ drX aXdrX 

dr+f+k -~2r-1 %~r+f+k 
s4, 
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Taken individually, the terms SqJdrx and~xdrx do not always appear to survive long 

enough for S~x to be able to hit them. For example, when r > f+k+l, the 

differential dr+f+kS~X =~XdrX is preceded by the differential dr(a--xdrx) =~(drX) 2, 

which would have prevented axdrx from surviving until Er+k+f, had it not happened 

that a still earlier differential (df+k+lS~drX : ~(drX)2) had already hit ~(drX)2. 

This is completely typical. The formula d,A = B 1 + B2, as used here, carries with 

it the claim that the right-hand side will survive long enough for this differential 

to occur, and even shows the "coconspirator" which will make this possible when it 

seems superficially false. 

The other point illustrated by this example occurs when SqJdrx and XdrX are 

permanent cycles and r > f+k+l. Then the differential dr+k+fSqJx = axdrx reflects 

a hidden extension: ~(XdrX) is zero in E~ because of a filtration shift. It is 

actually detected by SqJdrx. Relations among homotopy operations typically cause 

such phenomena. Note that the cell which carries S@x is also the cell which pro- 

duces the relation in homotopy. In a suitably relative sense this is the meaning 

of all differentials in the Adams spectral sequence ("relative" because the terms 

in a relation corresponding to a differential will typically be relative homotopy 

classes which do not survive to E to become absolute homotopy classes). 

We can now state our main theorems. Assume given x ~ E s'n+s and consider the 
r 

element 8S~x (as usual, c = 0 and ~ =SqJ if p = 2}. Let 

k = ~j-n p = 2 

[ (2j-n)(p-ll-a p > 2 , 

so that 8a~x ~ E~ s-k'p(n+s), which lies in the k÷np stem. Using the functions Vp 

and ap of V.2.15, V.2.16 and V.2.17 we define v = Vp(k+n(p-1)) and 

a = ap(k+n(p-1)) ~ ~v_l S. Recall that a is the top component of an attaching map 

of a stunted lens space after the attaching map has been compressed into the lowest 

possible skeleton. Let 

EE~'f+v-I(s,s} 

detect a (this defines f as well). Recall that a 0 ~E~ 'I~ detects the map of 

degree p when p > 2. 

Theorem I.i. 

(i) 

(ii) 

There exists an element T ~E 2 (S,Y) such that 

if p = 2 then d,SqJx = SqJdPx ~ T2, 

if p > 2 then 

dr+l~X = dr+lXP = a0xP-ldrx if 2j = n , 

d2~x = a0~x if 2J > n, and 

d,G~x = -B~ drX ~ Tp 
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Theorem 1.2. 

If p > 2 then 

T 2 

T 
P 

I xx 
aSqJ-v x 

v > k+l or 2r-2 < v < k 

v = k+l 

v = k or (v < k and v < I0) 

0 

(-l) e axP-ld x 
r 

(_i) e-I ~B~ -e-I 

v > k+l or pr-p < v < k 

v = k+l 

v < k and v < pq. 

where e is the exponent of p in the prime factorization of J. 

Note. When p > 2, k and v have opposite parity so that v = k never occurs. 

Theorems I.I and 1.2 give complete information on the first possible nonzero 

differential except when 

pq < v < min(k,pr-p+l) if p > 2, 

or i0 < v < min(k,2r-l) if p = 2. 

The sketch of the proof given in Section 4 should mke it clear what the obstruction 

is in these cases. We do have some partial information which we collect in the 

following theorem. 

Theorem 1.3. If p > 2 and v > q then di~PJx = 0 if i < v+2 < pr-p+l, while 

d~r_p+l~PJx = -8~drX-- if v + 2 > pr-p+l. If p = 2 and v > 8 then diSqJx -- 0 

if i < v+2 < 2r-l, while d2r_iSqJx = SqJdrx if v+2 > 2r-l. 

To apply these results we must know the values of the Steenrod operations in 

E 2 = Ext~(Zp,H,Y). For our examples we will concentrate primarily on p = 2 and 

Y = S O , since this is a case in which there are many nontrivial examples. We cannot 

resist also showing how useful the Steenrod operations are in the purely algebraic 

task of determining the products in Ext. 

~l ~2n-1 
dual to the Sq 2n. Parts (i) and (iii) We begin with the elements h n E ~2 

of the following propositon may also be found in [88]. 

Proposition 1.4. (i) (Adams [3]) sq2nhn = hn+ 1 and sq2n-lhn = ~. 

:ii  :Ad  o, h 3 = hn%n÷: and h/n÷2 = O. n+l 

2 n 
9 9hinh - = 0 and, if n > O, h 0 h n = O. (iii) (Novikov [91] ) h2h2n n+3 = O, 0 n+2 
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Proof sq2n-lhn = h 2 because the first operation is always the square. If we let 

S : Ext s , * Sq n+s ÷ Ext s,* be on Ext s,n+s, then Proposition ii.I0 of [68] shows that in 

the cobar construction S[Xll... Ixj] = Ix21 I.-. Ix~]. Since h n is represented by 

[~12n], it follows that sq2nhn = S(hn) = bn+ 1 . For dimensional reasons, the Caftan 

formula reduces to S(xy) = S(x)S(y). Thus, to show (ii) we need only show hoh I = O, 

= hoh2, and = O. These occur in such low dimensions that they may be 

checked "by hand". In fact, only the first and third must be done this way since 

+ h2h 2 Sq2(hoh l) = h2h2 hl3. The relation n n+3 = 0 follows similarly from 

2 n+3 2 = h 2 
hob32 2 = sqS(h 0 ) = O. The only nonzero operation on h 2n+2 is Sq h~+ 2 n+3 

since (ii) implies that h 4 = hn+2(~+lhn+ 3) = O. The relation h2nh 2 = 0 then 
n+2 0 n+2 

2 2 2 n 
follows by induction from hoh 3 = O. Finally, h 0 h n = 0 follows by induction from 

h2h I = 0 since 

2 n 2 n 2 n+l 
Sq (h 0 hnl = h 0 hn+ I . 

As is well known, the preceding proposition implies the Hopf invariant one 

differentials. 

Corollary 1.5. d2hn+ 1 : ~ for all n > O. 

Proof. By Theorems I.i and 1.2 we find that 

= ~ 2 n • 2 
d,hn+ 1 d,sq2n~ = Sq d2h ~ ÷ hob n 

2 
so that d2hn+ I = hoh n 

2 n 
since Sq d2h n is in filtration 4. (It follows, of course, that 

2 n 2n h 2 
Sq d2h n = Sq Onn_l = h~.) 

The next result shows how we may use the relation with homotopy operations to 

get stronger results than the differentials themselves give. 

Proposition 1.6. hlh 4 and ~h 4 are permanent cycles. 

Proof. Since hlh 4 = Sq9(hoh3) , it is carried by the 9-cell of P~. The attaching 

map is ~, to the 7-cell, and hence its boundary is u(2~) 2 = O. Similarly, h2h 4 = 

sqlO(hlh3) , so h2h 4 is carried by the lO-cell of p~O = $8v($9 2 elO). The 9-cell 

carries p9(o~), which has order 2 by the Caftan formula in Theorem V.l.lO. Thus, 

the boundary of the lO-cell maps to 0 and h2h 4 is a permanent cycle. 



176 

Before turning to other families of elements we should note that the Hopf 

invariant one differentials of Corollary 1.5 account for only a few of the non- 

trivial differentials on the h~hn+ 1. In fact, Proposition 1.4 implies 

i 
d2hoh+ li = hi+lh20 n is 0 if i+l _> 2 n-2. On the other hand, hoh+l / O for 

i < 2 n+l, and from the known order of Im J, there must be higher differentials on 

of the h~h+lv~, which survive to E 3. It seems difficult to determine these many 

higher differentials in terms of the Steenrod operations, though Milgram [811 has 

indicated that it may be possible with a sufficiently good hold on the chain level 

operations. More disappointing is the fact that it doesn't seem possible to pro- 

pagate these higher differentials. That is, even if we accept as given a differ- 

d3hoh 4 = hodo, we don't seem to get any information on d3h~h 5. ential like 

The operation we call S in Proposition 1.4 will be very useful so we collect 

its properties before proceeding. 

Prgposition 1.7. If S = sqn+S:Ext s,n+s * Ext s'2(n+s) then 

S[Xll...Ix k] = [x~l...Ix ~] in the cobar construction (i) 

(ii) S(xy) = S(x)S(y) 

(iii) SqJsx = SSqj-n-Sx 

(iv) S<xo,Xl,...,Xn > C <Sxo,SXl,...,SXn> 

Proof. (i) is Proposition Ii.I0 of [68], while (ii) and (iii) are immediate from 

the Cartan and Adem relations since all the other terms must be 0 for dimensional 

reasons. Part (iv) is proved in [78]. 

For our remaining sample calculations we will explore the consequences of the 

squaring operations on the elements Co, do, e 0 and fo" The key elements we will be 

concerned with are collected in Table 1.1 along with Massey product representations. 

With the exception of fo and YO, the Massey products have no indeterminacy. 
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s n = t-s Name Massey product 

3 8 C O <h I,hO,h22> 

2 2 
4 14 d O <h0,h 2,hO,h2 > 

2 2 > 
4 17 e 0 <h 0,h 3,h I ,h O 

2 2 
4 18 fo <ho'h3'h2> 

4 20 gl ....... 

2 2 2 2 
6 30 r 0 <h0,h3,h3,h0> 

7 35 m 0 <h 2 ,h I , ro> 

6 36 t o ...... 

5 37 X 0 <h3,h4,d0> 

<h 4 2 . 6 38 Y0 0,h4,n3 > 

TABLE i.I 

Also, note that the elements Ri~howald and Tangora call r,m,t,x and y, we are 

calling to, mo, to, x 0 and YO" The reason for the subscript will be apparent from 

the following definition. 

~finition 1.8. If i £ 0 and aE {c,d,e,f,g,r,m,t,x,y}, let a 0 = a and 

ai+ 1 = Sa i. 

ApplylngProposition 1.7(iv) we find in~medlate~ that 

2 
c i E <hi+l,hi,hi+2 > 

2 2 
d i ¢ <hi,hi+2,hl,hi+2 > 

22 
e i E <hi,hi+3,hi+l,hi> 

< 2 2 > 
fi E hi,hi+3,hi+2 

22 2 2 
r i E ~i,hi+3,hi+3,hi> 

miE <hi+2,hi+l,ri > 

x i t <hi+3,hi+4,di> 

<~4.2 
and Yi E ni,ni+4,hi+3> . 

However, ~ shall not make any use of these ~ssey product representations ~re. 
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From the calculations of Mukohda [88] or Milgram [81] we collect the values of 

the Steenrod operations on co,do,e 0 and fo" The following abbreviation will be very 

convenient: if x EExt s,n+s let Sq*(x) = (Sqnx, sqn+l,...,sqn+Sx) = (x2,...,Sx) 

Theorem 1.9. * 2 
Sq c o = (Co,hoeo,fo,C I) 

* 2 
Sq d O = (do,O,ro,O,dl) 

* 2 
Sq e 0 = (eo ,mo, to ,Xo,e  1) 

Sq f0 = (0'h3r0'Y0'0'fl) 

The indeterminacy in the Massey product representations of fo and YO suggests 

that we should define them by the squaring operations above: 

fo : Sql0co and YO = sq2Ofo" 

Applying Proposition 1.7.(iii) we immediately obtain the following corollary. 

Corollary i.i0. , 2 
Sq c i = (ci, hiei,fi,ci+ I) 

Sq*d i = (d~,0,ri,0,di+ l) 

Sq*e i = ( e ~ , m i , t i , x i , e i +  1) 

Sq fi = (0,hi+3ri,Yi,0,fi+l)" 

Before computing the differentials that this corollary implies, it will be 

useful to obtain a number of relations in Ext. This also gives us an opportunity to 

illustrate how powerful the Steenrod operations are in propagating relations. The 

relations we will assume known are all calculated by Tangora [IO3] by means of the 

May spectral sequence. In general, this technique only yields relations modulo 

terms of lower weight. However, the particular relations we need do not suffer from 

this ambiguity, since there are no terms of lower weight in their bidegree. 

