CHAPTER III.

HOMOLOGY OPERATIONS FOR H_, AND H, RING SPECTRA

by Mark Steinberger

Since K, ring spectra are analogs of H, spaces and Hn ring spectra are analogs
up to homotopy of n-fold loop spaces, it is to be expected that their homologies
admit operations analogous to those introduced by Araki and Kudo [12], Browder [22],
Dyer and Lashof [33] and Cohen [28]. We define such operations in section 1 for H_

ring spectra and in section 3 for H, ring spectra.

As an amusing example, we end section 1 with the observation, due independently
*
to Haynes Miller and Jim McClure, that our homology operations in H*F{Xf,s) =HX

coineide with the Steenrod operations when X is a finite complex.

For connective H, ring spectra, we show that the resulting ring of operations
is precisely the Dyer-lashof algebra. Moreover, if X is an H_ space with zero (as
in II.1.7), then the new operations for the H, ring spectrum X coincide with the

space level operations of ﬁ*X.

As will be shown by Lewis in the sequel, the Thom spectrum Mf of an n-fold or
infinite loop map f:X + BF is an H, or H, ring spectrum and the Thom isomorphism
carries the space level operations to the new operations in HyMf. This applies in
particular to the Thom spectra of the classical groups (although a simpler argument
could be used here).

In section 2 we present calculations of the new operations in less obvious
cases {with the proofs deferred until sections 5 and 6). Our central calculations
concern Eilenberg-MacLane spectra, where , in contrast to the additive homology
operations for Eilenberg-MaclLane spaces, these operations are highly nontrivial. In
fact, they provide a conceptual framework for the splittings of various cobordism
spectra into wedges of Eilenberg-Maclane spectra or Brown-Peterson spectra. The
proofs of these splittings in the literature are based on computations of the
Steenrod operations on the Thom class. We show in section 4 that the presence of an
H, ring structure, n > 2 {n > 3 for the BP splittings), reduces these computations
to a check of at most one low dimensional operation, depending on the type of
splitting. In addition, we have placed these splitting theorems in a more general
context which, as explained in the previous chapter, leads to a reproof of Nishida's
bound on the order of nilpotency of an element of order p in the stable stems. All
of our splittings are deduced directly from our computation of the new operations In
the homology of Ellenberg-MacLane spectra.
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§1. Construction and properties of the operations

Just as the space level operations of Araki and Kudo, Browder, and Dyer and
Lashof are based on maps
Eg, x. X+ X,
iz,
J
80 our new spectrum level operations are based on the structural maps

.:D.E E
S R e

of H_  ring spectra (see I.3.1). We consider homology with mod p coefficients for a
prime p. The following omnibus theorem describes our operations. Properties of the
operations at the prime 2 which are distinct from the properties at odd primes are
indicated in square brackets. As usual, / denotes the homology Bockstein operation,
and Pi denotes the dual of the Steenrod operations PT, with PY = &% if p = 2.

Theorem 1.1. For integers s there exist operations Q% in the homology of H, ring
spectra E. They enjoy the following properties.

(1) The Q° are natural homomorphisms.

(2) Q° raises degree by 2s(p-1) [by s].

(3) Q% = 0 if 2s < degree(x) [if s < degree(x)l.

{4) Q% = xP if 25 = degree{x) [if s = degree(x}!.

{5) Q51 =0 for s # 0, where 1 ¢ HoX is the slgebraic unit element of HyX.

{(6) The external and intermal Carten formulas hold:

®lx x y) = B Q%><§y for x x y € H(EAF);
i+j=s

Qlxy) = 3 (&xH&y) for x,y ¢ H,E.
i+j=s

(7} The Adem relations hold: if p > 2 and r > ps, then

Ff =T (D™t - r, v - (p- e - i - 1T,
i

if p> 2 and r > ps, then
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Q805 = 7 (-1 pi - ryr - (p - Ds - 1)pe" 5!
i
-1 D™ i - r - 1y - (p - Ds - 15 a0l
i

(8) The Nishida relations hold: For p > 2 and n sufficiently large,

PiQS =7 -1 - pi,pn + s(p - 1) - pr + pi)Qs_r+lPi .
i
In particular, for p = 2, Q% = (s - 1)Q5"1. For p > 2 and n sufficiently large,
P:sQS =7 1) e - pi,pn +8(p-1) -pr + pi - l)BQs_r+lP1
i
-1 -1 e - pi-1, p" + s(p - 1) - pr +pi)QS_r+lPis.

1

(9) The homology suspension c:ﬁ*EO + H,E carries the operations given by
the multiplicative H_ space structure of Ey to the operations in the homology of E.
(10) 1If E = X for an H,o-space X, then the operations in HyE agree with

the space level operations in ﬁ*X.

The statement here is identical to that for the space level operations except
that operations of negative degree can act on homology classes of negative degree
and that a high power of p is added to the right entry in the binomial coefficients
appearing in the Nishida relations. For spaces, the same answer is obtained with or
without the power of p because of the restrictions on the degrees of dual Steenrod
operations acting nontrivially on a given homology class. Our conventions are that
(a,b) is zero if either a < O or b < 0 and is the binomial coefficient (a + b)!/alb!
otherwise. The Nishida relations become cleaner when written in terms of classical
binomial coefficients since

(pn+a+b) - (a+b)

a a for a < pn and b > 0.

(a,p" + b) =
The Q5 and gQ° generate an algebra of operations. If we restrict attention to

the operations on connective H_ ring spectra, then the resulting algebra is
precisely the Dyer-Lashof algebra in view of relations (3) and (8) and application
of (10) to the H,p space obtained by adjoining a disjoint basepoint to the additive

H, space structure on QSO.

We sketch the proof of the theorem in the rest of this section. With the
exception of the proof of the Nishida relations, the argument is precisely parallel

to the treatment of the space level homology operations in (28] and is based on the
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general algebraic approach to Steenrod type operations developed in [68] and

summarized by Bruner in IV§2.

Let = be the cyclic group of order p embedded as usual in Zp and let W be the

standard n-free resolution of ZP (see IV.2.2). Let C*(Ezp) be the cellular chains

of the standard I _-free contractible space Ex_ and choose a morphism

p
JW C*(EZP) of w-complexes over Z

p
We may assume that our H_ ring spectrum E is

p*

a CW-spectrum with cellular structure maps gj:DjE + E. By I.2.1, DjE is a CW-

spectrum with cellular chains isomorphic to C*(Ezj) ®;, (C4E)J. Thus we have a
J

composite chain map

: Ex
W@, (CE)P __J_®_1_..C*(E):p) ®, (6,BP = Cy(D ) ———» C4E.
b
The homology of the domain has typical elements e; ® xP (and ) ® X @ vor ® xp),
where x ¢ HyE, and we let Qi(x) e HyE be the image of e ® ¥P. Iet x have degree q.
If p = 2 define

Q%(x) = 0 if s < q and Q%(x) = Q. .(x) if s > q.

5-q

for p > 2, define

Q%(x) = 0 if 2s <q  and QR%(x) = (-1)5v(q)Q y(x) if 2s > q

(2s-q) (p-1
- qlg-1)m/2 — 21 s s

where v(q) = (-1) (m1)9, with m = 5—(p—1). By [68] the Q° and 8Q° account

for all non-trivial Qi when p > 2. Since Ep restricts on E(P) to the p-fold product

of E and since the unit e:S + E is an H_-map, parts (1)-{5) of the theorem are

immediate from [68].

