CHAPTER II

MISCELLIANEOUS APPLICATIONS IN STABLE HOMOTOPY THEORY

by J. P. May

with contributions by R. R. Bruner, J. E. McClure, and M. Steinberger

A number of important results in stable homotopy theory are very easy con-
sequences of quite superficial properties of extended powers of spectra. We give

several such applications here.

The preservation properties of equivariant half-smash products (e.g. in I.1.2)
do not directly imply such properties for extended powers since the jth power
functor from spectra to Zj-spectra tends not to enjoy such properties. We
illustrate the point in section 1 by analyzing the structure of extended powers of
wedges and deriving useful consequences about extended powers of sums of maps.
These results are largely spectrum level analogs of results of Nishida [90] about
extended powers of spaces, but the connection with transfer was suggested by ideas
of Segal [96].

Reinterpreting Nishida's proof [90], we show in section 2 that the nilpotency
of the ring wyS of stable homotopy groups of spheres (or "stable stems") is an
immediate consequence of the Kahn-Priddy theorem and our analysis of extended powers
of wedges. The implication depends only on the fact that the sphere spectrum is an
H, ring spectrum. This proof gives a very poor estimate of the order of
nilpotency. Nishida also gave a different proof [90] which applies only to elements
of order p but gives a much better estimate of the order of nilpotency. In section
6, we show that this too results by specialization to S of a result valid for
general H_ ring spectra. Here the key step is an application of a splitting theorem
that Steinberger will prove by use of homology operations in the next chapter. His
theorem will make clear to what extent this method of proof applies to elements of

order pi with 1 > 1,

The material discussed so far dates to 1976~77 (and was described in [721}.

The material of sections 3-5 is much more recent, dating from 1982-83. The ideas
here are entirely due to Miller, Jones, and Wegmann, who saw applications of
extended powers that we had not envisaged. (However, all of the information about
extended powers needed to carry out their ideas was already explicit or implicit in
[72] and the 1977 theses [23, 10l] of Bruner and Steinberger.) Jones and Wegmann
[44] constructed new homology and cohomology theories from old ones by use of
systems of extended powers and showed that theorems of Lin [53] and Gunawardena [38]

imply that these theories specialize to give exotic descriptions of stable homotopy
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and stable cohomotopy. Jones [43] later gave a remarkably ingenious proof of the
Kahn-Priddy theorem in terms of these theories. The papers [43, 44] only treated
the case p = 2, and we give the details for all primes in sections 3 and 4. (In
fact, much of the work goes through for non-prime integers.) The idea for the
Jones-Wegmann theories grew out of Haynes Miller's unpublished observation that
systems of extended powers can be used to realize cohomologically a basic algebraic
construction introduced by Singer 52, 98]. We explain this fact and its

relationship to the cited theorems of Lin and Gunawardena in section 5.

§1. Extended powers of wedges and transfer maps

Fix positive integers J and k and spectra Yy for 1 <1 <k, let

Y=YV ---\/Yk and let vi:Y; + Y be the inclusion. For a partition

d = (jy,eee,dy) of J, J; 2 0and jy + eee Jy = §, write ag = ajlr“"jk and let fy
denote the composite
ces A
Djl v A Djkvk ay
D.%ﬁ-‘-AD.Yk — D, YA«eeAD, ¥ —es> DY ,
J1 Ji J1 Jx J

For later use, note that permutations o ¢ I act on partitions and that I.2.8
implies the equivariance formula fJ = foJ o o. Note too that, for maps hi:Yi + E

with wedge sum h:Y » E, the following diagram commutes by the naturality of oge

£
D. Y. AeeeAD, Y. ——9 DY
3l By K

Djlh_l/\ see ADjkhk lDJ_h

%y
D, EA eee AD, E —me— DjE

9 Ik
Theorem 1.1. Let Y = Y;V «ee VY, . Then the wedge sum

f.: D, T.AeeenD, ¥ ————>DY
J \J/Jll J k J

of the maps fJ is an equivalence of spectra.
Proof. By the distributivity of smash products over wedges,

19 s Vi, Aeoay,
1 3.1 1j
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where I runs over all sequences (il,...,ij) such that 1 <1, < k. Say that I ¢ J if
there are exactly jg entries i. equal to s for each s from 1 to k. For each

partition J of J, let rj = 251 X see % zjk and define

(3.1 (i}

Y, = \ Yy Aees AT =gk (Y 1/\...AYk oy,
IeJ "1 g4y

(Here the isomorphism would be obvious on the space level and holds on the spectrum
level by direct inspection of the definitions in [Equiv. II §§3-4].) Then Y; is a

Zj-subspectrum of Y(j) and Y(J) = \/ Yj. Now
J
(i} (3,)
Y=V B x_ Y end Er w Y. =Ep, k. (¥ T Aeeeny £
dJ J J Zj d Jz.,d 3
J
by I.1.2{(i) and I.1.4. Clearly f; has image in Ezj xy YJ and factors as the

S

composite

(j,) ()
(Bx, & Y 1)A--.A(EX. %, ¥ k)

(3} (i}
EZ.D(Z (Y lA s AY k) .

4%y
Here o is an isomorphism. (Technically, the smash product in its domain is
"internal" while that in its range is "external"; see [Equiv, II§3].) The map
i:EZ:J. X ees X EZJ. — EZJ. is given by the commutation with products and
1 k
naturality of the functor E and is a Ly-equivalence. Therefore i & 1 is an

equivalence (by [Equiv, VI.1.15]). The conclusion follows.

Our interest is mainly in finite wedges, but precisely the same argument

applies to give an analog for infinite wedges.

Theorem 1.2. Let {Yi} be a set of spectra indexed on a totally ordered set of
indices and let Y = \( Y;. For a strictly increasing sequence I = {il,...,ik} of
1

indices and a partition J = (jl,...,jk) of J with each j; > O (hence k < 3), let

D Yo A ees . Yo s
£3,105, Y4, ADg Y3 > Dy

be the composite of f; and the evident inclusion. Then the wedge sum
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.0\ D, Y, AeseAD, Y, —»D.Y
I it i 1y J

of the maps fJ 1 is an equivalence of spectra.
L

Parenthetically, this leads to an attractive alternative version of the

definition, I.4.3, of an Hi ring spectrum.

Proposition 1.3. An HS ring structure on E determines and is determined by an H,
di
E.

ring structure on the wedge ¥ L
Proof. If V zdiE is an H_ ring spectrum with structural maps gj, then the evident
T i
composites
£,
gj i:D.zdiE D\ z3Pgy —ls Vv zdhE*—*zdiE
PR d q h
give E an H: ring structure. If E is an Hi ring spectrum with structural maps
Ej,i’ then the maps
-1
. f. di di
£.:0 (VIHE) —d s \/ D 5 'Easeeap, z FE— V 1¥iE
Jod g 5,1 91 Jx 1

determined by the composites

. £, Aves AL, .
di di 34,1 3,1, d4i,i daj. i
; L 1E'~---AD.>: kg TU7°1 K ks llEAo--Az kkE—i—»EdrE,

D
J1 Ix

k .
r= jaia’ give \/ ZdlE on H ring structure. Thege correspondences are
a=1 i
inverse to one another.

Returning to the context of Theorem 1.1, let

gJ:Dj(Yl\f ...VYk) — D51Y1A "DjkYk
denote the Jth component of ffl. Thus g1 is the composite of the projection to
Ezj kz. YJ and the inverse of the equivalence (i x l)a in the proof of the theorem.
Tﬂe theorem is of particular interest when Y = ss» = Yk, hence we change
notations and consider a spectrum Y and its k-fold wedge sum, which we denote by

(k)Y. Recall that finite wedges are finite products in the stable category and let

p:Y —» By ang ¥y Ly

denote the diagonal and folding meps.
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Definition 1.4. Define TJ:DjY > DjlYA see ADjk’).' to be the composite

D,a ()
DjY—-J——>D ¥) ———-»D Y AeeeAD, Y .

J1 jk
Explicitly, let nJ:((k)‘I)(j) > V Y(j) be the projection and let t1; also denote
Ied
the map
B, ko (n A( ))E): [ AL A s (Vv Y(J))=Ezj txz‘f('j).
JE I RN R 3

Our original map t; is the composite of this map end the equivalence [(1& 1)al™l,
We write Ty for 13:D5Y » Y3 when k = J and each jg = 1.

We think of 15 as a kind of spectrum level transfer map. When ¥ = =X for a
space X and 7 C 23, we have

B, w9 = E, ko (YY) - 2%m, « x9)?
Jd w Jom jow

by I.1.1. We shall prove the following result in the sequel.

