CHAPTER IX

THE MOD p K-THEORY OF QX

by J. E. McClure

In this chapter we use the theory of H_ ring spectra to construct and analyze
Dyer-Lashof operations in the complex K-theory of infinite loop spaces analogous to
the usual Dyer-Lashof operations in ordinary homology. As an application we compute

K*(QX;ZP} in terms of the K-theory Bockstein spectral sequence of X.

Dyer-Lashof operations in K-theory were first considered by Hodgkin, whose
calculation of K*(QSO;ZP) [41] led him to conjecture the existence of a single
operation analogous to the sequence of operations in ordinary homology. He con-
structed such an operation, denoted by Q, for odd primes [42]; a similar construc-
tion for p = 2 was given independently by Snaith, who later refined Hodgkin's
construction for odd primes and analyzed the properties of Q. The construction of
Hodgkin and Snaith was based on the E* term of a certain spectral sequence (namely
the spectral sequence of I1.2.4) and therefore had indeterminacy, and Hodgkin showed
that in fact any useful operation in the mod p K-homology of infinite loop spaces
must have indeterminacy. He also observed that the Dyer-Lashof method for calcu-
lating Hy{QX;Z_ ) by use of the Serre spectral sequence completely failed to
generalize to K-theory. The indeterminacy was a considerable inconvenience, but the
operation was still found to have applications, notably in the calculation of
K*(QBPn;ZZ) given by Miller and Snaith {84]. This result, which was proved by using
the Eilenberg-Moore spectral sequence starting from Hodgkin's calculation of
K*(QSO;Z ), was the first indication that K*(QX;ZP) might be tractable in the
presence of torsion in X. The main technical difficulty in the proof was in
determining exactly how many times Q could be iterated on a given element, since Q
could be defined only on the kernel of the Bockstein g. (Incidentally, a joint
paper of Snaith and the present author showed that the odd-primary construction of Q
contained an error and that in this case as well Q could only be defined on the
kernel of B.) The answer for RP™ was that Q could be iterated on an element exactly
as many times as the element survived in the Bockstein spectral sequence.
Unfortunately, the methods used in this case did not extend to spaces more
complicated than RPP,

In view of these faets, it is rather surprising that there is in fact a theory
of primary Dyer-Lashof operations in K-theory for which practically every statement
about ordinary Dyer-Lashof operations, including the caleulation of Hy(QX;Z_.), has a
precise analog. We shall remove the indeterminacy of Q by constructing it as an
operation from mod p2 to mod p K-theory, and more generally from mod pr+1 to mod pt

K~theory. It follows that Q can be iterated on any element precisely as often as
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the element survives in the Bockstein spectral sequence. There are also operations
ZQand R taking mod pr to mod pr+1 K-theory in even snd odd dimensions respectively

{ 92 is the K-theory amalog of the Pontrjagin p-th power [57, 28], while R has no
analog in ordinary homology). These will play a key role in determining the proper-
ties of the Q-operation and in our calculation of Ky (QX;Z ). They also give
indecomposable generators in the K-theory Bockstein spectral sequence for QX.l The
operations Q,éﬁ and R form a complete set of Dyer-Lashof operations in the sense
that they exhaust the possibilities in a certain universal case; see Section 8. The
key to defining primary operations in higher torsion is the machinery of stable
extended powers, which gives a very satisfactory replacement for the chain-level
machinery in ordinary homeology; more precisely, it allows questions about the
operations to be reduced to a universal case in the same way that chain-level

arguments allow reduction to Br_. In applying this machinery to K-theory we mgke

P
essential use of the fact that periodic K-theory is an H_ ring spectrum, as shown in
VII §7 and VIII §4, and the fact that the Adams operations are p-local H_ maps as

shown in VIII §7.

This chapter is largely self-contained, and in particular it does not depend
logically on the earlier work of Hodgkin, Snaith, Miller and the author. The
organization is as follows. In section 1 we give a very general definition of Dyer-
Lashof operations in E-homology for an H_ ring spectrum E. When E is HZP we recover
the ordinary Dyer-Lashof operations. In section 2 we use some of the properties
developed in section 1 to give a new way of computing H*(QX;ZP) for connected X
without use of the Serre spectral sequence, the Kudo transgression theorem, or even
the equivalence QQIX = QX; instead the basic ingredients are the approximation
theorem and the transfer. In section 3 we give the properties of Q, ZLamd R and the
statement of our caleulation of K,(QX;Z ); up to isomorphism the result depends only
on the K-theory Bockstein spectral sequence of X, but for functoriality we need a
more precise description. Section 4 contains the calculation of K*(QX;ZP), which is
modeled on that in seetion 2. Sections 5 through 8 give the construction and
properties of Q, 2, and R. In section 5 we lay the groundwork by giving very
}. Section 6 gives enough information

r
about Q to calculate K*(DPX;ZP), a result needed in section 4. The argument differs

preecise descriptions of the groups K*(DpSn;Z

from that in {77] in three ways: it is shorter (but less elementary), it gives a
more precise result, and it applies to the case p = 2. Sections 7 and 8 complete

"It was asserted in the original version of this work ([76, Theorem 5]) that certain
composites of Q and R gave indecomposable generators in K,{QX;Z ). Doug Ravenel has
since pointed out to the author that this is incorrect: his argument is given in
Remark (ii) following Theorem 3.6 below. The corrected versions of [76, Theorems 5
and 6] are also given in Section 3. (The mistake in the original version was in the
proof of Lemma 4.7 for M = zMr, where it was asserted that the r > 1 and r = 1 cases
are similar. They are not.}
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the construction of Q,4, and R. In section 9 we prove a purely algebraic fact
needed in section 4; this fact is considerably more difficult than its analog in

homology because of the nonadditivity of the operations.

I would like to thank Viec Snaith for introducing me to this subject and for the
many insights I have gotten from his book and his papers with Haynes Miller. I
would also like to thank Doug Ravenel for pointing out the mistake mentioned above.
I owe Gaunce lewis many commutative diagrams, as well as the first version of
Definition 1.7. Finally, I would like to thank Peter May for encouragement and for
his careful reading of the manuscript.

1. Genersliged Homology Operations

let E be a fixed H_ ring spectrum. In this section we shall construct
generalized Dyer-Lashof operations in the E-homology of B ring spectira X. When E
is HZp these are {up to reindexing) the ordinary Dyer-Lashof operations defined by
Steinberger in chapter III, and for E = S they are Bruner's homotopy operations.
When E is the spectrum K representing integral K-theory we obtain the operations

referred to in the introduction which will be studied in detail in sections 3-9.

For simplieity, we shall begin by defining operations in EyX, although
ultimately (for the application to K-theory) we must introduce torsion coefficients.
Fix a prime p. For each ne¢Z the operations defined on EnX will be indexed by
E*(Dpsn), i.e., for each e eEm(DpSn) we shall define a natural operation

Qe:EnX + EmX

in the E-homology of H_ 1ing spectra called the intermal Dyer-Lashof operation

determined by e. As usual, Qe will be the composite of the structural map

(gp)* : EmDpX > B, X
with an external operation

Qe ¢ EnX > EmDpX

which is defined for arbitrary spectra X and is natural for arbitrary maps X » Y.

Throughout this chapter we shall use the same symbol for corresponding internal and
external Dyer-Lashof operations, with the context indicating which is intended. In
this section we shall be concerned only with the external operations, and thus X and

Y will always denote arbitrary spectra.

In order to motivate the definition of the external operation Q, we give it in
stages. Fix m,n ¢Z and e eEmDpSn. let u EEOS denote the unit element. We define
Qe first on the element :lu eEnSrl by Qe(znu) =e. If x eEnX happens to be
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spherical, then there is a map g:Sn + X with g*(zn‘u) = x, and naturality requires
us 1o define Qex = (ng)*e. Now any element x ¢ EnX is represented by a map

£:5% > EAX, and to complete the definition of Qe it suffices to give an analog for
general x of the homomorphism (ng)* which exists when x is spherical. It is useful
to do this in a somewhat more general context, so let Y be any spectrum and let

f:Y » EAX be any map. First we define fy, to be the composite

(1A£), (pal),

—~# T {EAEAX) ——=n, (EaX) = EX,

E Y = m(EAY)

where ¢ is the product on E. Note that fy,i™u = x if £:8° » EA X represents x.

: to be the composite

Next define _I;nf for any w ¢ ZJ

D f
DY —" D (EaX) =D EaD x E20pap ¥,
m T ks ks n

where ¢ comes from the H_ structure of E. Combining these definitions we obtain a
map

(Dﬂf)** :E*DHY — E*D“X .

Definition 1.1. If x E X is represented by £:5% 5 E~ X and e is an element of
EmDpSn then
Qex = (Dpf)**(e) eEmDpX.

Of course, this agrees with the definition given earlier when x is spheriecal,
and in particular when E = S we recover the external version of Bruner's operation.
Next let E = HZP. The standard external operation (as defined by Steinberger) is

1

{recall that Zp(n} is Zp with D acting trivially if n is even and via the sign

representation if n is odd). Now it is easy to see that the map

denoted ey ® %P, where e. is the generator of Hi(zp;Zp(n)) defined in [68,section 1]

Q:Hi(ZP;Z (n)) —=H,

1
p 1+2pn(DpS ’ZP)

given by e »—»ei ® (Znu)P is an isomorphism, and we have

Proposition 1.2. If e = @(ei) then Q.x = ey ® P for all x.

The proof of 1.2 will be given later in this section.

It is possible to put Definition 1.1 in a more categorical context. Let CE be
the category in which objects are spectra and the morphisms from X to Y are the
stable maps from X to EAY. The composite in Cy of f:X » EAY and g:Y » EAZ is
the following composite of stable maps



295

RS YRR LI - TR LEG

The construction Ew on morphisms, combined with Dw: on objects, gives a functor

D“:C E +& £’ and we can also define a smash product Aon E by letting fy N £, be
the composite

foaf
1772
~ A .
XlAX2 Hee=eEA X AEAX, = EAEAX1'~X2 —»El\Xl X2
Finally, E homology is a functor on é:E which takes f to fyy, and the following
lemma shows that both Qe and the external product in E-homology are natural

transformations.

Lemma 1.3. (i) (5pf)**Qey = Qfyyy for any y e ExY and any f:Y + EAX.
(1) (f71) ® (Fh,¥,) = (F) A L) 0 ly; ®,)-

As one would expect, the maps 1,a,8 and § of I§1 also give natural

transformations.

Lemma 1.4. (1) 1,(D f),, = (ﬁpf) 1, if wcop.
(11) a,(D f ADf)
(ii1) 6*(D""D—pf)** = (D, f)

(1v) 8, (D (f] Af,))yey = (D £ AD

We shall need two further transformations, namely the "diagonal® A:}:D“X > DX
and the transfer «::DQX + D X. The first of these was constructed in II83. The
transfer was defined in II81 for certain special cases, and will be defined in IVS3
of the sequel whenever = ¢ p.

Lemma 1.5. (1) (T)'"zf)

wxby = A*(ZD"f)**.

(11) 14D Flyy = (D £)yyry -

The proofs of 1.3, 1.4 and 1.5 are routine diagram chases {using [Equi.,VI.3.9}
for 1.4(ii) and (iii) and [Equi.,IV.§3] for 1.5(ii}).

Next we would like to define Dyer-Lashof operations in E-homology with torsion
coefficients. We shall always sbbreviate Ey(X;Z ,.) by Ey(X;r). If M, denotes the
Mcore spectrum S'lu r SO and E. denotes EAIM, I1?,hen by definition we have E (X;r) =

P

Th(E AaX). Thus if E. is an H, ring spectrum (for example, if E is ordinary

integral homology) we can apply Definition 1.1 directly to E.. However, it is a
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melancholy fact that in general En is not an H_ ring spectrum, as shown by the
following, which will be proved at the end of section 7.

Proposition 1.6. Kr is not an H  ring spectrum for any r.

Thus we must generalize 1.1. First of all, if £:Y + EAX is any map we define
fyx to be the composite

(1A1)
By (Y37) = m(E AY) —— > (E AEAX) —> 1, (E AX) = E(X;).

Next observe that the Spanier-Whitehead dual of IM, is M,, so that there is a
natural isomorphism

E (X;r) 2 [z"M,,EAXI].

In particular, any X En{X;r) is represented by a map f:anr + EAX and there
results a homomorphism

(I—)'pf}**:E*(ngnMr;s) > Ey(D X;8)

for any s > 1. Note that f**znur = x, where u, 1s the composite

M, = SAM, ual g AM_. We shall call u, the fundamental class of M.

Definition 1.7. Ilet ece Em(Dpanr;s). Then

Qe B, (X;r) Em(DpX;S)

is defined by Qex = (f%f)**(e), where f‘:ZnMr + EAX is a map representing x.

lemmas 1.3, 1.4, and 1.5 remain valid in this generality.

When E is integral homology and r = s = 1 Definition 1.7 provides another way
of constructing ordinary Dyer-Lashof operations, which are of course the same as
those given by Definition 1.1. However, even in this case 1.7 has certain technieal
advantages; for example, it gives the relation between the Bockstein and the Dyer-
Lashof operations, and by allowing r and s to be greater than 1 one obtains the

Pontryagin p-th powers.

We conclude with the proof of 1.2. We write E for HZP' The result holds by

definition when x = Znu,eEnSn,so it suffices to show that

(D f) gy ey ®@YP) = e, ® (£,

for all f:Y » EAX. We shall do this by a direct comparison with the mod p chain

level. If Ay is any chain complex over Zp we write DPA* for W(@z (A*fj p’ where W
is a fixed resoclution of Z_ by free Z [Ep]—modules. We let Cy deRote the mod P

P D
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cellular chains functor on CW-spectra, and we have a natural equivalence DPC* = C*Dp

by I.2.1. If Iy denotes the trivial chain complex with Zp in dimension zero then
there is a natural equivalence between EOX and the chain-homotopy classes of degree
zero maps from CyX to I'y. In particular, we obtain chain maps 6:C4E + I'y and
e':DPC*E + I'y representing the identity £ » E and the structural map DpE + E. If e
denotes the composite Dpr* = W/zp + T'y {(in which the second map is the augmentation)
then ¢ o D & is a chain map which, like 6', represents an element of EO(DPE)
extending the product map P) , g, But the proof of I.3.6 shows that there is only
one such element, hence we have we have ¢ o Dpe =~ §'. Next, observe that fyy is
equal to the composite

E,Y —>E (EAX) —=EX,

where the second map is the slant product with the identity class in EOE. Hence fyy

is represented on the chain level by the composite

R

h:C,Y —>C (EAX) = C,E® X 2841 @ c.x = ¢ .x.

Since h is a chain map we have

(D h)yle; @Y7 = e; ® ()® = e, @ (£, 1),

so it suffices to show (Bﬁf)** = (Dph)*. Now (Bﬁf)** is equal to the composite

6*
ByD)Y —>E, (D (EAX)) —»E (D EADX) —=EDX,

where the last map is the slant product with the structural map in EODPE. Hence
(Eﬁf)** is represented on the chain level by the composite H around the outside of

the following disgram

d
D CyY ———>D Cy(EAX) = D (C,E® C,X) —=—D C,F ® D 0,X
H D,(Ty x C,X)

e®1
DOk = Ty @D CyX «=22 D1 @ D C,X

Here d is the evident diagonal transformation and the diagram clearly commutes.

Inspection of the piece marked (:) shows that H = Dph as required.
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2. The Homology of CX

Our main aim in this chapter is the computation of Ky{CX;1). In this section
we illustrate the basic method in a simpler and more familiar situation, namely the
computation of the ordinary mod p homology of CX. (All homology in this section is
to be taken with mod p coefficients for an odd prime p; the p = 2 case is similar.)
This result is of course well-known, but in fact our method gives some additional
generalily, since both the constiruction CX and our computation of HyCX generalize to
the situation where X is a (unital) spectrum, while the usual method of computation

does not.

We begin by listing the relevant properties of this spectrum-level construction
(which is due to Steinberger); a complete treatment will be given in [Equi., chapter
VII}. By a unital spectrum we simply mean a spectrum X with an assigned map S » X
called the unit. For any unital spectrum X one can construct an E_ ring spectrum
CX, and this consiruction is functorial for unit-preserving maps. In particular, X
might be I®Y" for some based space Y, and there is then an equivalence CX = en”*
relating the space-~level and spectrum-level constructions. There is a natural

filtration F .CX of CX and natural equivalences F,CX = X and
F CX/Fy 1 CX = D {X/S).

Finally, there are natural maps gjcx»‘chx > gj+kCX and QijCX +> ﬁjkCX for which the

following diagrams commute.

CXAlX ——————— CX DJ.CX —rserree——tn CX.
Fj CXAFKCX —— Fj ﬂ{CX Dj FkCX —-—~———er kCX
o 8
Dj (X/8) ADK(X/S) ——»Dj +k(X/S) Dj Dk(X/S) -———Djk(X/S)

Now let X be a unital spectrum and assume the element n eHOX induced by the
unit map is nonzero. We can then choose a set A € HyX such that A o {n} is a basis
for HyX. let CA be the free commutative algebra generated by the set

(% | x €A, I is admissible and e(I) + b{I) > |x|}

{here |x| denotes the degree of x; see [28, I.2] for the definitions of admiss-
ibility, e{I) and b(I)). The elements of this set, which will be called the

standard indecomposables for CA, are to be regarded simply as indeterminates since

the QI do not act on HyX. The basis for CA consisting of products of standard
indecomposables will be called the standard basis for CA. Using the inclusion
X + CX and the fact that CX is an E_ ring spectrum we obtain a ring map
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A:CA » HyCX
and we shall show

Theorem 2.1. A is an isomorphism.

We shall derive this theorem from an analogous fact about extended powers. let
Y be any spectrum and let A be a basis for HyY. CA is defined as before, and we
make it a filtered ring by giving sz filtration pQ(I). Let DA = F,CA/Fy ,CA for
k > 1; this has a standard basis consisting of the standard basis elements in
FCA - Fi_1CA. There is an additive map

A DA+ HyDy Y

defined as follows. If all Dyer-Lashof operations and products are interpreted
externally then a standard basis element of represents an element of
H*((Dp)')lY A ees A(DP)JSY) with le + ees + S = k; here (Dp)j denotes the j-th
iterate of Dp. Applying the natural maps oy and 84 gives an element HyD,Y which by

definition is the value of A, for the original basis element. We then have
Theorem 2.2. X, 1s an isomorphism for all k > 1.

Assuming 2.2 for the moment, we give the proof of 2.1. lLet X be a unital
spectrum and let A U {n} be a basis for HyX. Let Y = X/S. Then A projects to a
basis for HyY which we also denote by A. For each k > 1 the map x]FkCA 1ifts to a
map A(k):FkCA + HyF,CX and the following diagram commutes.

0 ——F,_,CA > F, CA =D, A 0

(k-1) {x)
A A Ap

HyFy CX ——>H,F (X — > H,D ¥

Since Ay is an isomorphism, the map y is onto and hence the bottom row is short
exact. It now follows by induction and the five lemma that A(k) is an isomorphism
for all k, and 2.1 follows by passage to colimits.

We begin the proof of 2.2 with a special case

lemma 2.3. AP is an isomorphism for all Y.

The proof of the lemms is & standard chain-level calculation which will not be

given here (see [68, section 1]). It is interesting to note, however, that one can
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prove 2.3 without any reference to the chain-level using the methods of section 6

below.

Next we use the machinery of section 1 to reduce to the case where Y is a wedge
of spheres. For each x ¢ A choose a map f S|x| » HA'Y representing x. Let
2 = Vsl*l and 1et £:2 » HaY be the wedge of the f,o Then fye:HyZ » HyY is an
isomorphism. We claim that 2.2 will hold for Y if it holds for Z (where HyZ is
given the basis B consisting of the fundamental classes of the Slxl). To see this,

consider the following diagram

Dy (Fy)

D, B ————————» D A

k k

A A

k k

(5kf)
HyD, Z —k HyD Y
The map D, (fyy) is induced by fyy, which clearly takes B to A. Thus Dy (f,y) is an
isomorphism. The diagram commutes by 1.3 and 1.4(ii) and (iii). The claim now

follows from

lemma 2.4. Let h:W » HA X be any map. If hyy is an isomorphism, so is (E&h)** for
all k.

Procf. The proof is by induetion on k. First suppose that X = jp. Since the case

= p of 2.4 follows from 2.3 we may assume j > 1. Let 5 = Zj s Ep and consider the

following diagram

Ty By Bs o
HyD W > H,D W HeD, D W —E—s D W
(Dh) oy (D h)yy (DyDoh) (D)
Ty By By x
HyDyX > HyD X = HyD; D X —E— D W

The diagram commutes by 1.4(i) and (iii) and 1.5(ii). The map B¢ is an isomorphism.
The map (E;h)** is an isomorphism by the case k = p, hence so is (Eiiglﬂ** by
inductive hypothesis. Our assumption on k implies that 14 is monic and g, 5 p* is
onto, hence (th xx 1s monic by inspection of the first square and onto by
inspection of the third. The proof is the same when Xk is prime to p, except that we

let mbe ) 4 x Iy.

Next we reduce to the case of a single sphere. To simplify the notation we
assume that Z is a wedge of two spheres STy S"; the argument is the same in the
general case. Let B; and B, be the bases for H*Sm and H*Sn consisting of the
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fundamental classes, so that B = By w B,. There is an evident map CB; ® CB, » CB
and passing to the associated graded gives a map
k
qp:iz:o(DiB1 ® Dk-iBZ) —= D, B.
Recall the equivalence

k
n m O, _
i\=/O(1:>is“‘/s Dy_18) = D (s"vSh) = Dz

constructed in IIS§1.