It is proven in the sequel [Equiv, VIII.2.9] that the maps 135 94 ks Bj K, and
b )
Sj discussed in I$2 have the expected effect on cellular chains. For example, §
can be identified with the homomorphism

J‘*

S (1®t®1)(a, ®u) . ;
CylFz;) ® (C,E® C,E)Y ~Cy(E2;) ® (c,E)Y ® Cy(EZ;) ® (C4F)

where A' is a cellular approximation to the diagonal of Ezj and u and t are shuffle
and twist isomorphisms (with the usual signs). The Cartan formula and Adem
relations follow. For the former, the smash product of H_ ring spectra E and F is

an H, ring spectrum with structural maps the composites
S, E.ANE,
D;(EAF) ——L»DJ.EADJ.F —J d,garF,

and the product EAE » E of an H, ring spectrum is an H_, map; see I.3.4. For the
latter, we use the case j = k = p of the second diagram in the definition, I.3.1, of

an H  ring spectrum. The requisite algebra is done once and for all in [68].
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The Steenrod operations in H*(D"E) are computed in [Equiv. VIII §3], and the
Nishida relations follow by naturality. (See also II.5.5 and VIII §3 here.)

Since ¢, :H ( ) > H,E is the composite of the identification
ﬁ*(EO) = H,(Z EO) and the natural map e*:H*(szO) + HyE and since e’XmEO + E is an
H, map when E is an H_ ring spectrum, by I1.3.10, part (9) of the theorem is a
consequence of part (10). In turn, part (10) is an immediate comparison of
definitions in view of I1.2.2 and I.3.8. The essential point is that the isomorphism
DnEwX z E”Dwx induces the obvious identification on passage to cellular chains, by
{Equiv. VIII.2.9].

As promised, we have the following observation of Miller and MeClure.

Remark 1.2. Let X be a finite CW complex. By II.3.2, the dual F(X*,8) of X' is
an H ring spectrum with pth structural map the adjoint of the composite

DFm mhx-——+nwm ,S) Ax -&¢Ds~l+&

Here Ay is computed in II.5.8, ¢4 is the Kronecker product H*X @ WX + Z_, and

£ x 1s the identity in degree zero and is zero in positive degrees. For

ype H_qF(x*,s) = X, we find by a simple direct calculation that Q Sy = P8y

for all s > O. A more conceptual proof by direct comparison of MeClure's abstract

definitions of homology and cohomology operations is also possible; see VIII §3.

§2. Some calculations of the homology operations

For R a commutative ring, let HR be the spectrum representing ordinary
cohomology with coefficients in R. We wish to compute the operations on the
homology of HZP and some related spectra. We shall state our results here, but
shall present proofs of the computations for HZp in sections 5 and 6. Recall that

the mod p homology of HZ_ is Ay, the dual of the Steenrod algebra.

P
Notations 2.1. We shall adopt the notations of Milnor in our analysis of Ay [86].
Thus, at the prime 2, A, has algebra generators £s of degree 2.1 for 1 > 1. At cdd
primes, Ay has generators gy of degree 2pi~2 for 1 > 1 and generators t; of degree

2pi-1 for 1 > 0. We shall denocte the conjugation in Ay by x.
We have the following theorems.

Theorem 2.2. For p = 2, A, Is generated by g, as an algebra over the Dyer-lashof
algebra. In fact, for i > 1,
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i
Q? "251 = xEy -

Moreover, ngl is nonzero for each s > O and, for i > 1,

s+2i-2 i
Q gl if s 20 or -1 mod 2
S -
QXEJ’.-
4] otherwise.

i
In particular, Q% xg; = xgq,; for i > O.

Theorem 2.3. For p > 2, Ay is generated by 1y as an algebra over the Dyer-Lashof
algebra. In fact, for i > 0

Qp(i)TO - (_1)1XTi and

g” M = 1ty

where p(i) = (pi-l)/(p—l). Moreover, SQSTO is nonzero for each s > O and,
for i > Q,

'(-1)18Q8+p(l)ro if s z -1 mod p-
stEi = ¢ (-1)1+1BQS+D(1)10 if 5z 0 mod p-
LO otherwise,
while
(—1)1+1QS+"(1)TO if 5 = 0 mod p*
S -
Q Xty =
0 otherwise.

i i
In particular, QP xg; = xgq4q for i > 0 and QF yr; = yr4, for i > O.

Thus, for p > 2, the operations on the higher degree generators are determined
by the operations on the generator of degree one. A complete determination of the
operations on this degree one generator does not seem feasible. However, we do have

a conceptual determination of these classes. For p > 2, let ¢ be the total g class
g=14+ gl + g2 + e
For p > 2, let t be the total 1 class

T =1+ LIRS B
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Since the component of these classes in degree zero is one, we may take arbitrary

powers of these classes.

Theorem 2.4. For p = 2 and s > O,
Qsil ={ 5-1384.1;

that is, ngl is the (s+l)-st coordinate of the inverse of the tctal ¢ class. For
p>2and s >0,
Q1 = (-1P(e M) gg(po1yey,  and

8%ty = (-1)%(e 7001y,

that is, QSTO is (-1)® times the (2s{p-1)+1)-st coordinate of the product of the
total 1 class and the inverse of the total g class, and BQSTO is (-1)® times the
{(2s{p-1))th coordinate of the inverse of the total ¢ class.

Here we are using the H_ ring structure on HZp derived in 1.3.6. In the
following corollaries, we consider comnective ring spectra E together with morphisms
of ring spectra i:E » HZp which induce monomorphisms on mod p homology. When E is

an H_ ring spectrum, 1 is an H_ ring map by I.3.6.

For p > 2, the homology of HZ or HZ(p) embeds as the subalgebra of Ay generated
by xg; and xt4 for i > 1. For p =2, the homology of HZ or HZ(Z) embeds as the
subalgebra of Ay, generated by 2 and xg. for i > 1.

% 51 Xl

Corollary 2.5. For p > 2, the homology of HZ or Hz(p) is generated by xgp end x1q
as an algebra over the Dyer-lashof algebra. For p = 2, the homology of HZ or Hz(z)
is generated by gi and xg, as an algebra over the Dyer-Lashof algebra.

Similarly, at the prime 2, the homology of k0O, the spectrum representing real
connective K-theory, embeds as the subalgebra of Ay generated by 5?, xgg and x&y
for 1 > 2. The homology of kU embeds as the subalgebra of Ay generated by
gi, ng and XE4 for i > 2.

Corollary 2.6. At the prime 2, the homology of kO is generated by g?, ng and x£ 3
as an algebra over the Dyer-Lashof algebra, while the homology of kU is generated by
gi and ng as an algebra over the Dyer-Lashof algebra.

Proof. By the Cartan formula,
)2

2 2 2
R R
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We have analogous results for the p-local Brown-Peterson spectrum BP. ILet
i:BP » HZp be the unique map of ring spectra. By the Cartan formula, if p = 2, or
by Theorem 2.4, if p > 2, iy embeds HyBP as a subalgebra of Ay which is closed under

the action of the Dyer-Lashof algebra.

Corollary 2.7. For p > 2, HyBP is generated by xg; as an algebra over the Dyer-
Lashof algebra. For p = 2, HyBP is generated by gi as an algebra over the Dyer-
Lashof algebra.

