
CHAPTER III. 

HOMOLOGY OPERATIONS FOR H® AND H n RING SPECTRA 

by Mark Steinberger 

Since H~ ring spectra are analogs of H~ spaces and H n ring spectra are analogs 

up to homotopy of n-fold loop spaces, it is to be expected that their homologies 

admit operations analogous to those introduced by Araki and Kudo [121, Browder [22], 

Dyer and Lashof [33] and Cohen 128]. We define such operations in section 1 for H 

ring spectra and in section 3 for H n ring spectra. 

As an amusing example, we end section 1 with the Observation, due independently 

to Haynes Miller and Jim McClure, that our homology operations in H.F(X+,S) = H*X 

coincide with the Steenrod operations when X is a finite complex. 

For connective H~ ring spectra, we show that the resulting ring of operations 

is precisely the Dyer-Lashof algebra. Moreover, if X is an H space with zero (as 

in II.1.7), then the new operations for the H~ ring spectrum Z~X coincide with the 

space level operations of H.X. 

As will be shown by Lewis in the sequel, the Thom spectrum Mf of an n-fold or 

infinite loop map f:X ÷ BF is an H n or H~ ring spectrum and the Thom isomorphism 

carries the space level operations to the new operations in H.Mf. This applies in 

particular to the Thom spectra of the classical groups (although a simpler argument 

could be used here). 

In section 2 we present calculations of the new operations in less obvious 

cases (with the proofs deferred until sections 5 and 6). Our central calculations 

concern Eilenberg-MacLane spectra, where , in contrast to the additive homology 

operations for Eilenberg-MacLane spaces, these operations are highly nontrivial. In 

fact, they provide a conceptual framework for the splittings of various cobordism 

spectra into wedges of Eilenberg-MacLane spectra or Brown-Peterson spectra. The 

proofs of these splittings in the literature are based on computations of the 

Steenrod operations on the Thom class. We show in section 4 that the presence of an 

H n ring structure, n > 2 (n ~ 3 for the BP spllttings), reduces these computations 

to a check of at most one low dimensional operation, depending on the type of 

splitting. In addition, we have placed these splitting theorems in a more general 

context which, as explained in the previous chapter, leads to a reproof of Nishida's 

bound on the order of nilpotency of an element of order p in the stable stems. All 

of our splittings are deduced directly from our computation of the new operations in 

the homology of Eilenberg-MacLane spectra. 
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I wish to thank Peter May for his help and encouragement and to thank Arunas 

Liulevicius for helpful conversations, and for sharing the result listed as 

Proposition 5.1. 

§I. Construction and properties of the operatlons 

Just as the space level operations of Araki and Kudo, Browder, and Dyer and 

Lashof are based on maps 

EZj ×Z. Xj + X, 

J 

so our new spectrum level operations are based on the structural maps 

cj:DjE + E 

of H~ ring spectra (see 1.3.1). We consider homology with mod p coefficients for a 

prime p. The following omnibus theorem describes our operations. Properties of the 

operations at the prime 2 which are distinct from the properties at odd primes are 

indicated in square brackets. As usual, ~ denotes the homology Bocksteln operation, 
r and P, denotes the dual of the Steenrod operations pr, with pr = sqr if p = 2. 

Theorem I.I. For integers s there exist operations QS in the homology of H~ ring 

spectra E. They enjoy the following properties. 

(1) The QS are natural homomorphisms. 

(2) QS raises degree by 2s(p-1) Eby s]. 

(3) QSx : 0 if 2s < degree(x) tif s < degree(x)]. 

(4) QSx = x p if 2s : degree(x) (if s = degree(x)]. 

(5) QSl = 0 for s ~ O, where 1 c HoX is the algebraic tuuit element of H,X. 

(6) The external and internal Caftan formulas hold: 

QS(x x y) = ~ Qix × QJy for x x y e H,(E~F); 
i+j:s 

QS(xy) : ~ (Qix)(QJy) for x,y a H,E. 
i+j=s 

(7) The Adem relations hold: if p ~ 2 and r > ps, then 

= " _ _ _ 1 ~ r+s-i i QrQS ~ (-1)r+1(pi r, r (p 1)s - i - )Q Q ; 

i 

if p > 2 and r ~ ps, then 
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QrsQs = ~ ( - 1 ) r + i ( p i  - r , r  - (p - 1)s - i ) B Q r + s - i Q  i 
i 

- ~ (-l)r+1(pi - r - 1),r - (p - l)s - i)Qr+s-mBQ m. 

i 

(8) The Nishida relations hold: For p ~ 2 and n sufficiently large, 

pr^S r+i(r _ + ^s-r+ipi .~ = ~ (-I) pi,p n s(p - i) - pr + pi)~ , . 

i 

In particular, for p = 2, 8QS = (s - 1)Q s-1. For p > 2 and n sufficiently large, 

pr _s _ n ,~ = ~ (-l)r+l(r pi,p 

i 

i" s-r+ipi + s(p - i) - pr + pi - )SQ , 

• ._s-r+ipi 
- ~ (-1)r+l(r - pi-1, pn + s(p - l) - pr +pi)~ ,8. 

i 

(9) The homology suspension ~:H,E 0 + H.E carries the operations given by 

the multiplicative H space structure of E 0 to the operations in the homology of E. 

(lO) If E = Z®X for an H~o-Space X, then the operations in H,E agree with 
N 

the space level operations in HwX. 

The statement here is identical to that for the space level operations except 

that operations of negative degree can act on homology classes of negative degree 

and that a high power of p is added to the right entry in the binomial coefficients 

appearing in the Nishida relations. For spaces, the same answer is obtained with or 

without the power of p because of the restrictions on the degrees of dual Steenrod 

operations acting nontrivially on a given homology class. Our conventions are that 

(a,b) is zero if either a < 0 or b < 0 and is the binomial coefficient (a + b)!/a!b! 

otherwise. The Nishida relations become cleaner when written in terms of classical 

binomial coefficients since 

(pn+: (a+b] pn 
(a,p n + b) = +b) : ~ a - for a < and b ~ 0. 

The QS and 8QS generate an algebra of operations. If we restrict attention to 

the operations on connective H~ ring spectra, then the resulting algebra is 

precisely the Dyer-Lashof algebra in view of relations (3) and (8) and application 

of (lO) to the H~O space obtained by adjoining a disjoint basepoint to the additive 

H space structure on QS O. 

We sketch the proof of the theorem in the rest of this section. With the 

exception of the proof of the Nishida relations, the argument is precisely parallel 

to the treatment of the space level homology operations in [28] and is based on the 
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general algebraic approach to Steenrod type operations developed in [68] and 

summarized by Bruner in IV§2. 

Let ~ be the cyclic group of order p embedded as usual in Zp and let W be the 

standard n-free resolution of Zp (see IV.2.2). Let C,(EZp) be the cellular chains 

of the standard Zp-free contractible space EZp and choose a morphism 

j:W + C,(EZp) of ~-complexes over Zp. We may assume that our H~ ring spectrum E is 

a CW-spectrum with cellular structure maps ~j:DjE + E. By 1.2.1, DjE is a CW- 

spectrum with cellular chains isomorphic to C,(Ezj) ~j (C,E) j . Thus we have a 

composite chain map 

W®~ (C,E) p j @I~c,(EZp) @Zp(C,E)P ~ C,(DpE) ~C,E. 

The homology of the domain has typical elements e i ®x p (and e0®xl® ..- ®Xp), 

where x ~ H,E, and we let Qi(x) c H,E be the image of e i ®x p. Let x have degree q. 

If p = 2 define 

QS(x) = 0 if s < q and QS(x) = Qs_q(X) if s ~ q. 

for p > 2, define 

QS(x) = 0 if 2s < q and QS(x) = (-l)Sv(q)Q(2s_q)(p_l)(X) if 2s > q 

1 where v(q) = (-l)q(q-l)m/2(m!)q, with m = ~ (p-l). By [68] the QS and BQS account 

for all non-trivial Qi when p > 2. Since ~p restricts on E tpJ to the p-fold product 

of E and since the unit e:S + E is an H -map, parts (1)-(5) of the theorem are 

immediate from [68]. 

