
CHAPTER I 

EXTENDED POWERS AND H~ RING SPECTRA 

by J. P. May 

In this introductory chapter, we establish notations to be adhered to through- 

out and introduce the basic notions we shall be studying. In the first section, we 

introduce the equivariant half-smash product of a q-space and a ~-spectrum, where 

is a finite group. In the second, we specialize to obtain the extended powers of 

spectra. We also catalog various homological and homotopical properties of these 

constructions for later use. While the arguments needed to make these two sections 

rigorous are deferred to the sequel (alias [Equiv] or [51]), the claims the reader 

is asked to accept are all of the form that something utterly trivial on the level 

of spaces is also true on the level of spectra. The reader willing to accept these 

claims will have all of the background he needs to follow the arguments in the rest 

of this volume. 

In sections 3 and 4, we define H ring spectra and H d ring spectra in terms of 

maps defined on extended powers. We also discuss various examples and catalog our 

techniques for producing such structured ring spectra. 

§I. Equivariant half-smash products 

We must first specify the categories in which we shall work. All spaces are to 

be compactly generated and weak Hausdorff. Most spaces will be based; ~ will denote 

the category of based spaces. 

Throughout this volume, by a spectrum E we shall understand a sequence of based 

spaces E i and based homeomorphisms ~i:Ei + ~Ei+l, the notation o i being used for 

the adjoints zE i + El+ I. A map f:E + E' of spectra is a sequence of based maps 

fi:Ei ÷ E l strictly compatible with the given homeomorphisms; f is said to be a weak 

equivalence if each fi is a weak equivalence. There results a category of spectra I. 

There is a cylinder functor E ^ I + and a resulting homotopy category ha The 

stable category h~ is obtained from h~ by adjoining formal inverses to the weak 

equivalences, and we shall henceforward delete the adjective "weak". K% is equiv- 

alent to the other stable categories in the literature, and we shall use standard 

properties and constructions without further comment. Definitions of virtually all 

such constructions will appear in the sequel. 

Define h~ and h~ analogously to h~ and h2 . For X ~, define 

QX = colim ~nznx, the colimit being taken with respect to suspension of maps 

S n ÷ znx. Define adjoint functors 



:J+~ and ~ +J 

by Z~X = (QZIX} and e~E = E O. (This conflicts with the notation used in most of my 

previous work, where Z ~ and ~ had different meanings and the present Z ~ was called 

Q~; the point of the change is that the present Z ~ is by now generally recognized to 

be the most appropriate infinite suspension fu_nctor, and the notation ~ for the 

underlying infinite loop space functor has an evident mnemonic appeal. ) We then 

have QX = ~Z~X, and the inclusion and evaluation maps n:X + ~nznx and 

s:zn~ny + Y pass to colimits to give ~:X + ~z~X for a space X and e:Z~E ÷ E 

for a spectrum E. For any homology theory h,, ~ induces the stabilization 

homomorphism h,E 0 ÷ h,E obtained by passage to colimits from the suspensions 

associated to the path space fibrations E i + PEi+ 1 + Ei+ 1 for i > O. 

Let ~ be a finite group, generally supposed embedded as a subgroup of some 

symmetric group Zj. By a based ~-space, we understand a left ~-space with a 

basepoint on which ~ acts trivially. We let ~ 9 denote the resulting category. 

Actually, most results in this section apply to arbitrary compact Lie groups ~. 

Let W be a free unbased right ~-space and form W + by adjoining a disjoint 

basepoint on which ~ acts trivially. For X ~ ~ ~, define the "equivariant half- 

smash product" W ~ X to be W + A~ X, the orbit space of W x X/W x {*} obtained by 

identifying (w~,x) and (w,~x) for w ~ W, x ~ X, and ~ ~ w. 

In the sequel, we shall generalize this trivial construction to spectra. That 

is, we shall explain what we mean by a "~-spectrum E" and we shall make sense of 

"W ~ E"; this will give a functor from the category ~ of ~-spectra to 2. For 

intuition, with ~ C Zj, one may think of E as consisting of based w-spaces Eji for 

i > 0 together with ~-equivariant maps Eji~ S j + Ej(i+l) whose adjoints are homeo- 

morphisms, where ~ acts on S j = sl^ ... ^ S 1 by permutations and acts diagonally on 

Eji ^ S j . 

The reader is cordially invited to try his hand at making sense of W ~E using 

nothing but the definitions already on hand. He will quickly find that work is 

required. The obvious idea of getting a spectrum from the evident sequence of 

spaces W ~ Eji and maps 

Z(W ~ Eji) + W ~ (Eji^ S j) + W ~ Ej(i+l) 

is utterly worthless, as a moment's reflection on homology makes clear (compare 

II.5.6 below). The quickest form of the definition, which is not the form best 

suited for proving things, is set out briefly in VIII §8 below. The skeptic is 

invited to refer to the detailed constructions and proofs of the sequel. The 

pragmatist is invited to accept our word that everything one might naively hope to 

be true about W ~E is in fact true. 



The first and perhaps most basic property of this construction is that it 

generalizes the stabilization of the space level construction. If X is a based ~- 

space, then Z~X is a T-spectrum in a natural way. 