Theorem 1.5, When Y = X%, the map

(1) (3
JEXJ kz Y > B, wx, Y

; I

is the transfer assoclated to the natural cover

J J
ESJ KSJ X+ E}Ij xz'j X0 .

We do not wish to overemphasize this result. As we shall see, the spectrum
level maps 1y, for general Y, are quite easily studied directly.

The importance of these maps is that they measure the deviation from additivity
of the functor DJY.

For maps hy:Y + E, by +...+ Iy is defined to be V(hlv...vhk)A. Thinking now
in cohomological terms, consider the hi as elements of the Abelian group EOY = {Y,%]
of maps Y + E ing/&.

ses Ases M .
Corollary 1.6. Dj (hl + + hk J(aJ(D h1 D hk)) Moreover, the
following equivariance formula holds for g € Ek.

*
J(ctJ(D‘j hlk ---'\Djkhk)) = ‘l‘cJ(an(D. h A sssAD, h )).

J -1 J
oty o ) ot ©
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Proof. By Theorem 1.1 and the naturality diagram preceding it, the following

diagram commutes.

D.A D.(h,v ++s Vh ) D,V
DY —_— D, Ky ! " » Dj((k)E) — D,B
l (gJ) (gJ) v
VD, h, A «s«AD, h
31 Jy K VaJ
VDY——-VD YAsesAD, Y > D, EAs»es AD, E—~»\/D.E
g J 3 91 Ix J 91 Ix 7 d

The equivariance follows from I.2.8, the formula fJ = ch o o, &nd the fact that
oh = A

Taking each hi to be the identity map, we obtain the following special case.

¥
T (a ), and TJ(aJ) depends only on the conjugacy class

Corollary 1.7. D.(k) 7

J
of J under the sciion of I

3

When j is a prime number p and k = piq with 1 > 1 and q prime to p, a simple
combinatorial argument demonstrates that every conjugacy class of partitions has pis
elements for some s > 1 except for the conjugacy class of the partition J(k} =
{(1,...,1,0,...,0), p values 1, which has (p,k-p) elements. Of course, pi'l but not
pi divides this binomial coefficient. A trivial diagram chase based on use of the
projection (k) Y (P)Y shows that TI(k) coincides with TIp) T Tp DpY > Y(p) Also,
by I.2.7 and I.2.11, %3 (p) = 1 E(P) + DpE Putting these observatlons together, we

obtain the following result.

Corollary 1.8. If k = piq with p prime, 1 > 1, and g prime to p, then
Dpk:DPY + DPY can be expressed in the form pix + (p,k-p)lptp for some map i.
In favorable cases, the following three lemmas will lead to a more precise

caleulation of Dp on general sums.

Lemmg 1.9. The following diagram commutes for all Y, j, and k and all partitions

Jof j. X,

DY — »D. YAeeeAD, Y

J 1 Iy

T T, A ®eo AT,
(j,) (j,)

ey A PN "
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Proof. This follows from a straightforward diagram chase which boils down to the

factorization of A:Y » (j)Y as the composite

(j;) (. )
y b (K)y _Aveeeva UL,y Ky

{

(where A:Y » O)Y = S is interpreted as the zero map if any jr = 0).

(3 (3

> Y is the sum over g ¢ I; of the

Lemma 1.10. The composite lej2Y 3

)

(j)+Y .

permutation maps o:Y
Proof. This is an easy direct inspection of definitions and may be viewed as a

particularly trivial case of the double coset formula.

Lemma 1.11 For any ordinary homology theory Hy, the composite

Trx o
HyD.Y ——=H (D, YA+ee AD, ¥) ——p H,D.¥
J 3 Iy J
is multiplication by the multinomial coefficient (j;,...,Jy). In particular,

13*15* is multiplication by ji.

Proof. We may assume that Y is a CW-spectrum and exploit I.2.1. Since

wih = 1:¥ » ¥, where ni:(k)Y + Y is the it projection, Ax:CxY » C*((k)Y} =
CyY @ «++ @ C,Y is chain homotopy equivalent to the algebraic diasgonal. With
Y, = ese = Yy = ¥, the composite (i x l)a in the proof of Theorem 1.1 induces aj

upon passage to orbits over zj (rather than over £. x +ss x 5. ). Therefore

i Jk
ay o T3 is just the composite
] (j) 1 kow . .
W kg y(J) Lxa iy b (B G 27 oy ke ek —1—P<—V*-WJ. s 97,
i i Jor 1 i

Since there are (jl,...,jk) sequences I ¢ J and thus (jl,...,jk) wedge summands

here, the conclusion clearly holds on the level of cellular chains.

§2. Power operations and Nishida's nilpotency theorem

lLet E be an H, ring spectrum and Y be any spectrum. Recall from I.4.1 that we
have power operations GE:EOY > EODJY specified by (Eﬁ(h) = ngj(h). We use the
results of section 1 to derive additivity formulas for these operations and apply

these formulas to derive the nilpotency of nyS.
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*

lemma 2.1. For h; ¢ EOY, Pn, + eee + 1) = Tt (P () A-es AP )}, where
iemms 2.1 i i1 4 509 i1 Jye K

the product A is the external product in E-cohomology and the sum extends over all

partitions J = (j;,...,Jy) of j.

Proof. This is immediate from Corollary 1.6 and the commutative diagram

%7

D, EAeeern]d, E ——s»D.E

3 N j

E, AeesAg, £
J1 I l
KA eve AE—2 o &

Here the terms with one Ji = J and the rest zero give the sum of the Ka(hi).
When J is a prime number p, the remaining error term simplifies. The full

generality of the following result is due to McClure.

Proposition 2.2. Let hy ¢ E0Y. If p = 2, then

?

2(h

MRS S Py v eees Ry o+ T*(hi:\hj).

=1 2K ik

If p is an odd prime and Y and E are p-local, then

Bylayreeee my) = "%(hl} reees B0y + T;(;_' [ reees n)Pe (Perecamdy)).

In particular, ?p(kh) =k Pyn) + %'— (xP - k)T;(hp) in both cases.

Proof. We must show that

* * jl jk
.1 eee 3.} eoe = oo
3yl Iy ! TJ(?jl(hl)" /\/%k(hk)) {0y A An)
for a partition J = (jl,...,jk) of p with no ji = p. By lLemma 1.9,

*

¥ *
T, = 1.(1t, Aessa1, } . Thus it suffices to show that
Pod Iy

% s
1P 0 = L))
3 PJ< )=

forany j > O and h ¢ B, 1r j =0, n(0) ang Dyl{h) are to be interpreted

as the identity map of S and the conclusion is trivial. If j = 1, the conclusion is

also trivial, There are no more cases if p = 2, so assume that p > 2 and
1 <Jj < p. By lemma 1.11, the composite

T . 1.
DY —d 3] —J—ijY
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induces multiplication by j! in ordinary homology. It is thus an equivalence since
* % * 3

Y and hence also D;Y is p-local. Therefore 1j:E (DjY) + E (Y(J)) is a

monomorphism and we need only check that

*

s

*
51 =
3.13 f?(h) ]

% s
J

AhY ).
TJ( }

The left side is jlhj. By Lemma 1.10, the right side is the sum over o g Ip of

ox(hd). The commutativity of E implies that oy(hd) = nd for all o,j, and h, and the

conclusion follows.

Now recall from I.4.2 thai elements o« ¢ Er(Dqu) determine homotopy operations
E:an > n E via the formula alh) = u/’?}(h)-

Corollary 2.3. let a ¢ Er(Dqu) and h ¢ n,E, where q is even and E is p-local if p
is odd. Then

G = 6+ o P - 0 (27 ()P,

where the product is the multiplication in ngE.

Proof. The following diagram is easily seen to commute.

T.A1 P
Sr—i—-’Dqu/\E —L?SPQAE —-—}lA—]L—%E'\E

IR b
-Pq D
I (1 Al)a) Ab

E-pqsrl\ sPe P Z“pq(qu AE)AE = E AR —t o E

¥ -
Thus u/Tp(hp) = (z pqrp*(a))hp. The conclusion follows from the last statement of

the previous proposition.

Assuming that E is p-local {when p = 2 as well as when p is odd), we obtain the

following immediate corollaries.
Corollary 2.4. If plh = 0, then pi_l(z'qup*(a))hp+l = 0 for all a.

Here we have multiplied by h to kill plgih). Of course, this may not be
necessary.

Corollary 2.5. If both pih = 0 and pla = 0, then p= >

(Z—pqrp*(a))hp = 0.

One can also arrive at the last two corollaries by direct diagram chases from
Corollary 1.8 and the definition of an H_ ring spectrum, without bothering with
additivity formulae. (That approach was taken in [72], following Nishida [90, §8]).
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These relations specialize to give nilpotency assertions, the sharpest estimate

being as follows.