Lemma 2.5. « is an isomorphism, and the diagram

X
. ¥
%O(DiBl ®D,_;B)) — > DB

1

IOy @) Ay
k

L

J1
. O(H*Disméc)H*Dk_iS ) ——>HD Z

X
commutes.

Proof. <« is an isomorphism since it takes the standard basis on the left to that on

the right. The commutativity of the diagram is immediate from the definitions.

By lLemma 2.5 we see that 2.2 will hold for Z once we have shown the following.
Let x ¢H,S" be the fundamental class.

Lemma 2.6. Ayp:Dyp{x} » H*DkSn is an isomorphism for all k > 1 and all

integers n.

Proof. By induction on k. First assume that k = jp for some j > 1. For the proof

in this case we use the following diagram, which will be denoted by (¥).

|
D.Cx b » D, {y,2}
J 2 s
IB(ngi)* Dk(gi)*
']
Dja, » Dy {x}
9 R
(*) =% A M Ay Ay
8:
H,D, D & J2X » KD, 8"
‘L / (D, Dyg; ) (Dkgzk ¢

B,D,D (v %) d2 1D, (s7v ).
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Here y,ze¢ Hn(SnV S") are the fundamental classes of the first and second summands.
The set L C H*Dpsr is {8°Q%x|2s-¢ > n}. (The reader is warned as this point to
distinguish carefully between the Bockstein 8 and the natural map 8 of section I.1.
This is made easier by the fact that we never use the latter map per se, only the
homomorphism 8, induced by it.) The set Q' € H*I')p(SI.lVSn) is {8%Q%,8%Q5%z|2s-¢ > n}
if n is odd and is the union of this set with {y?zP™1|1 < i < p-1} when n is even.
Lemma 2.3 implies that (L and U are bases, and hence the maps )\j are isomorphisms
by inductive hypothesis. The maps g;:S"v 8" » S% are defined for i = 0,1 and 2 by
gy = 1v1, g = 1lv* and g, = ¥v1, where 1 and * denote the identity map and the

trivial map of S". To complete the construction of the diagram we require

Lemma 2.7. There exist maps Yj and yj', independent of i, such that diagram (¥*)

commutes for i = 0,1 and 2.

The proof of 2.7 is given at the end of this section; all that is involved is
to "simplify" expressions in Dj a.' and Dja. using the Adem relations and the Cartan
formula in a sufficiently systematic way.

Now consider the inner square of diagram (*). By assumption on k we see that
ij* o1, is an iiomorphism, hence A, is onto. Let e:Dk{x} > Dk{x} be the
composite Yj o )‘j— o T, © )‘k’ Clearly Ay will be monic if ¢ is. In fact we shall
show that 6 is an isomorphism. We claim first of all that & takes the subspace

pc Dk{x} generated by the decomposable standard basis elements isomorphically into
itself. To see this we use the outer square of diagram (*). Let

Ty O >‘k‘ let o' ch{y,z} be

8':D,{y,z} » D {y,2} be the composite yj' o Aj-l °
k—‘l U

the image of Z (Di{y} ® Dk i{z}) under the map tpof Lemma 2.5. Then A is the
i=1 -

kernel of the map

D (g )y ® Dgy)y : D (y,2} — D (x} ® D (x}

and hence 6' takes p' into itself. But D (gylx(®') = 8 and
Dk(go)* o @' =860 Dk(go)*, hence ¢ takes O into itself and we have the commutative
diagram
D (g.)
' *
o k=0 . D 0
5’ D, (gy)« o .o

Since both & and &" have finite type 6: 8 »£8 will be an isomorphism if

6': &' + &' is monic. But Ay is monic on H' by 2.5 and the inductive hypothesis,

hence 6' is also monic on @' since >‘k o f' = (ij* o 1*) ) Ak.
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Now let o = D {x}/# . This has the basis {QIx!I admissible, p’“l) =

e(I) + b{I) > n}. We wish to show that the map 6: J >3 inauced by 6 is an

k,

isomorphism. The basic idea is to use the homology suspension, or rather its
external analog which is the map A,(Z:HiDpSn > Hi+1DpSn+1, to detect elements of J .
Let X ¢ I-IIN_]_S]Ml be the fundamental class. We define r:J + Dk{i} by I‘(QIX) =
Qli', where we interpret QI}' as zero if e{I) < n+l and as a p-th power in the usual
way if e(I) = n+l and b(I) = O. The key fact is the following, which will be proved

at the end of this section.
Lemma 2.8. The diagram
d— & .

D, {X}

8 ~
D, {X}
commutes.

We also need the fact that the evident action of the Bockstein on j commutes
with 8; this will be clear from the proof of 2.7.

Now let "gn be the subspace of -o spanned by the set {QIXII admissible,

p“l) =k, e(I) + b(I) < n+m}. We shall show first that © is monic on .01. let &i
be the subspace of Jl spanned by the set {QIXII admissible, pl(n =k, e(I) = n+l,
(1) = 0). Then 4, = &} ®gJ;. From the definition of I we see that sd. is
the kernel of I', that I' is monic onpi and that r(‘ai) =rd)AR . Letwbea
nonzero element of Ji . We claim that gw lies in -91, so that it can be written
uniquely in the form w' + gw" with w',w"Ji, and furthermore we claim that w' # O.
To see this note that I'w 1s a nonzero decomposable, hence oTw is also a nonzero

decomposable, hence 6w = 9Fw is a nonzero element of I'{J)n & = r(ﬂi). Thus there

is a nonzero element w' of 3{ with Tw' = rew, so that ow - w' is in ker T = sJi as
required. Now let W1,W, be any elements of -Qi with gwl = wi + ng and

§w2 = w4 Bwh. Suppose that v = w; + gw, is the kernel of 0. Then

0 =%y = Wi + BW] + gwi, hence W) =0 and w + wj = 0. But w} =0 implies

wy = O, hence w{ = 0. Thus w2' = 0, whence Wy, = 0 and v = O, showing that B is
monic on Jl‘

Next we claim that 6 is monic on ﬂm for a1l m > 1. Iet we Jm with ew = O.
Let o = D {¥}/& snd let T be the composite J » D (X} » v . Then I'w is in the
subspace ¥ _; generated by QI§ with I admissible, p“I) = k and
e(I) + b(I) - (n+l) <m-1. Since 6 I'w =T 8w = O and since (by induction on m) o
is monic on m-1 We see that Tw = 0. Now the kernel of F is precisely -?1, and we

have shown already that E is monic on Jl: hence w = O as required. Thus 9: 4
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is monic, and since has finite type ¥ is an isomorphism. This completes the

proof of 2.6 for the case X = jp.

Now suppose X is prime to p and consider the following disgram

D {y,2} @ D, _,{y,2} . = D, {y,2}
Dilgsly ® D lgs)y D (g5
Y -
D, (x} ® D_, {x}  (x)
= 1M® M =My l A A
{a )
Hy(S"A D &) Lk-1 ¥ H,D, s"
1 (1A D1 ) (Dye; ¥ v
(a )
(S S A (SPv &) Lkl ? » 1,0, (S v ")

Here v and y' are obtained from the products in C{x} and C{y,z} by passage to the
associated graded. The diagram clearly commutes. The analysis of this diagram
proceeds as before, except that in this case the map Dy (gyly takes the kernel of
Dilgy)x ® Dilgs)x onto all of Dy{x},so that we can conclude at once that Ay is an

isomorphism without having to consider indecomposables.

This completes the proof of 2.6, and thereby of 2.2, except that we must still
verify 2.7 and 2.8. For these we need certain properties of the external Q®. First
of all these operations are additive, and Q%% = 1*(x(p)) if 2s = |x|. The external

Cartan formula is s )
5,8°x®y) = ) dxed® .
i=0
The external Adem relations are obtained by prefixing 5pp* to both sides of the
standard Adem relations. All of these relations can be obtained directly from the
definitions of section 1, without any use of internal operations {(compare sections 7
and 8 below). They can also be derived from the corresponding properties for

internal operations by means of the equivalence

o]
C(xvs’) = V DX
k>0
proved in [Equi., VII§5].

Proof of 2.7. Every standard indecomposable in CA has the form QI(ngsx). We can
formally simplify such an expression by means of the Adem relations into a sum of

admissible sequences acting on x (for definiteness we assume that at each step the
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Adem relations are applied at a position in the sequence as far to the right as
possible). The result is an element of C{x}, where we agree to interpret all
sequences with excess less than ]x[ as zero, and we extend multipleatively to get a
map FjCCL > FkC{x}. The map Yy is obtained by passage to quotients. The map yj is
obtained in the same way except that we use the Cartan formula to simplify
expressions of the form QI(yizp'i) with 0 < 1 < p. The inner and outer squares of
diagram (*) commute as a consequence of the external Cartan formula and Adem
relations, and the upper trapezoid clearly commutes when i1 is 1 or 2. When i is
zero the element yizp'i of (' goes to Qn/2x, and so it is necessary to check that
the result of simplifying QIQn/Zx with the Adem relations is the same as using the
Cartan formula on QIXP; the result in each case is zero unless all entries of I are
divisible by p, in which case it is (Q1/Px)P.

Finally, we give the proof of 2.8. We need two facts about Ax:Hy(IDX) »+
Hy(D,IX), namely that 442Q% = Q%Ix if k = p and that 8520y 1_g)x(x ®y) is zero
for 0 < i < k. The first of these, which is the external version of the stability
of QS, was proved in II.5.6. For the second, which is the external amalog of the
fact that the homology suspension annihilates decomposables, we use the third
diagram of II.3.1 with X = Sl, noting that the diagonal a:st s slasl ie
nullhomotopic. Now 2.8 is immediate from the commutativity of the following
disgram.

J ~
IB DK{X}
I‘" I‘ 1
Y.
o
[3 -4~Dk{x}
N l N Ay Ay
B,
I § A A
He D) DS B,D S
| AE A*E ‘
Y
8,
+1 JP* o +7
HyDy DPSn - HIDkSn

Here v is the map constructed in the proof of 2.7 and T' is the composite

D {x} ——a-g —£-Dk{§}. We define T'" to take decomposables to zero and QI(BSQSX) to
Q§(B€Qsi). Commutativity of the left and right trapezoids follow from the two
formulas given above. Commutativity of the upper trapezoid is obvious except on
elements of the form QL{g5QSx) with e(I) = n+l + 2s{p-1) - ¢ and b(I) = 0, and it
follows in this case from a simple calculation.
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3. Dyer-lashof Operations in K-Theory

In this section we give our main results about K-theory Dyer-Lashof operations.
We begin by fixing notations. We shall work in the stable category, so that X will
always denote a spectrum. Homology operations are to be interpreted as internal
rather than external. We use Z)-graded K-theory, with |z] denoting the mod 2 degree

of x. There are evident natural maps

L Ka(x;r) ——->Ku(X;r-1) ifr>2

] R
Pyt Ku(x;r) ———vKa(X;r*rs) if s

v
—

B, Ka(X;I‘) ——-*-Kaﬂ(x;r)

I KG(X;r) -—%le(zx;r) .

(Recall that IX means stA X in this chapter, not XaSh as in chapters I-VII.)

B1 will usually be written simply as . We write n° for the s-th iterate of =.

It will often be convenient to denocte the identity map either by no or pg. We write

7~ for the reduction map Ku(X;Z) +> KQ(X;r). Our first two results give some useful
elementary facts about mod p* K-theory; the proofs may be found in [13] (except for
3.2(iii), which is Lemma 6.4 of [63], and 3.2(iv), which will be proved in section
7).

Proposition 3.1. (i} Ky(X;7) is a Z .-module.
P
: s s -
{ii) If s > 1 then x BrsgP, = Bp-
(1i1) wp, and p.v are multiplication by p.
(iv) 8.8, = O.

Proposition 3.2. For each r > 1 there is an external product
KQ(X;r) ®Ka,(Y;r) * Kam,{Xz\ Y;r),
denoted by x ® ¥, which has the following properties.
{i} ® is natural, bilinear and associative.
(ii) If u KOS is the unit then x® Tu = TIWU@X = X.
(111) 71(x®y) = @y and 1 (x @ y) = X ® n°y.

(iv) px(x ® my) = (pyx) ® ¥y.
x|

(v) Br(x®y) Brx®y+(-l) 1®B.Y-

(vi) 1(x®y) = Ix®y = (-1)|x|x® LY.
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If p is odd then the following also holds, where T:XAY » Y aX switches the factors.
(vii) T,(x®y) = (—1)ly|lx|y®x

If p = 2 there are two external products for each r satisfying (i), (ii), (v) and

(vi). If these are denoted by ® and ® ' the relation
(viii) z®@y=x®@!' y+2r_1 BrX®Bry

holds. Relations (iii) and (iv) hold when either mod 2T product is paired with
2r-1 product. If r > 2 then (vii) holds for both ® and® ', while
if r = 1 then the following holds.

either mod
(vil)' T,x®Y¥) =y®'x =y ®x + 8y ® Bx.

We shall actually give a canonical choice of mod 2T multiplications in Remark
3.4(iv) below. When X is a ring spectrum we obtain an internal product denoted xy.
We write ne KO(X;r) for the unit in this case, reserving the letter u for the unit
of KOS.

Our next result gives the properties of our first operation, which is denoted
by Q. In order to relate Q to the K-homology suspension we must restrict to the
space level, and we fix notations for dealing with this case. If Y is any space we
write Ky (Y;r) for K*(EQY+;r) and, if Y is based, we write KT(Y;r) for K*(ZwY;r).
The homology suspension ¢ is the composite

(Y;r) C Ka+1(Y;r)-

o~ . b Py . ~
R (a¥;r) —— & (av;r) ——F

If Y is en H_ space then QY is also an H_ space and Y is an H, ring spectrum; see
I.3.7 and I.3.8.

Theorem 3.3. ILet X be an H_ ring spectrum. For each r > 2 and o€ Z, there is an
operation
Q:K (X;r) + K (X;r-1)
a o

with the following properties, where x,y Ky (X;r).
(i) Q is natural for H_ maps of X.
(ii) Qn = O.

(iii) Qmwx = =Qx if r > 3.
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P if |x| =0eand r =1
pxQx - (PP - 1)xP  if [x| = O and r > 2
(iv) Qpgx =
0 if [x] = land r =1
Pxlx if |x] = 1landr >2
QB x - pn(xp_lﬁrx) if |x] = 0
(v) s, 0x =
(ﬂBrx)P + paB x if |x| = 1.
p-l g i p-i
Qx + Q@ - x| o ? )xyPH if p is odd and |x| = |y| = ©
i=1
(vi)  Qlx+y) =qQx + & - nlxy) + Er_z(nBrx)(nBry) if p=2and |x| = |y] = 0
Qx + Qy if |x| = |y} = 1.

Q{kx) = kQx -

LN

(xP-x) (x)? ir x z, |x] = 0.

(vii) Iet |x| = |y| = 0. ‘hen

Qren(y2) + 1(x2)eQy + 2(Qx) (Qy) + 2P_2w(xsrx}n(y8ry)

xen(y®) + (xP)eQy + p(Q)(Qy) if p is oad
Qlxy) =
. 22r-4

(QBrx)(QBry) if p = 2.

let |x| =1, |y] = 0. Then

{ Qx'w(yp) + p{Qx){Qy) if p is odd

Qixy)
Qeen(y?) + 2(Qx) (Qy) + 22r‘4(nsrx)2(qsry) if p = 2.
Let |x| = |y| = 1. Then
{(Qx)(Qy) if p is odd
Qxy) =9 (@)(@) + 27 (xs xnlysy) + 227 (ns 0% (@8 y)

+ 22r_4(QBrx)(n8ry)2 if p =2.
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(viii) If Y is an B_ space and «x eka(szy;r) then Qxeﬁa(m;r-l) and

Qox if |x] =0
aQx =
(vox)® + pQox if |x| = 1.
(ix) If k is prime to p then kax = kax, where wk is the k-th Adams operation.
(x) If p=2and |x| =1 then

Q822*X if r=1

r-2 .
2 STZ*QX if r

v
N
.

In particular {ur-lx)z GKO(X;I) is zero if r > 3 and is equal to (n82x)2

if r = 2.

Remarks 3.4. (i) There are no analogs for the Adem relationms.
(ii) We shall write QS:KQ(X;r) > KG(X;r—s) for the s-th iterate of Q when
r > s (and similarly for the operations R and 2 to be introduced later).

(iii) If x e K4(X;1) has 8x = O then x 1lifts to y €Ky(X;2). Thus one can
def'ine a secondary operation ahon the kernel of 8 by & = Qy. The element y is
well-defined modulo the image of py and thus 3.3(iv) shows that Qx is well-defined
modulo p-th powers if |x| = O and has no indeterminacy if |x} = 1. This is
essentially the operation defined by Hodgkin and Snaith [42,99] (although their

construction is incorrect when p is odd, as shown in (77]].

(iv) When p = 2, parts {vi) and (vii) are corrected versions of the
corresponding formulas in [76]. Note that 2°T~4 - 0 mod 21”'1 unless r = 2. The
formula for Q(xy) with |x| = |y| = 1 and p = 2 implicitly assumes that the mod 27
multiplications for r > 2 have been suitably chosen, since the evaluation of
Qlxy + 2r'1(8rx)(8ry)) by means of 3.3(vi) and (vii) gives a different formula.
Thus we may (inductively) fix a canonical choice of mod 2r multiplications by
choosing the mod 2 multiplication arbitrarily and requiring the formula to hold as

stated for r > 2. From now on we shall always use this choice of multiplications.

Our next result shows that, in contrast to ordinary homology, Ky(X;1l} will in
general have nilpotent elements.

Corollary 3.5. If X is an H_ ring spectrum and x K;(X;r) then (= -
KolX51).
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Proof of 3.5. (By induction on r). If r = 1 then
(80P = (n8,0,x)P = BQp,x = 0

by 3.1{i1i), 3.3(v) and 3.3{iv). If r > 2 then

T r-1 r-1
r-1 P _ r-1 PP _ . r=2 P _
(w BrX) = [{n Brx) ] = {x Br—lQX) = 0

by 3.3(v) and the inductive hypothesis.

It turns out that iterated Q-operations on r-th Bocksteins are also
nilpotent. In order to see this we must make use of the operation R described in

our next theorem.

Theorem 3.6. Let X be an H_ ring spectrum. For each r > 1 there is an operation
R:Kq{X;r) » Ky (X;r+l)

with the following properties, where x,y eK,(X;r).
(1) R is natural for H_ maps of X
(i1)  wRx = Qpgx - x(8,x)P7L, and if r > 2 then Rrx = Qpyx - PP x(gx)P~L
(i1i) pyRx = Rpyx

. _ 2

(iv) By BX = Q8r+2P*X
L i-1

Bx + Ry - iZl {5( i )(p*X}(Sr-rlp*X) (Br+lp*

{(v)  Rix+y) y)p"i

. i1 -i-1
+ (P18, pe ) (8, 0,0 B ) PTT

(vi) If Y is an H_ space and x ¢ KI(Y;r) then

pyl(ox)P1  if r =1
oRx =
p*[(ox)p] + piQox if r > 2.
(vii) If k is prime to p then y*Rx = Ry*x.

(viii) If r > 2 then QRx = RQx. If r = 1 then QRx = O.

Remarks (i) Le% x e K;{X;r) and let s > 1. By 3.3(v) we have
(g, B%0P = o%7hg "Rk But QPRSx = ESTIQR(QTIx) = O by 3.6(viid). We

therefore have the following nilpotency relation.

r
("r+s—18r+sﬁsx)p = 0.
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Note that this is a smaller exponent than would be given by 3.5. In terms of the G-
r
operation this relation may be written ("r-s—leBrx)p = 0 for s < r and

S s-r+l .p° _
(Q Bos1Px x)¥ = 0 for s > r.

{ii) The second statement of 3.6(viii) was not in the original version of this
work (cf. {76, Theorem 3(iv)]). The decompossbility of QRx when r = 1 (which
actually implies its vanishing, as we shall see in Section 8) had been asserted by
Sneith when p = 2 ({99, Proposition 5.2{ii)]), but was not included in [76] because
the author erroneously thought he could prove QBx to be indecomposable in Kl(QX;l)
whenever x ¢ K;(X;1) had nonzero Bockstein (ef. [76, Theorem 4]). This point was
recently settled by Doug Ravenel, who observed that if one starts with the deserip-
tion of Ky(Q(stu .
Steenrod spectral sequence {which collapses) then one can see that the only

indecomposable in Kl(Q(S2 LJp eB);l) is the generator of K1(82 U

e2);1) given in {76, Theorem 4] and applies the Rothenberg-

P e3;1), and in
particular QR of this generator is decomposable. This contradicts part of [76,
Theorem 4] and & corrected version of that result will be given later in this
section. We shall give a completely different argument in Section 8 to show that

QRx is decomposable, and in fact vanishes, for all x eKl(X;l).

We next introduce an operation & which is the K-theoretic analog of the
Pontrjagin p-th power [57, 28]. This operation is a necessary tool in our
calculation of Ky (QX;l) and will also be used to give generators for the higher

terms of the Bockstein spectral sequence.

Theorem 3.7. Ilet X be an H_ ring spectrum. For each r > 1 there is an operation
Q:KO(X;r) + KO(X;r+1)

with the following properties, where x,y ¢Ky4(X;r).

(i) 2 is natural for H_ maps of X.

(i1) 72x = xP, and if r > 2 then mx = xP.
(i11) Qpyx = PP lpe 2 x.
(iv) w8 ,dx = xp_lsrx
L 1 p-i
3x+:},y+i£1—§ i)p*(xyp ) if p is odd or v > 2

(v) 2x+y) =

2x + 2y + 2,(xy) + (8,2,%)(B,2,y) if p=2andr = 1.

