
CHAPTER II 

MISCk~LANEOUS APPLICATIONS IN STABLE HOMOTOFY THEORY 

by J. P. ~ay 

with contributions by R. R. Bruner, J. E. McClure, and M. Steinberger 

A number of important results in stable homotopy theory are very easy con- 

sequences of quite superficial properties of extended powers of spectra. We give 

several such applications here. 

The preservation properties of equivariant half-smash products (e.g. in 1.1.2) 

do not directly imply such properties for extended powers since the jth power 

functor from spectra to Zj-spectra tends not to enjoy such properties. We 

illustrate the point in section I by analyzing the structure of extended powers of 

wedges and deriving useful consequences about extended powers of sums of maps. 

These results are largely spectrum level analogs of results of Nishida [90] about 

extended powers of spaces, but the connection with transfer was suggested by ideas 

of Segal [96]. 

Reinterpreting Nishida's proof [90], we show in section 2 that the nilpotency 

of the ring w,S of stable homotopy groups of spheres (or "stable stems") is an 

immediate consequence of the Kahn-Priddy theorem and our analysis of extended powers 

of wedges. The implication depends only on the fact that the sphere spectrum is an 

H~ ring spectrum. This proof gives a very poor estimate of the order of 

nilpotency. Nishida also gave a different proof [90] which applies only to elements 

of order p but gives a much better estimate of the order of nilpotency. In section 

6, we show that this too results by specialization to S of a result valid for 

general H ring spectra. Here the key step is an application of a splitting theorem 

that Steinberger will prove by use of homology operations in the next chapter. His 

theorem will make clear to what extent this method of proof applies to elements of 

order pi with i > i. 

The material discussed so far dates to 1976-77 (and was described in [72]). 

The material of sections 3-5 is much more recent, dating from 1982-83. The ideas 

here are entirely due to Miller, Jones, and Wegmann, who saw applications of 

extended powers that we had not envisaged. (However, all of the information about 

extended powers needed to carry out their ideas was already explicit or implicit in 

[72] and the 1977 theses [23, I01] of Bruner and Steinberger.) Jones and Wegmann 

[44] constructed new homology and cohomolo~y theories from old ones by use of 

systems of extended powers and showed that theorems of Lin [53] and Gunawardena [38] 

imply that these theories specialize to give exotic descriptions of stable homotopy 
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and stable cohomotopy. Jones [43] later gave a remarkably ingenious proof of the 

Kahn-Priddy theorem in terms of these theories. The papers [43, 44] only treated 

the case p = 2, and we give the details for all primes in sections 3 and 4. (In 

fact, much of the work goes through for non-prime integers.) The idea for the 

Jones-Wegunann theories grew out of Haynes Miller's unpublished observation that 

systems of extended powers can be used to realize cohomologically a basic algebraic 

construction introduced by Singer [52, 98]. We explain this fact and its 

relationship to the cited theorems of Lin and Gunawardena in section 5. 

§i. Extended!)owers of wedges and transfer maps 

Fix positive integers j and k and spectra Yi for i j i j k. Let 

Y = Y1 v ... VY k and let vi:Y i + Y be the inclusion. For a partition 

J = (jl,...,jk) of j, Ji ~ 0 and Jl .... Jk = j, write aj = aJl,-'-,Jk 

denote the composite 

and let fj 

D j l V l  A -.. ̂ Djk~ k ~J 
DjlY I,% ..- ^ Djfk .... • D.jI Y ^''" ^D'jk Y ~-D.Yj . 

For later use, note that permutations G s Z k act on partitions and that 1.2.8 

implies the equivariance formula fJ = foJ o o. Note too that, for maps hi:Y i ÷ E 

with wedge sum h:Y + E, the following diagram commutes by the naturality of ~j. 

fj 
DjlYI'~ --- ~,Dj] k ~ DjY 

DjI'^ "''^Djk" [ IDj h 

~j 
DjlE ^ . . .  ~D.  EJk ~" DjE 

Theorem i.I. Let Y = YI v ... VY k. Then the wedge sum 

%: V %lh^ "'" ̂O k , Dj 

of the maps fj is an equivalence of spectra. 

Proof. By the distributivity of smash products over wedges, 

yCjl ~ ~/~. ^...^y. 
I II lj ' 
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where I runs over all sequences (il,...,i j) such that I ~ i r ~ k. 

there are exactly Js entries i r equal to s for each s from 1 to k. 

partition J of J, let Zj = Zjl × -.- × Zjk and define 

l~J "'" ~ZJ (Y~jl L (Jk) YJ = Yil ̂  ^Yi. ~ Zj "''^Yk )" 
J 

(Here the isomorphism would be obvious on the space level and holds on the spectrum 

level by direct inspection of the definitions in [Equiv. II §§3-4].) Then Yj is a 

Zj-subspectrum of Y(J) and Y(J) = V Yj. Now 
J 

(Jl) (Jk) 
D.Yj = Vj EZj kZ Y JJ and EZj ~z.Yjj = EZj ~zj(Y ^ "'" ̂ Y ) 

by I.l.2(i) and I.I.4. Clearly fj has image in EZj ~Z Yj and factors as the 

composite J 

(E~jl 

( EZj i 

(Jl) (Jk) 
~Z. YI ] ^ "'" ^ (EZjk ~E. Yk ] 

Jl Jk 

~ (y ( j l )  (Jk) 
x *-. x A ,,o A Y ) 

EZJ k) j 

~i~l 

(y(Jl) (Jk) 
EZj ~Zj ^ "'" ̂  Y ] " 

Say that I a J if 

For each 

Here a is an isomorphism. (Technically, the smash product in its domain is 

"internal" while that in its range is "external"; see [Equiv, II§3].) The map 

i:Ez. × ... × EZ. , EZ. is given by the commutation with products and 
Jl Jk J 

naturality of the functor E and is a Zj-equivalence. Therefore i ~ I is an 

equivalence (by [Equiv, VI.I.15]). The conclusion follows. 

Our interest is mainly in finite wedges, but precisely the same argument 

applies to give an analog for infinite wedges. 

Theorem 1.2. Let {Yi} be a set of spectra indexed on a totally ordered set of 

indices and let Y = V. Yi" For a strictly increasing sequence I = {il,...,i k} of 
i 

indices and a partition J = (jl,...,jk) of j with each Ji > 0 (hence k j j), let 

fj,I:Dhh I ^ ... ̂ %khk + DjY 

be the composite of fj and the evident inclusion. Then the wedge sum 
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fj:V DjlYil ̂ "'" ̂ o. Y ~DjY 
J,l Jk ik 

of the maps fJ,I is an equivalence of spectra. 

Parenthetically, this leads to an attractive alternative version of the 

definition, 1.4.3, of an H d ring spectrum. 

Proposition 1.3. An H d ring structure on E determines and is determined by an H® 

ring structure on the wedge V zdiE. 
i 

Proof. If ~ zdiE is an H ring spectrum with structural maps ~j, then the evident 
i 

composites 

~j zdhE ~j,i:~ zdiE ~Dj(V zdhE) " V "zdiE 
h h 

give E an H~ ring structure. If E is an H~ ring spectr~n with structural maps 

~j,i, then the maps 

fU I 
^D. ~ ~ V zdiE ( V zdiE) ~ V DjlzdilE^''" dikE ' £j :Dj 

i J,l Jk i 

determined by the composites 

di I dikE ~'~l,il^ ... ~ ~Jk,ik zdj lilE dJkik E D. ~ E~--. ^D. ~ ................... A...^~ ~ zdrE, 
J l  Jk 

k 
give v zdiE 

r = a ! I jaia' i 

inverse to one another. 

on H® ring structure. These correspondences are 

Returning to the context of Theorem i.i, let 

gj:Dj(YIV -..V Yk ) P DjlY 1 ̂  --- ̂ DJkY k 

denote the jth component of f?l. Thus gj is the composite of the projection to 
J 

EZj ~Z YJ and the inverse of the equivalence (i ~ l)s in the proof of the theorem. 
J 
The theorem is of particular interest when Y1 ..... Yk, hence we change 

notations and consider a spectrum Y and its k-fold wedge sum, which we denote by 

(k)y. Recall that finite wedges are finite products in the stable category and let 

v (k)y A:Y ~ (k)y and : ~ Y 

denote the diagonal and folding maps. 
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Definition 1.4. 

Explicitly, let 

the map 

Define xj:DjY + DjlYA--. ^DjJ to be the composite 

D.A gj 
3 ~Dj((k)y) ~Djly^...^D. y . DjY 

3 k 

~j:((k)y)(J) ÷ V Y(J) be the projection and let xj also denote 
IaJ 

Y(J)) = EZj ~ Y(J). ")):E~j ~ Y(J) EZj ~Zj( V j zj E~j ~Zj(~jA(J Zj I 

Our original map ~j is the composite of this map and the equivalence [(i ~ 1)m] -1. 

We write Tj for Tj:DjY + Y(J) when k = J and each Js = I. 

We think of xj as a kind of spectrum level transfer map. When Y = E~X + for a 

space X and ~C E j, we have 

EZj ~ Y(J) ~ £®(EEj ~ (X+) (j)) = £®(EEj x~ xJ) + 

by I.i.I. We shall prove the following result in the sequel. 