Corollary 2.6. let x ¢ an satisfy pix = 0, where 1 > 0 and q is even if p > 2.

Suppose that x = E’pqrp*(a) for some ¢ ¢ E (D_89Y. Then pi”lxp+2 = 0. Moreover,

pa*q p
if pla = 0, then pr 1xP*l = o,
The problem, of course, is to study Ey(D_S%) and 1

p p¥**
to an arbitrary H_ ring spectrum E, but to compute Tpx We must specialize. If E =

Everything above applies

MO, for example, then every element of nyE has order 2 and no element is nilpotent,
hence 12*:MO*(DZSQ) > MG*{qu) must be the zero homomorphism for all gq. This does

not contradict the following assertion.

Conjecture 2.7. Any element of finite order in the kernel of the (integral)

Hurewicz homomorphism nyE + HyE is nilpotent.

We shall prove the conjecture for elements of order exactly p in section 6, but

the methods there fail for general elements of order pi with 1 > 1.

When we specialize to E = S, we find that the Kahn-Priddy theorem gives

appropriate input for application of the results above.

Theorem 2.8. If p = 2, let ¢(k) be the number of integers j such that 0 < j < k and
J £0,1,2, or 4mod 8. If p> 2, let ¢(k) = [k/2(p-1)]. Let q be an integer such

that q = O mod p¢(k), where q ig even if p > 2. Then Tp*:"rD s s nrqu is a

Y
(split) epimorphism for pg < r < pg+k{p-1).

We shall prove this in section 4. Actually, the purely stable methods we use
will give surjectivity without giving a splitting. For this reason, we are really
only entitled to use Corollary 2.4, rather than Corollary 2.5. This doesn't change
the heuristic picture, but to give the correct estimate of the order of nilpotency,

we assume the splitting (from [46, 95, or 27]) in the discussion to follow.

Theorem 2.9. let x ¢ n,S satisfy pix = 0, where 1 > O and n is even if p > 2. Let
m be minimal such that mn = 0 mod p¢!(M/P-11+1)  qpey p1-100%1 = o 1nguetively,

some power of x is zero.

Proof. ILet g = m. Since n < {In/p-11+1){p-1), there exists a ¢ “pq+nDqu such
that Z"pqrp*(a) = x. With h = x®, Corollary 2.4 gives pl'lxmp+2 = 0.

i-lmp+l _ )

Using

pla = 0, Corollary 2.5 gives p

Unfortunately, m increases rapidly with n {(although our estimate for p > 2 is

sharper than Nishida's since he only knew Theorem 2.8 for r < pg+k). For example,
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the first stem in which an interesting element x of order 2 occurs is the l4-stem
{"interesting" mesning that ¥ is neither in s4J nor a product of Hopf maps). Here
m = 64 and we can only conclude that xL29 = 0, & truly stratospheric estimate. So
far, and granting that our stemwise calcﬁlations still extend through only a very

small range, we have no reason to disbelieve that 14 = () if 2x = 0. Corollary 2.6
seems to suggest that this answer might be correct. However, as pointed out to me
by Bruner, 12§;n§D28q > w*qu is not always an epimorphism and thus

Corollary 2.6 cannot be used to prove this answer.

§3. The Jones-Wegmann homology and cohomology theories

The next three sections will all make heavy use of certain twisted diagonal

maps implicit in the general properties of extended powers.

Definition 3.1. Let n be a subgroup of zj and let W be a free n-CW complex. For a

based CW complex X and a CW spectrum Y, define a map of spectra
s w Y ax 5 W (xax) ()

by passage to orbits over n from the n-map

1a4 (3

W Y9y ax 228,y y (4

yaxd) s wx (xraxytdl,

Here the iscomorphism is given by I.1.2(ii) and the shuffle n-isomorphism
Y Ax) 2 (vax)'9). Note that 4 is the identity map when X = SO and
that the following transitivity and commutativity diagram commutes, where X' is

another based CW complex.
(w N“Y(J))AX"\X’ ArT, oy MWY(‘”)AX'AX
AAl
WK“(YI\X)(J)'\X' A A

ﬂ\‘ )

W (taxax)(d) trlan o,

W (YA X! axy )

With n = L and W = Ezj, we obtain
a:(DyY)AX » Dy(YAX).

Although not strictly relevant to the business at hand, we record the relationship
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between these maps and the maps 1y, %5 ks Bj ks and 83 of I52 and use them to
’ )
construct new examples of H_ ring spectra.

Lemma 3.2. The following diagrams commute for spectra Y and Z and spaceg X. The

unlabeled arrows are obvious composites of shuffle maps and the disgonal on X.

1,A1 §, A1
Y(J)Ax—l—»rnj‘mx D, (YA Z) AX a4 DY AD,ZAX
| b :| |
1
(Yax 9 —J—>DJ(YAx) D (YAZAX) DjYAXADZAX

| e

§
Dy(YAXAZAX) --‘j——vDJ(YAX) AD(ZAX)

a Al Bs A1
j,k Ik
DjYADkY AX Dj+kY LD 4 DjDkYAX DjkY AX

| I

DjY/\X ADkY AX A Dj(DkY AX) A

IA'\A leA
o B
(Yax)ap (YAX) —LEsp  (vax) DD (YAX) —E 5 p

D 1Pk jk(

; o YAX)

I learned the following lemma from Miller and McClure.

Lemma 3.3. Iet X be an unbased space and E be an H_ ring spectrum. Then the
function spectrum F(X",E) is an H_ ring spectrum with structural maps the adjoints
of the composiies

D.e £
DJ.F(X",E) ~X —-A——>DJ(F(X+,E) Ax) —lopx .5,

where ¢ is the evaluation map. In particular, the dual F(X*,S) of £™X" is an H,
ring spectrum.

Proof. If j =0, 4a:S8 Ax = }:mX+ —_ XQSO = 8 1is to be interpreted as $™§, where
§:x% 0 ig the discretization map sending X to the non-basepoint. The diagrams of
I.3.1 are easily checked to commute by use of the diagrams of the previous lemma.

Returning to the business at hand, observe that, with X = st , we obtaln a
natural map A:}:DjY + Dj Y. Thus, for any integer n (positive or negative), we have
the map

znA:zn"lDJz'n'lY = znzDJ):'lz"nY ——»anjz'nY.
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We shall be interested in the resulting inverse system

1 -1

soe —‘")'; DJZ Y—* see —>» 3 DJZ Y—*DJY-—"X DJZY-“”»H — DJE Y > se
(where n > 0). By the diagram in Definition 3.1, the maps
znA:(anjs‘n)Ax z zn(DJs’nAx} ——»anJ(S'nA X) = z“DJz’nz"‘x

specify a morphism of systems, again denoted a,
{(anS ) AX} — {27 Dy D ¢

We shall study the homological and homotopical properties of these systems. In this
section, we consider any j > 2. We shall obtain calculational results when j is a
prime in the following two sections.

let Ey and E* denote the homology and cohomology theories represented by a
spectrum E. For spectra Y, define

i
(]

gy = 1im E,(z"D,r™)  and ETJ)Y colim E*(znnjx'nY)

i)y = 1m E("D s A and F

. ¥ n. N
= A .
(j)Y colim E (¢ DJS Y)

Upon restriction to spaces (that is, to Y = 1*X), we obtain induced natural

transformations

g gl

*
X and A:EUX——'-’-FU)

and these reduce to identity homomorphisms when X = 0. It is clear that FiJ) is

a homology theory and F(j) is a cohomology theory on finite CW spectra. Passage
to colimits from the homomorphisms

- * i - i -
o-1 0% g (0 s ey = ER (R lDJ ™y gl D;% )

J

(z :E
yields suspension isomorphisms
i +1 i
( )zY'-~> E(.

J)Y'

and A" is easily seen to commute with suspension. The analogous assertions hold for
ELJ). With these notations, the main theorems of Jones and Wegmann [44) read as

follows (although they only consider primes j and only provide proofs when j = 2).

*

Theorem 3.4. The functor E(j} is a cohomology theory on finite CW spectra, hence
¥ ¥ *

A :E(j)x *> F(j)x is an isomorphism for all finite CW complexes X.
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Theorem 3.5. Let E be conmective and j-adically complete, with nyE of finite type
over the j-adic integers Z = x Z . Then E(J)
plJ

spectra, hence A,:F (J)X > EiJ)X is an isomorphism for all finite CW complexes X.

is a homology theory on finite CW

We defer the proofs for a moment. As Jones and Wegmann point out, these results
are no longer valid for infinite CW complexes.