Proposition i.ii 

hlr 0 = O, hlm 0 = O. 

(ii) 

h2t 0 = clg I. 

(iii) 

h2fl = <e I • 

(i) hoc 0 = O, h2c 0 = O, h3c 0 = O, hoc I = O, hlf 0 = O, 

2 2 = = 
C O = hldo, h2do = hoe O, hle 0 hof O, h2e 0 = hogl, h~d 0 plh2, 

= = 2 = h6x 0 0, = 2 h6r 0 O, h4f 0 0, h3d 0 = 0, h2d I h4gl, = h2m 0 h0Y0, 
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These relations are grouped as follows: (i) holds because the relevant bidegree is 

O or is not annihilated by ho, as multiples of h I must be; (ii) follows from [103] 

since, again by [103], there are no elements of lower weight in the given bidegrees; 

(iii) now follows either by applying Steenrod operations to relations in (i) and 

(it) or by the same argument as (it). (The point is that the relations in (iii) are 

dependent on those in (i) and (it) under the action of the Steenrod algebra.) 

Corollar~ 1.12. (i) hic i = O, hi+2c i = O, hi+3c i = O, hi_ic i = 0, hi+if i = 0, 

hi+lr i = O, hi+im i = O. 

(it) c 2 2 
i = hi+ldi' hi+2di = hiei' hi+let = hifi' hi+2ei = higi+l' 

hi+2t i = Ci+lgi+ 1. 

= 2 h~_If i h~ei. (iii) hi+4f i O, hi+~ = O, hi+id i = hi+~i , hi+2mi = hiYi, = 

Proof These are immediate from Proposition I.Ii since S is a ring homomorphiam by 

Proposition 1.7(ii). 

A comparison of the preceding proposition and corollary will show that if we 

view the periodicity operator as a Massey product 

_r+l 
pr x <hr+2'h~ u ,x> , 

then we have only Milgram's theorem (Proposition 1.7.(iv)) to use in calculating 

s(prx), and this generally leaves us with too much indeterminacy. For example, 

plhlh 3 = c 2 so s(plhlh 3) = Sc 2 = c 2. On the other hand, s(plhlh 3) = 
0 0 I 

S<h3,h~,hlh3>__ E <h4,0,h2h4> = 0 modulo indeterminacy which is divisible by h 4. Of 

course, since c~ / O, it follows that h2h4g = c~ since h%(h2g) is the only 

possible nonzero element divisible by h 4. This example shows that to calculate 

s(prx), we need another representation of prx. It also shows that the Massey 

product representation can lead to useful information (although in this case the 
2 

product h2h4g = c I was already true in the associated graded). Accordingly, we 

provide the following formula for the interaction of the Sq i and the periodicity 

homomorphisms pr. 

= Sq t-i + Ext s+i'2t. Proposition 1.13. Let Sqi :Ext s't Modulo the ideal generated 

by {h~+l,hr+2,Sq0x,...,Sqix } we have 



180 

SqiPr-lx = I O ~r+l i < 2 r 

prsql._2rX + <h~+l,h ~ ,Sqi_2r_iX> i _> 2 r . 

If i = O, the indeterminacy (of Sq 0 = S) is generated by hr+ 2 and Sqox. 

Proof. This is a special case of Milgram's general result [78], which, for three- 

fold Massey products says 

S% <a,b,c> C ((S%a,...,S%a), V'h b 
"%b \sq ic/ 

n - o  for n >  ' .  % h o =  hon. and  qiho = 0 otherwise .  SinCe S q o h  0 = h I 

8 2 = p~ : h04r 0 with no indeterminacy. Corollary 1.14. <h4,ho,h 3> 

Proof. By Proposition i.II, P = hod O. By Theorem 1.9 we have 

S162 04 22 04 22 q h0do = h r 0 + hld 0 = h ro, since hl d2 must be divisible by h O so hld 0 = O. By 

Proposition 1.13, Sql6plh2 = Sq4Pl~ = i:'24 with indeterminacy generated by h~ and 

h 4. For dimensional reasons the indeterminacy is O. 

Combining Proposition l.ll with Theorem 1.9 we can produce a number of 

relations in Ext which do not hold in the associated graded calculated by Tangora. 

Proposition 1.15. (i) h0r 0 = s o and hence hir i = s i 

(ii) h3r 0 = hlt 0 + h~o and hence hi+3r i = h-+~t.1 ± I + h~xi 

(iii) h2e ~ = h~x 0 and hence hi+2e [ = 0 if i > 0 

(iv) h~d I = hlX O and hence h~+id i = hixi_ 1 

(v) hlY O = h2t 0 and hence hi+lY i = hi+2t i 

(vi) h2x 0 = O and hence hi+2x i = 0 

(vii) hlf I = h~c 2 and hence hif i = h[_lCi+l 

(viii) h2Y 0 = 0 and hence hi+2Y i = 0 

(ix) h3x 0 = h~2 and hence hi+~x i " h~gi+ 2 
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Note. Mahowald and Tangora [61] found (i)-(iii) by other techniques. Barratt, 

Mahowald and Tangora [20] also found (iv), (vii), and (ix) by other techniques. 

Milgram [81] found (i) and (ii) by using the Steenrod operations. Mukohda [88] 

found (iv)-(vi) and (ix), partly by using the Steenrod operations and the cobar 

construction, and partly by means of a minimal resolution. 

Proof. Given (ii), (i) follows because hoh3r 0 = h~x 0 ~ O, from which it follows 

that hot 0 ~ O. The only possibility is hor 0 = s O . To prove (ii), apply Sq 20 to the 

relation h2d 0 = hoe O. To prove (iii), apply Sq 19 to the relation 

hle 0 = hof 0 and use the fact that hlm 0 = O. To prove (iv), apply Sq 21 to the 

relation h2d 0 = hoe 0 and use the fact that h~e I = O. To prove (v), apply Sq 21 to 

the relation hle 0 = hof 0 and use (iv) to show that h~x 0 = hl(h~d l) = O. To prove 

(vi), apply Sq 22 to the relation hle 0 = hof 0 to show that h2x 0 = h~e I + h~fl, and 

apply Proposition 1.11.(iii) to show that this is O. For (vii), we apply Sq 22 to 

hoe I = O. Similarly, Sq 21 applied to hlf 0 = 0 yields (viii). Finally, (ix) follows 

by applying Sq 24 to the relation h2e 0 = hog I to get h~2 = h3x 0 + h~el, and noting 

that h~e I = h2(hlf I) = O. The calcultion of Sq24(hogl ) is possible because Sq24g I = 

g2 by definition, while Sq23g I = 0 for dimensional reasons. 

Now we examine the differentials implied by the squaring operations in the ci, 

di, e i and fi families. The results we obtain for t-s > 45 are all new. In the 

range t-s ~_ 45 they are due to May [66], Maunder [65], Mahowald and Tangora [61], 

Milgram [81] and Barratt, Mahowald and Tangora [20] with the exception of d3e I = 

hlt , which is new and corrects a mistake in [20]. As noted by Milgram [81] the 

proofs using Steenrod operations are usually far simpler and more direct than the 

original proofs. In addition, when they replace proofs which relied on prior 

knowledge of the relevant homotopy groups we obtain independent verification of the 

calculation of those homotopy groups. 

Es,n+s If x ~ r , let us write x c (s,n) or x ~ (s,n) r for convenience. Theorems 

1.1, 1.2 and 1.3 imply that 

d*SqJx = SqJdrx $ I ~XdrxO vV => k+Ik+l or 2r-2 < v < k 

L aSqj-Vx v = k or (v < k and v < lO) 

where k = j-n, v = 8a + 2 b if j+l = 24a+b(odd), and a detects a generator of Im J 

in ~v_l SO • 

We start with a general observation about families {ai} with ai+ I = S(ai). If 

a i ~(s,n i) then 

n i + s = 2(hi_ 1 + s) = 2i(no + s). 



182 

If N is the integer such that 2 N-I < s+2 < 2 N then the differentials on the elements 

SqJa i depend on the congruence class of n i modulo 2 N. Clearly, n i ~ -s modulo 2 N if 

i ~ N. Thus, the differentials on all but the first N members of such a family 

follow a pattern which depends only on the filtration in which the family lives. 

Consider the c i family. We have c O E (3,8)~, so in general c i ~ (3,2i.II-3). 

Proposition 1.16. (i) c I ~E while d2c i = hofi_ 1 for i ~ 2 

(ii) d2f O = h~eo, fl ~ES' and d3f i = hlYi_ 1 for i ~ 2 

(iii) d3c ~ = h~i+2ri_ 1 for i ~ 2 

Note. We will show shortly that d2h0Yi_ 1 = h~i+2ri_ I. This, together with (iii) 

implies that d3c ~ = O. 

Corollary 1.17. d2e O = c 2 and v84 ~ O, where 84 is the Arf invariant one element 

detected by h~. 

Proof. Since e 0 ~ (3,8)~, Sq*c 0 = (c2,h0eo,f0,cl) is carried by 

z8p~l= SI6v (sl?kj 2 el8)v S 19. Therefore c I ~ E= and d2f 0 = h2e O. Applying 

Proposition I.ii we find that d2hle 0 = d2hof O = h~e 0 = h~d 0 = hlC2 , from which it 

follows that d2e O = c 2. 

Since c I E (3,19)=, Sq*c I (c2,hlel,fl,c2) is carried by _19~23 
= ~ :19 = 

(S 38 k_/2 e 39 e 40 ) e 41 = U/n k.; 2 • Therefore d2c 2 = h0f I and d3f I = hlC2 = hlh22dl O, 

so that fl ~ E 5 for dimensional reasons. Since c 2 = <h3,h2,h~> and c 2 ~E., the Toda 

bracket <c,v,04> does not exist. We shall show in the next proposition that h~E E 

so that e 4 exists. Since Gv = O, it follows that v84 ~ 0. 

Now assume for induction that d2ci = hofi_12 and that i > 2. We can arrange the 

relevant information in the following table. 

j (mod 41 SqJc i SqJ(h0f2_l) k v a 

1 e 2 h2h.+~r, i 0 2 h I 
U 1 E I-- 

2 l 1 h o 2 hie i hoYi_ I + hlhi+2ri_ I 

3 fi hlYi-i 2 > 4 - 

4 ci+ 1 h02fi 3 1 h 0 
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It follows that d3c~ = 2 hohi+2ri_l, d2hie i = hock, d3f i = hlYi_ I and d2ci+ 1 = 

hof i. This completes the inductive step and finishes the proof of Propositon 1.16 

and Corollary 1.1% Note that we have omitted d2hie i from the statement of the 

proposition because it will follow from our calculation of d2e i below. 

Proposition 1.18. (i) d2k = hod ~ 

2 
(ii) d3r 0 = hld 0 and h~ ~E 

(iii) r i ~E 3 for i Z 1 

(iv) di~ E 3 for i ~ I 

Note. Mahowald and Tangora show 161] that d I is actually in E , not just E 3. Also, 

the proof given here that h~ ~ E is much simpler than the proof in [61]. 

Proof. Since d O c (4,14)~, Sq*d 0 (d~, O, ro, O, d I) is carried by 14~18 which 
= z ~14' 

has attaching maps as shown 

18 ~ d I 

17 

16 r 0 

15 
2 

14 d O 

Now d3hoh 4 = hod 0 implies h0d2 = 0 in E 4. The only possibility is that d2k : 

hod2. This implies that 2~29 = O. Since the boundary of the 16 cell carries hl d2 

plus twice something, we get d3r 0 = hld20 . Nothing is left for h 2 to hit, so h 2 c E=. 
4 4 

Finally, d2(d l) = h0.0 = 0 so d lc E 3. Now assume for induction that i > 1 and 

d i ~ E 3. The terms SqJd3d i in the differentials on SqJd i will not contribute until 
* 2 E5, so will not affect the proof of (iii) and (iv). Since Sq d i = (di,O,ri,O,di+ l) 

we find that d2r i = ho.O = 0 and d2(di+ l) = ho.O = O, proving (iii) and (iv) and 

completing the induction. 