It is proven in the sequel [Equiv, VIII.2.9] that the maps lj, aj,k, 8j,k, and 

6j discussed in I§2 have the expected effect on cellular chains. For example, ~j, 

can be identified with the homomorphism 

(l®t®l)(A~®u) 
C,(Fgj) ® (C,E®C,E) j ~C,(EZj) ® (C,E) j ®C,(EXj) ® (C,E) j 

where A' is a cellular approximation to the diagonal of EZj and u and t are shuffle 

and twist isomorphisms (with the usual signs). The Caftan formula and Adem 

relations follow. For the former, the smash product of H~ ring spectra E and F is 

an H~ ring spectrum with structural maps the composites 

a ~j ̂  ~j 
D.(E^ F) J ~D.E^D.F ~E^F, 
J J J 

and the product E ̂ E + E of an H~ ring spectrum is an H~ map; see 1.3.4. For the 

latter, we use the case j = k = p of the second diagram in the definition, 1.3.1, of 

an H~ ring spectrum. The requisite algebra is done once and for all in {68). 
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The Steenrod operations in H,(D~E) are computed in [Equiv. Vlll ~3], and the 

Nishida relations follow by naturality. (See also II.5.5 and VIII §3 here.) 

Since a,:H,(E O) + H,E is the composite of the identification 

H,(E O) ~ H,(Z~Eo ) and the natural map ~,:H,(Z~E0 ) + H,E and since ~:Z~E0 + E is an 

H map when E is an H ring spectrum, by 1.3.10, part (9) of the theorem is a 

consequence of part (lO). In turn, part (10) is an immediate comparison of 

definitions in view of 1.2.2 and 1.3.8. The essential point is that the isomorphism 

D~Z'X ~ Z~D~X induces the obvious identification on passage to cellular chains, by 

[Equiv. VIII.2.9}. 

As promised, we have the following observation of Miller and McClure. 

Remark 1.2. Let X be a finite CW complex. By 11.3.2, the dual F(X+,S) of Z'X + is 

an H ring spectrum with pth structural map the adjoint of the composite 

DpF(X+ S)^ X + A ~-D (F(X+,S) ^X +) -~-~D S-~---~S. 
P P 

Here A, is computed in 11.5.8, e, is the Kronecker product H*X®H,X + Zp, and 

, is the identity in degree zero and is zero in positive degrees. For 
P 

y e H qF(X+,S) = Hqx, we find by a simple direct calculation that Q-Sy = pSy 

for all s > 0. A more conceptual proof by direct comparison of McClure's abstract 

definitions of homology and cohomology operations is also possible; see VIII ~3. 

§2. Some calculations of the homology oper§tions 

For R a con~nutative ring, let HR be the spectrum representing ordinary 

cohomology with coefficients in R. We wish to compute the operations on the 

homology of HZp and some related spectra. We shall state our results here, but 

shall present proofs of the computations for HZp in sections 5 and 6. Recall that 

the mod p homology of HZp is A,, the dual of the Steenrod algebra. 

Notations 2.1. We shall adopt the notations of Milnor in our analysis of A, [86]. 

Thus, at the prime 2, A, has algebra generators ~i of degree 2i-I for i ~ 1. At odd 

primes, A, has generators ~i of degree 2pi-2 for i > 1 and generators xi of degree 

2pi-i for i ~ O. We shall denote the conjugation in A, by ×. 

We have the following theorems. 

Theorem 2.2. For p = 2, A, is generated by ~I as an algebra over the Dyer-Lashof 

algebra. In fact, for i > l, 
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Q2i-2~i = ×~i " 

Moreover, QS~l is nonzero for each s > 0 and, for i > i, 

QS×~i = Ii s+2i-2~I otherwise, if s ~ 0 or -I mod 2 i 

In particular, Q2Zx~ i = ×~i+l for i > O. 

Theorem 2.3. For p > 2, A, is generated by T O as an algebra over the Dyer-Lashof 

algebra. In fact, for i > 0 

i 
QP(i)~ 0 = (-I) ×T i and 

BQP(i)~o = (-l)i×~ i , 

where p(i) = (pi-l)/(p-l). 

for i > 0, 

QS×g i = 

while 

QSxT i = 

i 
In particular, QP x~ i 

Moreover, ~QST 0 is nonzero for each s > 0 and, 

° 

(_l)i+lsQS+p(i)~o 

0 

i 
if s _= -I rood p 

i 
if s =- 0 rood p 

otherwise, 

I)I+IQS+p(1)TO if s _= 0 mod pi 

otherwise. 

i 
= ×~i+l for i > 0 and QP ×xi = ×Ti+l for i > 0. 

Thus, for p ~ 2, the operations on the higher degree generators are determined 

by the operations on the generator of degree one. A complete determination of the 

operations on this degree one generator does not seem feasible. However, we do have 

a conceptual determination of these classes. For p ~ 2, let ~ be the total ~ class 

~ = i + ~i + ~2 + ... 

For p > 2, let T be the total T class 

T = I + T0 + TI + .-. 
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Since the component of these classes in degree zero is one, we may take arbitrary 

powers of these classes. 

Theorem 2.4. For p = 2 and s > O, 

QS~ 1 =(Cl)s+l ; 

that is, QS~l is the (s+l)-st coordinate of the inverse of the total ~ class. 

p > 2 and s > 0, 

QS~ 0 = (-l)S(~-IT)2s(p_l)+l, and 

F o r  

8QSTo = (-1)s(~-l)2s(p_l), 

that is, QSw 0 is (-i) s times the (2s(p-1)+l)-st coordinate of the product of the 

total ~ class and the inverse of the total ~ class, and ~QS~ 0 is (-1) s times the 

(2s(p-l))th coordinate of the inverse of the total ~ class. 

Here we are using the H ring structure on HZp derived in 1.3.6. In the 

following corollaries, we consider connective ring spectra E together with morphisms 

of ring spectra i:E + HZp which induce monomorphisms on mod p homology. When E is 

an H ring spectrum, i is an H ring map by 1.3.6. 

For p > 2, the homology of HZ or HZ(p) embeds as the subalgebra of A, generated 

by ×~i and XT i for i £ 1. For p =2, the homology of HZ or HZ(2 ) embeds as the 
2 

subalgebra of A, generated by ~l and X~ i for i > 1. 

Corollary 2.5. For p > 2, the homology of HZ or HZ(p) is generated by ×~I and XT 1 

as an algebra over the Dyer-Lashof algebra. For p = 2, the homology of HZ or HZ(2 ) 

is generated by ~ and ×~2 as an algebra over the Dyer-Lashof algebra. 

Similarly, at the prime 2, the homology of kO, the spectrum representing real 

K-theory, embeds as the subalgebra of A, generated by ~, ×~ and ×gi connective 

for i > 2. The homology of kU embeds as the subalgebra of A, generated by 
2 2 
~i' ×~2 and ×~i for i > 2. 

] 9 
Corollary 2.6. At the prime 2, the homology of kO is generated by gY, ×~ and X~ 3 

as an algebra over the Dyer-Lashof algebra, while the homology of kU is generated by 
2 
~i and M~ 3 as an algebra over the Dyer-Lashof algebra. 

Proof. By the Cartan formula, 

42 2 
Q ~i = (Q2gl)2 = ×~2 " 
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We have analogous results for the p-local Brown-Peterson spectrum BP. Let 

i:BP + HZp be the unique map of ring spectra. By the Caftan formula, if p = 2, or 

by Theorem 2.4, if p > 2, i, embeds H, BP as a subalgebra of A, which is closed under 

the action of the Dyer-Lashof algebra. 

Corollary 2.7. 

Lashof algebra. 

Lashof algebra. 

For p > 2, H, BP is generated by ×~l as an algebra over the Dyer- 

For p = 2, H, BP is generated by ~l as an algebra over the Dyer- 

It is not known whether or not BP is an H ring spectrum. However, suppose 

that E is a connective H ring spectrum and that f:E + BP has the property that 

if:H + HZp induces a ring homomorphism on 70 . Then if is an H ring map, so 

that (if), commutes with the operations. Since i, is a monomorphism, so does f,. 