It is not lmown whether or not BP is an H_ ring spectrum. However, suppose
that E is a connective H_ ring spectrum and that f:E » BP has the property that
if:H » HZp induces a ring homomorphism on nge Then if g an H  ring map, so

that (if)y commutes with the operations. Since iy is a monomorphism, so does fy.

We shall also examine the operations on the homology of HZ . for n > 1. Let By
be the homology of HZ and let x ¢ HIHZ n pe the element dual topthe n-th Bockstein

operation on the fundamental cohomolog§ class (so that g x = -1). Then HyHZ . is

P
the truncated polynomial algebra

By = Belx1/(x%),

as an algebra over the dual Steenrod operations. Here the inclusion of By in HyHZ n
is induced by the natural map HZ » HZ n X maps to zero in the homology of HZp, ang
x is annihilated by the dual Steenrod operations.

Corollary 2.8. For p > 2, HyHZ , is generated by x and the elements y&;
b
and xtq of By as an algebra over the Dyer-Lashof algebra. For p = 2, HHZ n is
Y
generated by x and the elements gi and XEo of By as an algebara over the Dyer-Lashof
algebra. For p > 2, the element x is annihilated by all of the operations QF.
Proof. For the last assertion, note that st is an element of Byx for all s since

Q®x maps to zero in Ay. Since x is annihilated by the dusl Steenrod operations, the
Nishida relations reduce to

P,Qx = -1 (e, p" + sp - 1) - pr)Q° T,
and
P§BQSx = (-Dr, p" + slp - 1) - pr - 1)gQ° Tx

for p > 2. Sinee Byx is isomorphic to By as a module over the dual Steenrod
operations, and since no nontrivial element of By is annihilated by P§ for r > O,
and 8 if p > 2, Q% = 0 by induction.
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§3. Homology operations for H. ring spectra, n < =

Cohen, [28], by computing the equivariant homology of the space Cnﬁj) of J
little n-cubes, completed the theory of homology operations for n-fold loop spaces
begun by Araki and Kudo, Browder and Dyer and Lashof. Since an Hj ring spectrum
(ef. [1,841) E is defined by structure maps Crﬁj) o E(j) + E, we can use Cohen's

J

calculations to obtain analogous theorems for H, ring“spectra.

Theorem 3.1. For integers s there are operations Q® in the homology of H, ring
spectra. QSx is defined when 2s - degree(x) < n-1 [s - degree(x) < n-1] and the
operations satisfy properties (1)-(8) of Theorem 1.1 and the analogues of (9) and

(10) for n < =. Moreover, these operations are compatible as n increases.

The Browder operation, A is also defined for H, ring spectra.

n-1-

Theorem 3.2. There is a natural homomorphism An_leqE<® H.E + H

q+r+n—1E’ which

satisfies the following properties.

(1) If E is an H,q ring spectrum, A,_; is the zero homomorphism,

(2) aglx,y) = xy - (-1)%yx,

(3) ap1(6y) = (_1)qr+1+(n—1)(q+r+1)xn_1(y’x); Apoq(%,x) = 0if p =2,
(4) apq(1,x} = 0 =2, ;(x,1), where 1 ¢ HyE is the algebraic unit,

(5) The analog of the external and internal Cartan formulas hold:

Ao (X @®@y,x' @y = (XD g A (vyt)

+ (-1)|y!(|x'|+|y'|+n_1)kn_1(x,X') ®yy',

where |z| denotes the degree of z,

An_l(xy,x‘y') xxn_l(y,x')y'

(o [7lta=1fxr )y
n

+

_I(X,x')yy'

Jxt {H{n-1+]x]+|¥])

+

(-1) x'xxn_l(y,y')

(_l)|y|(n—1+|y'|)+|x'||y‘|k

+

1 1
n_1(x,y Yyx

{6) The Jacobi identity holds:

(_1)(q+n—l)(s+n-l)x (X,Xn_l(y,z)) . (_1)(r+n—1)(q+n-1)

nol An_l(y,xn_l(z,x))

+ (-1)(S+n'1)(r+n“1)xn_l(z,kn-l(x,y)? =0
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for x ¢ HqE, ¥e HE, 2 e HE; oy 1(x,A, 1(x,x)) = O for all x if p = 3.

(7) BpA L (,3) = T A (Px @ Pyy),
and s
-1
B, 1(5,3) = A, (Bx,y) + (-1 Xl A7 (%,85)

(8) )\n_I(X,QSy) = 0.
There is also a "top" operation, En1®

Theorem 3.3. There is a function & 1:HeE + Hoy(n_14q)(p-1)F [(HJE » H2q+n-1]
defined when g+n-1 is even [for all q], which is natural with respect to maps of Hy
ring spectra and satisfies the following properties. Here ad(x}{y) = r,_;(y,%),
adi(x)(y) = ad(x)(adi'l(x)(y)), and ¢, ;% is defined, for p > 2, by the formula
tn-1X = BEp_1X - adP-1(x)(px).

(1) If E is an Hy,y ring spectrum, ¢ .x = Q(n-l+q)/2x lEp1% = P-ltay,

hence g x = SQ(n'l+q)/2x for x ¢ HqE.

(2) 1If we let QP-1*a)/2y (P-1*%] genote £, 1%, then g, _;x satisfies
formulas (3)-(5) of Theorem 1.1, the external Cartan formula, the Adem relations,

and the following analogue of the internal Cartan formula:

£ () = ) Qiijy + 3 xlyjri. forn > 1,
i+j=s O<i+j<p J
0<i,j

where s = E:%i& [n-1+q], q = degree(xy), and rij is a function of x and y

specified in [28, III.1.3(2)]. In particular, if p = 2,

I dxdy v m (5,305

£ L {xy) =
o-1 i+j=s

Moreover, the Nishida relations for En-] are the usual ones plus an unstable error
term given by sums of Pontrjagin products which contain nontrivial iterated Browder
operations.

(3) Ay 3(x,Eq13) = adP(y)(x) and A _4(x,5,_1¥) = O.

(4} £ q{x +¥) = gy 4% *+ E,_1¥ + & sum of iterated Browder operations
specified in [28, IIX.1.3(5)].

In the remainder of this section we sketch the proofs of these theorems.

After replacing E by a CW spectrum and replacing Cn(j) by the geometric
realization of its total singular complex, we have that Clﬁj) & E{J), is a CW

spectrum, for any = C Zj’ with cellular chains naturally isomorphic to
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Cx Cpli) ® (C4EM (cf. (Equiv., VIII. 2.9]). With field coefficients, (C4E)

is equivariantly chain homotopy equivalent to (H*E)J, so we can apply Cohen's
calculations. We define Qix to be the image under the structure mep of e; ® xp,
where e; ¢ H; Crﬁp)/ﬂp is Cohen's class, Y c Zp the cyclic group of order p.
Define Q%x and £,_1% by the formula in $1. Since £ {2) is homotopy equivalent to
s 1, we can define A, l{x,y) to be the image under the structure map of

(_1)(n g+l 1 ®x @y, where 1 ¢ H, ; §,(2) is the fundamental class and x ¢ HE.