(vi) et |x| = ly|l = 0. Then Z{xy) = (2x)(2y) if p is odd, while if p = 2

there is a constant €p € Z,, independent of x and y, with
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(2y) + (1 + 251)(823)()(82337) if r =1

(2x)(2y) + 2% (8, 2%)(8,,,27) if ¢ > 2.

let |x| =1, |y| = O. Then

/
(Rx)(Qy) if p is odd and r = 1

+ p*[(QX)(Qy)] if pis odd and r > 2

(Rx)}(Q¥y)
Rlxy) =4 (Bx)(2y) - (1 + 2e))(B,Rx)(B,e?y) if p =2 and r =1
(23) + 4,0 (@y)] + 272 (8, 4,000 (B, 2)

r . _
+ 2% (B, Rx)(e ,Ay) if p=2andr > 2,

and R(yx) = (2y)(Rx) + (1 + 251)(621Y)(82Rx) if p=2andr =1. Let
[x] = |y| = 1. Then there is a constant €Le Zp, independent of x and y, with
(r
ol eI“(Rx)(Ry) if p is odd
(1 + 2e])(Rx)(Ry) - (1 + 2e) + 2e)(B,Rx) (B Ry) if p =2 and r =1
Hxy) = J
2% (Bx) (By) + 272 (Rx) (4,Qy) + 252 (4,Q0) (Ry)
21‘ 4 . _
(8r+l Qx) ( r+14 ) if p=2and r > 2.
(vii) ILet Y be an H_ space and let x eT(O(Y;r). If p =2 then o4 x = 2rR(cx),
x, with oc@x = pre;R(ax)-

while if p is odd there is a constant e;, independent of

(viii) If k is prime to p then wk,Q X = Jlbkx.

0 if r =1

(ix) Q2x =

. 2 . .
(2 )pt 2P Pp a0t arr 2.
1

il e~

i

The undetermined constants € in part (vi) depend on the choice of multipli-
cations; they can be made equal to zero for a suitable choice but it is not clear



313

what their values are for our canonical choice. It is quite possible that the

e, ¢! and €" are all zero.
r’ “r r

Next we shall use the operations Q and R to describe K4(CX;1) for an arbitrary
unital spectrum X. If Y is a based space then the homology equivalence of [28,
Theorem I.5.10] is also a K-theory equivalence (by the Atiyah-Hirzebruch spectral
sequence), hence

Ke(QT;1) = (mg¥) "R (CY;1) = (npl) 1Ry (C2°(Y7);1)

so that our calculation will also give Ky (QY;1).

First recall the K-theory Bockstein spectral sequence EiX (abbreviated BSS)
from [13, section 11]. X was assumed to be a finite complex in [13] but we wish to
work in greater generality. The finiteness assumption is necessary for those
results which deal with the E” term, since in general there is no useful relation
between E:X and K X (for example, E:RPoo is concentrated in dimension zero, while
K4«RP® is concentrated in dimension one). On the other hand, the results of [13]
which deal with E¥ for r finite remain valid for arbitrary spectra X. In partic-
ular, any (r-l)-cycle x can be lifted to an element y ¢ Ky(X;r) and we have d.x =
nr’lsry. The element y has order pr if and only if x is nonzero in ET. If we write
K¢ (X;) for the inverse limit of the Ky(X;r) then an infinite cycle always lifts to
Ky (X;=); we shall frequently use this notation. Our next definition gives the kind

of data necessary for the description of Ky(CX;1).

Definition 3.8. ILet 1 <n < w. A set A

U A, with A.C Ky(X;r) is called a
l<r<n
subbasis of height n for X if for each s < n the set

-1 -
% | x €A, s <r<n}uin 1Brx | x eAr, s <r <n}

projects to a basis for EiX.

If the height of a subbasis is not specified, it will always be assumed to be
infinite. Subbases with finite height will occur only in sections 7 and 8. It is
not hard to see that any spectrum has a subbasis of any given height. The term
subbasis is motivated by our next result, which is an easy consequence of the
results of [13,§811]. Recall that a subset S of an abelian group G is a basis for G
if G is the direct sum of the cyclic subgroups generated by the elements of S.

Proposition 3.9. If A = k,) A _ is a subbasis of height n for X and if s < n
lkr<n
(with 8 < » if n = ») then the set
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r-s r-s
{m Txlxe A,s<r<npuin Brxl X eh , s <r <n}

s-r g-1
ulp, x| x EAr’ r < s} tJ{BSp* x | xe Ar’ r < s}

is a basis for K,(X;s). The elements of the form pi'rx and Bspi_rx have order p¥

and the remaining basis elements have order ps.

Now let X be a unital spectrum. Let ne K. .(X;»)} be the unit and suppose that

0
7°n is nenzero in KO(X;I). Then we may choose a set A = k,) Ar such that
1<rge
A U {n} is a subbasis for X. We write Ar o and Ar 1 for the zero- and one-
3 b

dimensional subsets of A.. Let p be odd, and let CA be the quotient of the free

commutative algebra generated by the three sets

(nr's'lex | xeh , 0<s <r <w}
r-s-1 s
{n Br—sQ X | X € Ar,O’ 0 <5 <1 < w}
r+s-1 s
and {m BLgR ¥ | x EAr,l’ r<w, 0 <s <=}

by the 1deal generated by the set

{(nr+s—l ] r

BB X)P | xeh |, T <o, 0<s <a).

,1

The elements of the first three sets will be called the standard indecomposables of
r-s-1

CA. Here symbols like = Q°x are simply indeterminates, since the Dyer-Lashof
operations are not defined on Ky¢(X;r). However, by means of the ineclusion X +» CX

we may interpret these symbols as elements of K,(CX;1). Thus we obtain a ring map
A:CA » K (CX;1).

Our main theorem is
Theorem 3.10. A is an isomorphism.

We could have defined CA in terms of the Q-operation alone, without using R,

since the third generating set is equal to

s-r+]l

r-s-1.s8
{‘W Q 84,1?*

erlxe A, r<ew, 0<s <rlw Q% xixe A r <o, s>r}
s -Fa

1’ r,1’

The definition we have given is more convenient for our purposes, however, since it

allows us to treat the cases s < r and s > r in a unified way.

Theorem 3.10 also holds for p = 2, but the definition of CA in this case is

more complicated since mod 2 K-theory is not commutative. Recall from 3.2{vii)’
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that the commutator of two elements is the product of their Bocksteins. To build

this into the definition of CA we define the modified tensor product C1 é§ C1 of

two Z,-graded differential algbebras over Z, to be their Z,-graded tensor product
with multiplication given by

xey)x'®y") = x' @yy' + x(dx') ® (dy)y'.

We can define the modified tensor product of finitely many C; similarly and of
infinitely many Ci by passage to direct limits. Now for each xe¢ Ar o Ve define Cx

b
“r-s-leXIO < s <r} and

if r < o, {nr's'lBr_stxl 0 < s <r}. Give this the differential which takes Qr'lx

to be the free strictly commutative algebra generated by {

to BQr_lx and all other generators to zero. For each x EAT 1 we define Cx to be the
b
commutative algebra generated by the sets {"r—s-lexlo <s <r} and, if r < =,

{wr+s_16r+sRSx|O < s < r}, with the relations

T
(1) (T8l BSx)2 = 0

and
0 if 0 < 8 < r-2
r-1
(11)  (+7-571g8x)2 = 4 (+771g x)? if § = T-2
r-1
(1781 RX)? if s = r-1.

(Relation (ii) %s motivated by 3.3(x)). Give C, the differential which takes or-1x
r-

to (nr'lsrx)2 and all other generators to zero. Finally, we define CA to be the

modified tensor product ® Cy. There is an evident ring map A:CA » Ky(CX;1) and

X €
with these definitions Theorem 3.10 and its proof are valid.

Remarks 3.11. (i) When X = SO, or when p = 2 and X is a sphere or a real projective
space, we recover the calculations of Hodgkin [41] and Miller and Snaith [(83,84].

(ii) We can describe the additive structure of CA more explicitly as

follows. When p = 2 we define the standard indecomposables of CA to be the same

three sets as in the odd-primary case. If we give these some fixed total ordering
then CA has an additive basis consisting of all ordered products of standard
indecomposables in which each of the odd-dimensional indecomposables occurs no more
than once and each nr*s"13r+SRSx occurs less than 2T times. This basis will be
called the standard basis for CA. We define the standard basis in the same way when
p is odd.

Next we discuss the functoriality of the description given by 3.10. If X and
X' are unital spectra with subbases A (_{n} and A' ({n} then a unit-preserving map
f:X » X' will be called based if f*Ar(: A; {0} for all r > 1. Such a map clearly
induces a map fy:CA » CA', and we have A o f = (Cf), o A. If f is not based, it
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is still possible in principle to determine (Cf)y on Ky (CX;1) by using 3.3, 3.6 and
3.9 {although in practice the formulas may become complicated). For example, if
£:8% 5 82 is the degree p map and x eKO(SZ;z) is the generator then

(Cf)4@x = Qfyx) = Q(px) = a(xP) # 0

in KO(Csz;l). Since f*:K*(Sz;l} + K*(SZ;l) is zero this gives another proof of
Hodgkin's result that Ky(CX;1) cannot be an algebraic functor of Ky (X;1l). A similar
calculation for the degree p’ map shows that Ky(CX;1) is not a functor of Ky(X;r)
for any r < «. Finally, the projection Sl \“b e2 > 82 onto the top cell induces the
zero map in integral K-homology but is nonzero on K*(C(S1 p e2);1) so that
Ke{CX;1) is not a functor of Ky{¥X;Z). Thus it seems that the use of subbases cannot

be avoided.

We conclude this section by determining the BSS for CX.

Theorem 3.12. For 1 <m < », E® CX is additively isomorphic to the quotient of the
———— et - ? %
free strictly commutative algebra generated by the six sets

("5 "1g% | x A, m<r-s, 0<s <r}

{nr's'lsr_stx | xe Ar g, mSr-s <=, 0<s <71}

WWJQWTW§XIXeArO,15r4~Cm}

’
{T\‘m_lﬁmg,m—r+sQSX l X e Ar,O’ 1 <r-s <m}
{“m-lRm-r+stX | x¢ Ar,l! 1 <r-s <m}

{nr+s-18

and regBX | xe Ap 1) m S THS < )

by the ideal generated by the set
t
{(aF*s=1g , RSP | x €hp 1, M S THS <, t = min(r,r+s+lom)}.

If p is 0odd or m > 3 the isomorphism is multiplicative.

The proof of 3.12 is the usual counting argument, and is left to the reader.

In order to determine the differential in E?CX one needs the formula

r-g+t-1 t.s_ _ , r+t-l
b = {n

t pS
6r—s+tR Qx Br+tR x)

for x €A, 1, 0 £8 <T <w, t>0; this is is a consequence of 3.3(viii) and 3.3(v).
b4

4. Calculation of K4(CX;Z..)

In this section we give the proof of Theorem 3.10, except for two lemmas which
will be dealt with in Sections 6 and 9. The argument is very similar to that given
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in Section 2 for ordinary homology, and in several places we shall simply refer to
that section.

First we reformulate 3.10 as a result aboui extended powers. let Y be any
spectrum and let A be a subbasis for Y. We define CA with its standerd indecom-
posables and standard basis as in Section 3. We make CA a filtered ring by giving
elements of A filtration 1 and requiring Q and R to multiply filtration by p. let
DkA = FkCA/Fk_ch for k > 1; this has a standard basis consisting of the standard
basis elements in F CA - Fy_,CA. There is an additive map

MDA+ Ky (D, Y1)
defined as in Section 2 by interpreting Q,R and the multiplication externally and
then applying oy and Byx. We shall prove

Theorem 4.1. X, is an iscomorphism for all k > 1.

Remark 4.2. Using 4.1 and the external versioms of 3.3(v), 3.6(iv) and 3.7(iv)
(which will be proved in sections 7 and 8) one can determine the BSS for DY as
follows. If m > 1 let C™A denote the algebra whose generators and relations are
given in 3.12. We make CPA a filtered ring by giving elements of A filtration 1 and
requiring R, Q and 2 to multiply filtration by p. If Di& is the k-th subquotient of
C®A there is an isomorphism DEA > ETDKX. The proof is similar to that for 3.12 and
is left to the reader.

The derivation of 3.10 from 4.1 is the same as that given for 2.1 in section 2.
We therefore turn to the proof of 4.l. We need the following special case, which
will be proved in section 6.

Lemma 4.3. A is an isomorphism for all Y.

P

We shall reduce the proof of 4.1 to the case where Y is a wedge of Moore

spectra. First we need some notation. As in section 1 we write M, for S—I\J r e0.
P

The set {ur} is a subbasis for Mr‘ We write M_ for the colimit of the Mr with
respect to the maps M, » M,,; having degree p on the bottom cell. Then Ky (M,;r) =0
for all r and KO(Mm;r) is a copy of Z . generated by the Image of w,. Iet

u_e Ko(Mm3”) be the element which projects to the image of u, for all r. Then {u }
is a subbasis for M.

For each xe¢ A, we can choose a map fx:)zllef > KAY representing x. (If r = =
we let f, be any map which restricts on each z}x M. to a representaive for the mod

p’ reduction of x.) Let Z = \/ v zlxIMr and let £:Z » KAY be the wedge
1I<rge X eAr

of the f . We give Z the subbasis B consisting of the fundamental classes of the
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Eller. Then fyy:Ky(Z;r) » Ky(Y;r) gives a one-to-one correspondence between B, and

A, and in particular it is an isomorphism for all r. Now consider the diagram

D B P ) D A

—_——

k X

M B l A
(B, ) e

Ky (D Z;1) —————K, (D Y¥;1) ,

which commutes by 1.3 and 1.4(ii) and (iii). If 4.1 holds for Z, its validity for Y

will be immediate from the diagram and the following lemma.

Lemma 4.4. Let h:W » KAX be any map. If hyy:Ky(W;1) » Kg(X;1) is an isomorphism,
then
(1) fyx:Kg(W;r) » Ky(X;r) is an isomorphism for all r, and

(i) (5£f)**:K*(DkW;1) > K*(DkX;l) is an isomorphism for all k.

Proof. (i) By induction on r. Suppose the result is true for some r > 1 and
consider the short exact sequence
0—7Z —»72 —> 7 » —0 .

r+l
p P

This gives rise to the following commutative diagram with exact rows.

Ka+l(w;r) ———e-Ka(W;l) —n KG(W;r+1) — KG(W;r) ———a»Ka_l(W;l)

lf** lf** f.<)(--)(- 1 f** lf**

Ka+1(X;r) —— Ka(Xgl) —_—> KG(X;r+1) — Ka(X;r) ——-Ka_l(X;l)

Part (i) follows by the five lemma. The proof of part (ii) is now completely
parallel to that of Lemma 2.4.

Next we reduce to the case of a single Moore spectrum. We assume for
simplicity that Z is a wedge of two Moore spectra zmMr\lans; the argument is the
same in the general case. Let B1 and B2 be the subbases {zmur} and {znus}, so that
B = BI\J B2. There is an evident map CBJAQQ CB2 + CB which on passage to the

associated graded gives a map

k

q):iZO(DiBl ® D,_;B,) » D, B.
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Lemma 4.5. @is an isomorphism, and the diagram

¥ ®
iEO (D;B, ® D_,B,) »D, B
B ® A ) Ay
]S m]\d nM o
i%O(K*(DiZ P31 @K (D B ML) ————> K, (D, Z;1)

commutes

The proof is the same as for 2.5. The lemma implies that 4.1 will hold for Z

once we have shown the following. We write x for 2nur € K(EnMr ;T).

Lemma 4.6. Xk:Dk{x} + K*(Dkanr;l) is an isomorphism for all k > 1 and all n.

Proof. By induction on k. First let k = jp with j > 1. We need the commutativity
of the following diagram for i = 0,1 and 2.

v
Dj o J — D, {v,2}
Fi Dk(gi)*
i
Do D, {x}
(%) = iy zj A lxk Ay
B 4
Ky (DyD M;1) ———LP s, (D, 31)
/Dijgi)* '\Z)kgi)*
h 7 8.

*
Ky (DD (M M) 1) JP >K, (D, (MvM);1)

Here M denotes ):nMr and ¥,z ¢Ky(M M;r) are the fundamental classes of the first and
second summands. The sets Qh and (L' are subbases for DPM and DP{MVM) which will be
specified later. The maps gi:MvM > M are defined by go = 1vl, gy = 1v¥*, and

gy = *¥v1, and the F; are determined uniquely by the requirement that the left-hand

trapezoid commute. To complete the diagram we need

Lemma 4.7. There exist (, Q_’ s Y3 and yj‘ independent of i such that diagram (%)
commutes for i = 0,1 and 2.
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The proof will be given in Section 9. Like the proof of 2.7, it consists of
systematic simplifications of the elements of DA and IECL'. The details are much

J
more complicated, however, because of the nonadditivity of the operations.
Now consider the inner square of the diagram. Since B8, <] is an
isomorphism, we see that A is onto. letting 6 = Yj o X 0T, 0 we see as in
section 2 that 9 induces an isomorphism of the subspace & of Dy {x} spanned by the

decomposable standard basis elements. In particular, Ay is monic on & .

The remainder of the proof differs from that in Seetion 2, and is in fact
considerably simpler since there are only a few indecomposables. It suffices to
show the following.

lemma 4.8, Let we . If n = 1 then

(i) Ak(wr—s’lex - w) # O, where k = ps, 2<g<r<e=
s r+g-1 s s
{ii) kk(n Bosgh ¥ = W) £ 0, where K = p°, T <=, 2 <8 <w.

If n = 0 then

(iii) Xk(wr"sulex - w) # 0, where k = ps, 2<s<r<w

(iv) Ak(ﬂr—sulﬂr_sQSx - w) # 0, where k = ps, 2<8<r <™,

Proof. We need two facts sbout the map A*:K*(XDkX;r) > K*(Dkxx;r) , namely that
A*z(ai,k_l)*(xcay) =0 for 0 <i <k and that, when k = p,

Q{zx) if |x| = 0
A, ZQx =

)(p}

un
ot
.

Ty {Ix + pQex  if x|
The first fact is shown as In the proof of 2.8, while the second, which is the

external version of 3.3(viii), will be shown in seection 7.
Now consider part (i). We have AyIw = 0 and

s
“r-s—l s r—ll*(zx)p .

AT Qx =1

8
But nr_ll*(Zx)p is nonzero since Ay is monic on decomposables.

Combining part (i) with the fact that Ay is onto and is monic on decomposables,
we see that

Ak:Dk{x} + K*(DkZMr;l)

is an isomorphism in degree 1 and is onto in degree zero. It is monic in degree O
if and only if part (ii) holds. But if not then Ko(DyIM ;1) and Kq(DyIM; ;1) would
have different dimensions as vector spaces, and therefore the Bockstein spectral
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B! . beds ED, M, in
sequence *(DkzMr) would be nonzero for alllm But the transfer embeds *Dk M,
EiDBDPZMr, and the latter is zero for p™ ' © > j by Remark 4.2 and the inductive
hypothesis of 4.6.

Finally, part {(iii) follows from (i) and the equation

r-g-1 r-g-1_.8
E i

Ayl Q°x = Q°zx,

while (iv) follows from (iii) using the argument given for (ii).

This completes the proof of 4.6 for the case k = jp. The remaining case, when
k is prime to p, is handled exactly as in Section 2.

5. Calculation of R,(D S%;Z )
——————— * o) T
P
In order to construct and analyze the Q-operation we shall need & precise
description of K*(Dpanr;r~l). In this section we give some facts about K*(Dpsn;r)
which will be used in Sections 6 and 7 to obtain such a description. We work with
K-theory on spaces in this section.

If X is a space there is a relative Thom isomorphism
2:%, (D X;r) — &, (D 5°X;r)
Py ’ * ’
P P
corresponding to the bundle

Br x. (xP) x 8Py, Bz« x(P!
P Pz,

and the inclusion

{p}

*

EEPXX()—)EZPXEX .
P 1Y

As we have seen In VII$§3 and VIIS§8, this isomorphism can in fact be defined for an
arbitrary spectrum X. 1In calculating ﬁ*(DpSn;r) we may therefore assume n = 0 or

n = 1; in the former case we have DPSO = Bzg .

. . _ o 1. ,
Iemma 5.1. Ka(sz,l) is zero if o« = 1 and Zp(D Zp if a = O. Ka(DpS ;1) is zero if

a = 0 and Zp if o = 1.

Proof. We use the Atiyah-Hirzebruch spectral sequence for mod p K-homology. By
40, III.1.2] the differentials d; vanish for i < 2p-1 and d2p—1 is BPi - PiB

(here P' denotes Sq2 if p = 2). For spaces of the form DPX, a basis for the E°-term
consisting of external Dyer-Lashof operations is given in [68, 1.3 and 1.4]. The

differential dzp-l can be evaluated using the external form of the Nishida relations
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[68, 9.4]; the explicit result is that d2p—1(ei ® yP) is a nonzero multiple of

p
(Bey,p op) ®FF - e ® (8y)

i+l-p

for any y ¢ Hg(X;1)., Letting X = 0 or s! we see that P is generated by eg ® uP
and ezp_2<g uP in the former case and by ep_1 @)(zu)p in the latter. Then E2p = B

for dimensional reasons and the result follows.

Using 5.1 and the K-theory BSS we conclude that K*(sz;r) is free over Z , on

~ p

two generators in dimension zero and that K*(Dpsl;r) is free over Z p On one
generator in dimension one. We wish to give explicit bases. It ig convenient to

work in K-cohomology, as we may by the following.

Lemma 5.2. The natural map

¥ n ~ hed
K (DpS iv) - Hom{K*(DpS ;r),2 r)
P
is an isomorphism for all r < «.

Proof. When r = 1 a cell-by-cell induction and passage to limits gives the resultis
for an arbitrary space; in particular it holds for DpSn. The result for general r
follows from the BSS.

Next we give a basis for KO(BZp;r). We write 1 for the unit in this group and
l(e) for the unit of Ko(pt.;r). let t be the transfer Ew(Bz;) + zw(Be+) = 8.