0

Recall that D.S” = z”Bz;f and the diseretization map Bzg » &0

induces
g ESS +> So Upon smashing with Y, the composites

£,
anJ. gh A, D, L g0

give a morphism from the system {anjS_nA Y} to the constant system at Y. We call

this map of systems gj and obtain a map of cohomology theories

g EY——-—)F{)

commutation with the suspension isomorphisms being easily checked. We shall shortly

prove a complement to this observation.

Proposition 3.6. Let E be an H_ ring spectrum. Then the composites of the

functions

?J.;EI’Y = [£7Y,E) —> [Dj):'nY,E] = E"(z“njz‘nw

and the natural homomorphisms En(ZnDjz'nY) > E?j)Y specify a map of cohomology
theories
* *
PEY —E Y
J (J)

We thus have the triangle of cohomology theories

X—————»F

on finite CW complexes X. Since 5 (x) = g o DJ(x) we see immediately that

A ?)(1) gJ(l) where 1 ¢ EO(SO) is the 1dentity element. It does not follow that
*

A ’? j in general. As we shall see in the next section, this fails, for exam-

ple when E MO. However, as observed by Jones and Wegmann [44}, this implication
does hold for E = S,
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Proposition 3.7. The following diagram commutes for any finite CW complex X.

*
j%///ﬂ X\\i*
J
. ¥ n. _-n A* . ¥ n. 4N
whmw(z%z X%——#whmn(x%s AX)

Proof. Since A* 3} and g; are morphisms of cohomology theories, they are equal
for all X if they are equal for X = 0. Any morphism ¢:E*X » F*X of cohomology
theories is given by morphisms of 7 O modules. When E' = n" and X = SO, o(x) =
¢{lex) = ¢(1)+x, so that ¢ is determined by its behavior on the unit 1 ¢ (9.

For general E and X = SO, it is obvious that g;(x) = E;(l)x. It is not at all
obvious that (A*@E)(x) = A*’§3(1) + x We now have this relation for E = S, and we
shall use it to prove the Kahn-Priddy theorem in the next section. As we shall
explain in section 5, theorems of Lin when p = 2 and of Gunawardena when p > 2 imply
that g; and thus 3; in Proposition 3.7 are actually isomorphisms. We complete
this section by giving the deferred proofs, starting with that of Proposition 3.6.

We need two lemmas.

Lemma 3.8. The following diagram commutes for any partition J = (jl,...,jk)

of j.
T.A1
D.YAX -+ »D. YAeeeAD, Yax <SRffle)1AM)_ vy, x Ao aD, YAX
J 1 k 1 Iy
A ANeee AA
7
D, (YA X) »D, (YAX)A eee AD, (YAX)
3 3 Iy

Proof. The "transfer" T3 is specified in Definition 1.4, and the proof is an easy

naturality argument.

lLemma 3.9. For an H_  ring spectrum E, the composite

R *
[Y,E] —> (D, Y,E] -4 [szz'lY,E]

is a homomorphism.

Proof. By Lemma 2.1, we have the formula

p"l *

Lot i,p-i

Pix+y) =R +Py +
3 J i 121

)
(P aF .
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With X = Sl lemma 3.8 and the fact that A:S1 > Stagl is mull homotopic imply that
-A is null homotopic.

Ti,j-1
Thus @? in Propesition 3.6 is a natural homomorphism. It is easily checked

that fl commutes with suspension and this proves the proposition.

Finally, we turn to the proofs of Theorems 3.4 and 3.5. Clearly it only
*
remains to show that E(j) and E(J) satisfy the exaciness axiom on finite CW pairs

(Y,B). Although not strictly necessary, we insert a general observation which helps
explain the idea and will be used later.

Lemma 3.10. Iet f:B + Y be a map of CW spectra with cofibre Cf. There is a map

w:CDjf + EUCf, natural in f, such that the diagram

DY———»CDf‘——a—rzDB

L

DY—J—-DCf—l—nDzB

commutes, where 1:Y » Cf and 3:0f » IB are the canonical maps. If f is the

inclusion of a subcomplex in a CW spectrum, then the diagram

oD, £ ———‘L—a»DJ.Cf

b D.n
J

D;¥/D;B 4 D, (¥/B)

also commutes, where the maps n are the canonical (quotient) equivalences and the

bottom map ¢ is induced by the guotient msp Y + Y/B.

Proof . CDjf = DjY b r CD B and DJCf DJ(Y “p CB); ¢ is induced by the
inclusion DJY > Dij and the composite of A:CDjB > DJCB and the ineclusion

DjCB > Dij. The diagrams are easily checked.

Of course, the bottom row in the first diagram is not a cofibre sequence and y
is not an equivalence. Now let (Y,B) be a finite CW pair. For notational
simplicity, set

DJ{Y,B) = DJ.Y/DJB and Z = Y/B.
As n varies, the maps

znw:anj(z"nY,z'nB) —ranJ.z'nz
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specify a map of inverse systems, again denoted y, and we shall prove the following

result.

Proposition 3.11. For any pair (Y,B} of finite CW spectra,

*

* * = -
9 tE(5)Z —= Colin E anj(x 2y, "B

and, under the hypotheses of Theorem 3.5,

Py 1 1im E*ZnDj(Z-nY:Z—nB) - Eij)z

are isomorphisms.

Note that the assumptions on E in Theorem 3.5 imply that all groups in sight
are finitely generated Zj—modules and thus that all inverse limits in sight preserve

*
exact sequences. Given the proposition, the required E(j) and Eij) exact
sequences of the pair (Y,B) are obtained by passage to colimits and limits from the

- i -1
5% Y,L Djz B).

Following ideas of Bruner {which he uses in a much deeper way in chapters V and

E' and E, exact sequences of the pairs (D

VI}, we prove Proposition 3.11 by filtering Y{J). For 0 <s < j, define

rg = 1g(r,B) = Urpreeenyy,

where Y, = Y or Y. = B and s of the Y, are equal to B. We have

B(‘j) = I‘J- C I‘j_lC A Cl“o= Y(j)t

Each iInclusion is a zj-equivariant cofibration, and we define

n, =1

s S(Y,B) = FS(Y,B)/FS

1(Y,B).

+

Then lig = Z(j) and, for 0 < s < j, I, breaks up as the wedge of its (s,j-s) distinct
subspectra of the form Zlh es*AZ;, where Z, = Z or Zr = B and s of the Zr are equal
to B. It follows that I, is the free zj-spectrum generated by the (£, x . _.)-

. s J-s
spectrum B(S)A-Z(J“S). That is,

1. =3 K NONN Z(J—S).
s j-s

The functor Eg, MZ (?) converts zj—cofibrations to cofibrations and commutes with

gquotients, hence we have cofibre sequences

L. rr/rt Ezj kz. rr/rs

%
(*) E):‘j Xy I‘S/I‘t ~+Ezj x
dJ J J

)

for 0 <r <sg <t <j. For a based space X, the map A:DJYAX + Dj(Y AX) induces
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compatible maps

A:[EEJ uzjrs(Y,B)]AX——-EzJ. uzj I (YaXx,Bax)

and similarly for iy on passage to quotients. The following simple observation is
the crux of the matter.

lemma 3.12. For 0 < s < j, there is & natural equivalence

a:DgBAD:_Z » Ei: K

5 j n,(Y,B)

L.
J

such that the following diagram commutes for any X.

(1agal) AAB
(DBAD; 2) AX ~E228D BaX AD;_ZAX —E2E-sD (BAX) AD (ZAX)

afnl a

[E:j uz.nS(Y,BH AX

r BL. % HS(YAX,B AX)
d

L.
Jok

In particular, the bottom map A is null homotopic when X = sl,

Proof. By I.l.4 and the description of HS(Y,B} above, we have

(8} 5 n{j-s)
Ez. x_ I _(Y,B) = Ef, « B'°'AZ .
J Zj 8 J ZS X Ej-s
As in the proof of Theorem 1.1, we may replace Ezj by Eig x Ezj_s on the right side,
and it then becomes isomorphic to DsB‘“Eﬁ—sz’ The diagram is easily checked.

Now apply i® to the cofibre sequence (¥} for the pair (:~TY,z PB) with quotient
£MZ. We obtain an inverse system of cofibre sequences for 0 < r <s <t <j. On
passage to E¥ and then to colimits (or to Ey and then to limits), there results a

long exact sequence. For O < s < j, the maps between terms of the system

(2PEx. & 1_(zY,: 7B}
J I.'s
J

are null homotopic, hence its colimit of cohomologies is zerc. Inductively, we
conclude from the long exact sequences that the colimits of cohomologies associated
to the quotients PS/Pt with 8 > O are all zero and that the maps of colimits of
cohomologies associated to the gquotient maps FO/rt > PO/FS are all isomorphisms.
With s = 1 and t = p, this proves Proposition 3.11.