As noted by Cohen, Theorem 3.1 is a consequence of Theorem 3.3, with 3.3(1)
immediate from the definition. With the exception of those statements involving
Steenrod operations, all of the statements in Theorems 3.2 and 3.3 follow from
equalities between the images under the structure map y of the operad Cn of the
classes in the equivariant homology of the ¢ n(j) which induce the stipulated
operations. These equalities follow from Cohen's work. This leaves Theorem 3.2(7),
the Nishida relations, and the verification that ¢, 1% is the image under the
structure map of the appropriate multiple of e{n—l)(p—l) C)xp, this last giving the

definition of ,_1X which Cohen uses in deriving his formulas.

Since the Browder operation is defined nonequivariantly, Theorem 3.2(7) follows
from the Cartan formula for Steenrcd operations. The Nishida relations follow from
the computation of the Steenrod operations in H*D E {Equiv, VIII §3}, together
with the fact that the kernel of Hy( C, L E) p > HyD F consists of classes which
are carried to sums of Pontrjagin products of %he type sgated [28, III §5 and 12.3].

For the last statement, we calculate B(e(n—l)(p—l) ® xP). let ¢ be a cheain in
Cy Cn(p) which projects to a eycle in C*Crﬁlﬂ/wp representing €(n-1) (p-1) and let a
be a chain in the integral cellular chains of E, representing x mod p. let
=pb. Let N=1 + g + ees + &1 in Z[np], where o is a generator of e Then
a(aP) = prap-l,
so that

dle ® aP) = peN @baP ™t « (de) @ aP.

it

Since ¢ projects to a cycle mod p in Cy§ alP}/ny, the transfer homomorphism shows
that eN is a cyele mod p in C*C,ﬁp)- Thus, eN C)bap'1 gives rise to a sum of
Pontrjagin products of Browder operations in gx and x (28, III. 12.3], which, by the
space level calculation, must be the appropriate multiple of adp'l(x)(sx). Since
de projects to zero in the mod p chains of Cn(p)/np, and since aP is fixed under

the action of Tp, We can find & chain § such that

(de) ®@aP = sN@aP = s @ NaP = ps @ aP

for all a. By naturality and the space level result, § must project to a cyecle
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representing €(n-1){p-1)-1 in H*(Czﬁp)/np), so that ¢ @ a®? reduces mod p to a
representative of €(n-1)(p-1) ® xF.

§4. The Splitting Theorems

We present simple necessary and sufficient conditions for a more general class
of spectra than previously mentioned to split as wedges of p-loecal Eilenberg-Maclane
spectra or as wedges of suspensions of BP. The spectra we consider are pseudo Hn
ring spectra, defined as in Definition 1I.6.6, but with [ﬁquE replaced by
Cn(J) KEj qu )(J), with n > 2.

Fix a pseudo Hn ring spectrum E = Tel E and assume that nyE is of finite type

over mgE and that nyE = WOE for q sufflclently large. let i:E » HZp be such that

ie:s0 » HZp is the unit of HZp and regard i as an element of HO(E ); under our

hypotheses i will be unique. Let Z(p) be the integers localized at D.

Theorem 4.1. If wyE = Zp, then E splits as a wedge of suspensions of HZp.

and if p = 2 and Sq3i #0orp>2
s >1, and HZ(p).

Theorem 4.2. If myE = 2 ps T2 1, or mukE = Z(p)

and spli # 0, then E splgts as a wedge of suspensions of HZ ,
P
Theorem 4.3. letn > 3. If “OE = Z( ) and H,(E;Z p)) is torsion free and if p =
and Sq i#0o0rp>2and Pll # 0, then E splits as a wedge of suspensions of the p-
local Brown-Peterson spectrum BP.

Remarks 4.4. The variocus known splittings of Thom specira are direct consequences
of these theorems. Obviously the splitting of MO and the other Thom spectra of
unoriented cobordism theories follow from Theorem 4.1. When wOMG = Z{p), the mod p
Thom isomorphism commutes with the Bockstein. At 2, the splittings of MSO and of
the Thom spectra into which MSO maps follow from Theorem 4.2 and the facts that Sq~i
is the image of w, under the Thom isomorphism and that Sqlw2 = Wj in H'BSO. The BP
splittings of MU at all primes and of MSO and MSU at odd primes follow from Theorem
4.3 and similar trivial calculations. Most strikingly perhaps, the splitting of MSF
at odd primes follows trivially from Theorem 4.2. Indeed, Pli is nonzero by
consideration of the first Wu class in MSO. Since the p-component of 7S = quF =

q
nq+lBSF is Zp for q = 2p-3 and zero for 0 < q < 2p-3,

Zp for q = 2p-2
Hq(BSF;Z(p)) =
0 for 0 < q < 2p-2.

Thus, H2p_2(BSF;Zp) = Z_, and the Bockstein

p)
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B:Hy, 1 (BSF;2,) » Hyo 5(BSF;Z;)

is an epimorphism. Thus, the dual cohomology Bockstein is a monomorphism.
We turn to the proof of the splitting theorems. Define

HZ [x,x-ll = \/ EquZ R
P qeZ P
where d = 1 if p =2 and d = 2 if p > 2. As pointed out in I.4.5 and II.1l.3,
HZp[x,x'll is an H, ring spectrum. We think of it as the Laurent series spectrum on
HZp.
Let & C H*(HZp{x,x_ll) be the homology of the zero-th wedge summand HZp.
Since HZP is a sub-H_  ring spectrum of Hzp{x,x‘ll, we know the operations on Ag.
Moreover, if x ¢ HdHZp
the homology of HZp[x,x'll is isomorphic as an algebra over the dual Steenrod

operations to A*[x,x'l],

{x,x'll comes from the canonical generator of HdEdHZ , then

the ring of Laurent polynomials in x over Ay. We could
easily calculate the operations on the powers, x", of x by use of the techniques of
the next section. However, remarkably, we shall only need the p-th power operation

on x. We should remark that multiplication by x,
Hyz99HZ, > H*zdm"l)ﬂzp,

is the homology suspension.

lemma 4.7. In A*{x,x‘ll, for p>2, i > 0 and q an integer

i 2
Pa+p Pqy . rpa
Q (Xgi e X7 = X€i+l ¢ X »
hence
2 i+l 2 3
+
QP q+p (Xgip e A D XE€+1 - S
For p> 2, 1 > 0 and q an integer,
i 2
q+p . «Pdy o . P a
QP (XTi x) XTyq X

Proof. The internal Cartan formula, together with the degree of xf; and of xP4
gives s s :

a+p” pq * Pq -1 pa+l_pq
PP (xg e P = (@ xg (@Y + @ e (P

2
By the Cartan formula, QP3*1xP1 = o, of course, QP%P2 = "9 (Theorem 1.2.(4)).
The first statement follows from Theorem 2.2 or Theorem 2.3 and the fact

2
A C A*[x,x'l} is a subalgebra over the Dyer-lashof algebra. Since xgip . x4 =
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(xgi . qu)p, the second statement now follows by the Cartan formula. The proof of
the third statement is almost identical to the proof of the first.

