CHAPTER IX

THE MOD p K-THEORY OF QX

by J. E. McClure

In this chapter we use the theory of H_{∞} ring spectra to construct and analyze Dyer-Lashof operations in the complex K-theory of infinite loop spaces analogous to the usual Dyer-Lashof operations in ordinary homology. As an application we compute $K_{*}\left(Q X ; Z_{p}\right)$ in terms of the K-theory Bockstein spectral sequence of X.

Dyer-Lashof operations in K-theory were first considered by Hodgkin, whose calculation of $K_{*}\left(Q S^{\circ} ; Z_{p}\right)$ [41] led him to conjecture the existence of a single operation analogous to the sequence of operations in ordinary homology. He constructed such an operation, denoted by Q, for odd primes [42]; a similar construction for $p=2$ was given independently by Snaith, who later refined Hodgkin's construction for odd primes and analyzed the properties of Q. The construction of Hodgkin and Snaith was based on the E^{∞} term of a certain spectral sequence (namely the spectral sequence of I.2.4) and therefore had indeterminacy, and Hodgkin showed that in fact any useful operation in the mod p K-homology of infinite loop spaces must have indeterminacy. He also observed that the Dyer-Lashof method for calculating $H_{*}\left(Q X ; Z_{p}\right)$ by use of the Serre spectral sequence completely failed to generalize to K -theory. The indeterminacy was a considerable inconvenience, but the operation was still found to have applications, notably in the calculation of $K_{*}\left(Q R P^{n} ; Z_{2}\right)$ given by Miller and Snaith [84]. This result, which was proved by using the Eilenberg-Moore spectral sequence starting from Hodgkin's calculation of $K_{*}\left(Q S^{0} ; Z_{p}\right)$, was the first indication that $K_{*}\left(Q X ; Z_{p}\right)$ might be tractable in the presence of torsion in X. The main technical difficulty in the proof was in determining exactly how many times Q could be iterated on a given element, since Q could be defined only on the kernel of the Bockstein B. (Incidentally, a joint paper of Snaith and the present author showed that the odd-primary construction of Q contained an error and that in this case as well Q could only be defined on the kemel of β.) The answer for $R P^{n}$ was that Q could be iterated on an element exactly as many times as the element survived in the Bockstein spectral sequence. Unfortunately, the methods used in this case did not extend to spaces more complicated than Rp^{n}.

In view of these facts, it is rather surprising that there is in fact a theory of primary Dyer-Lashof operations in K-theory for which practically every statement about ordinary Dyer-Lashof operations, including the calculation of $H_{*}\left(Q X ; Z_{p}\right)$, has a precise analog. We shall remove the indeterminacy of Q by constructing it as an operation from mod p^{2} to mod $p K$-theory, and more generally from mod p^{r+1} to mod p^{r} K-theory. It follows that Q can be iterated on any element precisely as of ten as
the element survives in the Bockstein spectral sequence. There are also operations 2and R taking mod p^{r} to mod $p^{r+1} K$-theory in even and odd dimensions respectively (2 is the K-theory analog of the Pontrjagin p-th power [57, 28), while R has no analog in ordinary homology). These will play a key role in determining the properties of the Q-operation and in our calculation of $K_{*}\left(Q X ; Z_{p}\right)$. They also give indecomposable generators in the K-theory Bockstein spectral sequence for QX. ${ }^{1}$ The operations $Q, 2$ and R form a complete set of Dyer-Lashof operations in the sense that they exhaust the possibilities in a certain universal case; see Section 8 . The key to defining primary operations in higher torsion is the machinery of stable extended powers, which gives a very satisfactory replacement for the chain-level machinery in ordinary homology; more precisely, it allows questions about the operations to be reduced to a universal case in the same way that chain-level arguments allow reduction to $\mathrm{B} \Sigma_{\mathrm{p}}$. In applying this machinery to K -theory we make essential use of the fact that periodic K-theory is an H_{∞} ring spectrum, as shown in VII $\$ 7$ and VIII \$4, and the fact that the Adams operations are p-local H_{∞} maps as shown in VIII 87.

This chapter is largely self-contained, and in particular it does not depend logically on the earlier work of Hodgkin, Snaith, Miller and the author. The organization is as follows. In section 1 we give a very general definition of DyerLashof operations in E-homology for an H_{∞} ring spectrum E. When E is $H Z$ we recover the ordinary Dyer-Lashof operations. In section 2 we use some of the properties developed in section 1 to give a new way of computing $H_{*}\left(Q X ; Z_{p}\right)$ for connected X without use of the Serre spectral sequence, the Kudo transgression theorem, or even the equivalence $\Omega Q E X \simeq Q X$; instead the basic ingredients are the approximation theorem and the transfer. In section 3 we give the properties of Q, Q and R and the statement of our calculation of $K_{*}\left(Q X ; Z_{p}\right)$; up to isomorphism the result depends only on the K-theory Bockstein spectral sequence of X, but for functoriality we need a more precise description. Section 4 contains the calculation of $K_{*}\left(Q X ; Z_{p}\right)$, which is modeled on that in section 2. Sections 5 through 8 give the construction and properties of $Q, 2$, and R. In section 5 we lay the groundwork by giving very precise descriptions of the groups $K_{*}\left(D_{p} s^{n} ; Z_{p}\right)$. Section 6 gives enough information about Q to calculate $K_{*}\left(D_{p} X ; Z_{p}\right)$, a result needed in section 4 . The argument differs from that in [77] in three ways: it is shorter (but less elementary), it gives a more precise result, and it applies to the case $p=2$. Sections 7 and 8 complete

[^0]the construction of $Q, 2$, and R. In section 9 we prove a purely algebraic fact needed in section 4; this fact is considerably more difficult than its analog in homology because of the nonadditivity of the operations.

I would like to thank Vic Snaith for introducing me to this subject and for the many insights I have gotten from his book and his papers with Haynes Miller. I would also like to thank Doug Ravenel for pointing out the mistake mentioned above. I owe Gaunce Lewis many comnutative diagrams, as well as the first version of Definition 1.7. Finally, I would like to thank Peter May for encouragement and for his careful reading of the manuscript.

1. Generalized Homology Operations

Let E be a fixed H_{∞} ring spectrum. In this section we shall construct generalized Dyer-Lashof operations in the E-homology of H_{∞} ring spectra X. When E is HZ_{p} these are (up to reindexing) the ordinary Dyer-Lashof operations defined by Steinberger in chapter III, and for $E=S$ they are Bruner's homotopy operations. When E is the spectrum K representing integral K-theory we obtain the operations referred to in the introduction which will be studied in detail in sections 3-9.

For simplicity, we shall begin by defining operations in $E_{*} X$, although ultimately (for the application to K-theory) we must introduce torsion coefficients. Fix a prime p. For each $n \in Z$ the operations defined on $E_{n} X$ will be indexed by $E_{*}\left(D_{p} S^{n}\right)$, i.e., for each $e \in E_{m}\left(D_{p} S^{n}\right)$ we shall define a natural operation

$$
Q_{e}: E_{n} X+E_{m} X
$$

in the E-homology of H_{∞} •ing spectra called the intermal Dyer-Lashof operation determined by e. As usuil, Q_{e} will be the composite of the structural map

$$
\left(\xi_{\mathrm{p}}\right)_{*}: \mathrm{E}_{\mathrm{m}} \mathrm{D}_{\mathrm{p}} \mathrm{X} \rightarrow \mathrm{E}_{\mathrm{m}} \mathrm{X}
$$

with an external operation

$$
Q_{e}: E_{n} X+E_{m} D_{p} X
$$

which is defined for arbitrary spectra X and is natural for arbitrary maps $X \rightarrow Y$. Throughout this chapter we shall use the same symbol for corresponding internal and external Dyer-Lashof operations, with the context indicating which is intended. In this section we shall be concerned only with the external operations, and thus X and Y will always denote arbitrary spectra.

In order to motivate the definition of the external operation Q_{e} we give it in stages. Fix $m, n \in Z$ and $e \in E_{m} D_{p} S^{n}$. Let $u \in E_{0} S$ denote the unit element. We define Q_{e} first on the element $\Sigma^{n} u \in E_{n} S^{n}$ by $Q_{e}\left(\Sigma^{n} u\right)=e$. If $x \in E_{n} X$ happens to be
spherical, then there is a map $g: S^{n} \rightarrow X$ with $g_{*}\left(\Sigma^{n} u\right)=x$, and naturality requires us to define $Q_{e} X=\left(D_{p} g\right)_{*} e$. Now any element $x \in E_{n} X$ is represented by a map $f: S^{n} \rightarrow E \wedge X$, and to complete the definition of Q_{e} it suffices to give an analog for general x of the homomorphism $\left(D_{p} g\right)_{*}$ which exists when x is spherical. It is useful to do this in a somewhat more general context, so let Y be any spectrum and let $f: Y \rightarrow E \wedge X$ be any map. First we define $f_{* *}$ to be the composite

$$
E_{*} Y=\pi_{*}(E \wedge Y) \xrightarrow{(1 \wedge f)_{*}} \pi_{*}(E \wedge E \wedge X) \xrightarrow{(\phi \wedge 1)_{*}} \pi_{*}(E \wedge X)=E_{*} X,
$$

where ϕ is the product on E. Note that $f_{* *} \Sigma^{n} u=x$ if $f: S^{n}+E \wedge X$ represents x. Next define $\bar{D}_{\pi} f$ for any $\pi C \Sigma_{j}$ to be the composite

$$
D_{\pi} Y \xrightarrow{D_{\pi} f} D_{\pi}(E \wedge X) \xrightarrow{\delta} D_{\pi} E \wedge D_{\pi} X \xrightarrow{\xi \wedge 1} E \wedge D_{\pi} X,
$$

where ξ comes from the H_{∞} structure of E. Combining these definitions we obtain a map

$$
\left(\bar{D}_{\pi} f\right)_{* *}: E_{*} D Y \longrightarrow E_{*} D_{\pi} X .
$$

Definition 1.1. If $x \quad E_{n} X$ is represented by $f: S^{n} \rightarrow E \wedge X$ and e is an element of $E_{m} D_{p} S^{n}$ then

$$
Q_{e} x=\left(\bar{D}_{p} f\right)_{* *}(e) \in E_{m} D_{p} X
$$

Of course, this agrees with the definition given earlier when x is spherical, and in particular when $E=S$ we recover the external version of Bruner's operation. Next let $E=H Z_{p}$. The standard external operation (as defined by Steinberger) is denoted $e_{i} \otimes x^{p}$, where e_{i} is the generator of $H_{i}\left(\Sigma_{p} ; z_{p}(n)\right)$ defined in $[68$, section 1$]$ (recall that $Z_{p}(n)$ is Z_{p} with Σ_{p} acting trivially if n is even and via the sign representation if n is odd). Now it is easy to see that the map

$$
\Phi: H_{i}\left(\Sigma_{p} ; Z_{p}(n)\right) \longrightarrow H_{i+2 p n}\left(D_{p} S^{n} ; Z_{p}\right)
$$

given by $e_{i} \mapsto e_{i} \otimes\left(\Sigma^{n} u\right)^{p}$ is an isomorphism, and we have
Proposition 1.2. If $e=\Phi\left(e_{i}\right)$ then $Q_{e} x=e_{i} \otimes x^{p}$ for all x.

The proof of 1.2 will be given later in this section.
It is possible to put Definition 1.1 in a more categorical context. Let C_{E} be the category in which objects are spectra and the morphisms from X to Y are the stable maps from X to $E \wedge Y$. The composite in ζ_{E} of $f: X \rightarrow E \wedge Y$ and $g: Y \rightarrow E \wedge Z$ is the following composite of stable maps

$$
X \xrightarrow{\underline{f}} E \wedge Y \xrightarrow{1 \wedge g} E \wedge E \wedge Z \xrightarrow{\emptyset \wedge 1} E \wedge Z
$$

The construction \bar{D}_{π} on morphisms, combined with D_{π} on objects, gives a functor $\vec{D}_{\pi}: \zeta_{E}+\zeta_{E}$, and we can also define a smash product $\bar{\wedge}$ on E by letting $f_{1} \bar{\Lambda}_{f_{2}}$ be the composite

$$
X_{1} \wedge X_{2} \xrightarrow{f_{1} \wedge f_{2}}-E \wedge X_{1} \wedge E \wedge X_{2} \simeq E \wedge E \wedge X_{1} \wedge X_{2} \rightarrow E \wedge X_{1} \wedge X_{2}
$$

Finally, E homology is a functor on G_{E} which takes f to $f_{* *}$, and the following lemma shows that both Q_{e} and the external product in E-homology are natural transformations.

Lemma 1.3. (i) $\left(\bar{D}_{p} f\right)_{* *} Q_{e} y=Q_{e} f_{* *} y$ for any $y \in E_{*} Y$ and any $f: Y+E \wedge X$.
(ii) $\left(f_{1 * *} y_{1}\right) \otimes\left(f_{2 * *} y_{2}\right)=\left(f_{1} \pi_{f_{1}}\right)_{* *}\left(y_{1} \otimes y_{2}\right)$.

As one would expect, the maps $1, \alpha, \beta$ and δ of $I \S 1$ also give natural transformations.

Lemma 1.4. (i) $i_{*}\left(\bar{D}_{\pi} f\right)_{* *}=\left(\bar{D}_{\rho} f\right)_{* *^{2} *}$ if $\#$ c ρ.
(ii) $\alpha_{*}\left(\bar{D}_{\pi} \mathrm{f}^{\mathrm{N}} \overline{\mathrm{D}}_{\rho} \mathrm{f}\right)_{* *}=\left(\bar{D}_{\pi} \times \rho^{\mathrm{f}}\right)_{* *^{\alpha}}$.

$$
\begin{equation*}
\beta_{*}\left(\bar{D}_{\pi} \bar{D}_{\rho} f\right)_{* *}=\left(\bar{D}_{\pi \int \rho} f\right)_{* *^{\beta}} \tag{iii}
\end{equation*}
$$

$$
\text { (iv) } \delta_{*}\left(\bar{D}_{\pi}\left(\mathrm{f}_{1} \bar{\lambda} \mathrm{f}_{2}\right)\right)_{* *}=\left(\overline{\mathrm{D}}_{\pi} \mathrm{f}_{1} \bar{\wedge}_{\mathrm{D}} \overline{\mathrm{D}}_{\mathrm{f}} \mathrm{f}_{2}\right)_{* *^{\delta}} \text {. }
$$

We shall need two further transformations, namely the "diagonal" $\Delta: \Sigma D_{\pi} X \rightarrow D_{\pi} \Sigma X$ and the transfer $\tau: D_{\rho} X \rightarrow D_{\pi} X$. The first of these was constructed in II§3. The transfer was defined in IIs1 for certain special cases, and will be defined in IVş of the sequel whenever $\pi \subset p$.

Lemma 1.5.
(i) $\left(\bar{D}_{\pi} \Sigma f\right)_{* *} \Delta_{*}=\Delta_{*}\left(\Sigma \bar{D}_{\pi} f\right)_{* * *}$
(ii) $\tau_{*}\left(\bar{D}_{\rho} f\right)_{* *}=\left(\bar{D}_{\pi} f\right)_{* *} \tau_{*}$.

The proofs of $1.3,1.4$ and 1.5 are routine diagram chases (using (Equi., VI. 3.9] for 1.4 (ii) and (iii) and [Equi., IV.83] for 1.5(ii)).

Next we would like to define Dyer-Lashof operations in E-homology with torsion coefficients. We shall always abbreviate $E_{*}\left(X ; Z_{p}\right)$ by $E_{*}(X ; r)$. If M_{r} denotes the Moore spectrum $S^{-1} \cup_{p} r S^{\circ}$ and E_{r} denotes $E \wedge E M_{r}$ then by definition we have $E_{n}(X ; r)=$ $\pi_{n}\left(E_{r} \wedge X\right)$. Thus if E_{r} is an H_{∞} ring spectrum (for example, if E is ordinary integral homology) we can apply Definition 1.1 directly to E_{r}. However, it is a
melancholy fact that in general E_{r} is not an H_{∞} ring spectrum, as shown by the following, which will be proved at the end of section 7 .

Proposition 1.6. K_{r} is not an H_{∞} ring spectrum for any n.

Thus we must generalize 1.1. First of all, if $f: Y \rightarrow E \wedge X$ is any map we define $f_{* *}$ to be the composite

$$
E_{*}(Y ; r)=\pi_{*}\left(E_{r} \wedge Y\right) \xrightarrow{\left(1 \wedge f^{\prime}\right)_{*}} \pi_{*}\left(E_{r} \wedge E \wedge X\right) \longrightarrow \pi_{*}\left(E_{r} \wedge X\right)=E_{*}(X ; r) .
$$

Next observe that the Spanier-Whitehead dual of ΣM_{r} is M_{P}, so that there is a natural isomorphism

$$
\mathrm{E}_{\mathrm{n}}(\mathrm{X} ; \mathrm{r}) \cong\left[\Sigma^{\left.\mathrm{n}_{M_{r}}, E \wedge X\right]}\right.
$$

In particular, any $x \in E_{n}(X ; r)$ is represented by a map $f: \Sigma^{n} M_{r} \rightarrow E \wedge X$ and there results a homomorphism

$$
\left(\bar{D}_{p} f\right)_{* *}: E_{*}\left(D_{p} \Sigma^{n_{M}} ; s\right) \rightarrow E_{*}\left(D_{p} X ; s\right)
$$

for any $s \geq 1$. Note that $f_{* * \Sigma^{n} u_{r}}=x$, where u_{r} is the composite $M_{r}=S \wedge M_{r} \xrightarrow{u} A \operatorname{EA} M_{r}$. We shall call u_{r} the fundamental class of M_{r} *

Definition 1.7. Let $e \in E_{m}\left(D_{p} \Sigma^{n} M_{r} ; s\right)$. Then

$$
Q_{e}: E_{n}(X ; r) \rightarrow E_{m}\left(D_{p} X ; s\right)
$$

is defined by $Q_{e} x=\left(\bar{D}_{p} f^{f}\right)_{* *}(e)$, where $f^{f}: \Sigma^{n^{\prime}} M_{r} \rightarrow E \wedge X$ is a map representing x.

Lemmas $1.3,1.4$, and 1.5 remain valid in this generality.
When E is integral homology and $r=s=1$ Definition 1.7 provides another way of constructing ordinary Dyer-Lashof operations, which are of course the same as those given by Definition 1.1. However, even in this case 1.7 has certain technical advantages; for example, it gives the relation between the Bockstein and the DyerLashof operations, and by allowing r and s to be greater than 1 one obtains the Pontryagin p-th powers.

We conclude with the proof of 1.2 . We write E for $H Z_{p}$. The result holds by definition when $x=\sum^{n} u \in E_{n} S^{n}$, so it suffices to show that

$$
\left(\bar{D}_{p} f\right)_{* *}\left(e_{i} \otimes y^{p}\right)=e_{i} \otimes\left(f_{* * y}\right)^{p}
$$

for all $f: Y \rightarrow E \wedge X$. We shall do this by a direct comparison with the mod p chain level. If A_{*} is any chain complex over Z_{p} we write $D_{p} A_{*}$ for $W \otimes_{\Sigma_{p}}\left(A_{*}\right) p$, where W is a fixed resolution of Z_{p} by free $Z_{p}\left[\Sigma_{p}\right]$-modules. We let C_{*} dehote the mod p
cellular chains functor on CW-spectra, and we have a natural equivalence $D_{p} C_{*} \simeq C_{*} D_{p}$ by I.2.1. If I_{*} denotes the trivial chain complex with Z_{p} in dimension zero then there is a natural equivalence between $E^{O} X$ and the chain-homotopy classes of degree zero maps from $C_{*} X$ to Γ_{*}. In particular, we obtain chain maps $6: C_{*} E \rightarrow \Gamma_{*}$ and $\theta^{\prime}: D_{p} C_{*} E+\Gamma_{*}$ representing the identity $E \rightarrow E$ and the structural map $D_{p} E \rightarrow E$. If ε denotes the composite $D_{p} \Gamma_{*}=W / \Sigma_{p} \rightarrow r_{*}$ (in which the second map is the augmentation) then $\varepsilon \circ \mathrm{D}_{\mathrm{p}} \hat{\theta}$ is a chain map which, like θ^{\prime}, represents an element of $\mathrm{E}^{0}\left(\mathrm{D}_{\mathrm{p}} \mathrm{E}\right)$ extending the product map $E^{(p)} \rightarrow E$. But the proof of $I .3 .6$ shows that there is only one such element, hence we have we have $\varepsilon \circ D_{p} \theta \simeq \theta^{\prime}$. Next, observe that $f_{* *}$ is equal to the composite

$$
\mathrm{E}_{*} \mathrm{Y} \longrightarrow \mathrm{E}_{*}(\mathrm{E} \wedge \mathrm{X}) \longrightarrow \mathrm{E}_{*} \mathrm{X},
$$

where the second map is the slant product with the identity class in $E^{\circ} E$. Hence $f_{* *}$ is represented on the chain level by the composite

$$
h: C_{*} Y \longrightarrow c_{*}(E \wedge X) \simeq C_{*} E \otimes C_{*} X \xrightarrow{\theta \otimes 1} \Gamma_{*} \otimes C_{*} X \simeq C_{*} X .
$$

Since h is a chain map we have

$$
\left(D_{p} h\right)_{*}\left(e_{i} \otimes y^{p}\right)=e_{i} \otimes\left(h_{*} y\right)^{p}=e_{i} \otimes\left(f_{* *} y\right)^{p},
$$

so it suffices to show $\left(\bar{D}_{p} f\right)_{* *}=\left(D_{p} h\right)_{* *}$ Now $\left(\bar{D}_{p} f\right)_{* *}$ is equal to the composite

$$
E_{*} D_{p} Y \longrightarrow E_{*}\left(D_{p}(E \wedge X)\right) \xrightarrow{\delta_{*}} E_{*}\left(D_{p} E \wedge D_{p} X\right) \longrightarrow E_{*} D_{p} X
$$

where the last map is the slant product with the structural map in $E^{0} D_{p} E$. Hence $\left(\bar{D}_{\mathrm{p}} f\right)_{* *}$ is represented on the chain level by the composite H around the outside of the following diagram

Here d is the evident diagonal transformation and the diagram clearly commutes. Inspection of the piece marked (1) shows that $H=D_{p} h$ as required.

2. The Homology of CX

Our main aim in this chapter is the computation of K_{*} (CX;1). In this section we illustrate the basic method in a simpler and more familiar situation, namely the computation of the ordinary mod phomology of CX. (All homology in this section is to be taken with mod p coefficients for an odd prime p; the $p=2$ case is similar.) This result is of course well-known, but in fact our method gives some additional generality, since both the construction $C X$ and our computation of $H_{*} C X$ generalize to the situation where X is a (unital) spectrum, while the usual method of computation does not.

We begin by listing the relevant properties of this spectrum-level construction (which is due to Steinberger); a complete treatment will be given in [Equi., chapter VII]. By a unital spectrum we simply mean a spectrum X with an assigned map $S \rightarrow X$ called the unit. For any unital spectrum X one can construct an E_{∞} ring spectrum CX, and this construction is functorial for unit-preserving maps. In particular, X might be $\Sigma^{\infty} Y^{+}$for some based space Y, and there is then an equivalence $C X \simeq \Sigma^{\infty}(C Y)^{+}$ relating the space-level and spectrum-level constructions. There is a natural filtration $F_{k} C X$ of $C X$ and natural equivalences $F_{1} C X \simeq X$ and

$$
F_{k} C X / F_{k-1} C X \simeq D_{k}(X / S)
$$

Finally, there are natural maps $F_{j} C X \wedge F_{k} C X \rightarrow F_{j+k} C X$ and $D_{j} F_{k} C X \rightarrow F_{j k} C X$ for which the following diagrams commute.

Now let X be a unital spectrum and assume the element $n \in H_{0} X$ induced by the unit map is nonzero. We can then choose a set $A \subset H_{*} X$ such that $A \cup\{n\}$ is a basis for $H_{*} X$. Let CA be the free commutative algebra generated by the set

$$
\left\{Q^{I} x \mid x \in A, I \text { is admissible and } e(I)+b(I)>|x|\right\}
$$

(here $|x|$ denotes the degree of x; see 128 , I.2] for the definitions of admissibility, $e(I)$ and $b(I))$. The elements of this set, which will be called the standard indecomposables for CA , are to be regarded simply as indeterminates since the Q^{I} do not act on $H_{*} X$. The basis for CA consisting of products of standard indecomposables will be called the standard basis for CA. Using the inclusion $X \rightarrow C X$ and the fact that $C X$ is an E_{∞} ring spectrum we obtain a ring map

$$
\lambda: \mathrm{CA} \rightarrow \mathrm{H}_{*} \mathrm{CX}
$$

and we shall show

Theorem 2.1. λ is an isomorphism.

We shall derive this theorem from an analogous fact about extended powers. Let Y be any spectrum and let A be a basis for $H_{*} Y$. CA is defined as before, and we make it a filtered ring by giving $Q^{I} x$ filtration $p^{\ell(I)}$. Let $D_{k} A=F_{k} C A / F_{k-1} C A$ for $k \geq 1$; this has a standard basis consisting of the standard basis elements in $F_{k} C A-F_{k-1} C A$. There is an additive map

$$
\lambda_{k}: D_{k} A \rightarrow H_{*} D_{k} Y
$$

defined as follows. If all Dyer-Lashof operations and products are interpreted externally then a standard basis element of $D_{\mathcal{L}} A$ represents an element of $H_{*}\left(\left(D_{p}\right)^{j} l_{Y} \wedge \ldots \wedge\left(D_{p}\right)^{j} s_{Y}\right)$ with $p^{j}+\cdots+p^{f_{S}}=k$; here $\left(D_{p}\right)^{j}$ denotes the $j-\operatorname{th}$ iterate of D_{p}. Applying the natural maps α_{*} and β_{*} gives an element $H_{*} D_{k} Y$ which by definition is the value of λ_{k} for the original basis element. We then have

Theorem 2.2. λ_{k} is an isomorphism for all $k \geq 1$.

Assuming 2.2 for the moment, we give the proof of 2.1 . Let X be a unital spectrum and let $A \cup\{\eta\}$ be a basis for $H_{*} X$. Let $Y=X / S$. Then A projects to a basis for $H_{*} Y$ which we also denote by A. For each $k \geq 1$ the map $\lambda \mid F_{k} C A$ lifts to a $\operatorname{map} \lambda^{(k)}: \mathrm{F}_{\mathrm{k}} \mathrm{CA} \rightarrow \mathrm{H}_{*} \mathrm{~F}_{\mathrm{k}} \mathrm{CX}$ and the following diagram commutes.

Since λ_{k} is an isomorphism, the map γ is onto and hence the bottom row is short exact. It now follows by induction and the five lema that $\lambda^{(k)}$ is an isomorphism for all k, and 2.1 follows by passage to colimits.

We begin the proof of 2.2 with a special case

Lemma 2.3. λ_{p} is an isomorphism for all Y.

The proof of the lemma is a standard chain-level calculation which will not be given here (see [68, section 1]). It is interesting to note, however, that one can
prove 2.3 without any reference to the chain-level using the methods of section 6 below.

Next we use the machinery of section 1 to reduce to the case where Y is a wedge of spheres. For each $x \in A$ choose a map $f_{x}: S|x| \rightarrow H \wedge Y$ representing x. Let $Z=V_{S}|x|$ and let $f: Z \rightarrow H \wedge Y$ be the wedge of the f_{X}. Then $f_{* *}: H_{*} Z \rightarrow H_{*} Y$ is an isomorphism. We claim that 2.2 will hold for Y if it holds for Z (where $H_{*} Z$ is given the basis B consisting of the fundamental classes of the $|x|$. To see this, consider the following diagram

The map $D_{k}\left(f_{* *}\right)$ is induced by $f_{* *}$, which clearly takes B to A. Thus $D_{k}\left(f_{* *}\right)$ is an isomorphism. The diagram commutes by 1.3 and $1.4(i i)$ and (iii). The claim now follows from

Lemma 2.4. Let $h: W \rightarrow H \wedge X$ be any map. If $h_{* *}$ is an isomorphism, so is $\left(\bar{D}_{k} h\right)_{* *}$ for all k.

Proof. The proof is by induction on k. First suppose that $k=j p$. Since the case $k=p$ of 2.4 follows from 2.3 we may assume $j>1$. Let $\pi=\Sigma_{j} f \Sigma_{p}$ and consider the following diagram

The diagram commutes by $1.4(i)$ and (iii) and $1.5(i i)$. The map β_{*} is an isomorphism. The map $\left(\bar{D}_{p} h\right)_{* *}$ is an isomorphism by the case $k=p$, hence so is $\left(\bar{D}_{j} \bar{D}_{p} h\right)_{* *}$ by inductive hypothesis. Our assumption on k implies that τ_{*} is monic and $\beta_{j} p^{*}$ is onto, hence $\left(\bar{D}_{k} h\right)_{* *}$ is monic by inspection of the first square and onto by inspection of the third. The proof is the same when k is prime to p, except that we let π be $\Sigma_{k-1} \times \Sigma_{1}$.

Next we reduce to the case of a single sphere. To simplify the notation we assume that Z is a wedge of two spheres $S^{m} \vee S^{n}$; the argument is the same in the general case. Let B_{1} and B_{2} be the bases for $H_{*} S^{m}$ and $H_{*} S^{n}$ consisting of the
fundamental classes, so that $B=B_{1} \cup B_{2}$. There is an evident map $C B_{1} \otimes C B_{2}+C B$ and passing to the associated graded gives a map

$$
\varphi: \sum_{i=0}^{k}\left(D_{i} B_{1} \otimes D_{k-i} B_{2}\right) \rightarrow D_{k} B
$$

Recall the equivalence

$$
\bigvee_{i=0}^{k}\left(D_{i} S^{m} \wedge D_{k-1} s^{n}\right) \simeq D_{k}\left(S^{m} \vee S^{n}\right)=D_{k} Z
$$

constructed in II§1.

Lemma 2.5. φ is an isomorphism, and the diagram

commutes.

Proof. φ is an isomorphism since it takes the standard basis on the left to that on the right. The comnutativity of the diagram is immediate from the definitions.

By Lemma 2.5 we see that 2.2 will hold for Z once we have shown the following. Let $\mathrm{x} \in \mathrm{H}_{\mathrm{n}} \mathrm{S}^{\mathrm{n}}$ be the fundamental class.

Lemma 2.6. $\lambda_{k}: D_{k}\{x\} \rightarrow H_{*} D_{k} S^{n}$ is an isomorphism for all $k \geq 1$ and all integers n .