Proposition 1.1. For based ~-spaces X, there is a natural isomorphism of spectra 

W ~ z=X ~ z~(W ~ X) .  
w 

The c o n s t r u c t i o n  en joys  v a r i o u s  p r e s e r v a t i o n  p r o p e r t i e s ,  a l l  of  which ho ld  

trivially on the space level. 

Prol~osition 1.2 (i) The functor W ~ (?) from ~ to ~ preserves wedges, pushouts, 

and all other categorical colimits. 

(ii) If X is a based T-space and EA X is given the diagonal ~ action, then 

W k (E^X) -- (W~ E)^X before passage to orbits over ~; if ~ acts trivially on X 

W ~ (E~X) -_- (W ~ E)^X 
w 

(iii) The functor W ~(?) preserves cofibrations, cofibres~ telescopes, and all 

other homotopy colimits. 

Taking X = I + in (ii), we see that the functor W ~ (?) preserves ~-homotopies 

between maps of r-spectra. 

Let F(X,Y) denote the function space of based maps X ÷ Y and give F(W+,Y) the 

action (of)(w) = f(wo) for f:W + Y, o ~ ~, and w ~ W. For T-spaces X and spaces Y, 

we have an obvious adjunction 

O(W ~X,Y) ~ ~(X,F(W+,Y)). 

We shall have an analogous spectrum level adjunction 

~(W ~ E,D) _-- ~(E,F[W,D)) 

for spectra D and ~-spectra E. Since left adjoints preserve colimits, this will 

imply the first part of the previous result. 

Thus the spectrum level equivariant half-smash products can be manipulated just 

like their simple space level counterparts. This remains true on the calculational 

level. In particular, we shall make sense of and prove the following result. 

Theorem 1.3. If W is a free ~-CW complex and E is a CW spectrum with cellular 

action, then W ~ E is a CW spectrum with cellular chains 



C.(W ~7[ E) -= C.W~ C.E. 

Moreover, the following assertions hold. 

(i) If D is a 7[-subcomplex of E, then W ~7[D is a subcomplex of W ~7[ E and 

(W 1~7[E)/(W v:7[ D) = W ix7[ (E/D). 

(ii) If W n is the n-skeleton of W, then W n-I ~7[ E is a subcomplex of W n ~7[ E and 

(W n ~< E)I(W n-I ~ E) -- [(wn/7[)/(wn-I/7[)] ^ E. 
7[ 7[ 

( iii ) With the notations of ( i ) and ( ii ), 

wn-I ~ D = (W n ~(D) r%(wn-i ~ E) C wn~< E. 
7[ 7[ 7[ W 

The calculation of cellular chains follows from (i)-(iii), the simpler calcula- 

tion of chains for ordinary smash products, and an analysis of the behavior of the 7[ 

actions with respect to the equivalences of (ii). 

So far we have considered a fixed group, but the construction is also natural 

in 7[. Thus let f:p ÷ 7[ be a homomorphism and let g:V + W be f-equivariant in the 

sense that g(vo) = g(v)f(o) for v ~ V and o ~ p, where V is a p-space and W is a 7[- 

space. For 7[-spectra E, there is then a natural map 

g ~ l: V ~ (f E) + W~ E, p 7[ 

where f*E denotes E regarded as a p-spectrum by pullback along f. 

For X ~ 7[~ and Y c p~ , we have an obvious adjunction 

7[~ (7[+ ̂  Y,X) ~ p~ (Y,f*X). 
p 

We shall have an analogous extension of action functor which assigns a 7[-spectrum 

7[ ~ F to a p-spectrum F and an analogous adjunction 
P 

w~(7[ ~ F,E) =_ p~(F,f*E). 
p 

Moreover, the following result will hold. 

~al.4. With the notations above, 

W ~ (7 ~ F) = W 
7[ p p 

F. 



When p = e is the trivial group, n ~ F is the free n-spectrum generated by a 

spectrum F. Intuitively, n ~ F is the wedge of copies of F indexed by the elements 

of n and given the action of # by permutations. Here the len~na specializes to give 

W~ (n ~ F) = W~ F, 
n 

and the nonequivariant spectrum W ~ F is (essentially) just W+^ F. Note that, with 

p = e and V a point in the discussion above, we obtain a natural map 

I:E÷W~ E 
n 

depending on a choice of basepoint for W. 

For finite groups n and p, there are also natural isomorphisms 

a:(W k E) ^ (V ~ F) + (W x V) ~ (E^F) 
W p -~ x p 

and, if pC Zj, 

6: V k (W ~ E) (~) ~ + (V x W j) E(J) 
p n p f n  

for n-spaces W, n-spectra E, p-spaces V, and p-spectra F. Here E (j) denotes the j- 

fold smash power of E and pfn is the wreath product, namely p x i with 

multiplication 

(~,~l,...,~j)(T,Vl,...,v j) = (~, ~(1)Vl,...,~T(j)vj ). 

The various actions are defined in the evident way. These maps will generally be 

applied in composition with naturality maps of the sort discussed above. 