39

§4. Jones' proof of the Kahn-Priddy theorem

We prove Theorem 2.8 here. The proof for p = 2 is due to Jones [43] and we
have adapted his idea to the case p > 2. We begin more generally than necessary by
relating the cofibre sequences {*) above lemma 3.12 to the maps tj:DjY > Y(j) of
Definiton 1.4. The idea here is again due to Bruner. Thus let (Y,B) be a pair of
finite OW spectra with quotient Z = Y/B. The map T is obtained by applying the

functor Ezj s {7) 1o the composite

’ a9 ()
YA (Niptd M«zjuﬂ,
J=1{1,...,1), and using the equivalence Ezj & Y(j) = Y(J) of nonequivariant spec-

tra (where, technically, the smash product is external on the left and internal on
the right; see [Equiv. II §3] ). The spectrum Ly i ) 45 a wedge of isomorphic
copies of Y(J) indexed on the elements of s, and nJA(j) is just the sum of the j!

permutation maps. It follows that nJA(j) restricts to a zj—equivariant map

Tg > Ej x Iy for 0 < s ¢ j. Upon passage to subquotients and application of the

functor Ei; x; (?), we cbtain maps of cofibre sequences
J

EZJ. "):.Fs/rt ——-—»Ezj K T /T —-~—>Ezj s 1“1,/rS

't .
J
I
T

s

)

J J
le le
rs/r’t —_—> T /1",C R rr/

for 0 <r<s <t <j. With t = s+l, the left map T; is nicely related to the

equivalence o of Lemma 3.12, as can easily be checked by inspection of definitions.

Lemma 4.1. The following diagram commutes for 0 < s < j, where p is the projection

onto the unpermuted wedge summand.

il -

DgBAD, 2 EL; sxzj n (Y,B)

TSA TJ._SL lTj

p'8lazli-sl oy . ARPNE AL AL )
Lgx Xj-s s

When J = 2, there is only one map of cofibre sequences above, and we obtain the

following conclusion.

Proposition 4.2. For CW pair (Y,B) with quotient Z = ¥/B,
1) T}
BaZ w—ng-DzY/DzB b epz 2 1BAz
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2+

is a cofibre sequence, where y¢ is induced by the quotient map Y » 2, zé is
the composite .
BaZ = (BAY)/(BAB) —=21 o (YAY)/(BAB) —2—-»921(/1325,
and ré is the composite
2 Al
Dzz —=»ZAZ = {(YUCB)AZ =—=1BA Z.
Proof. Combine the cofibre sequence
E):2 NZQHI(Y,B) —»DZY/DZB -—->D22 ——’zEzz k):2 nl(Y,B)
wlith the equivalence «:BAZ » Ez2 s nl(Y,B) and check that the resulting maps are
those specified. 2
Our main interest is in the pair (CY,Y).
Corollary 4.3. The following is a cofibre sequence.
It T
HYAY) —2 5D Y —2 oD 5y —2 - 5Y ArY.

2 2

Y and check the maps, using

Proof. Use the evident equivalence D2CY/D2Y = £D2

Iemma 3.10 for the middle one.

For j > 2, we have too many cofibre sequences in sight. Henceforward, let p
be a prime and localize all spaces and spectra at p without change of notation. We
shall show that, for odd primes p and pairs (CS%,59), our system of cofibre
sequences collapses to a single one like that in the previous corocllary. Recall
from Lemma 1.10 that Trlr:Y{r) > Y(r) is the sum of permutations map and
1,1.:DY » DrY induces multiplication by r! on ordinary homology. In particular,

rrir
for 1 <t <p, DY is a wedge summand of y(r),

Lemma 4.4. For 1 < r < p, Dr82q+1 is equivalent to the trivial spectrum and

1r:82qr > DrSZQ is an equivalence with inverse ;7-1 .
rl 'r

Proof. When Y = qu, Tpl, induces multiplication by r! on homology; when Y = qu*l,

it induces zero. The coneclusions follow.

Thus, when Y is a sphere spectrum, most of the spectra

L 0 (CY,Y) = DY '\DP_SZY

are trivial. P
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Corollary 4.5. Iet p > 2 and let g be an even integer. Then there are cofibre
sequences

N VNP I
and P P

sPart 2 s% A~ Dqu+1 —r 5PI2

_ _ - -1 " PR
Proof. ILet Iy = I (CY,Y) and nm =r/r . If ¥ = 894 then L, “Zpﬂs is trivial

for 2 < s < p, henee Ei, . I'/T  is trivial for 2 <r < s < p. Thus Fl/Fp > I

P L
P
and I./T_+ T./T induce equivalences upon application of Er_ x. (?) and there
O'p o2 1Y Zp

results a cofibre sequence

Ezp u):pnl ——+Ezp kzprO/rp ——aEzp K):pHO —_ ZEEP & anl’

This gives the first sequence upon interpreting the terms and maps (by use of Lemmas

3.10, 3.12, 4.1, and 4.4), Similarly, if ¥ = S%, then Ex uz Hs is trivial for

1 < s < p-1, hence Ezp uzp

and I, , + I'4/T, induces equivalences upon application of Er, x. (?) and there
p-1 Vip Py

T./Tg is trivial for 1 < r < s < p-1. Thus ro/rppl > Tlg

results a cofibre sequence

.

EL, “zp“p~1 —>=Ez, u%pro/rp —=E1, “ano —> I uzp L

This gives the second sequence.

One can also check these cofibre sequences by direct homological calculation;
compare Lemma 5.6 below. We need some further information about the spectra EnDPS'm
in order to use these sequences to prove Theorem 2.8. Proofs of the claims to

follow will be given by Bruner in V§2.

If p =2, let L = ™RP™ with its standard cell structure. (We write L rather
than the usual P for uniformity with the case p > 2.) If p > 2, let L be a CW
spectrum of the p-local homotopy type of z“sz such that L has one cell in each
positive dimension g = 0 or -1 mod 2(p-1). The existence and essential uniqueness

of such an L was pointed out by Adams [7,2.2]. Let 1X be the k-skeleton of L and

let L = L/1*! and Lg*k = 1%8/1%0 for k > 0. Let ¢(k) be as in Theorem 2.8

(and recall that it depends on p). If p = 2, then

L§+k = En4m1§+k for m = n mod 2¢(¥),

Ifp>2,e=0o0r1l, and kX > g, then

L2n*k .3

2(n—m)L2m+k
2nte

¢ (k)
2m+¢ *

for m = n mod p
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We use this periodicity to define spectra L§+k for non-positive n, so that these

equivalences hold for all integers m and n. We then have that

n+k -n-1

Ln is {-1)-dual to L—n¥1—k .
Our interest in these spectra comes from the following result (proven by Bruner in
V§2).

Theorem 4.6. For any integer n, z‘nDpSn is p-locally equivalent to Ly(p_ 1)-

We define Dﬁsn = ZnLgtg:i;+k. If p = 2, we may view Dlgsn as S° %y s, 1r
P > 2, no model for EEP has few enough cells to give as convenient a filt%ation of

DpSn. We shall shorily prove the following result.

Proposition 4.7. If p:LE)k * SO is the projection onto the top cell, then
* - -
p im q(SO) + @ q(L?k)

ig gero for 0 < ¢ < k(p-1).

Since p is (-1)-dual %o the inclusion 1:571 » LX? of the bottom cell,

1*:nq(8-1) + wq(Lﬁzl) is zero for 0 < q < k{p-1j-1. The cofibre sequences of

Corollaries 4.3 and 4.5 restrict to give cofibre seguences
T
S—l 1 Lfil A Lg—l P SO .
k-1 0 . . N

Thus, Tp*:“q(Ib )+ nq(S ) is an epimorphism for 0 < q < k(p-1l). Now let k go to
infinity. Of course, L = z""Bz; splits as the wedge z‘”B):vaO. Since
TPIP:SO + So has degree p!, the finiteness of ﬂ*SO allows us to deduce the
following version of the Kahn-Priddy Theorem.

Theorem 4.8. The restriction rpzszzp + SO induces an epimorphism
o 0
nq(z BEP) > nq(S ) ®Z(p) for q > 0.