Proposition 1.19. (i) d2m O = hoe2 , t o ~EII and d3e I = hlt O 

(ii) el 2 E E5, d5m I = Sq39hlto, d2t I = homl, d3x I = hlm I and d2e 2 = hox 1. 

2 sqnhOX i-I ' (iii) If i > 2 and n = 2i.21 - 4 then d3e2 = hoeiXi_ 1 + 

d3m i = sqn+lhoxi_l , d2t i = h0mi, d3x i = sqn+3hoXi_l , and d2e i = hoxi_ 1. 

Proof. By Corollary 1.17, d2e 0 = c 2. The information needed to calculate the 

differentials on the SqJe 0 is most conveniently presented in a table. 
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J SqJe 0 k v a SqJc~ conclusion 

17 e 2 0 2 h I 0 d3e2-- 0 

18 m 0 i I h 0 ~e 2 d2mo = ho e2 

19 t o 2 4 h 2 0 d3t 0 = 0 

20 x 0 3 1 h 0 O d2x 0 = hot 0 = 0 

21 e I 4 2 h I 0 d3e I = hlt 0 

We omit d3eo 2 and d2x 0 = 0 from the proposition because they also follow simply for 

dimensional reasons. Similarly, since t O is in E 4 it must be in Ell for dimensional 

reasons. Thus (i) is proved. 

Since d3e I = hlt0, the term SqJhlt 0 will contribute to dsSqJe I if SqJe I lives 

that long. Again, the information is most conveniently organized into a table. 

SqJ j e i k v a conclusion 

2 d4e~ = 38 e I 0 1 h 0 

39 m I 1 8 h 3 dsm I = 

40 t I 2 i h 0 d2t I = 

41 x I 3 2 h I d3x I = 

42 e 2 4 i h 0 d2e 2 = 

All of (ii) follows immediately . Now assume for induction 

i £ 2. Again we organize the information in tabular form. 

that e iE (4,n) 2. 

j SqJe i k v ~ conclusion 

hoelhlt 0 = 0 

Sq39hlt 0 

hom 1 

hlm 1 

hox I 

that d2e i = hoxi_ 1 and 

Let n = 2i.21 - 4 so 

n e~ 0 1 h 0 

n+l m i 1 2 h 1 

n+2 t i 2 I h 0 

n+3 x i 3 4 h 2 

n+4 ei+ 1 4 I h 0 

This establishes (iii) and completes the induction. 

d3e2 = h2eixi_l + sqnhOXi_ 1 

d3m i = sqn+lhoxi_l 

d2t i = horn i 

d3x i = sqn+3hoXi_l 

d2ei+ 1 = hox i 
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Note that three of the 5 entries in the above table satisfy v = k+l. The 

corresponding differentials therefore contain terms of the form axdrx , specifically 

ahOeixi_ 1 in this instance. 

Only one of the differentials on the SqJf i is interesting. 

Proposition 1.20. For all i ~ O, d2Y i = h0hi+3r i. 

Proof. The terms in d.SqJx involving drX do not contribute to d2SqJx. 

If n = 2i.22 - 4 so that fie (4,n) then sqn+If i = hi+3r i and sqn+2f i = Yi" 

n+2 is even the proposition follows immediately. 

Since 

This completes our sampler. We have calculated only about one fourth of the 

differentials found by Mahowald and Tangora, but they include some of the most 

difficult. The remaining differentials follow more or less directly from those 

calculated here just as in Mahowald and Tangora's original paper [61]. 

2. Extended Powers of Cells 

In order to study Steenrod operations on elements of the Adams spectral 

sequence which are not permanent cycles, we need a relative version of the extended 

power construction. The extended power functor E~ ~ X (p), for ~ C Zp, factors as 

the composite of the functors 

X: ~X (p) 

and Y~ ~E~ ~ Y 

If we replace X by a pair (X,A) then X (p) is replaced by a length p+l filtration 

X (p)) ... ) A (p) of ~ spectra and we may apply E~ ~ (?) to this termwise. The 

resulting diagram is the relativization which we need. While the formalism applies 

to any pair (X,A), we will confine attention to pairs (CX,X), where CX is the cone 

on X, both for notational simplicity and because the pth power of such a pair has 

special properties which we shall exploit. In particular, note that Lemma 2.4 is 

the geometric analog of the fact that a trivial one-dimensional representation 

splits off the permutation representation of ~ C Zp on R p. Most of this section is 

devoted to this fact and its consequences. 

An element x ~ Es'n+S(x,Y) can be represented by a map of pairs 
r 

(CX,X) ~ (Ys,Ys+r). 

Extended powers of (CX,X) can be used to construct a map representing ~PJx. The 
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final bit of the section establishes the facts about extended powers which will 

enable us to construct and analyze such a map. 

We shall work first in the category of based ~-spaces and based n-maps and the 

homotopy category of based n-spaces and ~-homotopy classes of based ~-maps with weak 

equivalences inverted. The results are then transferred to the category of n-spectra 

by small smash products, desuspensions, and colimits. 

Let I be the unit interval. We choose 0 as the basepoint, justifying our 

choice by the resulting simplicity of the formulas in the proof of Lemma 2.4. For a 

space or spectrum X, let CX = X ^I. The isomorphism X ~ X ̂ {0,I} and the 

cofibration {0,I} C I induce a cofibration X + CX with cofiber ZX. 

Definition 2.1. For a space X, define a Zp-space ri(X) by 

E (CX) (p) I at least i of the c. lie in X}. ri(X) = {el^ ...^ Cp J 

If X is a spectrum, define a Zp spectrum Fi(X) = X (p)^ ri(S0). 

Lemma 2.2. (i) For a space X, ri(X) is naturally and Zp equivariantly homeomorphic 

to x(P)^ ri(sO). 

(ii) Fi(Z®X) ~ Z=FI(X) if X is a space. 

(iii) ri+l(X) + Fi(X) is a Zp-COfibration. 

(iv) ri(X)/Fi+l(X) is equivalent to the wedge of all (i,p-i) permutations 

of X (i) ~ (ZX) (p-i). In particular, if (p) is the permutation 

representation of Zp on R p then ro(X)/Fl(X) ~ (zX) (p) ~ z(P)x (p) 

and rp(X) ~ X (p)" 

(v) rl(X) ~ zP-Ix (p) as Zp spaces or spectra, where S p-I has the Zp action 

inherited from the p-cell ro(S O) : I (p). 

Proof. (i) follows immediately from the shuffle map 

(xl^tl)^ .-. ̂ (Xp^tp) ~ (xl~-..^Xp) ^(tl^ ---Atp)- 

(ii) is a consequence of the commutation of Z ~ and smash products. 

(iii) follows for spectra if it holds for spaces. By (i) it holds for spaces 

if it holds for S O . For S O , it follows because ri{S O) is the (p-i) skeleton of a CW 

decomposition of ro(S O) = I (p). 

Similarly, (iv) holds in general if it holds for S O , for which it is immediate. 

(v) follows from the fact that rl(S O) is the boundary of the p-cell to(SO). 
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Remark 2.3: We will complete what we have begun in (iv) and (v) above in Lemma 3.5, 

which shows that 

Fi(X) = V znp-ix (p)- 
(p-i,i-l) 

The next lemma is the key result of this section. Let I and S 1 have trivial Zp 

actions so that if X is a Zp space or spectrum then CX = X^I and ZX = X^S 1 are 

also. 

Lemma 2.4. There are natural equivariant equivalences F0(X) ~ Crl(X) and 

ZFI(X) ~ (ZX) (p) such that the triangle 

0 Crl(X) 

q(x) Ill 
con~nutes. ~ ~o(X) 

Proof. By definition and by 2.2(i) we may assume X = S O . We define a Zp 

homeomorphism ro(SO) + CFI(SO) by 

t I t 
t I^ ...^tp .... ~ (%--^...^t -~)^t 

where t = max{ti}. The inverse homeomorphism is given by 

(tl^ ... At )^t ~ >tt l^tt 2^... ^tt 
P P 

Commutativity of the triangle is immediate. The equivalence ZFI(X) ~ (ZX) (p) 

follows since Zrl(X) ~ Crl(X)/rl(X) ~ F0(X)/FI(X) ~ (zX) (p), the latter equivalence 

by 2.2(iv). 

Lemma 2.5. For any ~ C Zp and any n-free ~ space W, there are natural equivalences 

W K r0(X) ~ C(W~ rl(X)) 

and Z(W ~ rl(X)) ~ W~ (ZX) (p) 

such that the following triangle commutes. 

W ~ rl(X) ~,~,,~ wIi~ ~ r°(x) 

" ~  C(W ~ rl(X)) 

Proof. By Lemma 2.4, W ~ to(X) ~ W ~(rl(X)^l) and by l.l.2.(ii) 

W~ (FI(X)^I) = (w~ FI(X))^I = C(W~ FI(X)). The second equivalence follows 

similarly. Commutativity of the triangle follows from naturality with respect to 

{0,I} C I. 
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In the remainder of this section we shall restrict attention to the special 

case of interest in section 4. The general case presents no additional difficulties 

but is notationally more cumbersome. 

Let w C Zp be cyclic of order p and let W = S ~ with the cell structure which 

makes C,W ~ ~, the usual Z[~] resolution of Z. Let W k be the k-skeleton of W. 

As in V.2, wk/~ is the lens space ~k, and, by 1.1.3.(ii), if r i = ri(S n-l) then 

W k~ ri/wk-i ~ ~kr i" r i = By Lemmas 2.2 and 2.5 we then have the following 

corollary of Theorems V.2.6 and V.2.14. 

= zn-i ~(n-l)(p-l)+k 
Corollary 2.6: wk~ rp b(n-l)(p-l) 

and wk× rl zn-i %n(p-l)+k 
~n(p-l) " 

Now note that Lemma 2.5 also implies that ~a F 1 k_)W k-I ~ r 0 is the 

cofiber of the inclusion W k-I ~ r I ÷ W & ~ r I. By Corollary 2.6 or by Lemma 2.2 

and 1.1.3.(ii) it follows that 

Snp+k-l. 

To get this equivalence in a maximally useful form, first consider a more general 

situation. In order to analyze the Barratt-Puppe sequence of a map a:A + X one 

constructs the diagram below. 

(2.1) 

A - ~ CA 

. . . .  CA = X~a CA 

......... ~A i(i(a)) 

•Ci(a) = Xk~ a CAkJi(a) CX 

In diagram (2.1) the front and back squares are pushouts, a 3 is an equivalence, 

a 2 = Ca = a^l, a I is the obvious natural inclusion, and the maps a, i(a), and 

a~li(i(a)) are the beginning of the cofiber sequence of a. The following obvious 

fact about such diagrams will be used repeatedly. 

Lemma 2.7. Let B + Y be a cofibration and let ~:Y + Y/B be the natural map. For 

any map 

f:(Ci(a),X) + (Y,B), 

we have ~fa 3 = fa I - fa 2 in [zA,Y/B], where fa i is the map zA + Y/B induced by 

(fai,fa):(CA,A) + (Y,B). 
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Proof. The only question is whether we should get fa I - fa 2 or its negative. We 

choose fa I - fa 2 for consistency with the Barratt-Puppe sequence signs. The point 

is that a 3 is a homotopy inverse to the map from Ci(a) to ZA which collapses CX, 

and the orientations on the two cones are determined by this fact. 