We need one more general map. If E and F are n-spectra and n acts diagonally 

on E^F, there is a natural map 

~:W ~ (E^F) + (W ~ E)^(W ~ F). 
n n n 

All of these maps I,~,~, and ~ are generalizations of their evident space 

level analogs. That is, when specialized to suspension spectra, they agree under 

the isomorphisms of Proposition 1.1 with the suspensions of the space level maps. 

Moreover, all of the natural con~nutative diagrams relating the space level maps 

generalize to the spectrum level, at least after passage to the stable category. 

§2. Extended powers of spectra 

The most important examples of equivariant half-smash products are of the form 

W ~n E(j) for a spectrum E, where n ~ Ej acts on E (j) by permutations. It requires 

a little work to make sense of this, and the reader is asked to accept from the 



sequel that one can construct the j-fold smash power as a functor from ~ to ~ with 

all the good properties one might naively hope for. The general properties of these 

extended powers (or j-adic constructions) are thus direct consequences of the 

assertions of the previous section. The following consequence of Theorem 1.3 is 

particularly important. 

Corollary 2.1. If W is a free ~-CW complex and E is a CW spectrum, then W ~ E (j) 

is a CW-spectrum with 

C,(W ~ E (j)) ~ C,W~(C,E) j. 

Thus, with field coefficients, C,(W ~ E (j)) is chain homotopy equivalent to 

C,W ~(H~E) j . 

Indeed, C,(E (j)) ~ (C,E) j as a n-complex, where (C,E) j denotes the j-fold 

tensor power. This implies the first statement, and the second statement is a 

standard, and purely algebraic, consequence (e.g. E68,1.1J). 

We shall he especially interested in the case when W is contractible. While 

all such W yield equivalent constructions, for definiteness we restrict attention to 

W = E~, the standard functorial and product-preserving contractible n-free CW- 

complex (e.g. t70,p.31]). For this W, we define 

DE = W ~ E (j) . 

When ~ = Zj, we write DE = DjE. Since EZ 1 is a point, hE = E. We adopt the 

convention that DoE = E (0) = S for all spectra E, where S denotes the sphere 

spectrum Z~S 0 . 

We adopt analogous notations for spaces X. Thus D.X = EZj K X (j) J Zj ' DIX = X, 

and DoX = S O . Since there is a natural isomorphism Z~(X (j)) ~ (Z~X) (j) of 7- 

spectra, Proposition I.i implies the following important consistency statement. 

Corollary 2.2. For based spaces X, there is a natural isomorphism of spectra 

D Z~X ~ Z~D X. 
w W 

Corollary 2.1 has the following immediate consequence. 

Corollary 2.3. With field coefficients, 

H,D E ~ H,(~;(H,E)J). 



In general, we only have a spectral sequence. Since the skeletal filtrations 

of E~ and Bn satisfy (E~)n/~ = (B~) n, part (ii) of Theorem 1.3 gives a filtration of 

D E with successive quotients [(B~)n/(B~) n-l] ^E (j) 

Corollary 2.4. For any homology theory k,, there is a spectral sequence with 

E 2 = H,(~;k,E (j)) which converges to k,(D E). 

This implies the following important preservation properties. 

Proposition 2.5. Let T be a set of prime numbers. 

(i) If l:E + E T is a localization of E at T, then D (E T) is T-local and 

D~k:D~E + D~(E T) is a localization at T. 

(ii) If y:E + ET is a completion of E at T, then the completion at T of 

D y:D E ÷ D (E T) is an equivalence. 

Proof. We refer the reader to Bousfield [21] for a nice treatment of localizations 

and completions of spectra. By application of the previous corollary with k, = 7,, 

we see that D~(E T) has T-local homotopy groups and is therefore T-local. (Note that 

there is no purely homological criterion for recognizing when general spectra, as 

opposed to bounded below spectra, are T-local.) Taking k, to be ordinary homology 

with T-local or mod p coefficients, we see that D~ is a ZT-hOmology isomorphism and 

D~y is a Zp-homology isomorphism for all p E T. The conclusions follow. 

Before proceeding, we should make clear that, except where explicitly stated 

otherwise, we shall be working in the appropriate homotopy categories K J or K~ 

throughout this volume. Maps and commutative diagrams are always to be understood in 

this sense. 

maps 

The natural maps discussed at the end of the previous section lead to natural 

~j:E (j) ÷ DjE 

aj,k:DjEA DkE + Dj+kE 

and 

Bj,k:DjDkE + DjkE 

~j:Dj(E^F) + D.E^D.F . 
J J 

These are compatible with their obvious space level analogs in the sense that the 

following diagrams commute. 



~ j ~ 
D.Z~X D.(Z X~Z Y) -D.Z X^D.Z Y 

Z®(x(J)) ~~J~ J J J J 

Ilt II~ II~ 

7~D.X Z~D.(X^Y) -- J ; Z®(DjX~DjY) 
J J 

DjZ®X ~ Dk~®X --Dj+kZ X DjDk~X ,k ~ DjkZ X 

II~ II~ 11~ II~ ~mo 

~'k ~.°(DjX ~ ~x~ , J ,  , ~ Dj÷~X z~x ~ 8~,k ~ ~Dj~x 

These maps will play an essential role in our theory. H ring spectra will be 

defined in terms of maps DjE + E such that appropriate diagrams commute. Just as 

the notion of a ring spectrum presupposes the coherent associativity and commuta- 

tivity of the smash product of spectra in the stable category, so the notion of an 

H ring spectrum presupposes various coherence diagrams relating the extended 

powers. 