Proposition 5.3. K*(sz;r) is freely generated over Z .. by 1 and r*l(e).
P

Proof. Let n = Zp and denote the inclusion = ¢ xp by 1. Then Kl(BW;T) = 0 and the
natural map
Br ® 2, > KO(Br;r)
1Y
is an isomorphism. If p is the group of automorphisms of n then a standard transfer

argument shows that the restriction

* %
1K (BXp;r) * K*(Bn;r)
is a monomorphism whose image is contained in the invariant subring K*(Bw;r)p. Now
1*1 is the unit 1, of KO(Bw;r), while the double coset formula gives
* % *
= (p-1)1(¢"
1T l(e) (p~1)!(x") l(e s

T'l(e) form a basis for K (Bu;r)P the result follows.

where 1' is the transfer :™(Bn*) » S. Since 1, and
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*

In order to give a specific generator for ¥ (stl;r} we consider the map
* o *
P (Dpsn‘“l;r) > % (szSn;r).

Lemma 5.4. The composite

* *
KO(Dps2;r) _A.Ko(wpsl;r) -(-’3-4‘-)--”Ko(z2npso;r) = K0(Br ;)

*
takes 8(1) to —=— (p! ~ 11

*
o171 ()) @d e(r'1)) to zero.

As an immediate consequence we have
* * 1
Corollary 5.5. £A ¢(1) generates &K (DpS 5T
Before proving 5.4 we give the desired bases for K*(sz;r) and K*(Dpsl;r).

Definition 5.6. The canonical basis for K*(sz;r) is the dual of the basis

* o
{1’*T5:%7T (p! -1 1(e))}‘ The canonical basis for K*(Dpsl;r) is the dual of

{za &(1)}.

Note that the unit n in KO(BZp;r) is the first element of the canonical basis
for this group. We shall always write v for the remaining element and v' for the
basis element in Kl(Dpsl;r).

Proof of 5.4. Consider the subset of Ezp x5 (32)9 consisting of points for which

the sum of the R°-coordinates is zero. The projection to BZP makes this subset the

o Now Dp82 is homeomorphic to the second
suspension of the Thom complex Tt of ¢, and under this homeomorphism the map

A © 2A:£2DPSO > Dp32 is the second suspension of the inclusion Bz; C Tg, while
2{1} agrees with the Aityah-Bott-Shapiro orientation for £. Thus it suffices to
show that the Euler class of ¢ is Ti:%TT-(p! - T*l(e))'* If = = Zp gnd 1: «w c,zp is
the inclusion it suffices to show that the pullback (Bi) g has Euler class

D - (r’)*l(e) in X9(Br) = Ra C)Zﬁ, where t' is the transfer 7°(Br’) » S. let

x € R be any nontrivial irreducible. Then (B1)*g is the sum of the bundles over Bnm
induced by x,xz,...,xp'l. These bundles have Euler classes l-x,...,l-xp"l, hence

(Bt)*g has Fuler class (1—x)'~~(l-xp'1). Evaluation of characters shows that

total space of a bundle g over Bf

"n

(1-x) oo (lwxp'“l) =P o~ (1L + X + oo + xp_l)

and the result follows.
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Next we collect some information about the elements n,v and v' for use in

section 7.

Proposition 5.7. (i) n:K*(DpSn;r) > ﬁ*(DpSn;r-l) takes v to v and v' to v'.

~

(i) ay:K (Z(BE;);r) + £ (DpSl;r) takes In to zero and v to v'.

1
s 5 1 -
(iii) A*:KO(EDPS ;) > KO
{iv} r*:ﬁ*(QpSn;r) > ﬁ*((Sn)(P);r) takes n to plu and v to ~(p-1)}!u when

1
(Dpsz;r) takes Iv' to ¢(n + pv).

n = 0 and takes v' to zero when n = 1.

(v) 6*:KO(BEp;r) > KO(BZp x sz;r) takes n ton ® n and v to
Vn+n®v +plv®v).
. P 1 ~ 1 +
{vi) 6*:K1(DPS ;T) > Kl(DpS A sz;r) takes v to VI ®n + plvI ® v).
. o 2 o 1 1
{vii) 6*:KO(DPS ;7)) > KO(DPS ADpS ;r) takes @(n) to zero and ¢(v)

tovi ®@v'.
For the proof we need a preliminary result.

Lemma 5.8. (i) If X is a spectrum with El = E in the K-theory BSS and if Y is any
spectrum then the exiernal product map

Ko (X;7) @ Ky (Y;7) + Kg{XAY;T)

is an isomorphism, where the tensor product is taken in the Z,-graded sense.

(i) If in addition K, (X;1) and K.(Y;1) are finitely generated then the
external product map
K (X;r) @ K (Y;7) » KN (XaY;T)

is an isomorphism.

Proof When r = 1 the first statement is well-known (see [13, Theorem 6.2], for
example}. It follows that the external product induces an isomorphism of K-theory
Bockstein spectral sequences. Hence if B is a basis for Ky({X;r) and A is s subbasis
of height r for Y then the set {n "x®y | xeB, y €A} 1is a subbasis of height r
for XAY and part (i) follows. The case r = 1 of part (ii) follows from part (i) by
duality, and the general case follows from it as in part (1).

Next we turn to the proof of 5.7, which will conclude this section. In each
case it suffices by 5.8 to show the dusl. Then (i) is immediate and (ii) and (iii)
follow from 5.4. The first and second statements of part (iv) are trivial, as is
the third when p = 2. When p is odd we observe that t4v' must be invariant under

the Ep action on K*((Sl)(p);r). Clearly zero is the only invariant element.
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For part (v) we observe that T*l(e) ® T*l(e) is T*(‘*T*l(e)) by Frobenius

* ¥
reciprocity. Now 1 1 1(e) = p!l(e), and thus

1 * 2__p_ X
(-3t P! = v 1 )17 = ot o - T ley!

in KO(BZP;I‘); the result follows by duality.

For part (vi), consider the composite
R (2855 ;) X . (D_8%;7) — 2o €. (_8% A BT s)
1)1 Zp,r lp’r 1405 ):p,r.

We have AyIv = v', and

4

= (AAL), 18,V

= (A,W) @+ (AIn) @Y + p(AIV) BV

vI®n+plv @v).

For part (vii) observe that part (iii) implies that the map

o 1
(an 1)*:K1(2Dps

1 2 1
ADPS B Kl(DpS /\DPS ;T)
is monic and that (AAL) (v'®V') = ¢(n) @ v' + pe(v) @V'. Hence 1t suffices
to show that (AAl), (z6,¢(n)) 1is zero and that

(Aaal) z6,8(v) = ¢(n) x v' + pelv) @v'.
Now let

n:st 82 = sta (sla st = (staslyast = g?a st

be the associativity transformation and consider the diagram

D s° L¢ gD St AaD s
P j
A
1, &2 D h 2.
N
o8 D (s'r )——R—»Dp(s s | a1
8
2 2 1an 2 1

D S°A B, — D A Br. —2L »p AD S
P D D D D P

The upper part clearly commutes, and the lower part also commutes since h is

homotopic to the map switching the factors sl and 82. Now

2, 2, oot
6*.KO(DPS ;T) > KO(Dps A BL;T)
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clearly takes ¢(n) to ¢(n) ® n and ¢(v) to

IRV +elv)®n + pelv)® V.
Hence

(A1) (28,0(n)) = (1Aaa),(e(n) ® In) = O

by the diagram and part (ii), while

(A1) (£6,8(v)) = (1an),le(n) @ Iv + 2(v) ® In + pe(v) ® vl

it

n) @ v' + peiv)® vV .

6. Calculation of ¥ (D ¥;Z )
— ¥ "p'p

In this section we define Q on Ky(X;2) and prove Lemma 4.3. We work with
K-theory on spectra in this section.

Our first result collects the information about K*(Dpanr;l} which will be used
in this and later sections. We let i and j respectively denote the inclusion of the
bottom cell of "M, and the projection onto the top cell. Note that jyi™u, = i
and iyt lu = g™, where u, and u are the fundamental classes of M, and 0.

Lemma 6.1. (i) For any n ¢Z and o €25, Ka(DpEan;l) has dimension 1 over Zp
(ii) For any neZ, a ¢, and T > 2, Ka(DpZnMr;l) has dimension 2 over Z.
(111) (DG )x:Ko(DMy;1) KO{DPSO;J.) is monic, and if T > 2 it is an

isomorphism.

z
(iv) (Dpj)* C)T*:Kl(DpEMr;l) > Kl(Dpsl;l) C)Kl((EMr)(p);l) P is monic, and is

an isomorphism if r > 2.

{(v) (Dpi)*:KO(DpSO;l) + K(DM ;1) is omto. If © =1 it has kernel generated
by nand if r > 2 it is an isomorphism.
(vi) The sequence

(D_1}

T z
Kl(DpS—l;l) —J——*»Kl(Der;l) —f--Kl((Mr)(p);l) P o

is exact, and if r > 2, (Dpi)* is a monomorphism.

z
In parts (iv) and (vi), Kl((anr)(p)51) P denotes the subgroup invariant under

the evident zp—action; this subgroup can easily be calculated using 5.8(i)}. The

proof of 6.1 is similar to that of 5.1 and is left to the reader.
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We can now define elements vy ¢ KO(DpM2 ;1) and vi € Kl(})pzM2 ;11 by the
equations (Dyjlgvy = v, (Dpj )yvi = V', and 1,v] = O. We use definition 1.6 to

1
construet Q.

Definition 6.2. Q: K, (X;2) » K (D X,l) is the generalized Dyer-~Lashof operation Qv
if o = 0 and Q\r' 1fa—l.
1

Observe that v; = Qu, and vi = Q):uz-

Next we turn to the proof of 4.3. We use the spectral sequence of I1.2.4 with 7
equal to Zp or ):p and E = X. This spectral sequence will be denoted by Eg c’.(Tr;)();
s
by Bott periodiecity it is Z x Z,-graded, so that o € Z,.

We can describe }3:’(21 {(m;X) = Hq(n'K (X'l)® P) as follows. When q =0 1%
is just the coinvariant quotient of Ky(X; 1)® P, ety = Z with p odd. If
X ¢ K (X;1) then P Ky(X; ;197 generates a trivial w—submodule and we write

eq ® xp for the image of e, ¢ H (Bw;1) under the inclusion of this submodule. Now

qQ
Ky(X; 1)® P can be written as a dlrect sum of trivial w~modules of this kind and free

n-modules generated by X ® e ® %, with not 211 x;'s equal. Hence the map

K (X;1) » B (Z_;X)

a q,0 P’
taking x to eq ® xP is an isomorphism if q > O and p is odd. We continue to write
€ ® xP for the image of this element under the natural map

E (2 ;%) » B (5500

q,a P q,a

By [68,1.4]) we see that this map is onto in all bidegrees, is an isomorphism when
= {2i-a)(p-1) or (2i-a){p~1)-1 for some i > 1, and is zerc in all other bidegrees
with q > O, Finally, if p = 2 then by 3.2(vii)' the Z,-action on K*(X;l)® 2 is
given by x® yhH—>y ® x + 8y ® 8x; in particular, x2
Bx = 0. Using this it is easy to see that the map taking x to eq ® x2 induces an
isomorphism from ker g/im g to Eq,0(223x) if q > 0, while Eq,,l(ZZ;X) = 0 for q > O.

is invariant if and only if

Our next two results describe the groups EZ G(E p;X). let A be a subbasis for
—- 2
X and let A2c K, (X;2) be the set

{nr—zx 1 Teh, 2<r < w}u{nrnzsrx ! Xeh, 2 <r <=},

Let A2,O and A2,l be the zero- and one-dimensional subsets of A2

P

Proposition 6.3. (i) The kernel of the epimorphism E2 £ (I 5X) » EB *(EP;X) is
B
generated by the set {{Bx) p | x eK (X;1)} if p is odd a.nd by

tng0)? + (n0? | x € K (K;2)) if p = 2.
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(ii) The terms EZ u(zp;X) with q > O are freely generated by the sets

s

{ezp__2 ® (nx)p|x EK.?,O}

{ep—l® (w)? | xeKz’l}

and, if p is odd, fe, , ® | xea 1,1}

Proposition 6.4. (i) If x ¢ E% o then Qx is represented in E:*(zp;x) by a nonzeroc
b4

multiple of €rp.2 * {nx)P.

(i1) If x eKZ 1 then Qx is represented by a nonzero multiple of €51 ® (wx)P.
2
(1ii) If x ¢&y 1 then QBopyx is represented by a nonzero multiple of
H
epmz ® XP.

Note that Lemma 4.3 is an immediate consequence of 6.3, 6.4 and the external
versions of 3.3(iii}, 3.3(v}, and 3.6{(iv).

When p is odd, Proposition 6.3 is Corollary 3.2 of [77]. We shall give a
different proof, using the methods of Section 1, which also works for p = 2. First
observe that there are itwo equivalent ways of constructing the spectral sequence
Ei*(n;x); one can either apply mod p K-theory to the filtration of DPX given in
Section 1.2 or one can apply mod p stable homotopy to the corresponding filtration

of KADPX. The latter procedure has the advantage that the map

D“f:D“Y + KA D"X
induced by any mep f:Y » K~ X clearly gives rise to a homomorphism

(D, £) 4 iEyy (m5Y) » Eyy (m;X)

of spectral sequences.

Lemma 6.5, If w = Zp or ZP and ye Ke(¥;1) (with gy = 0 if p = 2} then

(T P gxley ®F°) = e ® (£y)P.

Proof of 6.5. It suffices to consider the case 7 = ZP.

0

The composite
_ O, &
DX=D(Xa3") —»DXADS
ki1 kil n k3
induces a coproduct
¥:ED, (1;X) » BN, (n3%) @ ELy(n380)
and we have

¥ o (D fly = 1D, ®1] 0¥,
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The lemma clearly holds for g = O, and it follows for all q since the component of
. 2 0, .
ve, @) in B (1) @ Foy(ms) is (@) @e -

Proof of 6.4. (1) Let x be represented by f:My » Ka X. Then fyyu; = X,

B = T Dy = p

(Dpf)**(;lu2 Qx, and (Dpf‘)**(ep__2 ® u2) ezp_2 ® x*. Hence we may assume that
X = M2 and x = Uy, and it suffices to show that vy = Qu2 is not in the image of

(p), .
Ko7' 51) » KO{DpMz,l).
But this is clear since (Dpj Jxvq = V.

Part (ii) is similar. For part (iii) we may assume that X = IM; and x = Luy.
In this case it suffices to show that QB,pyu; is nonzero. But Bopyu; = iyu, where
u eKO(SO;2) is the unit, and Qu = v. Hence QB,pyuy = (Dpi)*v is nonzero by
6.1(iii).

Proof of 6.3. First let p = 2. Since every element of ker § 1lifts to Ky{(X;2},
Proposition 6.3 will be a consequence of the following facts.
(a) dy =0
(b) d5lepq 4 ® (1)%) = epq 4 4 ® (n5 )2
{e) dglenq o ® (1)2) = ep0 2 ® L(mx)? + (n8x)?].
Note that, when 8,x # O, formulas (b) and (e¢) differ from those given in
199, 3.8{a){ii}}.

First consider the case X = SO. Then the spectral sequence of I.2.4 is
isomorphic to the Atiyah-Hirzebruch spectral sequence, so that (a), (b) and (e¢) hold
in this case by 5.1.

Next we need the coproduct ¥ defined in the proof of 6.5. this has the form

2 q
?(eq@x )= 3

2
L (ei®x }®eq-i R

and it follows that if x and y satisfy

d3(e3 ® x°) = e ® 32
then we also have

d3(62s+1 ® XZ) = Bos. 0 ® y2

and dalepgin @ x?) = €25-1® (y° + %°1

for all s > 1.

Now let X = Sl. In this case d, = O for dimensional reasons, and there are

only two possibilities for d3 consistent with the coproduct, namely
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dslegg ® (20)%) = ey 3 ® (z0)?

or dslegqy ® (BW2) = ey, ® (2u)°

Only the second is consistent with 5.1, and hence (b) and {c¢) hold in this case.

Next observe that, by 6.5, d, vanishes in general if it does for z% and IM,.

5,00 304 the

only element that could be hit is (nzauz)(nszzauz) in Eg 1 But the correspond-
s

In each of these cases, d, is zero for dimensional reasons except on

ing element of Kl(Dzzumz;l) is nonzero since its transfer it nonzero in
Ky ((3%)(2)).  Hence 4, = O.

Finally, (b) and (e¢) will hold for all x if they hold for x = up and x = IUj.
First consider Iuy. It suffices to show that
2, _ 2 2
dB(GB(@ (muy)™) = ()™ + (wBou,)".
From inspection of the maps
3 g0 3 .
E**(Zz,S ) E**(ZZ’EMZ)

3y . 3 g st
and Eyx(Zo3IM,) > B{,(2,;87)

we see that 4 (e3<® (nszzuz)z) is zero and that d3(e3(8 (nzuz)z) projects to (zu)?

3 (Z,;S"). Hence

in EO,O 55

dyle, ® (nmu)%) = (azu,)” + elng,ru,)?

for some ¢ €Z, and there are no further differentials. But by the external version
of 3.3{x)} we have 1*(1r):u2)(2) = 1*(1r522:u2)(2) in KO(DZEM251)’ hence ¢ = 1 as

required.

It remains toc show that

dyle, ® (1u,)%) = (nu,)%

For this we use the map

¥UEL(Z,50My) > EL(2,58T) @ Ejy (Z;M,)
induced by

1
6.D2£M2 * D28 A D2M2 .

We have
¥ (e ® (\'2\1 ) ) - } (e- ® ([ZL\) )® (e s X (l'u ) )
q 2 i =0 1 g-1 2

and therefore

d¥'(e, ® () = (e, ® (w)?) ® la le, ® (m)?) + ey ® (ru,)?]
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while  ¥dle, ® (n20)?) = (e, ® (10)°) ® leg ® (my)° + e ® (x8,u,)°]
and the result follows.

Next let p be odd. We must show the following
(! d4; =0 fori <p-2
| Py = p
{b) dp—l(eq ® xF} €q+1l-p ® (8x)
{e} d4; =0forp <1 <2p-2
(@) dppqleq ® ) = egy_on @ xF
(e) d; =0 for i > 2p.
As before, when X = SO the spectral sequence is isomorphic to the Atiyah-
Hirzebruch spectral sequence so that (a)-(e) hold for 5.1. They also hold for

X =gt by 5.1 and the coproduct. Now 6.5 implies that (a) and (b) will hold for all
X if they do for X = M1 and X = EMl. Inspection of the maps

r o1 I
Epx (2387 7) > B (2 52%M))
and Eex (15,2} > By (5 587)

and the coproduct shows in each case that either (a) and (b) hold or (a),(ec),(d),
and (e) hold with dp-l = 0. Only the former gives an E_ term compatible with
6.1(i). Hence (a) and (b) hold for all x.

Now applying 6.5 again we see that (c¢), (d) and (e) will hold in general if
they hold for M, and 2M2. But one can see that they do by inspection of the maps

r -1 r a

E**(ZP;S ) > E**(Zp;z M,)
r r o

and E**(xp;zamz) > By (235,

and the proof is complete.

7. Construction and properties of Q.

In this section we complete the construction of Q and prove external and
internal versions of Theorem 3.3.

As in section 6, we shall construct Q by specifying elements v, _; eKO(Dp ;r=-1)

and v;e Kl(DpZMr;r—l). In order to do this we need a stronger version of 6.1.

Lemma 7.1. Let r > 2. The maps

3 . . O._,
(Dp])* : KO(Der,r-l) + KO(DpS ;r-1)
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T
. . i 1. (p), P
([Eg)* C)T*.Kl(DpZMr,r-l) + Kl(DpS ;r=1) C)Kl((zMr) ;r=1)

and (D _1),:K

0
b (Dps ;e=1) » K

(DpZMr;r-l)

0 0

are isomorphisms, and the sequence
(D 1} T T
1, p_ ¥ . ¥ (p),__ 4y P
0 ——»Kl{DpS ;7-1) —————-+-K1(Der,r~1) -~»—K1((Mr) ;r-1) 0

is exact.

Note that the terms in 7.1 which involve iterated smash products may be
calculated by using 5.8. Assuming 7.1 for the moment we may define v, , and v;_l by
the equations {Dpj}*vr_l =v, (Dpj)*v;_l =v', and t4vy_y = O-

Definition 7.2. Q:K {(X;r) » KQ(DPX;r—l) is the operation er-l if « = 0 and Qv‘ .
if o = 1. -

Observe that Vp-1» ¥V, Vy_y and v' are equal respectively to Qu,., Qu, QCu,., and
QzZu. From now on we shall always use the latter notations for these elements.

We shall prove 7.1 by showing that El = Er'1 in the K~theory BSS for Dpanr
when r > 2. For this we shall require a formula for the Bockstein of the external
Q-operation, and this in turn depends on the other formulas collected in the

following lemma.

lemma 7.3. lLet x,y eKa(X;r) with r > 2.

0 if o =1
(1) T,Qx = —(p-l)!nx(p) if « = 0 and p is odd
x4 02" e 0 it a=0andp =2,
Here w Z, is independent of x.
(ii) 7Qx = Qux if T > 3.
p-1 . s
& + Qy - iyl J %—[?)x(l)(@y(p']’)} if @ = 0 and p is odd
i=1
(111) Qlx+y) =4@x + @ - 1, (x ®y) *+ w2 mi, [(8,x) ® 8.y)] if a = 0 and p = 2
QU + Qy if o = 1.