Proof. By induction on k. First assume that $k=j p$ for some $j>1$. For the proof in this case we use the following diagram, which will be denoted by (*).
(*)

Here $y, z \in H_{n}\left(S^{n} v S^{n}\right)$ are the fundamental classes of the first and second summands. The set $a \subset H_{*} D_{p} S^{r}$ is $\left\{B^{\varepsilon} Q^{S} x \mid 2 s-\varepsilon \geq n\right\}$. (The reader is warned as this point to distinguish carefully between the Bockstein β and the natural map β of section I.1. This is made easier by the fact that we never use the latter map per se, only the homomorphism β_{*} induced by it.) The set $a^{\prime} \subset H_{*} D_{p}\left(S^{n} \vee S^{n}\right)$ is $\left\{\beta^{\varepsilon} Q_{Q}^{S} y, \beta^{\varepsilon_{Q}}{ }_{z} \mid 2 s-\varepsilon \geq n\right\}$ if n is odd and is the union of this set with $\left\{y^{i}{ }_{z} p-i \mid 1 \leq i \leq p-l\right\}$ when n is even. Lemma 2.3 implies that $a_{\text {a }}$ and a^{\prime} are bases, and hence the maps λ_{j} are isomorphisms by inductive hypothesis. The maps $g_{i}: S^{n} \vee S^{n} \rightarrow S^{n}$ are defined for $i=0,1$ and 2 by $g_{0}=l \vee l, g_{1}=l \vee *$ and $g_{2}=* \vee l$, where 1 and $*$ denote the identity map and the trivial map of S^{n}. To complete the construction of the diagram we require

Lemma 2.7. There exist maps γ_{j} and γ_{j}^{\prime}, independent of i, such that diagram (*) commutes for $i=0,1$ and 2 .

The proof of 2.7 is given at the end of this section; all that is involved is to "simplify" expressions in $D_{j} a^{\prime}$ and $D_{j} a$ using the Adem relations and the Cartan formula in a sufficiently systematic way.

Now consider the inner square of diagram (*). By assumption on k we see that $\beta_{j p *}{ }^{\circ} r_{*}$ is an isomorphism, hence λ_{k} is onto. Let $\theta: D_{k}\{x\} \rightarrow D_{k}\{x\}$ be the composite $\gamma_{j} \circ \lambda_{j}^{-1} \circ \tau_{*} \circ \lambda_{k}$. Clearly λ_{k} will be monic if θ is. In fact we shall show that θ is an isomorphism. We claim first of all that θ takes the subspace $D \subset D_{k}\{x\}$ generated by the decomposable standard basis elements isomorphically into itself. To see this we use the outer square of diagram (*). Let $\theta^{\prime}: D_{k}\{y, z\} \rightarrow D_{k}\{y, z\}$ be the composite $\gamma_{j}^{\prime} \circ \lambda_{j}^{-1} \circ \tau_{*} \circ \lambda_{k}$. Let $D^{\prime} \subset D_{k}\{y, z\}$ be the image of $\sum_{i=1}^{k-1}\left(D_{i}\{y\} \otimes D_{k-i}\{z\}\right)$ under the map φ of Lemma 2.5. Then D^{\prime} is the kernel of the map

$$
D_{k}\left(g_{1}\right)_{*} \oplus D_{k}\left(g_{2}\right)_{*}: D_{k}\{y, z\}-D_{k}\{x\} \oplus D_{k}\{x\}
$$

and hence θ^{\prime} takes $\boldsymbol{\theta}^{\prime}$ into itself. But $D_{k}\left(g_{0}\right)_{*}\left(\boldsymbol{\theta}^{\prime}\right)=\boldsymbol{\theta}$ and $D_{k}\left(g_{0}\right)_{*} \circ \theta^{\prime}=\theta \circ D_{k}\left(g_{0}\right)_{*}$, hence θ takes \mathcal{D} into itself and we have the commutative diagram

Since both A and θ have finite type $\theta: \theta+\theta$ will be an isomorphism if $\theta^{\prime}: \theta^{\prime}+\mathcal{S}^{\prime}$ is monic. But λ_{k} is monic on θ^{\prime} by 2.5 and the inductive hypothesis, hence θ^{\prime} is also monic on θ^{\prime} since $\lambda_{k} \circ \theta^{\prime}=\left(\beta_{j p^{*}} \circ \tau_{*}\right) \circ \lambda_{k}$.

Now let $\mathcal{L}=\mathrm{D}_{\mathrm{K}}\{\mathrm{x}\} / \theta$. This has the basis $\left\{\mathrm{Q}^{\mathrm{I}} \mathrm{A} \mid \mathrm{I}\right.$ admissible, $\mathrm{p}^{\ell(I)}=\mathrm{k}$, $e(I)+b(I)>n\}$. We wish to show that the map $\bar{\theta}: J \rightarrow \mathcal{L}$ induced by θ is an isomorphism. The basic idea is to use the homology suspension, or rather its external analog which is the map $\Delta_{*} \Sigma: H_{i} D_{p} S^{n} \rightarrow H_{i+1} D_{p} S^{n+1}$, to detect elements of l. Let $\tilde{x} \in H_{n+1} S^{n+1}$ be the fundamental class. We define $\Gamma: J \rightarrow D_{k}\{\tilde{x}\}$ by $\Gamma\left(Q^{I} x\right)=$ $Q^{I} \tilde{x}$, where we interpret $Q^{I} \tilde{x}$ as zero if $e(I)<n+1$ and as a $p-t h$ power in the usual way if $e(I)=n+1$ and $b(I)=0$. The key fact is the following, which will be proved at the end of this section.

Lemma 2.8. The diagram

commutes.

We also need the fact that the evident action of the Bockstein on \mathcal{D} comutes with 8 ; this will be clear from the proof of 2.7 .

Now let J_{n} be the subspace of \rfloor spanned by the set $\left\{Q^{I} x \mid I\right.$ admissible, $\left.p^{\ell(I)}=k, e(I)+b(I) \leq n+m\right\}$. We shall show first that $\bar{\theta}$ is monic on ℓ_{1}. Let \mathcal{l}_{1}^{\prime} be the subspace of J_{1} spanned by the set $\left\{Q^{I}| | I\right.$ admissible, $p^{\ell(I)}=k, e(I)=n+1$, $b(I)=0\}$. Then $l_{1}=l_{1}^{\prime} \oplus \beta D_{1}^{\prime}$. From the definition of Γ we see that βl_{1}^{\prime} is the kernel of Γ, that Γ is monic on $\|_{1}^{\prime}$ and that $\Gamma\left(l_{1}^{\prime}\right)=\Gamma(l) \cap D$. Let w be a nonzero element of \mathcal{l}_{1}. We claim that $\bar{\theta}$ lies in \bar{j}_{1}, so that it can be written uniquely in the form $w^{\prime}+\beta w^{\prime \prime}$ with $w^{\prime}, w^{\prime \prime} J_{1}^{\prime}$, and furthermore we claim that $w^{\prime} \neq 0$. To see this note that Γw is a nonzero decomposable, hence $\theta \Gamma w$ is also a nonzero decomposable, hence $\Gamma \vec{\theta} w=\theta \Gamma w$ is a nonzero element of $\Gamma(l) \cap \boldsymbol{\theta}=\Gamma\left(l_{1}^{\prime}\right)$. Thus there is a nonzero element w^{\prime} of \bar{l}_{1}^{\prime} with $\Gamma w^{\prime}=\Gamma \bar{\theta} w$, so that $\bar{\theta} w-w^{\prime}$ is in ker $\Gamma=\beta \mathcal{J}_{1}^{\prime}$ as required. Now let w_{1}, w_{2} be any elements of l_{1}^{\prime} with $\vec{\theta} w_{1}=w_{1}^{\prime}+\beta w_{1}^{\prime \prime}$ and $\bar{\theta} w_{2}=w_{2}^{\prime}+\beta w_{2}^{\prime \prime}$. Suppose that $v=w_{1}+\beta w_{2}$ is the kernel of θ. Then $0=\bar{\theta} v=w_{1}^{\prime}+\beta w_{1}^{\prime \prime}+\beta w_{2}^{\prime}$, hence $w_{1}^{\prime}=0$ and $w_{1}^{\prime \prime}+w_{2}^{\prime}=0$. But $w_{1}^{\prime}=0$ implies $w_{1}=0$, hence $w_{1}^{\prime \prime}=0$. Thus $w_{2}^{\prime}=0$, whence $w_{2}=0$ and $v=0$, showing that $\bar{\theta}$ is monic on ℓ_{1}.

Next we claim that $\bar{\theta}$ is monic on ρ_{m} for all $m \geq 1$. Let $w \in \rho_{m}$ with $\bar{\theta} w=0$. Let $\tilde{J}=D_{k}\{\tilde{x}\} / \theta$ and let $\bar{\Gamma}$ be the composite $\mathcal{J} \rightarrow D_{k}\{\tilde{x}\} \rightarrow \tilde{\mathcal{L}}$. Then $\overline{\Gamma w}$ is in the subspace \mathcal{I}_{m-1}^{k} generated by $Q^{I} \tilde{x}$ with I admissible, $p^{\ell}(I)=k$ and $e(I)+b(I) \bar{z}(n+1) \leq m-1$. Since $\bar{\theta} \bar{\Gamma} w=\bar{\Gamma} \bar{\theta} w=0$ and since (by induction on m) θ is monic on \tilde{D}_{m-1} we see that $\bar{\Gamma}=0$. Now the kermel of $\bar{\Gamma}$ is precisely \mathcal{I}_{1}, and we have shown already that $\bar{\theta}$ is monic on \mathcal{l}_{1}, hence $w=0$ as required. Thus $\bar{\theta}: l+l$
is monic, and since has finite type \forall is an isomorphism. This completes the proof of 2.6 for the case $k=j p$.

Now suppose k is prime to p and consider the following diagram

Here γ and γ^{\prime} are obtained from the products in $C\{x\}$ and $C\{y, z\}$ by passage to the associated graded. The diagram clearly commutes. The analysis of this diagram proceeds as before, except that in this case the map $D_{k}\left(g_{0}\right) *$ takes the kernel of $D_{k}\left(g_{1}\right)_{*} \oplus D_{k}\left(g_{2}\right)_{*}$ onto all of $D_{k}\{x\}$, so that we can conclude at once that λ_{k} is an isomorphism without having to consider indecomposables.

This completes the proof of 2.6, and thereby of 2.2 , except that we must still verify 2.7 and 2.8 . For these we need certain properties of the external Q^{s}. First of all these operations are additive, and $Q^{s} x=l_{*}\left(x^{(p)}\right)$ if $2 s=|x|$. The external Cartan formula is

$$
\delta_{*} Q^{s}(x \otimes y)=\sum_{i=0}^{s} Q^{i} x \otimes Q^{s-i} y
$$

The external Adem relations are obtained by prefixing $B_{p p *}$ to both sides of the standard Adem relations. All of these relations can be obtained directly from the definitions of section 1 , without any use of internal operations (compare sections 7 and 8 below). They can also be derived from the corresponding properties for internal operations by means of the equivalence

$$
C\left(X \vee S^{0}\right)=V_{k>0} D_{k} X
$$

proved in [Equi., VIIS5].

Proof of 2.7. Every standard indecomposable in $C Q$ has the form $Q^{I}\left(\beta^{\varepsilon} Q^{s} X\right)$. We can formally simplify such an expression by means of the Adem relations into a sum of admissible sequences acting on x (for definiteness we assume that at each step the

Adem relations are applied at a position in the sequence as far to the right as possible). The result is an element of $C\{x\}$, where we agree to interpret all sequences with excess less than $|x|$ as zero, and we extend multiplcatively to get a $\operatorname{map} F_{j} C a \rightarrow F_{k} C(x)$. The map γ_{j} is obtained by passage to quotients. The map γ_{j}^{\prime} is obtained in the same way except that we use the Cartan formula to simplify expressions of the form $Q^{I}\left(y^{i}{ }_{2} p-i\right)$ with $0<i<p$. The inner and outer squares of diagram (*) commute as a consequence of the external Cartan formula and Adem relations, and the upper trapezoid clearly commutes when i is 1 or 2 . When i is zero the element $y^{i}{ }_{z} p-i$ of Q^{\prime} goes to $Q^{n / 2} x$, and so it is necessary to check that the result of simplifying $Q^{I} Q^{n / 2} x$ with the Adem relations is the same as using the Cartan formula on $Q^{I} X^{p}$; the result in each case is zero unless all entries of I are divisible by p, in which case it is $\left(Q^{I / p_{x}}\right)^{p}$.

Finally, we give the proof of 2.8. We need two facts about $\Delta_{*}: H_{*}\left(\Sigma D_{K} X\right) \rightarrow$ $H_{*}\left(D_{k^{\Sigma}} X\right)$, namely that $\Delta_{*} \Sigma Q^{S} X=Q^{S} \Sigma x$ if $k=p$ and that $\Delta_{*} \Sigma\left(\alpha_{i, k-i}\right)_{*}(x \otimes y)$ is zero for $0<i<k$. The first of these, which is the external version of the stability of Q^{s}, was proved in II.5.6. For the second, which is the external analog of the fact that the homology suspension annihilates decomposables, we use the third diagram of II.3.1 with $X=S^{1}$, noting that the diagonal $\Delta: S^{1} \rightarrow S^{l} \wedge S^{1}$ is nullhomotopic. Now 2.8 is immediate from the commutativity of the following diagram.

Here γ_{j} is the map constructed in the proof of 2.7 and Γ^{\prime} is the composite $D_{k}\{x\} \longrightarrow \perp \longrightarrow D_{k}\{\tilde{x}\}$. We define $\Gamma^{\prime \prime}$ to take decomposables to zero and $Q^{I}\left(\beta^{\varepsilon} Q^{S} x\right)$ to $Q^{\frac{1}{1}}\left(\beta^{\varepsilon_{Q}}{ }^{S} \tilde{x}\right)$. Commutativity of the left and right trapezoids follow from the two formulas given above. Commutativity of the upper trapezoid is obvious except on elements of the form $Q^{I}\left(\beta^{\varepsilon} Q_{Q}^{S}\right)$ with $e(I)=n+1+2 s(p-1)-\varepsilon$ and $b(I)=0$, and it follows in this case from a simple calculation.

3. Dyer-Lashof Operations in K -Theory

In this section we give our main results about K-theory Dyer-Lashof operations. We begin by fixing notations. We shall work in the stable category, so that X will always denote a spectrum. Homology operations are to be interpreted as internal rather than external. We use Z_{2}-graded K-theory, with $|x|$ denoting the mod 2 degree of x. There are evident natural maps

$$
\begin{aligned}
& \pi: K_{\alpha}(X ; r) \longrightarrow K_{\alpha}(X ; r-1) \quad \text { if } r \geq 2 \\
& p_{*}^{s}: K_{\alpha}(X ; r) \longrightarrow K_{\alpha}(X ; r+s) \quad \text { if } s \geq 1 \\
& \beta_{r}: K_{\alpha}(X ; r) \longrightarrow K_{\alpha+1}(X ; r) \\
& \Sigma: K_{\alpha}(X ; r) \longrightarrow K_{\alpha+1}(\Sigma X ; r) .
\end{aligned}
$$

(Recall that $\Sigma \mathrm{X}$ means $S^{1} \wedge X$ in this chapter, not, $X \wedge S^{l}$ as in chapters I-VII.)
β_{1} will usually be written simply as β. We write π^{s} for the s-th iterate of π. It will of ten be convenient to denote the identity map either by π^{0} or p_{*}^{0}. We write π^{∞} for the reduction map $K_{\alpha}(X ; Z)+K_{\alpha}(X ; r)$. Our first two results give some useful elementary facts about mod $\mathrm{p}^{\mathrm{r}} \mathrm{K}$-theory; the proofs may be found in [13] (except for 3.2(iii), which is Lemma 6.4 of 1631 , and 3.2 (iv), which will be proved in section 7).

Proposition 3.1. (i) $K_{*}(X ; r)$ is a $Z_{p} r^{-m o d u l e .}$
(ii) If $s \geq 1$ then $\pi^{s} \beta_{r+s} p_{*}^{s}=\beta_{r}$.
(iii) πp_{*} and $p_{*} \pi$ are multiplication by p.
(iv) $\beta_{r} \beta_{r}=0$.

Proposition 3.2. For each $r \geq 1$ there is an external product

$$
K_{\alpha}(X ; r) \otimes K_{\alpha},(Y ; r) \rightarrow K_{\alpha+\alpha},(X \wedge Y ; r)
$$

denoted by $x \otimes y$, which has the following properties.
(i) \otimes is natural, bilinear and associative.
(ii) If $u K_{0} S$ is the unit then $x \otimes \pi^{\infty} u=\pi^{\infty} u \otimes x=x$.
(iii) $\pi(x \otimes y)=\pi x \otimes \pi y$ and $\pi^{\infty}(x \otimes y)=\pi^{\infty} x \otimes \pi^{\infty} y$.
(iv) $p_{*}(x \otimes \pi y)=\left(p_{*} x\right) \otimes y$.
(v) $\quad \beta_{r}(x \otimes y)=\beta_{r} x \otimes y+(-1)^{|x|} x \otimes \beta_{r} y$.
(vi) $\quad \Sigma(x \otimes y)=\Sigma x \otimes y=(-1)^{|x|} x \otimes \Sigma y$.

If p is odd then the following also holds, where $T: X \wedge Y \rightarrow Y \wedge X$ switches the factors.
(vii) $\quad T_{*}(x \otimes y)=(-1)^{|y||x|} y_{y} \otimes x$

If $p=2$ there are two external products for each r satisfying (i), (ii), (v) and (vi). If these are denoted by \otimes and \otimes ' the relation

$$
\text { (viii) } \quad x \otimes y=x \otimes{ }^{\prime} y+2^{r-1} \beta_{r} x \otimes \beta_{r} y
$$

holds. Relations (iii) and (iv) hold when either mod 2^{r} product is paired with either mod 2^{r-l} product. If $r \geq 2$ then (vii) holds for both \otimes and \otimes ', while if $\mathrm{r}=1$ then the following holds.
(vii)' $\mathrm{T}_{*}(\mathrm{x} \otimes \mathrm{y})=\mathrm{y} \otimes{ }^{\prime} \mathrm{x}=\mathrm{y} \otimes \mathrm{x}+\beta \mathrm{y} \otimes \beta \mathrm{x}$.

We shall actually give a canonical choice of mod 2^{r} multiplications in Remark 3.4(iv) below. When X is a ring spectrum we obtain an internal product denoted xy. We write $\eta \in K_{0}(X ; r)$ for the unit in this case, reserving the letter u for the unit of $\mathrm{K}_{\mathrm{O}} \mathrm{S}$.

Our next result gives the properties of our first operation, which is denoted by Q. In order to relate Q to the K-homology suspension we must restrict to the space level, and we fix notations for dealing with this case. If Y is any space we write $K_{*}(Y ; r)$ for $K_{*}\left(\Sigma^{\infty} Y^{+} ; r\right)$ and, if Y is based, we write $\widetilde{K}_{r}(Y ; r)$ for $K_{*}\left(\Sigma^{\infty} Y ; r\right)$. The homology suspension σ is the composite

$$
\widetilde{\mathrm{K}}_{\alpha}(\Omega \mathrm{Y} ; \mathrm{r}) \xrightarrow{\Sigma} \tilde{\mathrm{K}}_{\alpha+1}(\Sigma \Omega \mathrm{Y} ; \mathrm{r}) \longrightarrow \tilde{\mathrm{K}}_{\alpha+1}(\mathrm{Y} ; \mathrm{r}) \subset \mathrm{K}_{\alpha+1}(\mathrm{Y} ; \mathrm{r}) .
$$

If Y is an H_{∞} space then ΩY is also an H_{∞} space and $\Sigma^{\infty} Y^{+}$is an H_{∞} ring spectrum; see I. 3.7 and I.3.8.

Theorem 3.3. Let X be an H_{∞} ring spectrum. For each $r \geq 2$ and $\alpha \in Z_{2}$ there is an operation

$$
Q: K_{\alpha}(X ; r) \rightarrow K_{\alpha}(X ; r-1)
$$

with the following properties, where $x, y K_{*}(X ; r)$.
(i) Q is natural for H_{∞} maps of X.
(ii) $Q_{n}=0$.
(iii)

```
    Q\piX = \piQx if r\geq3.
```

(iv) $Q p_{*} x= \begin{cases}x^{p} & \text { if }|x|=0 \text { and } r=1 \\ p_{*} Q x-\left(p^{p-1}-1\right) x^{p} & \text { if }|x|=0 \text { and } r \geq 2 \\ 0 & \text { if }|x|=1 \text { and } r=1 \\ p_{*} Q x & \text { if }|x|=1 \text { and } x \geq 2\end{cases}$
(v) $\quad \beta_{r-1} Q x= \begin{cases}Q \beta_{r} x-p \pi\left(x^{p-1} \beta_{r} x\right) & \text { if }|x|=0 \\ \left(\pi \beta_{r} x\right)^{p}+p Q \beta_{r} x & \text { if }|x|=1 .\end{cases}$
$(v i) \quad Q(x+y)= \begin{cases}Q x+Q y-\pi\left[\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x^{i} y^{p-i}\right] & \text { if } p \text { is odd and }|x|=|y|=0 \\ Q x+Q y-\pi(x y)+2^{r-2}\left(\pi \beta_{r} x\right)\left(\pi \beta_{r} y\right) & \text { if } p=2 \text { and }|x|=|y|=0 \\ Q x+Q y & \text { if }|x|=|y|=1 .\end{cases}$
$Q(k x)=k Q x-\frac{1}{p}\left(k^{p}-k\right)(\pi x)^{p}$ if $k \quad Z,|x|=0$.
(vii) Let $|x|=|y|=0$. Then

$$
Q(x y)=\left\{\begin{aligned}
& Q x \cdot \pi\left(y^{p}\right)+\left(x^{p}\right) \cdot Q y+p(Q x)(Q y) \quad \text { if } p \text { is odd } \\
& Q x \cdot \pi\left(y^{2}\right)+ \pi\left(x^{2}\right) \cdot Q y+2(Q x)(Q y)+2^{r-2} \pi\left(x \beta_{r} x\right) \pi\left(y \beta r_{r} y\right) \\
&+2^{2 r-4}\left(Q \beta_{r} x\right)\left(Q \beta_{r} y\right) \quad
\end{aligned} \quad \text { if } p=2 .\right.
$$

Let $|x|=1,|y|=0$. Then

$$
Q(x y)=\left\{\begin{array}{l}
Q x \cdot \pi\left(y^{p}\right)+p(Q x)(Q y) \text { if } p \text { is odd } \\
Q x \cdot \pi\left(y^{2}\right)+2(Q x)(Q y)+2^{2 r-4}\left(\pi \beta_{r} x\right)^{2}\left(Q \beta_{r} y\right) \text { if } p=2
\end{array}\right.
$$

Let $|x|=|y|=1$. Then

$$
Q(x y)=\left\{\begin{aligned}
(Q x)(Q y) & \text { if } p \text { is odd } \\
(Q x)(Q y) & +2^{r-2} \pi\left(x \beta_{r} x\right) \pi\left(y \beta_{r} y\right)+2^{2 r-4}\left(\pi \beta_{r} x\right)^{2}\left(Q \beta_{r} y\right) \\
& +2^{2 r-4}\left(Q \beta_{r} x\right)\left(\pi \beta_{r} y\right)^{2} \text { if } p=2
\end{aligned}\right.
$$

(viii) If Y is an H_{∞} space and $X \in \tilde{K}_{\alpha}(\Omega Y ; r)$ then $Q x \in \widetilde{K}_{\alpha}(\Omega Y ; r-1)$ and

$$
\sigma Q x= \begin{cases}Q o x & \text { if }|x|=0 \\ (\pi \sigma x)^{p}+p Q o x & \text { if }|x|=1\end{cases}
$$

(ix) If k is prime to p then $\psi^{k} Q x=Q \psi^{k} x$, where ψ^{k} is the k-th Adams operation.
(x) If $\mathrm{p}=2$ and $|\mathrm{x}|=1$ then

$$
x^{2}= \begin{cases}Q \beta_{2}^{2} *^{x} & \text { if } r=1 \\ 2^{r-2} B_{r} r^{2} Q x & \text { if } r \geq 2\end{cases}
$$

In particular $\left(\pi^{r-1} x\right)^{2} \in K_{0}(X ; 1)$ is zero if $r \geq 3$ and is equal to $\left(\pi B_{2} x\right)^{2}$ if $\mathrm{r}=2$.

Remarks 3.4. (i) There are no analogs for the Adem relations.
(ii) We shall write $Q^{S}: K_{\alpha}(X ; r) \rightarrow K_{\alpha}(X ; r-s)$ for the s-th iterate of Q when $r>s$ (and similarly for the operations R and 2 to be introduced later).
(iii) If $x \in K_{*}(X ; 1)$ has $\beta x=0$ then x lifts to $y \in K_{*}(X ; 2)$. Thus one can define a secondary operation \bar{Q} on the kemel of β by $\overline{Q x}=Q y$. The element y is well-defined modulo the image of p_{*} and thus 3.3 (iv) shows that $\overline{Q x}$ is well-defined modulo p-th powers if $|x|=0$ and has no indeterminacy if $|x|=1$. This is essentially the operation defined by Hodgkin and Snaith 142,991 (although their construction is incorrect when p is odd, as shown in [77]).
(iv) When $p=2$, parts (vi) and (vii) are corrected versions of the corresponding formulas in [76]. Note that $2^{2 r-4}=0$ mod 2^{r-1} unless $r=2$. The formula for $Q(x y)$ with $|x|=|y|=1$ and $p=2$ implicitly assumes that the mod 2^{r} multiplications for $r \geq 2$ have been suitably chosen, since the evaluation of $Q\left(x y+2^{r-1}\left(\beta_{r^{x}}\right)\left(\beta_{r} y\right)\right)$ by means of $3.3(v i)$ and (vii) gives a different formula. Thus we may (inductively) fix a canonical choice of mod 2^{r} multiplications by choosing the mod 2 multiplication arbitrarily and requiring the formula to hold as stated for $r \geq 2$. From now on we shall always use this choice of multiplications.

Our next result shows that, in contrast to ordinary homology, $K_{*}(X ; 1)$ will in general have nilpotent elements.

Corollary 3.5. If X is an H_{∞} ring spectrum and $x \quad K_{1}(X ; r)$ then $\left\langle\pi^{r-1} \beta_{r}\right)^{p} p^{r}=0$ in $K_{0}(X ; 1)$.

Proof of 3.5. (By induction on r). If $r=1$ then

$$
(\beta x)^{p}=\left(\pi \beta_{2} p_{*} x\right)^{p}=\beta Q p_{*} x=0
$$

by $3.1(i i), 3.3(v)$ and $3.3(i v)$. If $r \geq 2$ then

$$
\left(\pi^{r-1} \beta_{r} x\right)^{p^{r}}=\left[\left(\pi^{r-1} \beta_{r} x\right)^{p}\right]^{p}=\left(\pi^{r-1} \beta_{r-1} Q x\right)^{p^{r-1}}=0
$$

by $3.3(v)$ and the inductive hypothesis.

It turns out that iterated Q-operations on r-th Bocksteins are also nilpotent. In order to see this we must make use of the operation R described in our next theorem.

Theorem 3.6. Let X be an H_{∞} ring spectrum. For each $r \geq 1$ there is an operation

$$
R: K_{1}(X ; r) \rightarrow K_{1}(X ; r+1)
$$

with the following properties, where $x, y \in K_{1}(X ; r)$.
(i) R is natural for H_{∞} maps of X
(ii) $\pi R x=Q p_{*} x-x\left(\beta_{r} x^{p-1}\right.$, and if $r \geq 2$ then $R_{\pi x}=Q p_{*} x-p^{p-1} x\left(\beta_{r} x\right)^{p-1}$
(iii) $p_{*} R x=R p_{*} x$
(iv) $\quad B_{r+1} R X=Q \beta_{r+2} p_{*}^{2} x^{2}$
(v) $R(x+y)=R x+R y-\sum_{i=1}^{p-1}\left(\frac{1}{p}\binom{p}{i}\left(p_{*} x\right)\left(s_{r+1} p_{*} x\right)^{i-1}\left(\beta_{r+1} p_{*} y\right)^{p-i}\right.$ $\left.+\binom{p-1}{i} \beta_{r+1} p_{*}(x y)\left(\beta_{r+1} p_{*} x\right)^{i-1}\left(\beta_{r+1} p_{*} y\right)^{p-i-1}\right)$
(vi) If Y is an H_{∞} space and $x \in \widetilde{K}_{1}(Y ; r)$ then

$$
\sigma R x=\left\{\begin{array}{l}
p_{*}\left[(\sigma x)^{p}\right] \quad \text { if } r=1 \\
p_{*}\left[(\sigma x)^{p}\right]+p_{*}^{2} Q \sigma x \quad \text { if } r \geq 2
\end{array}\right.
$$

(vii) If k is prime to p then $\psi^{k} R x=R \psi^{k} x$.
(viii) If $r \geq 2$ then $Q R x=R Q x$. If $r=1$ then $Q R x=0$.

Remarks (i) Let $x \in K_{1}(X ; r)$ and let $s \geq 1$. By $3.3(v)$ we have $\left(\pi^{r+s-1} B_{r+s} R^{s} x\right)^{p}=\pi^{s-1} B_{S} Q^{r} R^{s} x$. But $\left.Q^{r_{R}^{s}} X_{x}=R^{s-1} Q_{Q R\left(Q^{r-1}\right.} x\right)=0$ by 3.6(viii). We therefore have the following nilpotency relation.

$$
\left(\pi^{r+s-1} \beta_{r+s} R^{s} x\right)^{p^{r}}=0
$$

Note that this is a smaller exponent than would be given by 3.5. In terms of the Qoperation this relation may be written $\left(\pi^{r-s-1} \mathcal{Q}_{Q} s_{\beta_{r}}\right)^{p^{r}}=0$ for $s<r$ and $\left(Q^{s} \beta_{s+1} p_{*}^{s-r+1} x\right)^{p^{r}}=0$ for $s \geq r$.
(ii) The second statement of 3.6(viii) was not in the original version of this work (cf. 176, Theorem 3(iv)]). The decomposability of QRx when $r=1$ (which actually implies its vanishing, as we shall see in Section 8) had been asserted by Snaith when $p=2$ (199, Proposition 5.2(ii)) , but was not included in [76] because the author erroneously thought he could prove QRx to be indecomposable in $\mathrm{K}_{1}(\mathrm{QX} ; 1)$ whenever $x \in K_{1}(X ; 1)$ had nonzero Bockstein (cf. [76, Theorem 4]). This point was recently settled by Doug Ravenel, who observed that if one starts with the description of $K_{*}\left(Q\left(S^{1} U_{p} e^{2}\right) ; 1\right)$ given in 176 , Theorem 4$]$ and applies the RothenbergSteenrod spectral sequence (which collapses) then one can see that the only indecomposable in $K_{1}\left(Q\left(S^{2} U_{p} e^{3}\right) ; 1\right)$ is the generator of $K_{1}\left(S^{2} U_{p} e^{3} ; 1\right)$, and in particular $Q R$ of this generator is decomposable. This contradicts part of $[76$, Theorem 41 and a corrected version of that result will be given later in this section. We shall give a completely different argument in Section 8 to show that QRx is decomposable, and in fact vanishes, for all $x \in K_{1}(X ; 1)$.