Returning to the special case which prompted these generalities, let 

a:S np+k-2 +W k-1 ~ r I be the attaching map of the top cell of W k s~ r 1. 

diagram (2.1) becomes diagram (2.2) below. 

Then 

(2.2) 

Snp+k-2 

enP +k-I __ [ 

~ w  ~-I ~ r 0 

enP +k-I 

a 1 

~ rl 

S np+k-I 1 

= ~ ~ w k ~ .  rl~Wk-I ~ r o  

Corollary 2.8. Let B + Y and ~:Y ÷ Y/B be as in Lemma 2.7. For any map 

f:(W k ~ FI~.~W k-I ~ rO , W k-I ;x~ F I) + (Y,B) we have ~fa 3 = fa--- 1 - fa--- 2 

~np÷k-1  (Y/B) . 

in 

Let v = Vp(n(p-l)+k) in the notation of Definition V.2.19, so that 

a a ~np+k_2 Wk-1 ~ r I factors through W k-v ~ ~ r 1. Then we may replace the front 

face of diagram (2.2) by 

W k-v ~( F I ~ W k-v ,< F 1 <2 e np+k-1 
7T 

W k - v  k r 0 W k-v ~ rou~e np+k-I 

in which the np+k-I cell is attached by a lift of a. This gives us a version of 

Corollary 2.8 in which f need only map W k-v ~ r I into B and the map fa 2 factors 

through W k-v ~ r 0. 
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§3. Chain Level Calculations 

In this section we define and study certain elements in the cellular chains of 

W ~ rO(Sn-1). In sections 5-7 they will be used to investigate the homotopy groups 

of various pairs of subspaces of W m F0(sn-1). Here we use them to determine the 

effect in homology of a compression (lift) of the natural map W k m Fp(S n-l) + 

W k ~ FI(Sn-I). 

Let r i = Zi(sn-1). Give e n = C(S u-l) the cell structure with (me n-cell x and 

one (n-1)-cell dx. Let C,(?) denote cellular chains and C,(?;R) = C,(?)OR. Then 

C,Y 0 = <x,dx> p, the p-fold tensor product of copies of C,(e n) = <x,dx>, and 

Cirj =I CiFO0 ii j> nP~np~ 

We shall find it convenient to omit the tensor product sign in writing elements of 

C.Fj, so that, for example, xP-ldx denotes x Q x® ... ~)x~)dx. Let W = S ~ with 

the usual ~-equivariant cell structure. Then C,W is the minimal resolution ~of Z 

over Z[~]. Let 

~Ir(k)J = I O~j j > k J  ~ k 

so that ~(k) = C,(wk), where W k is the k-skeleton of W. Then by I 2.1, 

c,(w k % r i) ~ ~(~I ®~ c,~ 
Let G be the p-cycle (i 2 ... p) in ~ C Zp, and let ~ and Zp act on 

C,F i by permuting factors. Following [68, Theorem 3.11 we define elements 

t i ¢ C,F 0 as follows. Define a contracting homotopy for C,F 0 by s(ax) = 0 

and s(adx) = (-l)lalax. 

Definition 3.1. If p = 2, let t O = dx 2, t I 

N = I + ~ + 2 + ... + ~p-l. Let 

t O = dx p , t I = dxP-lx, 

t2i = s((m -I - l)t2i_l) , and 

t2i+l = s(Nt2i)° 

= xdx, and t 2 = x 2. If p > 2, let 

Lemma 3.2. (i) If p = 2 then d(t 2) : (a + (-l)n)tl and d(t I) = t O . 

(ii) If p > 2 then d(t l) = to, 

d(t2i) = (a -1 _ 1)t2i_l 

and d(t2i+l) = Nt2i if i > O. 
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(iii) If p > 2 then tp = (-l)mnm!x p and 

tp_ 1 = m!xP-ldx + (m-l)!(~ -I _ l)QxP-ldx 

m 

where m = (p-l)/2 and Q = (~+I) ~ i~ 2i 
i=l 

Proof. (i) and (ii) are easy calculations, by induction on i for d(t2i) and 

d(t2i+l) using (a-l-1)N = O = N(a-l-1) and ds + sd = 1. 

In [68,Theorem 3.1] it is shown that tp = (-1)Hmm!x p and that 

tp_ 1 = (m-1)!PxP-ldx, where p = ~ + 3 + ... aP-2. Since P = m + ( -I _ 1)Q, 

(iii) follows. 

Lemma 3.3. If p = 2, then in C,(W i+l ~ F I) 

J (-1)iei ® d(x 2) n ~ i (2) 

ei+ 1 ® dx 2 ~ 

(-1)ie i® d(x 2) - 2e i® xdx n ~ i (2) 

Proof. We have d(e i) = (~ + (-1)i)ei_l and d(x 2) = dx x + (-1) n x dx. Therefore 

• , .,i+l 
d(ei+l@Xdx) = (~ + (-l)1+l)ei@xdx + t-±J ei+l@ dx2 

~,i+l 
= ei~dx x + (-i) i+l ei~ xdx + (-±~ el+l@ dx 2 , 

from which we obtain 

ei+l®dX 2 ~ (-1)iei®dx x - ei®xdx 

= (-1)iei~d(x 2) - (I + (-1)i+n)ei®xdx . 

Lemma 3.4. Let p > 2. 

If i is even then, in 

ei+p_ I ® dx p ~ (_l)mn+mm! e i ® d(x p) - p 

Hence, for any i, 

in 

If i is odd then, in C,(W i+p-1 ~ Fi) , 

el+p_ 16) dx p ~ (_l) mn+m m!e i ~ d(x p). 

C,(W i+p-I ~ r 1), 

p-1 
(-1) [j/2 ]ei+p_j _1 

j=l 

ei+p_l@ dx p ~ (-I) mu+m m! ei®d(xP) 

C,(W i+p-1 ~ FI, Zp). 

t. • 
3 
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Proof. By Lemma 3.1 and the definition of 2gwe find that if i is even then 

d(ei+p_ j ® tj) = 

and if i is odd then 

d(ei+p_ j 

N(ei+p_j_ 1 ® tj + e.1+p_3. ® tj-l) 

T(ei+p_j_ I ® tj - e.l+p_3. ® tj-l) 

Nei+p_ 2 ® t I ® t O + ei+p_ I 

Tei+p_j_ I ® tj - Nei+p_ j ® tj_l 

= + Te. . ~ tj ® tj ) Nei+p-j-I ® tj 1+p-j -I 

Tel+p_ 2 ® t I - el+p_ I ® t O 

j odd, j ~ I 

j even 

j =I 

j odd, j / I 

j even 

j =I, 

2 ~p-i 
where N = i + ~ + ~_ + ..- + ~ and T = a - i. 

Suppose i is odd. We define 

m 

c : j:l[ (-l)J-l(ei+p-2j+l @ t2j-I - e.l+p_23. ~ t2j)" 

A routine calculation then shows that 

d(c) = -ei+p_ 1 Q t O + (-l)meiQ Ntp_ 1 

and hence, by Lenmm 3.2.(ii) and (iii) 

ei+p_ I Q t O ,~ (-l)meiQ Ntp_ I = (-l)mei Q d(tp) = (-I) mn+m 

This establishes the result for odd i. 

m! e iQ d(xP). 

Now suppose i is even. We define 

m 

c = [ (-l)J-l(Mei+p_2j ® t2j + ei+p_2j+l @ t2j_l) 
j=l 

where M = ap-2 + 2~p-3 + ... + (p-2)a + (p-l). One easily checks that 

N = TM + p = MT + p. A routine calculation then shows that 

m 

d(c) = el+p_ I @ t O + p [ (-l)J-l(ei+p_2j ® t2j_l - ei+p_2j_l ® t2j) 
j=l 

(-l)mei®Ntp_ I , 

from which the result follows for even i by Lemma 3.2.(ii) and (iii) just as for 

odd i° 
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In order to prove the compression result (Lemma 3.6) we need to show that, 

ignoring the Zp action, Fi(x) is just a wedge of suspensions of X (p) . 

Lemma 3.5- In~ or~, Fi(X) = V Znp-ix (p). 
(p-i,i-l) 

Proof. By Definition 2.1 and Lemma 2.2.(i) we may assume X = S O . Again let 

r i = ri(sO). Since r 0 = e np is contractible, C,F 0 is exact. It follows that 

C,F i is exact except in dimension np-i and that 

~o ~ ~ np-i 

[ 
ker(Cnp_ir 0 ÷ Cnp_i_iF 0) k = np-i 

Thus Hnp_iF i is free abelian, being a subgroup of the free abelian group Cnp_iF O- 

By the Hurewicz and Whitehead theorems F i is a wedge of np-i spheres. Splitting 

C,F 0 into short exact sequences shows that 

rank Hnp_ir i + rank Hnp_i_iFi+ 1 = rank Cnp_iF 0 = (p-i,i). 

(Recall (a,b) = (a+b)!/a!b!). Since Hnp_iF 1 has rank 1 by Lemma 2.2(v), we see by 

induction on i that 

rank Hnp_ir i = (p-i,i-1). 

We are now prepared to prove the key result. 

Lemma 3.6. The natural inclusion W i+l ~ F ÷ W i+l j +I ~ F.j is homotopic to a map 

e:W i+l ~ Fj+ 1 + W i ~ rj. In integral homology e = ee .-- e:W i+p-1 ~ rp ÷ w i ~ F 1 

satisfies 

(i) 

(ii) 

e,(ei+p_l® (dx) p) = (_l)mn+mmlei® d(x p) 

e,(ei+ 1 ® (dx) 2) = (-l)ie i ® d(x 2) 

if p > 2 and i is odd, 

if p = 2 and n ~ i (2), 

where we denote homology classes by representative cycles. In mod p homology, (i) 

and (ii) hold for all i and n. In integral homology e:W p-1 ~ r + W 0 ~ r 2 = F 2 
P 

satisfies 

(iii) e,(ep_ 2 ® (dx) p) = (-1)m-lTeo ® tp_ 2 if p > 2. 

Proof. The map compresses because wi+l~ Fj +l is np+i-j dimensional while 

wi+l~ rj/wi ~ rj -- VS np+i-j+l by the preceding lemma. In order to evaluate e,, 

first assume p > 2 and consider the commutative triangle, 
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W i+p-I ~ F ~ ~+p-I ~ £I 

WI~ r I 

in which the unlabelled maps are the natural inclusions. In mod p homology the 

vertical map is an isomorphism, so it suffices to note that 

el+p_ 1 ~ dx p ~ (-l)mn+mm!ei ® d(x p) by 3.4. Now assume i is odd. The vertical 

map is the quotient map Z + Zp, and the mod p case implies e, is correct up to a 

multiple of p. The indeterminacy of the lift from W i+l ~ F 1 to W i ~ F 1 

consists of maps 

W i+p-I ~ £p c ~Snp+i-i b,snp+i-i a W i ~ F I 

in which c is projection onto the top cell, b is arbitrary, sad a is the attaching 

map of the np+i cell. On integral homology c, is the identity and a, is multiplica- 

tion by p. Thus it is possible to choose the lift e such that e, is as stated in 

integral homology. (This is a general fact about maps obtained by cellular approxi- 

mation, but we only need it here so do not bother with the general statement. ) 

The argument for p = 2 is exactly analogous to that just given. 

§4. Reduction to three cases 

In this section we start with an overview of the proof, then establish 

notations which we shall use In the remainder of this chapter, sad finally start the 

proof of Theorems 1.1, 1.2 and 1.3 by showing that it splits into three parts and by 

proving some results which will be used in all three. 

If rj = Fj(S n-l) as in Section 2, we would like to prove Theorems I.I, 1.2 and 

1.3 by doing appropriate calculations in a spectral sequence Er(S , ~) where ~ is an 

inverse sequence constructed from the wi ~Z £j's. However, there are technical 

P 
difficulties which have prevented this. If a proof can be constructed along these 

lines, it should immediately imply that Tp (see Theorem 1.2) is a linear combination 

of 66~-ix and xP-k(drx)k for various 6, i and k, with coefficients in E2(S,S). The 

coefficient of the lowest filtration term would be a, sad the determination of the 

other coefficients would give complete information on the first possible nonzero 

differential on 6~x. 