Theorem 1.5. When Y = Z~X +, the map 

Tj:EZj ~Z.j Y(j) ÷ EEj ~Zj 

is the transfer associated to the natural cover 

y(J ) 

EZj xEj X j + EZj xEj X j . 

We do not wish to overemphasize this result. As we shall see, the spectrum 

level maps Tj, for general Y, are quite easily studied directly. 

The importance of these maps is that they measure the deviation from additivity 

of the functor DjY. 

For maps hi:Y + E, h I +...+ h k is defined to be V(h I V...Vhk)A. Thinking now 

in cohomological terms, consider the h i as elements of the Abelian group EOy = IY,E] 

of maps Y + E in h~. 

Corollary 1.6. Dj(h I + --- + h k) : } ~j(aj(~lhlA 

f o l l o w i n g  e q u i v a r i ~ n c e  f o r m u l a  h o l d s  f o r  o a Z k .  

^ Dj  II Moreover, the 

xj(mj(DjlhlA...hD. 11.)) = ~oj(moj(D. .AD. )). 
Jk K Jc_l (1)hc-I (I) A "" j c_i (k)hc-i (k) 
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Proof. 

diagram commutes. 

DSA ((k)y) 
D.Y ~" D. 
J J 

V D.Y v T j  
J J ,VjIY^-..^D.D. 

y - -  

J Jk 

By ~heorem i.I and the naturality diagram preceding it, the following 

D.(h.v ,,- vh k) 
i_ > D. ((k)E) 

(gj) 

VDjlh I ̂  ... ,% Djkh k 
)" yD. E^-.,^D. E 

J Jl 3k 

DjV ~ DiE 

T+ Vc~j 
"VDjE 
J 

The equivariance follows from 1.2.8, the formula fJ = foJ o a, and the fact that 

aA = A. 

Taking each h i to be the identity map, we obtain the following special case. 

Corollary 1.7.  Dj(k) = ~ T j (a j ) ,  and ~j(~j)  depends only on the conjugacy class 
J 

of J under the action of ~. 
J 

When j is a prime number p and k = pZq with i ~ i and q prime to p, a simple 

combinatorial argument demonstrates that every conjugacy class of partitions has pZs 

elements for some s ~ 1 except for the conjugacy class of the partition J(k) = 

(l,...,1,0,...,0), p values I, which has (p,k-p) elements. Of course, pi-1 but not 

pi divides this binomial coefficient. A trivial diagram chase based on use of the 

projection (k)y + (p)y shows that Tj(k) coincides with Tj(p) = xp:DpY + Y(P). Also, 

by 1.2.7 and 1.2.11, aj(p) = tp:E (p) + DpE. Putting these observations together, we 

obtain the following result. 

Corollary 1.8. If k = pZq with p prime, i ~ i, and q prime to p, then 

Opk:DpY + OpY can be expressed in the form pik + (p,k-p)tpTp for some map k. 

In favorable cases, the following three lemmas will lead to a more precise 

calculation of Dp on general sums. 

Lemma 1.9. 

Jofj. 

The following diagram commutes for all Y, j, and k and all partitions 

~j 
DjY , DjlY ~... ^D.jk Y 

I I+ 
Jk 

(Jz) (Jk) 
y(J) __ Y ~ ... ̂ y 
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Proof. This follows from a straightforward diagram chase which boils down to the 

factorization of A:Y ÷ (J)Y as the composite 

y A ~(k)y Av.-.vA (Jl) (Jk) yr... v y 

(where A:Y + (O)y = S is interpreted as the zero map if any Jr = 0). 

Lemma i.I0. The composite Tj tj :Y(J) + Y(J ) is the sum over ~ ~ Zj of the 

a Y(J) + Y(J) permutation maps : 

Proof. This is an easy direct inspection of definitions and may be viewed as a 

particularly trivial case of the double coset formula. 

Lemma i.ii For any ordinary homology theory H,, the composite 

Tj, 0~j, 
H,DjY ~ H,(DjlY ̂ ---^ DjkY) --~H,DjY 

is multiplication by the multinomial coefficient (jl,...,jk) . In particular, 

lj,~j, is multiplication by j!. 

Proof. We may assume that Y is a CW-spectrum and exploit 1.2.1. Since 

~i a = l:Y + Y, where ~i:(k)Y + Y is the i th projection, A,:C,Y + C,((k)Y) = 

C,Y~ --- O C,Y is chain homotopy equivalent to the algebraic diagonal. With 

Y1 ..... Yk = Y, the composite (i ~ 1)~ in the proof of Theorem 1.1 induces aj 

upon passage to orbits over Zj (rather than over Zjl x .,. x Zjk). Therefore 

~j o ~j is just the composite 

y(j) i ~ A (j) \/ y(j) i ~ V W" y(j) ~Zj ~W. ~Z.((k)Y) (j) I ~ ~j Wj . . . .  W .  ~ ) 
J j 0 Zj I ~ J J j 

Since there are (Jl,...,jk) sequences I E J and thus (jl,...,jk) wedge summands 

here, the conclusion clearly holds on the level of cellular chains. 

32. Power operations and ' Nishida's nilpotenc 7 theorem 

Let E be an H~ ring spectrum and Y be any spectrum. Recall from 1.4.1 that we 

have power operations ~j:EOy + EODjY specified by ~j(h) = ~jDj(h). We use the 

results of section 1 to derive additivity formulas for these operations and apply 

these formulas to derive the nilpotency of ~,S. 
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Lemma 2.1. For hi ¢ EOy, %(hl + ... + hk) = ~ xj( ~ (h I) ^-.. ^~k(hk)), where 
J 1 

the product A is the external product in E-cohomology and the sum extends over all 

partitions J = (jl,...,jk) of j. 

Proof. This is immediate from Corollary 1.6 and the commutative diagram 

~Jz 

aj 
DjlE ^ .-. ̂  DjkE ~ DjE 

^ "'" ̂ ~Jk[ ]~ 
E^... ^E ¢ r~ E 

Here the terms with one Ji = j and the rest zero give the sum of the 

When j is a prime number p, the remaining error term simplifies. The full 

generality of the following result is due to McClure. 

~(hi) . 

Proposition 2.2. Let h i s EOy. If p = 2, then 

~2(hl + ... + h k) = ~2(hl) .... + ~2(hk) + 

If p is an odd prime and y and E are p-local, then 

x2(hi ~hj). 
l~i<j~k 

~p(hl+...+ hk) = %(hl ) +...+ ~p(hk) + Tp(~7.* i [(hl+ "''+ hk)P - (hp+...+hPk)]). 

In particular, ~p(kh) = k ~p(h) + l~ (k p - k)Tp(h p) in both cases. 

Proof. We must show that 

jl ! ... jk t Tj(~l(hl ) .... ~jk(hk) ) = *,~Jl Jk Tp~n I ~ -.. Ah k ) 

for a partition J = (jl,...,jk) of p with no Ji = p" By Len~ma 1.9, 

• p = ~j(Tjl^ "..A ~jk ) • Thus it suffices to show that 

j! ~jCh) = ~(h j) 

for any j > 0 and h ~ E0(y). If j = 0, h (0) and D0(h) are to be interpreted 

as the identity map of S and the conclusion is trivial. If j = 1, the conclusion is 

also trivial. There are no more cases if p = 2, so assume that p > 2 and 

I < j < p. By Lemma 1.11, the composite 

D.Y ~Y(J) J ~-D.Y 
J 
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induces multiplication by j! in ordinary homology. It is thus an equivalence since 

Y and hence also D~Yj is p-local. Therefore I*:E*(DjY)j. + E*(Y (j))- is a 

monomorphism and we need only check that 

j!tj ~j(h) = * * J tj~j(h ). 

The left side is j!h j. By Lemma 1.10, the right side is the sum over o ~ Ep of 

o,(hJ). The commutativity of E implies that o,(h j) = h j for all o,j, and h, and the 

conclusion follows. 

Now recall from 1.4.2 that elements a s Er(DpSq) determine homotopy operations 

~:~qE + ~r E via the formula ~(h) = a/~p(h). 

Corollar~ 2.3. 

is odd. Then 

Let ~ s Er(DpSq) and h ~ ~qE, where q is even and E is p-local if p 

I (k p k)(E-pqp,(a))hp ~(kh) : k~(h) + ~ 

where the product is the multiplication in ~,E. 

Proof. The following diagram is easily seen to commute. 

S r ~ ~ DpSq^ E Tp^ i hp ̂ ~Spq^ E I ~E^E 

Z-PqS r^ S pq E-Pq((~p^l)a) ^h p 
; Z-Pq(S pq^E)^E ~ E ^E ¢ ~ E 

Thus a/To(hP)*~ = (E-Pq~p,(a))h p. The conclusion follows from the last statement of 

the previous proposition. 

Assuming that E is p-local (when p = 2 as well as when p is odd), we obtain the 

following immediate corollaries. 

Corollary 2.4. If pih = 0, then pi-l(E-Pq~p,(G))h p+l : 0 for all 

Here we have multiplied by h to kill p~(h). Of course, this may not be 

necessary. 

Corollar ~ 2.~. If both pih = 0 and pia = 0, then pi-l(E-PqTp,(a))hP = 0. 