{(iv) Let k ¢ Z. Then
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KQx - % (6P )1, x P! if =0
Qlkx) =
kQx if o = 1.
Qrx 1if 0 =0
(v} Dy IQx =
ﬂl*(ZX)(p) + pRIx if a = 1.
QB.x - pm (x(p—l) ®Bx) ifa=20
r Py r
(vi) Brale =

it

nx*(srx)(p) + strx if o = 1.

The constant « in parts {i) and (ii1) will turn out to be 1, as required for
3.3{(vi). In order to avoid circularity, we shall prove 7.1 and 7.3 by a simul~
taneous induction. More precisely, we shall assume that 7.1 holds for r < ry and
that 7.3 holds for r < ry (vacuously if ry = 2) and then prove 7.3 for r = r; and
7.1 for r = ry + 1. Before beginning, we need two technical lemmas.

lemma 7.4. Let Y —»2 E»0f +3Y be a cofiber sequence in hd and let

r > 2. Suppose that 8, ; venish on K;(Z;r-1). Let y K, (I¥;2r-2), ze K5(Z;7-1)
and w €K, (Cf;r-1) be any elemenis satisfying nr'ly = hyw and pg'l(ZZ) = fyy. Then
Bp.1W = BxZ.

Proof Conslder the following diagram in i .

gkace t-Bogazgy L o papr L 2E x ascr
*’

w Tz:y e Tzw
i
1

zM2r—2 2Mr-l zzMr

k -1

Here the bottom row is the evident cofiber sequence, with the first map induced by
the inclusion Z 1 € Z 5n_> and the second by the projection Z 5. 5 + Z 53¢
Precomposition with the first, second, and third maps in this sequence induces the

transformations nr"l, p§"1 and {because of the suspension) -B,,1, respectively. The

left~hand square commutes up to homotopy since aF-1

y = hyw. Hence there exists an
element ¢ making the other two squares commute, and we have -g._;IW =(1g)xz+ Now
the map

Lz zMr_1 + KA 2
makes the middle square commute, hence r - Iz restricts trivially to IMs. o. Thus
¢z - 1z extends to a map

E:EZMr + KALZ
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with 8 _,& = ¢ - Zz. Since 8,_; vanishes on Ky(zZ;r-1) we have ¢ = 1z. Thus
-B,_1Iw = L{gyz) and the result follows.
lemma 7.5. If £:X > KAY is any map then fyy commutes with =, 8,, Py and I.

The proof of 7.5 is trivial. Before proceeding we use 7.5 to dispose of
3.2(iv).

Proof of 3.2(iv). For any x ¢Ky(X;r-1) and y Ky(Y;r) there exist maps

f:z'xIMr_l » KAX and g:zmMr > KAY with f**z|x|ur_l = x and g**E|ylur =y.
Thus by 7.5 and 1.3(ii) we may assume X = z‘ler_l and Y = Zlyer with x = Z‘xlu.r_l

and y = ):lylur. By 3.2(vi) we may assume |x| = |y| = O. Clearly the set

{ur-l ® s Uy ® ﬂsrur}

is a subbasis for M, ;”~M,. Hence by 3.9 we have
(1} (P*ur-l) ® u, = zaLlp*(uI_“1 ® mxr) + azsrp*(ur_l ® wsrur)
for some ay,a, ¢ Zpr—l’ Applying 7 to each side gives
pur—l ® "y, = a1pur-1 ® ™, * aZBr—l(ur—l ® "Bur)
S L | ® ™y, * a261‘—1ur-1 ® TrBrur *
Hence a, = 0. Now applying (jA J)x to each side of equation (1) gives
plu®u) = a;py{u®u) = a;p(u@® u)

in KO(DPS'\ Dps;r) £ Zpr‘ Hence a; = 1 in Zpr—l'

Next we give the proof of 7.3 for r = rg. The proof of each part will be quite
similar to that just given for 3.2{iv). First we observe that by 1.3, 1.4, 1.5 and
7.5 we may assume in each part except {iii) that X is E“Mr and that x is the
fundamental class r®u..

(i), If o = 1 the result holds by Definition 7.2. Suppose o = 0 and consider
the map 5

j§P>:KO(M£P);r-1) P, KO(SO;r-l).

This is monic when p is odd and has kernel generated by 2r'21r(8rur)(2) when p = 2.
The result follows since jip)uz(.p) = ue KO(SO;!‘) and
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1Plequ = T (D,1),Qu, = 1, = ~(p-1)Iu;
the last equality is 5.7(iv).
(1i}. Let o = 1. By 7.1 it suffices to show that

(Dpj)*wQZur = (Dpj)*QnEur
and that

T*KQZur = t*QnXur .

This second equation follows from part {i) and the first from 5.7(i). The case
= 0 is similar.

{111). Let o = O with p odd. By 1.3, 1.4 and 7.5 we may assume that X is
Mrwlmr with x and y being the fundamentsl classes of the two summands. Let

Y
F: DMAD M »D(MvM)
ito r p-iTr

be the equivalence of II,1.1 and let f:Mr + Mpv Mr be the pinch map. Then
(Dpf)*Qur = Q(x + y), and 1t suffices to show that

-1 Pl D
Fe (Dpf),Qu. = u @u+u®@@u, - | =

(1)
Ll

m*uT @71

(p i)
U T

since Fy applied to the right side of this equation clearly gives the right side of
the desired formula. Now the projection of F'lo Dpf on the i-th wedge summand is
the transfer

Ti,p-i : Der + DiMrA Dp—iMr .

When i is O or p this transfer is the evident natural equivalence, hence it suffices
to show

I S (i) (p-i)
(2) (Ti,p-i)*Qur - 5‘(i)n\*u @ migu
for 0 < i < p. Now the transfer

{p}
13 p-i DM A Dp FLEES

induces a monomorphism since the order of Ei x Xp-i is prime to p for 0 < i1 < p.

We have

(1} pog)lTy pog)e@uy = TyQ, = ~(p-1 1P
i,p-i'* p-i"*¥"p **p T

by part (i) while

o pgdelmgt © P = g1 (p-n) 1P
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by the double coset formula. Equation (2) follows. The proof when p =2 ora =1
is similar.

Part {iv) follows from (iii) by induction on k. When p = 2 and a = O we need
to know that 2r_2n1*(8rx)(2) = 0. If r > 2 this is evident since 1*(srx)(2) has
order 2 by 3.2{viii}., If r = 2 then by 6.4(1ii) we have

(2)

1*(382X) = Q822*n82x = Q.

{(vl. Let a = 0. By 7.1 is suffices to show
(zDPj)*a*mur = Qtu
and TybyIQu = O.

The first equation is immediate from 7.2 and 5.7{ii). For the second, consider the
disgram

1 A 1
B —
S '\Der D (8 '\Mr)
l lart t l
sta MI(‘p) A sta Mr)(P) .

Here the map A' is induced by the diagonal of Sl. By definition, the map A is

obtained by aplying the functor Ez; Ay () to the map of 3
p

Sy A ) P s (s A M) (P)

-8 tra
p pec

induced by the diagonal of Sl. Hence the diagram commutes by naturality of <. But
the diagonal map of st is nonequivariantly trivial, hence txAx IQu. = O as
required. The proof when o = 1 is similar.

{vi). Suppose first that o = 1. Consider the following diagram

Pof g h
D S > DS c > 5D_S
D 0
D i A

p ‘lY

D_j y
DM ——EesD 5
»r D

Here f:S » S has degree pr and the top row 1s the cofiber sequence of Dpf. The map
v 1s that constructed in II.3.8, where it was called y, and the diagram commutes.
For any s > 1 the map

(Dpf)*‘KO(DpS58) > KO(DPS;S)
is given by the formula (Dpf)*q = pP'y and

r-1
(Dpf)yQu = Q(pw) = pfQu - (P - p™1in
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In particular, when s = r-1 the map {Dpf)* is zero, and since Kl(Dps;r-l) = 0 we see
that
hy:Kp (C;r-1) » Kl(ZDpS;r-l)

is an isomorphlsm. Thus there is a unique w ¢ K;(C;r-1) with hyw = IQu. ILetting

¥y = iQu eKl(*EDpS;Zr-2}
and z = pQu + ne KO(DPS;r—l)
we have nT~1 = hyw and p: 1zz = (Dpf)*y, hence by lemma 7.4 we conclude that

Bp.1W = g%z in Ky{C;r-1).

Next we shall show that yyw = Qfw,. Assuming this for the moment, we have

_ = _ . _ (p)
Br-leur = YxBo (W = YyEy2X = (Dpl)*z = pQBrur + wt*(Brur)

which gives (vi) when « = 1. To show yyw = Qfu,, we must show that (Dpj)*y*w = QLu
and txyyw = O. The first equation is immediate from the diagram and part (v). For
the second, we observe that Dpf and y are obtained by applying EX; AZ { } to
certain Zp-equivariant maps F and T, so that by naturality of t we hav® the

following commutative diagram of nonequivariant spectra.

oot (p} (p}
DPZMr = E):p/\z (zM ) _—t (zM )P

D
Thus it suffices to show TIy1, = 0 on K{(C;r-1). As a nonequivariant map F is the
map S » S of degree PP, hence the cofiber CF is nonequivariantly equivalent to
szr. The resulting Zp-action is clearly trivial on KO(ZMpr;pr), hence also on
Kl(ZMpr;pr) since the Bockstein 8
Thus

or is an isomorphism between these two groups.

F*:Kl(szr;pr) > Kl((ZMr)(p);pr)

lands in the zp~invariant subgroup. We claim that this subgroup is generated by the
element

P2 ) ® (5 2w )P

when p is odd and by this element together with

r-1 r
27 TRy lzu ) ® (zu))
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when p = 2. From this it will follow that wpr-r+1 vanishes on this subgroup and

pr-r+l maps onto the latier

therefore that I'y vanishes on Kl(szr;r~1), since n
group; thus we will have shown TIytyw = O as required. To verify the claim we
observe that the set

(Tn ®x, ® «- ®xp | x; = zu, or g Iu}

is a subbasis for (ZMr)(P). Using the basis for Ki((ZMr)(p);pr) given by 2.9, we

see at once that the elements

= pr T (p-1)
% [(Zu ) ® (SrEur) ]
I Pt (1) (p-i-1)
and z, = prp* [Eur<® ) (Brzur) ® 1u, @)(grgur) 1
i=1

are a basis for the Iy x Ly g invariant subgroup. Now if T is the map switching the

first two factors of (ZMT)%p) we have Tyz, = z, and

Tyzy = 2y - 28, 0% w1 @ (s zu ) P2y,

the claim follows.

Finally, we must prove part (vi) with « = O. By 7.1 we have
(3) BpqQu, = 2,Q8 0 + ajmy, (u ()B )
for some ay, a, ¢ Zpr—l' Applying Ay2 and using part (v) gives

= {(p)
sr_lQZur = 81(ﬂ1*(6r2ur) + pQBrZurl.
Comparing this with the case o = 1 of (vi) gives a; = 1. Now applying 1y to (3} and
using part {i) gives

~(p-1)108,_7(uP)) = o (p-1)101 z WP @5 u @ulPit).

But Sr—l“{uip}} = pwsr(uip)) and it follows that a, = -p as required.

This completes the case r = Ty of 7.3. Next we must show 7.1 for r = ro+1 > 3.
It suffices to show that E1 = 51 g the K~-theory BSS for Der and DpEMr. We shall
give the proof for D

D
elements wu, and 7B, w.. by 6.1,7.2 and 7.3(ii) we see that the set

, the other case being similar. Let x and y denote the

r-2 (p) r-3

(S, 30x, "r—ZI*(x(p—l)

®y), m “Q}

is a basis for Ky(D Mr 1). Since all elements of this basis 1lift to Ku(D Mr r-2) we
have E' = E'™2 in the BSS. The elements n'~2x!P) ang +7-2(x(P-1) ® y) are (r-2)-
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cycles since they clearly 1lift to Ko(Der;r—l). Next we have

d 7P =" 28 ax = "2 x = «" Qpy = O,

-2 r-2 r-1

where the 209 ang 4th equalities follow from 7.3{vi) and 7.3(iv) respectively.
Similarly,
-3, _ r-3 _ r-2 (p) _
d. " "= Bp o =7 (Br_ly) 0.

This completes the inductive proof of 7.1 and 7.3.

Next we shall prove the external version of 3.3. BRather than write out the
complete list of external properties, we give rules for changing the internal
statements to their external amalogs. All internal products and Dyer-Lashof
operations are to be changed to external ones, with the map 14 prefixed to any
p-feld product which is to lie in K*(Dpx;r). The map 6x is to be prefixed to the
left~hand side of each Cartan formula. In the stability formulas, ¢ is to be
changed to I and Ay prefixed to the left-hand side. These conventions give the
correct external analog for each part of 3.3 except for part {ii1) which has no
external analog.

Proposition 7.6. The external Q-operation satisfies the external versions of each
part of Theorem 3.3 except part (ii).

Before beginning the proof we need a lemma to deal with the prime 2. (See
I1.4.3 for another proof of this lemma.)

lemma 7.7. let X be any spectrum. The sequence

2
T s 52 (X AX) ——2——va2sz

A
ED2X

» D22X

is a cofibering.

Proof. Consider the cofiber sequence

(4) st Lsstagt —Pa® P

of Zz—spaces. Here Z, acts trivially on the first and fourth terms and by switching
factors (respectively, wedge summands) in the second and third terms. Now stasl 1s
the one-point compactification sV of the regular representation V of Z,, and it is
easy to see that the second map in the sequence (4) stabilizes to the transfer

SV + ZE'»SV. The sequence of the lemma is obtained by applying the functor

m;AZ(?AXAm to the sequence (4)}.
2
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Next we turn to the proof of 7.6. Part (i) is trivial and parts (iii), (v} and
{viii) are contained in 7.3.

(1v). We may assume X = 1®M,, x = 3%uw,. Suppose o = 1. By 7.1 and 7.3(vi) we
see that the set
(@, 1,lu) ® (850 ) P08 pyru}
T’ ¥ T r““r [ Sl e o
is a subbasis of height r for DPEMT, hence the set

tpyQmu, 1l (zu) ® (5 zu) Py

is a basis for Kl(Dpor;r). It follows that the map
(D.J), ® 1, ¢ K, (DM _;r) —=K, (D.S5r) + K, () P);r)
pYo¥ L S - 4 1"7p 7 1 r ?
is monic. Now

(Dpj)*Qp*Zur = Q(p*j*zur) = Q(pru) =pQzu

0 if r =1
(Dpj)*p*Q):ur ifr>2,

and  1,Qp,tu, = 0 for all r. The result follows, and the case a = 0 is similar.

Next we prove part (x). The proof is by induction on r. If r =1 we have
1*1(2) = QBp2¢x by 6.4(iii). Suppose r > 2. We may assume X = Iu.. The set

{Qou,, 1, (fu, ® 8.7 ),Q8 42,5}

r+l
is a subbasis of height r for D,IM,,, hence by 3.9 we have

(2) _

(5) 1*(2ur) alﬁr2*QZur + 32Q3 2,1u

r+l T

with a; ¢ Z2r-1 and a, ¢ er. Applying tx to (5) gives
0 = —ay(guruy) (3

hence a, = 0. Now applying w to (5) gives

y(2) .

(6) 1y {miuy, = a1Bn_1QCuL.

If r = 2 the induetive hypothesis gives

,(2) 2) . s

1*(n2u2, = Q822*(n2u2) = Q(Zszzuz) = w1*(822u25 5

(where the third and fourth equalities follow from 7.3{iv) and 7.3{vi}) and we
conclude that a; = 1 as required. If r > 3 the inductive hypothesis gives
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z*(nZur)(Z) = oT3

S
Br_12*Q(wEur) =2 Br_lQZur

= T2

and comparing with (6} gives ay as required.

Next we show part (vi). This will follow immediately from 7.3(iii) and 7.3(iv}
once we show that o = 1 in 7.3(i). Ietting X = IM, in 7.7, we have

0 = (321)*I*Q22ur

(Fo,mi=2a ) ) e 2™ 0p g )12

@, (2)

= Pyl w2 (p_tu 11?0,

By part (ix), we have

(2)

my o) 2 = 22

r-2

- (2)
Br_lQEur = 2 1*(n8riur) # 0.

Hence w # O as required.

(vii) Let p = 2; the odd primary case is similar and somewhat easier. First
let |x| = |y| = 1. We may assume x = fu,, ¥ = fu,. We assume by induction on r
that we have chosen mod 2% multiplications for s < r such that the desired formula
holds. We begin by giving s basis for

Ko (DozMy, A DosM,;r-1) .
The set

(2)
r)

{n1y(Zu, ® 8 Tu ),m,(8 Iu »Qru_,Q8_Tu }

is a subbasis of height r-1 for DyIM, and in particular it is a basis for
Ky(DyiM,;r-1). By 5.8 we have

Ky (DyM AD,IM 5r-1) = K, (D,EM ;7-1) © K, (D,oM ;7-1)

with the tensor product taken in the ZQ-graded sense. We therefore obtain a basis
for Ky{DyoIM, ~ADyIM,;r-1) by taking all 16 external products of the elements in the
set given above. It will be convenient to denote Iw, by x in the first factor and
by y in the second factor. let ay,...,ag ezzr-l be the coefficients of §Q{x® ¥y)
with respect to this basis, so that we have

(7 QX ®Y) = amy (x ® B .x) @ myly ©®8y) + a,&x @ my,y® 8y}

faymy(x@8x) O + 8,0 ® & + agmy (s x)?) @ niy (e )@

+%mﬂ%ww)®%ﬂ+aﬁ%x®mﬂ%wm)+%%#®Q%%

We claim first that 2a5 = 0, so that a5 is elther 2T™2 or 0. When r = 2 this is
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trivial, while for r > 3 it follows from the inductive hypothesis and the equation
1Q(x ®y) = Qwx @ wy). Now as in Remark 3.4(iv) we see that changing the choice of
mod 2% multiplication changes the value of a5 without changing the other a;. We can
therefore choose the mod 2T multiplication for which ag = 0. {When p is odd the
commutativity of the multiplications gives ag = 0.)

It remains to determine the other coefficients in equation (7). If we apply
the map (Doj ADyj)y to this equation, the left side becomes Qtu @ Qiu by 5.7(vii)
while the right side becomes a4Qzu ® Qru., Hence a 4= 1. Next consider the
following diagram

D, (X AY) > D,X aD,¥
1 T TAl
XAYAXAY SATAL 5 XAy Ay —l—"—%xAxADZY

The commutativity of this diasgram will be proved in VI.3.10 of the sequel. With
X=Y= ZMT we obtain

(1A1),6,x ®F) = (1a1),(1aTal),r,Qx®y)

r-2

QA QATAlLal-x@®y®@x®y +2 8 (x@y) @8 (x® )]

r-2x(2)

(2) ®:),(2) )(2)

(L ar)nlx + 2 ® (Bry

+ 2 x0x0y @8y + 2" 08 x @8y Oy + 2725 0P @@

e (2) , ,r-2_(2)

® M,y ® m*(Br‘y)(z)

r-2 (2)

+ 2P, (@8 ) @ myly @8 y) + 27 a0 P @y

r-2

-2 2t (p ) 2 ) 2))

Tyl (X ® B.X) @ my(y®py) +2 ® my (B y

with the last equation following from part (x). Now applying (t» 1)y to the right
side of (7) and comparing coefficients gives a; = 2r-2, 83 =0, ay = 2T~ and

ag = 2ag. Similarly, applying (1 at)y to equation (7) gives a, = 0 and g¢ = 221"4,
whence ag = 2ag = 0. This completes the proof of part (vii) when |x| = |y| = 1.
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Next let |x| = 1, |y| = O. Consider the following commutative diagrem

18
):DZ(X Ay} LD, X AD,Y
A TAl

L 2 v

DZ(ZXAY) D XAzD Y

Dz(TAl) laa

) 8
D, (XA 2Y) g DZX A DZZY

If we let X = M, Y = "M, we obtain

(10) 6x (D (T 1) Ly iQ(-zu, ® 1700 ) = (1aa),(Ta1),(28),Q(-2u ® 17 u )

r

Wie can evaluate the left side of (10) using 7.3(v); the result is G*Q(Zur ® ur).
On the other hand we can evaluate the right side of (10) by using 7.3(v) and the
part of 7.6(vii) just shown; the result is

(21)

4
QZur ® m*ur

+ 20t @ + 2274w, (8 10 @ 0 u .

Thus equation (10) gives the desired formula when x = fu, and y = w,, and therfore
this formula holds in general.

Finally, let |x| = |y| = O. We may assume x = w,, y = w,. The set

{m*x(p) ® m*y(p),Qx ® m*y(p), m*x(p) ®Qy, &x ® Qy,

T (x®@8.X) @My (y®8.y),08 x® m,ly® 8y,

T (x ®B8.X) ®QBY, QB X ® Q8 ¥}

is a basis for Ky(D,M, ADM ;r-1}. let ay,...,ag De the coefficients of §,Q{x ® y)
in this basis. By 5.7{(v] we have

(D JAD08,Qx ®y) = 6,Qu®@u) = u@n +n@Qu + pu® Qu,
hence a; = 0, a, = a3 = 1 and &, = 2. Diagram (8) gives
(1AL, 8, Qx ®@y) = (1A 1)y 8,1,z @y)
and it follows that a; = 27~2 end ag = O. Similarly,
(1A 8,Qx ®y) = (14 1),6,1,Q(x ® ¥)

and hence ag = 0. Thus we have
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(1) 6,0x®y) = @ ® 1,52 + mx? @ oy + 200 ® oy

r-2
* 2 Ty (x @B8x) @ my(y ®8.Y) * a8 x ®QRY
and it remains to determine ag. Consider the following commutative diagram

Ls

ID, (X AY) — ID,X AD,Y
(12) lA A Al
D, (IX AY) § D, IX AD,Y
With X = Y = Mr we have
(13) (AA1),268,Q(x x ¥) = 8,4, 0(x @¥).