The proof we give runs as follows. The spectrum W ~ P is a wedge sun~msad 
z j 

of W ~ P~, ~ C Z~ cyclic of order p. In a very convenient abuse of notation, we 

will write D £j for the np + i-j skeleton of this summand. There is a homotopy 

equlvalence of-(e k+np, S k+np I) wlth (DkFo,D k I£oUD~I). The element 8S~x is 
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represented by a map of (Dkro , Dk-lr 0 ~ Dkrl ) into the Adams resoluton of our H 

ring spectrum Y. Thus, we must study lifts of the boundary Dk-l£o ~Dkrl in order 

to compute d,8~x. Since Dkrl is homotopy equivalent to the stunted lens space 

znTn(p-l)+k _~ = 
~n(p-l) and DkF0 is the cone on Dk£1 , Dk-I£ 0 ~ Dkrl D~I/Dk-IF 1 S k+np-l. 

Now Dk+p-IFp is also a stunted lens space and the natural inclusion 

Dk+p-IFp ÷ Dk+p-IFI factors through ~F 1 (Lemma 3.6). The resulting map 

Dk+p-lrp ÷ DkFI is equivalent to the cofiber of the inclusion of the bottom cell of 

Dk+p-IFp. Thus Dkrl/Dk-IFl = Dk+p-IFp/Dk+p-2Fp. The top cell of Dk+p-IFp carries 

the element 8e~drx and this is where this term comes from. The other term comes in 

because we are given a map of Dk-IF0~ DkFI , not DkFl/Dk-I£1 , into the Adams 

resolution. Thus we must find another cell whose boundary is the same as the 

boundary of the top cell of ~F 1 or ~+P-lrp, and we must lift it until it detects 

an element in homotopy or until it has filtration higher than that of 8e~dr x. 

Since DiF0 ~ CDiFI , we can simply cone off the attaching map of the top cell of DkFI 

as long as this cell is nontrivially attached. This produces the terms ~-Vx, 

~8~-e-lx and aoSPJx. If the top cell of DkF1 is unattached, the top cell of 

Dk+p-IFp may still be attached to the cell DP-2Fp. There is a nullhomotopy of this 

cell in F 1 which carries xP-ldr x. This is the source of the terms ~P-ldrx. 

Finally, when the top cell of Dk+p-IFp is unattached, it carries the entire 

boundary. 

There are two complications to the above picture. First, the map Dk+p-IFp + 

Dk£1 is a lift of the natural inclusion Dk+p-iFp + Dk+p-I£1 and does not commute 

with the maps into the Adams resolution until we pass to a lower filtration. This 

necessitates extra work at some points. Second, the attaching map ataehes the top 

cell to the whole lens space, not just to the cell carrying ~-Vx or 8pj-e-lx. As 

the filtration of ~-increases, the possibility arises that a piece of the attaching 

map which attaches to a lower cell will show up in a lower filtration than the term 

-Vx or ~B~-e-lx. This possibility accounts for the cases in which we do not 

have complete information. 

Now let us establish notation to be used in this and the remaining sections. 

As in section 1 we assume given a p-local ~ ring spectrum Y and an element 

x a ErS'n+S(s,Y), the E r term of the ordinary Adams spectral sequence converging to 

~,Y. We wish to describe the first nontrivial differential on 8ePJx in terms of x 

and drX. (Here e = O if p = 2.) Recall from §I the definition 

Let 

E 
=Jj-n p = 2 

k [ 2j-n)(p-l) - e p > 2 
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Y = YO~--YI4--Y2 ~- ,.. 

be an Adams resolution of Y and let 

y(P) = y~P) = FO~-- FI~--F2 .... 

be its pth power as in IV.4. Represent x by a map (en,s n-l) ÷ (Ys,Ys+r) and let 

F i = Fi(S n-l) be the i th filtration of F 0 = e np as in Definition 2.1. Recall that 

the spectrum W ~ F i is a wedge sLunmand of W ~ F. where ~ C Zp is cyclic of 
~p ~ x 

order p. In the remainder of this chapter, DkFi will denote the np+k-i skeleton of 

this summand. Let us use ~ generically to denote the composites 

~k,ps+ir (I ~ xP):Dkri ÷W k ~ F i + W k ~ ÷ ~ Fps+ir Yps+ir-k ' 

the maps of pairs and unions constructed from them, and their composites with the 

maps Yj+t ÷ Yj" We will use the following consequence of Lemma 3.6 repeatedly. 

Recall that e is defined in Lemma 3.6. 

Lemma 4.1. The following diagram commutes. 

Dk+p-I r e .... ~ Dkrl 
P 

Y p s + r - k  

- y l  
ps+pr-k-p+l r ps+r k 1 

Proof. In the diagram below, the triangle commutes because r ~ I and the 

quadrilateral commutes by Lemma 3.6. 

Dk+IF , ,,. DkF. 
j+l , 3 

L 
Yps+ (j +l ) r-k-1 Yps+j r-k 

Yp!+(j+l)r k 2 "  - - ~Yp!+jr-k-i 

The lemma follows by composing the diagrams for j = 1,2,...,p-l. 

In IV.2 we constructed a chain homomorphism $: 2~ @ ~ p ÷ ~, where is the 

cobar construction, which we used to construct Steenrod operations, and in IV.~ we 

showed that ~ induces such a homomorphism. In particular, Definition IV.2.4 says 
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and 

8~x = (-l)Jv(n)¢,(e k~ x p) p > 2 

SqJx = ¢,(ek~x 2) p = 2. 

The following relative version of Corollary IV.5.4 gives us maps which represent 

these elements. In it we let ~ be the cobar construction C(Zp,~p,H,Y) so that 

~s,n+s ~ ~n(Ys/Ys+l) ~ ~n(Ys,Ys+l ) and let ~4 z= C,(W) so that ~'k = Ck(W) £ 

~k(Wk/w k-l) ~ ~k(Wk,wk-1). 

Lemma 4.2. 

represented by the composite 

(enp+k,snp+k_ ~ $, (e®xp) 

(e ~ r o , e  k ~ r l ~ , S  k-1 ~ r O) 

e~l 

(W k ~ r 0 

U 

g 

If e ~ ~k is represented by e ~ ~k(Wk,W k-l) then $,(e®x p) 

r 

,W k ~ rl~JWk-l~ r O) 

-~" (Yps_k,Yps_k+l) 

is 

t 

) Fps,   Fp +r  -i Fps  
I~ x p ~ ~ 

w 

where u is the passage to orbits map. 

Note: If e ~ ~W' k is a Z[~] generator (e.g. e = ~le k for some i) then the vertical 

composite in the diagram is an equivalence by the same argument which was used to 

construct diagrams (2.1) and (2.2). 

Proof. This is simply the relative version of Corollary IV.5.4. The natural 

isomorphism ~,(X,A) ~ ~,(X/A) for cofibrations A + X enable one to pass freely 

between this version and the absolute version of IV.5.4. 

We shall refer to the boundary of the map in Lemma 4.2 so frequently that we 

give it a name. 

Definition 4.3. Let ~$ E ~np+k_iYps_k+l be the restriction to S np+k-I of the map 

#,(e k ~ x p) of Lemma 4.2. Let i E ~np+k_l(DkFl~Dk-lr0 ) be the map with Hurewicz 

image 
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(-l)kek®d(xP) + 

0 k=0 or k odd, p > 2 

0 k+n odd, p = 2 

Pek_l®xP 0 / k even, p > 2 

i-1)k2ek_l®X2 k+n even, p 2 

Lemma 4 . 4 .  ( i )  ~$ = ~ , ( t )  

(ii) t is an equivalence 

(iii) Orienting the top cell of DkF1 correctly, the homotopy class t 

contains the map a 3 of diagram (2.2). 

Proof (i) holds because we are in the Hurewicz dimension of DkrlkjDk-l£ 0 = Snp+k-I 

so the Hurewicz image of I is sufficient to determine t, and its Hurewicz image is 

the boundary of the cell ek®XP. Statement (ii) is immediate from the Hurewicz 

isomorphism, and statement (iii) is immediate from the fact that a 3 is an 

equivalence. 

The differentials on 6S~x are given by the successive lifts of (-I) j v(n)~¢ 

when p > 2, and of S¢ when p = 2. Corollary 2.8 and the discussion following it 

show that the attaching maps of lens spaces, and hence elements of Lm J, enter into 

the question of lifting this boundary. In the remainder of this section we 

establish various facts about the numerical relations between the filtrations and 

dimensions involved, the last of which will enable us to split our proof into three 

very natural special cases. 

Lamina 4.5. If p > 2, the generator of Im J in dimension jq-I has filtration < j. 

If p = 2 the generator of Im J in dimension 8a+a (a = 0,1,3,7) has filtration < 

4a+~ if ~ I 7, and < 4a+4 if ~ = 7. 

P__roof. The vanishing theorem for Ext A (Zp,Zp) says that Ext st = 0 if 

O < t-s < U(s), where U(s) = qs-2 if p p 2 and 

8a - i ~ = 0 

8a+ 1 ~= 1 
U ( 4 a + ~ )  = 

8a+2 ~=2 

8 a +  3 ¢ =  3 

i f  p = 2 by  [4] and [ 5 6 ] .  F i r s t  suppose p > 2. The Im J g e n e r a t o r  i n  d imens ion  

j q - 1  i s  d e t e c t e d  by  an e lement  o f  Ex t  s , t  where t - s  = j q - 1 .  Hence j q - 1  > U(s)  = 

sq-2, which implies j > s. Now, suppose p = 2. A trivial calculation shows that if 
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s > 4a + ~, e = 0,1,3,4, then U(s) > 8a + c if e ~ 4, 8a + 7 if e = 4. This 

immediately implies the lemma. 

We apply this to prove the following three lemmas. As in §l let v be 

Vp(k + n(p-1)), and let f be the Adams filtration of the generator of Im J in 

~v_l SO. 

Lemma 4.6. Assume p > 2. If v = k+l and f ~ r-I then pr-p-k+l < 2r-l. 

Proof. Equivalently, we must show k > (p-2)(r-l). By Lemma 4.5 

f < v _ k+l 
- q q 

Thus k+l ~ qf ~ q(r-1) and hence it is sufficient to show that 

q(r-1) - 1 > (p-2)(r-1). This is immediate since r > 1. 

Lemma 4.7. Either min{pr-p+l,v+f} < v+r-I or r = p = 2 and v = i or 2. 

Proof. Suppose p > 2. Then f < v/q. If pr-p+l > v+r-1 then 

v < (p-1)(r-1) + 1 and hence 

r-1 I 
--< r-l. f_< ~ +q 

Now suppose p = 2. We must show that if r ~ v then f < r-1. It suffices to 

show f < v-l. This follows from Lemma 4.5 except when v = 1,2, or 4- In these 

cases f = 1 so the lemma holds when v = 4. If v =l or 2 then f < r-1 unless 

r = 2. This completes the lemma. 

Lemma 4.8. Exactly one of the following holds: 

(a) v > k + p-l, 

(b) v = k+l and if p > 2 then n is even, 

(c) v < k. 