We shall also examine the operations on the homology of HZ n for n > i. Let B, 

be the homology of HZ and let x ~ HIHZ n be the element dual toPthe n-th Bockstein 
P 

operation on the fundamental cohomology class (so that BnX = -1). Then H, HZpn is 

the truncated polynomial algebra 

: B,[x]/(x2), H,HZ n 
P 

as an algebra over the dual Steenrod operations. Here the inclusion of B, in H, HZ n 

is induced by the natural map HZ ÷ HZ n' x maps to zero in the homology of HZp, an~ 
P 

x is annihilated by the dual Steenrod operations. 

Corollary 2.8. For p > 2, H, HZpn is generated by x and the elements X~l 

and XT1 of B, as an algebra over the Dyer-Lashof algebra. For p = 2, H, HZpn is 

2 
generated by x and the elements ~l and X~ 2 of B, as an algebara over the Dyer-Lashof 

algebra. For p ~ 2, the element x is annihilated by all of the operations QS. 

Proof. For the last assertion, note that QSx is an element of B,x for all s since 

QSx maps to zero in A,. Since x is annihilated by the dual Steenrod operations, the 

Nishida relations reduce to 

and 

P~QSx = (-1)r(r,p m + s(p - l) - pr)QS-rx, 

p~Qs x = (_l)r(r, pm + s(p - l) - pr - l)~QS-rx 

for p > 2. Since B,x is isomorphic to B, as a module over the dual Steenrod 

operations, and since no nontrivial element of B, is annihilated by P~ for r > 0, 

and ~ if p > 2, QSx = 0 by induction. 
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§3. Homology operations for Hnring spectra 2 n < 

Cohen, [28], by computing the equivariant homology of the space ~n(j) of j 

little n-cubes, completed the theory of homology operations for n-fold loop spaces 

begun by Araki and Kudo, Browder and Dyer and Lashof. Since an H n ring spectrum 
(J) ÷ (cf. [I,§4]) E is defined by structure maps ~n(j) ~Z. E E, we can use Cohen's 

calculations to obtain analogous theorems for H n ringJspectra. 

Theorem 3.1. For integers s there are operations QS in the homology of H n ring 

spectra. QSx is defined when 2s - degree(x) < n-i Is - degree(x) < n-l] and the 

operations satisfy properties (1)-(8) of Theorem I.i and the analogues of (9) and 

(I0) for n < ~. Moreover, these operations are compatible as n increases. 

The Browder operation, In-l, is also defined for H n ring spectra. 

Theorem 3.2. There is a natural homomorphism ~n_I:HqE®HrE + Hq+r+n_l E, which 

satisfies the following properties. 

(i) If E is an Hn+ I ring spectrum, ~n-I is the zero homomorphism, 

(2) lo(x,y) = xy - (-l)qryx, 

(3) In_l(x,Y) = (-1)qr+l+(n-l)(q+r+l)kn_l(Y,X); kn_l(X,X) = O if p = 2, 

(4) In_l(1,x) = 0 = ~n_l(X,l), where 1 ~ H.E is the algebraic unit, 

(5) The analog of the external and internal Cartan formulas hold: 

In_l(x®y,x' ®y') = (-i) Ix'I(lyI+n-l) xx' ®In_l(y,y') 

+ (lllYl(ixi+lYl+nl~ 
in_l(X,X') ~YY', 

where Izl denotes the degree of z, 

kn_l(xy,x'y') = Xkn_l(Y,x')y' 

+ (_l)lYl(n-l+Ix'l)~n_l(X,x,)yy, 

+ (_l)IX'l(n-l+IxI+lYl)x,Xln_l(y,y,) 

+ (_l)lyi(n-l+iy'i)+Ix'11Y't 
kn_l(X,y')yx' 

(6) 

(_l)(q+n-l)(s+n-l) 

The Jacobi identity holds: 

k n_l(x,kn_l(y,z)) + ( -i) (r+n-l)(q+n-l) kn_l(Y,kn_l ( z,x)) 

+ (_l) (s+n-1)(r+n-1) 
kn_l(Z,kn_l(x,y)) = 0 
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for x e HqE, y ~ HrE , z ~ HsE; kn_l(X,kn_l(X,X)) = O for all x if p = 3- 

and 

(7) PSkn_ l(x,y) = ~ kn 1 (Pix ® Pjy)' 
i+j =s 

8kn_l(x,y) = kn_l(~x~y) + (-l)Ixl+n-lkn_l(x,By) 

(8) kn_l(x,QSy) = O. 

There is also a "top" operation, ~n-l" 

Theorem 3.3- There is a function ~n_l:HqE ÷ Hq+(n_l+q)(p_l)E [HqE ÷ H2q+n_ll 

defined when q+n-I is even [for all q], which is natural with respect to maps of H n 

ring spectra and satisfies the following properties. Here ad(x)(y) = kn_l(Y,X), 

adi(x)(y) = ad(x)(adi-l(x)(y)), and ~n_l x is defined, for p > 2, by the formula 

~n_l x = 8~n_l x - adP-l(x)(Sx). 

Q(n-l+q)/2x [~n_iX QU-l+qx], (1) If E is an Hn+ 1 ring spectrum, ~n_l x = = 

hence ~n x = ~Q{n-l+q)/2x for x ~ HqE. 

(2) If we let Q(n-l+q)/2x [Qn-l+qx] denote gn_l x, then ~n_l x satisfies 

formulas (3)-(5) of Theorem 1.1, the external Cartan formula, the Adem relations, 

and the following analogue of the internal Cartan formula: 

~n_l(XY) = ~ QixQJy + ~ xi~Fi ~ for n > l, 
i+j=s O~i+j~p J 

O~i,j 

n-l+q [n-l+q] q = degree(xy), and rij is a function of x and y where s = 2 

specified in [28, III.l.3(2)]. In particular, if p = 2, 

~n_l(xY) = ~ QixQJy + Xkn_l(X,y)y- 
i+j =s 

Moreover, the Nishida relations for ~n-l are the usual ones plus an unstable error 

term given by sums of Pontrjagin products which contain nontrivial iterated Browder 

operations. 

(3) kn_l(X,~n_lY) = adP(Y)(x) and ~n_l(X,~n_ly) = O. 

(4) ~n_l(X + Y) = ~n_l x + ~n_l y + a sum of iterated Browder operations 

specified in [28, III.1.3(5)]. 

In the remainder of this section we sketch the proofs of these theorems. 

After replacing E by a CW spectru~n and replacing ~n(j) by the geometric 

realization of its total singular complex, we have that ~ n(j) ~ E (j) , is a CW 

spectrum, for any ~ C Zj, with cellular chains naturally isomorphic to 
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C, Cn(j) ® (C,E)J (cf. [Equiv., Vlll. 2.9]). With field coefficients, (C,E) j 

is equivariantly chain homotopy equivalent to (H,E) j , so we can apply Cohen's 

calculations. We define Qi x to be the image under the structure map of ei®xP , 

where e i ~ H i ~n(p)/Wp is Cohen's class, ~p C ~p the cyclic group of order p. 

Define QSx and ~n_l x by the formula in §I. Since ~n(2) is homotopy equivalent to 

S n-l, we can define kn_l{x,y} to be the image under the structure map of 

(-l) (n-l)q+l E. i ®x®y, where i e Hn_ 1 ~n(2) is the fundamental class and x ~ Hq 

As noted by Cohen, Theorem 3.1 is a consequence of Theorem 5.3, with 3.3(1) 

immediate from the definition. With the exception of those statements involving 

Steenrod operations, all of the statements in Theorems 3.2 and 3.3 follow from 

equalities between the images under the structure map ¥ of the operad gn of the 

classes in the equivariant homology of the g n(j ) which induce the stipulated 

operations. These equalities follow from Cohen's work. This leaves Theorem 3.2(7), 

the Nishida relations, and the verification that Cn_l x is the image under the 

structure map of the appropriate multiple of e(n_l)(p_l) ®x p, this last giving the 

definition of Cn_l x which Cohen uses in deriving his formulas. 