One can also arrive at the last two corollaries by direct diagram chases from 

Corollary 1°8 and the definition of an H ring spectrum, without bothering with 

additivity formulae. (That approach was taken in [72], following Nishida [90, §8]). 
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These relations specialize to give nilpotency assertions, the sharpest estimate 

being as follows. 

Corollary 2.6. Let x e ~qE satisfy plx = 0, where i > 0 and q is even if p > 2. 

Suppose that x = Z-PqTp,(~) for some a a Epq+q(DpSq). Then pi-lxP+2 = O. Moreover, 

if pi = O, then pi-lxP+l = 0. 

The problem, of course, is to study E,(DpS q) and Tp,. Everything above applies 

to an arbitrary H ring spectrum E, but to compute ~p, we must specialize. If E = 

M0, for example, then every element of ~,E has order 2 and no element is nilpotent, 

hence T2,:MO,(D2Sq) ÷ MO,(S 2q) must be the zero homomorphism for all q, This does 

not contradict the following assertion. 

Co~ecture 2.7. Any element of finite order in the kernel of the (integral) 

Hurewicz homomorphism ~,E ÷ H,E is nilpotent. 

We shall prove the conjecture for elements of order exactly p in section 6, but 

the methods there fail for general elements of order pi with i > I. 

When we specialize to E = S, we find that the Kahn-Priddy theorem gives 

appropriate input for application of the results above. 

Theorem 2.8. If p = 2, let ¢(k) be the number of integers j such that 0 < j ! k and 

j ~ 0,1,2, or 4 mod 8. If p > 2, let ¢(k) = [k/2(p-1)]. Let q be an integer such 

that q ~ 0 mod pC(k), where q is even if p > 2. Then Tp,:wrDpS q + Wr Spq is a 

(split) epimorphism for pq < r < pq+k(p-1). 

We shall prove this in section 4. Actually, the purely stable methods we use 

will give surj ectivity without giving a splitting. For this reason, we are really 

only entitled to use Corollary 2.4, rather than Corollary 2.5. This doesn't change 

the heuristic picture, but to give the correct estimate of the order of nilpotency, 

we assume the splitting (from [46, 95, or 27]) in the discussion to follow. 

Theorem 2.9. Let x a ~n S satisfy plx = O, where i > 0 and n is even if p > 2. Let 

m be minimal such that mn ~ 0 mod p¢([n/p-1]+l) Then pi-lxmp+l = 0. Inductively, 

some power of x is zero. 

Proof. Let q = nm. Since n < ([n/p-l]+l)(p-l), there exists ~ ¢ ~pq+nDpS q such 

that Z-PqTp,(a) = x. With h = x m, Corollary 2.4 gives pi-lxmp+2 = O. Using 

i = p a = O, Corollary 2.5 gives pi-lxmp+l O. 

Unfortunately, m increases rapidly with n (although our estimate for p > 2 is 

sharper than Nishlda's since he only knew Theorem 2.8 for r < pq+k). For example, 
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the first stem in which an interesting element x of order 2 occurs is the 14-stem 

("interesting" meaning that x is neither in ~,J nor a product of Hopf maps). Here 

m = 64 and we can only conclude that x 129 = 0, a truly stratospheric estimate. So 

far, and granting that our stemwise calculations still extend through only a very 

small range, we have no reason to disbelieve that x 4 = 0 if 2x = 0. Corollary 2.6 

seems to suggest that this answer might be correct. However, as pointed out to me 

by Bruner, ~2,:~D2Sq + ~,S 2q is not always an epimorphism and thus 

Corollary 2.6 cannot be used to prove this answer. 

§3- The Jones-Wegmann..homolo~ and cohomo.!og F theories 

The next three sections will all make heavy use of certain twisted diagonal 

maps implicit in the general properties of extended powers. 

Definition 3.1. Let ~ be a subgroup of Ej and let W be a free ~-CW complex. 

based CW complex X and a CW spectrum Y, define a map of spectra 

A:(W ~Y(J))^X * W ~(Y^X) (j) 

by passage to orbits over ~ from the ~-map 

") ( j )  
(W~ Y(J))~X I~A~(W~ Y(J))^X(J ~ W~ (Y^X) . 

Here the isomorphis~ is given by I.l.2(ii) and the shuffle ~-isomorphism 

Y(J)^x (j) = (YAX) (j). Note that A is the identity map when X = S O and 

that the following transitivity and connnutativity diagram commutes, where X' is 

another based CW complex. 

For a 

(W ~ Y(J))^XAX' l~x. (W ~ Y(J))AX'^X 

W ~ (Y~X)(J)~x ' A A 

A~W~A~ (y^xAx,)(j) i k (IAT) (j) .................. ,W k (YAX'AX) (j) 

With ~ = Ej and W = EEj, we obtain 

A:(DjY) AX + Dj(Y^X). 

Although not strictly relevant to the business at hand, we record the relationship 
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between these maps and the maps lj, eJ,k, 8j,k, and ~j of I§2 and use them to 

construct new examples of H ring spectra. 

Lemma 3.2. The following diagrams commute for spectra Y and Z and spaces X. The 

unlabeled arrows are obvious composites of shuffle maps and the diagonal on X. 

~j ̂ i ~j ̂ I 
Y(~)^ x ~ DjY^x Dj(~^z) ~x ~ DjY^Djz^x 

i 
( X) (j) ~J ~Dj(YAX) Dj(Y^Z^X) D.Y^Xj ̂ DjZ^X 

6j ^A 

Dj(yAX^Z^X) ~Dj(Y^X)^Dj(Z^X) 

Dji^ DkY ̂  X 
aj ,k ̂ 1 

Dj+kY ̂X 

! 
DjYAX ^DkY ̂ X IA 

IA^A I 
Dj(Y~X) ADk(Y^X) ~J,k Dj+k(y ̂ X) 

DjDkY^X ~J'k^l~ DjkY^X 

Dj (DkY ̂ X) A 

~ DjA 
DjDk(Y^X) SJ, k ~ Djk(Y^X) 

I learned the following lemma from Miller and McClure. 

Lemma 3.3. Let X be an unbased space and E be an H ring spectrum. Then the 

function spectrum F(X+,E) is an H ring spectrum with structural maps the adJoints 

of the composites 

DjF(X+,E) ̂  X 

where e is the evaluation map. 

ring spectrum. 

Dj~ ~j 
-~Dj(F(X+,E) ̂ X +) ~DjE ~E, 

In particular, the dual F(X+,S) of Z®X + is an H~ 

Proof. If j O, A:SAX + Z®X + = = ~ Z~S O = S is to be interpreted as Z~6, where 

6:X + + S O is the discretization map sending X to the non-basepoint. The diagrams of 

1.3.1 are easily checked to commute by use of the diagrams of the previous le~na. 

Returning to the business at hand, observe that, with X = S I, we obtain a 

natural map A:zDjY + DjZY. Thus, for any integer n (positive or negative), we have 

the map 
~nA:zn+iDjz-n-i Y = ZnZDjz-lz-ny .~ ~nDj~-ny. 
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We shall be interested in the resulting inverse system 

.... ZnD. z-nY .... --~ EID. z-lY --* D.Y --~ z-lD.EY .... --* E-nD~znY .... 

(where n > 0). By the diagram in Definition 3.1, the maps 

znA:(ZnDjS -n) ̂ X ~ Zn(DjS-nAX) • ZnDj(S-n^x) ~ ZnDjz-nz~x 

specify a morphism of systems, again denoted A, 

{(ZnDjs-n) ̂ X} ~ {ZnDjz-nz~x} • 

We shall study the homological and homotopical properties of these systems. In this 

section, we consider any j ~ 2. We shall obtain calculational results when J is a 

prime in the following two sections. 

Let E, and E* denote the homology and cohomology theories represented by a 

spectrum E. For spectra Y, define 

E(J)Y = lim E,(ZnDj~-nY) and E(j)Y = colim E*(ZnDjZ-nY) 

F,(J)Y = lim E,(ZnDjs-n^Y) and F(j)Y = colim E*(ZnD.s-n^Y). 

Upon restriction to spaces (that is, to Y = Z®X), we obtain induced natural 

transformations 

A, :F(,J )X ~ E(J )X and a :E(j )X r F(j)X, 

and these reduce to identity homomorphisms when X = S O . It is clear that F~ j) is 

a homology theory and F(j) is a cohomology theory on finite CW spectra. Passage 

to colimits from the homomorphisms 

(zn-IA)*:Ei+I(~nDjz-nzy) ~ Ei(~n-iDjz-n+Iy) ~ Ei(ZnD~z-ny)j 

yields suspension isomorphisms 

Ei+l i )y, (j)ZY ~ E(j 

and A* is easily seen to commute with suspension. The analogous assertions hold for 

E~ j) .- With these notations, the main theorems of Jones and Wegmann [44] read as 

follows (although they only consider primes j and only provide proofs when j = 2). 

Theorem, , 3.4., The functor E(j ) is a cohomology theory on finite CW spectra, 

A :E(j)X + F(j)X is an isomorphism for all finite CW complexes X. 

hence 
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Theorem 3.5- Let E be connective and j-adically complete, with w,E of finite type 

over the j-adic integers Zj : x Z . Then E~ j) is a homology theory on finite CW 

plJ p 
spectra, hence A,:F~J)x ÷ E~J)x is an isomorphism for all finite CW complexes X. 