To prove Theorem 2.8, consider the following diagram, where g = O mod p¢(k) and
q is even if p > 2.

pq pa P
PI-1_I 7 EPQL§—1 P quLg-l R, ghd

I | oo

gPa-1 XqL(p-l)q+k—1 A ZqL(p—l)q+k-1 P, gPd
(p-1)g-1 (p-1)a
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The bottom cofibre sequence is obtained by restriction from sequences in Corollaries
4.3 and 4.5. Periodicity gives an equivalence v such that the left square commutes.
Standard cofibration sequence arguments then give an equivalence  such that the

factors through t,:D. 32 5+ SP9 and is

remaining squares commute. The bottom map t )

P
an epimorphism in the range stated in Theorem 2.8.

It remains to prove Proposition 4.7. For amusement, we proceed a bit more

generally. HReeall the not necessarily commutative diagram

3>/\

X -5 F

below Proposition 3.6, where E is an H_ ring spectrum. With E = Sand X = So, the
following result is Proposition 4.7.

Proposition 4.9. ILet X be a finite CW complex of dimension less than k(p-1)-q,
where 0 < q < k(p-1). Then

0

¥ - = -
(oa) 8% = B YUsOnx) —> 510

MK

. . ry . Py *
is zero if E is a comnective H_ ring spectrum such that a @; =§ .

Proof. For n > k, the cofibre of a:z"'ip s™1 ., an s™ has dimension at most
-k(p-1), and it follows that the colimit F(g)x ie atbained as E- q(EkDpS—kI\X)

Let 1:L(_)k > L_k B ZkDpS_k be the inclusion and consider the following diagram,

where x is any map X + r 9E.

quqAXe«———»zDs AX pal
quzq}((—zDsz DSAX —P—>SAX
179 1% H
D
3 1% «
1790 E D 3" X

P
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Since A*f)p = g;, the bottom part commutes. We have

0 0
gpél = p.L“k *> S
1

since the composite is obviously null homotopic on L:k

and of degree one on the top

cell. We have

0

au = 0:L > 27D st

k

since E'quSq is O-comnected. The conclusion follows.

Replacing S by E in the deductions from Proposition 4.7 and using the results
of section 2, we conclude that, for q > 0, all p-torsion elements of upE are
* * * ¥
nilpotent if A @% = Ep' This implies our earlier claim that A ?PZ # 52 when

E = MO.

§5. The Singer construction and theorems of Lin and Gunawardena

Singer introduced a remarkable algebraic functor R, from A-modules to A-
modules, where A is the mod p Steenrod algebra, and Miller began the study of the
cohomology theories in section 3 by making the following basic observation. All

homology and cohomology is to be taken with mod p coefficients.

Theorem 5.1. Let ¥ be a spectrum such that HyY is bounded below and of finite
type. Then colim H*(EnDp£°nY) is isomorphic to 2’1R+H*Y.

We shall prove this and some related observations after explaining its
relationship to the following theorems of Lin [53, 54] and Gunawardena [38, 39].
Let & and T, denote the p-adic completions of stable cohomotopy and stable
homotopy.

¥ ¥ K3 -
Theorem 5.2. The map gp:w Y » colim g (ZnDpS BAY) is an isomorphism for all

finite CW speetra Y.

As we shall explain shortly, lim %ﬂl(ZnDpS‘n) = ZP. Realizing the unit by a
compatible system of maps gP:5~! » anpS'n and smashing with Y, we obtain a

compatible system of maps

gpzz'lY

i

slay s DS AY.

Theorem 5.3. The map EE:%*le + 1im %*(anpS_nA Y) is an isomorphism for all
finite CW spectra Y.
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*
Since gp is a map of cohomology theories and gg is a map of homology

theories, it suffices to prove these isomorphisms for Y = SO. Since
s P ™ 4 (1)-qua o zn+kng(p’1)'ls'n'k,

the theorems are esentially dusl to one another. Indeed, using the lim! exact
sequence and waving one's hands at certain compatibility questions, one finds the
following chain of isomorphisms, where m{p-1) > q.

AQ, N o~ AQ, M oM
colim w5 DpS ) = 75 DS )
Lim 730:"0ps™) - 72"y

- 1gm RPN Tg

S m+k k{p-1)-1,-m-k
=1 D S )
im n_q_l(z b

e s n. -0
= 1%m “-q—l(z DpS )

There is a map of A-modules e:R,Z and the main point of the work of Lin

> Z
P D’
and Gunawardena can be reformulated as follows; see Adams, Gunawardena, and Miller

[9].

* ;
Theorem 5.4. ¢ :EXtA(Zp’ZP) » Ext, (R Zp} is an isomorphism.

+Zp:

4n inverse system {Y,} of bounded below spectra ¥, of finite type gives rise to
an inverse limit
{Er} = 1lim {ErYn}

of Adams spectral sequences, where {E;Y} denotes the classical Adams spectral
sequence for the computation of Q*Y. Clearly
Lk
E, 2 Extylcolim H Yn,Zp).
As polnted out in [74], {E,} converges strongly to 1lim E*Yh. We apply this with
Y, = D 8. Here Theorems 5.1 and 5.4 give

Ey = Exty(5712,,25).

From this and convergence, it is easy to check that lim §~1(ZHDPS_n) = Zp. The
compatible system of maps gP:S”l > anPS'n then Induces a map of spectral sequences

{E.P}:{E.ST) » {E.).

By Theorem 5.4 again, Ezgp is an isomorphism, and Theorem 5.3 follows by
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convergence. Theorem 5.2 can be obtained by a similar Adams speciral sequence
argument {(as in Lin [53] and Gunawardena [38}) or by dualization.

The crux of the proof of Theorem 5.1 is the following result of Steinberger,
which is proven in VIII.3.2 of the sequel. For spaces, it is due to Nishida [89];
see also [68, 9.4]. Let 7 be the cyelic group of order p. We assume familiarity
with the mod p homology HyD Y, its determination being a standard exercise in the
homology of groups in view of 1.2.3 (see e.g. [68, §1]). Suffice it to say that
H*D"Y has a basis consisting of elements of the form eq ® X Q e ® x5 and e; ® xp,
i > 0. Here the x; and x run through basis elements of HyY, the x; are not all
equal, and the X B e © Xp and xP together run through a set of n-generators for
(HyY)P. Restricting to those i of the form (2s-q){p-1)-e, where g = deg (x) and
¢ = 0or 1, and to a set of zp-generators for (HyY)P, we obtain a basis for H*DPY.
At least if HyY is bounded below and of finite type, we have analogous dual bases
for H*D“Y and H*DpY with typical elements denoted wg ® Y1 R ese @ Yp and Wy ® yp.
Theorem 5.5. Assume that HyY is bounded below and of finite type. The subspace of
H*D“Y spanned by {Wy; ®y; @ ++» ® yp} is closed under Steenrod operations and,
modulo this subspace, the following relations hold for y e Hly.

(i) For p = 2,
Jrq-1

s 2, _ i (2
Sq (wj ®y) = g oot ¥iigo2i ® (sqa7y)".
(ii) For p > 2, let §(2n+e) = ¢, m =% (p-1), and alq) = -(-1)™m!; then
] _ v li/2)+am-(p-1)1 i\p
Polu; @ y°) % o W (smpi) (po1) © (B

[§/2}+aqm-(p-1)i~1

® (BPiy)p.
sopi-1 -pi)(p~-1)

+ 8(j-1)alq) } wj—p+2(s

[N

(iii) For P> 2, Mij-l ®yp) = sz @yp-

+n
We also need to know A*:H*D“Y > H*(ED“E‘IY). Let Zn:Hq(Y) > Hq (z™Y) denote
the iterated suspension isomorphism for any integer n.

Lemma 5.6. For y ¢ HYY,
* Py . J+1 -1..p
A (wJ. ®y) = (-1) a(q)z(wj,rp_l ® (¢ "y,

Proof. We first compute ay:Hg(ID Y) > Hy(D IY). Take f to be the identity map of Y

and replace Dp by D“ in Lemma 3.10. We find that the composite of Ay and the

homology suspension Iy is the suspension assoclated to the zero segquence
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C*(DNY) — C*(D“CY) — C*(DT‘EX)-
By I.2.3 and [68,§1], we may instead use the zero sequence
P P P
W@ C (1) —> W@ C (0P — W@ Cy(zD)P,

where W is the standard s-free resolution of Zp. A direct chain level computation,
details of which sre in [68,p. 166-1671, gives the formula

Byey iy @ = (DT atale; © (2,00P

for x ¢ Hq_l(Y). Clearly A*E*(eo ® X () seo ®xp) = 0 for all X3 The conclusion
follows upon dualization (amnd a careful check of signs).

The results above determine colim H*():nDnz‘nY) as an A-module, and similarly
with D replaced by Dp. To compare the answer to the Singer comstruction, we must
first recall the definition of the latter [98,52]. When p = 2, 2'1R+M is additively
isomorphic to A @ M, where A is the Laurent series ring Zzlv,v'll,

deg v = 1. Its Steenrod operations are specified by

Sq vF ® x) = Z (;"gi) r+s-1 ®Sqix.