Since the Browder operation is defined nonequivariantly, Theorem 3.2(7) follows 

from the Cartan formula for Steenrod operations. The Nishida relations follow from 

the computation of the Steenrod operations in H,D E [Equiv, VIII ~31, together 

with the fact that the kernel of H,(~n(p) ~ E) ~ H,D E consists of classes which 

are carried to sums of Pontrjagin products of ~he type s~ated [28, III §5 and 12.31. 

For the last statement, we calculate ~(e(n_l)(p_l) ®xP). Let ~ be a chain in 

C, ~n(p) which projects to a cycle in C,~ n(p)/~p representing e(n_l)(p_l) and let a 

be a chain in the integral cellular chains of E, representing x mod p. Let 

da = pb. Let N = 1 + a + ... + Gp-1 in ZI~pl, where ~ is a generator of Wp. Then 

so that 

d(a p) = pNba p-I, 

d(e®a p) = pEN®ba p-1 + (dc)®a p. 

Since c projects to a cycle mod p in C,~ n(p)/~p, the transfer homomorphism shows 

that aN is a cycle mod p in C, ~n(p). Thus, ~N®ba p-1 gives rise to a stun of 

Pontrjagin products of Browder operations in 8x and x [28, III. 12.3], which, by the 

space level calculation, must be the appropriate multiple of adP-l(x)(Sx). Since 

da projects to zero in the mod p chains of ~n(p)/~p, and since a p is fixed under 

the action of ~p, we can find a chain 6 such that 

(da) ® a p = 6N ®a p = ~ ®Nap = p6 ®a p 

for all a. By naturality and the space level result, 6 must project to a cycle 
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representing e(n_l)(p_l)_l in H,(~n(p)/~p), so that 6 ®a p reduces mod p to a 

representative of e(n_l)(p_l) ®x p. 

§4. The Splitting Theorems 

We present simple necessary and sufficient conditions for a more general class 

of spectra than previously mentioned to split as wedges of p-local Eilenberg-~cLane 

spectra or as wedges of suspensions of BP. The spectra we consider are pseudo H n 

ring spectra, defined as in Definition II.6.6, but with DjzdqEq replaced by 

~n(j) ~ (zdqEq)(J), with n ~ 2. 

J 
Fix a pseudo N n ring spectrum E = Tel Eq, and assume that w,E is of finite type 

over ~0 E and that ~0 E = ~0Eq for q sufficiently large. Let i:E ÷ HZp be such that 

ie:S 0 + HZp is the unit of HZp and regard i as an element of H0(E;Zp); under our 

hypotheses i will be unique. Let Z(p) be the integers localized at p. 

Theorem 4.1. If woe = Zp, then E splits as a wedge of suspensions of HZp. 

Theorem 4.2. If woE = Z r' r > l, or woE = Z(p) and if p = 2 and Sq3i / 0 or p > 2 

and Bpli ~ O, then E splPlts as a wedge of suspensions of HZps , s > l, and HZ(p). 

Theorem 4.3. Let n >_ 3- If woe = Z(p) and H,(E;Z(p)) is torsion free and if p = 2 

and Sq2i / 0 or p > 2 and pli ~ 0, then E splits as a wedge of suspensions of the p- 

local Brown-Peterson speetr~n BP. 

Remarks 4.4- The various known splittings of Thom spectra are direct consequences 

of these theorems. Obviously the splitting of M0 and the other Thom spectra of 

unoriented cobordism theories follow from Theorem 4.1. When w0MG = Z(p), the mod p 

Thom isomorphism commutes with the Bockstein. At 2~ the splittings of ~O and of 

the Thorn spectra into which MS0 maps follow from Theorem 4.2 and the facts that Sq2i 

is the image of w 2 under the Thom isomorphism mud that sqlw2 = w 3 in H*BS0. The BP 

splittings of MU at all primes and of MSO and MSU at odd primes follow from Theorem 

4.3 and similar trivial calculations. Most strikingly perhaps, the splitting of RBF 

at odd primes follows trivially from Theorem 4.2. Indeed, pli is nonzero by 

consideration of the first Wu class in MS0. Since the p-component of ~q = wqSF = 

Wq+lBSF is Zp for q = 2p-3 and zero for 0 < q < 2p-3, 

Hq(BSF;Z(p)) = fZO p for q = 2p-2 
for 0 < q < 2p-2. 

Thus, H2p_2(BSF;Z p) = Zp, and the Bockstein 
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8:H2p_I(BSF;Zp) + ~p_2(BSF;Zp) 

is an epimorphism. Thus, the dual cohomology Bockstein is a monomorphism. 

We turn to the proof of the splitting theorems. Define 

HZp[X, x-l] : V EdqHZp , 
qcZ 

where d = 1 if p = 2 and d = 2 if p > 2. As pointed out in 1.4.5 and II.l.3, 

HZp[X,X -I] is an H~ ring spectrum. We think of it as the Laurent series spectrum on 

HZp. 

Let A, C H,(HZo[X,X-I]) be the homology of the zero-th wedge summand 

Since HZp is a sub-H ring spectrt~m of HZo[x,x-l], we know the operations on A,. 

Moreover, if x e HdHZ [x,x -I] comes from the canonical generator of HdZdHZp, then 
P 

the homology of HZp[X,X -I] is isomorphic as an algebra over the dual Steenrod 

operations to A~[x,x-l], the ring of Laurent polynomials in x over A,. We could 

easily calculate the operations on the powers, x n, of x by use of the techniques of 

the next section. However, remarkably, we shall only need the p-th power operation 

on x. We should remark that multiplication by x, 

H, zdqHZp + H, zd(q+l)HZp, 

is the homology suspension. 

Lemna 4.7. 

hence 

In A~[x,x-l], for p £ 2, i > 0 and q an integer 

i 2 
QPq+P (×~i " xpq) = x~i+l " xp q 

2 i+l 
q+P (x~i p x p2q) ~P . xp3q 

• = XEi+ 1 • 

For p > 2, i ~ 0 and q an integer, 

QPq+pi(×Ti x pq) = xp2q. 
• XXi+ I • 

Proof. The internal Caftan formula, together with the degree of ×~i and of x pq 

gives i i i 

QPq+P (x~i. x pq) = (~ ×~i)(QPqx pq) + ~ -l×~i)(Qpq+ixPq) . 

By the Cartan formula, Qpq+IxPq = O. Of course, QPqx pq = x p2q (Theorem 1.2.(4)). 

The first statement follows from Theorem 2.2 or Theorem 2.3 and the fact 

A, C A,[x,x -I] is a subalgebra over the Dyer-Lashof algebra. Since X~i p • x p2q = 
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(X~i " xPq)P, the second statement now follows by the Cartan formula. The proof of 

the third statement is almost identical to the proof of the first. 

It should be noted that the full strength of Theorems 2.2 and 2.3 is quite 

unnecessary for the computations above. They could be derived quite simply and 

directly. We shall apply these computations to the proofs of the splitting theorems 

by means of the following commutative diagram, analogous to that of II.6.8. 

~n(j ) ~ (zdqEq)(J 

~dj qE. ~ 
Jq 

I ~ ~dqi(J) 

q ~ Cn 

Z dj qi. 
3q 

(j) ~ Zj(zdqHZp)(J) 

z dj qHZ 
P 

Here, i s is the restriction of i:E ÷ HZp to Es, the right-hand map ~j is the induced 

ring structure of HZp[X,X -1] restricted to the (dq)-th wedge summand. The 

commutativity of the diagram is an easy cohomology calculation provided tht Eq + E s 

induces an isomorphism of 70 for s > q. 

The key step in the proofs of Theorems 4.1, %.2 and 4.3 is the following 

result. 

Proposition 4.8. Let E = Tel Eq satisfy the hypotheses of Theorem 4.1, 4.2 or 4.3. 

For the first two cases, let j:E ÷ H~0E be such that je:S + H~0E is the unit. In 

the third case, let j:E + BP be a lift of j above to BP. Then j induces a 

monomorphism of p-primary cohomology. 