We next introduce an operation 2 which is the K-theoretic analog of the Pontrjagin p-th power [57, 28]. This operation is a necessary tool in our calculation of $K_{*}(Q X ; 1)$ and will also be used to give generators for the higher terms of the Bockstein spectral sequence.

Theorem 3.7. Let X be an H_{∞} ring spectrum. For each $r \geq 1$ there is an operation

$$
2: K_{0}(X ; r)+K_{0}(X ; r+1)
$$

with the following properties, where $x, y \in K_{*}(X ; r)$.
(i) 2 is natural for H_{∞} maps of X.
(ii) $\pi 2 x=x^{p}$, and if $r \geq 2$ then $\pi x=x^{p}$.
(iii) $2 p_{*}=p^{p-1} p_{*} 2 x$.
(iv) ${ }^{\pi \beta}{ }_{r+1} 2 x=x^{p-1} \beta_{r} x$
(v) $2(x+y)= \begin{cases}2 x+2 y+\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} p_{*}\left(x^{i} y^{p-i}\right) & \text { if } p \text { is odd or } r \geq 2 \\ 2 x+2 y+2 *(x y)+\left(\beta_{2} 2_{*} x\right)\left(\beta_{2}{ }^{2} y\right) & \text { if } p=2 \text { and } r=1 .\end{cases}$
(vi) Let $|x|=|y|=0$. Then $2(x y)=(2 x)(2 y)$ if p is odd, while if $p=2$ there is a constant $\varepsilon_{r} \in Z_{2}$, independent of x and y, with

$$
(2 x)(2 y)+\left(1+2 \varepsilon_{1}\right)\left(\beta_{2} 2 x\right)\left(\beta_{2} 2 y\right) \quad \text { if } r=1
$$

$2(x y)=$

$$
(2 x)(2 y)+2^{r} \varepsilon_{r}\left(\beta_{r+1} 2 x\right)\left(\beta_{r+1} 2 y\right) \text { if } r \geq 2
$$

Let $|\mathrm{x}|=1,|\mathrm{y}|=0$. Then

$$
R(x y)=\left\{\begin{aligned}
(R x)(2 y) & \text { if } p \text { is odd and } r=1 \\
(R x)(2 y) & +p_{*}^{2}[(Q x)(Q y)] \text { if } p \text { is odd and } r \geq 2 \\
(R x)(2 y) & -\left(1+2 \varepsilon_{1}\right)\left(\beta_{2} R x\right)\left(\beta_{2} 2 y\right) \text { if } p=2 \text { and } r=1 \\
(R x)(2 y) & +4_{*}[(Q x)(Q y)]+2^{r-2}\left(\beta_{r+1} L_{*} Q x\right)\left(\beta_{r+1} 2 y\right) \\
& +2^{r} \varepsilon_{r}\left(\beta_{r+1} R x\right)\left(\beta_{r+1} 2 y\right) \text { if } p=2 \text { and } r \geq 2
\end{aligned}\right.
$$

and $R(y x)=(2 y)(R x)+\left(1+2 \varepsilon_{1}\right)\left(\beta_{2} 2 y\right)\left(\beta_{2} R x\right)$ if $p=2$ and $r=1$. Let $|x|=|y|=1$. Then there is a constant $\varepsilon_{r}^{\prime} \in Z_{p}$, independent of x and y, with

(vii) Let Y be an H_{∞} space and let $x \in \tilde{K}_{0}(Y ; r)$. If $p=2$ then $\sigma \mathcal{L} x=2^{r} R(\sigma x)$, while if p is odd there is a constant $\varepsilon_{r}^{\prime \prime}$, independent of x, with $\sigma 2 x=p^{r} \varepsilon_{r}^{\prime \prime R}(\sigma x)$.
(viii) If k is prime to p then $\psi^{k} 2 x=2 \psi^{k} x$.
(ix) $\quad Q 2 x=\left\{\begin{array}{l}0 \quad \text { if } r=1 \\ \sum_{i=1}^{p}\binom{p}{i} p^{i-2} x^{p^{2}-i p} p_{*}\left[(Q x)^{i}\right] \quad \text { if } r \geq 2 .\end{array}\right.$

The undetermined constants ε_{r} in part (vi) depend on the choice of multiplications; they can be made equal to zero for a suitable choice but it is not clear
what their values are for our canonical choice. It is quite possible that the $\varepsilon_{r}, \varepsilon_{r}^{\prime}$ and $\varepsilon_{r}^{\prime \prime}$ are all zero.

Next we shall use the operations Q and R to describe $K_{*}(C X ; 1)$ for an arbitrary unital spectrum X. If Y is a based space then the homology equivalence of [28, Theorem I.5.10] is also a K-theory equivalence (by the Atiyah-Hirzebruch spectral sequence), hence

$$
K_{*}(Q Y ; 1) \cong\left(\pi_{0} Y\right)^{-1} K_{*}(C Y ; 1)=\left(\pi_{0} Y\right)^{-1} K_{*}\left(C \Sigma^{\infty}\left(Y^{+}\right) ; 1\right)
$$

so that our calculation will also give $K_{*}(Q Y ; 1)$.
First recall the K-theory Bockstein spectral sequence $E_{*}^{r} X$ (abbreviated BSS) from [13, section 11]. X was assumed to be a finite complex in [13] but we wish to work in greater generality. The finiteness assumption is necessary for those results which deal with the E^{∞} term, since in general there is no useful relation between $E_{*}^{\infty} X$ and $K_{*} X$ (for example, $E_{*}^{\infty} R P^{\infty}$ is concentrated in dimension zero, while $K_{*} R P^{\infty}$ is concentrated in dimension one). On the other hand, the results of [13] which deal with E^{r} for r finite remain valid for arbitrary spectra X. In particular, any ($r-1$)-cycle x can be lifted to an element $y \in K_{*}(X ; r)$ and we have $d_{r} x=$ $\pi^{r-1} \beta_{r} y$. The element y has order p^{r} if and only if x is nonzero in E^{r}. If we write $K_{*}(X ; \infty)$ for the inverse limit of the $K_{*}(X ; r)$ then an infinite cycle always lifts to $K_{*}(X ; \infty)$; we shall frequently use this notation. Our next definition gives the kind of data necessary for the description of $K_{*}(C X ; 1)$.

Definition 3.8. Let $1 \leq n \leq \infty$. A set $A=\bigcup_{l \leqslant r \leqslant n} A_{r}$ with $A_{r} \subset K_{*}(X ; r)$ is called a subbasis of height n for X if for each $s \leq n$ the set

$$
\left\{\pi^{r-1} x \mid x \in A_{r}, s \leq r \leq n\right\} \cup\left\{\pi^{r-1} \beta_{r} x \mid x \in A_{r}, s \leq r<n\right\}
$$

projects to a basis for $E_{*}^{S} X$.

If the height of a subbasis is not specified, it will always be assumed to be infinite. Subbases with finite height will occur only in sections 7 and 8 . It is not hard to see that any spectrum has a subbasis of any given height. The term subbasis is motivated by our next result, which is an easy consequence of the results of $[13, \$ 11]$. Recall that a subset S of an abelian group G is a basis for G if G is the direct sum of the cyclic subgroups generated by the elements of S. Proposition 3.9. If $A=\bigcup_{1 \leqslant r \leqslant n} A{ }_{r}$ is a subbasis of height n for X and if $s \leq n$ (with $s<\infty$ if $n=\infty$) then the set

$$
\begin{aligned}
& \left\{\pi^{r-s} x \mid x \in A_{r}, s \leq r \leq n\right\} \cup\left\{\pi^{r-s} B_{r} x \mid x \in A_{r}, s \leq r<n\right\} \\
& \quad \cup\left\{p_{*}^{s-r} x \mid x \in A_{r}, r<s\right\} \cup\left\{\beta_{s} p_{*}^{s-r^{\prime}} x \mid x \in A_{r}, r<s\right\}
\end{aligned}
$$

is a basis for $K_{*}(X ; s)$. The elements of the form $p_{*}^{s-r} x$ and $\beta_{s} p_{*}^{s-r} x$ have order p^{r} and the remaining basis elements have order p^{s}.

Now let X be a unital spectrum. Let $n \in K_{0}(X ; \infty)$ be the unit and suppose that $\pi^{\infty} n$ is nonzero in $K_{0}(X ; 1)$. Then we may choose a set $A=\bigcup_{1<r<\infty} A_{r}$ such that $A \cup\{\eta\}$ is a subbesis for X. We write $A_{r, 0}$ and $A_{r, 1}$ for the zero- and onedimensional subsets of A_{r}. Let p be odd, and let $C A$ be the quotient of the free commutative algebra generated by the three sets
and

$$
\begin{aligned}
& \left\{\pi^{r-s-1} Q^{s} x \mid x \in A_{r}, 0 \leq s<r \leq \infty\right\} \\
& \left\{\pi^{r-s-1} B_{r-s} Q^{s} x \mid x \in A_{r, 0}, 0 \leq s<r<\infty\right\} \\
& \left\{\pi^{r+s-1} B_{r+s} R^{s} x \mid x \in A_{r, 1}, r<\infty, 0 \leq s<\infty\right\}
\end{aligned}
$$

by the ideal generated by the set

$$
\left\{\left(\pi^{r+s-1} \beta_{r+S} R^{s} x\right)^{p^{r}} \mid x \in A_{r, 1}, r<\infty, 0 \leq s<\infty\right\}
$$

The elements of the first three sets will be called the standard indecomposables of CA. Here symbols like $\pi^{r-s-l_{Q}}{ }^{s} x$ are simply indeterminates, since the Dyer-Lashof operations are not defined on $K_{*}(X ; r)$. However, by means of the inclusion $X \rightarrow C X$ we may interpret these symbols as elements of $K_{*}(C X ; 1)$. Thus we obtain a ring map

$$
\lambda: C A \rightarrow K_{*}(C X ; 1)
$$

Our main theorem is

Theorem 3.10. λ is an isomorphism.

We could have defined $C A$ in terms of the Q-operation alone, without using R, since the third generating set is equal to

$$
\left\{\pi^{r-s-1} Q_{Q_{r}} x \mid x \in A_{r, 1}, r<\infty, 0 \leq s \leq r\right\} \cup\left\{Q_{B_{S+1}} p_{*}^{s-r+1} x \mid x \in A \quad r, 1, r<\infty, s>r\right\}
$$

The definition we have given is more convenient for our purposes, however, since it allows us to treat the cases $s \leq r$ and $s>r$ in a unified way.

Theorem 3.10 also holds for $p=2$, but the definition of $C A$ in this case is more complicated since mod 2 K -theory is not commutative. Recall from 3.2 (vii)',
that the commutator of two elements is the product of their Bocksteins. To build this into the definition of $C A$ we define the modified tensor product $C_{1} \widetilde{\otimes}^{(} C_{1}$ of two Z_{2}-graded differential algbebras over Z_{2} to be their Z_{2}-graded tensor product with multiplication given by

$$
(x \otimes y)\left(x^{\prime} \otimes y^{\prime}\right)=x x^{\prime} \otimes y y^{\prime}+x\left(d x^{\prime}\right) \otimes(d y) y^{\prime}
$$

We can define the modified tensor product of finitely many C_{i} similarly and of infinitely many C_{i} by passage to direct limits. Now for each $x \in A_{r, 0}$ we define C_{x} to be the free strictly commutative algebra generated by $\left\{\pi^{r-s-1} Q^{s} \times 10 \leq s \leq r\right\}$ and if $r<\infty,\left\{\pi^{r-s-1} \beta_{r-s} Q^{s} x \mid 0 \leq s<r\right\}$. Give this the differential which takes $Q^{r-1}{ }_{x}$ to $\beta Q^{r-1} x$ and all other generators to zero. For each $x \in A_{T, 1}$ we define C_{X} to be the commutative algebra generated by the sets $\left\{\pi^{r-s-l} Q^{s} x \mid 0 \leq s<r\right\}$ and, if $r<\infty$, $\left\{\pi^{r+s-1} \beta_{r+s} R^{s} x \mid 0 \leq s<r\right\}$, with the relations
(i) $\left(\pi^{r+s-1} \beta_{r+S} R^{s} x\right)^{2^{r}}=0$
and

$$
\left(\pi^{r-s-1} Q_{Q} s_{x}\right)^{2}= \begin{cases}0 & \text { if } 0 \leq s<r-2 \tag{ii}\\ \left(\pi^{r-1} \beta_{r} x\right)^{2^{r-1}} & \text { if } s=r-2 \\ \left(\pi^{\left.r_{\beta_{r+1}} R x\right)^{2 r-1}}\right. & \text { if } s=r-1 .\end{cases}
$$

(Relation (ii) is motivated by 3.3(x)). Give C_{x} the differential which takes $Q^{r-1} x$ to $\left(\pi^{r-1} \beta_{\beta^{x}}\right)^{2^{r-1}}$ and all other generators to zero. Finally, we define $C A$ to be the modified tensor product $\widetilde{x}_{\in}^{\otimes} C_{X}$. There is an evident ring map $\lambda: C A \rightarrow K_{*}(C X ; 1)$ and with these definitions Theorem 3.10 and its proof are valid.

Remarks 3.11. (i) When $X=S^{0}$, or when $p=2$ and X is a sphere or a real projective space, we recover the calculations of Hodgkin [41] and Miller and Snaith [83,84].
(ii) We can describe the additive structure of CA more explicitly as follows. When $p=2$ we define the standard indecomposables of CA to be the same three sets as in the odd-primary case. If we give these some fixed total ordering then CA has an additive basis consisting of all ordered products of standard indecomposables in which each of the odd-dimensional indecomposables occurs no more than once and each $\pi^{r+s-1} \beta_{r+s} R^{s} x$ occurs less than 2^{r} times. This basis will be called the standard basis for CA. We define the standard basis in the same way when p is odd.

Next we discuss the functoriality of the description given by 3.10. If X and X^{\prime} are unital spectra with subbases $A \cup\{n\}$ and $A^{\prime} \cup\{n\}$ then a unit-preserving map $f: X \rightarrow X^{\prime}$ will be called based if $f_{*} A_{r} C A_{r}^{\prime} \cup\{0\}$ for all $r \geq 1$. Such a map clearly induces a map $f_{*}: C A \rightarrow C A$, and we have $\lambda \circ f_{*}=(C f)_{*} \circ \lambda$. If f is not based, it
is still possible in principle to determine (Cf)* on $K_{*}(C X ; 1)$ by using $3.3,3.6$ and 3.9 (although in practice the formulas may become complicated). For example, if $f: S^{2} \rightarrow S^{2}$ is the degree p map and $x \in K_{0}\left(S^{2} ; 2\right)$ is the generator then

$$
(\mathrm{Cf})_{*} Q x=Q\left(f_{*} x\right)=Q(p x)=\pi\left(x^{p}\right) \neq 0
$$

in $K_{0}\left(\operatorname{CS}^{2} ; 1\right)$. Since $f_{*}: K_{*}\left(S^{2} ; 1\right) \rightarrow K_{*}\left(S^{2} ; 1\right)$ is zero this gives another proof of Hodgkin's result that $K_{*}(C X ; 1)$ cannot be an algebraic functor of $K_{*}(X ; 1)$. A similar calculation for the degree p^{r} map shows that $K_{*}(C X ; 1)$ is not a functor of $K_{*}(X ; r)$ for any $r<\infty$. Finally, the projection $S^{1} U_{p} e^{2} \rightarrow S^{2}$ onto the top cell induces the zero map in integral K-homology but is nonzero on $K_{*}\left(C\left(S^{1}{v_{p}}^{e^{2}}\right) ; 1\right)$ so that $K_{*}(C X ; 1)$ is not a functor of $K_{*}(X ; Z)$. Thus it seems that the use of subbases cannot be avoided.

We conclude this section by determining the BSS for CX.

Theorem 3.12. For $1 \leq m<\infty, E_{*}^{m} C X$ is additively isomorphic to the quotient of the free strictly commutative algebra generated by the six sets
and

$$
\begin{aligned}
& \left\{\pi^{r-s-1} Q_{Q} x \mid X \in A_{r}, m \leq r-s, 0 \leq s<r\right\} \\
& \left\{\pi^{r-s-1} \beta_{r-s} Q^{s} x \mid x \in A_{r}, 0, m \leq r-s<\infty, 0 \leq s<r\right\} \\
& \left\{\pi^{m-1} 2^{m-r+s} Q^{S} x \mid x \in A_{r, 0}, l \leq r-s<m\right\} \\
& \left\{\pi^{m-1} B_{m} 2^{m-r+s} Q^{s} x \mid x_{E} A_{r}, O, 1 \leq r-s<m\right\} \\
& \left\{\pi^{m-1} R^{m-r+S_{Q}} S_{X} \mid x \in A_{r, 1}, 1 \leq r-s<m\right\} \\
& \left\{\pi^{r+s-1} \beta_{r+s} R^{S_{X}} \mid x \in A_{r, 1}, m \leq r+s<\infty\right\}
\end{aligned}
$$

by the ideal generated by the set

$$
\left\{\left(\pi^{r+s-1} \beta_{r+s} R^{s} x_{x} p^{t} \mid x \in A_{r, 1}, m \leq r+s<\infty, t=\min (r, r+s+1-m)\right\}\right.
$$

If p is odd or $m \geq 3$ the isomorphism is multiplicative.

The proof of 3.12 is the usual counting argument, and is left to the reader. In order to determine the differential in $E_{*}^{m} C X$ one needs the formula

$$
\pi^{r-s+t-1} \beta_{r-s+t} R^{t_{Q}} s_{x}^{s}=\left(\pi^{r+t-1} \beta_{r+t} R^{t} x\right)^{p^{s}}
$$

for $x \in A_{r, 1}, 0 \leq s<r<\infty, t \geq 0$; this is is a consequence of $3.3(v i i f)$ and $3.3(v)$.

4. Calculation of $K_{*}\left(C X ; Z_{p}\right)$

In this section we give the proof of Theorem 3.10 , except for two lemmas which will be dealt with in Sections 6 and 9 . The argument is very similar to that given
in Section 2 for ordinary homology, and in several places we shall simply refer to that section.

First we reformulate 3.10 as a result about extended powers. Let Y be any spectrum and let A be a subbasis for Y. We define CA with its standard indecomposables and standard basis as in Section 3. We make CA a filtered ring by giving elements of A filtration 1 and requiring Q and R to multiply filtration by p. Let $D_{k} A=F_{k} C A / F_{k-1} C A$ for $k \geq 1$; this has a standard basis consisting of the standard basis elements in $\mathrm{F}_{\mathrm{k}} \mathrm{CA}-\mathrm{F}_{\mathrm{k}-1} \mathrm{CA}$. There is an additive map

$$
\lambda_{k}: D_{k} A \rightarrow K_{*}\left(D_{k} Y ; 1\right)
$$

defined as in Section 2 by interpreting Q, R and the multiplication externally and then applying α_{*} and β_{*}. We shall prove

Theorem 4.1. λ_{k} is an isomorphism for all $k \geq 1$.

Remark 4.2. Using 4.1 and the external versions of $3.3(v), 3.6(i v)$ and 3.7 (iv) (which will be proved in sections 7 and 8) one can determine the BSS for $D_{k} Y$ as follows. If $m \geq 1$ let $C^{m} A$ denote the algebra whose generators and relations are given in 3.12. We make $C^{m_{A}}$ a filtered ring by giving elements of A filtration 1 and requiring R, Q and 2 to multiply filtration by p. If D_{k}^{m} is the k-th subquotient of $C^{m_{A}}$ there is an isomorphism $D_{k}^{m} A+E_{*}^{m} D_{k} X$. The proof is similar to that for 3.12 and is left to the reader.

The derivation of 3.10 from 4.1 is the same as that given for 2.1 in section 2. We therefore turn to the proof of 4.1. We need the following special case, which will be proved in section 6.

Lemma 4.3. λ_{p} is an isomorphism for all Y.

We shall reduce the proof of 4.1 to the case where Y is a wedge of Moore spectra. First we need some notation. As in section 1 we write M_{r} for $S^{-1} \bigcup_{p r} e^{0}$. The set $\left\{u_{r}\right\}$ is a subbasis for M_{r}. We write M_{∞} for the colimit of the M_{r} with respect to the maps $M_{r} \rightarrow M_{r+1}$ having degree p on the bottom cell. Then $K_{1}\left(M_{\infty} ; r\right)=0$ for all r and $K_{0}\left(M_{\infty} ; r\right)$ is a copy of $Z_{p r}$ generated by the image of u_{r}. Let $u_{\infty} \in K_{0}\left(M_{\infty} ; \infty\right)$ be the element which projects to the image of u_{r} for all r. Then $\left\{u_{\infty}\right\}$ is a subbasis for M_{∞} *

For each $x \in A_{r}$ we can choose a map $f_{X}: \Sigma|x|_{M_{r}} \rightarrow K \wedge Y$ representing x. (If $r=\infty$ we let f_{x} be any map which restricts on each $\Sigma|x|_{M_{P}}$ to a representaive for the mod p^{r} reduction of $\left.x.\right)$ Let $Z=V_{1 \leqslant r \leqslant \infty} V_{x \in A_{r}} \sum_{\sum}^{|x|} M_{r}$ and let $f: Z \rightarrow K \wedge Y$ be the wedge of the f_{x}. We give Z the subbasis B consisting of the fundamental classes of the
${ }_{\Sigma}|X|_{M_{r}}$. Then $f_{* *}: K_{*}(Z ; r) \rightarrow K_{*}(Y ; r)$ gives a one-to-one correspondence between B_{r} and A_{r}, and in particular it is an isomorphism for all r. Now consider the diagram

which commutes by 1.3 and $1.4(i i)$ and (iii). If 4.1 holds for Z, its validity for Y will be immediate from the diagram and the following lemma.

Lemma 4.4. Let $h: W \rightarrow K \wedge X$ be any map. If $h_{* *}: K_{*}(W ; 1) \rightarrow K_{*}(X ; 1)$ is an isomorphism, then
(i) $f_{* *}: K_{*}(W ; r) \rightarrow K_{*}(X ; r)$ is an isomorphism for all r, and
(ii) $\left(\bar{D}_{k} f\right)_{* *}: K_{*}\left(D_{k} W ; 1\right) \rightarrow K_{*}\left(D_{k} X ; 1\right)$ is an isomorphism for all k.

Proof. (i) By induction on r. Suppose the result is true for some $r \geq 1$ and consider the short exact sequence

$$
0 \rightarrow Z_{p} \longrightarrow Z_{p} r+1 \rightarrow Z_{p} r \longrightarrow 0
$$

This gives rise to the following commutative diagram with exact rows.

Part (i) follows by the five lemma. The proof of part (ii) is now completely parallel to that of Lemma 2.4.

Next we reduce to the case of a single Moore spectrum. We assume for simplicity that Z is a wedge of two Moore spectra $\Sigma^{m_{M}}{ }_{r} \nu \Sigma^{n_{M}} M_{S}$; the argument is the same in the general case. Let B_{1} and B_{2} be the subbases $\left\{\Sigma^{m} u_{r}\right\}$ and $\left\{\Sigma^{n} u_{s}\right\}$, so that $B=B_{1} \cup B_{2}$. There is an evident map $C B_{1} \otimes C B_{2} \rightarrow C B$ which on passage to the associated graded gives a map

$$
\varphi: \sum_{i=0}^{k}\left(D_{i} B_{1} \otimes D_{k-i} B_{2}\right) \rightarrow D_{k} B
$$

Lemma 4.5. φ is an isomorphism, and the diagram

commutes

The proof is the same as for 2.5. The lemma implies that 4.1 will hold for Z once we have shown the following. We write x for $\Sigma^{n} u_{r} \in K\left(\Sigma^{n} M_{r} ; r\right)$.

Lemma 4.6. $\lambda_{k}: D_{k}\{x\} \rightarrow K_{*}\left(D_{k} \Sigma^{n_{M}} M_{r} ; 1\right)$ is an isomorphism for all $k \geq 1$ and all n.

Proof. By induction on k. First let $k=j p$ with $j>1$. We need the commutativity of the following diagram for $i=0,1$ and 2 .
(*)

Here M denotes $\Sigma^{n_{M}} M_{r}$ and $y, z \in K_{*}(M \quad M ; r)$ are the fundamental classes of the first and second summands. The sets a and a, are subbases for $D_{p} M$ and $D_{p}(M \vee M)$ which will be specified later. The maps $g_{i}: M \vee M \rightarrow M$ are defined by $g_{0}=1 \vee 1, g_{1}=1 \vee *$, and $g_{2}=* v_{l}$, and the F_{i} are determined uniquely by the requirement that the left-hand trapezoid commute. To complete the diagram we need

Lemma 4.7. There exist $a, a^{\prime}, \gamma_{j}$ and γ_{j}^{\prime} independent of i such that diagram (*) commutes for $i=0,1$ and 2 .

The proof will be given in Section 9. Like the proof of 2.7 , it consists of systematic simplifications of the elements of D_{j}, a and $D_{j} a^{\prime}$. The details are much more complicated, however, because of the nonadditivity of the operations.

Now consider the inner square of the diagram. Since $\beta_{j} p^{*} \circ \tau_{*}$ is an isomorphism, we see that λ_{k} is onto. Letting $\theta=\gamma_{j} \circ \lambda_{j}^{-1} \circ \tau_{*} \circ \lambda_{k}$, we see as in section 2 that θ induces an isomorphism of the subspace $\hat{\theta}$ of $D_{k}\{x\}$ spanned by the decomposable standard basis elements. In particular, λ_{k} is monic on θ.

The remainder of the proof differs from that in Section 2, and is in fact considerably simpler since there are only a few indecomposables. It suffices to show the following.

Lemna 4.8. Let $w \in \mathcal{A}$. If $n=1$ then
(i) $\lambda_{k}\left(\pi^{r-s-1} Q^{s} x-w\right) \neq 0$, where $k=p^{s}, 2 \leq s<r \leq \infty$
(ii) $\lambda_{k}\left(\pi^{r+s-1} B_{r+s} R^{s} x-w\right) \neq 0$, where $k=p^{s}, r<\infty, 2 \leq s<\infty$.

If $\mathrm{n}=0$ then

$$
\begin{align*}
& \lambda_{k}\left(\pi^{r-s-1} Q^{s} x-w\right) \neq 0, \text { where } k=p^{s}, 2 \leq s<r<\infty \tag{iii}\\
& \lambda_{k}\left(\pi^{r-s-1} B_{r-s} Q^{s} x-w\right) \neq 0, \text { where } k=p^{s}, 2 \leq s<r<\infty
\end{align*}
$$

Proof. We need two facts about the map $\Delta_{*}: K_{*}\left(\Sigma D_{k} X ; r\right) \rightarrow K_{*}\left(D_{k} \Sigma X ; r\right)$, namely that $\Delta_{*} \Sigma\left(\alpha_{i, k-1}\right)_{*}(x \otimes y)=0$ for $0<i<k$ and that, when $k=p$,

$$
\Delta_{*} \Sigma Q x= \begin{cases}Q(\Sigma x) & \text { if }|x|=0 \\ \pi_{*}(\Sigma x)^{(p)}+p Q \Sigma x & \text { if }|x|=1 .\end{cases}
$$

The first fact is shown as in the proof of 2.8 , while the second, which is the external version of 3.3 (viii), will be shown in section 7 .

Now consider part (i). We have $\Delta_{*} \Sigma w=0$ and

$$
\Delta_{*} \Sigma \pi^{r-s-1} Q_{Q}{ }_{x}=\pi^{r-1} i_{*}(\Sigma x)^{\mathrm{s}}
$$

But $\pi^{r-1} i_{*}(\Sigma x)^{p}$ is nonzero since λ_{k} is monic on decomposables.
Combining part (i) with the fact that λ_{k} is onto and is monic on decomposables, we see that

$$
\lambda_{k}: D_{k}\{x\} \rightarrow K_{*}\left(D_{k} \Sigma M_{r} ; 1\right)
$$

is an isomorphism in degree 1 and is onto in degree zero. It is monic in degree 0 if and only if part (ii) holds. But if not then $K_{0}\left(D_{K^{\prime}} \Sigma M_{r} ; 1\right)$ and $K_{1}\left(D_{k} \Sigma M_{r} ; 1\right)$ would have different dimensions as vector spaces, and therefore the Bockstein spectral.
sequence $E_{*}^{m}\left(D_{k} \Sigma M_{r}\right)$ would be nonzero for all m. But the transfer embeds $E_{*}^{m} D_{k} \Sigma M_{T}$ in $E_{*}^{m} D_{j} D_{p} \Sigma M_{r}$, and the latter is zero for $p^{m-r-1}>j$ by Remark 4.2 and the inductive hypothesis of 4.6 .

Finally, part (iii) follows from (i) and the equation

$$
\Delta_{*} \sum^{r-s-1} Q_{Q}^{s}={ }_{\pi}^{r-s-1} Q_{Q X} s,
$$

while (iv) follows from (iii) using the argument given for (ii).

This completes the proof of 4.6 for the case $k=j p$. The remaining case, when k is prime to p, is handled exactly as in Section 2.
5. Calculation of $\tilde{K}_{*}\left(D_{p} S^{n} ;{ }_{p} r^{\prime}\right)$

In order to construct and analyze the Q-operation we shall need a precise description of $K_{*}\left(D_{p} \Sigma^{n_{M}} M_{r} ; r-1\right)$. In this section we give some facts about $K_{*}\left(D_{p} S^{n} ; r\right)$ which will be used in Sections 6 and 7 to obtain such a description. We work with K-theory on spaces in this section.

If X is a space there is a relative Thom isomorphism

$$
\Phi: \tilde{K}_{*}\left(D_{p} X ; r\right) \stackrel{\cong}{\cong} \tilde{K}_{*}\left(D_{p} \Sigma^{2} X ; r\right)
$$

corresponding to the bundle

$$
E \Sigma_{p} x_{\Sigma_{p}}\left(X^{(p)} \times R^{2 p}\right)+E \Sigma_{p} \times \Sigma_{p} X^{(p)}
$$

and the inclusion

$$
E \Sigma_{p}{ }_{\Sigma_{p}}(*) \rightarrow E \Sigma_{p} x_{\Sigma_{p}} X^{(p)}
$$

As we have seen in VII§3 and VII§8, this isomorphism can in fact be defined for an arbitrary spectrum X. In calculating $\tilde{K}_{*}\left(D_{p_{+}} S^{n} ; r\right)$ we may therefore assume $n=0$ or $n=1$; in the former case we have $D_{p} S^{0}={ }_{B \Sigma_{p}}^{p_{p}}$.