We defer the proofs for a moment. As Jones and Wegmann point out, these results 

are no longer valid for infinite CW complexes. 

+ map ÷ S O Recall that D.S 0 = Z BE. and the discretization BE + . induces 
J J J 

~j :DiS 0 ÷ S O . Upon smashing with Y, the composites 

EnD.s-n A~D.S O gJ ~S O 
J J 

give a morphism from the system {EnD.s-hA Y} to the constant system at Y. We call 
J 

this map of systems ~j and obtain a map of cohomology theories 

~j:E Y > F(j)Y, 

commutation with the suspension isomorphisms being easily checked. We shall shortly 

prove a complement to this observation. 

Proposition 3.6. 

functions 

Let E be an H ring spectrum. Then the composites of the 

~j :Eny = [~-ny,E] ~ [DjE-ny,E] = En(~nDjZ-ny) 

and the natural homomorphisms En(ZnDjz-ny) ÷ Cj )Y 

theories 

yj * :E Y - E(j )Y. 

specify a map of cohomology 

We thus have the triangle of cohomology theories 

EX 

* A * E(j)X -F(j)X 

on finite CW complexes X. Since ~j(x) = ~j o Dj(x), we see immediately that 

A* (1) = ~j(1), where 1 ~ E0(S 0) is the identity element. It does not follow that 

A ~j = ~j in general. As we shall see in the next section, this fails, for exam- 

ple when E = MO. However, as observed by Jones and Wegmarau I44], this implication 

does hold for E = S. 
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Proposition 3.7. The following diagram commutes for any finite CW Complex X. 

~X 

* A colim ~ (ZnDjz-nx) W colim ~*(ZnD.s-n^j X) 

Proof. Since A*~j and ~] are morphisms of cohomology theories, they are equal 

for all X if they are equal for X = S O . Any morphism ¢:E*X ÷ F+X of cohomology 

theories is given by morphisms of ~*S0-modules. When E* * = ~ and X = S O , ¢(x) = 

¢(l.x) = ¢(1)-x, so that ~ is determined by its behavior on the unit 1 ~ wO(sO). 

For general E and X = S O, it is obvious that ~(x)j = ~j(1)x. It is not at all 

obvious that (A~)(x) = A ~i(1) • x We now have this relation for E = S, and we 

shall use it to prove the Kahn-Priddy theorem in the next section. As we shall 

explain in section 5, theorems of Lin when p = 2 and of Gun^warden^ when p > 2 imply 

% that ~p and thus in Proposition 3.7 are actually isomorphisms. We complete 

this section by giving the deferred proofs, starting with that of Proposition 3.6. 

We need two lemmas. 

Lemma 3.8. 

of j. 

D.Y^X 
J 

D.(Y^ X) 
J 

The following diagram commutes for any partition J = (jl,...,jk) 

~jAl 
~DjlYA...AD. Y~X (shuffle)(iAA)Dj YAXA... ^DjkYaX 

Jk 1 [A^.--AA 

Tj 
~D. (YAX) A.-.^D. (yAX) 

Jl Jk 

Proof. The "transfer" xj is specified in Definition 1.4, and the proof is an easy 

naturality argument. 

Lemma 3.9. For an H ring spectrum E, the composite 

[Y,E] ~J [DjY,E] A* ~ [ZDjZ-Iy,E] 

is a homomorphism. 

Proof. By Lemma 2.1, we have the formula 

p-I 
~j(x + y)= ~j(x)+~j(y) + 

i=l 
i,p_i ( 9i(xl ̂  ~j_i (x)). 



$6 

With X = S I, Lemma 3.8 and the fact that A:S I ÷ S I^ S I is null homotopic imply that 

Ti,j_i A is null homotopic. 

Thus ~j in Proposition 3.6 is a natural homomorphism. It is easily checked 

that ~j commutes with suspension and this proves the proposition. 

Finally, we turn to the proofs of Theorems 3.4 and 3.5. Clearly it only 

remains to show that E(j) and E satisfy the exactness axiom on finite CW pairs 

(Y,B). Although not strictly necessary, we insert a general observation which helps 

explain the idea and will be used later. 

Lemma 3.10. Let f:B ÷ Y be a map of CW spectra with cofibre Cf. There is a map 

~:CDjf ÷ DjCf, natural in f, such that the diagram 

DjY ," CD .f ~ zDjB 

1 
D.Y J ~D.Cf J ~D. ZB 
J J J 

commutes, where i:Y ÷ Cf and ~:Cf ÷ ZB are the canonical maps. If f is the 

inclusion of a subcomplex in a CW spectrum, then the diagram 

CD.f ~ ~D.Cf 
J J 

i 
Dj Y/Dj B ~ ~ Oj (Y/B) 

also commutes, where the maps ~ are the canonical (quotient) equivalences and the 

bottom map ~ is induced by the quotient map Y + Y/B. 

= CD.B and D.Cf = D.(Y u~f CB); @ is induced by the Proof. CDjf DjY ~O.f J j j 
J 

inclusion DjY + DjCf and the composite of A:CDjB ÷ DjCB and the inclusion 

DjCB + DjCf. The diagrams are easily checked. 

Of course, the bottom row in the first diagram is not a cofibre sequence and 

is not an equivalence. Now let (Y,B) be a finite CW pair. For notational 

simplicity, set 

Dj(Y,B) = DjY/DjB and Z = Y/B. 

As n varies, the maps 

zn? : lnDj ( Z -ny, Z -nB) ~- ZnD.j Z -nz 
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specify a map of inverse systems, again denoted ¢, and we shall prove the following 

result. 

Proposition ~.Ii. For any pair (Y,B) of finite CW spectra, 

:E(j)Z ~ Colim E ~ Dj(z-nY,~-nB) 

and, under the hypotheses of Theorem 3.5, 

~,:lim E, ZnDj(~-nY,~-nB) ~ E~J)z 

are isomorphisms. 

Note that the assumptions on E in Theorem 3.5 imply that all groups in sight 

are finitely generated Zj-modules and thus that all inverse limits in sight preserve 

exact sequences. Given the proposition, the required E(j) and E exact 

sequences of the pair (Y,B) are obtained by passage to colimits and limits from the 

E* and E, exact sequences of the pairs (ZnDj~-ny,znDjZ-nB). 

Following ideas of Bruuer (which he uses in a much deeper way in chapters V and 

VI), we prove Proposition 3.11 by filtering Y(J). For 0 < s ~ j, define 

r s = rs(Y,B) = ~ ) y l ^ . . . ^ y j ,  

where Yr = Y or Yr = B and s of the Yr are equal to B. We have 

B (j) = rj C rj_ 1C .'- C r 0 = Y(J). 

Each inclusion is a Zj-equivariant cofibration, and we define 

H s = Hs(Y,B) = rs(Y,B)/rs+l(Y,B). 

Then ]I 0 = Z (j) and, for 0 < s < j, l~ s breaks up as the wedge of its (s,j-s) distinct 

subspectra of the form Zlh ...AZj, where Z r = Z or Z r = B and s of the Z r are equal 

to B. It follows that K s is the free Zj-spectrum generated by the (Zs × Zj-s)- 

spectrum B(S)~ Z (j-s) That is, 

B(S)~ z(J -s). 
Hs ~ ~j ~ Z × 

s ~j -s 

The f~nctor E~j ~Z(?) converts Zj-cofibrations to cofibrations and commutes with 

J 
quotients, hence we have cofibre sequences 

(*) EZj ~Z. r s / r t  ---~EZj ~Z. r r / r t  , EZj kz. r r / r  s 
J J J 

for 0 < r < s < t < j. For a based space X, the map A:DjY^X $ Dj(Y^X) induces 
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compatible maps 

A:[Ezj ~Ejrs(Y,B)]^X :EEj ~Ej rs(Y ̂ X'BaX) 

and similarly for K s on passage to quotients. The following simple observation is 

the crux of the matter. 

Lemma 3.12. For 0 < s < j, there is a natural equivalence 

=:DsB^ Dj_sZ ÷ EEj ~E. Hs(Y'B) 
3 

such that the following diagram commutes for any X. 

B^X^D. Z^X (DsB^Dj_s Z)^X (!^w^l)~D s J-s 

a~ll A 

[EEj ~Ej~s(Y,B)] ̂ X - -  

Aa A ~Ds(B^X ) ^Dj_s(ZAX) 

' ~ EEj ,~ZjIIs(Y^X,B ^X) 

In particular, the bottom map A is null homotopic when X = S 1. 

Proof. By 1.1.4 and the description of Es(Y,B) above, we have 

B(s)^z(J-s). 
EEj ~EjHs(Y'B) ~ EEj ~Es x Ej_ s 

As in the proof of Theorem i.I, we may replace EEj by EE s x EZj_ s on the right side, 

and it then becomes isomorphic to DsB^ Dj_sZ. The diagram is easily checked. 