Before getting to these, we describe the s~ecializations of our transformations 

when one of j or k is zero or one. 

Remarks 2.6. When j or k is zero, the specified transformations specialize to 

identity maps (this making sense since DoE = S and S is the unit for the smash 

product) with one very important exception, namely Bj,o:DjS + S. these maps play a 

special role+ in our theory, and we shall also write ~ = 84,0o~ Observe that DjS 0 

is just BZ~, the unic~ of BZ~ and a disjoint basepoint 0. We have the discretiza- 
J + 0 J 

tion map d:BZ. + S specified by d(O) = 0 and d(x) = 1 for x ~ BZj, and ~j is 
J 

given explicitly as 

D.S = DjZ~S 0 --- r®D.S 0 z~d ~ Z~S 0 = S. 
J J 

Remarks 2.7. 

maps, and 

The transformations 

~I,I 

ll' Bj,l' BI,j' and 61 

= 12:E^E + D2E. 

The last equation is generalized in Lemma 2.11 below. 

are all given by identity 



We conclude this section with eight lemmas which summarize the calculus of 

extended powers of spectra. Even for spaces, such a systematic listing is long 

overdue, and every one of the diagrams specified will play some role in our 

theory. The proofs will be given in the sequel, but in all cases the analogous 

space level assertion is quite easy to check. 

Let T :E ̂  F ÷ Fa E denote the commutativity isomorphism in h~ . 

Lemma 2.8. {aj, k} is a commutative and associative system, in the sense that the 

following diagrams commute. 

DiE^ DkE 

Dj+kE 

DkE^OjE-- *'J 

and 

~. .t.l 
DiE^D.EADk E J  . l,J __~ Di+jE^Dk E 

I l I^ sj ,k l+J ,k 

~i,$+k 
DiE ̂  Dj +kE ..... ,. Di+j +k E 

Write ~i,j,k for the composite in the second diagram, and so on inductively. 

Lemma 2.9. 

diagrams commute. 

{8j,k } is an associative system, in the sense that the following 

8i,j 
DiDjDkE ~ DijDkE 

DiBj,k~ [81j,k 

6i,jk 
DiDjkE ~ DijkE 

Write 6i,j, k for the composite, and so on inductively. 

Lem~a 2.10. Each 6j is commutative and associative, in the sense that the following 

diagrams commute. 

6. 6. 

Dj(E^F) J ~DjE~DjF and D.(E~F^G)j 2 ~ Dj(EAF)^D.Gj 

6j 1 a 6j 
D.(F^E)j ~ DjF^D.Ej DjE^Dj(FAG) -~ DjEAD.F^DjGj 

Continue to write 6j for the composite in the second diagram, and so on inductively. 

Our next two len~nas relate the remaining transformations to the ~j. 
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Lemma 2.11. The following diagrams commute. 

E (j)^ E (k) E (j+k) and (DkE) (j) 

aj ,k DjDk E DjE ^ DkE ~ Dj+k E I 

DjkE 

Lemma 2.12. 

isomorphism 

The following diagram commutes, where vj is the evident shuffle 

(EAF)(j)  - vj =- E(J)^FCJ) 

lj I [lj ^ lj 
~j 

Dj(E^F) ~D.E^D.Fj J 

Our last three lemmas of diagrams are a bit more subtle and appear to be new 

already on the level of spaces. 

Lemma 2.13. The following diagram commutes. 

8i,k^ 8j ,k 

~'i,~" 1 I ~ik, j k 
~i+~ ,k 

Di+j DkE ~ Dik+j kE 

Lemma 2.14. The following diagrams commute. 

(%, 

D. (E'~ F) ̂  Dk(E ̂ F) .................. j ,k J 

i^~ ^i 
Dj E~,. DjF ,~ DkE~. DkF ............ ~ DjE "~DkE ~, DjF ,'~ DkF 

and 

DjDk(E ^F) 

Dj ( DkE ~ DkE) J 

Sj,k 

~DjDkE~DjDkF 

Dj+k(E ^F) 

I ~j+k 
a j ,k  ^~j k 

• ~Dj+kE ^Dj+kF 

~" Djk(E ̂ F) 

I ~jk 
DjkE aDjkF 
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Lemma 2.15. The following diagram commutes. 

Di(DjE ̂ DkE) 

Diaj,k I 

DiDj+kE 

DiDjE ADiDkE 

8i,J+k 

DijE ̂ DikE 

[ ~ij,ik 
Dij+ik E 

When j = k = I, this diagram specializes to 

~j 
D.(EAE) ~D.E^D.E 

J J 

DjD2E ~ D2jE 

(On a technical note, all of these coherence diagrams except those of Lemma 

2.15 will commute for the extended powers associated to an arbitrary operad; Lemma 

2.15 requires restriction to E operads.) 