When p > 2, 2‘1R+M is additively isomorphic to A ® M, where A = E{u} x Zp[v,v'll,
deg u = 2p-3 and deg v = 2p-2. Its Steenrod operations are specified by

P (ue Tr-g ®x) = }: (-1 s+1((p~1)(r- - )usvr+s-i-e ® Pix
_pi

+ (1) ] (-113"1( ‘P;fl’éfii)'l) w51 @ gplx
and i

£ _T-g

glu“v ®x) = elv ®@x).

We can now prove Theorem 5.1. We define an isomorphism

¥ ] - *
aicolin K ("D ™) » yRH Y

as follows. For p = 2 and y ¢ HA(Y), let

n -1 2_ T
w(L (wr_qm®(2 y) vV ®y.

For p > 2 and y ¢ HY(Y), let

n = U r+g+{e+lin -1 WEvEE
wlZ (w(2r+n—q)(p—-l)ue® (x7y)") = (-1) v(g-n) ®v,



48

where (2 + e) =(~1)9(m!)¥. Note that

-1

al@)vie-1)7F = v and (D% E = (-1)™(q).

By lemma 5.6, these y induce a well-defined isomorphism on passage to colimits. by
Theorem 5.5, we see that our constants have been so chosen that ¢ is an isomorphism
of A-modules.

Remark 5.7. When p > 2, there are two variants of the Singer construction. We are
using the smaller one appropriate to Dp’ This is a summand of the larger variant,

for which Theorem 5.1 is true with Dp replaced by D . OSee Gunawardena [39,9] for

details {but note that his signs don't quite agree with ours).

With Y = SO, Theorem 5.1 specializes to an isomorphism

- -1 . * ol o-TL
A=1Z R+Zp z colim H (g DPS ).

Since A is an A-module, A ®@ M admits the diagonal A action, which is evidently quite

different from that originally specified on 2'1R+M. For finite CW complexes X, we
have the isomorphism

* * = * -
A" :colim H (znnpz %) —> colim H (anps T AX)
of Theorem 3.2. We next obtain an explicit description of the resulting isomorphism
¥ 1 o ¥
A L R+H X+ A @HX.

Thus consider A:D“Y/\X > Dn(Y/\X). When X = Sl, we computed Ay in the proof

of lemma 5.6. When Y = S, DY = t”Br* and the effect of Ay is implicit in the
definition of the Steenrod operations; see Steenrod and Eptein [100] (or, for
correct signs, [68, 9.1]). The following result is a common generalization of these

calculations.
Propsition 5.8. let x e ﬁk(x) and y e Hy(Y). If p =2,
2 v i ,2
ale, ®y ®x) = )i, e ® (v © 807

if p > 2, let v(2j+1) = (-1)9(ml)® and e(2j+e) = e; then

= mkq i 1.4P
sele, ®3° @x) = (-1)™ (k) LD e (a1 (p1) @ 7O Fy®)

)q+m(k-l)

q i 1P
-(-1 §{r)vik-1) Z (-1)7e  ne(2pi-k) (p-1) @ (7 @ PyBx}™.
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Proof. Modulo shuffling in C*(Y)P, which introduces the signs depending on q when
P > 2, Ay is computable from the mep obtained by quotienting out the action of =

from the n-map

5 ®1:C, (W) @ TW(X) @ Cul1)P —=0, (W) @ T, (0P @ 0P

induced by a w-equivariant approximation ¢ of 1 @ a4, where 5' is a cellular
approximetion of the diagonal X » XP; see e.g. [100, V§3] or [68,7.1]. The
egssential point is that Y acts like a dummy variable, so that the standard
caleulation for Y = &0 of {68, 9.1] implies the general result.

Dualizing, and paying careful atiention to signs, we obtain the following
version in cohomology.

Proposition 5.9. Assume that HyX and HyY are of finite type and that HyY is bounded
below. Let x ¢ HS(X) and v e HUY). Ifp= 2,

A . @ly®xd) =) w ® 7 ® Sa’x
j y i j*‘k—i y @ .

If p> 2,

mk(q+1)

* Py i i
2w @y ®0P) = (-1) v T, 1) () @y ®Fx

_(-py@rmk(arl)

i i
SV T DM 4 (1) ®y ®8Px.

A check of constants gives the following consequence.

o¥
Corollary 5.10. For M = H X, the formula

x » ;
"o = 5 v e slx
i
if p = 2 and
% _ il : e ;
pSTTERx) = R Al f@Px - (l-e) Euvr * l@sPlx
i i

if p > 2 specifies a morphism of A-modules A*:z“1R+M > A QM

The same formulae give a morphism of A-modules for all A-modules M which are
either unstable or bounded above, either assumption ensuring that the relevant sums
are finite, In the bounded above case, but not in general in the unstable case,

this morphism is an isomorphism. See [98, 52, 82].
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Define ¢:R,M » M by the formulas
ez(vi 1 ® x) = Sq¥x

if p = 2 (where Sq¥(x) = 0 if r < 0) and
eslwT Ll ®@x) = P'x and ex(vF ® x) = -gPTx

if p > 2. By [98,3.4] and [52,3.5], ¢ is a well-defined morphism of A-modules.
When A* is defined, ¢ is the composite
* 1 (e ®1) ., -1
RM LRz @ HeB 57l o w - u.
Generalizing Theorem 5.4, Adams, Gunawardena, and Miller [9] proved that ¢ is an
Ext-isomorphism for any M. This leads to a generalization of Theorem 5.3 to a

version appropriate to (Zp)k for any k¥ > 1, and this generalization is the heart of
the proof of the Segal conjecture for elementary Abelian p-groups. See [9,74].

§6. Nishida's second nilpotency theorem.

If x ¢ n,E has order p, then x extends over the Moore spectrum M= gt LJPCSn.
The idea of Nishida's second nilpotency theorem is to exploit this extension by
showing that IﬁMn splits as a wedge of Eilenberg-MacLane specta in a range of
dimensions. The relevant splitting is a special case of the following result which,
as we shall explain shortly, is in turn a special case of the general splitting

theorem to be proven by Steinberger in the next chapter.

Theorem 6.1. ILet Y be a spectrum obtained from S® by attaching cells of dimension
greater than n. Assume that mf is Z or Z ; and let v e Hn(Y;Z ) be a generator.
Assume one of the following further hypothgses.

(a} p = 2 and either n is odd or g(v) # O.

(b) p > 2, n is even, and g(v) # O.

(c) p =2 and Sq3(v) # 0.

(d) p > 2, nis even, and gPl(v) # O.

H

Then EGY splits p-locally as a wedge of suspensions of Eilenberg-Maclane spectra
through dimensions r < nj + %-(2p-3)(j+1)-1. In cases (a) and (b), only
suspensions of HZP are needed.

Before discussing the proof, we explain how to use these splittings to obtain
relations in the homotopy groups of H_ ring spectra. Let Y and v be as in the

theorem above and localize all spectra at p.
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Theorem 6.2. Let E be an H_ ring spectrum, let F be a connective spectrum, and let
$:E F » E be any map (for example, the product when F = E or the identity when
F=28). Let x ¢ m,E and assume one of the following hypotheses.

(a) p=2 and n is odd; here let Y = 8",

{b) p>2, n is even, and ¥ has order 2; here let Y = M!,

{e} p =2, n is even, and x extends over some Y with qu{v) # O.

(d) p > 2, n is even, and x extends over some Y with BPl(v) # 0.

let R = Zp in cases (a) and (b) and R = 7ol in cases (c) and (d) and let y ¢ mF be

in the kernmel of the Hurewicz homomorphism qu -+ Hq(F;R). Then xjy = 0 if
q <3 (2p-3)(J*D)-1.

Proof. Our hypotheses ensure that H?j(DjY;R) =z R, We can choose a generator y such

that the composite
A AR D.f ni
gt —d Dan d » DY !

is t™e, where £:S® + Y is the inclusion of the bottom cell and e:S + HR is the
unit. Choose X:Y + E such that Xf = x. Then the solid arrow part of the

following diagram commutes and the top composite is xjy.