Now apply E n to the cofibre sequence (*) for the pair (E-nY,Z-nB) with quotient 

E-nz. We obtain an inverse system of cofibre sequences for 0 ~ r < s < t ~ j. On 

passage to E* and then to colimits (or to E, and then to limits), there results a 

long exact sequence. For 0 < s < j, the maps between terms of the system 

{ZnEZj aZj~s(Z-nY,Z-nB)} 

are null homotopic, hence its colimit of cohomologies is zero. Inductively, we 

conclude from the long exact sequences that the colimits of cohomologies associated 

to the quotients rs/r t with s > O are all zero and that the maps of colimits of 

cohomologies associated to the quotient maps rO/r t + FO/F s are all isomorphisms. 

With s = 1 and t = p, this proves Proposition 3.11. 



39 

§4. Jones' proof of the Kahn-Priddy theorem 

We prove Theorem 2.8 here. The proof for p = 2 is due to Jones [431 and we 

have adapted his idea to the case p > 2. We begin more generally than necessary by 

relating the cofibre sequences (*) above Lemma 3.12 to the maps xj:DjY + Y(J) of 

Definiton 1.4. The idea here is again due to Bruner. Thus let (Y,B) be a pair of 

finite CW spectra with quotient Z = Y/B. The map ~j is obtained by applying the 

functor EZj ~.(?) to the composite 
J 

y(j) A (j) ((j)y)(j) ~J y(j) ~Z j  ~ , 

J = (i,...,I), and using the equivalence EZ. ~ Y(J) = Y(J) of nonequivariant spec- 
J 

tra (where, technically, the smash product is external on the left and internal on 

the right; see [Equiv. II §3] ). The spectrum Zj ~ Y(J) is a wedge of isomorphic 

copies of Y(J) indexed on the elements of Zj, and ~ja (j) is just the sum of the j! 

permutation maps. It follows that ~jA (j) restricts to a ~j-equivariant map 

F s + Zj x r s for 0 < s < j. Upon passage to subquotients and application of the 

functor EZj ~Zj(?), we obtain maps of cofibre sequences 

EZj ~jPs/rt ~EZj . ~ EZ kZjrr/Ft j zjrr/rs 

rs/r t --~ rr/r t ~ rr/r s 

for 0 < r < s < t < j. With t = s+l, the left map Tj is nicely related to the 

equivalence s of Lemma 3.12, as can easily be checked by inspection of definitions. 

Lemma 4.1. The following diagram commutes for 0 < s < j, where p is the projection 

onto the unpermuted wedge summand. 

Ds BADj_s z a ~ EZj ~Z. ~s(Y,B) 

' 1 ~s ̂ ~j-s~ ~j 
__ B (s) ̂  z(j-s) (Y,B) B(s)^ z(J-s) ~ P ~J ~ZS x Zj-s ~ ~s 

When j = 2, there is only one map of cofibre sequences above, and we obtain the 

following conclusion. 

Proposition 4.2. For CW pair (Y,B) with quotient Z = Y/B, 

B^z ~;DyD2B ~ ~o2z ~ -~B^Z 
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is a cofibre sequence, where ~ is induced by the quotient map Y ÷ Z, 

the composite 

B^Z = (B^Y)/(B^B) iAI#(Y^Y)/(B^B) . D2Y/D2B , 

and t~ is the composite 

x2 
D2Z-----*Z^Z = (Y~CB) ^Z ~ ̂ ~.zB^ Z. 

Proof. Combine the cofibre sequence 

EE 2 kE2RI(Y,B) ~D2Y/D2B---~D2Z , EEz 2 ~E2 HI(Y,B) 

with the equivalence e:BA Z ÷ EE 2 ~E2RI(Y,B) and check that the resulting maps are 

those specified. 

Our main interest is in the pair (CY,Y). 

Corollar)T 4.3. The following is a cofibre sequence. 

El 2 T 2 
E(YAY) ~ED2Y A ~ D2EY ~ZY^ZY. 

Proof. Use the evident equivalence D2CY/D2Y = ZD2Y and check the maps, using 

Lemma 3.10 for the middle one. 

For j > 2, we have too many cofibre sequences in sight. Henceforward, let p 

be a prime and localize all spaces and spectra at p without change of notation. We 

shall show that, for odd primes p and pairs (csq,s q), our system of cofibre 

sequences collapses to a single one like that in the previous corollary. Recall 

from Lemma I.I0 that t i :y(r) + y(r) is the sum of permutations map and 
r r 

~rtr:DrY ÷ DY induces multiplication by r! on ordinary homology. In particular, 

for I < r < p, DrY is a wedge summand of y(r). 

Lemma 4.4. For i < r < p, DrS2q+l is equivalent to the trivial spectr~n and 
I ~r:S 2qr ÷ DrS2q is an equivalence with inverse ~.~ Xr" 

Proof. When Y = S 2q, Trlr induces multiplication by r! on homology; when Y = S 2q+l , 

it induces zero. The conclusions follow. 

Thus, when Y is a sphere spectrum, most of the spectra 

EEp H E Hs(CY,Y) = DsY ̂ Dp_sEY 

are trivial. P 
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Corollary 4.5. 

sequences 

and 

Let p > 2 and let q be an even integer. Then there are cofibre 

S pq-1 ~ZD sq-I A--~D S q ~p~S pq 
P P 

S pq+l ~ZD S q A~D S q+l ~S pq+2 
P P 

Proof. Let Ps = Fs(CY,Y) and H s = Fs/Ps+ I. If Y = S q-l, then EZp ~ZpHS is trivial 

for 2 5 s < p, hence EZp ~ZpFr/P s is trivial for 2 < r < s ~ p. Thus Pl/Pp + ~l 

and FO/F p + PC/P2 induce equivalences upon application of EZp ~Zp(?) and there 

results a cofibre sequence 

EZp ~ZpH I ~ EZp kZpP0/F p ----EZp ~ZpH 0 ~ ZEZp ~ ZpH 1 • 

This gives the first sequence upon interpreting the terms and maps (by use of Lemmas 

3.10, 3.12, 4.I, and 4.4). Similarly, if Y = S q, then EZp ~ H s is trivial for 

P 
1 < s < p-l, hence EZp ~ZpPr/Ps is trivial for 1 ~ r < s ~ p-l. Thus P0/Pp_l + H 0 

and ~p-I + Pl/Fp induces equivalences upon application of EZp ~Zp(?) and there 

results a cofibre sequence 

EZp ~ Hp_ IP ~EZp ~pP0/P p ----~EZp ~ZpH 0 ~ZEZp ~Zp Hp_ I . 

This gives the second sequence. 

One can also check these cofibre sequences by direct homological calculation; 

Lemma 5.6 below. We need some further information about the spectra EnDpS -n compare 

in order to use these sequences to prove Theorem 2.8. Proofs of the claims to 

follow will be given by Bruner in V§2. 

If p = 2, let L = Z~RP ~ with its standard cell structure. (We write L rather 

than the usual P for uniformity with the case p > 2.) If p > 2, let L be a CW 

spectrum of the p-local homotopy type of Z~BZp such that L has one cell in each 

positive dimension q £ 0 or -1 mod 2(p-l). The existence and essential uniqueness 

of such an L was pointed out by Adams [7,2.2]. Let Lkbe the k-skeleton of L and 

let L n = L/L n-1 and L n+k = Ln+k/L n-1 for k > 0. Let ¢(k) be as in Theorem 2.8 
n 

(and recall that it depends on p). If p = 2, then 

Ln n+k = zn-mL m+k for m a n mod 2@(k). 
m 

If p > 2, a = 0 or i, and k >_ c, then 

for mod 
2m+~ 
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We use this periodicity to define spectra L n+k for non-positive n, so that these 
n 

equivalences hold for all integers m and n. We then have that 

L-n-1 L n+k is (-l)-dual to -n-l-k " 
n 

Our interest in these spectra comes from the following result (proven by Bruner in 

V~2). 

Theorem 4.6. For any integer n, Z-nDpS n is p-locally equivalent to Ln(p_l). 

k n nLnn(p-l)+k k n k 2n We define D S = Z (~ i) . If p = 2, we may view D S as S ~Z S . If 
r ~- r 

ation p > 2, no model for EZp has few enough cells to give as convenient a filt~ of 

DpS n. We shall shortly prove the following result. 

0 S O is the projection onto the top cell, then Proposition 4.7. If p:L k + 

p*:~-q(s O) + ~-q(LOk) 

is zero for 0 < q < k(p-l). 

Since p is (-l)-dual to the inclusion i :S -I + L_k~ I of the bottom cell, 

1~:~q(S -1) + ~q(Lkl l) is zero for 0 _< q < k(p-l)-l. The cofibre sequences of 

Corollaries 4.3 and 4.5 restrict to give cofibre sequences 

S -I I ~ L_kll A_~_~Lk-I TprsO " 

Thus, ~p,:~q(Lo k-l) + ~q(S 0) is an epimorphism for 0 < q < k(p-l). Now let k go to 
+ 

infinity. Of course, L 0 = Z BZp splits as the wedge Z'BZpVS 0. Since 

~p~p:S 0 + S O has degree p!, the finiteness of ~,S 0 allows us to deduce the 

following version of the Kahn-Priddy Theorem. 

Theorem 4.8. The restriction Tp:Z~BZp ÷ S O induces an epimorphism 

~q(Z~B~p) ÷ ~q(S 0) ®Z(p) for q > O. 

To prove Theorem 2.8, consider the following diagram, where q -= 0 mod p~(k) and 

q is even if p > 2. 