Lemma 5.1. $K_{\alpha}\left(B \Sigma_{p} ; 1\right)$ is zero if $\alpha=1$ and $Z_{p} \oplus Z_{p}$ if $\alpha=0$. $\widetilde{K}_{\alpha}\left(D_{p} S^{1} ; 1\right)$ is zero if $\alpha=0$ and Z_{p} if $\alpha=1$.

Proof. We use the Atiyah-Hirzebruch spectral sequence for mod p K-homology. By [40, III.1.2] the differentials d_{i} vanish for $i<2 p-1$ and $d_{2 p-1}$ is $B P_{*}^{1}-P_{*}^{1} \beta$ (here P^{1} denotes S_{q}^{2} if $p=2$). For spaces of the form $D_{p} X$, a basis for the E^{2}-term consisting of external Dyer-Lashof operations is given in $[68,1.3$ and 1.4]. The differential $d_{2 p-1}$ can be evaluated using the external form of the Nishida relations
$[68,9.4]$; the explicit result is that $d_{2 p-1}\left(e_{i} \otimes y^{p}\right)$ is a nonzero multiple of

$$
\left(\beta e_{i+2-2 p}\right) \otimes y^{p}-e_{i+1-p} \otimes(\beta y)^{p}
$$

for any $y \in H_{*}(X ; 1)$. Letting $X=S^{0}$ or S^{l} we see that $E^{2 p}$ is generated by $e_{0} \otimes u^{p}$ and $e_{2 p-2} \otimes u^{p}$ in the former case and by $e_{p-1} \otimes(\Sigma u)^{p}$ in the latter. Then $E^{2 p}=E^{\infty}$ for dimensional reasons and the result follows.

Using 5.1 and the $K-$ theory $B S S$ we conclude that $K_{*}\left(B \Sigma_{p} ; r\right)$ is free over $Z_{p} r$ on two generators in dimension zero and that $\widetilde{K}_{*}\left(D_{p} S^{I} ; r\right)$ is free over $Z_{p} r^{r}$ on one ${ }^{p}$ generator in dimension one. We wish to give explicit bases. It is convenient to work in K-cohomology, as we may by the following.

Lemma 5.2. The natural map

$$
\tilde{K}^{*}\left(D_{p} S^{n} ; r\right) \rightarrow \operatorname{Hom}\left(\tilde{K}_{*}\left(D_{p} S^{n} ; r\right), z_{p}{ }^{r}\right)
$$

is an isomorphism for all $r<\infty$.

Proof. When $r=1$ a cell-by-cell induction and passage to limits gives the results for an arbitrary space; in particular it holds for $D_{p} S^{n}$. The result for general r follows from the BSS.

Next we give a basis for $K^{\rho}\left(\mathrm{Br}_{\mathrm{p}} ; r\right)$. We write 1 for the unit in this group and $l_{(e)}$ for the unit of $K^{O}(p t . ; r)$. Let τ be the transfer $\Sigma^{\infty}\left(B \Sigma_{p}^{+}\right) \rightarrow \Sigma^{\infty}\left(B e^{+}\right)=S$.

Proposition 5.3. $K^{*}\left(B \Sigma_{p} ; r\right)$ is freely generated over $Z_{p} r$ by 1 and $r^{*} 1_{(e)}$.
Proof. Let $\pi=Z_{p}$ and denote the inclusion $\pi \subset \Sigma_{p}$ by t. Then $K^{1}(B \pi ; r)=0$ and the natural map

$$
\mathrm{Rn}_{\pi} \otimes Z_{\mathrm{p}} \mathrm{r} * K^{0}\left(B_{\pi} ; r\right)
$$

is an isomorphism. If ρ is the group of automorphisms of π then a standard transfer argument shows that the restriction

$$
1^{*}: K^{*}\left(B \Sigma_{p} ; r\right) \rightarrow K^{*}(B \pi ; r)
$$

is a monomorphism whose image is contained in the invariant subring $\mathrm{K}^{*}(\mathrm{~B} \mathrm{\pi} ; \mathrm{r})^{\rho}$. Now ${ }^{*}{ }^{*} 1$ is the unit 1_{π} of $K^{\circ}(B \pi ; r)$, while the double coset formula gives $1^{*} \tau^{*} I_{(e)}=(p-1)!\left(\tau^{\prime}\right)^{*} 1_{(e)}$, where τ^{\prime} is the transfer $\Sigma^{\infty}\left(B \pi^{+}\right)+S$. Since 1_{π} and $\tau^{\prime} l_{(e)}$ form a basis for $K^{*}(B \pi ; r)^{\rho}$ the result follows.

In order to give a specific generator for $\mathbb{R}^{*}\left(D_{p} S^{1} ; r\right)$ we consider the map

$$
\Delta^{*}: \tilde{K}^{*}\left(D_{p} s^{n+1} ; r\right) \rightarrow \tilde{K}^{*}\left(\Sigma D_{p} s^{n} ; r\right)
$$

Lemma 5.4. The composite

$$
\tilde{K}^{0}\left(D_{p} s^{2} ; r\right) \xrightarrow{\Delta^{*}} \widetilde{K}^{0}\left(\Sigma D_{p} s^{1} ; r\right) \xrightarrow{(\Sigma \Delta)^{*}} \widetilde{K}^{0}\left(\Sigma^{2} D_{p} s^{0} ; r\right) \cong K^{0}\left(B \Sigma_{p} ; r\right)
$$

takes $\Phi(1)$ to $\frac{1}{(p-1)!}\left(p!-\tau^{*} 1(e)\right)$ and $\Phi\left(\tau^{*} 1_{(e)}\right)$ to zero.

As an imnediate consequence we have

Corollary 5.5. $\sum \Delta^{*} \Phi(1)$ generates $\widetilde{\mathbb{K}}^{*}\left(D_{\mathrm{p}} s^{1} ; r\right)$.
Before proving 5.4 we give the desired bases for $K_{*}\left(B \Sigma_{p} ; r\right)$ and $\widetilde{K}_{*}\left(D_{p} S^{\mathcal{I}} ; r\right)$.

Definition 5.6. The canonical basis for $K_{*}\left(B \Sigma_{p} ; r\right)$ is the dual of the basis $\left\{1, \frac{1}{(p-1)!}\left(p!-\tau^{*} 1_{(e)}\right)\right\}$. The canonical basis for $\widetilde{K}_{*}\left(D_{p} s^{1} ; r\right)$ is the dual of $\left\{\Sigma \Delta^{*} \Phi(1)\right\}$.

Note that the unit η in $K_{0}\left(B \Sigma_{p} ; r\right)$ is the first element of the canonical basis for this group. We shall always write v for the remaining element and v^{\prime} for the basis element in $K_{1}\left(D_{p} s^{1} ; r\right)$.

Proof of 5.4. Consider the subset of $E \Sigma_{p} x_{\Sigma_{p}}\left(R^{2}\right) P$ consisting of points for which the sum of the R^{2}-coordinates is zero. The ${ }^{2} p$ projection to $B \Sigma_{p}$ makes this subset the total space of a bundle ξ over $B \Sigma_{\mathrm{p}}$. Now $\mathrm{D}_{\mathrm{p}} \mathrm{S}^{2}$ is homeomorphic to the second suspension of the Thom complex $T \xi$ of ξ, and under this homeomorphism the map $\Delta \circ \Sigma \Delta: \Sigma^{2} D_{p} S^{0} \rightarrow D_{p} S^{2}$ is the second suspension of the inclusion $B \sum_{p}^{+} C T \xi$, while $\Phi(1)$ agrees with the Aityah-Bott-Shepiro orientation for ξ. Thus it suffices to show that the Euler class of ξ is $\left.\frac{1}{(p-1)!}(p)-\tau^{*} I_{(e)}\right)$. If $\pi=Z_{p}$ and $1: \pi C \Sigma_{p}$ is the inclusion it suffices to show that the pullback $\left(B_{1}\right)^{*} \xi$ has Euler class $p-\left(\tau^{\prime}\right)^{*} 1(e)$ in $K^{0}(B \pi) \cong R \pi \otimes Z_{p}^{*}$, where τ^{\prime} is the transfer $\Sigma^{\infty}\left(B \pi^{+}\right) \rightarrow$ S. Let $x \in R \pi$ be any nontrivial irreducible. Then $\left(B_{1}\right)^{*} \xi$ is the sum of the bundles over $B \pi$ induced by $x, x^{2}, \ldots, x^{p-1}$. These bundles have Euler classes $1-x, \ldots, 1-x^{p-1}$, hence $\left(B_{1}\right)^{*} \xi$ has Euler class $(1-x) \cdots\left(1-x^{p-1}\right)$. Evaluation of characters shows that

$$
(1-x) \cdots\left(1-x^{p-1}\right)=p-\left(1+x+\cdots+x^{p-1}\right)
$$

and the result follows.

Next we collect some information about the elements η, v and $v^{\text {t }}$ for use in section 7.

Proposition 5.7. (i) $\pi: \tilde{K}_{*}\left(D_{p} S^{n} ; r\right)+\tilde{K}_{*}\left(D_{p} S^{n} ; r-1\right)$ takes v to v and v^{\prime} to v^{\prime}.
(ii) $\Delta_{*}: \tilde{K}_{1}\left(\Sigma\left(B \Sigma_{p}^{+}\right) ; r\right) \rightarrow \widetilde{K}_{1}\left(D_{p} S^{1} ; r\right)$ takes $\Sigma \eta$ to zero and Σv to v^{\prime}.
(iii) $\Delta_{*}: \tilde{K}_{0}\left(\Sigma D_{p} S^{1} ; r\right) \rightarrow \widetilde{K}_{0}\left(D_{p} S^{2} ; r\right)$ takes Σv^{\prime} to $\phi(n+p v)$.
(iv) $\tau_{*}: \widetilde{K}_{*}\left(D_{p} S^{n} ; r\right) \rightarrow \tilde{X}_{*}\left(\left(S^{n}\right)^{(p)} ; r\right)$ takes n to p lu and v to $-(p-1)!u$ when $\mathrm{n}=0$ and takes v^{\prime} to zero when $\mathrm{n}=1$.
(v) $\delta_{*}: K_{0}\left(B \Sigma_{p} ; r\right) \rightarrow K_{0}\left(B \Sigma_{p} \times B \Sigma_{p} ; r\right)$ takes η to $\eta \otimes \eta$ and v to $v \otimes \eta+\eta \otimes v+p(v \otimes v)$.
(vi) $\quad \delta_{*}: \widetilde{K}_{1}\left(D_{p} S^{1} ; r\right) \rightarrow \widetilde{K}_{1}\left(D_{p} S^{1} \wedge B \Sigma_{p}^{+} ; r\right)$ takes v^{\prime} to $v^{\prime} \otimes \eta+p\left(v^{\prime} \otimes v\right)$.
(vii) $\delta_{*}: \tilde{K}_{O}\left(D_{p} S^{2} ; r\right)+\tilde{K}_{0}\left(D_{p} s^{1} \wedge D_{p} S^{1} ; r\right)$ takes $\Phi(\eta)$ to zero and $\Phi(v)$
to $v^{\prime} \otimes v^{\prime}$.

For the proof we need a preliminary result.

Lemma 5.8. (i) If X is a spectrum with $E^{1}=E^{r}$ in the K-theory $B S S$ and if Y is any spectrum then the external product map

$$
K_{*}(X ; r) \otimes K_{*}(Y ; r) \rightarrow K_{*}(X \wedge Y ; r)
$$

is an isomorphism, where the tensor product is taken in the Z_{2}-graded sense.
(ii) If in addition $K_{*}(X ; 1)$ and $K_{*}(X ; 1)$ are finitely generated then the external product map

$$
K^{*}(X ; r) \otimes K^{*}(Y ; r) \rightarrow K^{*}(X \wedge Y ; r)
$$

is an isomorphism.

Proof When $r=1$ the first statement is well-known (see [13, Theorem 6.2], for example). It follows that the external product induces an isomorphism of K-theory Bockstein spectral sequences. Hence if B is a basis for $K_{*}(X ; r)$ and A is a subbasis of height r for Y then the set $\left\{\pi^{r-S} x \otimes y \mid x \in B, y \in A_{S}\right\}$ is a subbasis of height r for $X \wedge Y$ and part (i) follows. The case $r=1$ of part (ii) follows from part (i) by duality, and the general case follows from it as in part (i).

Next we turn to the proof of 5.7 , which will conclude this section. In each case it suffices by 5.8 to show the dual. Then (i) is immediate and (ii) and (iii) follow from 5.4. The first and second statements of part (iv) are trivial, as is the third when $p=2$. When p is odd we observe that $\tau *{ }^{\prime}$ must be invariant under the Σ_{p} action on $\left.\tilde{K}_{*}\left(S^{l}\right)^{(p)} ; r\right)$. Clearly zero is the only invariant element.

For part (v) we observe that $\tau^{*} l_{(e)} \otimes \tau^{*} l_{(e)}$ is $\tau^{*}\left(\tau^{*} \tau^{*} l_{(e)}\right)$ by Frobenius reciprocity. Now $\imath^{*} \tau^{*} 1_{(e)}=p!1_{(e)}$, and thus

$$
\left[\frac{1}{(p-1)!}\left(p!-\tau^{*} 1_{(e)}\right)\right]^{2}=\frac{p}{(p-1)!}\left(p!-\tau^{*} 1_{(e)}\right)
$$

in $K^{0}\left(B \Sigma_{p} ; r\right)$; the result follows by duality.
For part (vi), consider the composite

$$
\tilde{K}_{1}\left(\Sigma\left(B \Sigma_{p}^{+}\right) ; r\right) \xrightarrow{\Delta_{*}} \tilde{K}_{1}\left(D_{p} S^{1} ; r\right) \xrightarrow{\delta_{*}} \tilde{K}_{1}\left(D_{p} S^{1} \wedge B \Sigma_{p}^{+} ; r\right)
$$

We have $\Delta_{*} \Sigma v=v^{\prime}$, and

$$
\begin{aligned}
\delta_{*} \Delta_{*} \Sigma v & =(\Delta \wedge I)_{*} \Sigma \delta_{*} v \\
& =\left(\Delta_{*} \Sigma v\right) \otimes \eta+\left(\Delta_{*} \Sigma \eta\right) \otimes v+p\left(\Delta_{*} \Sigma v\right) \otimes v \\
& =v^{\prime} \otimes \eta+p\left(v^{\prime} \otimes v\right) .
\end{aligned}
$$

For part (vii) observe that part (iii) implies that the map

$$
(\Delta \wedge 1)_{*}: \tilde{K}_{1}\left(\Sigma D_{p} S^{1} \wedge D_{p} S^{1} ; r\right)+\tilde{K}_{1}\left(D_{p} S^{2} \wedge D_{p} S^{1} ; r\right)
$$

is monic and that $(\Delta \wedge l)_{*}\left(\Sigma v^{\prime} \otimes v^{\prime}\right)=\Phi(\eta) \otimes v^{\prime}+p \Phi(v) \otimes v^{\prime}$. Hence it suffices to show that $(\Delta \wedge 1)_{*}\left(\Sigma \delta_{*} \Phi(\eta)\right)$ is zero and that

$$
(\Delta \wedge 1)_{*} \Sigma \delta_{*} \Phi(v)=\Phi(\eta) \times v^{\prime}+p \Phi(v) \otimes v^{\prime}
$$

Now let

$$
h: S^{1} S^{2}=S^{1} \wedge\left(S^{1} \wedge S^{1}\right) \simeq\left(S^{1} \wedge S^{1}\right) \wedge S^{1}=S^{2} \wedge S^{1}
$$

be the associativity transformation and consider the diagram

The upper part clearly commutes, and the lower part also commutes since h is homotopic to the map switching the factors s^{1} and S^{2}. Now

$$
\delta_{*}: \tilde{K}_{0}\left(D_{p} s^{2} ; r\right) \rightarrow \tilde{K}_{0}\left(D_{p} s^{2} \wedge B \Sigma_{p}^{+} ; r\right)
$$

clearly takes $\Phi(\eta)$ to $\Phi(\eta) \otimes \eta$ and $\Phi(v)$ to

$$
\Phi(\eta) \otimes v+\Phi(v) \otimes \eta+p \Phi(v) \otimes v
$$

Hence

$$
(\Delta \wedge l)_{*}\left(\Sigma \delta_{*} \Phi(\eta)\right)=(l \wedge \Delta)_{*}(\Phi(\eta) \otimes \Sigma \eta)=0
$$

by the diagram and part (ii), while

$$
\begin{aligned}
(\Delta \wedge 1)_{*}\left(\Sigma \delta_{*} \Phi(v)\right) & =(I \wedge \Delta)_{*}[\Phi(\eta) \otimes \Sigma v+\Phi(v) \otimes \Sigma n+p \Phi(v) \otimes \Sigma v] \\
& =\Phi(\eta) \otimes v^{*}+p \Phi(v) \otimes v^{\prime} .
\end{aligned}
$$

6. Calculation of $\tilde{K}_{*}\left(D_{p} X ; Z_{p}\right)$

In this section we define Q on $K_{*}(X ; 2)$ and prove Lemma 4.3. We work with K-theory on spectra in this section.

Our first result collects the information about $K_{*}\left(D_{p} \Sigma^{n} M_{r} ; 1\right)$ which will be used in this and later sections. We let i and j respectively denote the inclusion of the bottom cell of $\Sigma^{n} M_{r}$ and the projection onto the top cell. Note that $j *^{n^{n} u_{r}}=\varepsilon^{n} u$ and $i_{*} \Sigma^{n-1} u=B_{r} \Sigma^{n} u_{r}$, where u_{r} and u are the fundamental classes of M_{r} and S^{0}.

Lemme 6.1. (i) For any $n \in Z$ and $\alpha \in Z_{2}, K_{\alpha}\left(D_{p} \Sigma^{n_{M}} M_{1} ; 1\right)$ has dimension 1 over Z_{p}.
(ii) For any $n \in Z, \alpha \in Z_{2}$ and $r \geq 2, K_{\alpha}\left(D_{p} \Sigma^{n_{M}}{ }_{r} ; 1\right)$ has dimension 2 over Z_{p}.
(iii) $\left(D_{p} j\right)_{*}: K_{0}\left(D_{p} M_{r} ; 1\right) \rightarrow K_{0}\left(D_{p} S^{0} ; 1\right)$ is monic, and if $r \geq 2$ it is an isomorphism.
(iv) $\left(D_{p} j\right)_{*} \oplus \tau_{*}: K_{1}\left(D_{p} \Sigma M_{r} ; 1\right) \rightarrow K_{1}\left(D_{p} S^{l} ; 1\right) \oplus K_{1}\left(\left(\Sigma M_{r}\right)(p) ; 1\right)^{\Sigma} p$ is monic, and is an isomorphism if $r \geq 2$.
(v) $\left(D_{p} i\right)_{*}: K_{0}\left(D_{p} s^{0} ; 1\right) \rightarrow K_{0}\left(D_{p} \Sigma M_{r} ; 1\right)$ is onto. If $r=1$ it has kernel generated by n and if $r \geq 2$ it is an isomorphism.
(vi) The sequence

$$
K_{1}\left(D_{p} S^{-1} ; 1\right) \xrightarrow{\left(D_{p}\right)^{*}} K_{1}\left(D_{p} M_{r} ; 1\right) \xrightarrow{\tau_{*}} K_{1}\left(\left(M_{r}\right)^{(p)} ; 1\right)^{\Sigma_{p}} \rightarrow 0
$$

is exact, and if $r \geq 2,\left(D_{p} i\right)_{*}$ is a monomorphism.
In parts (iv) and (vi), $K_{1}\left(\left(\Sigma^{n_{M}}\right)^{(p)} ; 1\right)^{\Sigma}$ p denotes the subgroup invariant under the evident Σ_{p}-action; this subgroup can easily be calculated using 5.8(i). The proof of 6.1 is similar to that of 5.1 and is left to the reader.

We can now define elements $v_{1} \in K_{0}\left(D_{p} M_{2} ; 1\right)$ and $v_{1}^{\prime} \in K_{1}\left(D_{p} \Sigma M_{2} ; 1\right)$ by the equations $\left(D_{p} j\right)_{*} v_{1}=v,\left(D_{p} j\right)_{*} v_{1}^{\prime}=v^{\prime}$, and $\tau_{*} v_{1}^{\prime}=0$. We use definition 1.6 to construct Q.

Definition 6.2. $Q: K_{\alpha}(X ; 2) \rightarrow K_{\alpha}\left(D_{p} X ; 1\right)$ is the generalized Dyer-Lashof operation $Q_{V_{1}}$ if $\alpha=0$ and $Q_{v_{1}}$ if $\alpha=1$.

Observe that $v_{1}=Q u_{2}$ and $v_{1}^{\prime}=Q \Sigma u_{2}$.
Next we turn to the proof of 4.3 . We use the spectral sequence of 1.2 .4 with π equal to Z_{p} or Σ_{p} and $E=X$. This spectral sequence will be denoted by $E_{q, a}^{r}(\pi ; X)$; by Bott periodicity it is $Z \times Z_{2}$-graded, so that $\alpha \in Z_{2}$.

We can describe $\mathrm{E}_{\mathrm{q}, *}^{2}(\pi ; \mathrm{X})=\mathrm{H}_{\mathrm{q}}\left(\pi ; \mathrm{K}_{*}(\mathrm{X} ; 1)^{\otimes \mathrm{p}}\right)$ as follows. When $\mathrm{q}=0$ it is just the coinvariant quotient of $K_{*}(X ; 1)^{\otimes} p$. Let $\pi=Z_{p}$ with p odd. If $x \in K_{\alpha}(X ; 1)$ then $X^{p} K_{*}(X ; 1)^{\otimes} p$ generates a trivial π-submodule and we write $e_{q} \otimes x^{p}$ for the image of $e_{q} \in H_{q}\left(B_{\pi} ; 1\right)$ under the inclusion of this submodule. Now $K_{*}(X ; 1)^{\otimes P}$ can be written as a direct sum of trivial m-modules of this kind and free π-modules generated by $x_{1} \otimes \cdots \otimes x_{p}$ with not all x_{i} 's equal. Hence the map

$$
\mathrm{K}_{\alpha}(\mathrm{X} ; I) \rightarrow \mathrm{E}_{\mathrm{q}, \alpha}^{2}\left(Z_{\mathrm{p}} ; \mathrm{X}\right)
$$

taking x to $e_{q} \otimes x^{p}$ is an isomorphism if $q>0$ and p is odd. We continue to write $e_{q} \otimes x^{p}$ for the image of this element under the natural map

$$
\mathrm{E}_{\mathrm{q}, a}^{2}\left(Z_{\mathrm{p}} ; X\right) \rightarrow \frac{\mathrm{E}_{\mathrm{q}, \alpha}^{2}}{2}\left(\Sigma_{\mathrm{p}} ; X\right)
$$

By $[68,1.4]$ we see that this map is onto in all bidegrees, is an isomorphism when $q=(2 i-\alpha)(p-1)$ or $(2 i-\alpha)(p-1)-1$ for some $i \geq 1$, and is zero in all other bidegrees with $q>0$. Finally, if $p=2$ then by $3.2(v i i)^{\prime}$ the Z_{2}-action on $K_{*}(X ; 1)^{\otimes 2}$ is given by $x \otimes y \longmapsto y \otimes x+\beta y \otimes \beta x ;$ in particular, x^{2} is invariant if and only if $\beta x=0$. Using this it is easy to see that the map taking x to $e_{q} \otimes x^{2}$ induces an isomorphism from ker $\beta / i m \beta$ to $\mathrm{E}_{\mathrm{q}, 0}\left(\mathrm{Z}_{2} ; \mathrm{X}\right)$ if $\mathrm{q}>0$, while $\mathrm{E}_{\mathrm{q}, 1}\left(\mathrm{Z}_{2} ; \mathrm{X}\right)=0$ for $\mathrm{q}>0$.

Our next two results describe the groups $\mathbb{E}_{\mathrm{q}, \alpha}^{\infty}\left(\Sigma_{p} ; X\right)$. Let A be a subbasis for X and let $\bar{A}_{2} \subset K_{*}(X ; 2)$ be the set

$$
\left\{\pi^{r-2} x \mid x \in A_{r}, 2 \leq r \leq \infty\right\} \cup\left\{\pi^{r-2} \beta_{r} x \mid x \in A_{r}, 2 \leq r<\infty\right\}
$$

Let $\bar{A}_{2,0}$ and $\bar{A}_{2,1}$ be the zero- and one-dimensional subsets of \bar{A}_{2}.
Proposition 6.3. (i) The kernel of the epimorphism $E_{0, *}^{2}\left(\Sigma_{p} ; X\right) \rightarrow E_{0, *}^{\infty}\left(\Sigma_{p} ; X\right)$ is generated by the set $\left\{(\beta x)^{p} \mid x \in K_{1}(X ; 1)\right\}$ if p is odd and by

$$
\left\{\left(\pi \beta_{2} x\right)^{2}+(\pi x)^{2} \mid x \in k_{1}(X ; 2)\right\} \text { if } p=2
$$

(ii) The terms $E_{q, \alpha}^{\infty}\left(\Sigma_{p} ; X\right)$ with $q>0$ are freely generated by the sets

$$
\begin{aligned}
& \left\{e_{2 p-2} \otimes(\pi x)^{p} \mid x \in \bar{A}_{2,0}\right\} \\
& \left\{e_{p-1} \otimes(\pi x)^{p} \mid x \in \bar{A}_{2,1}\right\}
\end{aligned}
$$

and, if p is odd,

$$
\left\{e_{p-2} \otimes x^{p} \mid x \in A, 1\right\}
$$

Proposition 6.4. (i) If $x \in \bar{A}_{2,0}$ then $Q x$ is represented in $E_{* *}^{\infty}\left(\Sigma_{p} ; X\right)$ by a nonzero multiple of $e_{2 p-2} \times(\pi x)^{p}$.
(ii) If $x \in \bar{A}_{2,1}$ then $Q x$ is represented by a nonzero multiple of $e_{p-1} \otimes(\pi x)^{p}$.
(iii) If $x \in A_{1,1}$ then $Q B_{2} p * x$ is represented by a nonzero multiple of $e_{p-2} \otimes x^{p}$.

Note that Lemma 4.3 is an immediate consequence of $6.3,6.4$ and the external versions of 3.3 (iii), $3.3(\mathrm{v})$, and $3.6(\mathrm{iv})$.

When p is odd, Proposition 6.3 is Corollary 3.2 of [77]. We shall give a different proof, using the methods of Section 1 , which also works for $p=2$. First observe that there are two equivalent ways of constructing the spectral sequence $E_{* *}^{r}(\pi ; X)$; one can either apply mod p K-theory to the filtration of $D_{p} X$ given in Section I. 2 or one can apply mod p stable homotopy to the corresponding filtration of $K \wedge D_{p} X$. The latter procedure has the advantage that the map

$$
\bar{D}_{\pi} f: D_{\pi} Y \rightarrow K \wedge D_{\pi} X
$$

induced by any map $f: Y \rightarrow K \wedge X$ clearly gives rise to a homomorphism

$$
\left(\bar{D}_{\pi} f\right)_{* *}: \mathrm{E}_{* *}^{\mathrm{r}}(\pi ; \mathrm{Y}) \rightarrow \mathrm{E}_{* *}^{\mathrm{r}}(\pi ; \mathrm{X})
$$

of spectral sequences.

Lemma 6.5. If $\pi=Z_{p}$ or Σ_{p} and $y \in K_{*}(X ; 1)$ (with $\beta y=0$ if $p=2$) then $\left(\bar{D}_{\pi} f^{f}\right)_{* *}\left(e_{q} \otimes y^{p}\right)=e_{q} \otimes\left(f_{* * y}\right)^{p}$.

Proof of 6.5. It suffices to consider the case $\pi=Z_{p}$. The composite

$$
D_{\pi} X=D_{\pi}\left(X \wedge S^{0}\right) \xrightarrow{\delta} D_{\pi} X \wedge D_{\pi} S^{0}
$$

induces a coproduct

$$
\Psi: \mathrm{E}_{* *}^{r}(\pi ; X) \rightarrow \mathrm{E}_{* *}^{r}(\pi ; X) \otimes \mathrm{E}_{* *}^{r}\left(\pi ; S^{O}\right)
$$

and we have

$$
\psi \circ\left(\bar{D}_{\pi} f\right\rangle_{* *}=\mid\left(\bar{D}_{\pi} f\right)_{* *} \otimes 11 \circ \psi .
$$

The lemma clearly holds for $q=0$, and it follows for all q since the component of $\Psi\left(e_{q} \otimes y^{p}\right)$ in $E_{0 *}^{2}(\pi ; Y) \otimes E_{q^{*}}^{2}\left(\pi ; S^{0}\right)$ is $\left(e_{0} \otimes y^{p}\right) \otimes e_{q}$.

Proof of 6.4. (i) Let x be represented by $f: M_{2} \rightarrow K \wedge X$. Then $f_{* *} u_{2}=x$, $\left(\bar{D}_{p} f\right)_{* *} Q u_{2}=Q x$, and $\left(\bar{D}_{p} f\right)_{* *}\left(e_{p-2} \otimes u_{2}^{p}\right)=e_{2 p-2} \otimes x^{p}$. Hence we may assume that $X=M_{2}$ and $x=u_{2}$, and it suffices to show that $v_{1}=Q u_{2}$ is not in the image of

$$
K_{0}\left(M_{2}^{(p)} ; 1\right) \rightarrow K_{0}\left(D_{p} M_{2} ; 1\right)
$$

But this is clear since $\left(D_{p}{ }^{j}\right)_{*} v_{I}=v$.
Part (ii) is similar. For part (iii) we may assume that $X=\Sigma M_{1}$ and $x=\Sigma u_{1}$. In this case it suffices to show that $Q \beta_{2} p_{*} u_{1}$ is nonzero. But $\beta_{2} p_{*} u_{1}=i_{*} u$, where $u \in K_{0}\left(S^{0} ; 2\right)$ is the unit, and $Q u=v$. Hence $Q \beta_{2} p_{*} U_{\mathcal{I}}=\left(D_{p} i\right)_{* V}$ is nonzero by 6.1(iii).

Proof of 6.3. First let $p=2$. Since every element of ker β lifts to $K_{*}(X ; 2)$, Proposition 6.3 will be a consequence of the following facts.
(a) $\mathrm{d}_{2}=0$
(b) $\quad d_{3}\left(e_{2 q-\alpha-1} \otimes(\pi x)^{2}\right)=e_{2 q-\alpha-4} \otimes\left(\pi_{\beta_{2} x}\right)^{2}$
(c) $d_{3}\left(e_{2 q-\alpha} \otimes(\pi x)^{2}\right)=e_{2 q-\alpha-3} \otimes\left[(\pi x)^{2}+\left(\pi \beta_{2} x\right)^{2}\right]$.