It should be noted that the full strength of Theorems 2.2 and 2.3 is quite
unnecessary for the computations above. They could be derived quite simply and
directly. We shall apply these computations to the proofs of the splitting theorems
by means of the following commutative diagram, analogous to that of 1I.6.8.

dq. ()
1l x x % s
: dap 0§) " " " g . dq (3)
Cali) 5 (295 €. () x Y
s . 5
Ja.
. LY, .
p4ag, ig - 53 Ay
Ja 1Y

Here, i_, is the restriction of 1:E » HZ_ to Es' the right-hand map gj is the induced

8 Y
H, ring structure of HZp[x,x_ll restricted to the {dq)-th wedge summand. The

commutativity of the diagram is an easy cohomology calculation provided tht E_ » Eg

q
induces an isomorphism of =y for s > q.
The key step in the proofs of Theorems 4.1, 4.2 and 4.3 is the following

result.

Proposition 4.8. let E = Tel Eq satisfy the hypotheses of Theorem 4.1, 4.2 or 4.3.
For the first two cases, let j:E » HnoE be such that je:S » HmgE is the unit. In
the third case, let j:E + BP be a 1ift of j above to BP. Then j induces a
monomorphism of p-primary cohomology.

Proof. We shall show that j induces an epimorphism of p-primary homology. Recall

that i is the projection of j above into HZ In the second case, if nnE = Z . for

r > 1, the nontriviality of the r-th Boekstzin operation on 1 shows that the
generator x ¢ HyHZ . = B*[x]/(xg) is in the image of jy. {Here By = H*HZ(p).)
Thus, for the secohd case as a whole, it suffices to show that By C Ay is in the
image of iy. Similarly, for the third case, it suffices to show that HyBP C Ay is
in the image of iy. The hypotheses of the theorems give us the following conclu-

sions. In Theorem 4.1, the nontriviality of the Bockstein operation on i, for g

q)
sufficiently large, shows that 19, f p> 2, or gy, if p = 2, is in the image of

igx- In Theorem 4.2, the nontriviality of P!i and gP'i, for p > 2, or of Sq%i and
Sq3

or gy and xg, for p = 2, are in the image of 1

i, for p = 2, shows that for q sufficiently large, X1 and XT1s for p > 2,

q** In Theorem 4.3, the nontriviality

of Pli, for p > 2, or of qui, for p = 2, shows that for q sufficiently large, XE1»
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for p > 2 or gi, for p = 2, is in the image of i Thus, the following con-

q¥*
sequences of Lemma 4.7 and the diagram preceding the statement will suffice.

(1) Ifp=2or if p>2andn > 3 and if x§; is in the image of idpq*' then

£ is in the image of i .
X i+l g dp2q*
{2) If p > 2 and xt4 is in the image of idpq*) then xt4,;7 is in the image of
i .
dp2q¥
2 . . . 2 e
{(3) Ifp=2,n>3, and xg; 1s in the imge of i4q%, then xg7,, is in the
imge of 18q*'

The conditions on n are just enough to ensure that He( (¢ (p) wy Equq) contains

preimages of the operations needed to carry ocut the argument.

The passage from the proposition above to the splitting theorems is well known
and has been exploited in the literature to prove the splittings of the cobordism
theories. Theorems 4.1 and 4.3 follow from the algebraic splitting theorem of
Milnor and Moore [87] together with standard properties of HZp and BP. For Theorem
4.2, H*E splits as a direct sum of suspensions of A/AB and of A as a module over the
Steenrcd algbra A. However, the E2 term of the Bockstein spectral sequence of H*E
is spanned by the A-module generators of the summands isomorphic to A/Ag. By
pairing up these generators with respect to their higher order Bocksteins, we may
construct a map of E into a wedge of p-local eyclic Eilenberg-MacLane spectra which
induces an isomorphism on mod p cohomology. In all cases, the hypothesis on “OE

ensures that § is p-loecal, and the cohomology isomorphisms yield eguivalences.

§5. Proof of Theorem 2.4; Some low-dimensional calculations

We shall exploit the following observation of Liuleviecius.

Proposition 5.1. let C = Zzix,x'll be the aslgebra over the Steenrcd algebra A which
is obtained by inverting the polynomial generator of H'RP®. Let Cx be the dual of
C, with a generator ey in degree t. Let ft:C* + Ay be the unique nontrivial
morphism of Ay comodules of degree -t {(i.e., fyey = 1). Then fie, is the component
of the t-th power of the total & class in degree n-t:

fyen = (g% 4.

~
Proof. ILet A:C » C ® Ay be the dual of the module structure of Cyx over the dual
operations. Recall that for c ¢ C and a ¢ A, if Ac = z c; ® oy, then

ac = 2 <a,a;>cy. Here < , >:AQ@ Ay » Z is the Kronecker product. In particular,
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if ax¥ = e a;, then fie, = a

N’ for a ¢ A,

*
<a,f,e > = <f,a,e >
[ A Y t77n

t
= <ax ,e_>
n
n
= <<z >y e >
2% ’n

= <a:an>;

since <xn,en> = 1, However, i is an algebra map, and Milnor has shown that

IR - TP B - SCIN
i i > 1
Thus

We also have an odd primary analogue.

Proposition 5.2. For p > 2, let C be the A-algebra cbtained by inverting the poly-
nomial generator in the cohomology of the lens space L*. Thus, C is the tensor
product of an exterior algebra on a generator x of degree one and an inverted poly-
nomial algebra on y = 8x. Let Oy be the dual of C and let ey, « Cy be dual to yn
and let ey, .1 £ Cy be dual to wh. let fi:Cx + Ay be the Ay comodule map such that
fieg = 1.

{1) If t = 2s, then fie, is (~-1)® times the (n-1)-th component of the s-th
power of the total £ class:

_ n, s
rie = (DR L.

(2) If t = 2s+l, then fie, is the (n-t)-th component of the product of the
total t class with the s-th power of the total £ class:

fie, = (gst)n—t‘

Proof. Let z; € C be the dual of €;. Suppose that Az, = ) zi<® oy The sign
convention here is that for a e A,

az, = § (-1)1(1-t)<a,ai>zi .

t
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(1)nin-t)

A eimilar argument to that when p = 2 shows that fie, = o,. Here, Milnor's

calculations are that

i
7&X=X®1+.2 N ®(r)2i_1 and
iz 1
we v e, , -
i1
Thus
s i s
AWo= D v, and
i>s 2i-2s
My® = 3z @ (5%, .
15 2841 * i-2s-1

In the remainder of this section and in the next, we shall need to evaluate

binomial coefficients mod p. The standard technique is the following.

Lemma 5.3. let a = J aipi and b = bipi be the p-adic expansions of
a and b. Then (a,b) = O mod p unless a; +b ; <p for all 1, when
(a,b) = ]TT(ai»bi) mod p.
i
Moreover, for a < pn -1,

{a,p? = 1 - a) = (-1)® mod p.
We shall not bother to quote the first statment, but shall use it implieitly.
The following proposition is the key step in proving Theorem 2.4.

Proposition 5.4. For p = 2, the map f:Cy + Ay given by
s

Qn€1 forn >0
& forn=20
fe = £
n
1 for n = -1
0 otherwise

\

is a map of Ay coalgebras. For p > 2, the map f:Cx + Ay given by

.

(-1)°0%, if n = 2s(p-1)

(-1)°%8Q%, if n = 2s{p-1)-1
fe, = § -15 forn =0

1 for n = -1

{ O otherwise
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is a map of Ay coalgebras. Thus, in either case, the map f coincides with the map

f_, described sbove.