Proof. We shall show that j induces an epimorphism of p-primary homology. Recall 

that i is the projection of j above into HZp. In the second case, if roE = Z r for 

r > i, the nontriviality of the r-th Bockstein operation on i shows that the p 

generator x ~ H, HZ r = B*[x]/(x2) is in the image of j,. (Here B, = H, HZ(p~.), 
P 

Thus, for the second case as a whole, it suffices to show that B, C A, is in the 

image of i,. Similarly, for the third case, it suffices to show that H, BP C A, is 

in the image of i,. The hypotheses of the theorems give us the following conclu- 

sions. In Theorem 4.1, the nontriviality of the Bockstein operation on iq, for q 

sufficiently large, shows that x0' if p > 2, or ~I' if p = 2, is in the image of 

iq,. In Theorem 4.2, the nontriviality of pli and Bpli, for p > 2, or of Sq2i and 

Sq3i, for p = 2, shows that for q sufficiently large, ×~l and ×31, for p > 2, 
2 

or ~l and ×~2 for p = 2, are in the image of iq,. In Theorem 4.3, the nontriviality 

of pli, for p > 2, or of Sq2i, for p = 2, shows that for q sufficiently large, ×~l, 
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2 for p = 2, is in the image of iq,. Thus, the following con- for p > 2 or gl' 

sequences of Lemma 4.7 and the diagram preceding the statement will suffice. 

(i) If p = 2 or if p > 2 and n ~ 3 and if X~ i is in the image of idpq, , then 

X~i+l is in the image of idp2q ,. 

(2) If p > 2 and Xx i is in the image of idpq, , then XXi+l is in the image of 

idp2q," 

2 
(3) If p : 2, n ~ 3, and X~ is in the imge of i4q,, then X~i+ 1 is in the 

imge of i8q ,. 

The conditions on n are just enough to ensure that H,( ~n (p) ~Zp gdqEq) contains 

preimages of the operations needed to carry out the argument. 

The passage from the proposition above to the splitting theorems is well known 

and has been exploited in the literature to prove the splittings of the cobordism 

theories. Theorems 4.1 and 4.3 follow from the algebraic splitting theorem of 

Milnor and Moore [87] together with standard properties of HZp and BP. For Theorem 

4.2, H*E splits as a direct sum of suspensions of A/A~ and of A as a module over the 

Steenrod algbra A. However, the E 2 term of the Bockstein spectral sequence of H*E 

is spanned by the A-module generators of the summands isomorphic to A/A~. By 

pairing up these generators with respect to their higher order Bocksteins, we may 

construct a map of E into a wedge of p-local cyclic Eilenberg-MacLane spectra which 

induces an isomorphism on mod p cohomology. In all cases, the hypothesis on ~0 E 

ensures that E is p-local, and the cohomology isomorphisms yield equivalences. 

§5. Proof of Theorem 2.4; Some low-dimensional calculations 

We shall exploit the following observation of Liulevicius. 

Proposition 5.1. Let C = Z21x,x-l] be the algebra over the Steenrod algebra A which 

is obtained by inverting the polynomial generator of H*RP ~. Let C, be the dual of 

C, with a generator e t in degree t. Let ft:C, + A, be the unique nontrivial 

morphism of A, comodules of degree -t (i.e., ftet = l). Then ften is the component 

of the t-th power of the total ~ class in degree n-t: 

ften = (~t)n_ t. 

Proof. Let k:C ÷ C~A, be the dual of the module structure of C, over the dual 

operations. Recall that for c ~ C and a ~ A, if ~c = ~ ci®~i, then 

ac = ~ <a,~i>c i. Here < , >:A®A, ÷ Z 2 is the Kronecker product. In particular, 
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if kx t : ~ xi®ai , then ften = an: for a ~ A, 

<a,ften > = <fta,en> 

= <axt,en > 

= <<a,an>xn,en > 

= <a, O~n> , 

since <xn,en > = !. 

Thus 

However, k is an algebra map, and Milnor has shown that 

2 i 
~x : ~ x @~i : X xi®(~)i-l" 

i)0 i)l 

kx t = ~ xi® (~t)i_ t- 
i)t 

We also have an odd primary analogue. 

Proposition ....5.t2. For p > 2, let C be the A-algebra obtained by inverting the poly- 

nomial generator in the cohomology of the lens space L ~. Thus, C is the tensor 

product of an exterior algebra on a generator x of degree one and an inverted poly- 

nomial algebra on y = ~x. Let C, be the dual of C and let e2n e C, be dual to yn 

and let e2n+l a C, be dual to xy n. Let ft:C, + A, be the A, comodule map such that 

ftet = 1. 

(1) If t = 2s, then ften is (-1) n times the (n-t)-th component of the s-th 

power of the total ~ class: 

n $ 
ften : (-I) (~)n-t" 

(2) If t = 2s+l, then ften is the (n-t)-th component of the product of the 

total T class with the s-th power of the total ~ class: 

ften = (~S~)n_ t. 

Proof. Let z i ~ C be the dual of el. Suppose that kz t : ~ zi@ a i. The sign 

convention here is that for a a A, 

az t ~ (-l)i(i-t)<a 
= ,ai>z i • 
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A similar argument to that when p = 2 shows that ften = (1)n(n-t)an . 

calculations are that 

Thus 

kX = x® 1 + [ yi ® (T)2i_ 1 
i)l 

and 

ky = ~ yi® (~)2i-2 " 
i> 1 

lyS = ~ yi® (~s)2i_2s and 
i)s 

S 
k(xyS) : ~ zig (~ ~)i-2s-I " 

i ~ 2s+l 

Here, Milnor's 

In the remainder of this section and in the next, we shall need to evaluate 

binomial coefficients mod p. The standard technique is the following. 

• ° 

Lemma 5.3. Let a : ~ ai pl and b = ~ bi pl be the p-adic expansions of 

a and b. Then (a,b) ~ 0 mod p unless a i + b i < p for all i, when 

(a,b) ~ U(ai,bi) mod p. 
1 

Moreover, for a ! pn _ i, 

(a,p n - I - a) ~ (-I) a mod p. 

We shall not bother to quote the first statment, but shall use it implicitly. 

The following proposition is the key step in proving Theorem 2.4. 

Proposition 5.4. For p = 2, the map f:C, + A, given by 

Qn~l for n > 0 

fe n = 
1 

for n = 0 

for n = -I 

0 otherwise 

is a map of A, coalgebras. For p > 2, the map f:C, + A, given by 

fe n = 

I (-1)SQS~ 0 if n = 2s(p-1) 

(-l)S~QS~ 0 if n = 2s(p-l)-I 

-t O for n = 0 

1 for n = -1 

0 otherwise 
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is a map of A, coalgebras. Thus, in either case, the map f coincides with the map 

f-1 described above. 

Proof. Of course f:C, + A, is a map of A, comodules if and only if f*:A + C is a 

map of A-modules. But this latter condition is equivalent tokthe statement that f, 

commutes with the action of the dual Steenrod operations P~ for k E 0 and also 

commutes with the Bockstein B when p > 2 

For p > 2, 8e2s = e2s_l and 8T 0 = -1. (We have adopted the eovention that for 

y s Hqx and x s Hq+lX, <x,~x> = (-1)q+l<~y,x>.) Moreover, the subspace of C, 

spanned by e2s(p_l ) and e2s(p_l)_ 1 for s an integer is a direct summand of C, as a 

module over the dual Steenrod operations. We have specified that f = 0 on the 

complementary summand. Thus, for p ~ 2, it will suffice to show that the dual 

Steenrod operations in C, agree under f with the Nishida relations on the pertinent 

homology operations on ~l or 30. 

For symmetry, we shall write y for the polynomial generator of C when p = 2. 

For p ~ 2, thekcomputation is divided into three cases. First, those e i which are 

carried by P~ to an element of positive degree, second, those which have image in 

degree zero, and third, those which have image in degree -1. 