Note that, when $\beta_{2} x \neq 0$, formulas (b) and (c) differ from those given in 199, 3.8(a)(ii)].

First consider the case $X=s^{0}$. Then the spectral sequence of I. 2.4 is isomorphic to the Atiyah-Hirzebruch spectral sequence, so that (a), (b) and (c) hold in this case by 5.1.

Next we need the coproduct Ψ defined in the proof of 6.5 . this has the form

$$
\Psi\left(e_{q} \otimes x^{2}\right)=\sum_{i=0}^{q}\left(e_{i} \otimes x^{2}\right) \otimes e_{q-i}
$$

and it follows that if x and y satisfy

$$
d_{3}\left(e_{3} \otimes x^{2}\right)=e_{0} \otimes y^{2}
$$

then we also have

$$
d_{3}\left(e_{2 s+1} \otimes x^{2}\right)=e_{2 s-2} \otimes y^{2}
$$

and

$$
d_{3}\left(e_{2 s+2} \otimes x^{2}\right)=e_{2 s-1} \otimes\left[y^{2}+x^{2}\right]
$$

for all $\mathrm{s} \geq 1$.
Now let $X=s^{l}$. In this case $d_{2}=0$ for dimensional reasons, and there are only two possibilities for d_{3} consistent with the coproduct, namely
or

$$
\begin{aligned}
& d_{3}\left(e_{2 q} \otimes(\Sigma u)^{2}\right)=e_{2 q-3} \otimes(\Sigma u)^{2} \\
& d_{3}\left(e_{2 q-1} \otimes(\Sigma u)^{2}\right)=e_{2 q-4} \otimes(\Sigma u)^{2}
\end{aligned}
$$

Only the second is consistent with 5.1 , and hence (b) and (c) hold in this case.
Next observe that, by $6.5, d_{2}$ vanishes in general if it does for M_{2} and ΣM_{2}. In each of these cases, d_{2} is zero for dimensional reasons except on $E_{2,0}^{2}$, and the only element that could be hit is $\left(\pi \Sigma^{\alpha} u_{2}\right)\left(\pi \beta \Sigma^{L^{\alpha}} u_{2}\right)$ in $E_{0,1}^{2}$. But the corresponding element of $K_{1}\left(D_{2} \Sigma^{\alpha} M_{2} ; 1\right)$ is nonzero since its transfer it nonzero in $K_{1}\left(\left(\Sigma^{a} M_{2}\right)^{(2)}\right)$. Hence $d_{2}=0$.

Finally, (b) and (c) will hold for all x if they hold for $x=u_{2}$ and $x=\Sigma u_{2}$. First consider $\sum u_{2}$. It suffices to show that

$$
d_{3}\left(e_{3} \otimes\left(\pi u_{2}\right)^{2}\right)=\left(\pi u_{2}\right)^{2}+\left(\pi \beta_{2} u_{2}\right)^{2}
$$

From inspection of the maps
and

$$
\begin{aligned}
& \mathrm{E}_{* *}^{3}\left(\mathrm{Z}_{2} ; S^{0}\right) \rightarrow \mathrm{E}_{* *}^{3}\left(Z_{2} ; \Sigma \mathrm{M}_{2}\right) \\
& \mathrm{E}_{* *}^{3}\left(\mathrm{Z}_{2} ; \Sigma \mathrm{M}_{2}\right) \rightarrow \mathrm{E}_{* *}^{3}\left(Z_{2} ; S^{1}\right)
\end{aligned}
$$

we see that $d_{3}\left(e_{3} \otimes\left(\pi \beta_{2} \Sigma u_{2}\right)^{2}\right)$ is zero and that $d_{3}\left(e_{3} \otimes\left(\pi \Sigma u_{2}\right)^{2}\right)$ projects to $(\Sigma u)^{2}$ in $\mathrm{E}_{0,0}^{3}\left(\mathrm{Z}_{2} ; \mathrm{S}^{1}\right)$. Hence

$$
d_{3}\left(e_{3} \otimes\left(\pi \Sigma u_{2}\right)^{2}\right)=\left(\pi \Sigma u_{2}\right)^{2}+\varepsilon\left(\pi \beta_{2} \Sigma u_{2}\right)^{2}
$$

for some $\varepsilon \in Z_{2}$ and there are no further differentials. But by the external version of $3.3(x)$ we have $i_{*}\left(\pi \Sigma u_{2}\right)^{(2)}=i_{*}\left(\pi B_{2} \Sigma u_{2}\right)^{(2)}$ in $K_{0}\left(D_{2} \Sigma M_{2} ; 1\right)$, hence $\varepsilon=1$ as required.

It remains to show that

$$
d_{3}\left(e_{3} \otimes\left(\pi u_{2}\right)^{2}\right)=\left(\pi \beta_{2} u_{2}\right)^{2}
$$

For this we use the map

$$
\Psi^{\prime}: E_{* *}^{r}\left(Z_{2} ; \Sigma M_{2}\right)+E_{* *}^{r}\left(Z_{2} ; s^{1}\right) \otimes E_{* *}^{r}\left(Z_{2} ; M_{2}\right)
$$

induced by

$$
\delta: D_{2} \Sigma M_{2}+D_{2} S^{I} \wedge D_{2} M_{2}
$$

We have

$$
\Psi^{\prime}\left(e_{q} \otimes\left(\pi \Sigma u_{2}\right)^{2}\right)=\sum_{i=0}^{q}\left(e_{i} \otimes(\pi \Sigma u)^{2}\right) \otimes\left(e_{q-i} \times\left(\pi u_{2}\right)^{2}\right)
$$

and therefore

$$
d_{3} \Psi^{\prime}\left(e_{3} \otimes(\pi \Sigma u)^{2}\right)=\left(e_{0} \otimes(\pi \Sigma u)^{2}\right) \otimes\left[d_{3}\left(e_{3} \otimes\left(\pi u_{2}\right)^{2}\right)+e_{0} \otimes\left(\pi u_{2}\right)^{2}\right]
$$

while $\quad \psi \cdot d_{3}\left(e_{3} \otimes(\pi \Sigma u)^{2}\right)=\left(e_{0} \otimes(\pi \Sigma u)^{2}\right) \otimes\left(e_{0} \otimes\left(\pi u_{2}\right)^{2}+e_{0} \otimes\left(\pi \beta_{2} u_{2}\right)^{2}\right]$
and the result follows.

Next let p be odd. We must show the following
(a) $d_{i}=0$ for $i \leq p-2$
(b) $d_{p-1}\left(e_{q} \otimes x^{p}\right)=e_{q+1-p} \otimes(\beta x)^{p}$
(c) $d_{i}=0$ for $p \leq i \leq 2 p-2$
(d) $d_{2 p-1}\left(e_{q} \otimes x^{p}\right)=e_{q+1-2 p} \otimes x^{p}$
(e) $d_{i}=0$ for $i \geq 2 p$.

As before, when $X=S^{0}$ the spectral sequence is isomorphic to the AtiyahHirzebruch spectral sequence so that (a)-(e) hold for 5.1. They also hold for $X=S^{l}$ by 5.1 and the coproduct. Now 6.5 implies that (a) and (b) will hold for all X if they do for $X=M_{1}$ and $X=\Sigma M_{1}$. Inspection of the maps
and

$$
\begin{aligned}
& E_{* *}^{r}\left(\Sigma_{p} ; s^{\alpha-1}\right) \rightarrow E_{* *}^{r}\left(\Sigma_{p} ; \Sigma^{\alpha} M_{1}\right) \\
& E_{* *}^{r}\left(\Sigma_{p} ; \Sigma^{\alpha} M_{1}\right) \rightarrow E_{* *}^{r}\left(\Sigma_{p} ; S^{\alpha}\right)
\end{aligned}
$$

and the coproduct shows in each case that either (a) and (b) hold or (a), (c), (d), and (e) hold with $d_{p-1}=0$. Only the former gives an E_{∞} term compatible with 6.1(i). Hence (a) and (b) hold for all x.

Now applying 6.5 again we see that (c), (d) and (e) will hold in general if they hold for M_{2} and ΣM_{2}. But one can see that they do by inspection of the maps

$$
\begin{aligned}
& E_{* *}^{r}\left(\Sigma_{p} ; s^{\alpha-1}\right) \rightarrow E_{* *}^{r}\left(\Sigma_{p} ; \Sigma^{\alpha} M_{2}\right) \\
& E_{* *}^{r}\left(\Sigma_{p} ; \Sigma^{\alpha} M_{2}\right) \rightarrow E_{* *}^{r}\left(\Sigma_{p} ; S^{\alpha}\right),
\end{aligned}
$$

and
and the proof is complete.
7. Construction and properties of Q.

In this section we complete the construction of Q and prove external and internal versions of Theorem 3.3.

As in section 6 , we shall construct Q by specifying elements $V_{r-1} \in K_{0}\left(D_{p} M_{r} ; r-1\right)$ and $v_{r}^{\prime} \in K_{1}\left(D_{p} \Sigma M_{r} ; r-1\right)$. In order to do this we need a stronger version of 6.1 .

Lemma 7.1. Let $r \geq 2$. The maps

$$
\left(D_{p} j\right)_{*}: K_{0}\left(D_{p} M_{r} ; r-1\right) \rightarrow K_{0}\left(D_{p} s^{0} ; r-1\right)
$$

$$
\left(D_{p} j\right)_{*} \oplus \tau_{*}: K_{1}\left(D_{p} \Sigma M_{r} ; r-1\right) \rightarrow K_{1}\left(D_{p} S^{1} ; r-1\right) \oplus K_{1}\left(\left(\Sigma M_{r}\right)(p) ; r-1\right)^{\Sigma} p
$$

and

$$
\left(D_{p} i\right)_{*}: K_{0}\left(D_{p} S^{0} ; r-1\right) \rightarrow K_{0}\left(D_{p} \Sigma M_{r} ; r-1\right)
$$

are isomorphisms, and the sequence

$$
0 \rightarrow K_{1}\left(D_{p} s^{1} ; r-1\right) \xrightarrow{\left(D_{p} i\right)_{*}} K_{1}\left(D_{p} M_{r} ; r-1\right) \xrightarrow{T_{*}} K_{1}\left(\left(M_{r}\right)^{(p)} ; r-1\right)^{\Sigma} p \rightarrow 0
$$

is exact.

Note that the terms in 7.1 which involve iterated smash products may be calculated by using 5.8. Assuming 7.1 for the moment we may define v_{r-1} and v_{r-1}^{\prime} by the equations $\left(D_{p} j\right)_{* v_{r-1}}=v,\left(D_{p} j\right) * v_{r-1}^{\prime}=v^{\prime}$, and $\tau_{* v_{r-1}}^{\prime}=0$.

Definition 7.2. $Q: K_{\alpha}(X ; r) \rightarrow K_{\alpha}\left(D_{p} X ; r-1\right)$ is the operation $Q_{v_{r-1}}$ if $\alpha=0$ and Q_{r-1}^{1} if $\alpha=1$.

Observe that $v_{r-1}, v, v_{r-1}^{\prime}$ and v^{\prime} are equal respectively to $Q u_{r}, Q u, Q \Sigma u_{r}$, and QLu. From now on we shall always use the latter notations for these elements.

We shall prove 7.1 by showing that $E^{l}=E^{r-1}$ in the K-theory BSS for $D_{p} \Sigma^{n_{M}} M_{r}$ when $r \geq 2$. For this we shall require a formula for the Bockstein of the external Q-operation, and this in turn depends on the other formulas collected in the following lemma.

Lemma 7.3. Let $x, y \in K_{\alpha}(X ; r)$ with $r \geq 2$.
(i) $\quad \tau_{*} Q x= \begin{cases}0 & \text { if } \alpha=1 \\ -(p-1)!\pi x^{(p)} & \text { if } \alpha=0 \text { and } p \text { is odd } \\ -\pi x^{(2)}+\omega 2^{r-2} \pi\left(\beta_{r}\right)^{(2)} & \text { if } \alpha=0 \text { and } p=2 \text {. }\end{cases}$

Here $w Z_{2}$ is independent of x.
(ii) $\quad \pi Q x=Q \pi x$ if $r \geq 3$.
(iii) $Q(x+y)= \begin{cases}\left.Q x+Q y-\pi i_{*} \sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x^{(i)} \otimes y^{(p-i)}\right) & \text { if } \alpha=0 \text { and } p \text { is odd } \\ \left.Q x+Q y-\pi i_{*}(x \otimes y)+\omega 2^{r-2} \pi i_{*}\left[\left(B_{r} x\right) \otimes B_{r} y\right)\right] & \text { if } \alpha=0 \text { and } p=2 \\ Q x+Q y & \text { if } \alpha=1 .\end{cases}$
(iv) Let $k \in Z$. Then
(v)

$$
\begin{aligned}
& Q(k x)= \begin{cases}k Q x-\frac{1}{p}\left(k^{p}-k\right) \pi_{*} x^{(p)} & \text { if } \alpha=0 \\
k Q x & \text { if } \alpha=1\end{cases} \\
& \Delta_{*} \Sigma Q x= \begin{cases}Q \Sigma x & \text { if } \alpha=0 \\
\pi i_{*}(\Sigma x)^{(p)}+p Q \Sigma x & \text { if } \alpha=1\end{cases} \\
& \beta_{r-1} Q x= \begin{cases}Q \beta_{r} x-p q_{*}\left(x^{(p-1)} \otimes \beta_{r} x\right) & \text { if } \alpha=0 \\
\pi 1_{*}\left(\beta_{r} x\right)^{(p)}+p Q \beta_{r} x & \text { if } \alpha=1 .\end{cases}
\end{aligned}
$$

The constant ω in parts (i) and (iii) will turn out to be 1 , as required for 3.3(vi). In order to avoid circularity, we shall prove 7.1 and 7.3 by a simultaneous induction. More precisely, we shall assume that 7.1 holds for $r \leq r_{O}$ and that 7.3 holds for $r<r_{0}$ (vacuously if $r_{0}=2$) and then prove 7.3 for $r=r_{0}$ and 7.1 for $r=r_{0}+1$. Before beginning, we need two technical lemmas.

Lemma 7.4. Let $Y \xrightarrow{f} Z \xrightarrow{g} C f \xrightarrow{h} \Sigma X$ be a cofiber sequence in $\bar{h} S$ and let $r \geq 2$. Suppose that β_{r-1} vanish on $K_{1}(Z ; r-1)$. Let $y \in K_{1}(\Sigma Y ; 2 r-2), z \in K_{0}(Z ; r-1)$ and $w \in K_{1}(C f ; r-1)$ be any elements satisfying $\pi^{r-1} y=h_{*} w$ and $p_{*}^{r-1}(\Sigma z)=f_{*} y$. Then $B_{r-1}{ }^{W}=g_{*} Z$.

Proof Consider the following diagram in $\overrightarrow{\mathrm{h}} \&$.

Here the bottom row is the evident cofiber sequence, with the first map induced by the inclusion $Z_{p r-1} \subset Z_{p} 2 r-2$ and the second by the projection $Z_{p} 2 r-2+Z_{p r-1}$. Precomposition with the first, second, and third maps in this sequence induces the transformations $\pi^{r-1}, p_{\underset{*}{r-1}}^{r}$ and (because of the suspension) $-\beta_{r+1}$, respectively. The left-hand square commutes up to homotopy since $\pi^{r-1} y=h_{*} w$. Hence there exists an element ζ making the other two squares commute, and we have $-\beta_{r-1} \Sigma w=(\Sigma g)_{* \zeta}$ * Now the map

$$
\Sigma z: \Sigma M_{r-1} \rightarrow K \wedge \Sigma Z
$$

makes the middle square commute, hence $\zeta-\Sigma z$ restricts trivially to $\Sigma M_{2 r-2}$. Thus $\zeta-\Sigma z$ extends to a map

$$
\xi: \Sigma^{2} M_{r}+K \wedge \Sigma Z
$$

with $\beta_{r-1} \xi_{\zeta}=\zeta-\Sigma z$. Since β_{r-1} vanishes on $K_{0}(\Sigma Z ; r-1)$ we have $\zeta=\Sigma z$. Thus $-_{r-1} \Sigma W=\Sigma\left(g_{*} Z\right)$ and the result follows.

Lemma 7.5. If $f: X \rightarrow K \wedge Y$ is any map then $f_{* *}$ commutes with π, B_{r}, p_{*} and Σ.

The proof of 7.5 is trivial. Before proceeding we use 7.5 to dispose of 3.2(iv).

Proof of $3.2(\mathrm{iv})$. For any $x \in K_{*}(X ; r-1)$ and $y K_{*}(Y ; r)$ there exist maps $f:\left.\Sigma\right|^{|x|} M_{M_{-1}} \rightarrow K \wedge X$ and $g:\left.\Sigma \Sigma^{\mid y}\right|_{M_{r}} \rightarrow K \wedge Y$ with $f_{* *^{\Sigma}}|x|_{u_{r-1}}=x$ and $g_{* *^{\Sigma}}|y|_{u_{r}}=y$. Thus by 7.5 and 1.3 (ii) we may assume $X=\Sigma|x|_{M_{r-1}}$ and $Y=\Sigma|y|_{M_{r}}$ with $x=\Sigma|x|_{u_{r-1}}$ and $y=\sum_{\sum}|y|_{u_{r}}$. By 3.2 (vi) we may assume $|x|=|y|=0$. Clearly the set

$$
\left\{u_{r-1} \otimes \pi u_{r}, u_{r-1} \otimes \pi \beta_{r} u_{r}\right\}
$$

is a subbasis for $M_{r-1}{ }^{\wedge} M_{r}$. Hence by 3.9 we have

$$
\begin{equation*}
\left(p_{*} u_{r-1}\right) \otimes u_{r}=a_{1} p_{*}\left(u_{r-1} \otimes \pi u_{r}\right)+a_{2} \beta_{r} p_{*}\left(u_{r-1} \otimes \pi \beta_{r} u_{r}\right) \tag{1}
\end{equation*}
$$

for some $a_{1}, a_{2} \in Z_{p r-1}$. Applying π to each side gives

$$
\begin{aligned}
p u_{r-1} \otimes \pi u_{r} & =a_{1} p u_{r-1} \otimes \pi u_{r}+a_{2}^{\beta} r_{r-1}\left(u_{r-1} \otimes \pi \beta u_{r}\right) \\
& =a_{1} p u_{r-1} \otimes \pi u_{r}+a_{2} \beta r_{r-1} u_{r-1} \otimes \pi \beta_{r} u_{r}
\end{aligned}
$$

Hence $a_{2}=0$. Now applying $(j \wedge j)_{*}$ to each side of equation (1) gives

$$
p(u \otimes u)=a_{1} p_{*}(u \otimes u)=a_{1} p(u \otimes u)
$$

in $K_{0}\left(D_{p} S \wedge D_{p} S ; r\right) \cong Z_{p} r^{\circ}$ Hence $a_{1}=1$ in $Z_{p} r-1$.
Next we give the proof of 7.3 for $r=r_{0}$. The proof of each part will be quite similar to that just given for 3.2 (iv). First we observe that by $1.3,1.4,1.5$ and 7.5 we may assume in each part except (iii) that X is $\Sigma^{\alpha_{M}} M_{r}$ and that x is the fundamental class $\Sigma^{\alpha} u_{r}$.
(i). If $\alpha=1$ the result holds by Definition 7.2. Suppose $\alpha=0$ and consider the map

$$
j_{*}^{(p)}: K_{0}\left(M_{r}^{(p)} ; r-1\right)^{\Sigma_{p}} \rightarrow K_{0}\left(S^{0} ; r-1\right) .
$$

This is monic when p is odd and has kernel generated by $2^{r-2} \pi\left(\beta_{r} u_{r}\right)(2)$ when $p=2$. The result follows since $j_{*}^{(p)} u_{r}^{(p)}=u \in K_{0}\left(S^{0} ; r\right)$ and

$$
j_{*}^{(p)} \tau_{*} Q u_{r}=\tau_{*}\left(D_{p} j\right)_{*} Q u_{r}=\tau_{*} Q u=-(p-1)!u ;
$$

the last equality is 5.7 (iv).
(ii). Let $\alpha=1$. By 7.1 it suffices to show that

$$
\left(D_{p} j\right)_{*} \pi Q \Sigma u_{r}=\left(D_{p} j\right)_{*} Q \pi \Sigma u_{r}
$$

and that

$$
\tau_{*} \pi Q \Sigma u_{r}=\tau_{*} Q \pi \Sigma u_{r} .
$$

This second equation follows from part (i) and the first from $5.7(i)$. The case $\alpha=0$ is similar.
(iii). Let $\alpha=0$ with p odd. By $1.3,1.4$ and 7.5 we may assume that X is $M_{r} \vee M_{r}$ with x and y being the fundamental classes of the two sumands. Let

$$
F: V_{i=0}^{p} D_{i} M_{r} \wedge D_{p-i} M_{r} \rightarrow D_{p}\left(M_{r} \vee M_{r}\right)
$$

be the equivalence of II.I.1 and let $f: M_{T} \rightarrow M_{T} \vee M_{T}$ be the pinch map. Then $\left(D_{p} f\right)_{* Q u_{r}}=Q(x+y)$, and it suffices to show that

$$
F_{*}^{-1}\left(D_{p} f\right)_{*} Q u_{r}=Q u_{r} \otimes u+u \otimes Q u_{r}-\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} \pi i_{*} u_{r}^{(i)} \otimes \pi i_{*} u_{r}^{(p-i)}
$$

since F_{*} applied to the right side of this equation clearly gives the right side of the desired formula. Now the projection of $\mathrm{F}^{-1} \circ \mathrm{D}_{\mathrm{p}} \mathrm{f}$ on the i-th wedge summand is the transfer

$$
{ }^{\tau}{ }_{i, p-i}: D_{p} M_{r} \rightarrow D_{i} M_{r} \wedge D_{p-i} M_{r}
$$

When i is 0 or p this transfer is the evident natural equivalence, hence it suffices to show

$$
\begin{equation*}
\left(\tau_{i, p-i}\right)^{Q u_{r}}=-\frac{1}{p}\binom{p}{i} \pi i u_{r}^{(i)} \otimes \pi i^{u} u_{r}^{(p-i)} \tag{2}
\end{equation*}
$$

for $0<i<p$. Now the transfer

$$
\tau_{i, p-1}^{\prime}: D_{i} M_{r} \wedge D_{p-1} M_{r} \rightarrow M_{r}^{(p)}
$$

induces a monomorphism since the order of $\Sigma_{i} \times \Sigma_{p-i}$ is prime to p for $0<i<p$. We have

$$
\left.\left(\tau_{i, p-i}^{*}\right)_{*}\left(\tau_{i, p-i}\right) u_{r}=\tau_{*} Q u_{r}=-(p-1)\right) u_{r}^{(p)}
$$

by part (i) while

$$
\left(\tau_{i, p-i}^{\prime}\right)_{*}\left[\pi_{*} u_{r}^{(1)} \otimes \pi i_{*}^{u}{\left.\underset{r}{(p-i)}]=i!(p-i)!u_{r}^{(p)}\right) .}_{p}^{(p)}\right.
$$

by the double coset formula. Equation (2) follows. The proof when $p=2$ or $\alpha=1$ is similar.

Part (iv) follows from (iii) by induction on k. When $p=2$ and $\alpha=0$ we need to know that $2^{r-2} \pi_{*}\left(\beta_{r} x\right)^{(2)}=0$. If $r>2$ this is evident since $i_{*}\left(\beta_{r}\right)^{(2)}$ has order 2 by 3.2 (viii). If $r=2$ then by 6.4 (iii) we have

$$
{ }^{I_{*}}\left(\pi \beta_{2} x\right)^{(2)}=Q \beta_{2}{ }^{2} * \pi \beta_{2} x=0 .
$$

(v). Let $\alpha=0$. By 7.1 is suffices to show

$$
\left(\Sigma D_{\mathrm{p}} j\right)_{*} A_{*} \Sigma Q u_{\mathrm{r}}=Q \Sigma u
$$

and

$$
\tau_{*} \Delta_{*} \Sigma \mathrm{Qu}_{\mathrm{r}}=0 .
$$

The first equation is immediate from 7.2 and $5.7(i 1)$. For the second, consider the diagram

Here the map Δ^{\prime} is induced by the diagonal of s^{l}. By definition, the map Δ is obtained by aplying the functor $E \Sigma_{p}^{+} \wedge_{\Sigma_{p}}\left(\right.$, to the map of Σ_{p}-spectra

$$
S_{1} \wedge\left(M_{r}\right)^{(p)} \rightarrow\left(S_{1} \wedge M_{r}\right)^{(p)}
$$

induced by the diagonal of S^{1}. Hence the diagram conmutes by naturality of τ. But the diagonal map of S^{1} is nonequivariantly trivial, hence $\tau_{*} \Delta * \Sigma Q u_{r}=0$ as required. The proof when $\alpha=1$ is similar.
(vi). Suppose first that $\alpha=1$. Consider the following diagram

Here $f: S \rightarrow S$ has degree p^{r} and the top row is the cofiber sequence of $D_{p} f$. The map γ is that constructed in II.3.8, where it was called ψ, and the diagram commutes. For any $s \geq 1$ the map

$$
\left(D_{p} f\right)_{*}: K_{0}\left(D_{p} s ; s\right) \rightarrow K_{0}\left(D_{p} s ; s\right)
$$

is given by the formula $\left(D_{p} f\right)_{* \eta}=p^{p r} n$ and

$$
\left(D_{p} f\right)_{* Q u}=Q\left(p^{r} u\right)=p^{r} Q u-\left(p^{p^{r-1}}-p^{r-1}\right)_{n}
$$

In particular, when $s=r-1$ the $\operatorname{map}\left(D_{p} f\right)_{*}$ is zero, and since $K_{1}\left(D_{p} s ; r-1\right)=0$ we see that

$$
h_{*}: K_{1}(C ; r-1) \rightarrow K_{1}\left(\Sigma D_{p} s ; r-1\right)
$$

is an isomorphism. Thus there is a unique $w \in K_{1}(C ; r-1)$ with $h_{*} w=\Sigma Q u$. Letting

$$
y=\Sigma Q u \in K_{1}\left(* \Sigma D_{p} S ; 2 r-2\right)
$$

and

$$
z=p Q u+n \in K_{0}\left(D_{p} s ; r-I\right)
$$

we have $\pi^{r-1} y=h_{*} w$ and $p_{*}^{r-1} \Sigma z=\left(D_{p} f\right)_{*} y$, hence by Lemma 7.4 we conclude that $B_{r-1} W=g_{*} Z$ in $K_{1}(C ; r-1)$.

Next we shall show that $\gamma_{*} w=$ QLu u_{r}. Assuming this for the moment, we have

$$
B_{r-1} Q_{r} L u_{r}=\gamma_{*} \beta_{r-1} w=\gamma_{*} g_{*} z X=\left(D_{D} i\right)_{*} z^{2}=p Q \beta_{r} u_{r}+\pi_{*}\left(\beta_{r} u_{r}\right)^{(p)}
$$

which gives (vi) when $\alpha=1$. To show $\gamma_{* W}=Q \Sigma u_{r}$, we must show that $\left.\left(D_{p}\right)_{*}\right)_{* W}=Q \Sigma u$ and $\tau_{* Y * W}=0$. The first equation is immediate from the diagram and part (v). For the second, we observe that $D_{p} f$ and γ are obtained by applying $E \Sigma_{p}^{+} \Lambda_{\Sigma}{ }_{p}()$ to certain Σ_{p}-equivariant maps F and Γ, so that by naturality of τ we have the following commutative diagram of nonequivariant spectra.

Thus it suffices to show $\Gamma_{*} \tau_{*}=0$ on $K_{1}(C ; r-1)$. As a nonequivariant map F is the $\operatorname{map} S \rightarrow S$ of degree $p^{p r}$, hence the cofiber $C F$ is nonequivariantiy equivalent to ΣM_{pr}. The resulting Σ_{p}-action is clearly trivial on $K_{0}\left(\Sigma \mathrm{M}_{\mathrm{pr}} ; \mathrm{pr}\right)$, hence also on $K_{1}\left(\Sigma M_{\mathrm{pr}} ; \mathrm{pr}\right)$ since the Bockstein β_{pr} is an isomorphism between these two groups. Thus

$$
\Gamma_{*}: K_{1}\left(\Sigma M_{p r} ; p r\right)+K_{1}\left(\left(\Sigma M_{r}\right)^{(p)} ; p r\right)
$$

lands in the Σ_{p}-invariant subgroup. We claim that this subgroup is generated by the element

$$
p_{*}^{p r-r}\left[\left(\Sigma u_{r}\right) \otimes\left(\beta_{r} \Sigma u_{r}\right)^{p-1}\right]
$$

When p is odd and by this element together with

$$
2^{r-1} \beta_{2 r^{2}} 2^{r}\left[\left(\Sigma u_{r}\right) \otimes\left(\Sigma u_{r}\right)\right]
$$

when $p=2$. From this it will follow that $\pi^{p r-r+1}$ vanishes on this subgroup and therefore that Γ_{*} vanishes on $K_{I}\left(\Sigma M_{p r} ; r-1\right)$, since ${ }_{\pi} \mathrm{pr}-r^{+1}$ maps onto the latter group; thus we will have shown $\Gamma_{*} T_{*} W=0$ as required. To verify the claim we observe that the set

$$
\left\{\Sigma u_{r} \otimes x_{2} \otimes \cdots \otimes x_{p} \mid x_{i}=\Sigma u_{r} \text { or } \beta_{r} \Sigma u_{r}\right\}
$$

is a subbasis for $\left(\Sigma M_{r}\right)(p)$. Using the basis for $K_{1}\left(\left\langle\Sigma M_{r}\right)^{(p)}\right.$;pr) given by 3.9 , we see at once that the elements

$$
\begin{aligned}
z_{1} & =p_{*}^{p r-r}\left[\left(\Sigma u_{r}\right) \otimes\left(\beta_{r} \Sigma u_{r}\right)(p-1)\right] \\
\text { and } \quad z_{2} & =\beta_{p r} p^{p r-r_{*}}\left[\Sigma u_{r} \otimes\left[\sum_{i=1}^{p-1}\left(\beta_{r} \Sigma u_{r}\right)^{(i)} \otimes \Sigma u_{r} \otimes\left(\beta_{r} \Sigma u_{r}\right)^{(p-i-1)}\right]\right]
\end{aligned}
$$

are a basis for the $\Sigma_{1} \times \Sigma_{p-1}$ invariant subgroup. Now if T is the map switching the first two factors of $\left(\Sigma M_{r}\right)(p)$ we have $T_{*} z_{1}=z_{1}$ and

$$
T_{*} z_{2}=z_{2}-2 \beta_{p r} p_{*}^{p r-r}\left(\left(\Sigma u_{r}\right)^{(2)} \otimes\left(\beta_{r} \Sigma u_{r}\right)^{(p-2)}\right] ;
$$

the claim follows.
Finally, we must prove part (vi) with $\alpha=0$. By 7.1 we have

$$
\begin{equation*}
\beta_{r-1} Q u_{r}=a_{1} Q \beta_{r} u_{r}+a_{2} \pi r_{*}\left(u_{r}^{(p-1)} \otimes \beta_{r} u_{r}\right) \tag{3}
\end{equation*}
$$

for some $a_{1}, a_{2} \in Z_{p^{r-1}}$. Applying $\Delta_{*} \Sigma$ and using part (v) gives

$$
\beta_{r-1} Q \Sigma u_{r}=a_{1}\left[\pi \imath_{*}\left(\beta_{r} \Sigma u_{r}\right)^{(p)}+p Q \beta_{r} \Sigma u_{r}\right]
$$

Comparing this with the case $\alpha=1$ of (vi) gives $a_{1}=1$. Now applying τ_{*} to (3) and using part (i) gives

$$
-(p-1)!\left(\beta_{r-1} \pi\left(u_{r}^{(p)}\right)=a_{2}(p-1)!\pi \mid \sum_{i=0}^{p-1} u_{r}^{(i)} \otimes \beta_{r} u_{r} \otimes u_{r}^{(p-i-1)}\right)
$$

But $\beta_{r-1} \pi\left(u_{r}^{(p)}\right)=p \pi \beta_{r}\left(u_{r}^{(p)}\right)$ and it follows that $a_{2}=-p$ as required.