§3. H~ ring spectra 

Recall that a (commutative) ring spectrum is a spectrum E together with a unit 

map e:S + E and a product map ¢:EAE + E such that the following diagrams commute 

(in the stable category, as always). 

E^S 1 ~e eAl ¢ ~I ~E^Eg S^E E^EAE ;E^E E^E 

1 I I 
E E~E ~ ~ E E~E 

In fact, this notion incorporates only a very small part of the full structure 

generally available. 

Definition 3.1. An H ring spectrum is a spectrum E together with maps ~j :Dj ÷ E 

for j > O such that ~l is the identity map and the following diagrams commute for 

j,k > O. 



12 

~j ,k 6j ,k 
DjE ~DkE " Oj+kE and D~DkE " DikE 

~j~k I l~j+k Dj~k 1 l~Jk 
'2 E;2 ~j 

E~E ~ D2E-- r-E DjE ~ E 

A map f:E + F between H~ ring spectra is an H~ ring map if 

j~0. 

~j o Djf = f o ~j for 

This is a valid sharpening of the notion of a ring spectrum in view of the 

following consequence of Remarks 2.6 and Lemma 2.8. 

Lemma 3.2. With e = ~o:S + E and ¢ = ~2 o 12:E^E + E, an H ring spectrum is a 

ring spectrum and an H ring map is a ring map. 

There are various variants and alternative forms of the basic definition that 

will enter into our work. For a first example, we note the following facts. 

Propositipn 3-3. Let E be a ring spectrum with maps ~j:DjE + E such that gO = e, 

~l = l, and ¢ = ~2t2 . If the first diagram of Definition 3.1 commutes, then ~j 

factors as the composite 

aj ~j +I DjE = D.E^Sj I^e~D.E^Ej  'I~D.j+I E rE . 

Conversely, if all ~j so factor and the second diagram of Definition 1.1 commutes, 

then the first diagram also commutes and thus E is an H ring spectrum. 

Proof. The first part is an elementary diagram chase. The second part results from 

Lemmas 2.8 and 2.11 via a rather lengthy diagram chase. 

The definition of an H ring spectrum, together with the formal properties 

of extended powers, implies the following important closure and consistency 

properties of the category of H ring spectra. 

Prol)osition 3.4. The following statements hold, where E and F are H~ ring spectra. 

(i) With ~j = 6j,o:DjS + S, the sphere spectrum S is an H~ ring spectrum, and 

e:S + E is an H ring map. 

(ii) The smash product E ̂ F is an H~ ring spectrum with structural maps the 

composites 

Dj(EAF) J ~ DjEADjF ~E^F; 

the resulting product is the standard one, (¢^¢)(I AT ^I). 
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(iii) The composite ~jlj:E (j) ÷ E is the j-fold iterated product on E and is 

itself an H ring map for all j. 

Proof. 

(i) 

(ii) 

(iii) 

These are elementary diagram chases based respectively on: 

Remarks 2.6 and the case k = O and E = S of Lemmas 2.9 and 2.13. 

Lemmas 2.12 and 2.14. 

Remarks 2.7 and Lemmas 2.9 and 2.11. 

In view of Proposition 2.5, we have the following further closure property of 

the category of H ring spectra. 

Proposition 3.5. If E is an H~ ring spectrum, then its localization E T and 

completion ET at any set of primes T admit unique H~ ring structures such that 

I:E + E T and ¥:E ÷ i T are H ring maps. 

Proof. The assertion is obvious in the case of localization. In the case of 

completion, ~j:DjE T + i T can and must be defined as the composite 

A 4 DjE T ~ >- (DIET) T ;- (DjE) T ~ . 

An easy calculation in ordinary cohomology shows that Eilenberg-MacLane spectra 

are H~ ring spectra. 

Proposition 3.6. The Eilenberg-MacLane spectrum HR of a commutative ring R admits a 

unique H ring structure, and this structure is functorial in R. If E is a 

connective H~ ring spectrum and i:E + H(~oE) is the unique map which induces the 

identity homomorphism on nO, then i is an H ring map. 

Proof. Corollary 2.1 implies that I. :F (j) + D.F induces an isomorphism in 
3 3 

R-cohomology in degree O for any connective spectrum F. Moreover, by the Hurewicz 

theorem and universal coefficients, HO(F;R) may be identified with Hom(~oF,R). Thus 

we can, and by Proposition 3.4(iii) must, define ~j:DjHR ÷ HR to be that cohomology 

class which restricts under ~j to the j-fold external power of the fundamental class 

or, equivalently under the identification above, to the j-fold product on R. 

Similarly, the commutativity of the diagrams in Definition 3.1 is checked by 

restricting to s~ash powers and considering cohomology in degree 0. The same argu- 

ment gives the functoriality. For the last statement, the maps ~jDji and i~j from 

DiE to H(~oE) are equal because they both restrict under lj to the cohomology class 

given by the iterated product (~0E) j ÷ ~O E. 