Proof. There is nothing to prove if p = 2, so assume p > 2. We must show that if 

k < v _< k+p-1 then v = k+l and n is even. Recall that k = (2j-n)(p-1)-e and 

v = Vp(k+n(p-1)) = Vp(2j(p-1)-a). If a = 0 then v = 1. Hence k = O and n = 2j so 

that (b) holds as required. If ~ = 1 then v = q(1 + gp(j)). Dividing the 

inequalities k < v < k+p-1 by p-1 yields 

1 i 
2j-n- ~ < 2(l+~p(j)) < 2j-n - p-i + 1 

which has only one solution: 2(1 + ~p(j)) = 2j-n. Hence n is even and 

v = q(l+~p(j)) = (2j-n)(p-1) = k+l. 
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Lemma 4.8 is a consequence of the splitting of the mod p lens space into wedge 

summands, the summand of interest to us being the Zp extended power of a sphere. To 

see the relation, recall that v tells us how far we can compress the attaching map 

of the top cell of W k ~ rl zn-1 ~n(p-1)+k = ~n(p-l) When v ~ k, it compresses to 

W k-v ~ F 1 and no further. When v > k it is not attached to W k~ r I. However, 

recall that there are equivalences 

= zn-I ~n(p-l)+k ~ +p-i ~ rp I (n-l)(p-l) 

zn-I Tn(P-l)+k 
W ~  r I = -n(p-l) 

by Corollary 2.6, and that the top cell of W k ~ F 1 is the image of the top cell 

of W k+p-I ~ Fp by Lemma 3.6. When v > k this cell compresses to W p-2 ~ rp. 

The first possibility is that it goes no further, and in this case the wedge summand 

of the lens space we are interested in has cells in dimensions n(p-l) and n(p-l)-i 

so that n must be even. By the splitting of the lens space into wedge surmmands, the 

next possibility is v = k+p-1, which would have the top cell of ~+p-I ~ r 
P P 

attached to the bottom cell. In fact this cannot happen because the attaching map 

is in Im J and thus is not in an even stem. So v > k+p-I is the only possibility if 
+ -i 

v > k+l, and this says that top cells of W k p ~ Fp.and W ~ ~ r I are unattached. 

This "geometry" explains why the differentials on ~S~x are so different in these 

three cases. We shall start with the simplest of the three cases, and proceed to 

the most complicated. 

§5. Case (a): v > k+p-I 

Since v > k+p-i ~ i, it follows that s : I if p > 2. 

say that 

d2r_iPJx = FJdrx if p = 2 

• _spj d and dpr_p+lSPJx = r x if p > 2. 

Thus Theorems i.I and 1.2 

Theorem 1.3 follows automatically from these facts, so these are what we shall 

establish. 
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By Lemma 4.1, the following diagram commutes. 

e D k+p-I Fp ................... :- DkFI > DkFI ~ D k-I F 0 

I s + r - k  

Eps+pr-k-p+l ~ Eps+r-k+l "~ Eps-k+l 

Because v > k+p-l, the top cell of Dk+p-lrp is not attached (Corollary 2.6 and 

Definition V.2.15). Thus there exists a reduction p ~ ~np+k_l(Dk+p-IFp) whose 

Hurewicz image is ek+p_l®dxP (it is easy to check that ek+p_lQdxP generates 

Hnp+k_l). Also, v > k+p-1 ~ 1 immplies that k is odd if p > 2 and that k+n is odd 

if p = 2 by Proposition V.2.16. Combining Lemmas 3.6 and 4.4 we find that ~,(p) is 

a lift of 3¢ when p = 2, and of (-l)mn+m-lm!s¢ when p > 2. Applying Lemma 4.2 or 

¢,(ek+p_l®dxP). Thus, if p = 2 we Corollary IV.5.4 we see that ~,(p) represents 

have 

d2r_l~X = ~,(p) = ¢,(ek+ 1 

If p > 2, we have 

× dx)2= P dJx. 
r 

I 
dpr_p+16~x = (_i) jv(n)(_l) mn+m-l m-7. ~,(p) 

= (-1)mn+m-l(v(n)/m!v(n-l))8~d x. 
r 

It is easy to check that v(n)/m!v(n-1) ~ (-I) nm+m mod p so that dpr_p+lSPJx = 

-~drX. 

§6. Case (b): v = k+l 

We will begin by considering p = 2. Theorems I.i and 1.2 say that 

d2r_1~x = ~drX 
d2r_l~X = ~drX +~drX 

dr+f+k~X =WXdrX 

if 2r-I < r + f + k, 

if 2r - 1 = r + f + k, and 

if 2r-i > r + f + k. 

Since the filtration f of~ris positive mud r ~ 2, Theorem 1.3 follows from Theorems 

1.1 and 1.2. 

Let N = k+2n-1 and let C 2 ~ ~N(Dk+lF2,F2 ) be the top cell of Dk+lr2 with its 

boundary compressed as far as it will go. Then the Hurewlcz image 
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h(C 2) = ek+l®dX2 and ~C 2 = a = a2(k+n) ~ WN_IF2 £ ~k SO. Since F 2 = S 2n-2 and 

rl/r 2 = S 2n-I v S 2n-1 by Lemma 2.2, the Hurewicz homomorphisms in 

h 
~2n_l(rl,r2) - H2n_l(rl,r 2) 

~2n_2r2 ~ H2n_2r 2 

are isomorphisms. Let R ~ ~2n_I(FI,F 2) satisfy h(R) = x dx = e0®x dx in the 

notation of §3. Then DR ~ ~2n_2F2 is an equivalence since h(8R) = dx 2 = e0®dx2. 

Let a also denote (Ca,a) ~ ~N(e2n-l,s2n-2). Let i be the natural inclusion 

i:(rl,r 2) ÷ (Dk-lr0,r 2) if k > O and let i = l:(rl,r 2) + (rl,r 2) if k = 0. Let eC 2 

denote (e,l),(C 2) ~ ~N(Dkzl,r2 ). 

Lemma 6.1: S* = ~,(eC 2 ~ iRa) in ~NY2s_k+l. 

Proof. First note that eC2<2 iRa is defined since ~C 2 = S(iRa) = a ~ ~N_IF2 . By 

Lemma 4.4, 2¢ = ~,(eC2uJ ira) will follow if eC 2 ~iRa ~ ~N(Dkrl ~ Dk-lr 0) has 

Hurewicz image (-1)ke k ® d(x2), since v2(k+n) = k+l implies that either k+n is odd 

or k = O. If k ~ 0 then ~:Dkrl~Dk-lF0 + ~F1/Dk-lr I is an equivalence and Lemma 

-- ~NDkrl/Dk-lrl 2.7 says that ~(eC 2 ~ ira) = eC 2 ~ since ira factors through 

Dk-IF I. Then h(eC--- 2) = e,h(C 2) = (-1)kek® d(x 2) by Len~na J.6 (since k+n is odd) 

and we are done. If k = 0 then n is even, since v2(n) = l, and eC 2~jRa ~ ~2n_lrl . 

Also, a = - 2E ~2n_2 $2n-2 since h(~C 2) = d(e 1Q dx 2) = (~-l)e 0® dx 2 = 

= -2e 0 @ dx 2. To compute h(eC 2 k2Ra), project to rl/r 2 since H2n_lF 1 + H2n_lrl/F 2 

is the monomorphism which sends e 0 ® d(x 2) to eo® xdx + eo® dx x. By Lemma 2.7, 

Ra) S 2n-1 
~(eC2~ : ÷ F 1 + rl/r 2 equals eC 2 - Ra so 

h(~(eC2~Ra)) = h(eC--- 2) - h(~) 

= e,(e l® dx 2) + 2eo® xdx 

= e 0® (dx)x - e 0~9 xdx + 2e O® xdx 

= e 0@ (dx)x + e 0@ xdx. 

Therefore h(eC2~Ra) = e0@ d(x 2) and we're done, proving Lemma 6.1. 
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Since ~,SC 2 ~ ~*Y2s+2r, ~*(eC2 ~iRa) = ~,(eC 2) - ~,(iRa) in 

~,(Y2s_k+l,Y2s+2r). By Len~na 4.1 (or 3.6), ~,(eC 2) and ~,C 2 have the same image 

in ~,(Y2s_k+l,Y2s+2r). Since h(C 2) = ek+l®dX2 , ~,C 2 E ~,(Y2s_k+2r_l,Y2s+2r) 

represents ~drX by Lena 4.2. Similarly, h(R) = e0~x dx implies that 

~,R E w,(Y2s+r,Y2s+2r) represents XdrX , and hence ~,(Ra) ~ ~,(Y2s+r+f,Y2s+2r) 

represents ~'XdrX. This completes case (b) when p = 2. 

When p > 2 (and v = k+l) we will treat k = 0 and k > 0 separately. First 

suppose k = O. Then v = I, n = 2j and ~ = 0. Also, f = l, [ = a 0 ~ E I'I(s,s) and 

a E ~0 S is the map of degree p. Thus, we must show 

dr+lXP = aoxP-ldrx. 

Heuristically this is exactly what one would expect from the fact that drxP = 

p(xP-ldrx). That this is too casual is shown by the fact that we have just proved 

(for p = 2) that 

d3x2 = h0xd2x + pUd2x. 

The extra term arises because when we lift the map representing 2xd2x to the next 

filtration, we find also the map representing pnd2x which we added in order to 

replace xd2x + (d2x)x by 2xd2x. Thus, our task for p > 2 is to show the analogous 

elements can always be lifted to a higher filtration than that in which aoxP-ldrX 

lies. The following lemma will do this for us. 

Lemma 6.2. There exists elements 

Y E ~np_l(Dlr2,r2~2Dlr3) 

z , ~np_I(D2F),DIF3~jD2F4) 

C 1 c ~np_iFl 

X E~np_I(FI,F 2) 

such that 

C 1 = pX + pY + Z in Wnp_I(DIFI~.,D2F2,F2k_yDIF3~D2F4 ) , 

h(C I) = eo~d(xP) , and 

h(X) = eo~xP-ldx. 

Proof. Since np-I is the Hurewicz dimension of all the spectra or pairs of spectra 

involved, we may define C1,X,Y and Z by their Hurewicz images. Thus C I and X are 

given, and we let 

1 I 
h(Y) = ~ e I @ Qd(xP-l)dx - ~ e l@ tp_ 2 , and 

1 
h(Z) = - m-7 e2 ~ Ntp-3 " 

m 2i 
As in section 3, N = [ s ~ ~ and Q = (s+l) [ is We also let M = [ is ~-i-I ~ and 

i=l 
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note that M(a-l) = N-p. Define 

1 
C = ~ (Mel~tp_ I + e2®tp_ 2) + ~ e l~ Qx p-I dx 

in C,(D1£1 ~ D2r2,Fl~jDlr2~D2r3). By Lemma 3.2 it follows that 

d(C) = h(C I) -ph(X) - ph(Y) - h(Z) 

which shows that C 1 = pX + pY + Z. 

By Lemmas 4.4 and 6.2, ~¢ ~ ~*Yps+l is the image of ~,C 1 ~ ~*Yps+r" 

also implies that 

~,C 1 = p~,X + p~,Y + £,Z 

Lemma 6.2 

in ~,(Yps+r_l,Yps+2r). Since ~,Y e ,,(Yps+2r_l,Yps+2r) and 

~,Z ~ ~,(Yps+3r_2,Yps+3r_l) it follows that ~,C 1 = p~,X in ~,(Yps+r_l,Yps+2r) and 

that 8¢ = p£,X in ~,(Yps+l,Yps+2r). Lemma 4.2 implies that 

~,X , ~,(Yps+r,Yps+2r) represents xP-ldrx and hence p~,X lifts to ~,(Yps+r+l,Yps+2r) 

where it represents a0xP-ldrx. Finally, IV.3.1 implies 

dr+l~X = dr+ixP = a0xP-ldrx. 

Now suppose that k > O. Then v = k+l is greater than 1 and hence congruent to 

0 mod 2(p-l) by V.2.16. Also by V.2.16, e = 1 and k = (2j-n)(p-l)-e is therefore 

odd. Lemma 4.4 then implies ~¢ = ~,(t) with h(1) = -ek@ d(xP). The n@xt three 

lemmas describe the pieces into which we will decompose 8¢. In the first we define 

an element of ~np-i of the cofiber of e:DP-2Fp + FI, which we think of as an element 

of a relative group ~np_l(Fi,DP-2rp). In order to specify the image of such an 

element under the Hurewicz homomorphism, we use the cellular chains of the cofiber 

in the guise of the mapping cone of e,:c,DP-2Fp + C,F I. That is, we let 

Ci(rl,DP-2£p) = Ci£1~ Ci_IDP-2Fp 

with d(a,b) = (d(a) - e,(b), - d(b)). 