. R () .
Al _1ry  iap XML i 981 L pap_ ¢ E
1.,A1 1,81 ngl
" v D.xAl
% Jel\y DJ.Sni\F———J_-»*—’r DJ.E'\F
DyEAL A pgan
{ ’ J
P ER AF 2L oy A
N
N
N oAl w Al
kAl ™
~ v

N
“ (DY} _AF
7 r

Here r = nj+q, w:DjY > (DjY)r is the r'B stage of a Postnikov decomposition of DjY,

and p:{DJ-Y)r » tMHR is the unique ecohomology class such that pw = u. The previous
theorem gives <:IHR » (DjY)r such that px = 1. The complementary wedge summand
of t™HR in (DjY)r is (nj)-connected, and it follows that cesWe = “'Iﬁf"j' Since

F is connective, wal induces an isomorphism on "nj+q Since y is in the kernel of



52

the Hurewicz homomorphism and the latter is induced by eAl:F = SAF » HRAF,

EnjeA y = 0. Chasing the diagram, we conclude that xjy = 0.

In particular, with F = E, ¢ = n, and y = x, we obtain ¥l -0, WithE =S
and n > 0, case (b) applies to any even degree element of order p. As observed by
Steinberger, when p = 2 case (a) applies to any odd degree element and gives a
better estimate of the order of nilpotency than that obtained by applying case (b)
to x°. While this result gives a much better estimate of the order of nilpotency of
elements of order p in wxS than does Theorem 2.9, the estimate is presumably still
far from best possible. For example, if p = 2 and n = 14, the estimate is now
20 = 0. cases (¢) and (d) apply to some elements of order pi with i > 1. The idea
is to add further cells to S, or to §" , ; CS”, so as to obtain a spectrum Y for
which the relevant Steenrod operation is non-zero. However, a given element x need
not extend over any such Y. (Conceivably some power of x must so extend.) This
explains why Nishida's second method fails to give the full nilpotency theorem and

why we cannot yet prove Conjecture 2.7.

We must still explain how to prove Theorem 6.1. The idea is to approximate Dj
through the specified range by a spectrum with additional structure and then use
homology operations to split the latter. The approximation is based on the

following observation about mod p homology.

Proposition 6.3. Let Y be an (n-1)-connected spectrum with HhY = Zp, where n is
even if p > 2. Let £:S® » Y induce an isomorphism on H,. Then the homomorphism
HiZanY > Hi,q+1Y induced by the composite

¢
DYast 22 pyay —Li.p oy
q q q+l

is a monomorphism for all i and is an isomorphism if i < n{q+l) + %—(2p-3)(q+1)-

For spaces X, a self-contained calculation of H*DqX for all q is given in
[28,I84-5]. The generalization to spectra is given by McClure in Chapter IX, and

the conclusion is easily read off from these calculations.

With the proposition as a hint, we construct the approximating spectra as

follows.

Definition 6.4. Let (Y,f) be a spectrum together with a map £:5% » Y for some
integer n and define D(Y,f) = tel z'anqY, where the n'® map of the system is
obtained by applying Z-n(q+1) to the composite

a
DYast 220 pyay —%d.p v,
q q g+l
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Now the previous proposition has the following consequence.

Corollary 6.5. With Y and £ as in the proposition, assume further that Y is
p-local of finite type. Then the natural map DjY + EnjD(Y,f) is an equivalence
through dimensions less than nj + %»(2p—3)(j+1) - 1.

Proof. By the proposition, the maps Z—n(q+1)(aq 1 © 1Af) used to construct
D(Y,f) induce isomorphisms in mod p homology and,thus in p-local homology in
degrees less than %‘(2p-3)(q+1). This fact for q > j implies the conclusion (with

the usual loss of a dimension as one passes from homology to homotopy).

Thus, to prove Theorem 6.1, we need only split D(Y,f).

The following ad hoc definition, which generalizes Nishida's notion of a
r-spectrum [90,1.5], allows us to describe the structure present on the spectra
D(Y,f). In the rest of this section we shall refer to weak maps and weakly
commutative diagrams when the domain is a telescope and phantom maps are to be

ignored.

Definition 6.6. A spectrum E is a pseudo H_ ring spectrum if
(1) E is the telescope of a sequence of connective spectra Eq, q > 0;
(ii) E is a weak ring spectrum with unit induced from a map S + Eq and
product induced from a unital, associstive, and commutative system of compatible
maps EqAEI. > Eq+r; and
(iii) For each j > O and q > 0, there exists an integer d = d(j,q) and a map

£ :D.Equ > XquE whose composite with 1j:£dquéq) E3 (quEq)(J) > DjquE is

3 q Jq q
the (c‘l,jq)th suspension of the interated product EéJ) > qu.
Examples 6.7, (i) With each Eq = E and each d(j,q) = 0, a connective H_ ring
spectrum may be viewed as a pseudo H  ring spectrum.

d*

(ii) With each Eq = E and each d(j,q) = d, a commective H_

viewed as a pseudo H_ ring spectrum; since E has structural maps gj for all q,

ring spectrum may be

negative as well as positive, we could obtain a different pseudo structure with each
d{j,q) = -d.

(iii) For an (n-l)-connected spectrum Y and map f:5% » Y such that either

2 =0:Y+ Y or n is even, D{Y,f} is a pseudo H_ ring spectrum with qth term

z‘anqX. Its product is induced by the maps

2-n(q«rr)

~ng -nr . v-nlg+r) %q,r -n{g+r}
I DqYA}: DY =} (DqYADrY) —ly Dqﬂjf ,

these forming a unital, associative, commutative, and compatible system by I.2.6 and

I.2.8 and our added hypothesis, which serves to eliminate signs coming from permuta-
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tions of spheres. With all d{j,q) = n, its structural maps are

- .n +0Q, -Nq } . g, -njq
=8, D%z ™py) =pDYD Y=Y y).
€5 % Byqilyt o7 = 5Pt > Pyg Ja

The following analog of I.3.6 and I.4.5 admits precisely the same simple

cohomological proof.

Proposition 6.8. Let E be a pseudo H ring spectrum with char n4E = 2 or all
a(j,q) even. Assume that wyE = noEq for all g > gg and, for such g, let
i:E_~+ H{ﬁOE) be the unique map which induees the identity homomorphism on wg. Then

q
the following diagrams commute, where 4 = d(j,q):

dq.
D,z 71
dq. J dq
D.z 7 7E — D, H E
5 q JZ ("O )
5 5
: djq. .
djq L dja
) qu » T H(nOE)

In the next chapter, Steinberger will use a computation of the homology
operations of the H_ ring spectrum ﬁ{ quHZp to prove the following generalization
of Nishida's result [90,3.2].

Theorem 6.9. Let E be a p-local pseudo H_ ring spectrum. If Tk = Zp’ then E

splits as a wedge of suspensions of HZP. If mpk = Z

p = 2 and SqBi #0or p>2 and BPli # 0, where i generates HQ(E;ZP), then E splits

as a wedge of suspensions of HZ ., s > 1, and HZ(
p

s T > 1, or ﬁOE = Z(p) and if

p)*

Considering the natural map 1™®Y » D(Y,f), and using the formula 8wy ® Vo) =
nwy C5v2 of Theorem 5.5 for case (a), we easily check that the theorem applies to
split D(Y,f) for Y as in Theorem 6.1.

We complete this section with some remarks about the role played by Definition
6.4 in the general theory of H_ ring spectra.

Remarks 6.10. Let (E,e) be a spectrum with unit e:S + E. Let DE = D(E,e) and let
n:E = DyE » DE be the natural inelusion. By I.2.7, I.2.9, and 1.2.13, the maps
Bj,k:DjDkE + DjkE induce a natural weak map uk:DDkE » DE sueh that the following

diagrams (weakly) commute:
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n DB, x
DkE DDkE and D?jDkE DDJkE
My U Mk
1!
DE DD, E k DE

If E is an H, ring spectrum, then, by Proposition 1.3, the maps gj:DjE + B determine
a weak map £:DE » E such that the following diagrams (weakly) commute.

Dg

E——0  »DE and DD, E X DE
\ E Uk E
E DE 3 »E

Conversely, by the same result, if y:DE » E makes these diagrams weakly commute,
then its restrictions gj:DjE + E give E a structure of H_  ring spectrum. These
assertions are analogous to, but weaker than, the assertions that D is a monad and
that an H_ ring spectrum is an algebra over this monad (compare [69, §2]). The
point is that the u fail to satisfy the requisite compatibility to determine a weak
map u:DDE » DE. By I.2.11 and I.2.15, the compatibility they do have is described

by the weakly commutative diagram

DD. EAS———bDDkEADS———vDD E

k k
Vi D(otk,1 o lAae)
DDkE —» DE € DDk+1E
where vy 1s induced by the composites
D.DkEAD.S—Bj—’ﬂf—»D. EAD.EM sy, s B
J J JE T Jk+J

and §:DF » DFADS is induced by the maps GJ:DJ-(FA S) » DJ-FADJ-S.