14 

We shall continue to write i for its composite with any map H(~0E) ÷ HR induced 

by a ring homomorphism ~O E + R. We think of such a map i:E + HR as a counit of E. 

the composite ie:S + HR is clearly the unit of HR. 

In the rest of this section, we consider the behavior of H~ rir~ spectra with 

respect to the functors Z ~ and ~. Note first that if E is a ring spectrum, then 

its unit e:S + E is determined by the restriction of eo:QS 0 + E 0 to S O . If the two 

resulting basepoints O and 1 of E 0 lie in the same component, then e is the trivial 

map and therefore E is the trivial spectrum. 

Definition 3.7. An H~ space with zero, or H~O space, is a space X with basepoint 0 

together with based maps ~j:DjX + X for j > 0 such that the diagrams of Definition 

3.1 commute with E replaced by X. Note that ~o:S 0 + X gives X a second basepoint 1. 

An H space is a space Y with basepoint 1 together with based maps EZj xZ. YJ + Y 

J 
for j ~ O such that the evident analogs of the diagrams of Definition 3.1 commute; 

Y+ = YJ~{O} is then an H~0 space. 

We remind the reader that we are working up to homotopy (i.e., in h~ ). There 

is a concomitant notion of a (homotopy associative and commutative) H-space with 

zero, or Ho-space , given by maps e:S 0 + X and ¢:XA X + X such that the diagrams 

defining a ring spectrum commute with E replaced by X. It is immediately obvious 

that, mutatis mutandis, Lemma 3.2 and Propositions 3.3-3.5 remain valid for spaces. 

A commutative ring R = K(R,0) is evidently an H 0 space, ~j being given by the 

j-fold product with the EZj coordinate ignored. 

The isomorphisms D.Z=X ~ Z~DjX together with the compatibility of the space 
J 

a. , and Bj under these isomorphisms and spectrum level transformations lj, j,k ~,k 

have the following immediate consequence. 

Proposition 3.8. 

structural maps 

If X is an H 0 space, then Z~X is an H ring spectrum with 

Z~j :DjZ~X ~ Z~DjX + Z~X. 

The relationship of 2 ~ to }~ ring structures is a bit more subtle since it is 

not true that Dj2~E = 2~DjEo However, the evaluation map ~:Z~2~E + E induces 

Djc:Z Dj~ E ~ D.Z~Ej + DjE, 

the adjoint (G~Djs)n of which is a natural map 

~j:D.~ E + ~ DjE or + . 
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Proposition 3.9. 

structural maps 

If E is an H~ ring spectrum, then E 0 is an H~O space with 

(~j)O°~j:OjE o~E o. 

Proof. We must check that the commutativity of the diagrams of Definition 3.1 for E 

implies their con~nutativity for E O. For the first diagram, it is useful to 

introduce the natural map 

(~^ ~)0 
:Eo^ FO n ,,Q(Eo ̂ FO ) ~ (~Eo ^Z~Fo)o ~ (EaF) 0 

for spectra E and F. The relevant diagrams then look as follows 

DjE 0 A DkE 0 

~j ̂  ~k I 

(DjE) 0 ̂  (DkE) 0 
| 

(q)o ~ (~k)O [ 

%^ E o ...... ~ .... 

\ 

~j ,k 

(DiE ̂  DkE) 0 

(~j ̂ ~k)O 

P" (E ^E) 0 

~2 
D2E 0 

Dj+kE 0 

~j+k 

(aJ,k)O ~ (Dj+kE) 0 

[ (~j+k)O 

~ E 0 

~ 2 ) 0  / ) 0  
~ (D2E) 0 

and  

DjDkE 0 . . . . . . . . .  

5~k[ 
Dj (DkE) o ........ ~J 

Dj (~k)O [ 
% 

oDj ~ 

SJ ,k 

~(SOkE)o 

r (DIE) 0 

( sj ,k)O 

(~j)o 

= DjkE 0 

(DjkE) 0 

l (~jk)O 
• ~ E 0 



16 

In the upper diagram, ~2~2 = (12)0~ by the naturallty of 0 and ~2 and the compati- 

bility of the space and spectrum level maps 12 . The con~mutativity of the top 

rectangles of both diagrams follows similarly, via fairly elaborate chases, from 

naturality and compatibility diagrams together with the fact that the composite 

~oZ~n:~ ~ + ~ + Z ~ is the identity transformation. 

The preceding results combine in the following categorical description of the 

relationship between H~O spaces and H~ ring spectra. 

Proposition 3.10. If X is an H~O space, then n:X + ~Z~X is a map of H~O spaces. 

If E is an H ring spectrum, then s:Z~a~E + E is a map of H ring spectra. There- 

fore Z~ and ~ restrict to an adjoint pair of functors relating the categories of 

H 0 spaces and of H ring spectra. 

The proof consists of easy diagram chases. It follows that if E is an H ring 

spectrum, then ~0:QE0 + E 0 is a map of H~0 spaces. As we shall explain in the 

sequel, the significance of this fact is that it implies that the 0 th space of an H 

ring spectrum is an "H ring space". 