We evaluate the left side of (13) using 7.3(v) and equation (11); the result is

(2) (2)

QIX @ myy '+ 2Qix @ Qy + agmi, (g ix) ®QB.Y *+ 22508, 1x @ QB.¥-

Evaluating the right side of (13) using 7.34(v) and the part of 7.6(vii) already
shown gives
Qx ® m*y(z) + 2QIx ® Qy +22r_4m*(6r):x)(2) ® QBry.
Hence ag = 2°T~4 g required.
(ix) We have seen in VIII.7.4 that wk is an H_ ring map of K(p) for k prime

to p. Hence we have
(D _f) ko k(D ), :K (D Y;r-1) » K, (D X;r-1)
P *x¥ v p R pT * ' Tpt?

for any map f:Y + KAX. Thus we may assume x = ):°‘ur with ¢ = O or 1. First let
a = 0. Since the map

(Dpj )*:KO(DPMP;I‘—I) > KO(DPS;I‘-I)

is monic and since wku = u, it suffices to show ¢kQu = Qu. Dually, it suffices to
show that wk is the identity on KO(BZp;r-l). But this is immediate from 5.3 since

wk commutes with 1. Now, if o = 1 we have

X _ ok - k = =
YQIu, = A*ZQur = ATy Qu = A TQu QZur.
This completes the proof of 7.6.
Next we must prove 3.3. Each part of this theorem is in fact an easy

consequence of the corresponding external formula except for parts (ii) and

(viii). For part (ii) we may clearly assume X = S, and it suffices to show that Qu
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goes to zero under the nontrivial map from Bz; to SO. But the induced map
ﬁo(so;r) > KO(BZp;r)

takes 1 to 1, and <1,Qu> = O by Definition 5.6, whence the result follows.

The proof of part (viii) is more difficult. First recall that if X is any
nondegenerately based space and Xt s X is the identity on X then the cofiber
sequence

X

is naturally split by the evident retraction p:X' » 0, m particular, there is a
natural transformation

viz®x > o%*
and the inclusion
K, (X;7) C K (X;r)
can be identified with vx. Now let Y be an H_ space, let Z = QY, and let e:2Z » Y
be the counit. Then
o:Ka(QY;r) *> Ku#l(Y;r)
is the composite vyexZ.

Llet x eﬁO(QY;r); the case |x| =1 is similar. First we must show that Ox is
in KQ(QY;r—l), i.e., that uyQx = 0. But pr®ien)’t - waO is clearly an H_ ring
map, and therefore ,,Qx = Qu*x = 0. Next we state the required formula more

precisely as follows:
(14) Ay @vyx = QoX.

Since uy applied to each side of (14) gives zero, it suffices to show that Ay makes
the two sides of (14) equal, i.e., that

ex Ay QueX = A, Quye BX.

This in turn follows at once from 7.3{v) and the commutativity of the following
diagram in nd (where we suppress 1* to simplify the notation).
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P

(15)

v

(2

Here ¢ and ¢ are the H_
that {15} commutes we need two further diagrams.

catgory of spaces.
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—»D L7
P

D e

!

DY
D
D

L%
D (¥
Lt
Y+

J»

»Y

D v
P
v
+
)
Iz

)

structural maps for z* ana Y respectively. In order to see
The first is the following in the

D (z°) = sl(Ex_ x. 2ZP)") —tr kg (D)P
P T
p P ,'
p_1(z2)*1/8°
£y p
(16) -
Dp(e+)
2z") — sz B ey b B, %, 1° = 1%1/8%)
p
Here A is the evident diagonal map. This diagram commutes by definition of ¢; see
{69, Lemma 1.5}. Next we have the following diagram in.i;x (where we again suppress
®).
WADZ 4 *» D (WAZ)
P b4
anl ﬁul)
P
A
D Z —»
D P
(17)
ZDpv C)
1AD IZ D (1Av)
oV p [zz)” o v
+ 2 l+ 0
tD Z D [(£2 S
o p[( )1/
|/ |

waD (27)
P

+
D {(WaZ )
p(
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Here W = (Sl)+ and the unlabeled arrows are the evident quotient maps. It suffices
to show that the inner square of this diagram commutes, since combining it with
diagram (16) gives diagram (15). Since

AALl:WADZ » D Z
A D P

is a split surjection, the commutativity of the inner square will be a consequence
of the commutativity of the rest of the diagram. Each of the remaining parts
clearly commutes except that marked (:). To show that (:) commutes it suffices to
show that the composites

WAz 22% wazt = (st )t —>(stam)”
and Waz 221 glag Yo stan)?

are equal. But is is easy to see that these composites agree when composed with
either of the maps x:(Sll\Z)+ > S'az ana u:(SlA ANES SO; they are therefore
equal since wedges are products in h8. This completes the proof of 3.3.

We conclude this section with the proof of 1.6. First we calculate

= - (p)
B PyQZu, = 8 .Qp,Tu. = 1,(8 Tu ) *PQ8 1 Pyl

in KO(DpzMr;r). Multiplying by pT~1 gives

-1 -1
0=7p" B PyQru, = ph 1*(8rzur)(p),
hence 1*(8rzur)(p) has order < pr'l. Now suppose K. has an H, structure. Let
u:S » K, be the wnit map for this structure. Then u = cu € Ky(S;r) for some e
prime to p. Let f be the composite

M= Samm. 221e kasm = K
T r b od T

and let F be the composite

(D_f), Ex
Ko (D 2M, ;7) —L*KO(DpKr;r) —— Ky (K ;7)) —>K(S;T),

where the last map is induced by the product for Kr’ We claim
cp+lF1*(Br2ur)(p) = E, which contradicts the fact that 1*(8r2ur)(p) has order

< pr'l. The claim is a consequence of the commutativity of the following diagram
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- {p}
S _ sasl® uled) *KI.A(ZMr){p)
\\ ilnx 1A
uaD_(ei)
sas—2%E& gaps b > K_nD_IM
_ r “pr
m - - -
uAu uADpu il AD £
D
¥ Lag
Kr < Kr'\Kr =Kr« DpKr

Here the composite (1a1) o [EA(ci)(p)] represents cx*(cBTZur)(p) and the

diagram commutes since U is an H, ring map.

8. Construction and properties of Rand & .

In this section we construct R and J and prove the external and internal
versions of 3.6 and 3.7.

We begin with the construction.

Lemma 8.1. The map
Brﬂ:Kl(DpZMr;rﬂ) *-*KO(DPXMP;NI)

is an isomorphism.

Lemma 8.2. The map
(DPJ)*:KO(Der;s) —-’-KO(DPS;S)

is monic if s = r or 8 = r+1, and n ¢ KO(DPS;rﬂ) is in the imsge of {Dpj)*.

Definition 8.3. let ee¢ Kl(DpZMr;rd) be the unique element with

- 2 1 . : "=
Bre1® Q8r+2p*2ur. Let e'¢ Ko(Der,rﬂ) be the unique element with (Dpj)*e ne
Then

R:Kp (X57) » Kl(DpX;r*l)
and 2:K(Xr) » KO(DPX;r*l)

are the operations Qe and Qe, .

Note that e and e' are equal to Rzu,, and 2,% respectively. We shall always
use the latter notations for these elements. Also note that Qu = n in KO(BEp;r+1).

Proof of 8.1. Iet r > 2; the case r = 1 is similar. Consider the K-theory BSS for
DyiMy.. By 6.1 the set
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{nr”zQzur,nr‘zQBrzur,nr‘lx*Izur<® (Brzur){P-l) },nr"lz*(srzur)(P)}

is a basis for EL. By 7.6(v) we have

(1) dr_lnr'zQzur = ﬂr_11*(8r2ur){P),

while clearly d, ;= 2Qg.Iu, = O and

4

r_lnr-ll*[Zur(E (Brzur)(p—l)] = 0;

hence the set
r-2 r-1 -1
{78 zu_,nTylre, ® (8 5w )P
is a basis for E'. Now drwr“ZQgrzur = 0 by 7.6(v), and

a “r-l

(p-1)y _ -1 {p)
T

1*[Eur® (Brur) n 1*(Br2ur) ,

which is zero in E'. Thus there is an element x in Kl(DpzMr;r+1) with

r r-1

"X =5 1*Izur @}(BrZur)(P-l)],

2 .
and the set {Qzur,x,QBr+2p*zur} is a subbasis of heiggt r+l for DpEMr. In
particular the group Ka(DpzMr;r+1) has the same order p*T for o = 0 and o = 1. The
lemma will follow if we show that 8., ® Zp maps onto KO(DpzMr;r+l) ® Zp. But the
map
T - .
r® ZP.KO(DPZMr,rﬂ) ®z, > Ko (D EM ;1) @ 2, = KO(DpzMr,l)

is an isomorphism, hence it suffices to show that ﬂrﬁr+1 maps onto KO(DpZMr51)‘ Now

equation {1) shows that “r~11*(8r2ur){p) is in the image of nr3r+1, and it
remains to consider nr'zQBrEur. By the exact sequence
ur3r+l Pi*l
Kl(DpEMr;r+1) KO(DpEMr;l) ———-—»KO(DPZMr;r*Z)

r+l r-2
kLl

it suffices to show p,

QBrZur = 0., But 7.6(vi) gives

+1 1 +p-1 2 (p)
0= Br+3p32ur = p QBP*szzur - (PP pr)x*(6r+2p*2ur) P

r+l 3 _ _r+] r-2
LI L

i

erzur

which completes the proof.

- r-1 {p-1}
Proof of 8.2. It is easy to see that =% 15r1*ur(9) and 1 Srl*[urp ® Brur} are
zero, hence by the exact sequence
Trr-l
K (DM_;r+l) —%=K (D M_;r) —K (D M_;1)
a pr a pr a-l " "pr
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there exist elements x and y with x = 1*u§p) and 7y = I*Iul(.p—l) ®sul.
Clearly the set {x,y,Qur} is a subbasis of height r+l for Der’ In particular the
set {x,piQur} is a basis for KO(Dp ;r+1). Since {n,Qu} is a basis for
KO(DPS;r+1) we have

(2) (Dpj)*x =an + agQu.
where a,, a, Zpr+l' Applying w to both sides of (2) gives

- ; {p)
n = (Dp,))*x*urp

=an + aQu
in KO(DpS;r), hence &, =1 + aipr and a, = aépr for some aj,ay «¢ Zp. This fact,
together with the equation (Dpj)*piQur = pZQu, shows that (Dpj)* is monie on
KO(DP ;r+1). A similar argument shows that (Dpj)* is monic on KO(Der;r). I
r > 2 we have
. r-l {p} r-2 2 _

(Dp,})*{x - ajp Pyigu,. - atp PyQul =n
80 that n eKo(DpS;r+1) is in the image of (Dpj)* as required. If r = 1 we must show
aé = 0. For this we need the map j': M1 + M, induced by the inclusion Zp <z g+ Ve
have j' o j = j:M1 + S, hence P

{Dpj)*(Dpj‘)*(x) {1+ aip)n + aépQu

= (Dpj)*((l + aip)uép) + aép*Quzl .

Since (DPJ)* is monic we conclude

(Dpj')*(x) = (1 + pai)uép) + alpyQu, .

Hence
(3} nBZ(Dpj')*(x) = aéBQuz = éQSzuz .

On the other hand, 6.1(vi) implies that 1*Iuip_l)<® Bull generates Kl(Dle;l),

p-1)

N (
hence TBoX = c1*(u1 @)Bul) for some c ¢ Z_ and

P

(4) 18,(D51 (0 = (D31, (rex) = enyl(Gu) P @ gypuy) = 0

gince j;su1 = 0. Comparing (3) and {4) gives aé = 0 and thus

s (p)
(DpJ)*[X - aip*x*ulp ]l =n

which completes the proof.

Next we shall prove the external analogs of 3.6 and 3.7. The conventions
preceding 7.6 give the correct external version of each statement except for
3.6{viii) and 3.7(ix). For 3.6(viii) we must prefix (Bp,p)* 1o both sides, where
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Bp P is the natural map QPDPX + D 2X defined in I.2, and for 3.7(ix) we prefix
3

P .
(BP;P}* to the left and (“p,p,...,p)* to the right.

Proposition 8.4. The operation
R:Kl(X;r)-—»KliDpX;r+1)

satisfies the external analog of each part of 3.6.

Proposition 8.5. The operation
2: Ky (X57) > KO(DpX;r+1)

satisfies the external analog of each part of 3.7.

Theorems 3.6 and 3.7 will follow at once from 8.4 and 8.5 by the same proof
given for 3.3. The rest of this section is devoted to the proofs of 8.4 and 8.5.

Proof of 8.4. Part (i) is trivial. In each of the remaining parts except (v) we
may assume X = ):Mr with x = Zu,; part (iv) now follows from Definition 8.3.
Observe that by the proof of 8.1 the set {Qzur,REur} is a subbasis for DPZMr if

r > 2 while {Riu is a subbasis for D, M.

1} P
(iii). The map

8., :K, (D ZMr;r+2) > KO(DpzMr;r+l)

r+2°71 7 p

is an isomorphism since it takes the basis for the first group to that for the
second. Now

= 3 - 2
7B RPyIU, = nQ6r+3p*Eur = QB Pyll,

it

[ Rzur = w8r+2p*RZur

r+l
and the result follows.
{iv). The map

Br+1p*:Kl(DpzMr;r) *> KO(DPXMr;r+1)

is monic since it takes the basis elements nRfu, and (when T > 2) pyQIu, %o
2
pBr+lRZur and 6r+1p*QEur respectively. We have

_ _ 2
Bre1PymREU, = DB REUL = DOB.,PyIu,

"

2 (p)
Bren@OxIU, = 14 (B Pylu )

-1
= 8, Pxlyu, - 1,0 ® (8 zu) (P
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which gives the first formula. For the second formula, we have

sr+1p*Rw§:ur = sr+lﬂp*wzur =B szur

r+l

2 2
er+2p* ( pZur) = Qp6r+2p*2ur

_ 2 p-1 {p)

= PQB_,,Dylu, - (p - 1)1*(8r+1p*zur)

- 2 p-1 (p)

= B WeBu, - P T (B pyru )

- p-1 (p-1)

= B, qPxlApgiu, - 7 Ty (Zu, ® (8 ru ) )]

and the result follows.

(v). Iet z denote fu, and fix i with O < i < p. As in the proof of 7.3(iii)
it suffices to show that the equation

(5) (g pog)efx = ayn,l02 ® (8,10, 1 @ 1y ta g0y P
i-1 -i-1
+a,8 sl 2@ 6.2 ) @ a @ (5 o) (P
. . 1 -1
Bolds in Ky (DyM A Dy _ssMy;rel) with a) = - = P) eand a, = (P77 ). First

observe that the group K,(D;iM.;1) is the I;~-coinvariant quotient of K*(():Mr)(i);l)
- Ly @i (1-1) . .

= K*(ZMr,l) , 80 that the set {1,(z® (Brz) } 1is a subbasis for DyIM..
Thus the set

2o 8,2 M 06 P e 6 el e e P

is a sutbasis for DjIM.* D,_;IM. and we see that equation (5) holds for some

, .
ay,85¢ Zpr' Now applying ('{i,p—i)*ﬁrﬂ to both sides of (5) gives

- (p)
T*Br+lRZ = i!(p—i)!al(srﬁp*z) .

On the other hand we have

2 (p)
TxbBryq B2 = 14Q8  opyz = -(p-1)1(B_, pyz) Pl

SoJde=) 1D
hence a; TT(p-171 o { 3 J. Next we apply v to {5) to get

(i-1) (p-1)
(6) (1 o)z = =( § )ilz @ (82) 1 ® 1,(8,2) P
)(i) (p—i—l)]

* ey, (82 ® 1,1z ® (8 2)

- ayils ® (5 2) 1

1® 1,(8,2) P,

But we have
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-1
(ty g )xmRE = (55 0410 = 1e(2 ® (8,2) 7))

-(

U

) ixlz ® (82) P

Ta s
i,p-i

-tz (60 ) @ (s ) BT

- Pyt M @ 2@ (5 P,

where the last equality follows from the double-coset formula; comparing with (6)

. - _ g p-1
gives a, ( 5

{vi}. Let r > 2; the case r = 1 is similar. Let f be the composite

} as required.

-2
rh, = 57a i Erl, ;=% amM_ 223k ™,

1

where B is the Bott equivalence. We have fyurn”™ U, = Zu,, hence it suffices to prove

-1 (p) 2
b,IR(E ur) = p*x*urp + p*Qur.
Now

(Dpj)*A*R(Z_lur) = A*ZR(Z_lu) = A*XR(wZ_lu)
= A*ZQpZ—lu = pA*ZQZ-lu

= pl*u(P) + szu

(p)

. 2
= (%pJ)*(p*1*ur + p*Qur);

the result follows since (Dpj)* is monic by 8.2.

. s k k k 2
(vii) Brrq¥ RZur " sr+1R2ur =y Q8r+2p*zur

Lroky =
QB rypPyl¥ 0y, = By RIU,
the last equality following from the fact that wkur = u,. The result now follows
by 8.1.

iiij. i
{viii). Tet z denote Iu,, and abbreviate (Bp,p)* by 8y and (ap”..’p)* by ay

{the reader is requested to remember that B4 is not a Bockstein). We must show

0 if r=1
B4QRx =
8,RQz if r > 2

in Kl(Dp2 IM.;r). We shall need the equation

n . . 2
(7 G*Qx(n) ) (?)pl'l(wx*x(p))(n'l) ® (o'
i=1
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which holds in KO((DPX)(n);r—l) for each x eKO(X;r) provided that p is odd (the
proof is by induction on n from 7.6(ii)).

First let r = 1. The set {QRz,RRz} is a subbasis for qupol, and it follows
easily from Proposition 3.9 that the map

2 -
B3Py 1Ky (DD My 51) —> K, (D D 2, 53)

is a monomorphism. Since K,(D , £M;;1) is imbedded in K,(D.D iM,;1) by the transfer
1 p2 1 1V pT ™

we see that
2 .
83p*.Kl(Dp22 Ml,l) ——>KO(Dp2 le,B)

is a monomorphism. It therefore suffices to show that S*BBpiQRz is zero. We have

84850502 = 6,8,Q0, (Rp,z) by 7.6(iv) and 8.4(11i)

= B*BBIRan*z + pphll*(Rp*Z® (BBRP*Z)(pnl))]
(p-1))y pp_ls*t*(BBRp*z)(p),

B*BBR[Qpiz - 14(pyz ® (B,Dy2)

where the last two equalities follow from the second and first parts of 8.4(ii).
Now Qpiz = 0 by 7.6{iv), and

B4B;R14(Dyz ©® (8213*2)@-1)) = ayS4B,R(Dy2 ® (sz*z)(p-l)) by 1.2.12
= 5,6,0((8,032)'P)) vy 8.4(5v)
= pp_la*(QB4pzz)(p) by 7.6(vii) when p = 2 and equation (7) when p is odd
= PP Y8,1,(8,R0,2) P! by 8.4(1v) ena L.2.11.

We coneclude that 3*63p§QRz = 0 as required, which concludes the case r = 1.

Next let r = 2. We have

"8,(QRz - RAz) = £,1Q1Qpyz - 1,(z @ (5 2) P

- @y% *+ 1,( ® (8,_00) P

= 5yl-Quy(z® (8,20 ") 4 (e @ (s 02) P

1)) L e (sr_le)(p'l)l by I.2.11
and 1.2.12.

= a,l-6,Q{z ® Brz)

agl-02 ® (r1,(8,2) PP - 1z @ 5,008 _2) (P

+ Q2 ® (1,018 2)? + pog_2)P711.
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When p = 2 the last expression is clearly zero, while if p is odd it is zero by (7).
Hence we have

(8) n8x(QRz - RQz) = O.

A similar calculation gives

(9) 6,028, (QRz - RQz) = O
r+2Px Py *

To proceed further we need the case k = p2 of 4.1. First we must check that the
argument is not circular, since the present result is certainly used in the proof of
4.1. However, it enters only through the proof of 4.7, to be given in Section 9. An
inspection of Section 9 will show that only the case r = 1 of the present result is
used in proving the case k = p2 of 4.7. Thus we may proceed. We suppose r > 3; the
case r = 2 differs only slightly. By Remark 4.2 we obtain a subbasis

A=A oAy A WAL,

for Dp2 IM, with A, 5 = {By4QQz},
(i) (p-i-l)]

g g = {oyl02® (800" @ (+%5, o) | 0<1<p-2),

By o= (o102 ® 2 ® (020 P @ (P, me) P 1< < opay,

A, = {B4RQz} and A.,, = {ByRRz}. Therefore the set

-3 r-1 r+l r-2 r-2
{7 “BxQQz,m TB,RQz,n "B RRz} v Ar_1,1\/ T Br-lAr-l,O

is a basis for Kl(Dpor;l), and the subset “rwzsr-lAr—l o 1s a basis for the image
’
of nr‘zsr_l, hence for the kernel of pial. By (8) we see that §,(QRz - RQz) is

in the image of pi-l, hence there exist constants a,b,c,dg,...,dp_z Zp with

r-1

(10)  84(QRz - RQz) = pi tlan’ ,Q0z + b’ '8,R0z

-2

P 3 -1
-2 1, aee (8,400 ) @ (n%5_, ra) P11y,

r+l
+ e ByRRz + aum

If we apply Br+2p§ to both sides of {10) then the left side becomes zero by (9},
hence we have

- _ .
0 -’ 33r+2PiB*QQZ + pp™t PiB*RQz + ep™ B 4B 4RRZ
p-2 ~ »
' izo dipr 2Br+zpza*[QZ @ (Sr_le)(i) ® (ﬂ28r+1Rz)(p i-1),

Since the set A is a subbasis this gives a = b = ¢ = dy = «-- dp—2 = 0 as required.
This completes the proof of 8.4.
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Proof of 8.5. Part (i) is trivial.
(1ii) We may assume x = u,. We have

(D, yr2u, = 0 = 1,0l = (0,110

hence nﬁ-ur = 1*ui.p) by 8.2, If r > 2 then

(Dpj)*iﬂur = Qwu =2y = (Dpj )*1*121(?) ,

{p}

hence J.qu = i*ur by 8.2.