In the first case, we show that for p = 2 and 2 k < s, 

2 k 
P, e s = 

and that for p > 2 and pk < s, 

(2k,s-2 k+l )e 
s_2 k ' 

k 
P~ e2s(p_l) = (pk,s(p-1) - pk+l)e 

2(s-pk)(p-1) 

Let d = 1 when p = 2 and let d = 2 when p > 2. Then the statements above reduce to 

k 
P~ eds(p_l) = (pk,s(p-l) - pk+l)e 

d(s-pk)(p-1) 

for p ~ 2. However, since C was obtained from the cohomology of RP ~ or L ~, 

r 
Py= 

y for r = 0 

yP for r = I 

0 otherwise 

Thus, for n > 0, pryn = (r,n_r)yn+r(p-1) by the Caftan formula. Our claim follows 

from the calculation 
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<yd(s-pk)(p-l) p~ k 
eds(p_l) > <PP yd(s-P k) - k (p l),eds(p_l)> 

= (pk s(p_l ) _pk+l). 

For p > 2 and s > pk, we have similarly that 

k k+l 
P~ e2s(p_l)_ 1 = (pk,s(p-l) - p - l)e 

2(s-pk)(p-l) - I" 

Here, prx = 0 for r > 0, so that 

< s(p_l)_pk(p_l)_l _pk -i > = (pk,s(p_l) _ pk+l I) 
xy ,~. e2s(p_l ) . 

On the other hand, the Nishida relations give us, for s > pk 

p2kAs (2k2m+s_2k+l)QS-2 k 
* ~ ~i = ~I 

for p = 2, and, for p > 2, 

and 

k 
~. QSTo = _(pk pm + s(p-l) - pk+l)Qs-pkT 0 , 

k k+l k 
~. 8QSTo = _(pk,pm + s(p - I) - p - I)SQ s-p T O . 

Here, the initial -i is cancelled by the conventions in the definition of f, and the 

additional high power of p in the right-hand side does not alter the binomial 

coefficients unless the right-hand side would otherwise be negative. Thus, we must 

check that for s > pk if s(p-1) < pk+l then (pk,pm + s(p-1) - pk+l) and 

(pk,pm + s(p-1) - pk+l _ l) are zero. Since s(p-1) ~ pk+l _ l, we have s ~ p(k+l) 

= 1 + p + ... + pk. But since pk < s, we have s = pk + t with 0 < t ~ p(k). Thus, 

s(p-1) = pk(p-1) + tl, with 0 < t I < pk. Thus, the specified coefficients are zero. 
k 

It remains to check those operations P~ whose images have degree 0 or -1 in 
k 

C.. However, e 0 may not be in the image of any P~ , as prl = 0 for r > O. 
pr_r r r 
*~ $1 and P,Q t 0 are zero by the Nishida relations. (Q0 kills $1 or TI.) 

For the remaining case, we shall show that for p = 2, 

and for p > 2, 

2 k 
P~ e2k_ 1 = e_l , 

k 
PP e k : -e-l" 

2p (p-l)-I 

To do this, we must compute the Steenrod operations on y-I when p = 2 and on xy -I 
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when p > 2. For p ~ 2 and r > O, 

0 = pr(yy-l) = (p%)(pry-l) + (ply)(pr-ly-l) 

= ypry-I + yppr-ly-1 

by the Cartan formula. Thus, pry-I = _yp-ipr-ly-l, so that 

pry-1 =(_l)ryr(p-l)-I , 

by induction. For p > 2, since prx = 0 for r > O, 

pr(xy-i ) = (_l)rxyr(p -l)-l. 

Thus, for p = 2, 

-i _2 k = <y2k-l,e > = 1 
<Y ,~. e2k_l > 2k_l 

and for p > 2 

<xy-l'~*ke k > = (-l)pk<x~k(p-l)-i > : -I. 
2p (p-l)-I 'e2pk(p-l)-I 

The following lemma will complete the proof. 

Lemma 5.5. For p = 2, 

For p > 2, 

pS+l_s 
, ~i = l- 

s s 
P, SQ ~0 = (-l)S-l" 

Proof. For p = 2, the Nishida relations reduce to 

n Ol pS+l_s, 9 -±$~ = (s-l,2 -s)Q P*~I = i, 

by Lemma 4-3- For p > 2, the Nishida relations reduce to 

pS s = n 0 0 
*~Q ~0 -(s-l,p -s)Q P, BT 0 

s-1 
= (-I) 

by Lemma 4.3, since ~0 = -1. 
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Proof of Theorem 2.4. For p = 2 and s > O, the fact that 

Qs~I = (~-l)s+ 1 

follows immediately from Propositions 5.1 and 5.4. For p > 2 and s > O, the fact 

that 
s = i s -I 

Q TO (-) (~ ~)2s(p-l)+l and 

~QST0 (_l)S -I 
= (~ ~)2s(p-l) 

follows immediately from Proposition 5.2 and 5.4. However, all of the even degree 

coordinates of ~-lT come from ~-I. Thus, 

8QS~ 0 = (-l)S(~-l)2s(p_l) • 

One can identify certain algorithms such as the following curiosity when 

p = 2: 

i 2i~i-I . ~i . i 
Q2 ~I = L (QJ~I)(Q z -J- ~i ) 

j=l 

Thus, the actual computations can get quite ugly. We have the following low- 

dimensional computations of QS~ I for p = 2. In the next section we shall show that 

Q2t-l~l = (Qt-lgl)2. Thus, we shall only list --QZt~l. We shall write 

×~i = 8i for i ~ I. 



k.
~

 
~

o
 

~ 
N

.~
 

~ 
~ 

i --
a 

~ 
~ 

~ 
~ 

0
 

C
O
 

O
~
 

~
 

b.
) 

0
 

c
o
 

0
 ~
 

~
 

~
 

0
 

lx
.) 

N
3 

+ + 

lx
.~

 
C

a 

+ 4-
 

+ 

i..
~ 

i--
a 

+ 

+ 

r,
d + "o

o + 

N
) 

,o
'~

 

+ + + v 

.~
. 

N
.~

 
ix

.) 

÷ 

i.-
.a

 l
x.

) 

4-
 

b.
) 

¢
+
 

0
 

0
 A
 

I
A
 

II
 

,,
 



78 

~6. Proofs of Theorems 2.2 and 2.3 

We shall compute the operations on H, HZp = A,. The elements OfkA , are com- 

pletely determined by the effect of the dual Steenrod operations PP for k > O, 

along with the Bockstein operation if p > 2. Thus, our computations will be based 

on induction arguments using the Nishida relations. 

Theorems 2.2 is the composite of Len~na 5.5 and Propsitions 6.4 and 6.7. 

Theorem 2.3 is the composite of Lemma 5.5, Propositions 6.4, 6.7 and 6.9, and 

Corollary 6.5. 

We begin by recalling some basic facts about the dual Steenrod operations 

inA,. 

Len~na 6.1. The following equalities hold in A,. 

P[X% I 

k 
(Recall that ~(k) = p - 1 ) 

p-I " 

For p ~ 2 and i > 0, 

IoX~ k if r : o(k) "- 

= 

otherwise 

For p > 2 and i Z O, 

r 
P*×xi = 0 for r > 0, 

and 

8XT i = X~ i • 

Here, gO is identified with the unit, I, of A,. 

Remarks 6.2. Notice that the added high power of p in the right-hand side of the 

binomial coefficients in the Nishida relations allows us to make the following 

simplification. For p ~ 2, 

k 
QS = [ (_l)i+l(pk 

i 

i - pi,s(p-l) -- pi)Q s-pk+i P, . 

For p > 2, 

k 
~, 8Q s = ~ (-l)i+l(p k _ 

i 

+ ~ (-l)i+l(p k _ 

i 

k+. . 
s-p Zpl 

pi,s(p-l) + pi - I)SQ , 

k . . 
pi - l,s(p-l) + pi)Q s-p +Ip1 ,8 • 

One of the key observations in our calculations is the following. 
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Lemma 6.3. (The p-th power lemma). For p = 2 and s > i, 

For p > 2 and s > 0, 

Q2s-I~I = (qs-l~l)2. 

8QPS~0 = (sQS~0)P. 