This completes the case $r=r_{0}$ of 7.3. Next we must show 7.1 for $r=r_{0}+1 \geq 3$. It suffices to show that $E^{1}=E^{r-1}$ in the K-theory $B S S$ for $D_{p} M_{r}$ and $D_{p} \Sigma M_{r}$. We shall give the proof for $D_{p} M_{r}$, the other case being similar. Let x and y denote the elements πu_{r} and $\pi \beta_{r} u_{r}$. by $6.1,7.2$ and $7.3(i i)$ we see that the set

$$
\left\{\pi^{r-2} i_{*}(p), \pi^{r-3} Q x, \pi^{r-2} i_{*}\left(x^{(p-1)} \otimes y\right), \pi^{r-3} Q y\right\}
$$

is a basis for $K_{*}\left(D_{p} M_{r} ; 1\right)$. Since all elements of this basis lift to $K_{*}\left(D_{p} M_{r} ; r-2\right)$ we have $E^{1}=E^{r-2}$ in the BSS. The elements $\pi^{r-2} x^{(p)}$ and $\pi^{r-2}\left(x^{(p-1)} \otimes y\right)$ are (r-2)-
cycles since they clearly lift to $K_{0}\left(D_{p} M_{r} ; r-1\right)$. Next we have

$$
d_{r-2} \pi^{r-3} Q x=\pi^{r-3} B_{r-2} Q x=\pi^{r-3} Q \beta_{r-1} x=\pi^{r-3} Q p y=0
$$

where the $2^{\text {nd }}$ and $4^{\text {th }}$ equalities follow from $7.3(v i)$ and 7.3 (iv) respectively. Similarly,

$$
d_{r-2} 2^{r-3} Q y=\pi^{r-3} \beta_{r-2} Q y=\pi^{r-2}\left(\beta_{r-1} y\right)(p)=0 .
$$

This completes the inductive proof of 7.1 and 7.3 .

Next we shall prove the external version of 3.3. Rather than write out the complete list of external properties, we give rules for changing the internal statements to their external analogs. All internal products and Dyer-Lashof operations are to be changed to external ones, with the map t_{*} prefixed to any p-fold product which is to lie in $K_{*}\left(D_{p} X ; r\right)$. The map of is to be prefixed to the left-hand side of each Cartan formula. In the stability formulas, σ is to be changed to Σ and Δ_{*} prefixed to the left-hand side. These conventions give the correct external analog for each part of 3.3 except for part (ii) which has no external analog.

Proposition 7.6. The external Q-operation satisfies the external versions of each part of Theorem 3.3 except part (ii).

Before beginning the proof we need a lemma to deal with the prime 2. (See IT.4.3 for another proof of this lemma.)

Lemma 7.7. Let X be any spectrum. The sequence

$$
\Sigma \mathrm{D}_{2} \mathrm{X} \xrightarrow{\Delta} \mathrm{D}_{2} \Sigma \mathrm{X} \xrightarrow{\tau} \Sigma_{2}^{2}(\mathrm{X} \wedge \mathrm{X}) \xrightarrow{\Sigma^{2}} \Sigma_{2}^{2} \mathrm{D}_{2} \mathrm{X}
$$

is a cofibering.

Proof. Consider the cofiber sequence

$$
\begin{equation*}
s^{1} \xrightarrow{\Delta} S^{1} \wedge s^{1} \longrightarrow s^{2} \wedge s^{2} \longrightarrow s^{2} \tag{4}
\end{equation*}
$$

of Z_{2}-spaces. Here Z_{2} acts trivially on the first and fourth terms and by switching factors (respectively, wedge summands) in the second and third terms. Now $S^{l} \wedge S^{1}$ is the one-point compactification S^{V} of the regular representation V of z_{2}, and it is easy to see that the second map in the sequence (4) stabilizes to the transfer $S^{V}+Z_{2}^{+} \wedge S^{V}$. The sequence of the lemma is obtained by applying the functor $\mathrm{EZ}_{2}^{+} \wedge_{Z_{2}}(? \wedge \mathrm{X} \wedge \mathrm{X})$ to the sequence (4).

Next we turn to the proof of 7.6. Part (i) is trivial and parts (iii), (v) and (viii) are contained in 7.3.
(iv). We may assume $X=\Sigma^{\alpha} M_{r}, X=\Sigma^{\alpha} u_{r}$. Suppose $\alpha=1$. By 7.1 and 7.3(vi) we see that the set

$$
\left\{Q \Sigma u_{r}, \imath_{*}\left[\left(\Sigma u_{r}\right) \otimes\left(\beta_{r} \Sigma u_{r}\right)^{(p-1)}\right], Q \beta_{r+1} p_{*} \Sigma u_{r}\right\}
$$

Is a subbasis of height r for $D_{p} \Sigma M_{r}$, hence the set

$$
\left\{p_{*} Q \Sigma u_{r}, i_{*}\left[\left(\Sigma u_{r}\right) \otimes\left(\beta_{r} \Sigma u_{r}\right)(p-1)\right]\right\}
$$

is a basis for $K_{1}\left(D_{p} \Sigma M_{r} ; r\right)$. It follows that the map

$$
\left(D_{p} j\right)_{*} \oplus \tau_{*}: K_{1}\left(D_{p} \Sigma M_{r} ; r\right) \longrightarrow K_{1}\left(D_{p} S^{1} ; r\right)+K_{1}\left(\left(\Sigma M_{r}\right)(p) ; r\right)
$$

is monic. Now

$$
\begin{aligned}
\left(D_{p} j\right)_{*} Q p_{*} \Sigma u_{r} & =Q\left(p_{*} j_{*} \Sigma u_{r}\right)=Q(p \Sigma u)=p Q \Sigma u \\
& = \begin{cases}0 & \text { if } r=1 \\
\left(D_{p} j\right)_{*} p_{*} Q \Sigma u_{r} & \text { if } r \geq 2\end{cases}
\end{aligned}
$$

and $\tau_{*} Q p_{*} \Sigma u_{r}=0$ for all r. The result follows, and the case $\alpha=0$ is similar.
Next we prove part (x). The proof is by induction on r. If $r=1$ we have $\imath_{*} x^{(2)}=Q \beta_{2} 2^{*} x$ by $6.4(i i i)$. Suppose $r \geq 2$. We may assume $x=\Sigma u_{r}$. The set

$$
\left\{Q \Sigma u_{r}, i_{*}\left(\Sigma u_{r} \otimes \beta_{r} \Sigma u_{r}\right), Q \beta_{r+1}{ }^{2} \Sigma \Sigma u_{r}\right\}
$$

is a subbasis of height r for $D_{2} \Sigma M_{f}$, hence by 3.9 we have

$$
\begin{equation*}
i_{*}\left(\Sigma u_{r}\right)^{(2)}=a_{1} \beta_{r}^{2} * Q \Sigma u_{r}+a_{2} Q \beta_{r+1}{ }^{2} \Sigma u_{r} \tag{5}
\end{equation*}
$$

with $a_{1} \in Z_{2} r-1$ and $a_{2} \in Z_{2} r^{*}$ Applying τ_{*} to (5) gives

$$
0=-a_{2}\left(\beta_{r} \Sigma u_{r}\right)^{(2)}
$$

hence $a_{2}=0$. Now applying π to (5) gives

$$
\begin{equation*}
i_{*}\left(\pi \Sigma u_{r}\right)^{(2)}=a_{1} \beta_{r-1} Q \Sigma u_{r} \tag{6}
\end{equation*}
$$

If $r=2$ the inductive hypothesis gives

$$
i_{*}\left(\pi \Sigma u_{2^{\prime}}\right)^{(2)}=Q \beta_{2^{2}}\left(\pi \Sigma u_{2}\right)=Q\left(2 \beta_{2} \Sigma u_{2}\right)=\pi \pi_{*}\left(\beta_{2} \Sigma u_{2}\right)^{2)}=\beta Q \Sigma u_{2}
$$

(where the third and fourth equalities follow from $7.3(1 v)$ and $7.3(v i)$) and we conclude that $a_{1}=1$ as required. If $r \geq 3$ the inductive hypothesis gives

$$
i_{*}\left(\pi \Sigma u_{r}\right)^{(2)}=2^{r-3} B_{r-1} 2_{*} Q\left(\pi \Sigma u_{r}\right)=2^{r-2} \beta_{r-1} Q \Sigma u_{r}
$$

and comparing with (6) gives $a_{1}=2^{r-2}$ as required.
Next we show part (vi). This will follow immediately from $7.3(i i i)$ and $7.3(i v)$ once we show that $\omega=1$ in $7.3(i)$. Letting $X=\Sigma M_{r}$ in 7.7 , we have

$$
\begin{aligned}
& 0=\left(\Sigma^{2} 1\right)_{*} \tau *^{Q \Sigma^{2} u_{r}} \\
&=\left(\Sigma^{2} 1_{*}\right)_{\left.* 1-\left(\Sigma^{2} u_{r}\right)^{(2)}+\omega 2^{r-2}\left(\beta_{r} \Sigma u_{r}\right)^{(2)}\right]} \\
&=\Sigma^{2} \pi l_{*}\left[\left(\Sigma u_{r}\right)^{(2)}+\omega 2^{r-2}\left(\beta_{r} \Sigma u_{r}\right)^{(2)}\right]
\end{aligned}
$$

By part (ix), we have

$$
\pi i_{*}\left(\Sigma u_{r}\right)^{(2)}=2^{r-2} \beta_{r-1} Q \Sigma u_{r}=2^{r-2} i_{*}\left(\pi \beta_{r} \Sigma u_{r}\right)^{(2)} \neq 0 .
$$

Hence $\omega \neq 0$ as required.
(vii) Let $p=2$; the odd primary case is similar and somewhat easier. First let $|x|=|y|=1$. We may assume $x=\Sigma u_{r}, y=\Sigma u_{r}$. We assume by induction on r that we have chosen $\bmod 2^{3}$ multiplications for $s<r$ such that the desired formula holds. We begin by giving a besis for

$$
K_{0}\left(D_{2} \Sigma M_{r} \wedge D_{2} \Sigma M_{r} ; r-1\right)
$$

The set

$$
\left\{\pi i_{*}\left(\Sigma u_{r} \otimes \beta_{r} \Sigma u_{r}\right), \pi i_{*}\left(\beta_{r} \Sigma u_{r}\right)^{(2)}, Q \Sigma u_{r}, Q \beta_{r} \Sigma u_{r}\right\}
$$

is a subbasis of height $r-1$ for $D_{2} \mathrm{EM}_{r}$ and in particular it is a basis for $\mathrm{K}_{*}\left(\mathrm{D}_{2} \Sigma \mathrm{M}_{\mathrm{r}} ; \mathrm{r}-1\right)$. By 5.8 we have

$$
K_{*}\left(D_{2} \Sigma M_{r} \wedge D_{2} \Sigma M_{r} ; r-1\right) \cong K_{*}\left(D_{2} \Sigma M_{r} ; r-1\right) \otimes K_{*}\left(D_{2} \Sigma M_{r} ; r-1\right)
$$

with the tensor product taken in the Z_{2}-graded sense. We therefore obtain a basis for $K_{*}\left(D_{2} \Sigma M_{r} \wedge D_{2} \Sigma M_{r} ; r-1\right)$ by taking all 16 external products of the elements in the set given above. It will be convenient to denote Σu_{I} by x in the first factor and by y in the second factor. Let $a_{1}, \ldots, a_{8} \in Z_{2^{r-1}}$ be the coefficients of $\delta_{* Q} Q(x \otimes y)$ with respect to this basis, so that we have

$$
\begin{align*}
& \delta_{*} Q(x \otimes y)=a_{1} \pi r_{*}\left(x \otimes \beta_{r} x\right) \otimes \pi_{*}\left(y \otimes \beta_{r} y\right)+a_{2} Q x \otimes \pi_{*}\left(y \otimes B_{r} y\right) \tag{7}\\
& +a_{3} r_{*}\left(x \otimes \beta_{r} x\right) \otimes Q y+a_{4} Q x \otimes Q y+a_{5} \pi r_{*}\left(\beta_{r} x\right)^{(2)} \otimes \pi_{*}\left(\beta_{r} y\right)^{(2)} \\
& +a_{6} \pi^{2}{ }^{\left(\beta_{r} x\right)^{(2)} \otimes Q \beta_{r} y+a_{7} Q \beta_{r} x \otimes \pi q_{*}\left(\beta_{r} y\right)^{(2)}+a_{8} Q \beta_{r} x \otimes Q \beta_{r} y .}
\end{align*}
$$

We claim first that $2 a_{5}=0$, so that a_{5} is either 2^{r-2} or 0 . When $r=2$ this is
trivial, while for $r \geq 3$ it follows from the inductive hypothesis and the equation $\pi Q(x \otimes y)=Q(\pi x \otimes \pi y)$. Now as in Remark $3.4(i v)$ we see that changing the choice of mod 2^{r} multiplication changes the value of a_{5} without changing the other a_{f}. We can therefore choose the mod 2^{r} multiplication for which $a_{5}=0$. (When p is odd the commutativity of the multiplications gives $a_{5}=0$.)

It remains to determine the other coefficients in equation (7). If we apply the map $\left(D_{2} j \wedge D_{2} j\right)_{*}$ to this equation, the left side becomes QLu $\otimes Q \Sigma u$ by $5.7(v i i)$ while the right side becomes $a_{4} Q \Sigma u \otimes$ QLu. Hence $a_{4}=1$. Next consider the following diagram

The commutativity of this diagram will be proved in VI. 3.10 of the sequel. With $X=Y=\Sigma M_{r}$ we obtain

$$
\begin{aligned}
& (\tau \wedge 1)_{*} \delta_{*} Q(x \otimes y)=(1 \wedge 1)_{*}(1 \wedge T \wedge 1)_{*} \tau *(x \otimes y) \\
& =(1 \wedge \text {) })_{*}(1 \wedge T \wedge 1)_{*} \pi\left[-x \otimes y \otimes x \otimes y+2^{r-2} \beta_{r}(x \otimes y) \otimes \beta_{r}(x \otimes y)\right] \\
& =(1 \wedge 1)_{* \pi\left[x^{(2)} \otimes y^{(2)}+2^{r-2} x^{(2)} \otimes\left(\beta_{r} y\right)^{(2)}, ~\right.}^{(2)} \\
& \left.+2^{r-2} \beta_{r} x \otimes x \otimes y \otimes \beta_{r} y+2^{r-2} x \otimes \beta_{r} x \otimes \beta_{r} y \otimes y+2^{r-2}\left(\beta_{r} x\right)(2) \otimes y^{(2)}\right] \\
& =\pi x^{(2)} \otimes \pi_{*} y^{(2)}+2^{r-2} \pi x^{(2)} \otimes \pi_{*}\left(\beta_{r} y\right)^{(2)} \\
& +2^{r-2} \pi \tau_{*}{ }_{*}\left(x \otimes \beta_{r} x\right) \otimes \pi i_{*}\left(y \otimes \beta_{r} y\right)+2^{r-2} \pi\left(\beta_{r}\right)^{(2)} \otimes \pi_{*} y^{(2)} \\
& =2^{r-2} \pi \tau_{*} l_{*}\left(x \otimes \beta_{r} x\right) \otimes \pi \imath_{*}\left(y \otimes \beta_{r} y\right)+2^{2 r-4} \pi\left(\beta_{r} x\right)^{(2)} \otimes \pi i_{*}\left(\beta_{r} y\right)^{(2)},
\end{aligned}
$$

with the last equation following from part (x). Now applying $(\tau \wedge 1)$ * to the right side of (7) and comparing coefficients gives $a_{1}=2^{r-2}, a_{3}=0, a_{7}=2^{2 r-4}$ and $a_{8}=2 a_{6}$. Similarly, applying ($1 \wedge \tau$) to equation (7) gives $a_{2}=0$ and $a_{6}=2^{2 r-4}$, whence $a_{8}=2 a_{6}=0$. This completes the proof of part (vii) when $|x|=|y|=1$.

Next let $|x|=1,|y|=0$. Consider the following cormutative diagram

If we let $X=M_{r}, Y=\Sigma^{-1} M_{r}$ we obtain

$$
\begin{equation*}
\delta_{*}\left[D_{2}(T \wedge 1)\right]_{*} \Delta_{*} \Sigma Q\left(-\Sigma u_{r} \otimes \Sigma^{-1} u_{r}\right)=(1 \wedge \Delta)_{*}(T \wedge 1)_{*}(\Sigma \delta)_{* Q}\left(-\Sigma u_{r} \otimes \Sigma^{-1} u_{r}\right) \tag{10}
\end{equation*}
$$

We can evaluate the left side of (10) using 7.3(v); the result is $\delta_{*} Q\left(\Sigma u_{r} \otimes u_{r}\right)$. On the other hand we can evaluate the right side of (10) by using 7.3(v) and the part of 7.6(vii) just shown; the result is

$$
Q \Sigma u_{r} \otimes \pi l_{*} u_{r}^{(21)}+2 Q \Sigma u_{r} \otimes Q u_{r}+2^{2 r-4} \pi i_{*}\left(\beta_{r} \Sigma u_{r}\right)^{(2)} \otimes Q \beta_{r} u_{r}
$$

Thus equation (10) gives the desired formula when $x=\Sigma u_{r}$ and $y=u_{r}$, and therfore this formula holds in general.

Finally, let $|x|=|y|=0$. We may assume $x=u_{r}, y=u_{r}$. The set

$$
\begin{aligned}
& \left\{\pi i_{*} x^{(p)} \otimes \pi_{*} y^{(p)}, Q x \otimes \pi_{*} y^{(p)}, \pi i_{*} x^{(p)} \otimes Q y, Q x \otimes Q y,\right. \\
& \pi q_{*}\left(x \otimes \beta_{r} x\right) \otimes m_{*}\left(y \otimes \beta_{r} y\right), Q \beta_{r} x \otimes \pi_{*}\left(y \otimes \beta_{r} y\right), \\
& \left.\pi i_{*}\left(x \otimes \beta_{r} x\right) \otimes Q \beta_{r} y, Q \beta_{r} x \otimes Q \beta_{r} y\right\}
\end{aligned}
$$

is a basis for $K_{0}\left(D_{2} M_{r} \wedge D_{2} M_{r} ; r-1\right)$. Let a_{1}, \ldots, a_{8} be the coefficients of $\delta_{*} Q(x \otimes y)$ in this basis. By $5.7(\mathrm{v})$ we have

$$
\left(D_{2} j \wedge D_{2} j\right)_{*} \delta_{*} Q(x \otimes y)=\delta_{*} Q(u \otimes u)=Q u \otimes \eta+\eta \otimes Q u+p Q u \otimes Q u
$$

nence $a_{1}=0, a_{2}=a_{3}=1$ and $a_{4}=2$. Diagram (8) gives

$$
(\tau \wedge 1)_{*} \delta_{*} Q(x \otimes y)=(1 \wedge 1)_{*} \delta_{*}{ }^{\top} Q(x \otimes y)
$$

and it follows that $a_{5}=2^{r-2}$ and $a_{6}=0$. Similarly,

$$
(1 \wedge \tau)_{*} \delta_{*} Q(x \otimes y)=(i \wedge 1)_{*} \delta_{*} \tau_{*} Q(x \otimes y)
$$

and hence $a_{7}=0$. Thus we have
(11)

$$
\begin{aligned}
\delta_{*} Q(x \otimes y) & =Q x \otimes \pi l_{*} y^{(2)}+\pi r_{*} x^{(2)} \otimes Q y+2 Q x \otimes Q y \\
+ & 2^{r-2} \pi r_{*}\left(x \otimes \beta_{r} x\right) \otimes \pi r_{*}\left(y \otimes \beta_{r} y\right)+a_{8} Q \beta_{r} x \otimes Q \beta_{r} y
\end{aligned}
$$

and it remains to determine a_{8}. Consider the following comnutative diagram
(12)

With $X=Y=M_{r}$ we have

$$
\begin{equation*}
(\Delta \wedge I)_{*} \Sigma \delta_{*} Q(x \times y)=\delta_{*} \Delta_{*} \Sigma Q(x \otimes y) \tag{13}
\end{equation*}
$$

We evaluate the left side of (13) using 7.3(v) and equation (11); the result is

$$
Q \Sigma x \otimes \pi r_{*} y^{(2)}+2 Q \Sigma x \otimes Q y+a_{8} \pi r_{*}\left(\beta_{r} \Sigma x\right)^{(2)} \otimes Q \beta_{r} y+2 a_{8} Q \beta_{r} \Sigma x \otimes Q \beta_{r} y
$$

Evaluating the right side of (13) using $7.34(v)$ and the part of $7.6(v i i)$ already shown gives

$$
Q \Sigma x \otimes \pi i_{*} y^{(2)}+2 Q \Sigma x \otimes Q y+2^{2 r-4} \pi i_{*}\left(\beta_{r} \Sigma x\right)^{(2)} \otimes Q \beta_{r} y
$$

Hence $a_{8}=2^{2 r-4}$ as required.
(ix) We have seen in VIII.7.4 that ψ^{k} is an H_{∞} ring map of $K_{(p)}$ for k prime to p. Hence we have

$$
\left(\bar{D}_{p} f\right)_{* *} \psi^{k}=\psi^{k}\left(\bar{D}_{p} f\right)_{* *}: K_{*}\left(D_{p} Y ; r-1\right) \rightarrow K_{*}\left(D_{p} X ; r-1\right)
$$

for any map $f: Y \rightarrow K \wedge X$. Thus we may assume $x=\Sigma^{\alpha} u_{r}$ with $\alpha=0$ or 1. First let $\alpha=0$. Since the map

$$
\left(J_{p} j\right)_{*}: K_{0}\left(D_{p} M_{r} ; r-1\right)+K_{0}\left(D_{p} S ; r-1\right)
$$

is monic and since $\psi^{k} u=u$, it suffices to show $\psi^{k} Q u=Q u$. Dually, it suffices to show that ψ^{k} is the identity on $K^{O}\left(B \Sigma_{p} ; r-1\right)$. But this is immediate from 5.3 since ψ^{k} commutes with τ^{*}. Now, if $\alpha=1$ we have

$$
\psi^{k} Q_{Q \Sigma u_{r}}=\psi^{k} \Delta_{*} \Sigma Q u_{r}=\Delta_{*} \Sigma \psi^{k} Q u_{r}=\Delta_{*} \Sigma Q u_{r}=Q \Sigma u_{r} .
$$

This completes the proof of 7.6.

Next we must prove 3.3. Each part of this theorem is in fact an easy consequence of the corresponding external formula except for parts (ii) and (viii). For part (ii) we may clearly assume $X=S$, and it suffices to show that $Q u$
goes to zero under the nontrivial map from $B \Sigma_{p}^{+}$to S^{0}. But the induced map

$$
\tilde{K}^{0}\left(S^{0} ; r\right)+\tilde{K}^{0}\left(B \Sigma_{p} ; r\right)
$$

takes 1 to 1 , and $\langle 1, Q u\rangle=0$ by Definition 5.6 , whence the result follows.
The proof of part (viii) is more difficult. First recall that if X is any nondegenerately based space and $\lambda: X^{+} \rightarrow X$ is the identity on X then the cofiber sequence

$$
\Sigma^{\infty} S^{0} \xrightarrow{\Sigma^{\infty} n} \Sigma^{\infty} X^{+} \xrightarrow{\Sigma^{\infty} \lambda} \Sigma^{\infty} X
$$

is naturally split by the evident retraction $\mu: \mathrm{X}^{+} \rightarrow S^{0}$. In particular, there is a natural transformation

$$
v: \Sigma^{\infty} X \rightarrow \Sigma^{\infty} X^{+}
$$

and the inclusion

$$
\widetilde{K}_{*}(X ; r) \subset K_{*}(X ; r)
$$

can be identified with $V_{* *}$ Now let Y be an H_{∞} space, let $Z=\Omega Y$, and let $\varepsilon: \Sigma Z \rightarrow Y$ be the counit. Then

$$
\sigma: \tilde{X}_{\alpha}(\Omega Y ; r) \rightarrow K_{\alpha+1}(X ; r)
$$

is the composite $v_{*} \varepsilon_{* \Sigma}$.
Let $x \in \tilde{K}_{0}(\Omega Y ; r)$; the case $|x|=1$ is similar. First we must show that $Q x$ is in $X_{\alpha}(\Omega Y ; r-1)$, i.e., that $\mu_{*} Q x=0$. But $\mu: \Sigma^{\infty}(\Omega Y)^{+} \rightarrow \Sigma^{\infty} S^{0}$ is clearly an H_{∞} ring map, and therefore $\mu_{*} Q x=Q \mu_{*} x=0$. Next we state the required formula more precisely as follows:

$$
\begin{equation*}
\sigma \lambda_{*} Q \nu_{*} x=Q \sigma x . \tag{14}
\end{equation*}
$$

Since μ_{*} applied to each side of (14) gives zero, it suffices to show that λ_{*} makes the two sides of (14) equal, i.e., that

$$
\varepsilon_{*} \Sigma \lambda_{*} Q v_{*} x=\lambda_{*} Q v_{*} \varepsilon_{*} \Sigma x .
$$

This in turn follows at once from $7.3(v)$ and the commutativity of the following diagram in $\bar{n} \$$ (where we suppress Σ^{∞} to simplify the notation).

Here ζ and ξ are the H_{∞} structural maps for Z^{+}and Y^{+}respectively. In order to see that (15) comutes we need two further diagrams. The first is the following in the catgory of spaces.
(16)

Here $\widetilde{\Delta}$ is the evident diagonal map. This diagram commutes by definition of ζ; see [69, Lemma 1.5]. Next we have the following diagram in $\bar{h} \&$ (where we again suppress $\left.\Sigma^{\infty}\right)$.
(17)

Here $W=\left(S^{l}\right)^{+}$and the unlabeled arrows are the evident quotient maps. It suffices to show that the inner square of this diagram commutes, since combining it with diagram (16) gives diagram (15). Since

$$
\lambda \wedge I: W \wedge D_{p} Z \rightarrow \Sigma D_{p} Z
$$

is a split surjection, the commutativity of the inner square will be a consequence of the commutativity of the rest of the diagram. Each of the remaining parts clearly commutes except that marked (A). To show that (A) commutes it suffices to show that the composites

$$
W \wedge Z \xrightarrow{1 \wedge \nu} W \wedge Z^{+}=\left(S^{1} \times Z\right)^{+} \longrightarrow\left(S^{1} \wedge Z\right)^{+}
$$

and

$$
W \wedge Z \xrightarrow{\lambda \wedge 1} S^{I} \wedge Z \xrightarrow{\nu}\left(S^{1} \wedge Z\right)^{+}
$$

are equal. But is is easy to see that these composites agree when composed with either of the maps $\lambda:\left(S^{l} \wedge Z\right)^{+} \rightarrow S^{l} \wedge Z$ and $\mu:\left(S^{l} \wedge Z\right)^{+} \rightarrow S^{0}$; they are therefore equal since wedges are products in $\overline{\mathrm{h}} 8$. This completes the proof of 3.3 .

We conclude this section with the proof of 1.6 . First we calculate

$$
\beta_{r} p_{*} Q \Sigma u_{r}=\beta_{r} Q p_{*} \Sigma u_{r}=i_{*}\left(\beta_{r} \Sigma u_{r}\right)^{(p)}+p Q \beta_{r+1} p_{*} \Sigma u_{r}
$$

in $K_{0}\left(D_{p} \Sigma M_{r} ; r\right)$. Multiplying by p^{r-1} gives

$$
0=p^{r-1} \beta_{r} p_{*} Q \Sigma u_{r}=p^{r-1}{ }_{*}\left(\beta_{r} u_{r}\right)^{(p)}
$$

hence ${ }^{l_{*}}\left(\beta_{r} \Sigma u_{r}\right)^{(p)}$ has order $\leq p^{r-1}$. Now suppose K_{r} has an H_{∞} structure. Let $\bar{u}: S \rightarrow K_{r}$ be the unit map for this structure. Then $\bar{u}=c u \in K_{O}(S ; r)$ for some c prime to p. Let f be the composite

$$
\Sigma \mathrm{M}_{\mathrm{r}}=\mathrm{S} \mathrm{\wedge} \mathrm{\Sigma M}_{\mathrm{r}} \xrightarrow{\mathrm{u} \wedge 1} \mathrm{~K} \wedge \Sigma \mathrm{M}_{\mathrm{r}}=\mathrm{K}_{\mathrm{r}} .{ }^{2} \text {. }
$$

and let F be the composite

$$
K_{0}\left(D_{p} \Sigma M_{r} ; r\right) \xrightarrow{\left(D_{p} f\right)_{*}} K_{0}\left(D_{p} K_{r} ; r\right) \xrightarrow{\xi_{*}} K_{0}\left(K_{r} ; r\right) \longrightarrow K_{0}(S ; r),
$$

where the last map is induced by the product for K_{r}. We claim $c^{p+l_{F}} i_{*}\left(\beta_{r} \Sigma u_{r}\right)^{(p)}=\vec{u}$, which contradicts the fact that $i_{*}\left(\beta_{r} \Sigma u_{r}\right)^{(p)}$ has order $\leq p^{r-1}$. The claim is a consequence of the commutativity of the following diagram

Here the composite $\left(1 \wedge_{1}\right) \circ\left[\bar{u} \wedge(c i)^{(p)}\right]$ represents $c_{*}\left(c \beta_{r} \sum u_{r}\right)^{(p)}$ and the diagram commutes since \bar{u} is an H_{∞} ring map.