{(v) As in the proof of 7.3(iii) it suffices to show

(p-l)lp*ul(‘P) if p 1s odd or r > 2
Tedl =

2 u(2)

{2}
xup 0t (B2 )

ifp=2eandr-=1.

We prove this when p = 2; the odd primary case is similar. The element r*,‘).ur ig in

(2)

the I,-invariant sgbgroup of K (M ;T+l), and this subgroup has & basis

consisting of 24w,  with order 2” and 27~ 1(3 Z*ur)(z) with order 2. Thus we have

(11) du_ = a2 P 0 2™ g

)(2)
17%r 2

r+1*r

with 8y € Z2r and a, ¢ 22. Now

jiz)r*lur = 14 (DyJ)y By, = T4 = 2u;

(2)

thus applying J, to both sides of (11) gives 2u = 2a,u in KO(S;r+1) so that

8, = 1. Next we have
(2)

2ur if r>2
TI"I.'_X,JJUr = T*l*ui‘g) =
(Bul)(‘?) if r =1,
hence applying w to (11) gives a; = 0 if r > 2 and a, = 1 if r = 1.

(iv) We may assume x = .. let r > 2; the case r = 1 is similar. The set

{p} {p-1)
{Qu,,14u P i*(urp ® b u )}

T

is a subbasis of height r for Der, hence we have

(p-1)
(12) 82, = ap,(uPT @6 ) + a8 pLou

with a, ¢ Z rr € zpr-l' Let j':M, » M.,; be the map induced by the inclusion

z €2
r

. pe1s ThEDm jo §' = J:M_» S, hence M)y, = wap, and (§')Bou, =
P
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PrBrelUpsy - Thus

; - - {p)
(Dpd ") amBryg 2 Uy = g DT,y = By txtp

(p-1)
pm*(ur‘*l ® Br+lur+l)

and comparing with (12) gives a; = O. Next we have

{p-1}

8, 2, =18, (-1 p® = (p-1)1g P = 1 P @ u )
and comparing with (12} gives a; = 1.

(111) By part {iv) we see that the set {Qur,& ur} is a subbasis for Der if

r > 2, while {&ur} is a subbasis for Dle' It follows that the map

(Dpj)*:KO(Der;r*Z) > KO(DpS;r‘rZ)

is monie. But
(D 1)y A pyu_ = 3(pu) = J (npu) = 1,(pw) P! = pP o0 = (D ),0° b, 2u
53V xol Pyt = 3 (pu mpu) = 1,(p P" T Dyn o3 1¥PT Py U,

and the result follows.

H
o

(vi). Let p = 2; the odd primary case is similar. First let [x| = ly|
with r > 2. We may assume x = W, ¥ = u,. The set

( (2)

{2x® 3y, myux 2) B, xB®my  ,x®QW,2x®8.,,27,

3X @B, 4,0 ® 18, 87,00 ® 6y}

is a subbasis for DM, A DoM., hence we have

(13) 52X ®Y) =2, 2x@ 2y * 8,2%X @ 4, + 834xQx ® 2Y

*abQx@Qy) +aB ., ax® 5,27

r+l
TR X0 8r+14*%' * 3'781'«“14*Qx ® Bray 3
* 8B 4K @ B, 4%

with 87,85 ¢ er,,l and 82,87,8,,8¢,87,88 ¢ er-l . Since

18, 2{x @ y) = d*z*(x®y)(2) = z*x(Z) ® l*y(2)

we have ay = a7 = ag = 0. The equation

(D2JAD2j)*5*8a(X®y) = 8,2U=8,mn=n@®n

implies a; = 1 and 8y = 83 = g, = 0. Hence we have
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(14) 8 2(x ®y) =2x @Iy + a8 12X ® 8,1 2Y

with as depending on r. A similar argument shows that (14) holds also when r = 1.
Now let T; and T2 switch the factors of MrAMr and D2MrAD2M,r. Then

52T (x®Y)) = T8, (x ®y) =dy ®x - 8,8 4y ® B, Ix.
On the other hand, if r > 2 then
Sy T (x 7)) = 6,2(y @ x) =2y @Zx + a8, 4y ® 8, &%,

hence 235 = 0 as required. If r = 1 then

ST (x ®y)) = 5,2y ©®x + 8y ® 8x)

8,2 (y ®x) + 282:).y ® Bzaxa

Hence in this case -85 = ag + 2 mod 4, so that a5 = 1 mod 2 as required.

Next let |x| = 1, |y| = O with r > 2 we may assume x = fu, ¥ u

e Choosing a

subbasis for D,IM,AD,M, as in the preceeding case, we see that

(15) §R(x ®Y) = a;Rx @2y + a,Rx ® 4y + aBA*Qx ®a2y
+ a44*(Qx ® )+ 5B B ® 8,127
t B X ® Br-rl‘i’*Q‘Y ¥ a7Br+l4*QX ® Bra1 27
*oagB A ® B 4,0

with a,,a¢ Z2r+l and the remaining a; in Z2r_1. If f denotes the composite

1AD.j
2 0 1A 0 _
DyIM, A DM, ——=—= D,iM_AD,S LhE, DyIM_ AS® = DyIM_
then the diagram
8
Dl( zMr A Mr) —_— DzzMr A D2Mr
1 D,(1AJ) J’f
p (M A8’y —— DM
2 T _ 2%

commutes. Applying fy to {15) and using the equation ¢,Qu = O (which was shown in
the proof of 3.3({ii)) gives
Rx = aRx + a34*Qx,
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hence 8y = 1 and aq = 0. To determine a5 and a, we calculate

178, SR(X ®F) = 6,08 (x @) = 176, [Bx ©2y + 4 (Qx ® &)1,

Br+1

hence ay = 0 and 8, = 1. Next we calculate
8, R{x ®y) = SxmR(x ® )

r-2

= Rx @y + 4, (Qx @ Qy) + 2 BrZ*Qx® n8 2y

r+l

2r-3 (2)

+ 2 g (8 %) @ QB 27

r+l

Now the element 22r'31*(8rx)(2) is zero when r > 3 since 2r-3 > r while when r = 2

we have

0 = 28,2,Qx = 28,QRux = 21*(82)()(2).

Thus applying = to both sides of (15) gives 2a5 = ag = ag = 0 and ay = T2, 1t
remains to show ag = 2rer, where ¢, eZ, 1s the constant in the formula for

842 (x ®y). But this follows from the equation
(16} (6A1)*6*R((Eur ® ur) ® ur) = (1A 6)*6*R(Zur ®@ (ur ® ur))
if we expand both sides using the formulas already shown.
Next let x = Zu; , ¥ = u;. A suitable choice of subbasis for D,iMy AD,M, gives
§,R(x®@y) = a, Rx ®ady + a,8,Rx ® B2Y

and we see as before that a; = 1. Evaluating both sides of equation (16) in this

case gives ap = -(1 + 251). Finally, we have

§,R(y ® x) G*R(Tl*(x ®y + Bx ® By))

= T2*5*R(X ®y + Bx ® By)

2y @ Bx + (1 + 2¢))8, 27 ® B,Rx

as required.
Now let x = fu, and y = fu,, with r > 2. We have
(17) 8 (x@y) = aRx @Ry + a,Rx @ 4,Qy + a34,0x @ By
+ 8.44*(QX ®Qy) + a8, Rx ® 8 Ry + aB . Rx @ B, 4,Qy

* 8B 4xQX © B Ry * agh o 4,Qx @ B 4Qy
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with ay,8, 622r+l and the remaining ay in 2 The equation

2r-1'

(2) (2) (2) _ ,2r-4

(18) My (X@y) = s, (x@y) = ,x T @,y = B 25 ® 8 2,0y

shows that ag = ay = 0, ag = 221"4, and also that a; = 0 mod 2T and that
ay = a5 28, = 0md 2772, Next we apply (DpJ 4Dyj)y to both sides of (17).

The left side becomes
(D2j AD2j )8y 2(x @ y) = 8, A(zu ® zu) = 15, 2(Iu @ Iu),
which is zero by (18). By 8.4(ii) we have
(Dzj)*RZur = Rfu = Rmiu = 2QIu,

hence (since 8a, = 8a, = 8&13 = 0 mod 27*1) the right side of (17) becomes
0

48,Qry x Qiu, so that a, =0 1in Z2r-1‘ Next we calculate

2725, [Rx © 4,0y + 4,0x ® Ry,

(X ®Y)

hence a, = ay = 2r—2. Finally, if we expand both sides of the equation

(éAl)*G*Q((Zur® fu) ®@u ) = (1 AG)*d*J(ZurGD (zu,®u)))

using the formulas already shown, it follows that ag = 0. The proof when r = 1 is

similar.

(vii). We may assume x = u,. Let r >2; the case r = 1 is similar. Then
(19) AyZ2u_ = a Riu_+ a pZQZu
* r 1™""r 25 ¥ T p

with a;¢ 2 .,y and ay ¢Z . ;. Applying « to (19) shows that a; = O mod p¥, hence
applying (Bpj)* to (19) gives a; = 0. It only remains to show that A*Za?-ur # O when
p = 2. But Lemma 7.7 gives the exact sequence

(zv)y Ay
Kl(ZMrAMr;rﬂ) — Kl()ZDzMr;Nl) — K1(D22Mr;r+1).

Since ):'7‘“1' has order 2r+1, it cannot be in the image of (IZi1)y and the result

follows.

(viii). We may assume x = w.. We have
s k k k k
(Dp,])*q; Jur =y du=y¢yn=n-= (Dpj)*:w u,

since wkur =u,; the result follows by 8.2.

(ix) By equation (7) in the proof of 8.4(viii) and I.2.14 we have the
following equation in K5(D X;r-1) when p is odd and r > 2.
Y
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{(p) (p)

- - R pyinl
(20) BxQuyX © = 1,6,Qx 7 = [ ]

(1, x PH P g (g (3,

When p = 2 this equation follows from 7.6(vii) since 1*(x ® BX ®Xx® BrX) and
1*(Q3rx ® QBrx) are zero by 7.6(x).

X = uy. The set {3 uy} is a subbasis for Dle, hence by 4.3 the set

let r =21
) ;1) Lemma 4.3 also implies that the set

b
{Qaul,x*u( } is a basis for KO(D p My ;

v .
Q%u,1,u ¢ KO(Dprs,l)

is linearly independent. Hence (Dprj J¥ is monic on KO(DprM:'51)‘ Since the
transfer

K (D o M5 1) - K (D D MI 1)

is monic and (Dprj)* o1 =1 0{D Z'j)*’ it follows that (D , j)yx is monic on
1Y
KO(Dp2 M ;1). But

(Dpz 3)x8xQ2uy = BxQdu = sxQiu®),

which is zero by (20), hence gyQ uy = 0 as required.

Next let r > 2 and let y denote the element

P . . .
-2 (p),(p-1i) (1)
BQ2u, - 1y izl[li))pl 11*111,p P ®pyllQu,) 7]
in Ko(D 5 M,;r). Then (20) implies that my = O and (D , j)yy = O, and we must show
p 1Y

y = 0. Since qy = O we see that y is in the image of pr 1. To proceed further we
need the case k = p of 4.1; we may use this result w:Lthout circularity since only
the case r = 1 of the present result is used in proving it (see section 9). Now as

in the proof of 8.4(viii) we see that the union of the sets

el P @ (7 20u )P 0 <5 <y
el P B g 1 (P g g )

© (") P 9% qul (1< <)

r-3

and, if r > 3, {« B*QQu }, is a basis for KO(D 2MT;I). The second of these sets

generates the kernel of pi -1 and also the kernel of (D 2 g, and it follows that
(D 2 J)s is monic on the image of p . Since (DPZ 3 )*y = 0 we conclude y = O as

required.
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9. Cartan formulas

In this section we shall prove lemme 4.7. As in the proof of 2.7, the basic
idea is to "simplify" each expression in CQ (respectively CQ') to obtain an expres-
sion in C{x} (respectively C{y,z}). We shall refer to the simplified expression as
a Cartan formula for the original one. Some explicit examples of such formulas will
be given below. However, some of the formulas we need are too complicated to give
explicitly, and instead we shall use an inductive argument to establish their

existence.

In order to do so it is convenient to work in a suitable formal context. Let

E1s+se,Ey De indeterminates and suppose that to each has been assigned a mod 2

dimension denoted Igii and two positive integers called the height and filtration
and denoted ugiu and vgi. Intuitively, g4 should be thought of as an element of
K|€-|(DV§ X;ugiu) for some spectrum X. We wish to consider certain finite formal
combinatidns E(g1,++4,84) Involving the g; and the operations of section 3, namely
those combinations which would represent elements in one of the groups Ku(DjX;r)
when interpreted "externally" as in section 4. More precisely, we define the
allowable expressions E(£;,...,ty) end assign them dimensions, heights and
filtration by induction on their length as follows.

Definition 9.1. (i) Each indeterminate £; 1is an expression of length 1. For each

% eZy, T >1, J >1 there is an expression O {called zero sub «,r,j) having

C‘7r)j
length 1, dimension «, height r and filtration j. These are the only expressions of

length 1.

(1i) Suppose that the expressions of length < 2 have been defined and assigned
dimensions, heights and filtrations. The expressions of length &+l are the follow-
ing, where E ranges over the expressions of length %.

(a) pxE. We define |[pyE| = |E|, Ip,El = 1El + 1 and v(p4E) = vE.
(b} B.E if IEI = r. We define |8 E| = |E|-1, g El = IEl and
v(B,.E) = vE.
(e) wE 4if 2 < WEI. We define [vE| = |E|, unEt = 1Ei-1 and v(«E) = vE.

(d) B + Ey, where E; and E, are any expressions whose lengths add up to £+l
and which satisfy |E| = |E], WE, 4 = WE,l, and vE; = vE,. We define
[E, + B5] = |51, VE, *+ By = 1E 4 and v(Ey + Ey) = vE.

(e} E{+E, {the formal product) where E; and E, are any expressions whose
lengths add up to 2+1 and which satisfy uElu = uEzu. We define
iEi.Ezl = |E1| + |E2|, 1E »E, 0 = WEj, and v(E;+Ey) = vE) + vE,.

(f) QE if 2 < UEN. We define |QE| = |E|, WQEN = IE4-1 and vQE = pvE.
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(g} 2Eif |E| = 0. We define |QE| = 0, 12 El = 1Et+1, and v2E = pvE.

{n) RE if |E} = 1. We define |RE| = 1, &RE# = #Es+l, and vRE = pvE.

Note that we have not required formel addition and multiplication to satisfy
commutativity, associativity or other properties. However, in writing down
particular expressions we shall often omit some of the necessary parentheses, since
their precise position will usually be irrelevant. We shall also abbreviate Oa,r,j
by O.

We have given Definition 9.1 in complete detail as a pattern for other indue-
tive definitlons about which we will not be so scrupulous. For example, let E be an
expression in the indeterminates £,,...,64. If By,...,E are expressions in another
set of indeterminates ny,...,ng with {E;| = |g;}, VE( i = g, 0, and vE; = vu; for
1 <i <t then we may (inductively) define the composite expression E(El"“’Et) in

N1sesv,ng- Again, if X is any spectrum and xieK| I(DV X;ﬂgin) for 1 <i <t then
i

. 4
we can define b

E(Xl"°°’xt)€ K X;0EL)

1e| PuE
as in section 4 by interpreting Q, 2, R and the multiplication externally and
applying ay and By to formal products and composites.

Definition 9.2. Let Eqsvresby be a fixed set of indeterminates. Eguivalence,
denoted by ~, is the smallest equivalence relation on the set of expressions in
€1,++,&4 which satisfies the following.

(1) ~ is preserved by left composition with Q,d ,R, =, px and 8. and by formal
addition and multiplication.

(2) For each r > 1 the equivalence classes of expressions of height r, graded

by dimension end filtration, form a Z, x Z graded ring {(without unit) with the

15, 115,
s . 11172 s
Oa,r,j as zero elements. The relation El-E2 = (=1} E2 El is satisfied and

left composition with =, B, or Dy 1s additive.

(3) If x and y denote expressions E and E, having height r and the required
dimensions then the following hold with = replaced by ~: 3.1; 3.2(iii),(iv) and
(v); 3.3(1i1), (iv), (v), (vi), (vii) and (x); 3.6(ii), (iii), (iv), (v) and (viii);
3.7(41), (111}, (dv}, {v), {(vi) and {(ix).

Roughly speaking, two expressions are equivalent if one can be transformed into
the other by using the relations of Section 3.

It is easy to see that equivalent expressionsg must have the same dimension,
height, and filtration but not necessarily the same length. An inductive argument

shows that E(El,...,Et) and E'(Ei,...,Eé) are equivalent if E ~ E' and Ei ~ Ei
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for 1 <i <t. A similar inductive argument using 3.1, 3.2, 7.6, 8.4 and 8.5 gives
the following.

Lemma 9.3. Let E and E' be equivalent expressions in Eqpvensbye Let X be any

spectrum and let X; be an element of K X;ugiu), for 1 <i <t. Then
i

(D
igil v§
E(xl,..,xt) = E‘(xl,...,xt).

If A = {gl,...,gt} is any set of indeterminates we can define the filtered
algebra CA and the subquotient groups DjA with their standard bases exactly as in
sections 3 and 4. If A' is another set of indeterminates and f:A » A' v {0}
preserves degree, height and filtration we say that f is subbasic. Clearly, the
constructions CA and D;A are functorial with respect to subbasic maps. We can think

J
of the elements of D:A as expressions in €1,+--,&4 Dy Inserting parentheses so that

addition and multiplication are treated as binary operations. (Of course, up to
equivalence it doesn't matter how the parentheses are inserted.) This identifies
IBA with a subset of the expressions of height 1 and filtration j in E1revvsbye By
a Cartan formula for an expression E of height 1 we mean simply an equivalent
expression in DvEA' The next result, which will be proved later in this section,
provides some examples which will be useful in the proof of 4.7. We say that two

expressions E, and E, are equivalent mod p if there is an expression E' with

IIElII—l IIElll-l
E,

El ~ E2 + pE'; in particular this implies E1 ~ e

Proposition 9.4. Let E1s &2, 53, £ be indeterminates of height r with dimensions
0, 0, 1, 1 respectively. ILet 1 < s < r and let t > 1.
s s
(1) 8, Qg ~QBE; mog p.
. S, (.8 s
(ii) Br-sQ EB (w Br£3; mod p.
(1i1) Qs(£1£3) ~ (nsgl)p QSEB mod p if p is odd or r > 3.

(iv) QS(53£4) is equivalent to (ngB)(ng4) if p is odd and to

s-1 s-1

2 s-1 s 2
) (nQ 54)(ﬂ BrEA)

s s r-s-1 s~-1 s
Q 53)(Q 64) +2 (nQ 53)(n BnEq
if p=2and r > 3.
s
() Sleege,) ~ (n%g)P (@%)(Q%,) 1f p 1s odd.
(vi) If 1 <i < p-1 then

s, p-1, _ s s \p°i-1), s p3(p-i)
BogQ (E185 7) i(Br_sQ g0 (rgy) (w 52)

)ps (p-i-1)

s
- 1% (s ag,) (n%, mod p
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. r+t-1 % i-1 p-i
(vii) If 1 <i < p-1 then « BratR [(Brgl)gl 4 ] is equivalent to
10 r-1 )(i-l)pt( r-t-l Qt Y r-1 )(p-i—l)pt( r--t--lB Qt )
LIS " Bt 81T 6 n r-t 52

if t < r and to gzero otherwise.
(vii1) 8d& g ~ 0.

(ix) If s <t then Q°pb¢; is equivalent mod p~5*2 to
g-1 8
t~g+l, g-1 -
N A SO
where
1if pisodd or s < %

-1 if p=2and s = t.

Qsps'lgl is equivalent mod p to

s-1 ps—l a s
(1°77Qg P+ o, (%P,
where

0 if p is odd

l1ifp= 2.

There remain expressions, such that QT2 g1, for which the Cartan formula is too
complicated to give explicitly. Our next result will guarantee the existence of
such formulas. let A = {€15+2+48¢}. We say that an element of IEA,is homogeneocus
if it is a sum of standard basis elements each of whieh involves every Eqe Note
that such elements are in the kernel of Iﬁf whenever f:A + A'w {0} tekes at least
one gy to 0.

Proposition 9.5. Any expression £ of height 1 in g£4,...,£, 1s equivalent to an

expression In D;A for some j. If the £; have height r and degree O then the

r-s-lns
Q

expression = (gl---gt) is equivalent to a homogeneous expression In EBA for

each s < r. If the g; have height r and degree 1 then
r+s-1 s
w Br+sR (gl(ﬁrgz)---(srgt)) is equivalent to a homogeneous expression in EHA

for each t > O,

The proof of 9.5 will be given at the end of this section. Unfortunately,
there seems to be no direct algebraic proof that the Cartan formulas provided by 9.5
are unique, that is, that distinet elements of EBA cannot be equivalent as
expressions. If we had uniqueness in this sense then Lemma 4.7 would be an

immediate consequence of 9.5. Instead we shall have to give a much more elaborate
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construction of Yj and yj, making use of the explicit formulas of 9.4 in order to
avold appealing to uniqueness. (A similar difficulty in ordinary homology is
implicit in ocur proof of 2.7). On the other hand, it is easy to see from 4.1 and
3.3 that uniqueness does hold, but of course such an argument cannot be used in
proving 4.7. However, we can and shall use uniqueness in filtrations less than k in
the following inductive proof of 4.7.