Proof. We argue by induction on s. We shall show that both sides of the proposed 
k 

equalities agree under P~ for k ~ O and under ~ when p > 2. Of course, 8 is no 
1 problem, and both sides of both equations vanish under P,. For the right hand 

side, this follows from the Caftan formula. For the left-hand side, the Nishida 

relations give 
piAS ,q = (s - 1)Q s-1 , and for p > 2 

p~sQS = ssQS-I _ QS-18 . 

k 
Thus, we may restrict attention to P~ for k > O. If s = pk-l, Le~ma 5.5 ~nd the 

Caftan formula show that both sides of the equations are carried to I by P~ . 

Thus, the lemma is true for p = 2 and s = 2, and for p > 2 and s = 1. In the 

remaining cases, k > O and s > pk-l. Here for p = 2, 

while 

p2k-2s-I (2k,2s_l)Q2s-2k-l~l 
* q ~i = 

p 2 k ,  -s-i )2 (p2k-l-s-i)2 

= (2 k-l,s-1) (Qs-2k-l-l~ 1 )2 

= (2k-l,s_l)Q2s-2k-l~l , 

by the Cartan formula, the Nishida relations and induction. For p > 2, 

k k-i 
l~, (sQSTo)p = (l~, ~QS~o)P 

k-1 
= _(pk-1 s(p_l) _ 1)(8Q s-p ~O )p 

k 
= _(pk-l,s(p_l) _ 1)gQ ps-p t O , 

by the Cartan formula, the Nishida relations and induction. The conclusion follows 

easily from Lemma 5.3. 
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We can now evaluate certain of the operations. 

Proposition 6.4. For p = 2 and i > I, 

~21_2 
~i = X~i " 

For p > 2 and i > O, 

8QP(i)To = (-l)ix~i . 

(Again p(i) = ~ .) 

Proof. We argue by induction on i. 

sides of the equations agree under 

p2k2i_2 

Again it will be sufficient to show that both 
k 

P~ for k ~ O. For p = 2, 

= (2k 2i_2)Q2i-2-2k~l . 

For 0 < k < i, the binomial coefficient is zero, while for k ~ i, Q2i-2-2k~l 

for dimensional reasons. Thus, the only nontrivial operation is 

• i 
pI^21-2"~ ~I = Q2 -3~i 

2 i 2 Since ~i X£1, the proposition is true for For i = 2, Q -3~i = QI~I = ~I" = 

i = 2 by Lemma 6.1. For i > 2, 

Q2i-3gl = (_2i-I-2~ ~i ),2 

=0 

= (X~i_l)2 , 

by the p-th power lemma and induction. Lem~na 6.1 is again sufficient. For p > 2, 

let i = i. Then 

p l • p ( 1 )  : pl i 
,~ T O ,8Q T O = i 

by Lemma 5.5. Thus, ~QI~ O = -x~ I. For i > I, 

p~ksQp(i)T O -(pk,p(i)(p-1) - I)BQP(i)-P k 
= T O 

k 
= _(pk,pi_2 ) 6Qp ( i ) -p 

T 0 , 

by the p-th power lemma and induction. The result follows from Lemma 6.1. 
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qorollary 6.5. For p > 2 and i > 0, 

QP(i)~o = (-l)i×Tl . 

Proof. 

• k However, p kQp(i) 0 = -(pk,p(i)(p-I))Q p(1)-p tO 

= _(pk,pi_l)QP(i)-Pk~0 . 

QP(i)T0 We have just shown that and (-l)ix~i have the same Bockstein. 

For k < i, (pk,pi-l) = O, while for k ~ i, QP(i)-pkT 0 

reasons. The result follows from Lemma 6.1. 

= 0 for dimensional 

We wish now to compute the operations on the higher degree generators. 

Nishida relations and Lemma 6.1, 

k k 
~, QSx~ i = _(pk,s(p_l ) )Qs-p x~i 

(-l)J+l(p k pp(j) ,s(p-l) pp(j)).Q s-pk+p(j) PJ 
+ _ + {-x~i_~.j } 

j~l 

and for p > 2, 

k k k 
~* 8Qsxwi = -(pk's(p-l) - I)BQs-P ×Ti - (pk-I's(p-I))Qs-P ×~i 

k 
+ [ (-l)J+l(p k - pp(j) - l,s(p-l) + pp(j))Qs-p +p(j) 

j~l 

However, we may simplify this expression considerably. 

pJ 
(-X~i_ j ). 

By the 

Lemma 6.6. For p ~ 2 and i > O, 

k k 
~* QS×~i = -(pk's(p-I))Qs-P ×£i 

For p > 2 and i ~ O, 

k k 
~, BQSxTi = -(pk,s(p-l) - I)BQ s-p x~ i 

_~s-pk+l ~p 
- (pk - p,s(p-l) + p~ ×~i-i " 

k 
_ (pk_l,s(p_l))Qs-p Xg i . 

Moreover, the following additional simplifications hold for particular values 

of s. For p > 2, s ~ 0 mod p and k > O, 

k k 
~, BQSx~i = -(pk,s(p-1) - I)BQ s-p XT i . 
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For p ~ 2, s ~ -I mod p2 and k > I, 

k k 
P~ QS×~ i = _(pk s(p_l))Qs-P x~ i - 

Proof. The assertion is true for k = 0 or k = 1 because of the left-hand term of 

the binomial coefficients. We shall assume k > I. If s ~ -I mod p and j > O, then 

s - pk + p(j) ~ -I mod p. By the Cartan formula (or Theorem 1.2(5) if i = j), 

Qs_pk+p(j) ~pk 
×%i-j = 0. If s ~ -1 mod p, p > 2, k > 0 and j ~ 0, pk _ pp(j) _ 1 ~ -1 

mod p, while s(p-1) + pp(j) ~ 0 mod p. Thus, 

(pk _ pp(j) _ l, s(p-l) + pp(j)) = 0. 

For s ~ -1 mod p, but s ~ -1 mod p2 (here p ~ 2), s 5 tp-1 mod p2 for 0 < t < p. 

Thus 
2 

sip-l) + pp(j) ~ (p-t)p+l mod p , 

while 
k p - pp(j) ~ (p-1)p mod p2 

Thus, 

(pk _ pp(j),s(p-1) + pp(j)) = 0. 

It suffices to assume s ~ -1 mod p2. Here, for j > 1 (and k > 1), 

s - pk + p(j) _ p mod p2 . 

By the Cartan formula (or Theorem 1.2(5) if i = j), 

Qs-pk+p(j) ~pJ 
×%i-j = O. 

Proposition6.7. For p = 2, i > O and s > 0, 

i 
QS+2 -2~I if s ~ O or -i mod 2 i 

QSx~ i = 

0 otherwise 

For p > 2, i > 0 and s > O, 

I (-l)isQs+p(i)~ 0 if s ~ -i mod pi 

QSx~ i = (-l)l+igQs+p(1)~ 0 if j ~ 0 mod pi 

0 otherwise 
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Proof. We argue by induction on s and i. For p = 2, the assertion is trivial for 

i = 1. For p ~ 2, and 0 < s ~ pi-1 the assertion holds by dimensional reasons and 

the p-th powerklemma. Of course, we shall show that both sides of the equations 

agree under P~ for k > 0 and under B when p > 2. Clearly both sides agree 

I 8QSx~i under P,, and when p > 2, Lemma 6.1 implies that = 0 for all i and s by 
k 

induction and the Nishida relations. Thus, it suffices to check P{ for k > O. 

Case i. s = 0 mod p, but s ~ 0 mod pi. 

By the preceding lemma, 

k k 
~, QSx£i= _(pk,s(p_l ) )Qs-p x~i . 

k 
By induction Qs-p ×~i = 0 unless s - pk ~ 0 mod pi. Since s ~ 0 mod pi, this means 

k < i and s ~ pk mod pi. Here (pk,s(p-1)) = (pk,pk(p-1)) = O. Thus QS×~ i = O. 

Case 2. s ~ 0 mod pi. 