8. Construction and properties of R and 2.

In this section we construct R and 2 and prove the external and internal versions of 3.6 and 3.7.

We begin with the construction.

Lemma 8.1. The map

$$
\beta_{r+1}: K_{1}\left(D_{p} \Sigma M_{r} ; r+1\right) \longrightarrow K_{0}\left(D_{p} \Sigma M_{r} ; r+1\right)
$$

is an isomorphism.

Lemma 8.2. The map

$$
\left(D_{p} j\right)_{*}: K_{0}\left(D_{p} M_{r} ; s\right) \longrightarrow K_{0}\left(D_{p} s ; s\right)
$$

is monic if $s=r$ or $s=r+1$, and $\eta \varepsilon K_{0}\left(D_{p} s ; r+1\right)$ is in the image of $\left(D_{p} f\right)_{*}$.

Definition 8.3. Let $e \in K_{1}\left(D_{p} \Sigma M_{r} ; r+1\right)$ be the unique element with $\beta_{r+1}{ }^{e}=Q \beta_{r+2} p_{*}^{2} \Sigma u_{r}$. Let $e^{\prime} \in K_{0}\left(D_{p} M_{r} ; r+1\right)$ be the unique element with $\left(D_{p} j\right)_{*} e^{\prime}=n$. Then
and

$$
R: K_{1}(X ; r) \rightarrow K_{1}\left(D_{p} X ; r+1\right)
$$

$$
2: K_{0}(X ; r)+K_{0}\left(D_{p} X ; r+1\right)
$$

are the operations Q_{e} and Q_{e}.

Note that e and e^{\prime} are equal to $R \Sigma u_{r}$ and $2 u_{r}$ respectively. We shall always use the latter notations for these elements. Also note that $2 u=n$ in $K_{0}\left(B \Sigma_{p} ; r+1\right)$.

Proof of 8.1. Let $r \geq 2$; the case $r=1$ is similar. Consider the K-theory BSS for $\mathrm{D}_{\mathrm{p}} \delta \mathrm{M}_{\mathrm{r}}$. By 6.1 the set

$$
\left\{\pi^{r-2} Q \Sigma u_{r}, \pi^{r-2} Q \beta_{r} \Sigma u_{r}, \pi^{r-1} i_{*}\left[\Sigma u_{r} \otimes\left(\beta_{r} \Sigma u_{r}\right)^{(p-1)}\right], \pi^{r-1} i_{*}\left(\beta_{r} \Sigma u_{r}\right)^{(p)}\right\}
$$

is a basis for E^{1}. By $7.6(v)$ we have

$$
\begin{equation*}
d_{r-1} \pi^{r-2} Q \Sigma u_{r}=\pi^{r-1} i_{*}\left(\beta_{r} \Sigma u_{r}\right)^{(p)}, \tag{1}
\end{equation*}
$$

$$
d_{r-1} \pi^{r-1} i_{*}\left[\Sigma u_{r} \otimes\left(\beta_{r} u_{r}\right)^{(p-1)}\right]=0
$$

hence the set

$$
\left\{\pi^{r-2} Q_{Q \beta_{r}} \Sigma u_{r}, \pi^{r-1} i_{*}\left[\Sigma u_{r} \otimes\left(\beta_{r} \Sigma u_{r}\right)^{p-1}\right\}\right\}
$$

is a basis for E^{r}. Now $d_{r} \pi^{r-2} Q \beta_{r} E u_{r}=0$ by $7.6(v)$, and

$$
d_{r^{\pi}}{ }^{r-1} i_{*}\left(\Sigma u_{r} \otimes\left(\beta_{r} u_{r}\right)^{(p-1)}\right)=\pi^{r-1} i_{*}\left(\beta_{r} \Sigma u_{r}\right)^{(p)},
$$

which is zero in \mathbb{E}^{r}. Thus there is an element x in $\mathrm{K}_{1}\left(\mathrm{D}_{\mathrm{p}} \Sigma \mathrm{M}_{\mathrm{r}} ; r+1\right)$ with

$$
\pi^{r} x=\pi^{r-1} i_{*}\left[\Sigma u_{r} \otimes\left(\beta_{r} \Sigma u_{r}\right)^{(p-1)}\right]
$$

and the set $\left\{Q \Sigma u_{r}, x, Q B_{r+2} p^{2} \sum_{*} u_{r}\right\}$ is a subbesis of height $r+1$ for $D_{p} E M_{r}$. In particular the group $K_{\alpha}\left(D_{p} \Sigma M_{r} ; r+1\right)$ has the same order $p^{2 r}$ for $\alpha=0$ and $\alpha=1$. The lemma will follow if we show that $\beta_{r+1} \otimes Z_{p}$ maps onto $K_{0}\left(D_{p} \Sigma M_{r} ; r+1\right) \otimes Z_{p}$. But the map

$$
\pi^{r} \otimes Z_{p}: K_{0}\left(D_{p} \Sigma M_{r} ; r+1\right) \otimes Z_{p} \rightarrow K_{0}\left(D_{p} \Sigma M_{r} ; 1\right) \otimes Z_{p}=K_{0}\left(D_{p} \Sigma M_{r} ; 1\right)
$$

is an isomorphism, hence it suffices to show that $\pi^{r_{\beta_{r+1}}}$ maps onto $K_{0}\left(D_{p} \Sigma M_{r} ; 1\right)$. Now equation (1) shows that $\pi^{r-1} i_{*}\left(\beta_{r}{ }_{r} u_{r}\right)^{(p)}$ is in the image of $\pi^{r_{\beta_{r+1}}}$, and it remains to consider $\pi^{r-2} Q \beta_{r} \Sigma u_{r}$. By the exact sequence

$$
K_{1}\left(D_{p} \Sigma M_{r} ; r+1\right) \xrightarrow{\pi^{r_{\beta_{r+1}}}} K_{0}\left(D_{p} \Sigma M_{r} ; 1\right) \xrightarrow{p_{*}^{r+1}} K_{0}\left(D_{p} \Sigma M_{r} ; r+2\right)
$$

it suffices to show $p_{*}^{r+1} \|^{r-2} \mathcal{Q \beta}_{r}{ }^{\Sigma u_{r}}=0$. But 7.6(vi) gives

$$
\begin{aligned}
0=Q p^{r+1} \beta_{r+3} p^{3} \Sigma u_{r} & =p^{r+1} Q \beta_{r+3} 0^{3} p^{3} \Sigma u_{r}-\left(p^{p r+p-1}-p^{r}\right)_{*}\left(\beta_{r+2} p_{*}^{2} \Sigma u_{r}\right)(p) \\
& =p^{r+1} Q \beta_{r+3} p_{*}^{3} \Sigma u_{r}=p_{*}^{r+1} r-2 \beta_{r} \Sigma u_{r}
\end{aligned}
$$

which completes the proof.
Proof of 8.2. It is easy to see that $\pi^{r-1} \beta_{r^{1} * u_{r}}(p)$ and $\left.\pi^{r-1} \beta_{r}{ }^{1}{ }^{[} u_{r}^{(p-1)} \otimes \beta_{r} u_{r}\right]$ are zero, hence by the exact sequence

$$
K_{\alpha}\left(D_{p} M_{r} ; r+1\right) \xrightarrow{\pi} K_{\alpha}\left(D_{p} M_{r} ; r\right) \xrightarrow{r^{r-1} B_{r}} K_{\alpha-1}\left(D_{p} M_{r} ; 1\right)
$$

there exist elements x and y with $\pi x=i_{*} u_{r}^{(p)}$ and $\pi y=i_{*}\left[u_{r}^{(p-1)} \otimes \beta_{r} u_{r}\right]$. Clearly the set $\left\{x, y, Q u_{r}\right\}$ is a subbasis of height $r+1$ for $D_{p} M_{r}$. In particular the set $\left\{x, p_{*}^{2} Q u_{r}\right\}$ is a basis for $K_{0}\left(D_{p} M_{r} ; r+1\right)$. Since $\{n$, Qu\} is a basis for $K_{0}\left(D_{p} S ; r^{+1}\right)$ we have

$$
\begin{equation*}
\left(D_{p} j\right)_{*} x=a_{1} \eta+a_{2} Q u . \tag{2}
\end{equation*}
$$

where a_{1}, $a_{2} Z_{p r+1}$. Applying π to both sides of (2) gives

$$
n=\left(D_{p} j\right)_{* i} v_{r} u_{r}^{(p)}=a_{1} n+a_{2} Q u
$$

in $K_{0}\left(D_{p} S ; r\right)$, hence $a_{1}=1+a_{1}^{\prime} p^{r}$ and $a_{2}=a_{2}^{\prime} p^{r}$ for some $a_{1}, a_{2} \in Z_{p}$. This fact, together with the equation $\left(D_{p} j\right)_{*} p_{*}^{2} Q u_{r}=p^{2} Q u$, shows that $\left(D_{p} j\right)_{*}$ is monic on $K_{0}\left(D_{p} M_{r} ; r+1\right)$. A similar argument shows that $\left(D_{p} j\right)_{*}$ is monic on $K_{0}\left(D_{p} M_{r} ; r\right)$. If $r \geq 2$ we have

$$
\left(D_{p} j\right)_{*}\left[x-a_{1}^{1} p^{r-1} p_{*}{ }_{*}^{u}{ }_{r}^{(p)}-a_{2}^{\prime} p^{r-2} p_{*}^{2} Q u_{r}\right]=\eta
$$

so that $n \in K_{0}\left(D_{p} s ; r+1\right)$ is in the image of $\left(D_{p} j\right)_{*}$ as required. If $r=1$ we must show $a_{2}^{\prime}=0$. For this we need the map $j^{\prime}: M_{1}+M_{2}$ induced by the inclusion $Z_{p} C_{Z_{2}}$. We have $j^{\prime} \circ j=j: M_{1}+S$, hence

$$
\begin{aligned}
& \left(D_{p}{ }^{j}\right)_{*}\left(D_{p} j^{\prime}\right){ }_{*}(x)=\left(1+a_{1}^{\prime} p\right) \eta+a_{2}^{\prime} p Q u \\
& =\left(D_{p}^{j}\right)_{*}\left[\left(1+a_{1}^{\prime} p\right) u_{2}^{(p)}+a_{2}^{\prime} p_{*} Q u_{2}\right] .
\end{aligned}
$$

Since $\left(D_{p} j\right)_{*}$ is monic we conclude

$$
\left(D_{p} j^{\prime}\right)_{*}(x)=\left(1+p a_{1}^{\prime}\right) u_{2}^{(p)}+a_{2}^{\prime} p_{*} Q u_{2}
$$

Hence

$$
\begin{equation*}
\pi \beta_{2}\left(D_{p} j^{\prime}\right)_{*}(x)=a_{2}^{\prime} B Q u_{2}=a_{2}^{\prime Q \beta_{2} u_{2}} \tag{3}
\end{equation*}
$$

On the other hand, $6.1(v i)$ implies that ${ }^{L_{*}}\left[u_{1}^{(p-1)} \otimes \beta u_{1}\right]$ generates $K_{1}\left(D_{p} M_{1} ; 1\right)$, hence $\pi \beta_{2} x=c_{i_{*}}\left(u_{1}^{(p-1)} \otimes \beta u_{1}\right)$ for some $c \in Z_{p}$ and

$$
\begin{equation*}
\pi \beta_{2}\left(D_{p} j^{\prime}\right)_{*}(x)=\left(D_{p} j^{\prime}\right)_{*}\left(\pi \beta_{2} x\right)=c_{*}\left[\left(j ; u_{1}\right)^{(p-1)} \otimes j j_{*}^{\prime} \beta u_{1}\right]=0 \tag{4}
\end{equation*}
$$

since $j_{*}^{1} \beta u_{1}=0$. Comparing (3) and (4) gives $a_{2}^{\prime}=0$ and thus

$$
\left(D_{p} j\right)_{*}\left[x-a_{1}^{\prime} p_{*}{ }_{*}^{u}{ }_{1}^{(p)}\right]=n
$$

which completes the proof.

Next we shall prove the external analogs of 3.6 and 3.7 . The conventions preceding 7.6 give the correct external version of each statement except for 3.6 (viii) and $3.7(i x)$. For 3.6 (viii) we must prefix ($\beta_{p, p}$) to both sides, where
$B_{p, p}$ is the natural map $D_{p} D_{p} X \rightarrow D_{p} X$ defined in 1.2 , and for 3.7 (ix) we prefix $\left(\beta_{p, p}\right)_{*}$ to the left and $\left(\alpha_{p, p, \ldots, p}\right)$ to the right.

Proposition 8.4. The operation

$$
R: K_{1}(X ; r) \rightarrow K_{1}\left(D_{p} X ; r+1\right)
$$

satisfies the external analog of each part of 3.6 .

Proposition 8.5. The operation

$$
2: K_{0}(X ; r) \rightarrow K_{0}\left(D_{p} X ; r+1\right)
$$

satisfies the external analog of each part of 3.7 .

Theorems 3.6 and 3.7 will follow at once from 8.4 and 8.5 by the same proof given for 3.3. The rest of this section is devoted to the proofs of 8.4 and 8.5 .

Proof of 8.4. Part (i) is trivial. In each of the remaining parts except (v) we may assume $X=\Sigma M_{r}$ with $x=\Sigma u_{r}$; part (iv) now follows from Definition 8.3. Observe that by the proof of 8.1 the set $\left\{Q \Sigma u_{r}, R \Sigma u_{r}\right\}$ is a subbasis for $D_{p} \Sigma M_{r}$ if $r \geq 2$ while $\left\{R \Sigma u_{1}\right\}$ is a subbasis for $D_{p} \Sigma M_{1}$.
(iii). The map

$$
\pi \beta_{r+2}: K_{1}\left(D_{p} \Sigma M_{r} ; r+2\right) \rightarrow K_{0}\left(D_{p} \Sigma M_{r} ; r+1\right)
$$

is an isomorphism since it takes the basis for the first group to that for the second. Now

$$
\begin{aligned}
\pi \beta_{r+2} R p_{*} \Sigma u_{r} & =\pi Q \beta_{r+3} 3^{3} p_{*}^{\Sigma u_{r}}=Q \beta_{r+2} p_{*}^{2} \Sigma u_{r} \\
& =\beta_{r+1} R \Sigma u_{r}=\pi \beta_{r+2} p_{*} R \Sigma u_{r}
\end{aligned}
$$

and the result follows.
(iv). The map

$$
\beta_{r+1} p_{*}: K_{1}\left(D_{p} \Sigma M_{r} ; r\right) \rightarrow K_{0}\left(D_{p} \Sigma M_{r} ; r+1\right)
$$

is monic since it takes the basis elements $\pi R \Sigma u_{r}$ and (when $r \geq 2$) $p_{*} Q \Sigma u_{r}$ to $p \beta_{r+1} R \Sigma u_{r}$ and $\beta_{r+1} p_{*}^{2} Q L u_{r}$ respectively. We have

$$
\begin{aligned}
\beta_{r+1} p_{*} \pi R \Sigma u_{r} & =p \beta_{r+1} R \Sigma u_{r}=p Q \beta_{r+2} p_{*}^{2} \Sigma u_{r} \\
& =\beta_{r+1} Q p_{*}^{2} \Sigma u_{r}-i_{*}\left(\beta_{r+1} p_{*} \Sigma u_{r}\right)(p) \\
& =\beta_{r+1} p_{*}!Q p_{*} \Sigma u_{r}-i_{*}\left(\Sigma u_{r} \otimes\left(\beta_{r} \Sigma u_{r}\right)(p-1)\right]
\end{aligned}
$$

which gives the first formula. For the second formula, we have

$$
\begin{aligned}
\beta_{r+1} p_{*} R \pi \Sigma u_{r} & =\beta_{r+1} R p_{*} \pi \Sigma u_{r}=\beta_{r+1} R p \Sigma u_{r} \\
& =Q_{r+2} p_{*}^{2}\left(p \Sigma u_{r}\right)=Q p \beta_{r+2} p_{*}^{2} \Sigma u_{r} \\
& =p^{Q \beta \beta_{r+2}} p_{*}^{2} \Sigma u_{r}-\left(p^{p-1}-1\right)_{t_{*}}\left(\beta_{r+1} p_{*} \Sigma u_{r}\right)(p) \\
& =\beta_{r+1} Q p_{*}^{2} \Sigma u_{r}-p^{p-1} i_{*}\left(\beta_{r+1} p_{*} \Sigma u_{r}\right)(p) \\
& =\beta_{r+1} p_{*}\left[Q p_{*} \Sigma u_{r}-p^{p-1} \imath_{*}\left(\Sigma u_{r} \otimes\left(\beta_{r} \Sigma u_{r}\right)(p-1)\right)\right]
\end{aligned}
$$

and the result follows.
(v). Let z denote Σu_{r} and fix i with $0<i<p$. As in the proof of 7.3 (iii) it suffices to show that the equation

$$
\begin{align*}
\left(\tau_{i, p-i}\right)_{*} R x= & a_{1} i_{*}\left[p_{*} z \otimes\left(\beta_{r+1} p_{*}\right)^{(i-1)}\right] \otimes i_{*}\left(\beta_{r+1} p_{*} z\right)^{(p-i)} \tag{5}\\
& +a_{2} \beta_{r+1} p_{*}\left[i_{*}\left(z \otimes\left(\beta_{r}\right)^{(i-1)}\right) \otimes i_{*}\left(z \otimes\left(\beta_{r} z\right)^{(p-i-1)}\right)\right]
\end{align*}
$$

holds in $K_{1}\left(D_{i} \Sigma M_{r} \wedge D_{p-i} \Sigma M_{r} ; r+1\right)$ with $a_{1}=-\frac{1}{p}\binom{p}{i}$ and $a_{2}=\binom{p-1}{i}$. First observe that the group $K_{*}\left(D_{i} \Sigma M_{r} ; 1\right)$ is the Σ_{i}-coinvariant quotient of $K_{*}\left(\left(\Sigma M_{r}\right)(i) ; 1\right)$ $=K_{*}\left(\Sigma M_{P} ; I\right)^{\otimes i}$, so that the set $\left\{i_{*}\left(z \otimes\left(\beta_{r}\right)^{(i-1)}\right\}\right.$ is a subbasis for $D_{1} \Sigma M_{r}$. Thus the set

$$
\left\{\imath_{*}\left[z \otimes\left(\beta_{r} z\right)^{(i-1)}\right] \otimes \imath_{*}\left(\beta_{r} z\right)^{(p-i)}, \imath_{*}\left[z \otimes\left(\beta_{r} z\right)^{(i-1)}\right) \otimes i_{*}\left[z \otimes\left(\beta_{r} z\right)^{(p-i-1)}\right]\right\}
$$

is a subbasis for $D_{i} \Sigma M_{r} \wedge^{\wedge} D_{p-i} \Sigma M_{r}$ and we see that equation (5) holds for some $a_{1}, a_{2} \in Z_{p} r^{\text {. }}$ Now applying $\left(\tau_{i, p-i}^{\prime}\right)_{*}^{\beta}{ }_{r+1}$ to both sides of (5) gives

$$
\tau_{*} \beta_{r+1} R z=i!(p-1)!a_{1}\left(\beta_{r+1} p_{*}\right)^{(p)}
$$

On the other hand we have

$$
\tau_{*} \beta_{r+1} R z=\tau_{*} Q \beta_{r+2} p_{*}^{2}=-(p-1)!\left(\beta_{r+1} p_{*}\right)^{(p)} ;
$$

hence $a_{1}=-\frac{(p-1)!}{i!(p-i)!}=-\frac{1}{p}\binom{p}{i}$. Next we apply π to (5) to get

$$
\begin{gather*}
\left(\tau_{i, p-i}\right)_{*} \pi R z=-\binom{p}{i} i_{*}\left[z \otimes\left(\beta_{r} z\right)^{(i-1)}\right) \otimes i_{*}\left(\beta_{r} z\right)^{(p-i)} \tag{6}\\
+a_{z^{\prime}}\left(\beta_{r}\right)^{(i)} \otimes i_{*}\left[z \otimes\left(\beta_{r} z\right)^{(p-i-1)}\right] \\
-a_{2} i_{*}\left[z \otimes\left(\beta_{r} z\right)^{(i-1)} 1 \otimes i_{*}\left(\beta_{r}\right)^{(p-i)} .\right.
\end{gather*}
$$

But we have

$$
\begin{aligned}
\left(\tau_{i, p-i}\right)_{*} \pi \mathrm{Rz}= & \left(\tau_{i, p-i}\right)_{*}\left[Q p_{*} z-i_{*}\left(z \otimes\left(\beta_{r} z\right)^{(p-1)}\right]\right. \\
= & -\left(\tau_{i, p-i}\right)_{*}{ }^{2}\left(z \otimes\left(\beta_{r} z\right)^{(p-i)}\right) \\
= & -\binom{p-1}{i-1} i_{*}\left(z \otimes\left(\beta_{r} z\right)^{(i-1)}\right) \otimes i_{*}\left(\beta_{r} z\right)^{(p-i)} \\
& -\binom{p-1}{i} i_{*}\left(\beta_{r} z\right)^{(i)} \otimes i_{*}\left(z \otimes\left(\beta_{r} z\right)^{(p-i-1)}\right),
\end{aligned}
$$

where the last equality follows from the double-coset formula; comparing with (6) gives $a_{2}=-\binom{p-1}{i}$ as required.
(vi). Let $r \geq 2$; the case $r=1$ is similar. Let f be the composite

$$
\Sigma^{-1} M_{r}=S^{-2} \wedge \Sigma M_{r} \xrightarrow{\Sigma^{-2} u \wedge 1} \Sigma^{-2} K \wedge \Sigma M_{r} \xrightarrow{B \wedge 1} K \wedge \Sigma M_{r}
$$

where B is the Bott equivalence. We have $f_{* *} \Sigma^{-1} u_{r}=\Sigma u_{r}$, hence it suffices to prove

$$
\Delta_{*} \Sigma R\left(\Sigma^{-1} u_{r}\right)=p_{*}{ }_{*} u_{r}^{(p)}+p_{*}^{2} Q u_{r}
$$

Now

$$
\begin{aligned}
\left(D_{p} j\right)_{* \Delta} \Delta_{*} R\left(\Sigma^{-1} u_{r}\right) & =\Delta_{*} \Sigma R\left(\Sigma^{-1} u\right)=\Delta_{*} \Sigma R\left(\pi \Sigma^{-1} u\right) \\
& =\Delta_{*} \Sigma Q p \Sigma^{-1} u=p \Delta_{*} \Sigma Q \Sigma^{-1} u \\
& =p \imath_{*} u^{(p)}+p^{2} Q u \\
& =\left(D_{p} j\right)_{*}\left(p_{*} *_{*} u_{r}^{(p)}+p_{*}^{2} Q u_{r}\right)
\end{aligned}
$$

the result follows since $\left(D_{p^{j}}\right)_{*}$ is monic by 8.2 .

$$
\text { (vii) } \begin{aligned}
\beta_{r+1} \psi^{k} R \Sigma u_{r} & =\psi^{k} \beta_{r+1} R \Sigma u_{r}=\psi^{k} Q \beta_{r+2} p_{*}^{2} \Sigma u_{r} \\
& =Q \beta_{r+2} p_{*}^{2} \sum \psi^{k} u_{r}=\beta_{r+1} R \Sigma u_{r}
\end{aligned}
$$

the last equality following from the fact that $\psi^{k_{u}} u_{r}=u_{r}$. The result now follows by 8.1.
(viii). Let z denote Σu_{r}, and abbreviate $\left(\beta_{p, p}\right)_{*}$ by β_{*} and $\left(\alpha_{p, \ldots, p}\right)_{*}$ by α_{*} (the reader is requested to remember that β_{*} is not a Bockstein). We must show

$$
\beta_{*} Q R x= \begin{cases}0 & \text { if } r=1 \\ \beta_{*} \mathrm{RQz} & \text { if } r \geq 2\end{cases}
$$

in $K_{1}\left(D_{p}{ }^{2} M_{r} ; r\right)$. We shall need the equation

$$
\begin{equation*}
\left.\delta_{*} Q x^{(n)}=\sum_{i=1}^{n}\binom{n}{i} p^{i-1}(\pi)_{*}(p)\right)^{(n-i)} \otimes(Q x)^{(i)} \tag{7}
\end{equation*}
$$

which holds in $K_{0}\left(\left(D_{p} X\right)^{(n)} ; r-1\right)$ for each $x \in K_{0}(X ; r)$ provided that p is odd (the proof is by induction on n from 7.6(ii)).

First let $r=1$. The set $\{Q R z, R R z\}$ is a subbasis for $D_{p} D_{p}\left[M_{1}\right.$, and it follows easily from Proposition 3.9 that the map

$$
B_{3} p_{*}^{2}: K_{1}\left(D_{p} D_{p} \Sigma M_{1} ; 1\right) \rightarrow K_{0}\left(D_{p} D_{p} \Sigma M_{1} ; 3\right)
$$

is a monomorphism. Since $K_{1}\left(D_{p}{ }_{2} M_{1} ; 1\right)$ is imbedded in $K_{1}\left(D_{p} D_{p} \Sigma M_{1} ; 1\right)$ by the transfer we see that

$$
\beta_{3} \mathrm{P}_{*}^{2}: \mathrm{K}_{1}\left(\mathrm{D}_{\mathrm{p}^{\Sigma}} \mathrm{M}_{1} ; 1\right) \rightarrow \mathrm{K}_{0}\left(\mathrm{D}_{\mathrm{p}^{2}}^{\left.\Sigma \mathrm{M}_{1} ; 3\right)}\right.
$$

is a monomorphism. It therefore suffices to show that $\beta_{*} \beta_{3} p_{*}^{2} Q R z$ is zero. We have

$$
\begin{aligned}
& B_{*} \beta_{3} p_{*}^{2} Q R z=\beta_{*} \beta_{3} Q p_{*}\left(R p_{*} 2\right) \text { by } 7.6(i v) \text { and } 8.4(i i i) \\
& =\beta_{*} \beta_{3}\left[R \pi R p_{*} z+p^{p-1} i_{*}\left(R p_{*} z \otimes\left(\beta_{3} R p_{*}\right)^{(p-1)}\right)\right] \\
& =\beta_{*} \beta_{3} R\left[Q p_{*}^{2} z-q_{*}\left(p_{*} z \otimes\left(\beta_{2} p_{*} z\right)^{(p-1)}\right)\right]+p^{p-1} \beta_{*^{1} *}\left(\beta_{3} R p_{*} z\right)^{(p)} \text {, }
\end{aligned}
$$

where the last two equalities follow from the second and first parts of $8.4(i i)$. Now $Q P_{*}^{2} z=0$ by $7.6(i v)$, and

$$
\begin{aligned}
& \beta_{*} 3^{R_{1}} *\left(p_{*} z \otimes\left(\beta_{2} p_{*} z\right)^{(p-1)}\right)=\alpha_{*} \delta_{*} \beta_{3} R\left(p_{*} z \otimes\left(\beta_{2} p_{*} z\right)^{(p-1)}\right) \quad \text { by } 1.2 .12 \\
& =\alpha_{*} \delta_{*} Q\left(\left(\beta_{4} p_{*}^{3} z\right)^{(p)}\right) \text { by } 8.4 \text { (iv) } \\
& =p^{p-1} \alpha_{*}\left(Q \beta_{4} p_{*}^{3} z\right)(p) \text { by } 7.6(v i i) \text { when } p=2 \text { and equation (7) when } p \text { is odd } \\
& =p^{p-1} \beta_{*^{1} *}\left(\beta_{3} \mathrm{Rp}_{*^{z}}\right)(\mathrm{p}) \text { by } 8.4(\mathrm{iv}) \text { and I.2.11. }
\end{aligned}
$$

We conclude that $\beta_{*} \beta_{3} p_{*}^{2} Q R=0$ as required, which concludes the case $r=1$.
Next let $r=2$. We have

$$
\begin{aligned}
& \pi \beta_{*}(Q R z-R Q z)=\beta_{*}\left[Q \left[Q p_{*} z-i_{*}\left(z \otimes\left(\beta_{r}\right)^{(P-1)}\right]\right.\right. \\
& \left.-Q p_{*} Q z+i_{*}\left(Q z \otimes\left(\beta_{r-1} Q z\right)^{(p-1)}\right)\right] \\
& =\beta_{*}\left[-Q t_{*}\left(z \otimes\left(\beta_{r} z\right)^{(p-1)}\right)+i_{*}\left(Q z \otimes\left(\beta_{r-1} Q z\right)^{(p-1)}\right]\right. \\
& =\alpha_{*}\left[-\delta_{*} Q\left(z \otimes \beta_{r} z^{(p-1)}\right)+Q z \otimes\left(\beta_{r-1} Q z\right)^{(p-1)}\right] \text { by } 1.2 .11 \\
& \text { and I.2.12. } \\
& =\alpha_{*}\left[-Q z \otimes\left(\pi m_{*}\left(\beta_{r} z\right)^{(p)}\right)^{p-1}-\mathrm{pQz} \otimes \delta_{*} Q\left(\beta_{r}\right)^{(p-1)}\right. \\
& +Q z \otimes\left(u_{*}\left(\pi \beta_{r}\right)^{(p)}+p Q \beta_{r}\right)^{p-1} 1 .
\end{aligned}
$$

When $p=2$ the last expression is clearly zero, while if p is odd it is zero by (7). Hence we have

$$
\begin{equation*}
\pi \beta_{*}(Q R z-R Q z)=0 . \tag{8}
\end{equation*}
$$

A similar calculation gives

$$
\begin{equation*}
\beta_{r+2} \sum_{P_{*}^{2} \beta_{*}}^{2}(Q R z-R Q z)=0 \tag{9}
\end{equation*}
$$

To proceed further we need the case $k=p^{2}$ of 4.1 . First we must check that the argument is not circular, since the present result is certainly used in the proof of 4.1. However, it enters only through the proof of 4.7, to be given in Section 9. An inspection of Section 9 will show that only the case $r=1$ of the present result is used in proving the case $k=p^{2}$ of 4.7. Thus we may proceed. We suppose $r \geq 3$; the case $r=2$ differs only slightly. By Remark 4.2 we obtain a subbasis

$$
A=A_{r-2} \cup A_{r-1} \cup A_{r} \cup A_{r+2}
$$

for $D_{p^{2}}{ }^{\Sigma M_{r}}$ with $A_{r-2}=\left\{\beta_{*} Q Q z\right\}$,

$$
\begin{aligned}
& A_{r-1,1}=\left\{\alpha_{*}\left[Q z \otimes\left(\beta_{r-1} Q z\right)^{(i)} \otimes\left(\pi^{2} \beta_{r+1} R z\right)^{(p-i-1)}\right] \mid 0 \leqslant i \leqslant p-2\right\}, \\
& A_{r-1,0}=\left\{\alpha_{*}\left[Q z \otimes \pi^{2} R_{z z} \otimes\left(\beta_{r-1} Q z\right)^{(i-1)} \otimes\left(\pi^{2} \beta_{r+1} R z\right)^{(p-i-1)}\right] \mid 1 \leqslant i \leqslant p-2\right\},
\end{aligned}
$$

$A_{r}=\left\{B_{*} R Q z\right\}$ and $A_{r+2}=\left\{B_{*} R R z\right\}$. Therefore the set

$$
\left\{\pi^{r-3} \beta_{*} Q Q z, \pi^{r-1} \beta_{*} R Q z, \pi^{r+1} \beta_{*} R R z\right\} \cup \pi^{r-2} A_{r-1,1} \cup \pi^{r-2} \beta_{r-1} A_{r-1}, 0
$$

is a basis for $K_{1}\left(D_{p} \Sigma M_{r} ; 1\right)$, and the subset $\pi^{r-2} \beta_{r-1} A_{r-1,0}$ is a basis for the image of $\pi^{r-2} \beta_{r-1}$, hence for the kernel of p_{*}^{r-1}. By (8) we see that $\beta_{*}(Q R z-R Q z)$ is in the image of p_{*}^{r-1}, hence there exist constants $a, b, c, d_{0}, \ldots, d_{p-2} Z_{p}$ with

$$
\begin{align*}
& \beta_{*}(Q R z-R Q z)=p_{*}^{r-1}\left[a \pi^{r-3} \beta_{*} Q Q z+b \pi^{r-1} \beta_{*} R Q z\right. \tag{10}\\
& \left.\quad+c \pi^{r+1} \beta_{*} R R z+\alpha_{*} H^{r-2} \sum_{i=0}^{p-2}\left(d_{i} Q z \otimes\left(\beta_{r-1} Q z\right)^{(i)} \otimes\left(\pi^{2} \beta_{r+1} R z\right)^{(p-i-1)}\right)\right]
\end{align*}
$$

If we apply $\beta_{r+2} p_{*}^{2}$ to both sides of (10) then the left side becomes zero by (9), hence we have

$$
\begin{aligned}
0= & a p^{r-3} \beta_{r+2} p_{*}^{4} \beta_{*} Q Q z+b p^{r-1} p_{*}^{2} \beta_{*} R Q z+c p^{r+1} \beta_{r+2} \beta_{*} R R z \\
& +\sum_{i=0}^{p-2} d_{i} p^{r-2} \beta_{r+2} p_{*}^{3} \alpha_{*}\left[Q z \otimes\left(\beta_{r-1} Q z\right)^{(i)} \otimes\left(\pi^{2} \beta_{r+1} R z\right)^{(p-i-1)}\right] .
\end{aligned}
$$

Since the set A is a subbasis this gives $a=b=c=d_{0}=\ldots d_{p-2}=0$ as required. This completes the proof of 8.4 .