Len~na 6.3. There exists R ~ ~np_l(rl,Dp-2rp) such that 

(i) h(R) = ((-l)m-leo•tp_l, ep_2®t 0) ~ H,(rl,DP-2rp) 

(ii) h(sR) = ep_2~gt 0 = ep_2® (dx) p, and 

(lii) 8R ~ ~np_2DP-2rp is an equivalence. 
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Proof. Since d(eo® tp_ l) = Te0® tp_ 2 by Lemma 3.2 and e,(ep_ 2 ® t O ) = 

(-1)m-lTe0®tp_2 by Lemma 3.6.(iii), and since d(ep_2®t 0) = 0, it follows that 

((-1)meo®tp_l,ep_2®t O) is a cycle of (F1,DP-2rp). Since r I = S np-1 and 

DP-2£ 
= S np-2 , the Hurewicz homomorphism is onto and R satisfying (i) exists. Now 

P 

(ii) is obvious since the boundary homomorphism simply projects onto the second 

factor. Part (iii) is irmnediate from the fact that ep_2@t 0 generates Knp_2DP-2rp. 

Now we split R into a piece we want and another piece modulo r 2. 

Lemma 6.4. There exist X ~ ~np_l(Fi,F2) and Y ~ ~np_l(Dlr2,r2 ) such that 

(i) h(X) = (-1)m-lm!e0®xP-ldx, and 

(ii) (i,e),(R) = i,X + j,Y in n,(Dlrl,r2 ) where 

i:r I + Dlr l ,  j:D1F2 * Dlr l  and e:I)P-2rp ÷ r 2. 

Proof. We are working in the Hurewicz dimension of all the pairs involved so it 

suffices to work in homology. We define X by (i) and define Y by 

h(Y) = (-l)m-l(m-l)!el ® Qd(xP-1)dx. 

On cellular chains, the map (i,e):(F1,DP-2rp) + (Dlrl,F2) induces the homomorphism 

i. 
Ckr l®Ck_lDP-2rp  ~ Ckr I - ~ CkD1r I ~ CkDlrl/Ckr 2 

in which the unlabelled maps are the obvious quotient maps. Thus, denoting 

equivalence classes by representative elements, 

h((i,e),R) = ( - 1 ) m - l e 0 ® t p _ l  

= (_l)m-lm!e0®xP-ldx + (-1)m-l(m-1)!Te0 ® QxP-ldx 

by Lemma 3.2. Since 

d(e I ®QxP-ldx) = Teo® QxP-ldx _ el®Qd(xP-1)dx, 

it follows that h((i,e),R) = h(i,X + j,Y). 

In our last lemma we split ~ into two pieces modulo DP-2rp. Let N = k+np-l. 

Lemma 6.5. If v = k+l and k > O, and if Cp ~ ~N(Dk+p-IFp,DP-2Fp) is the top cell 

(h(Cp) = ek+p_ l ® dx p) with its boundary compressed as far as possible, then 8Cp = 
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~Ra in ~N_IDP-2rp and 

I 
~¢ = (-l)m-i ~! ~,(eCp~iRa) in ~*Ys-k+l " 

Proof. Since v = k+l, the attaching map of the top cell factors through DP-2rp. 

Since 3R is an equivalence by Lemma 6.3.(Iii), the definition of a = ap(k+n(p-1)) 

ensures that 3Cp = (~R)a = ~Ra. Now Dkrl~Dk-lro = Dkrl/Dk-lr I and, since k > O, 

Ha factors through £ 1 C Dk-lr I. Hence, ~ H.(DkFI~jDk-IFo ), 

h(eOpu~iRa) = h(eCp) 

= e,(ek+p_ l ® dx p) 

m 
= (-I) m!e k® d(x p) 

by Lemma 3.6 (since k is odd and n is even). By Lemma 4.4, it follows that 
3¢ = (-1) m-1 1 ~.I ~,(eCp<] iRa). 

We are now ready to prove Theorems l.l, 1.2, and 1.3 in this remaining case 

(p > 2, v = k+l, and k > 0). We must show that 

d,B~x = -B~drX $ (-i) e a xP-ldr x. 

By Lemma 6.5, d,6~x is obtained by lifting 

• i (-l)Jv(n)3¢ = (-l)J+m-lv(n) ~. ~,(eCpu~iRa) 

from ~,(Yps_k+l ) to the highest filtration possible. Since g,(eCp) and £,(iRa) have 

common boundary in Yps+pr-p+2, ~,(eCp<jiRa) = ~,(eCp) - ~,(iRa) in 

w,(Yps_k+l,Yps+pr_p+2). By naturality of ~, ~,(iRa) is the image of 

E ~,(Y + ,Y + +~) ~,Ra psr ps pr-p z 

and by Lemma 4.1, ~,(eCp) is the image of 

~,Cp e ~,(Yps+pr_k_p+l,Yps+pr_p+2). 

Lemma 6.4 implies that ~,R = ~,X in ~,(Yps+r_l,Yps+2r_l) since ~,Y is in filtration 

2r-1 or higher. (Note that since @R is mapped into r 2 by e in 6.4.{ii), Lemma 4.1 

forces us to work modulo filtration 2r-l, the filtration into which ~ maps DIF2 .) 

Thus 

~,(eCpK_JiRa) = ~,% - ~,Xa in ~,(Ys_k+l,Yps+2r_l), 

and, since~has filtration f, ~,Xa comes from ~,(Yps+r+f,Yps+2r). By Lemma 4.6, 

either r+f or pr-k-p+l is less than 2r-l, so that at least one of ~,Cp and ~,Xa is 

nontrivial in w,(Yps_k+l,Yps+2r_l) in general. Since h(Cp) = ek+p_l• dx p and 

h(X) = (-1) m-1 m!eo@ xP-ldx, Lemma 4.2 implies that 
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~,Cp represents (-i) j I 8~dr x 
v(n-l) 

~,Xa represents (-l)m-lmE axP-ldr x. 

It then follows that 

and 

d,8~x = (-l)Jv(n)~ 

I - ~,Xa) = (-l)J+m-lv(n) ~ (~,Cp 

v(n) I 8~dr x _ (_l)Jv(n) ~ xP-ldrx = (-l)m-i "~(n-l) m! 

: - 8~drX $ (-i) e a xP-ldr x 

since v(n)/v(n-l) =_ (-i) m m! (mod p) and since v = k+l implies 2(e+l)(p-l) = 

(2j-n)(p-l) so that n = 2(j-e-l) and hence 

-(-l)Jv(n) = (_l)J+l(_l)J-e-i = (_i) e. 

This completes case (b). 

§7. Case (c): v < k. 

In this case the boundary ~ splits Into a piece which represents the same 

operation (~ or Bg~) on drX and another piece which is an operation of lower 

degree applied to x times an attaching map of a stunted lens space. We begin with 

the lemma needed to identify this latter piece exactly. Recall the spectral 

sequence of IV.6, and recall the notations established in §l. 

~k-v~n(p) be the attaching map of the top cell of Lemma 7.1. Let ~ ~ ~k+np_l u o 

Dks n(p) and let f be the filtration of p,(a) = ap(k+n(p-1)), where p:Dk-Vs n(p) + 

S k+np-v is projection onto the top cell. Let ~)be the sequence 

Dk-Vsn(P) + Dk-V-iSn(P) ..... Sn(P). 

In the spectral sequence Er(S,~)) the following hold: 

(a) 

(b) 

1 ~ filt(~) ~ f, 

if filt(a) = f then ~ is detected by 

k-v-I 
aek_ v + [ c.e. 

i=O I z 

for some c i ~ E2(S,S) , 
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(c) if p : 2 and v ~ I0 or p > 2 and v ~ pq then filt(a) = f 

and a is detected by aek_ v. 

Proof. (a) Since ~, = 0 in mod p homology, filt(e) > O. Note that this fact 

(applied to all the attaching maps of Dk-Vs n(p)) ensures that the spectral sequence 

can be constructed. Since p induces a homomorphism from Er(S,~) to Er(S,S) , and 

p,(~) has filtration f, a must have filtration J f. 

(b) By IV.6.1(i), every element has the fo~ 

k-v 
c.e. 
ll 

i=0 

for some c i. If filt(~) = f then the element detecting a projects to K in the ~ams 

spectr~ sequence of the top cell. Hence Ck_ v = K. (In fact this argument shows 

that if Ck_ v i 0 then filt(~) = f and Ck_ v = ~.) 

(c) Under the stated hypothesis, ~ek_ v is the only element of filtration ~ f 

in degree k+np-l. 

To prove Theorems i.i, 1.2 and 1.3, let us first assume that v = I. Then k is 

even and ~ = 0 if p > 2, and k+n is even if p = 2. Theorems 1.1 and 1.2 say that 

d2~x = h0~-ix if p : 2, and 

d2~x = aOS~X if p > 2. 

Theorem 1.3 follows from Theorems i.I and 1.2 in this ease. The first step is to 

split the element I of Definition 4.3 into two pieces. Recall that 

(-l)k(e k @ d(x p) + Pek_ 1 × x p). h( i) 

Lemma 7.2: If k > v = i and C E ~ (DkF ,Dk-IF ) is the top cell, oriented so 
. . . .  1 k+np-1 1 1 k k i 
that h(C I) = (-l)kek ® d(xP), there exists A( ~k+np_l(D -ir0,D - F I) such that 

h(A) = (-l)k-lpek_l ®x p 

and i = CI~A~ ~k+np_l(DkFl ~ Dk-lr0). 

Proof. Let N = k+np-l. To see that A exists, consider the boundary maps and 

Hurewicz homomorphisms 

~N ( Dk-I To' Dk-I Fl ) 

h 

= 

HN( D k-I FO, D k-I F 1 ) 

,. ~N_IDk-IFI -~ 

h 

HN_IDk-IFI 

~N ( DkFI ' Dk-I FI ) 

HN( Dkrl, D k-I r I ) 
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The isomorphisms are isomorphisms because Dk-IF 0 = * by Lemma 2.4 and because 

DkFI/Dk-IFI = S k+np-l. Certainly A exists satisfying ~A = 8C 1. It follows that 

~(h(A)) = :~(h(Cl)) = ~((-1)k-lpek_l®xP), 

showing that h(A) = (-1)k-lpek_ 1 ® x p. 

To show that ~ = Cl~ A, it is enough to show h(t) = h(C 1 ~A), since 

Dk~ 1 ~ Dk-l~ 0 = S k+np-1. With N = k+np-1, note that HNDk-IF1 = 0. This implies 

that the homomorphism 

i, 
HN~Fl~j Dk-l? 0 = HN(Dk~l ~ Dk-i F0, Dk-lrl ) 

is injective, so that we need only show i,h(~) = i,h(Cl~J A). By Lemma 2.7, 

i,h(C 1 ~A) = h(C l) -h(A) and the result follows. 

We now have 3~ = ~,l = ~,(Cl~J A) = ~,C l - ~,A modulo Yps+r-k+l since 

£*(Dk-IFI) ~ Ys+r-k+l" Applying Lemma 7.1 we find that ~,A represents 

(-1)k-la0$,(ek_ 1 ® x p) in ~,(Yps_k+2,Yps+r_k+l) (with a 0 = h 0 if p = 2). Sorting 

out the constants, we find using Definition IV.2.4 that -~A contributes aO~X , if 

p > 2, and ho~-lx , if p = 2, to the differential on ~x. Thus, it remains only to 

show that ~,C 1 is in a higher filtration than ~,A. 

Lemma 7.J. If i I and i 2 are the maps 

( DkF1 ,Dk-irl 

Dk+IF2 ) 

then there exists X such that il,C I = P(i2,X). 