Proof. Of course f:Cx + Ay is a map of Ay comodules if and only if £¥:A 5 Cis a
map of A-modules. But this latter condition is equivalent tokthe statement that fy
commutes with the action of the dual Steenrod operations PE for k > 0 and also

commutes with the Bockstein g when p > 2

For p > 2, Bess T 5.9 and B1g = -1. {We have adopted the covention that for
v e HY and x ¢ Hq+1X, <X, Bx> = (-1}Qfl<sy,x>.) Moreover, the subspace of Cy
spanned by ©25(p-1) and €2s(p-1)-1 for s an integer is a direct summand of Cy as a
module over the dual Steenrod operations. We have gpecified that f = O on the
complementary summand. Thus, for p > 2, it will suffice to show that the dual
Steenrod operations in Cy agree under f with the Nighida relations on the pertinent

homology operations on E] OT 14

For symmetry, we shall write y for the polynomial generator of C when p = 2.

For p > 2, the computation is divided into three cases, First, those e; which are

k
carried by Pg to an element of positive degree, second, those which have image in

degree zero, and third, those which have image in degree -1.

In the first case, we show that for p = 2 and 2K < s,

k
Pi ey = (2k,s—2k+l)e X’
s~2
and that for p > 2 and pk < s,
k
P C2a(p-1) 8- - e .
2(s-p ) (p-1)
let d = 1 when p = 2 and let d = 2 when p > 2. Then the statements above reduce to
k
Pf Cas(p-1) ° (pk,s(p—l} - pk+l)e X
d{s-p )} {p-1)

for p > 2. However, since C was obtained from the cohomology of RP® or L,

y for r = 0
Pry = yp for r = 1
0 otherwise

Thus, for n > 0, Py® = (r,n-r)y™'T{(P-1) yy the Cartan formula. Our claim follows
from the caleulation
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k k
= <pP yd(S-p ) (p-1)

k k
d{s~p ) {p-1) _p
< Py eds(p—l)> B

as(p-1)"

1

= (p5,s(p-1) -p51).

For p > 2 and s > pk, we have similarly that

k

P I < 1y K1
Py €28(p-1)-1 {p,s{p-1) - p lle

2(s-p¥)(p-1) - 1
Here, P'x = 0 for r > 0, so that

k

k
s{p-1)-p (p-1)}~1 _p _ .k k+l
<Xy Py eZs(p—l)—1> (p,s(p-1) - p 1.
On the other hand, the Nishida relations give us, for s > p¥,
k k
2.8 _ k m k+1, .8-2
Py Q g = (27,27 +s-2 )Q £y
for p =2, and, for p > 2,
k X
PP Q%r, = -(p%,0" + s(p-1) - p 1P
e K ) k . m k+1 -2 X
Py 8%, = —(p", 0" ¢ sp - 1) - - 1gaS P g

Here, the initial -1 is cancelled by the conventions in the definition of f, and the
additional high power of p in the right-hand side does not alter the binomial
coefficients unless the right-hand side would otherwise be negative. Thus, we must
check that for s > p, if s(p-1) < p*1, then (p¥,p" + s(p-1) - p**?) and

(pk,pm + 8(p-1) - pk*l k+1

=1 +Dp+ see+ pk. But since pk < s, we have s = pk +t with 0 < t < p(k). Thus,

-~ 1) are zero. Since s(p-1) <p -~ 1, we have s < p(k+l)

s{p-1) = pk(p-l) + 4y, with 0 < % < pk. Thus, the specified coefficients are zero.
k
It remains to check those operations Pg whose images have degree 0 or -1 in

Cy. However, e may not be in the image of any P; , as P'1 = O for r > 0.
PyQ'g; and P,Q"1, are zero by the Nishida relations. (Qq kills & or t;.)
For the remaining case, we shall show that for p = 2,

k
2 -
Py e2k—l e,
and for p > 2,
pk
Py e X = -e .
2p (p-1)-1

To do this, we must compute the Steenrod operations on y'l when p = 2 and on xy'l
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when p > 2. For p>2 and r > O,

1 1

0=pP(yH = %0y + ety

i

)

yPry-l . yppr-ly—l

by the Cartan formula. Thus, Pry-l = —yp—lPr_ly'l, so that
pry-1 :(_1)ryr(p~1)-1 ,

by induction. For p > 2, since P'x = 0 for r > 0,

Pr(xy-l) = (‘l)rxyr(p-l)-l_

Thus, for p = 2,

and for p > 2

k k
> = (1P P (p-l)_l,e > = -1.

-1 k
<xy " ,PP e .
2p (p-1)~1

2pk(p~1)-l

The following lemms will complete the proof.

Lemma 5.5. For p = 2,

For p > 2,
P8ty = (-1)571,

Proof. For p = 2, the Nishida relations reduce to
+1 0.1
Py Q% = (s-1,2"-8)Q Py, = 1,

by Lemma 4.3. For p > 2, the Nishida relations reduce to

—(s—l,pn—s)QOPgBr

H

8 .8
PxBQ g 0

- (_1)s—1

by Lemma 4.3, since Bty = -l.
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Proof of Theorem 2.4. For p = 2 and s > O, the fact that

Q% = (e hgn
follows immediately from Propositions 5.1 and 5.4. For p > 2 and s > O, the fact
that

s

Q%ry = (1% M) and

2s(p-1)+1

s s, -1
BQ T (-1) (¢ T)2s(p—1)

follows immediately from Proposition 5.2 and 5.4. However, all of the even degree
coordinates of g'lr come from 5'1. Thus,
] _ s, -1
8Q T = (-1)7( )25(p~l)
One can identify certain algorithms such as the following curiosity when
p=2:
. i-1 .
i 2 -1 i.
j -j-1
P = L@@ )
J=1
Thus, the actual computations can get quite ugly. We have the following low-
dimensional computations of ngl for p = 2. In the next section we shall show that
QZt'lgl = (Qt"lgl)z. Thus, we shall only list tagl. We shall write
XEi = B3 for i > 1.



QZtgl for 0 < t <15, where p = 2:
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10

12

14

16

18

20

22

24

26

28

30

8184 + 8283 + 81 8283 + B
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§6. Proofs of Theorems 2.2 and 2.3

We shall compute the operations on H*HZp = Ax. The elements oka* are Com-
pletely determined by the effect of the dual Steenrod operations Pg for k > O,
along with the Bockstein operation if p > 2. Thus, our computations will be based

on induction arguments using the Nishida relations.

Theorems 2.2 is the composite of Lemma 5.5 and Propsitions 6.4 and 6.7.
Theorem 2.3 is the composite of Lemma 5.5, Propositions 6.4, 6.7 and 6.9, and
Corolliary 6.5,

We begin by recalling some basic facts about the dual Steenrod operations

in Ag.

lemma 6.1. The following equalities hold in Ay. For p > 2 and i > O,

k
p -
i “XE5_x if r = plk)
P*Xgl =
0 otherwise
kK
{Recall that plk) = %TT" .) Forp>2andi20,

P:xri =0 forr >0,
and

BXTs

i = XEy o

1

Here, £ is identified with the unit, 1, of A4.

Remarks 6.2. Notice that the added high power of p in the right-hend side of the
binomial coefficients in the Nishida relations allows us to make the following

simplification. For p > 2,

X . k
PP o = 7 (M p® - pi,stp-1) — p1)S P Bl L
i
For p > 2,
k s - i+l k s—pk+i i
PP 8Q® = § (-1)*"H(p" - pi,s(p-1) + pi - 1)gQ Py
i
. i*1, k s-pi+i_i
+ ) (1) (p - pi - 1,s(p~1) + pi)Q Py8 .
i

One of the key observations in our calculations is the following.
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Lemma 6.3. (The p-th power lemma). For p = 2 and s > 1,

Q2S-151 = (Qs—151)2 .