§4. Power operations and H~ ring sprectra 

Just as the product of a ring spectrum gives rise to an external product in its 

represented cohomology theory on spectra and thus to an internal cup product in its 

represented cohomology theory on spaces, so the structure maps ~j of an H ring 

spectrum give rise to external and internal extended power operations. 

Definitions 4.1. 

~j:EOy = [Y,E] + [DjY,E] = EODjY 

by letting ~j(h) = ~j o Djh for h:Y + E. For a based space X, let 

the reduced cohomology of X and define 

3 + 
Pj:EOx = EOz~x + EOz~(BZ ~ X) : EO(Bzj ~X) 

by Pj(h)  = ( ~ d ) * ~ j ( h )  fo r  h:z~X + E, where 

X ( j )  : D.X. d : I x A:BZ~X = EZj ~j X + EZj ~Zj j 

Let E be an H~ ring spectrum. For a spectrum Y, define 

E X denote 

Of course, the main interest is in the case j = p for a prime p. A number of 

basic properties of these operations can be read off directly from the definition of 

an H~ ring spectrum, the most important being that lj ~j (h) = h j , where 
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h j s E0(y (j)) is the external jth power of h, and similarly for the internal opera- 

tions. ~cClure will give a systematic study in chapter VIII. While we think of 

the ~j as cohomology operations, they can be manipulated to obtain various other 

kinds of operations. For example, we can define homotopy operations on ~,E param- 

etrized by elements of E.DjS q. 

Definition 4.2. Let E be an H ring spectrum. For m ~ErDjSq , define 

~:~qE + ~r E by ~(h) = ~/~j (h) for h E wqE. Explicitly, ~(h) is the composite 

~.(hl ~I 
s r ~ - D j S q ^ E  J ~ E ^ E  ~ - E .  

These operations will make a fleeting appearance in our study of nilpotency 

relations in the next chapter, and Bruner will study them in detail in the case 

E = S in chapter V. McClure will introduce a related approach to homology opera- 

tions in chapter VIII. 

Returning to Definition 4.1 and replacing Y by xJY for any i, we obtain opera- 

--~j :E-iy + EODjziy. A moment's reflection on the Steenrod operations tions 

in ordinary cohomology makes clear that we would prefer to have operations 

E-iy + E-JiDjY for all io However, the twisting of suspension coordinates which 

obstructs the equivalence of _D-~ZiY with ZJiDjY makes clear that the notion of an H 

ring spectrum is inadequate for this purpose. For Y = Z~X, one can set up a 

formalism of twisted coefficients to define one's way around the obstruction, but 

this seems to me to be of little if any use calculationally. Proceeding adjointly, 

we think of EiY as [Y,ZiE] and demand structural maps ~j:Dj~IE ÷ ZJiE for all 

integers i rather than just for i = O. We can then define extended power operations 

~j:Eiy = [y,xiE] ÷ [DjY,~JiEI = ~iDjY 

by letting ~j(h) = ~j o D.h for h:Y + £iE; internal operations 
J 

Ei 'x+ EJ i 

for spaces are given by Pj(h) = (X®d)*~j(h), as in Definition 4.1. 

In practice, this demands too much. One can usually only obtain maps 

~j :DjzdiE + zdJiE for all j and i and some fixed d > O, often 2 and always a power 

of 2. In favorable cases, Gne can use twisted coefficients or restriction to cyclic 

groups to fill in the missing operations, in a manner to be explained by McClure in 

chapter VIII. The experts will recall that some such argument was already necessary 

to define the classical mod p Steenrod operations on odd dimensional classes when 

p>2. 
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Definition 4.3. Let d be a positive integer. An H~ 

together with maps 

~j,i:DjzdiE + zdji E 

ring spectrum is a spectrum E 

for all j >_ 0 and all integers i such that each ~l,i is an identity map and the 

following diagrams commute for all j > O, k _~ O, and all integers h and i. 

and 

Djx dJ_E^ Dk~;dl E j ,k D.+k~dlEj Dj DkI~dlE g j . ~ k  DjkZdlE 

~j,i^ ~k,i I I~j+k,i Dj~k,i I [~jk,i 

zdjiEAEdkiE ¢ ~ gd(j+k)i  E D.~dkiE ~j)ki  ~ y:djki E 
J 

J = D.zdhE ~ DjzdiE Dj (zdhE ~ zdiE) ......... J 

Dj¢ I ]{j,h ̂  ~j,i 

D,zd(h+i)E ~j,h+i>~dj(h+i)E< ~ - ~djhE^zdji E 
J 

Here the maps ¢ are obtained by suspension from the product ~2,0t2 on E. A map 

+ ~ ~ D.zdif = zdjif o ~j,i f:E F between H d ring spectra is an H d ring map if ~j,i o J 

for all j and i. 

Remarks 4.4. (i) Taking i = 0, we see that E is an H~ ring spectrum. The last 

diagram is a consequence of the first two when i = 0 but is independent otherwise. 

(ii) Since DoE = S for all spectra E, there is only one map ~i,O, namely the unit 

e:S O + E. 

(iii) As in Proposition 3.4(iii), the following diagram commutes. 