Spq-I ~Pq~ ~ ~PqLkl I ~PqA r ~pqLk-i ~Pqxpr SPq 

Spq-i rqL(P-l]q+k-I A ZqL(P-l)q+k-I ~p ~ Spq 
~ (p-l)q-i ~ (p-l)q 
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The bottom cofibre sequence is obtained by restriction from sequences in Corollaries 

4.3 and 4.5. Periodicity gives an equivalence v such that the left square commutes. 

Standard cofibration sequence arguments then give an equivalence ~ such that the 

remaining squares commute. The bottom map Tp factors through Tp:DpS q + S pq and is 

an epimorphism in the range stated in Theorem 2.8. 

It remains to prove Proposition 4.7. For amusement, we proceed a bit more 

generally. Recall the not necessarily commutative diagram 

EX 

E(j)X - F(j)X 

below Proposition 3.6, where E is an H ring spectrum. With E = S and X = S O , the 

following result is Proposition 4.7. 

Proposition 4.9. Let X be a finite CW complex of dimension less than k(p-l)-q, 

where 0 < q < k(p-l). Then 

* -q E-q( L0k (pAl) :E X = E-q(sO^x) ~ - ^X) 

*% * 
is zero if E is a connective H ring spectrum such that a = ~p. 

S -n-1 + znDpS -n has dimension at most Proof. For n > k, the cofibre of a:zn+lDp_q 

-k(p-1), and it follows that the colimit F(p)X is attained as E-q(~kDpS-k^x). 

LO_ ÷ _- S -k be the inclusion and consider the following diagram, Let i: k L-k ZkDp 

where x is any map X + Z-qE. 

., LO k X 

 -q sq ̂  x i x ^ 1 

~p^l ~- SO^X 

~-qD ~ E ~-q~P ~ Z-qE ~- x X 
P 
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Since A*~p = ~, the bottom part commutes. We have 

~pAl = ~:LOk + S O 

-I 
since the composite is obviously null homotopic on L_k 

cell. We have 

AI = o:LOk + ~-qDpS q 

s i n c e  Z-qDpS q i s  O-connec t ed .  The c o n c l u s i o n  f o l l o w s .  

and of degree one on the top 

Replacing S by E in the deductions from Proposition 4.7 and using the results 

of section 2, we conclude that, for q > O, all p-torsion elements of ~pE are 

nilpotent if A~o~ = ~p. This implies our earlier claim that A ~2 ~ ~2 when 

E = MO. 

§5. The Sin~er construction and theorems gfIXn and Gunawardena 

Singer introduced a remarkable algebraic functor R+ from A-modules to A- 

modules, where A is the mod p Steenrod algebra, and Miller began the study of the 

cohomology theories in section 3 by making the following basic observation. All 

homology and cohomology is to be taken with mod p coefficients. 

Theorem 5.1. Let Y be a spectrum such that H,Y is bounded below and of finite 

type. Then colim H*(ZnDpz-ny) is isomorphic to z-1R+H*Y. 

We shall prove this and some related observations after explaining its 

relationship to the following theorems of Lin [53, 54] and Gunawardena [38, 39]- 

Let ~* and ~, denote the p-adic completions of stable cohomotopy and stable 

homotopy. 

* ^* ZnDps-n^ y) Theorem 5.2. The map ~p:W Y + colim ~*( 

finite CW spectra Y. 

is an isomorphism for all 

^ n -n . Realizing the unit by a As we shall explain shortly, lim ~ I(Z DpS ) = ~p 

compatible system of maps ~P:s -1 + ZnDpS -n and smashing with Y, we obtain a 

compatible system of maps 

~p:z-iy ~ s-l^y ÷ ZnDps-n^y" 

Theorem 5.3. The map ~:~,Z-IY ~ + lim ~,(ZnDs-n^Y) is an isomorphism for all 

finite CW spectra Y. 
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Since ~p is amp of cohomology theories and ~ is a map of homology 

theories, it suffices to prove these isomorphisms for Y = S 0. Since 

znDk(p-1)-Is -n is (-1)-dual  to zn+kDk(P-1)-ls -n-k, 
P P 

the theorems are esentially dual to one another. Indeed, using the lim I exact 

sequence and waving one's hands at certain compatibility questions, one finds the 

following chain of isomorphisms, where m(p-l) > q. 

colim ~q( Z n n ~s-n) = ~q(zmDpS -m) 

= lim ~q(ZmDk(p-1)-ls -m) 
k P 

= lim ^ (~m+kDk(p-1) -Is-m-k) 
k U-q-1 p 

= limn ~-q-I (ZnDp S-n) 

There is a map of A-modules ~:R+Zp ÷ Zp, and the main point of the work of Mn 

and Gunawardena can be reformulated as follows; see Adams, Gunawardena, and Miller 

[91 • 

Theorem ~.4. ~*:EXtA(Zp,Z p) ÷ ExtA(R+Zp,Z p) is an isomorphism. 

An inverse system {Yn ) of bounded below spectra Yn of finite type gives rise to 

an inverse limit 

{Er} = lira (ErYn} 

of Adams spectral sequences, where {ErY} denotes the classical Adams spectral 

sequence for the computation of ~.Y. Clearly 

E 2 ~ EXtA(colim H*Yn,Zp). 

As pointed out in [741, {E r} converges strongly to lim ~,Y. We apply this with 

Yn = ZnDp S-n" Here Theorems 5.1 and ~.4 give 

E 2 ~ ExtA(z-lZp,Zp). 

^ n -n ~p From this and convergence, it is easy to check that llm w i(~ DpS ) = . The 

compatible system of maps ~P:s -1 + ZnDpS -n then induces a map of spectral sequences 

(Er~P}:{ErS-1) + (Er).  

By Theorem 5.4 again, E2~P is an isomorphism, and Theorem 5.3 follows by 
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convergence. Theorem 5.2 can be obtained by a similar Adams spectral sequence 

argument (as in Lin [53] and Gunawardena 138]) or by dualizatlon. 

The crux of the proof of Theorem 5.1 is the following result of Steinberger, 

which is proven in VIII.3.2 of the sequel. For spaces, it is due to Nishida [89]; 

see also [68, 9.41. Let ~ be the cyclic group of order p. We assume familiarity 

with the mod p homology H, D Y, its determination being a standard exercise in the 

homology of groups in view of 1.2.3 (see e.g. 168, §l]). Suffice it to say that 

H,D~Y has a basis consisting of elements of the form e0®xlQ ... @Xp and ei@xP , 

i ~ O. Here the x i and x run through basis elements of H,Y, the x i are not all 

equal, and the x I @ --- @Xp and x p together run through a set of w-generators for 

(H,Y) p. Restricting to those i of the form (2s-q)(p-1)-a, where q = deg (x) and 

= 0 or l, and to a set of Zp-generators for (H,Y) p, we obtain a basis for H, DpY. 

At least if H,Y is bounded below and of finite type, we have analogous dual bases 

for H*DY and H*DpY with typical elements denoted w 0 ®yl® ... GYp and wi®yP. 

Theorem 5.5. Assume that H,Y is bounded below and of finite type. The subspace of 

H*D~Y spanned by {wOQY 1 ® ... ®yp} is closed under Steenrod operations and, 

modulo this subspace, the following relations hold for y e HqY. 

(i) For p = 2, 
j+q-i 

sqS(wj ~)y2) = ~ wJ +s-2i ® (Sqiy)2. 
i s-2i 

I (ii) For p > 2, let 6(2n+~) = s, m = ~ (p-l), and a(q) = -(-l)mqm!; then 

pS(w j ®~) = ~ lj/2]+qm-(p-l)i 
i s-pi wJ+2(s-pi)(p-l) @ (piy)p 

+ 6(j-I)a(q) ~ [j/2]+qm-(p-l)i-i 
i s-pi-I Wj-p+2(s-pi)(p-l) @ (Bpiy)p' 

(iii) For p > 2, A(w2j_l @yP) = w2j ®yP. 

, , q+n n 
We also need to know A :H DwY + H*(ZD~Z-IY). Let Zn:Hq(Y) + H (Z Y) denote 

the iterated suspension isomorphism for any integer n. 

Lemma 5.6. For y ~ HqY, 

~*(wj ®yP) = (-l)J+la(q)~(Wj+p_l ® (~-ly)p). 

Proof. We first compute A,:H,(zDY) + H,(D ZY). Take f to be the identity map of Y 

and replace Dp by D~ in Lemma 3.10. We find that the composite of A, and the 

homology suspension Z, is the suspension associated to the zero sequence 
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C,(D~Y) --~ C,(D CY) --* C,(D~ZX). 

By 1.2.3 and [68,~i], we may instead use the zero sequence 

W®C,(Y) p , W®C,(CY) p ~ W®C,(ZY) p, 

where W is the standard ~-free resolution of Zp. A direct chain level computation, 

details of which are in [68,p. 166-167], gives the formula 

A,Z,ej+p_l®xP = (-l)J+l~(q)ej ® (Z,x) p 

for x ~ Hq_l(Y). Clearly A,Z,(e0®xl® ... ®Xp) = 0 for all xi. The conclusion 

follows upon dualization (and a careful check of signs). 