For p > 2 and &8 > O,

BQPSTO (BQSTo)p-

Proof. We argue by induction on s. We shall show that both sides of the proposed

equalities agree under Pg for X > O and under 8 when p > 2. Of course, g is no
problem, and both sides of both equations vanish under Pi. For the right hand
side, this follows from the Cartan formula. For the left-hand side, the Nishida
relations give

PiQs = (s - l)Qs"1 , and for p > 2

PreQ° = sga®t - 0% .

k
Thus, we may restrict attention to PP for k > 0. If s = P&}, lemma 5.5 god the

Cartan formula show that both sides of the equations are carried to 1 by PP

Thus, the lemma is true for p=2and s = 2, and for p > 2 and 8 = 1. In the

remaining cases, k > 0 and s > pk'l. Here for p = 2,

k k
Pi Q2s—1El - (2k,2s-1)st'2 —1El ,
while
k k-1
2 s-1 2 2 s-1 2
Py {Q l) = (Py Q cl)
k-1
= (251 s01) (052 '151}2
k
- (2k"1,s-1)Q23-2 -1El ,

by the Cartan formula, the Nishida relations and induction. For p > 2,

k-1 5 .p
(P 8Q°ty)

k
S
P} (8Q°)P

k-1
-0 s(p-1) - 18P 1P

k-1 e-pX
-(p 7 ,s(p-1) - 1T o,

by the Cartan formula, the Nishida relations and induction. The conclusion follows
easily from Lemma 5.3.
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We can now evaluate certain of the operations.

Proposition 6.4, For p = 2 and i > 1,
For p> 2 and 1 > O,

i
. . _p-l
(Again (i) o1 .)

Proof. We argue by induction on i. Again it will be suffiecient to show that both
k
gides of the equations agree under PE for k > 0. For p = 2,

k 1 i k
27 27-2 k i 27-2-2
Py Q g, = (27,27-2)Q £y -
PRI
For 0 < k¥ < i, the binomial coefficient is zero, while for k > i, Q &, = 0
for dimensional reasons. Thus, the only nontrivial operation is
i i
1.27-2_ _ 2°-3
P*Q €1 - Q 51 *

i
For 1 = 2, Q2 ’Bgl = ngl = gi. Since g1 = Xx&p, the proposition is true for
i =2 by Lemma 6.1. For i > 2,

= (Xgi—l) 3

by the p-th power lemma and Induction. ILemma 6.1 is again sufficient. For p > 2,
let i = 1. Then
Pian(l}w

1.1
o~ PLBQ Ty T 1

by lemma 5.5. Thus, SerO = -xgy. For i > 1,

k .
Pf SQp(l)t

k
= -(p5,p(5)(p-1) - 1ge? P o

0

. . k
-(pk,p1-2)er(l)-p T

O!

by the p-th power lemma and induction. The result follows from lLemma 6.1.
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Corollary 6.5. For p > 2 and i > O,

o(i) - (.11
Q T4 (~1) XTy e
Proof. We have just shown that Qp(i)ro and (-l)ixri have the same Bockstein.
However, X X
PP P = Lo e (i) (o1 P

. k
-(pk,pi-l)Qp(l)~p N

o *

. . k
For k < i, (p¥,pt-1) = 0, while for k > 1, Qp(l)-p 1, = 0 for dimensional

reasons. The result follows from lemma 6.1.

We wish now to compute the operations on the higher degree generators. By the
Nishida relations and Lemma 6.1,
k S k s-pk
PY Q%xey = -(0%,8(p-100%F x,
J

k.
Spel) Py,
i-§

CAS

o 7 19T R - pot),sp-1) + ppli))Q

J1
and for p > 2,
k k k
PE Bstri = -(pk,s(p—l) - 1)ge5P Xty - (pk-l,s(p-l))Qs-p XE;
j+l, k S—pk+p(j) pj
+ 7 (=1)° T(p" - pplJ) - 1,si{p-1) + pp(J))Q (—xgi_j).
331

However, we may simplify this expression considerably.

lemma 6.6, For p > 2 and i > O,

X

k X
P Q%xey = -(0%,8(p-100°P xg, - (0 - p,s(p-1) ¢ QS

Xy -
Forp>2and i>0,

X K X
B2 8%, = ~(0%,s(p-1) - 18P yr, - (05-1,800-100%F xg; -

Moreover, the following additional simplifications hold for particular values
of s. Forp>2, s#0mod pand k>0,

k S k s-pk
P} 8%, = -(p",s(p-1) - 1)80°F yr,
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For p > 2, 8 £ -1 mod p2 and k > 1,

pk 8 k s—-pk
Py Q XE; = -{p7,s{p-11)Q XEq -

Proof. The assertion is true for k = 0 or k = 1 because of the left-hand term of

the binomial coefficients. We shall assume k > 1. If s £ -1 mod p and j > O, then

s - pk + p(j) 2 -1 mod p. By the Cartan formula (or Theorem 1.2(5) if i = j),
k .
&P +p(J)X

1]
|
ju}

X
gg_j =0. If sZ-1mdp, p>2, k>0and j >0, p¥ - pp(J) - 1 =

mod p, while s(p-1) + po{j) # O mod p. Thus,
k . .
(p~ - pold) -1, s{p-1) + plj)) = 0.

For s = -1 mod p, but s £ -1 mod p2 {here p > 2), s = tp-1 mod p2 for 0 < t < p.
Thus

s{p-1) + pp(j) = (p-t)p+l mod p2,
while

Pk - ppl(j) = (p-1)p mod p2.
Thus,

(X - polj),slp-1) * pe(j)) = O.

It suffices to assume s = -1 mod p2. Here, for j > 1 {and kX > 1},

8 - pk + p(j) = p mod p2 .

By the Cartan formula (or Theorem 1.2(5) if i = j),

kK .03
Q5P +D(J)x£§_j = Q.

Proposition 6.7. Forp =2, 1> 0 and s > O,

i .
Qs+2 —2£1 if 8 =2 0 or -1 mod 2+
S -
Qxg, =
0 otherwise .
For p> 2, i >0 and s > O,
(-l)lﬁQS+p(l)rO if s =-1mod p
Sxgg = § (-1 i § 2 0 mod pt

0 otherwise .
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Proof. We argue by induction on s and i. For p = 2, the assertion is trivial for
i=1. Forp>2, and 0 <s < pi—l the assertion holds by dimensional reasons and
the p-th powerklemma. Of course, we shall show that both sides of the equations
agree under Pg for kX > 0 and under 8 when p > 2. Clearly both sides agree

under PL, and when p > 2, Lemma 6.1 implies that 8%, = 0 for all 1 and s by
k
induction and the Nishida relations. Thus, it suffices to check PE for k > O.

Case 1. s = O mod p, but s Z 0 mod pi.
By the preceding lemma,

k s k g K
PE Q X&;= -(p ,s(p-1))Q P XE;

k . .
By induction Qs-p xgi = 0 unless s - pk = 0 mod p*. Since s # 0 mod pl, this means
k <iand s = pk mod pi. Here (pk,s(p—l)) = (pk,pk(p—l)) = 0, Thus stgi = 0.