( diE ) (j) .......... lj  ~ D.~diE 
J 

zdji E 

(iv) As in Proposition 3.4(ii), the smash product of an H d ring spectrum E and an 

H~ ring spectrum F is an H d ring spectrum with structural maps the composites 

• 6 .  . ~ j , i  ^ ~ j  " "  D. (~dlE ,~ F) J ~D.zdIE ̂ D.F .... ;- zdJ1E ^ F. 
J J 



19 

(v) The last diagram in the definition involves a permutation of suspension 

coordinates, hence one would expect a sign to appear. However, as McClure will 

explain in VII.6.1, roE necessarily has characteristic two when d is odd. 

Given this last fact, precisely the same proof as that of Proposition 3.6 

yields the following result. 

Proposition 4.~. Let R be a commutative ring. If R has characteristic two, then HR 

admits a unique and functorial H~ ring structure. In general, HR admits a unique 

and functorial ~ ring structure. If E is a connective H~ ring spectrum and 

i:E + H(~oE) is the unique map which induces the identity homomorphism on nO, then i 

is an H d ring map. 

At this point, most of the main definitions are on hand, but only rather simple 

examples. We survey the examples to be obtained later in the rest of this section. 

We have three main techniques for the generation of examples. The first, and 

most down to earth where it applies, is due to McClure and will be explained in 

chapter VII. The idea is this. In nature, one does not encounter spectra E with E i 

homeomorphic to ~Ei+ 1 but only prespectra T consisting of spaces T i and maps 

~i:zTi + Ti+ 1. There is a standard way of associating a spectrum to a prespectrum, 

and McClure will specify concrete homotopical conditions on the spaces Tdi and 

composites ZdTdi + Td(i+l) which ensure that the associated spectrum is an H i ring 

spectrum. Curiously, the presence of d is essential. We know of no such concrete 

way of recognizing H~ ring spectra which are not H E ring spectra for some d > O. 

McClure will use this technique to show that the most familiar Thom spectra and 

K-theory spectra are H~ ring spectra for the appropriate d. While this technique is 

very satisfactory where it applies, it is limited to the recognition of H d ring 

spectra and demands that one have reasonably good calculational control over the 

spaces Tdi. The first limitation is significant since, as McClure will explain, the 

sphere spectrum, for example, is not an H~ ring spectrum for any d. The second 

limitation makes the method unusable for generic classes of examples. 

Our second method is at the opposite extreme, and depends on the black box of 

infinite loop space machinery. In [711, Nigel Ray, Frank Quinn, and I defined the 

notion of an E~ ring spectra. Intuitively, this is a very precise point-set level 

notion, of which the notion of an H a ring spectrum is a cruder and less structured 

up to homotopy analog. Of course, E ring spectra determine H ring spectra by 

neglect of structure. There are also notions of E space and H~ ring space which 

bear the same relationship of one to the other. Just as the zero th space of an H~ 

ring spectrum is an H~ ring space, so the zero th space of an E~ ring spectrum is an 

E~ ring space. In general, given an H ring space, there is not the slightest 



20 

reason to believe that it is equivalent, or nicely related, to the zero th space of 

an H~ ring spectrum. However, the machinery of [71,73] shows that E~ ring spaces 

functorially determine E ring spectra the zero th spaces of which are, in a suitable 

sense, ring completions of the original semiring spaces. Precise definitions and 

proofs of the relationship between E ring theory and H ring theory will be given 

in the sequel. 

As explained in detail in [73], which corrects [71], the classifying spaces of 

categories with suitable internal structure, namely bipermutative categories, are E~ 

ring spaces. Among other examples, there result E ring structures and therefore H 

ring structures on the connective spectra of the algebraic K-theory of commutative 

rings. 

The E and H ring theories summarized above are limiting cases of E n and H n 

theories for n > l, to which the entire discussion applies verbatim. The full 

theory of extended powers and structured ring spaces and spectra entails the use of 

operads, namely sequences ~of suitably related 2j-spaces ~j. An action of ~ on a 

co (J) + ~ m spectrum E nsists of maps 5j: ~j ~7.E " E ~uch that appropriate diagrams co - 

mute. For an action up to homotopy, ~he same diagrams are only required to homotopy 

commute. If each ~j has the Zj-equivariant homotopy type of the configuration 

space of j-tuples of distinct points in R n, then ~ is said to be an E n operad. E n 

or H n ring spectra are spectra with actions or actions up to homotopy by an E n 

operad. The notions of E n and H n ring space require use of a second operad, assumed 

to be an E operad, to encode the additive structure which is subsumed in the 

iterated loop structure on the spectrum level. E n ring spaces naturally give rise 

to E n and thus H n ring spectra, and interesting examples of E n ring spaces have been 

discovered by Cohen, Taylor, and myself [29] in connection with our study of 

generalized James maps. 

Our last technique for recognizing E n and H n ring spectra lies halfway between 

the first two, and may be described as the brute force method. It consists of 

direct appeal to the precise definition of extended powers of spectra to be given in 

the sequel. One class of examples will be given by Steinberger's construction of 

free C-spectra. Another class of examples will be given in Lewis' study of 

generalized Thom spectra. 