Proof. Since k+np-1 is the Hurewicz dimension of the domain and codomain of i2, it 

suffices to work in homology. First suppose p > 2. We let h(X) = e k ® xP-ldx, 

which is obviously a cycle modulo Dk-lr I ~_s DkF2 • Then, in the codomain of i I and i 2 

we have 

e k@d(x p) = e k® NxP-ldx 

= Te k®Mxp-ldx + pe k® xP-ldx 

~ ek+ 1 • M-Id(x p-l)dx + pe k @ xP-ldx 

- p e k ® xP-ldx, 
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p-I 
where N = ~ i, T = ~ - i, and M = ~ i~P-i. I The homology is due to 

d(ek+ I ® MxP-ldx) and the congruenle holds modulo Dk+IF2 ~_J Dk-lr I. This implies 

that il,C I = Pi2,X. 

Now suppose p = 2. We again let h(X) = e k ® xdx and again this is obviously a 

cycle. By Lemma 3.3 we have 

(-l)kek®d(x 2) ~ ek+ I ® dx 2 + 2e k® xdx 

2ek®Xdx , 

where the congruence holds modulo Dk+iF2~jDk-lrl . This implies that il,C 1 = 2i2,X. 

We can now finish the proof of Theorems 1.1-1.3 for v = I. By Lemma 7.3, the 

image of ~,C I in ~,(Yps_k+l,Yps_k+r+l) is zero, since it is the image of ~,pX, 

with ~,X E ~,(Yps_k+r,Yps_k+r+l) so that ~,pX~,(Yps_k+r+l,%s_k+r+ I) = O. Thus 

the entire differential is given by -~,A and we are done. 

Now suppose I < v < k. Then, since v = Vp(k+n(p-l)), Lemma V.2.16 implies that 

k+n is odd if p = 2 and that k is odd and e = i if p > 2. Also, by Definition 4.3, 

h(1) = (-1)kek®d(xP). Let N = k+np-1. 

Lemma 7.4. If Cp ~ ~N(Dk+p-IFp,Dk+p-I-VFp) is the top cell, oriented so that h(Cp) 

= ek+p_ I ® dx p, then there exists A ~ ~N(Dk-Vro,Dk-Vrl ) such that ~A = e,~Cp and 

E ~N(Dkfll ~ Dk-IFo) is the image of 

I( _i ) k+mn+m 1 
m-T (eCp,j A) 

eC 2 <2 A p= 

, ~rN(Okr I ,~ D~-Vro ) 

Proof. To see that A exists consider the following diagram, whose upper square 

commutes and whose lower square anticommutes. 

~N_IDk+p-I-VI~p .: 8 ~N (Dk+p-IFp,Dk+p-l-VFp) 

i e, -- I(e,e), 

~N_IDk-VFI ~ ~ ~N(Dkrl ,Dk-VF I ) 

~NDk-Vro/rl _, ~ -- ~N÷l(DkrO/r l ,Dk-Vro/ r l  ) 
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The isomorphisms are isomorphisms because Dkr0 = * = Dk-Vr0 by Lemma 2.4 and (e,e) 

is an equivalence by Lemma 3.6. Thus, we may define A = 8-1e,SCp. To see that I is 

the image of the claimed elements, it suffices to work in homology, as in Lemma 7.2. 

Here, h(eCp~A) = e,h(Cp) - h(A) = e,h(Cp) since HN_IDk-VFI = 0 for dimensional 

reasons. By hypothesis, h(Cp) = ek+p_l®dxP , so 

h(eCp~A) = 

(-l)mn+mm!ek ® d(x p) p>2 

(-l)kek ~ d(x 2) p = 2 

by Lemma 3.6. 

Now, 

Comparing this with h(1) = (-l)ke k ® d(x p) finishes the proof. 

I (-l)3v(n)~,~ p > 2 

d,~aP j x = 

~,l p = 2 

so, up to a scalar multiple, our differential is ~,(eCp <) A) ~ ~NYps_k+l. By 

Corollary 2.8 and Lemma 4.1 we find that 

~,(eCpk2A) = ~,eCp - ~,A in WN(Yps_k+l,Yps_k+r+v) 

= ~,Cp - ~,A in ~N(Yps_k+l,Yps_k+r+v_l). 

It follows from the definition of Cp that ~,Cp lifts to ~*(Yps-k+p.-pr +l,Yps-k+r+v )" 

By Lem~a 4.2, ~,Cp represents ~,(ek+p_l® dxP), which equals B~PUdr x up to a 

scalar multiple. When p = 2 this shows that ~,C 2 contributes ~drX to d,~x. When 

p > 2, the coefficient of 6~drX is 

(_i) 2j +k+mn+m ~(n) 1 
~(n-l) m! e --i (rood p). 

The congruence follows from the definition of ~, ~(2a+b) = (-1)a(m!)b if b = 0 or l, 

and the congruence (m!)2 ~ (_l)m-1 (mod p). This almost proves Theorem 1.1, with 

Tp consisting of -~,A ~ WN(Yps_k+l,Yps_k+r+v) plus a possible "error term" in 

~N(Yps_k+r+v_l,Yps_k+r+v) coming from the use of Lemma 4.1 above. "Almost" because 

this decomposition is only valid modulo filtration ps-k+r+v and we must still show 

that either ~e~drX or Tp will be a filtration lower than this in order to finish 

the proof of Theorem 1.1. To do this, we must identify ~,A. Referring to the 
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diagram in the proof of Lemma 7.4, the element Cp in the upper right corner goes to 

A in the lower left corner if we follow the top and left arrows, while it goes to 

(-l)k+mu+mm!a p > 2 

p = 2, 

where e is the attaching map of the cell ek®xP , if we follow the bottom and right 

arrows. Since the lower square anticommutes and since k is odd if p > 2, it follows 

that ~ (-l)mn+mmla p > 2 

A = 

-~ p = 2. 

Applying Lemma 7.1(a) we see that ~,A has filtration less than or equal to ps-k+v+f. 

Lemma 4.7 implies that, unless r = p = 2 and v =l or 2, one of ~,Cp and ~,A will 

occur in a filtration less than ps-k+v+r-1. Thus Theorem 1.1 is proved unless 

r = p = v = 2 (since v = 1 has already been dealt with). Applying the rest of Lemma 

7.1 we find that 

~,A = I (-l)mn+mm! ~¢*(ek-v~xP) P > 2 

l -a¢,(ek_v(~X2) p = 2 

v = k (since Dk'VF0/rl = S n(p) has only one cell in this case) or if p = 2 and if 

v ~ l0 or if p > 2 and v ~ pq. Combining constants, we find that T 2 = a~-Vx and 

that Tp = (-1) e-l a~-e-lx if p > 2 (recall that e = ~p(j )). The constant in the 

odd primary case comes from the fact that v = Vp(k+n(p-1)) = Vp(2j(p-1) - l) = 

2(p-1)(l+e) by V.2.16, so k-v = (2(j-e-l) - n)(p-1) - 1. This completes the proof 

of Theorem 1.2 except when r = p = v = 2 (as noted above) or when pr-p < v < k. In 

the latter case, Lemma 7.1.(a) still ensures us that 

filt(~,A) ~ ps-k + v+l 

> ps-k + pr - p+l 

= filt(~,Cp). 

Hence the term contributed to d,~S~x by ~,Cp appears alone in this case. This 

completes the proof of Theorem 1.2 except when r = p = v = 2. Deferring the latter 

case until the end, we shall now prove Theorem 1.3. If p = 2 we may assume v > 8, 

while if p > 2 we may assume v > q. The attaching map ~ of Lemma 7.1 must then have 

filtration 2 or more. This is so because 

(i) all but the top two cells are in filtration 2 or more, 
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(ii) the next to top cell component is the product of a positive dimensional 

element of E2(S,S) (since v > 0) and a cell in filtration l, so has 

filtration at least 2, 

(iii) the top cell component is a permanent cycle (being the image of the 

permanent cycle a), hence has filtration at least 2 by the nonexistence 

of Hopf invariant one elements in dimension v-1. 

This implies that ~,A has filtration ps-k + v+2 or more. Since ~,Cp has filtration 

ps-k + pr - p+l and ~ splits into these pieces modulo filtration ps-k + r +v-l, we 

di6a~x = 0 if have 

i ~ min{v+l,pr-p,v+r-2} 

= min(v+l,pr-p} , 

the equality holding because v+r-2 < v+l implies r = 2, so that pr-p = p < v = v+r-2 

by our assumption on v. This proves Theorem 1.3. 

It remains only to prove Theorems 1.1 and 1.2 when r = p = v = 2. Together, 

they say d3~x = ~d2x + hl~-2x. Let N = k+2n-1 and let C 1 ~ ~N(Dkrl,Dk-2rl ) and 

C 2 E ~N(Dk+lr2,Dk-lr2 ) be the top cells, oriented so that h(C l) = (-1)kek ® d(x 2) 

and h(C 2) = ek+l®dX2. 

Lemma 7.5. There exists A E ~N(Dk-2ro,Dk-2rl ) such that ~A = ~C 1 and 

i = Cl~JA in ~N(DkFl~Dk-lr0 ). 

Proof. Since Dk-2r0 = * we may define A = 8-1~C 1 

=N(Okrl,Dk-2rl ) ~. =N_iok-2rl ~ ~N(Ok-2ro,Dk-2rl ). 

Clearly, h(A) = 0, so h(CI~JA) = h(C I) = h(~). Thus i = CI~JA. 

It follows that 

2¢ = ~,~ = ~,(CI~JA) = ~,C I - ~,A ~ ~N(Y2s_k+l,Y2s_k+4). 

As before, we wish to replace ~,C 1 by ~,C 2 plus an error term which we can ignore. 

The following lemma is what we need in order to do this. 

Lemma 7.6. Let il:Dk-2r I + Dk-lr 2 ~Dk-2rl, 

i2:Dk-lr 2 + Dk-IF2~jDk-2FI, 

and j:Dk-lr I ÷ Dk£1 
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be the natural inclusions. Then there exists X 4 WN(Dk-lrl,Dk-lr2 ~Dk-2r I) 

positive filtration in the Adams spectral sequence, such that in 

~N(Dkrl,Dk-lr2~Dk-2rl ) 

Proof. Since 

need only show 

satisfying 

with 

(l,il),C I = (e,i2),C 2 + (j,I),X 

p:(Dkrl,Dk-2Fl~jDk-lr2 ) + (DkFi,Dk-lrl) is the cofiber of (j,l), we 

p,(l,il),C I = p,(e,i2),C 2 in order to establish the existence of X 

(l,il),C I = (e,i2),C 2 + (j,I),X. 

The filtration of X is necessarily positive because 

D~-lr/o~-Ir2 ~o~-2r I ~ V s ~-I 

by I.i.3 and Lemma 2.2. Since N is the Hurewicz dimension of (Dkrl,Dk-lrl) it 

suffices to show h(p,(e,i2),C 2) = h(p,(l,il),Cl). This is immediate from Lemma 3.6. 

With Le~ma 7.6 we can now finish the proof of Theorems 1.1 and 1.2. The 

element ~X is in ~N(Y2s_k+3,Y2s_k+4), but since X has filtration greater than O, 

~,X = O in ~N(Y2s_k÷3,Y2s_k+4). Thus ~,C I = ~,(l,il),C I = ~,(e,i2),C 2 in 

~N(Y2s_k+2,Y2s_k+4 ). By Lemma 4.1, ~,(e,i2),C 2 = ~,C 2 in ~N(Y2s_k+l,Y2s_k+4), and 

~,C 2 lifts to ~N(Y2s_k+3,Y2s_k+4) where it represents ~d2x by Le~na 4.2. Finally, 

~,A also lifts to ~N(Y2s_k+3,Y2s_k+4) where it represents hl~-2x by Lemma 7.1. 

Thus 

d3~x = ~d2x ÷ hl~-2x. 