Case 2. s =z 0 mod pi.

Again

X s k S X
Py Qg = -(0%,s(p-1000F xe,

0 ifk<iorp > s

(-l)l(pk,s(p—l))BQS_p+p(l)ro if s > pk > Pl; p>2
k

&y

]

k s+t -2-2

(27,8)Q if s > 2k >

v
N
-
Lol
n
[aS]

by induction. On the other hand,

K sep(d) X i s+pli)-p*
PP 8Q 1y = -(p7,s(p-1) + p” - 2)8Q 5 fp>2,

and
k i . i k
Py 0% P = (2N et - 20057 R if p = 2.
Since s = 0 mod pi,
0 for 1 <k <1

(pk,s(p—l) + pi -2) =

\4
[

(pk,s(p-l)) for k >

k ;
It suffiﬁes tg show that PE BQS+Q(1)TO =0 fors < pk < g + p(i), when p > 2, and

that P2 Q' '251 =0 fors < 2¥ < g+212. These inequalities imply that

s = pk, so that (pk,s(p-l)) = 0.
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Case 3. 8 £ 0 or -1 mod p.

Again,
k s k s~ X
P} Qg = ~(p,s(p-1)0°P g, = 0

by induction.

Case 4. s = -1 mod pi
Here,
X k k-1
s k ~ +1 -
P Q% = -5, s(0-100 P g, - 0Fp,s(p-1) + p)(@ST/RIE e P
by Lemma 6.6 and the Cartan formula.
s+l k-1 k-1 i-1

H

k
For 1 <k <1, QP yg; = 0 by induction. Since T - P

1
Xgi-l =0 forl <k<i. Fork=1«<1i,

~D mod p N

Q<<s+1)/p>-pk'

(—l)i(BQ((S+1)/p)—l+p(i_l)ro)p - (_l)iBQs-p+p(i)To for p > 2

PEstgi =

i-1 i
(gl{s+1)/2)-1%2 —251)2 - g5*? "451 for p = 2

by induction and the p-th power lemma. On the other hand, for pE < s+ pli) and
P>2, X . ) K
PP 0™ e = L(p¥,s(p-1) v o - 2080% PP
and for p = 2 and 2¥ < s 212,

2 gl

. i, .k
2 g ‘, - (2K sral_p)gSt2 22

1t
Since s & -1 mod pi, the right-hand side of the binomial coefficient is congruent to
pt -p -1 mod pi. Thus, if 1 < k < i, the coefficient is zero and if k = 1, the
coefficient is -1.

k i

For 8 >p> >p-and 1 > 1,

- 15, s(p-1)) + (p%-p,s(p-1)+p](-1) 150 for p > 2

S*‘o(i)~PkT
o* s °
P* Q XEi =

k i
- -2
5-27+2 £

[(25,6) + (2%-2,8+2)10Q for p = 2,

1

by induction and the p-th power lemma. Thus, for these values of k, it suffices to
check that



85

(p%,s(p-1)) + (p¥ - p,s(p-1) + p) = (p¥,s(p-1) + pi - 2)

which the reader may verify (or c.f. [101, p.54]).

Forp>2,1i=1o2and s > pk,

x s k s+1- X
Ph Q°xgp = ~(p%,8(p-1))(-60°" 1P 1)
by induction, while
X sr1-p

PP 8%, = -(p", (s41) (p-1))8Q T

and the binomial coefficients here are equal.

’

For s < p& < s+pli), when p > 2, or for s < 2k <8+ 21—2, when p =2,

calculation shows that s = pk—l. Here

k k R . .
P peP TP o (¥ pE(p-1) v piptTlo1))eP P e

K ko o1 . i
I

Py

1

Since k > i > 1, the binomial coefficient is zero.

Hi

Case 5. s & -1 mod p, but s Z -1 mod p2, i>1eand k> 1.

Here, X

k
P) Qg = ~(p%,8(p-1000°P xi,

k
by Lemma 6.6. But s-pk £ -1 mod p2, so that Q°°P XEy = 0.

2 i

Case 6. s = -1 mod p

k=1and i>1.

Here,

k k
P %y = -(0%,s(0-100P g, - (pF-p,s(p-1)4p)(Q

Now s - p¥ = -1 mod pt if and only if E%L - pk—1 = 0 med p1°1.
k-1

X
1 etther Q5P yg; ana (! (S*H/RIPT L yP

s+l g
5 # O mod p i

((s+1)/p}-pk-

for p

for p

1

1

2

, but 8 £ -1 mod p~; or s = -1 mod p but s £ -1 mod p°,

Xgi-l

Since

P

simple

are both zero or
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they are both equal to the appropriate operation on 19 if p>» 2 or & if p=2. In

the latier case, the coefficients cancel as X < i and s = pk-l mod pi.

Lemms 6.8, For p > 2, 1 > 0 and s > O,

i+1 s+p(i)T

stii = {-1)7 78Q if s 20 mod p-

Hi

0
S -
8Q Xty =
0 otherwise .
Proof. We argue by induction on s and i. The lemma is trivial for i = 1 or for
0 <8< pi. Ag%in, both sides agree under 8 and Pi. We shall show that both sides

agree under PE for k > O.
Case 1: s = 0 mod p.

k
Here Q5P Xty = Q8P x&. by induction. By lemma 6.6,

i

k 8
P 8%,

i

k k S K
-UpS,s(p-1) - 1) + (° - 1,8(p-1)1°P xz,

k S k
= -(p",s(p-1)0%7P xe,

K s
= Pg Q XE; -+

Therefore, BQSxTi = QSXEi-

Case 2. s # O mod p.

Here, by lemma 6.6,
K S k S= X
P 8Q%t; = -(p%,s(p-1) - 1" P 1, ,

k
but gQS~P xty = 0 by induction.

Proposition 6.9. For p > 2, s > 0and 1 > 0,

(-1)i+lQS+p(i)tO if s = 0 mod pl

0 otherwise.

Proof. We have shown that both sides of the prospective equation agree under the
Bockstein. By Lemma 6.1,

K s k s—pk
P} Q¥xr; = -(p,s(p-1)0% Py, .
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k
For fixed i, we argue by induction on s that PE agree on both sides of the

prospective equation. Again the assertion is a triviality for i = 0, for k = O, or
for 0 < s < pi.

Case 1: s # 0 mod p.

Here, Q%P xt; = 0 Dby induction.

Case 2: s = O mod p but s £ 0 mod pi.
. : g-p< . k i
By induction, Q5P T4 = O unless k < i and s = p~ mod p~. Here

(p5,s(p-1)) = (p%,pK(p-1)) = 0.

Case 3: s = 0 mod pi.

k
Here QP 1; = 0 by induction for k < i. Again by induction,

X o k i+l s-pk+p(i)
Py Q%xty = -(p,s(p-1))(-1)7"7Q T

for 1 <k < s. We have

K srp(i) k i s-pFep(i)
Pp QP e = (0% ,s(p-1) + pt - 1S TP

Since s = 0 mod pi,

0 for 0 <k < i
(p5,8(p-1) + pt - 1) =
(pk,s(p—l)) for k > i,

For s < pk < s+p(i), s = pk and

k )

o

k
p s+p(i) k
P* Q TO _(p ;p

i}

(p-1)10° 1t

n
o