Proof of 4.7. We shall give the proof for r < ». The case r = =, which is similar
and somewhat easier, requires some straightforward modifications in Definition 9.1
to allow for infinite heights; details are left to the reader.

First let M = M, with r > 2 (the r =1 case is similar and easier). We
define & to be {Qx,x}. Iet uy and v, respectively denote y"zP™ and (Sry)ym'lzp'm
for 1 <m < p-1 and define &' to be

{,9,2y,22) oy | 1<m<pl} wiv | 1<mg<pl}.

Lemma 4.3 implies that (L and (L' are in fact subbases for Der and DP(Mr v M.
Note that (ngl)* takes Qr and 2 y to Qx and 2 x and takes all other elements of 4!
to zero. In particular (ngl)*’ Q' » A u{0} is a subbasic map and hence

Fy = Dy(Dygy)x. Similarly, F, = Dj(ngz)*° On the other hand, (ngo)* is not
subbasic since 1t takes w; to wdx and Y, Yo wBL,q 2%, hence Fy is not induced by
functoriality from (ngo)*. It is determined by (ngo)*, however, in the following
way. If

EQy,Qz, v, az, ul,...,up_l,vl,...,vp_l)
is any expression in Dj ' and E' is an expression in Dja, equivalent to

E(Qx,Qx, 2%, 2%,7 2X%, ...,n.?.x,nsrﬂa,x, cve,mB_ .2 X)

r+l
then by 9.3 we have AJ.(FO(E)) = )\j(E‘), hence FuE = E'.

Next we shall construct Yj and y‘%. We assume inductively that Y, and yé with
the required properties have been constructed for all 2 < j. By using the values of
Yy and YI'L on indecomposables and extending multiplicatively, we can define
Yj and y';. on the decomposables of Dj & and Dj Q' so that the diagram commutes when
restricted to decomposables. It remains ito define yJ. and yé on the standard
indecomposables of Dj A and Dj QA'. We may assume that j = ps for some s, since

otherwise there are no indecomposables in filtration j.

let gl,...,gp be indeterminates with dimension zero, height r, and filtration
1. If s <r we use 9.5 to choose a homogeneous expression E in Dk{gl,...,gp}
equivalent to “r-s-—le{gl_“gp}. If s = r, let E be an expression in Dk{gl,..,gp}

equivalent to QT2 £y We define subbasic maps
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fpilEyseensgy) > &1 2 {0}
for O <m < p by
y for g <m
fm(gl) =
z for g >m.

Finally, we define h:{gl,...,gp} + A by h(ggl = x for all ¢. Note that
(ggly o £, =1 for all m.

We define Y; and yj on indecomposables in table 1. The first columm lists the
standard indecomposables in DjCl', and the second colum (we claim) gives the value
of ¥y on each. The first four entries in column 2 are precisely the standard inde-
composables in Iﬁ (. , and the corresponding entries in columm 3 define Yy on each.
The remaining entries in column 3 then give the resulting values of Y; on the other
entries of column 2. Finally, column 4 defines yj on each entry in columm 1.

Note that we have denoted iterates of n in the table simply by m; the precise
iterate intended can easily be determined since all entries in the table are to have
height 1.

The values of FO claimed in column 2 are either obviously correct or follow

easily from 9.4 or the formulas of section 3. For example, in line 10 we have

r-s s r-s s r-s+l s
n Br-s‘rlQ TLX ~ T B R 2X ~ pr Br-—s+2Q 2% ~ 0

r-s+l
and in line 12 we have

r+s-1 s r+s-1.8 2s
L Sr+sR n8r+1lx ~ 0 Q 8r+25p* n8r+12x ~ 0.
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To complete the proof of 4.7 for M = M, it remains to show that diagram (¥} of
section 4 commutes for 1 = 0, 1, 2. In order to see that the immer square commutes
it suffices, by Lemma 9.3, to show that the first four entries in columns 2 and 3
are equivalent as expressions in x. This is clear for lines 1, 3 and 4 and for line
2 1if s = r (by 9.4(viii)). If s < r in line 2 we have

r-g r-g=-1_.8
B8 7

T Trr-s-—‘i{‘gs(xp—l

Q®tax) ~ 2% ~

T r-g+l r+1 SrX)

which is equivalent to the required formula by 9.4{iii).

To see that the outer square commutes, we must show that the entries in columns
1 and 4 are equivalent as expressiong in y and z. The first eight cases follow as
in the preceding paregraph. Line 9 follows from the definition of E, line 10 from
9.4(vi}, line 11 from 9.4(iii), and 1line 12 from 9.4(vii).

For commutativity of the upper irapezoid when i = 1, we must show that Dk(gl)*
takes the first four entries in column 4 to the corresponding entries in colum 3
(which is obvious) and takes the remaining entries in column 4 to zero. This
follows in line 9 from the fact that E is homogeneous (since (gl)* o f = takes at
least one gy to zero if 1 < m < p-1) and the remaining cases are clear. Similarly,
we see that the upper trapezoid commutes when i1 = 2. Finally, we observe that each
entry of column 4 goes to the corresponding eniry of column 3 under Dk(go)*, and
hence the upper trapezoid commutes when i = 0. This completes the proof of 4.7 for
M=M.

Next suppose M = iM,.. We define A= {Rx} when r = 1 and = {Qx,Rx} when r > 2.
let uw = y(Bry)m-l(ﬁrz)p"m and v, = y(Bry)m'lz(Brz)p'm'l for 1 <m < p-1. We define

(L' = (Ry,Rz} o {ypfl <m <p-1} O {vgll <m < p-1}
when r =1 and
A' = {¥,Q, Ry,Rz} © {uy|l <m < p-1} v {vp|l <m < p-1}

when r > 2.

Then (ngl)* and (ngz}* induce subbasic maps from (' to @ and we therefore
have F; = Dj(ngi)* if 1 = 1 or 2. The map (ngo)* takes u, to -nRx when r = 1 and
1o pyQx ~ 7Rx when r > 2. 1t takes v, to zero when p is odd. When p = 2, 3.3(x)
implies

#
—

QBZZ*X uf r
(ngo)*vm =

\'
n

"% 2,0x if >

We begin with the case r = 1. We define Y3 and 73 on decomposables by
induetive hypothesis as in the M = Mr case. To define Yj and yj on indecomposables
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we use Table 2.

Table 2
EQ Y. © FO Ii_
1. Q(Ry) Q(Rx) 0 0
2. wBgypRS(RY)  wBg, RS (Rx) 8apRS X 8RS Ly
3. Q(Rz) Q(Rx) 0 0
4o mBgoRS(R2)  mBg, RS (Rx) BeoR® 1x 1854 oR5 1z
5. mBge1Rouy Folu8gs1R5uy) 0 0

Here the first column lisits the indecomposables of Q§Cl, and the second column {(we
claim) gives the value of Fy each {note that lines 1 and 3 are relevant only when s
=1, i.e., when k = p2). The first two entries in column 2 are the indecomposables
of Iﬁd., and the corresponding entries in column 3 give our definition of Y3 on
each, while the remaining entries in column 3 are claimed to be values of Y3
determined by the definition we have just given. The entries in column 4 define Yj
on indecomposables. The necessary verifications are similar to those in the case
M = M., and they are straightforward except in line 5. Here we must show that

that ijo(nsBs+1Rsum) is equal to zero and that nSBs*lRS(y(sy)m_l(Bz)p-m) is
equivalent to zero as an expression in y and z. For simplicity we assume that p is
odd -- the case p = 2 differs only slightly. First recall that to calculate
FO(nSBS+1RSum) we need only find an element of Qjél which is equivalent to

—nBS+1RSw(Rx) as an expression in the indeterminate Rx. Now

s s S8 28 .
-1 Bgy ROw(Rx) ~ -nQ78, Py n(Rx) by 3.6(iv)

~ Q%8 , 5 ().

We see by induction on % using (3.3(vi) and 3.3(vii) that Qt of a multiple of p is
equivalent to a sum of terms each of which has either p or a p-th power as a factor.
Hence FO(nSBS+IRSum} is a sum of terms each of which has a p-th power factor, and
the same is true for the element YjFO(wsgsflﬁSum) of Dk{x}. But by definition all
p-th powers in C{x} are zero when r = 1, so that ijo(nSBS+1RSum) = 0 as required.
The proof that usss+lRS(y{sy)m-l(gz)p“m) is equivalent to zero is similar. We
have
s s m-1 p-m 8.8 28 m-1 p-m
T B B (yley) T (82)T) ~ QTR Py (yigY)T T(ez)T )
3 s_\m S _\D-m
~ QLB PyY ) (B Py2)” )

H



371

and 3.3(vi) and 3.3(vii) show that Q% of a product of elements of degree zero is
equivalent to a sum of terms each of which has either p or a p-th power as a factor.
But again p-th powers in C{y,z} are zero and we see that

nsss+1RS(y(By)m"l(sz)p-m) ~ 0 as required. This completes the proof of Lemma 4.7
for M = IM, .

Next let r > 2. We can define Y and yj on decomposables precisely as before.
In defining Y and Yj on indecomposables when r > 2, it will be convenient to modify
the standard basis we have been using as follows. Let m and o be indeterminates

with dimension 1, filtration p and heights gl = r-1, ol = r+l. We use 9.5 to

obtain an expression E(ny,n,) in Qj{“l’“2} equivalent to JTF8-1g
We claim that the coefficient of = ° °g

r+SRS(p*n1 - gl .
r+s—1RS”1 in E(ny,np)} is 1. To see this,
write E(“l’”2) as E1 + EZ’ where El involves only ny and every standard basis

element in E2 involves no. If f:{nl,nz} > {nl} «J {0} takes ny to itself and n,
to gero then (ij)(E{nl,nz)) = El’ On the other hand,

r+s-~2 s

+g5-1
r+s—lR n

(D, £)(B(ny,my)) ~ Elny ,0) ~ W, BOpyny o~ w

1°
Since uniqueness holds (by inductive hypothesis) in filtration j we have

. T+s-2 s
By = Bres-1Rny 4

proving the claim. We can therefore give new bases for the indecomposables of D

J
. r+s-2 s r+8-2 s
and D; (L' when r > 2 by replacing = Brpg g B (QX), = Bryg1l () and
r+s-2sr+s_1R§(Qz) in the standard bases by E(Qx,Rx), E(Qy,Ry) and E(Qx,Rz)
respectively.

Next let gl,...,gp be indeterminates with dimension 1, height r and filtration
1. We use 9.5 to choose a homogeneous expression E’(gl,...,gp) in Dk{gl,...,gp}

equivalent to
s
“r+s—13r+sR (51(8r52)"‘(8r‘5p))’
Finally, we define the subbasic maps f; and h exactly as in the case M = M.,
We can now define Y; and yj on indecomposables by means of Table 3. The first
colum lists the new basis for the indecomposables of QiCl '. The second zolumn (we

claim} gives the values of Fy on each basis element.
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The first six entries in this column are the new basis for the indecomposables
of Qja" and the first six entries in colum 3 define Yo while the remaining
entries in column 3 give the values of v; on the remaining entries in column 2. The
entries in column 4 define yj. The verifications necessary to prove 4.7 in this
case are agein similar to thoge in the case M = M.. The less obvious ones are the
following. If s < r we have

nr—stRx N ﬂr-s—le"Rx ~ nr—s—le+lp*X R Trr—s-le(X(Brx)P—l)

~ =TT (7 ) (P

in lines 1,5 and 9 by 9.4{iii). (In particular we observe, as claimed in the proof
of 8.4(viii), that the relation 3.6(viii) is not used in the present proof when
g§=1land r>2.) If s=r we have

Q%Rx ~ QR Yx ~ O

in lines 1 and 5 by 3.6{viii). In line 11 with p = 2 we apply 9.4(ix) to show

F (nr-s—lev } o~ “r~s-1

s, -2
0 m Q(

2 3r2*Qx)
0 if ¢ < r-2

r-2
~ (nr_ler*Qx)z if 8 = p=2

r-2 r-2

2 r-1 2 -
+ (7 BrZ*Qx) if 8 = r-1

(nr_zQBrQ*QX)

and the claimed values of Fj follow from 3.1(ii), 3.5 end 3.6{iii}) and (iv). This
concludes the proof of 4.7.

Proof of 9.4. let =~ denote mod p equivalence. Parts (i), (ii), (iii), and (iv)
follow easily by induction from 3.3(v) and 3.3(vii). For part (v) we have
s
s L o5 s o (-S; 4P (8 8
Q ((5152}54) Q (gliB)Q (54) (r7g )" (Q 53)(Q 54)

by (iii) and (iv). For part (vi) we have

s ip-i, .8 i p-i
BogQ (E785 ) =~ Q8 (6765 7)

s i-1_p-i

. i i-1
1(Sr51)51 £, = (p—z)g;(srgz)p'l 1

r

Q

7

p—i-1]

8 i-1 p-~i :~Sp. 1
10708 g ey Ty 1 - 1Q g (B E))ES

]

i-1 s _ S
1(0% g, ) (o5, ) P (8 ) (PP

S i e 0P (6% ) (n%,) (PIFLID]
1 r°2 2
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and the result follows by part (i).
(vii) First we c¢laim
T
(*) Q Bri1Pxéy ~ 0.
This is true when r = 1 by 3.3(iv) and 3.3(v). If r > 2 we have
QB PeEy ~ Q@18 QpyE
r+1P%5 r ¥Rl
r-1 p-1 P
~Q TB.IpyQe, - (p - 1)l
r~1
~ Q@ T8 DyQe,
and the claim follows by induction on r.

Now we have

r+t-1 % 1-1 p-i r+t-1t 2t i-1 p-i
w BB (B E)E] Tey T~ @ Q78.,,4Px (B E1)E] 55 7]
THt-l % 2t . 2%, i-1 p-i
M QB By Py By IRk (6] T8 T
r+t-1.t 2t r+t-1.t 2%, 1-1 p-i
QB P ) [T Qe (8] 6
If t > r then
r+t-1 % 2t t t-r
w Q BI"+2tp* 51 ~ Q B't‘*lp*(p* El)’
which is equivalent to O by (¥). Otherwise we have
r+t-1_1 2t r+t-1_t 2t, i p-i
(w QB4 Py £p) [ Q78 ,0¢Px (E1E5 ]
r-t-1.% r-t-1.t , i p-i
~ = Q Bril){ﬂ Q Br(iliz b3

and the result follows from part (iii).

For (viii), we have

r r-l
BQJ«El ~ Q SQ.Zil

2
( g )(“r-lx)(p ‘P)(r-l)Qr-lsrp*Qx ifr>2

ko Bt

0 if r =1,

but the expression for r > 2 is also equivalent to zero by (¥).

Finally, part (ix) follows from 3.3(vi) by induction on s.

)]



375

It remains to prove 9.5. In order to keep track of when an element of
Ig{gl,...,gt} is homogeneous, we make the following definition. Iet S be a fixed
set and suppose that we have assigned to each gi a subset h(gi) of S called the
homogeneity of £;. Then we define the homogeneity of an arbitrary expression in
€15+e+564 DY requiring that Oa,r,j have homogenelty S, that py,8,,7,Q, 2 and R
commute with h and that h{E + E'}) = n(E) N h{E') and h(E.-E') = h{E) v h(E'}). We say
that an expression E(gl,...,gt) of height 1 is reducible with respect to h if
there is an E' Dj{gl"":gt} with E' ~ E and h(E') 2 h(E).

Proposition 9.6. If S is any set and h(gy),...,h{gy) are any subsets of 8§ then
every expression of height 1 in E1seeerby is reducible with respect to h.

If 8= {g,+.-,8;} and hlg;) = {g4} for 1 < i <t then the expressions listed
in 9.5 have homogeneity S, while an expression in Iﬁ{gl,...,gt} has homogeneity S
if and only if it is homogeneous. Thus 9.5 follows from this case of 9.6. The
extra generality allowed for S and h is teechnically useful in proving 9.6.

In the remainder of this section we prove 9.6. We fix a set S and assume from
now on that any indeterminates mentioned have been assigned homogeneities contained
in S as well as dimensions, heights and filtrations. It will be convenient to let
£, n and 6 denote indeterminates and to let E, F, G and H denote expressions. We
say that two expressions (possibly involving different sets of indeterminates) match
if they have the same dimension, height, filtration and homogeneity. We shall
frequently use the fact that a sum or produet of reducible expressions is reducible
and that homogeneiiy is preserved by substitution, i.e., if F is any expression in
Nyseeesng &8nd Ey, ..., E matching ny,...,ng respectively then h{(F({E;,...,E )] = h(F).
Note, however, that equivalent expressions generally have different homogeneities;

for example, pt is equivalent to O if 1zt = 1 but hi{t) is not necessarly equal to S.

For our next two results we fix a set {nl,...,ns,ni,...,né,ng,...,n;} of inde-
terminates such that each ni matches Qni and each ng matches R“i‘ Here and else-
where we shall interpret Qni as 01}1’1 if Hniu =1 and Rni as Ol,l,l if |ni| = 0.
We say that an expression is elementary if it does not involve Q or R.

lemma 9.7. Let G be an elementary expression of length 2 in Npyeseyng and let 8
match G.

(1) If Fis n'%" g or L1001

B 8 then there is an elementary

(3
expression G! DvG{nl,...,ns} with G' ~ F(G) and hG' D hF.

(ii) If F = Q6 or F = Re then there is an elementary expression

G'ny,eeeyngond,eee,n,nd, oee,nf) with hG' D BF and

F(G) ~ G'(nl,...,nS,in,...,Qns,Rnl,...,RnS).
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IE ninj and ny. The
result can be checked in each case from the formulas of section 3.

Proof. The possibilities for G are TN, PN, Bpnys ni+n

Next we define the complexity c(E) of a standard indecomposable E in
Is{ﬂl,..-,ns} to be the total number of Q's and R's that appear in it. We define
¢{E) for an arbitrary expression E in Eﬁ{"l"'°’“s} to be the maximum of the

complexities of the indecomposables that appear as factors in the terms of E.

Lemma 9.8. Iet H eEg{nl,...,ns,qi,...,né,nx,...,ng}. Then there is an
H' Erb{nl""’ns} such that h{H') D h{H), c(H'} < e¢(H) + 1 and E' is equivalent to

H(nl,...,nS,in,‘..,QnS,Rnl,...,Rns).

In particular, the latter expression is reducible.

Proof. We may assume that H is a standard indecomposable and hence that it involves
only one of the indeterminates. If it involves one of the ny the result is

trivial. Otherwise H has one of the forms

Nniﬂ—t-2 £ Hniﬂ—t—2 Hniﬂ~t " Hniﬂ+t-2

t
1 ] 1 1
" Qng, 7 Suniu-t-zQ Nis ® Qng, Rong, or

B -
ing 1+t-1

in, I+
ny 1

i B Rtn;. In each case the result follows either trivially or from the

Hniﬂ+t+l

formulas of section 3.

Lemma 9.9. let E,...,E, be elementary expressions in Eyseessby and let
el""’er match El,...,Er respectively. Let F ¢D {81,..,0r}. Then there is an
H Etﬁ{gl""’gt} such that c(H) < ¢(F), h(H) D h(F) and H ~ F(E,...,E). In
particular, F(E;,...,E.) is reducible.

Proof. Let 2 be the maximum of the lengths of the K. If ¢ = 1 the result is
trivial. We shall prove the result in general by induction on c¢(F} with a
subsidiary induction on %. We may assume that F is a standard indecomposable, and
hence that it involves only one of the 64, say 6. Now by Definition 9.1, E; can be
written in the form G(Eyq,E;,), where Elligl,...,gt} and E12{E1""’gt) are
elementary with lengths less than ¢ and G(nl,nz} is elementary with length 2. If

iy n-1 16, -1
¢{F} = O then F has the form =« 1 or = B and the result

18,1-1°%1
follows by 9.7(i) and the subsidiary inductive hypothesis. Otherwise F has the form
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F'{F"), where F¥ = Qg or B9, and c(F'} = c(F} - 1. Thus

F(El) = FY{F'{G(E 11,E12})). Ir ni,né,n{,qg are as in 9.7 then by 9.7{1i) there
is an elementary expression G'(nl,nz,ni,né,ng,ng) such that h(G') h(F") and
G'(nl,nz,in,Qn2,Rn1,Rn2) ~ F“(G(nl’nZ))’ Thus

F(G(nl,nZ)) ~ F‘(G'(nl,nz,in,an,Rnl,an)).

Now sinece ¢(F') < c¢{F)} the inductive hypothesis gives an expression
HeDj{nl,nz,ni,né,nK,qg} with c¢(H) < e(F') < ¢(F), n{H) O £f{F'} D h{F), and

H ~ F'(G'(nl,ﬂz,ni,ﬂé:ﬂ,ﬂg))
S0 that
F(G(n1:n2)) o~ H(nl,n2,in,Qn2,Rﬂl;Rn2)-

Now by lemma 9.8 there is an expression H! Giﬁ{nl’nz} such that

e{H') < e(H) + 1 < c{F) end h{H') D h(H} ) h{F) with H' ~ F(G{ny,n,)). Hence F(E,)
~ H'(Ey,,E5). Since Ej; and E, both have lengths less than £, the result now
follows by the subsidiary inductive hypothesis.

Finally, we complete the proof of 9.6. Iet G(gl""’€t> be any expression of
height 1. The proof is by induetion on the length of G, which we may assume is >
2. It is easy to see from definition 9.1 (by another induction on the length of G)
that G can be written in the form G'(f,...,54,E}, where G'(£q,...,,Ey,n) has length
less than ¢ and E has length 2. Then (' has height 1 and h(G') = h(G). By
induetive hypothesis we may assume G'¢ DVG{gl,...,gt,n}. If E is elementary the
result now follows by 9.9, while if E is Qn or Rn the result follows by 9.8. This
concludes the proof.