The results above determine colim H*(ZnD~z-nY) as an A-module, and similarly 

with D replaced by Dp. To compare the answer to the Singer construction, we must 

first recall the definition of the latter [98,52]. When p = 2, Z-1R+M is additively 

isomorphic to A~M, where A is the Laurent series ring Z2[v,v-1] , 

deg v = 1. Its Steenrod operations are specified by 

~r-i ~ r+s-i sqS(v r ~x) = ~ [s.2i)v ~ Sqlx. 
i 

When p > 2, Z-IR+M is additively isomorphic to A ®M, where A = E{u} × Zp[V,v-l], 

deg u = 2p-3 and deg v = 2p-2. Its Steenrod operations are specified by 

pS(u~vr-~ ~gx)= ~ (_l)s+i~(p-l)(r-i)-~)u~vr+S-i-~®pix 

i \ s-pi 

and 

! 
(p-l) (r-i)-i 1 (_l) s+i r+s-i-1 

i ~ s-pi-I ] uv 
® BPIx 

6(uavr-~®x) = ~(vr®x). 

We can now prove Theorem 5.1. We define an isomorphism 

~:colim H*(ZnD z-nY) ÷ z-IR+H*Y 
P 

as follows. For p = 2 and y ~ Hq(Y), let 

n 2 v r 
~(~ (Wr_q+ n ~ (~-ny) = ~ Y- 

For p > 2 and y c Hq(Y), let 

n ~(Z (W(2r+n_q)(p_l)_c@ (~-ny)p) = (_l)r+q+(~+l)n (q_n)-lu~vr-~ ~y, 
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where v(2j + s) =(-l)J(m!) ~. Note that 

a(q)v(q_l)-i = ~(q)-I and (-l)q~(q) -I = (-l)mq~(q). 

By Lemma 5.6, these m induce a well-defined isomorphism on passage to colimits, by 

Theorem 5.5, we see that our constants have been so chosen that ~ is an isomorphism 

of A-modules. 

Remark 5.7. When p > 2, there are two variants of the Singer construction. We are 

using the smaller one appropriate to Dp. This is a summaud of the larger variant, 

for which Theorem 5.1 is true with Dp replaced by D~. See Gunawardena [39,9] for 

details (but note that his signs don't quite agree with ours). 

With Y = S O, Theorem 5.1 specializes to an isomorphism 

A = Z-IR+Zp -= colim H*(ZnDps-n). 

Since A is an A-module, A ® M admits the diagonal A action, which is evidently quite 

different from that originally specified on Z-1R+M. For finite CW complexes X, we 

have the isomorphism 

A*:eolim H*(~nDp~-nx) , ,,~,collm H*(gnDpS-n^x) 

of Theorem 3.2. We next obtain an explicit description of the resulting isomorphism 

* -IR+ *X ~* A :E H + A@H X. 

Thus consider A:D YAX + D (YAX). When X = S I, we computed A, in the proof 

of Lemma 5.6. When Y = S, D~Y = E=B~ + and the effect of A, is implicit in the 

definition of the Steenrod operations; see Steenrod and Eptein [I00] (or, for 

correct signs, [68, 9.1]). The following result is a common generalization of these 

calculations. 

Propsition 5.8. Let x e %(X) and y a Hq(Y). If p = 2, 

ix)2 
A,(er®y2®x) = [ er+2i_k ® (y®Sq, . 

i 

if p > 2, let ~(2j+l) = (-l)J(m!) ~ and ~(2j+~) = ~; then 

A,(er @yP @x) : (-l)mkq~(k) [ (-l)ier+(2pi_k)(p_l) @ (y@P~x) p 
i 

-(-1)q+m(k-l)q6(r)v(k-l) ~ (-1) i 
i er+p+(2pi-k)(p-1) ® (Y~P~Bx)P" 
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Proof. Modulo shuffling in C,(y)P, which introduces the signs depending on q when 

p > 2, A, is computable from the map obtained by quotienting out the action of 

from the ~-map 

¢~)I:C,(W) ~)~,(X) ~)C,(Y)P--~C,(W) ~)U,(x)P@c,(Y) p 

induced by a ~-equivariant approximation ~ of I~)A~, where A' is a cellular 

approximation of the diagonal X ÷ xP; see e.g. [I00, V~3] or [68,7.1]. The 

essential point is that Y acts like a dumm~ variable, so that the standard 

calculation for Y = S O of [68, 9.1] implies the general result. 

Dualizi~, and paying careful attention to signs, we obtain the following 

version in cohomology. 

Proposition 5.9. Assume that H,X and H,Y are of finite type and that H,Y is bounded 

below. Let x e ~(X) and y ~ Hq(Y). If p = 2, 

1 

If p> 2, 

* i " 
q+l)~(k) i A (wj ® (y@x) p) = (-I) mk( ~ (-i) wj+(k_2i)(p_l ) @yP®PIx 

-(-l)q+mk(q+l)6(J-l)~(k) ~ (-I) i 
i wj+(k-2i)(p-I)-IeYP®BPIx" 

A check of constants gives the following consequence. 

Corollar~/ 5zlQ. For M = H X, the formula 

if p = 2 and 

A*(v r ®x) : ~ V r-i~) Sqix 

i 

A*(UeV r-~ ® x) = ~ uav r-i-e ~ pix - (l-c) ~ uv r-i-I 0 8 Pix 
i i 

if p > 2 specifies a morphiam of A-modules A*:E-1R+M ÷ A ~ M. 

The same formulae give a morphism of A-modules for all A-modules M which are 

either unstable or bounded above, either assumption ensuring that the relevant sums 

are finite. In the bounded above case, but not in general in the unstable case, 

this morphism is an isomorphism. See [98, 52, 82]. 
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Define s:R+M + M by the formulas 

~z(vr-iox ) = sqrx 

if p = 2 (where sqr(x) = O if r < O) and 

~g(uv r-I ®x) = prx and ~2(v r ®x) = -~prx 

if p > 2. By [98,3.4] and [52,3.5], ~ is a well-defined morphism of A-modules. 

When A* is defined, ~ is the composite 

R+M ZA ~Z(Z-IR+Zp ® M) Z(~ ®l),z(z-lZp®M) = M. 

Generalizing Theorem 5.4, Adams, Gunawardena, and Miller [9] proved that ~ is an 

Ext-isomorphism for any M. This leads to a generalization of Theorem 5.3 to a 

version appropriate to (Zp) k for any k ~ l, and this generalization is the heart of 

the proof of the Segal conjecture for elementary Abelian p-groups. See [9,74]. 

§6. Nishida's second nilpotency theorem. 

If x a ~n E has order p, then x extends over the Moore spectrum ~n = S n ~jpCS n. 

The idea of Nishida's second nilpotency theorem is to exploit this extension by 

showing that DjM n splits as a wedge of Eilenberg-MacLane specta in a range of 

dimensions. The relevant splitting is a special case of the following result which, 

as we shall explain shortly, is in turn a special case of the general splitting 

theorem to be proven by Steinberger in the next chapter. 

Theorem 6.1. Let Y be a spectrum obtained from S n by attaching cells of dimension 

greater than n. Assume that ~n Y is Z or Z i and let v c Hn(y;Zp) be a generator. 

Assume one of the following further hypotheses. 

(a) p = 2 and either n is odd or ~(v) ~ O. 

(b) p > 2, n is even, and B(v) ~ O. 

(c) p = 2 and Sq3(v) ~ O. 

(d) p > 2, n is even, and ~Pl(v) ~ O. 

Then DjY splits p-locally as a wedge of suspensions of Eilenberg-MacLane spectra 
1 

through dimensions r < nj + ~ (2p-3)(j+l)-l. In cases (a) and (b), only 

suspensions of HZp are needed. 

Before discussing the proof, we explain how to use these splittings to obtain 

relations in the homotopy groups of H ring spectra. Let Y and v be as in the 

theorem above and localize all spectra at p. 
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Theorem 6.2. Let E be an H ring spectrum, let F be a connective spectrum, and let 

¢:E F ÷ E be any map (for example, the product when F = E or the identity when 

F = S). Let x s Wn E and assume one of the following hypotheses. 

(a) p = 2 and n is odd; here let Y = S n. 

(b) p > 2, n is even, and x has order 2; here let Y = ~n 

(c) p = 2, n is even, and x extends over some Y with Sq3(v) ~ O. 

(d) p > 2, n is even, and x extends over some Y with 6pl(v) ~ O. 