Again 

k k 
~, QSx~ i = _(pk,s(p_l ))Qs-p ×~i 

0 

= (_l)i(pk,s(p_l)) BQs-p+p(i) TO 

( 2 k , s ) Q s+2i-2-2k~ i 

k 
if k < i or p > s 

if s > k > pi, P > 2 

if s > 2 k > 2 i, p = 2 

by induction. On the other hand, 

k . k 
~, 8QS+p(i)To = _(pk,s(p_l ) + pi _ 2)8QS+p(1)-p TO 

and 

2 k s + 2 i _ 2  • • 
P* Q g l  = ( 2 k ' s + 2 1  - 2 ) Q S + 2 1 - 2 - 2 k ~ l  

if p> 2, 

if p=2. 

Since s ~ 0 mod pl, [0 

(pk,s(p_l) + pi _ 2) = 

(pk,s(p-l)) 

k + 
s p(~) 

It suffices to show that P~ 8Q x- = 0 
K 1 ~ U . 

2 s+2 2 k i 
that P* Q - ~l = 0 for s ~ 2 < s+2 -2. 

s = pk so that (pk,s(p-1)) = O. 

for I < k < i 

for k > i 

for s ~ pk < s + p(i), when p > 2, and 

These inequalities imply that 
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Case 3. s ~ O or -I mod p. 

Again, 
k 

Q x~ i 

by induction. 

k 
= _(pk s(p_l ))Qs-p ×~i =O 

Case 4. s ~ -I mod pi 

Here, 

k k 
~, QSx~ i = _(pk s(p_l))Qs-P X~ i - (pk-p,s(p-l) + p)(Q((S+I)/p)-pk-I×~i_I)P 

by Lemma 6.6 and the Cartan formula. 

For 1 < k < i, Qs-pkx~ i = O by induction. Since s+l _ pk-1 _ _pk-1 mod pi-1 
- p ' 

Q((S+l)/p)-pk-lx~i-I = O for 1 < k < i. For k = 1 < i, 

pp s = I (-I)i(SQ((s+I)/p)-I+p(i-I)T0)p = (-I)iBQs-p+p(i)~0 for p > 2 

,Q x~ i 
( Q( ( s+l )/2 )-I+2i-i-2~i )2 ^s+21-4 

= ~ ~i for p = 2 

by induction and the p-th power lemma. On the other hand, for pk < s + p(i) and 

p > 2, ppk s+p(i) = TO . ~ TO _(pk,s(p_l ) + pi _ 2)BQS+p(i)-pk 

and for p = 2 and 2 k < s +2i-2, 

2k s+2i_2 . i k 
P* ~ ~i = (2k's+2Z-2)QS+2 -2-2~I " 

Since s 5 -I mod pi, the right-hand side of the binomial coefficient is congruent to 

pi _ p _ 1 mod pi. Thus, if 1 < k < i, the coefficient is zero and if k = i, the 

coefficient is -I. 

For s > pk >_ pl and i > I, 

. + . k 
i(pk s(p_l)) + (pk_p,s(p_l)+p](_l)lBQS p(1)-p T0 for p > 2 

k p,p s 
Q X~ i = 

k i 
[(2k s) + (2k_2,s+2)]QS-2 +2 -2~i for p = 2, 

by induction and the p-th power lemma. Thus, for these values of k, it suffices to 

check that 
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(pk,s(p_l)) + (pk - p,s(p-l) + p) = (pk,s(p-l) + pi _ 2), 

which the reader may verify (or c.f. IlOl, p.54]). 

For p > 2, i = 1 and s > pk, 

k k 
QSx~ I = _(pk,s(p_l))(_gQS+l-P T O ) 

by induction, while 

k 
~, sQS+ITo = _(pk,(s+l)(p_l))6QS+l-pkTo , 

and the binomial coefficients here are equal. 

For s < ~ 5 s+p(i), when p > 2, or for s < 2 k ~ s + 2i-2, when p =2, a simple 

calculation shows that s = pk-1. Here 

~,ksQpk-l+~(i)T0 = -(pk,pk(p-l) + p(pi-l_l))SQP(i)-IT0 

k " i p2k-2k-l+2i-2* ~ ~I = (2 ,2k+21-3)Q 2 -3~1 

for p > 2 

for p = 2 

Since k > i > i, the binomial coefficient is zero. 

Case 5. s - -i rood p, but s ~ -I mod p2, i > i and k > I. 

Here, 
k k 

~, Qsx$ i = _(pk,s(p_l ) )Qs-p ×~i 

k 
by Lemma 6.6. But s-p k ~ -I mod p2, so that Qs-p ×~i = O. 

Case 6. s -z -i mod p2, but s ~ -i mod pi or s -- -I mod p but s ~ -I rood p2, 

k = i and i > I. 

Here, 

k s k 
Q X~ i = _(pk,s(p_l))Qs-P X~ i - (pk_p,s(p_l)÷p)(Q((S+l)/p)-pk-l×~i_l)P. 

Now s - pk _- -I mod pi if and only if S+I _ pk-I _ 0 mod pi-l. Since 
P 

s+__~l ~ 0 mod p i - 1  e i t h e r  Qs-Pkxg i and ( Q ( ( S + l ) / p ) - p k - l x ~  i 1) p a re  b o t h  ze ro  or  p - 
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they are both equal to the appropriate operation on x0 if p > 2 or ~I if p = 2. In 

the latter case, the coefficients cancel as k < i and s ~ pk-i mod pi. 

Lemma 6.8. For p > 2, i ~ 0 and s > 0, 

s I Qsx~i = (-l)i+l~QS+p(i)To if s ~ 0 mod pi 

8Q XT i : 
0 otherwise . 

Proof. We argue by induction on s and i. The lemma is trivial for i = 1 or for 
1 0 < s < pi. A4~in, both sides agree under 8 and P,. We shall show that both sides 

agree under P~ for k > 0. 

Case I: s ~ 0 mod p. 

k k 
Here sQs-p XXi = Qs-p ×~i by induction. By Lemma 6.6, 

k 
s 

SQ XT i 

k 
= -[(pk,s(p-l) - i) + (pk _ l,s(p_l))]Qs-p ×~i 

k 
: _(pk,s(p_l ))Qs-p ×~i 

k 

Q ×~i " 

Therefore, 8QS×Ti = QSx~ i. 

Case 2. s ~ 0 mod p. 

Here, by Lemma 6.6, 
k 

s 

~, ~Q x~ i = 

but 8Qs-pkxTi = 0 by induction. 

k 
-(pk s(p-l) - I)SQ s-p X~ i , 

Proposition 6.9. For p > 2, s > 0 and i ~ O, 

QSxTi = { (-l)i+IQs+O(i)~O0 otherwise, if s ~ 0 mod pi 

Proof. We have shown that both sides of the prospective equation agree under the 

Bockstein. By Lemma 6.1, 

k k 
~, Qs×T i = _(pk,s(p_l))Qs-P XT i • 
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k 
For fixed i, we argue by induction on s that P~ agree on both sides of the 

prospective equation. Again the assertion is a triviality for i = 0, for k = 0, or 

for 0 < s < pi. 

Case l: s ~ 0 mod p. 

k 
Here, Qs-p x~i = 0 by induction. 

Case 2: s =- 0 mod p but s ~ 0 mod pi. 

By induction, Qs-pkx i = 0 unless k < i and s - pk mod pi. 

(pk,s(p-l)) = (pk,pk(p-l)) = O. 

Here 

Case 3: s ~ 0 mod pi. 

Here Qs-pkx i = 0 by induction for k < i. Again by induction, 

k 
I~ QSxT i = -(pk,s(p-1))(-1)i+lQs-pk+p(i)To , 

for i < k < s. We have 

~,kQs+p(i)~0 = 
k 

_(pk,s(p_l ) + pi _ l)QS-p +p(i) 
t 0 • 

Since s ~ 0 mod pl 

f 

+ pi _ l) = ~0 
(pk,s(p-l) 

[ (pk,s(p-1)) 
For s ~ pk < s+p(i), s = pk and 

k 
p~ QS+p(i)~ 0 = _(pkpk(p_l))QP(i)~o 

forO<k<i 

for k > i. 

= 0 . 