Let R = Zp in cases (a) and (b) and R = ~n Y in cases (c) and (d) and let y s ~n F be 

in the kernel of the Hurewicz homomorphism ~qF + Hq(F;R). Then xJy = 0 if 
1 

q < ~ (2P-3)(J+I)-I" 

Proof. Our hypotheses ensure that HnJ(D~Y;R) -_- R. 

that the composite 

Sn j lj D . f  ~-n .~  J 
j ~5 Y 

We can choose a generator ~ such 

~ E nJ HR 

is znJe, where f:S n + Y is the inclusion of the bottom cell and e:S + HR is the 

unit. Choose ~:Y + E such that ~f = x. Then the solid arrow part of the 

following diagram commutes and the top composite is xJy. 

snJas q lay ~snJAF x(J)~l E(j)^ F ¢^1 ¢ ~E^F ~E 

D.x ^ 1 
D.snA. F 4. .'- D. ^ F  

J J 

~nJHR ̂ F ~ ~^i D.y^ F 
J 

[ ^i ~o ̂ I 
A 1 ".,~ 

(SY)r ^ F 

Z nJ e ~ y 

Here r = nj+q, ~:DjY + (DjY) r is the r th stage of a Postnikov decomposition of DjY, 

and p:(DjY) r + ZnJHR. is the unique cohomology class such that p~ = ~. The previous 

theorem gives <:ZnJHR + (DjY) r such that p< = I. The complementary, wedge summand 

of EnJHR in (DjY) r is (nj)-eonnected, and it follows that <.znJe = ~.Djf. lj. Since 

F is connective, m^l induces an isomorphism on ~nj+q" Since y is in the kernel of 
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the Hurewicz homomorphism and the latter is induced by e^l:F = S ̂ F ÷ HR^ F, 

znJe^ y = O. Chasing the diagram, we conclude that xJy = 0. 

In particular, with F = E, q = n, and y = x, we obtain x j+l = O. With E = S 

and n > O, case (b) applies to any even degree element of order p. As observed by 

Steinberger, when p = 2 case (a) applies to any odd degree element and gives a 

better estimate of the order of nilpotency than that obtained by applying case (b) 

to x 2. While this result gives a much better estimate of the order of nilpotency of 

elements of order p in ~,S than does Theorem 2.9, the estimate is presumably still 

far from best possible. For example, if p = 2 and n = 14, the estimate is now 

x 30 = O. Cases (c) and (d) apply to some elements of order pi with i > 1. The idea 

is to add further cells to S n, or to S n k.;pi csn, so as to obtain a spectrum Y for 

which the relevant Steenrod operation is non-zero. However, a given element x need 

not extend over any such Y. (Conceivably some power of x must so extend.) This 

explains why Nishida's second method fails to give the full nilpotency theorem and 

why we cannot yet prove Conjecture 2.7. 

We must still explain how to prove Theorem 6.1. The idea is to approximate Dj 

through the specified range by a spectrum with additional structure and then use 

homology operations to split the latter. The approximation is based on the 

following observation about mod p homology. 

Proposition 6.3. Let Y be an (n-l)-connected spectrum with HnY = Zp, where n is 

even if p > 2. Let f:S n ÷ Y induce an isomorphism on H n. Then the homomorphism 

HiZnDqY ÷ HiDq+l Y induced by the composite 

y^sn I^ f D Y^Y ~q,IL Dq q r Dq+lY 

is a monomorphism for all i and is an isomorphism if i < n(q+]) + ! (2p_3)(q+l). 
P 

For spaces X, a self-contained calculation of H.DqX for all q is given in 

[28,I§4-9]. The generalization to spectra is given by McClure in Chapter IX, and 

the conclusion is easily read off from these calculations. 

With the proposition as a hint, we construct the approximating spectra as 

follows. 

Definition 6.4. Let (y,f) be a spectrum together with a map f:S u ÷ y for some 

integer n and define D(Y,f) = tel z-nqDqY, where the n th map of the system is 

obtained by applying Z -n(q+l) to the composite 

y^y ~q,l _ DqYAS n l^ f Dq ~Dq+IY. 
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Now the previous proposition has the following consequence. 

Corollary 6.5. With Y and f as in the proposition, assume further that Y is 

p-local of finite type. Then the natural map DjY + znJD(Y,f) is an equivalence 
1 through dimensions less than nj + ~ (2p-3)(j+l) - 1. 

Proof. By the proposition, the maps ~-n(q+l)(~q, 1 o 1Af) used to construct 

D(Y,f) induce isomorphisms in mod p homology and thus in p-local homology in 
1 degrees less than ~ (2p-3)(q+l). This fact for q ~ j implies the conclusion (with 

the usual loss of a dimension as one passes from homology to homotopy). 

Thus, to prove Theorem 6.1, we need only split D(Y,f). 

The following ad hoc definition, which generalizes Nishida's notion of a 

r-spectrum [90,1.5], allows us to describe the structure present on the spectra 

D(Y,f). In the rest of this section we shall refer to weak maps and weakly 

commutative diagrams when the domain is a telescope and phantom maps are to be 

ignored. 

Definition 6.6. A spectrum E is a pseudo H ring spectrum if 

(i) E is the telescope of a sequence of connective spectra Eq, q ~ O; 

(ii) E is a weak ring spectrum with unit induced from a map S + E 0 and 

product induced from a unital, associative, and commutative system of compatible 

maps EqAE r + Eq+r; and 

(iii) For each j ~ O and q ~ O, there exists an integer d = d(j,q) and a map 

Z dj qEj q composite ~j q ( Z d qEq) :Di~ldqE + whose with :EdjqE(J ) ~ (J) + D.zdqE is ~j 
J q q 

(j) 
the (djq) th suspension of the interated product Eq + Ejq. 

Examples 6.~. (i) With each Eq = E and each d(j,q) = 0, a connective H~ ring 

spectrum may be viewed as a pseudo H ring spectrum. 

(ii) With each Eq = E and each d(j,q) = d, a connective H d* ring spectrL~n may be 

viewed as a pseudo H= ring spectrum; since E has structural maps ~j for all q, 

negative as well as positive, we could obtain a different pseudo structure with each 

d(j,q) = -d. 

(iii) For an (n-1)-connected spectrum Y and map f:S n ÷ Y such that either 

2 = O:Y + Y or n is even, D(Y,f) is a pseudo H ring spectrum with qth term 

z-nqDqY. Its product is induced by the maps 

z-n(q+r) 

z-nqDqY^~-nrDy ~ ~-n(q+r)(DqY~ DrY) aq,r~-n(q+r)Dq+r Y , 

these forming a unital, associative, commutative, and compatible system by 1.2.6 and 

1.2.8 and our added hypothesis, which serves to eliminate signs coming from permuta- 
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tions of spheres. With all d(j,q) = n, its structural maps are 

~j = ~j,q:Dj~nq(~-nqDqY) = DjDqY ÷ DjqY = ~njq(~-njqDjqY). 

The following analog of 1.3.6 and 1.4.5 admits precisely the same simple 

cohomologieal proof. 

Proposition 6.8 . . Let E be a pseudo H ring spectrum with char woE = 2 or all 

d(j,q) even. Assume that woe = woe q for all q ~ qo and, for such q, let 

i:Eq + H(~oE) be the unique map which induces the identity homomorphism on 70. 

the following diagrams commute, where d = d(j,q): 

Dj 2 dqi 
Dj zdqEq ......... 

~j 

~djqE. __ ~dJ qi 
Jq 

Dj zdqH(woE) 

r. JqH(~oE) 

Then 

In the next chapter, Steinberger will use a computation of the homology 

operations of the H~ ring spectrum -- ~ V zdqHZp to prove the following generalization 

of Nishida's result [90,3.2]. 

Theorem 6.9. Let E be a p-local pseudo H ring spectrum. If ~0 E = ~, then E 

splits as a wedge of suspensions of HZp. If ~0 E = Zpr, r > l, or ~0 E = Z(p) and if 

p = 2 and Sq3i ~ 0 or p > 2 and ~pli # O, where i generates HO(E;Zp), then E splits 

as a wedge of suspensions of HZpS, s >_ l, and HZ(p). 

Considering the natural map z-nY + D(Y,f), and using the formula S(Wo®V2) = 

nwl®~2 of Theorem 5.5 for case (a), we easily check that the theorem applies to 

split D(Y,f) for Y as in Theorem 6.1. 

We complete this section with some remarks about the role played by Definition 

6.4 in the general theory of H~ ring spectra. 

Remarks 6.10. Let (E,e) be a spectrum with unit e:S + E. Let DE = D(E,e) and let 

u:E =DIE + DE be the natural inclusion. By 1.2.7, 1.2.9, and 1.2.13, the maps 

~j,k:DjDkE + DjkE induce a natural weak map ~k:DDkE ÷ DE such that the following 

diagrams (weakly) commute: 
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h~ ~ ~ D~s and DOj hs D~j ,k ,~ DDjk s 

Uk 
DE DDkE ~ DE 

If E is an H~ ring spectrum, then, by Proposition 1.3, the maps ~j:DjE + E determine 

a weak map ~:DE + E such that the following diagrams (weakly) commute. 

E ~] , DE and DDkE D~k ~ DE 

E DE ~ P E 

Conversely, by the same result, if ~:DE ÷ E makes these diagrams weakly commute, 

then its restrictions ~j :DjE + E give E a structure of H ring spectrum. These 

assertions are analogous to, but weaker than, the assertions that D is a monad and 

that an H ring spectrum is an algebra over this monad (compare [69, §2]). The 

point is that the ~k fail to satisfy the requisite compatibility to determine a weak 

map ~:DDE + DE. By 1.2.11 and 1.2.15, the compatibility they do have is described 

by the weakly commutative diagram 

DDkE ̂  S , DDkE ̂  DS - DDkE 

DDkE ~ DE • DDk+lE 

o l^e) 

where ~k is induced by the composites 

~j~k^ j 
D.e 

Dj~EaDjS ~DjkE^DjE ajk'j ~Djk+jE 

and ~:DF + DF^DS is induced by the maps ~j:Dj(F^S) + DjF^DjS. 