Proof of 8.5. Part (i) is trivial.
(ii) We may assume $x=u_{r}$. We have

$$
\left(D_{p} j\right)_{*}{ }^{\pi} 2 u_{r}=\eta=i_{*} u^{(p)}=\left(D_{p} j\right)_{* i} *_{r}^{(p)}
$$

hence $\pi 2 u_{r}={ }^{1}{ }_{*} u_{r}^{(p)}$ by 8.2. If $r \geq 2$ then

$$
\left(D_{p} j\right)_{*} 2 \pi u_{r}=2 \pi u=2 u=\left(D_{p} j\right)_{* i} *_{r}^{(p)},
$$

hence $2 \pi u_{r}=1_{*} u_{r}^{(p)}$ by 8.2.
(v) As in the proof of 7.3 (iii) it suffices to show

$$
r_{*} 2 u_{r}= \begin{cases}(p-1)!p_{*} u_{r}^{(p)} & \text { if } p \text { is odd or } r \geq 2 \\ 2{ }_{*} u_{1}^{(2)}+\left(\beta_{2}{ }^{2} u_{r}\right)^{(2)} & \text { if } p=2 \text { and } r=1\end{cases}
$$

We prove this when $p=2$; the odd primary case is similar. The element $\tau_{*} 2 u_{r}$ is in the ε_{2}-invariant subgroup of $K_{0}\left(M_{r}^{(2)} ; r+1\right)$, and this subgroup has a basis consisting of $2 * u_{r}^{(2)}$ with order 2^{r} and $2^{r-1}\left(\beta_{r+1}{ }^{2} u_{r}\right)^{(2)}$ with order 2. Thus we have

$$
\begin{equation*}
\tau_{*} 2 u_{r}=a_{1} 2 * u_{r}^{(2)}+a_{2} 2^{r-1}\left(\beta_{r+1}{ }^{2} u_{r}\right)^{(2)} \tag{11}
\end{equation*}
$$

with $a_{1} \in Z_{2} r$ and $a_{2} \in Z_{2}$. Now

$$
j_{*}^{(2)} \tau_{*} 2 u_{r}=\tau_{*}\left(D_{2} j\right)_{*} 2 u_{r}=\tau_{*} n=2 u ;
$$

thus applying $j_{*}^{(2)}$ to both sides of (11) gives $2 u=2 a_{1} u$ in $K_{0}(S ; r+1)$ so that $a_{1}=1$. Next we have

$$
\pi \tau_{*} 2 u_{r}=\tau_{*} *^{\prime} u_{r}^{(2)}= \begin{cases}2 u_{r}^{(2)} & \text { if } r \geq 2 \\ \left(8 u_{1}\right)^{(2)} & \text { if } r=1\end{cases}
$$

hence applying π to (11) gives $a_{2}=0$ if $r \geq 2$ and $a_{2}=1$ if $r=1$.
(iv) We may assume $x=u_{r}$. Let $r \geq 2$; the case $r=1$ is similar. The set

$$
\left\{Q u_{r}, i_{*} u_{r}^{(p)}, i_{*}\left(u_{r}^{(p-1)} \otimes b_{r} u_{r}\right)\right\}
$$

is a subbasis of height r for $D_{p} M_{r}$, hence we have

$$
\begin{equation*}
\pi \beta_{r+1} 2 u_{r}=a_{1} i_{*}\left(u_{r}^{(p-1)} \otimes \beta_{r} u_{r}\right)+a_{2} \beta_{r} p_{*} Q u_{r} \tag{12}
\end{equation*}
$$

with $a_{1} \in Z_{p^{r}}, a_{2} \in Z_{p r-1}$. Let $j^{\prime}: M_{r} \rightarrow M_{r+1}$ be the map induced by the inclusion $z_{p} C_{p} z_{p+1}$. Then $j o j^{\prime}=j: M_{r} \rightarrow S$, hence $\left(j^{\prime}\right)_{*} u_{r}=\pi u_{r+1}$ and $\left(j^{\prime}\right)_{* B_{r} u_{r}}=$
$p \pi \beta_{r+1} u_{r+1}$. Thus

$$
\begin{aligned}
\left(D_{p} j^{\prime}\right)_{* \pi \beta_{r+1}}{ }^{2} u_{r} & =\pi \beta_{r+1} 2 \pi u_{r+1}=\pi \beta_{r+1}{ }^{l} * u_{r+1}^{(p)} \\
& =p \pi 3_{*}\left(u_{r+1}^{(p-1)} \otimes \beta_{r+1} u_{r+1}\right)
\end{aligned}
$$

and comparing with (12) gives $a_{2}=0$. Next we have

$$
\tau_{*}^{\pi \beta}{ }_{r+1} 2 u_{r}=\pi \beta_{r+1}(p-1)!p_{*} u_{r}^{(p)}=(p-1)!\beta_{r} u_{r}^{(p)}=\tau_{*}{ }^{2}\left(u_{r}^{(p-1)} \otimes \beta_{r} u_{r}\right)
$$

and comparing with (12) gives $a_{1}=1$.
(iii) By part (iv) we see that the set $\left\{Q u_{r}, 2 u_{r}\right\}$ is a subbasis for $D_{p} M_{r}$ if $r \geq 2$, while $\left\{2 u_{r}\right\}$ is a subbasis for $D_{p} M_{1}$. It follows that the map

$$
\left(D_{p} j\right)_{*}: K_{0}\left(D_{p} M_{r} ; r+2\right) \rightarrow K_{0}\left(D_{p} S ; r+2\right)
$$

is monic. But

$$
\left(D_{p} j\right)_{*} 2 p_{*} u_{r}=2(p u)=2(\pi p u)=i_{*}(p u)^{(p)}=p^{p-1} p_{* n}=\left(D_{p}^{j}\right)_{*} p^{p-1} p_{*} 2 u_{r}
$$

and the result follows.
(vi). Let $p=2$; the odd primary case is similar. First let $|x|=|y|=0$
with $r \geq 2$. We may assume $x=u_{r}, y=u_{r}$. The set
$\left\{2 x \otimes 2 y, \pi i_{*} x^{(2)} \otimes Q y, Q x \otimes \pi_{*} y^{(2)}, Q x \otimes Q y, 2 x \otimes B_{r+1} 2 y\right.$,

$$
\left.2 x \otimes \beta_{r+1} 4 * Q y, Q x \otimes \pi^{2} \beta_{r+1} 2 y, Q x \otimes \beta_{r-1} Q y\right\}
$$

is a subbasis for $D_{2} M_{r} \wedge D_{2} M_{r}$, hence we have

$$
\begin{align*}
\delta_{*} 2 & (x \otimes y)=a_{1} 2 x \otimes 2 y+a_{2} 2 x \otimes 4_{*} Q y+a_{3} 4_{*} Q x \otimes 2 y \tag{13}\\
& +a_{4} 4_{*}(Q x \otimes Q y)+a_{5} B_{r+1} 2 x \otimes \beta_{r+1} 2 y \\
& +a_{6}^{3} \beta_{r+1} 2 x \otimes \beta_{r+1} 4^{*} Q y+a_{7} \beta_{r+1} 4^{*} Q x \otimes B_{r+1} 2 y \\
& +a_{8} \beta_{r+1} 4 * Q x \otimes \beta_{r+1} 4^{Q} Q y
\end{align*}
$$

with $a_{1}, a_{5} \in Z_{2} r+1$ and $a_{2}, a_{3}, a_{4}, a_{6}, a_{7}, a_{8} \in Z_{2} r-1$. Since

$$
\pi \delta_{*} 2(x \otimes y)=\delta_{*} i_{*}(x \otimes y)^{(2)}=i_{*} x^{(2)} \otimes i_{*} y^{(2)}
$$

we have $a_{6}=a_{7}=a_{8}=0$. The equation

$$
\left(D_{2} j \wedge D_{2}^{j}\right)_{*} \delta_{*} 2(x \otimes y)=\delta_{*} 2 u=\delta_{*} n=n \otimes n
$$

implies $a_{1}=1$ and $a_{2}=a_{3}=a_{4}=0$. Hence we have

$$
\begin{equation*}
\delta_{*} 2(x \otimes y)=2 x \otimes 2 y+a_{5} \beta_{r+1} 2 x \otimes \beta_{r+1} 2 y \tag{14}
\end{equation*}
$$

with a_{5} depending on r. A similar argument shows that (14) holds also when $r=1$. Now let T_{1} and T_{2} switch the factors of $M_{r} \wedge M_{r}$ and $D_{2} M_{r} \wedge D_{2} M, r$. Then

$$
\delta_{*} 2\left(T_{1^{*}}(x \otimes y)\right)=T_{2^{*}} \delta_{*} 2(x \otimes y)=2 y \otimes 2 x-a_{5} \beta_{r+1} 2 y \otimes \beta_{r+1} 2 x
$$

On the other hand, if $r \geq 2$ then

$$
\delta_{*} 2\left(T_{1 *}(x \otimes y)\right)=\delta_{*} 2(y \otimes x)=2 y \otimes 2 x+a_{5} 8_{r+1} 2 y \otimes \beta_{r+1} 2 x
$$

hence $2 a_{5}=0$ as required. If $r=I$ then

$$
\begin{aligned}
\delta_{*} 2\left(T_{1 *}(x \otimes y)\right) & =\delta_{*} 2(y \otimes x+\beta y \otimes \beta x) \\
& =\delta_{*} 2(y \otimes x)+2 \beta_{2} 2 y \otimes \beta_{2} 2 x .
\end{aligned}
$$

Hence in this case $-a_{5}=a_{5}+2 \bmod 4$, so that $a_{5} \equiv 1 \bmod 2$ as required.
Next let $|x|=1,|y|=0$ with $r \geq 2$ we may assume $x=\Sigma u_{r}, y=u_{r}$. Choosing a subbasis for $D_{2} \Sigma M_{T} \wedge D_{2} M_{r}$ as in the preceeding case, we see that

$$
\begin{align*}
& \delta_{*} R(x \otimes y)=a_{1} R x \otimes 2 y+a_{2} R x \otimes 4_{*} Q y+a_{3} 4_{*} Q x \otimes 2 y \tag{15}\\
& +a_{4} 4^{\prime}(Q x \otimes Q y)+a_{5} \beta_{r+1} R X \otimes \beta_{r+1} 2 y \\
& +a_{6} \beta_{r+1} \mathrm{Rx} \otimes \beta_{r+1}{ }^{4} * Q y+a_{\eta} \beta_{r+1}{ }^{4} * Q \otimes \beta_{r+1} 2 y \\
& +8_{8}^{8} r_{r+1}{ }^{4} Q^{Q x \otimes B_{r+1}{ }^{4} * Q y}
\end{align*}
$$

with $a_{1}, a_{5} \in Z_{2^{r+1}}$ and the remaining a_{i} in $Z_{2^{r-1}}$. If f denotes the composite

$$
D_{2} \Sigma M_{r} \wedge D_{2} M_{r} \xrightarrow{1 \wedge D_{2} j} D_{2^{j}} \Sigma M_{r} \wedge D_{2} S^{0} \xrightarrow{1 \wedge \xi} D_{2} \Sigma M_{r} \wedge S^{0}=D_{2}^{\Sigma M_{r}}
$$

then the diagram

commutes. Applying f_{*} to (15) and using the equation ξ_{*} Qu $=0$ (which was shown in the proof of $3.3(i i))$ gives

$$
R x=a_{1} R x+a_{3} 4 * Q x
$$

hence $a_{1}=1$ and $a_{3}=0$. To determine a_{2} and a_{4} we calculate

$$
\pi^{2} \beta_{r+1} \delta_{*} R(x \otimes y)=\delta_{*} Q \beta_{r}(x \otimes y)=\pi^{2} \beta_{r+1}\left[R x \otimes 2 y+4_{*}(Q x \otimes Q y)\right]
$$

hence $a_{2}=0$ and $a_{4}=1$. Next we calculate

$$
\begin{aligned}
\pi \delta_{*} R(x \otimes y)= & \delta_{*} \pi R(x \otimes y) \\
= & \pi R x \otimes \pi 2 y+\pi 4_{*}(Q x \otimes Q y)+2^{r-2} \beta_{r} 2_{*} Q x \otimes \pi \beta_{r+1} 2 y \\
& +2^{2 r-3} 2_{*}\left(\beta_{r} x\right)^{(2)} \otimes Q \beta_{r+1} 2 y .
\end{aligned}
$$

Now the element $2^{2 r-3} i_{*}\left(B_{r} x\right)^{(2)}$ is zero when $r \geq 3$ since $2 r-3 \geq r$ while when $r=2$ we have

$$
0=2 \beta_{2} 2^{Q} Q x=2 \beta_{2} Q 2 * x=2 \imath_{*}\left(\beta_{2} x\right)^{(2)}
$$

Thus applying π to both sides of (15) gives $2 a_{5}=a_{6}=a_{8}=0$ and $a_{7}=2^{r-2}$. It remains to show $a_{5}=2^{r} \varepsilon_{r}$, where $\varepsilon_{r} \in Z_{2}$ is the constant in the formula for $\delta_{*} 2(x \otimes y)$. But this follows from the equation

$$
\begin{equation*}
(\delta \wedge l)_{*} \delta \delta_{*} R\left(\left(\Sigma u_{r} \otimes u_{r}\right) \otimes u_{r}\right)=(1 \wedge \delta)_{*} \delta R\left(\Sigma u_{r} \otimes\left(u_{r} \otimes u_{r}\right)\right) \tag{16}
\end{equation*}
$$

if we expand both sides using the formulas already shown.
Next let $x=\Sigma u_{1}, y=u_{1}$. A suitable choice of subbasis for $D_{2} \Sigma M_{1} \wedge D_{2} M_{1}$ gives

$$
\delta_{*} R(x \otimes y)=a_{1} R x \otimes 2 y+a_{2} \beta_{2} R x \otimes \beta_{2} 2 y
$$

and we see as before that $a_{1}=1$. Evaluating both sides of equation (16) in this case gives $a_{2}=-\left(1+2 \varepsilon_{1}\right)$. Finally, we have

$$
\begin{aligned}
\delta_{*} R(y \otimes x) & =\delta_{*} R\left(T_{1}(x \otimes y+\beta x \otimes \beta y)\right) \\
& =T_{2 *} \delta_{*} R(x \otimes y+\beta x \otimes \beta y) \\
& =2 y \otimes R x+\left(1+2 \varepsilon_{1}\right) \beta_{2} 2 y \otimes \beta_{2} R x
\end{aligned}
$$

as required.
Now let $\mathrm{x}=\Sigma \mathrm{u}_{\mathrm{r}}$ and $\mathrm{y}=\Sigma u_{\mathrm{T}}$, with $\mathrm{r} \geq 2$. We have

$$
\begin{align*}
& \delta_{*}(x \otimes y)=a_{1} R x \otimes R y+a_{2} R x \otimes 4_{*} Q y+a_{3} 4^{*} Q x \otimes R y \tag{17}\\
& \quad+a_{4} 4_{*}(Q x \otimes Q y)+a_{5} \beta_{r+1} R x \otimes \beta_{r+1} R y+a_{6} \beta_{r+1} R x \otimes \beta_{r+1} 4_{*} Q y \\
& \quad+a_{7} \beta_{r+1} 4_{*} Q x \otimes \beta_{r+1} R y+a_{8} \beta_{r+1} 4_{*} Q x \otimes \beta_{r+1} 4^{* Q y}
\end{align*}
$$

with $a_{1}, a_{2} \in Z_{2} r+1$ and the remaining a_{i} in $Z_{2 r-1}$. The equation

$$
\begin{equation*}
\pi \delta_{*}(x \otimes y)=\delta_{*^{2}}(x \otimes y)^{(2)}=i_{*} x^{(2)} \otimes l_{*} y^{(2)}=2^{2 r-4} \beta_{r} 2_{*} Q x \otimes \beta_{r} 2_{*} \otimes y \tag{18}
\end{equation*}
$$

shows that $a_{6}=a_{7}=0, a_{8}=2^{2 r-4}$, and also that $a_{1} \equiv 0 \bmod 2^{r}$ and that $a_{2} \equiv a_{3} \equiv a_{4}=0 \bmod 2^{r-2}$. Next we apply $\left(D_{2} j \wedge D_{2} j\right)_{*}$ to both sides of (17). The left side becomes

$$
\left(D_{2} j \wedge D_{2} j\right)_{*} \delta_{*} 2(x \otimes y)=\delta_{*} 2(\Sigma u \otimes \Sigma u)=\pi \delta_{*} 2(\Sigma u \otimes \Sigma u),
$$

which is zero by (18). By 8.4(ii) we have

$$
\left(D_{2} j\right)_{*} R \Sigma u_{r}=R \Sigma u=R \pi \Sigma u=2 Q \Sigma u,
$$

hence (since $8 a_{1} \equiv 8 a_{2} \equiv 8 a_{3} \equiv 0 \bmod 2^{r+1}$) the right side of (17) becomes $4 a_{4} Q \Sigma y \times Q \Sigma u$, so that $a_{4}=0$ in $Z_{2} r-1$. Next we calculate

$$
{ }^{\pi \beta_{r+1}} \delta_{*} 2(x \otimes y)=2^{r-2} \pi \beta_{r+1}\left[R x \otimes 4_{*} Q y+4_{*} Q x \otimes F y\right],
$$

hence $a_{2}=a_{3}=2^{r-2}$. Finally, if we expand both sides of the equation

$$
(\delta \wedge 1)_{*} \delta * 2\left(\left(\Sigma u_{r} \otimes \Sigma u_{r}\right) \otimes u_{r}\right)=(1 \wedge \delta)_{*} \delta * 2\left(\Sigma u_{r} \otimes\left(\Sigma u_{r} \otimes u_{r}\right)\right)
$$

using the formulas already shown, it follows that $a_{5}=0$. The proof when $r=1$ is similar.
(vii). We may assume $\mathrm{x}=u_{r}$. Let $\mathrm{r} \geq 2$; the case $\mathrm{r}=1$ is similar. Then

$$
\begin{equation*}
\Delta_{*} \Sigma 2 u_{r}=a_{1} R \Sigma u_{r}+a_{2} p_{*}^{2} Q \Sigma u_{r} \tag{19}
\end{equation*}
$$

with $a_{1} \in Z_{p r+1}$ and $a_{2} \in Z_{p r-1}$. Applying π to (19) shows that $a_{1} \equiv 0 \bmod p^{r}$, hence applying $\left(D_{p} j\right)_{*}$ to (19) gives $a_{2}=0$. It only remains to show that $\Delta_{*} \sum 2 u_{r} \neq 0$ when $\mathrm{p}=2$. But Lemma 7.7 gives the exact sequence

$$
K_{1}\left(\Sigma M_{r} \wedge M_{r} ; r+1\right) \xrightarrow{(\Sigma 1)_{*}} K_{1}\left(\Sigma D_{2} M_{r} ; r+1\right) \xrightarrow{\Delta_{*}} K_{1}\left(D_{2} \Sigma M_{r} ; r+1\right)
$$

Since $\Sigma 2 u_{r}$ has order 2^{r+1}, it cannot be in the image of $\left(\Sigma_{1}\right)_{*}$ and the result follows.
(viii). We may assume $x=u_{r}$. We have

$$
\left(D_{p} j\right)_{*} \psi^{k} 2 u_{r}=\psi^{k} 2 u=\psi^{k} \eta=n=\left(D_{p} j\right)_{*} 2 \psi^{k} u_{r}
$$

since $\psi^{k} u_{r}=u_{r}$; the result follows by 8.2 .
(ix) By equation (7) in the proof of 8.4 (viii) and I. 2.14 we have the following equation in $K_{0}\left(D_{p}{ }^{X}\right.$;r-1) when p is odd and $r \geq 2$.
(20)

$$
\beta_{*} Q_{*} x^{(p)}=i_{*} \delta_{*} Q x^{(p)}=i_{*}\left[\sum_{i=1}^{p}\binom{p}{i} p^{i-1}\left(\pi_{*} x^{(p)}\right)^{(p-i)} \otimes(Q x)^{(i)}\right]
$$

When $p=2$ this equation follows from 7.6(vii) since $l_{*}\left(x \otimes \beta_{r} x \otimes x \otimes \beta_{r} x\right)$ and ${ }^{i}{ }_{*}\left(Q \beta_{r} x \otimes Q \beta_{r} x\right)$ are zero by 7.6(x).

Let $r=2, x=u_{1}$. The set $\left\{2 u_{1}\right\}$ is a subbasis for $D_{p} M_{1}$, hence by 4.3 the set $\{Q 2 u_{1}, \overbrace{*} u_{1}^{\left(p^{2}\right)}\}$ is a basis for $K_{0}\left(D_{p} D_{p} M_{1} ; 1\right)$. Lemma 4.3 also implies that the set

$$
\left\{Q 2 u, i_{*} u^{\left(p^{2}\right)}\right) \subset K_{0}\left(D_{p} D_{p} S ; 1\right)
$$

is linearly independent. Hence $\left(D_{p} D_{p} j\right)_{*}$ is monic on $K_{0}\left(D_{p} D_{p} M_{r} ; 1\right)$. Since the transfer

$$
\tau_{*}: K_{0}\left(D_{p} M_{1} ; 1\right) \rightarrow K_{0}\left(D_{p} D_{p} M_{1} ; I\right)
$$

is monic and $\left(D_{p} D_{p}\right)_{*} \circ \tau=\tau_{*} \circ\left(D p^{\left.2^{j}\right)_{*}}\right.$, it follows that $\left(D_{p}{ }^{j}\right)_{*}$ is monic on $\mathrm{K}_{0}\left(\mathrm{D}_{\mathrm{p}}{ }^{2} \mathrm{M}_{1} ; 1\right)$. But

$$
\left(D_{p^{2}} j\right)_{*} \beta_{*} Q 2 u_{1}=\beta_{*} Q 2 u=\beta_{*} Q \dot{N}_{*}(p),
$$

which is zero by (20), hence $\beta_{*} Q \quad u_{1}=0$ as required.
Next let $\mathbf{r} \geq 2$ and let y denote the element

$$
B_{*} Q 2 u_{r}-\imath_{*} \sum_{i=1}^{p}\binom{p}{i} p^{i-2}\left[\imath_{*} u_{r}^{(p)}\right](p-i) \otimes p_{*}\left[\left(Q u_{r}\right)^{(i)}\right]
$$

in $K_{0}\left(D_{p} 2 M_{r} ; r\right)$. Then (20) implies that $\pi y=0$ and $\left(D_{p} j^{j}\right)_{* y}=0$, and we must show $y=0$. Since $\pi y=0$ we see that y is in the image of p_{*}^{r-1}. To proceed further we need the case $k=p^{2}$ of 4.1 ; we may use this result without circularity since only the case $r=1$ of the present result is used in proving it (see section 9). Now as in the proof of 8.4 (viii) we see that the union of the sets

$$
\begin{aligned}
& \left\{i_{*}\left[\left(\pi^{r-1} i_{*} u_{r}^{(p)}\right]^{(i)} \otimes\left(\pi^{r-2} Q u_{r}\right)^{(p-i)}\right] \mid 0 \leq i \leq p\right\} \\
& \left\{i _ { * } \left[\left(\pi^{r-1} i_{*} u_{r}^{(p)}\right)^{(i-1)} \otimes \pi^{r-1} i_{*}\left(u_{r}^{(p-1)} \otimes \beta_{r} u_{r}\right)\right.\right. \\
& \left.\left.\quad \otimes\left(\pi^{r-2} Q u_{r}\right)^{(p-i-1)} \otimes \pi^{r-2} \beta_{r-1} Q u_{r}\right] \mid 1 \leq i \leq p-1\right)
\end{aligned}
$$

and, if $r \geq 3,\left\{\pi^{r-3} \beta_{*} Q Q u_{r}\right\}$, is a basis for $K_{0}\left(D_{p}{ }^{2} M_{r} ; 1\right)$. The second of these sets generates the kernel of p_{*}^{r-1} and also the kernel of $\left(D_{p^{2}} j\right)_{*}$, and it follows that $\left(D_{p^{2}} j\right)_{*}$ is monic on the image of p_{*}^{r-1}. Since $\left(D_{p^{2}}^{j}\right)_{*} y=0$ we conclude $y=0$ as required.

9. Cartan formulas

In this section we shall prove Lemma 4.7. As in the proof of 2.7 , the basic idea is to "simplify" each expression in ca(respectively $c a^{\prime}$) to obtain an expression in $C\{x\}$ (respectively $C\{y, z\}$). We shall refer to the simplified expression as a Cartan formula for the original one. Some explicit examples of such formulas will be given below. However, some of the formulas we need are too complicated to give explicitly, and instead we shall use an inductive argument to establish their existence.

In order to do so it is convenient to work in a suitable formal context. Let ξ_{1}, \ldots, ξ_{t} be indeterminates and suppose that to each has been assigned a mod 2 dimension denoted $\left|\xi_{i}\right|$ and two positive integers called the height and filtration and denoted $\left\|\xi_{i}\right\|$ and $v \xi_{i}$. Intuitively, ξ_{i} should be thought of as an element of ${ }^{K}\left|\xi_{i}\right|{ }^{\left(D_{\nu \xi_{i}} X ;\left\|\xi_{i}\right\|\right)}$ for some spectrum X. We wish to consider certain finite formal combinations $E\left(\xi_{1}, \cdots, \xi_{t}\right)$ involving the ξ_{i} and the operations of section 3, namely those combinations which would represent elements in one of the groups $K_{\alpha}\left(D_{j} X ; r\right)$ when interpreted "externally" as in section 4. More precisely, we define the allowable expressions $E\left(\xi_{1}, \ldots, \xi_{t}\right)$ and assign them dimensions, heights and filtration by induction on their length as follows.

Definition 9.1. (i) Each indeterminate ξ_{i} is an expression of length 1 . For each $\alpha \in Z_{2}, r \geq 1, j \geq 1$ there is an expression $0_{\alpha, r, j}$ (called zero sub α, r, j) having length 1 , dimension α, height r and filtration j. These are the only expressions of length 1.
(ii) Suppose that the expressions of length $\leq \ell$ have been defined and assigned dimensions, heights and filtrations. The expressions of length $\ell+1$ are the following, where E ranges over the expressions of length ℓ.
(a) $\quad p_{*} E$. We define $\left|p_{*} E\right|=|E|,\left\|p_{*} E\right\|=1 E \|+1$ and $\nu\left(p_{*} E\right)=\nu E$.
(b) $\beta_{r} E$ if $\|E\|=r$. We define $\left|B_{r} E\right|=|E|-1,\left\|\beta_{r} E\right\|=\|E\|$ and $\nu\left(\beta_{\mathbf{r}} \mathrm{E}\right)=\nu E$.
(c) πE if $2 \leq\|E\|$. We define $|\pi E|=|E|$, $\|\pi E\|=\|E\|-1$ and $\nu(\pi E)=\nu E$.
(d) $E_{1}+E_{2}$, where E_{1} and E_{2} are any expressions whose lengths add up to $\ell+1$ and which satisfy $\left|E_{1}\right|=\left|E_{2}\right|,\left\|E_{1}\right\|=\left\|E_{2}\right\|$, and $\nu E_{1}=\nu E_{2}$. We define $\left|E_{1}+E_{2}\right|=\left|E_{1}\right|,\left\|E_{1}+E_{2}\right\|=\left\|E_{1}\right\|$ and $v\left(E_{1}+E_{2}\right)=\nu E_{1}$.
(e) $E_{1} \cdot E_{2}$ (the formal product) where E_{1} and E_{2} are any expressions whose lengths add up to $\ell+1$ and which satisfy $\left\|E_{1}\right\|=\left\|E_{2}\right\|$. We define $\left|E_{1} \cdot E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|,\left\|E_{1} \cdot E_{2}\right\|=\left\|E_{1}\right\|$, and $v\left(E_{1} \cdot E_{2}\right)=v E_{1}+v E_{2}$.
(f) $Q E$ if $2 \leq\|E\|$. We define $|Q E|=|E|,\|Q E\|=\|E\|-1$ and $\nu Q E=p \cup E$.
(g) $2 E$ if $|E|=0$. We define $|2 E|=0,\|2 E\|=\|E\|+1$, and $\cup 2 E=p \cup E$.
(h) RE if $|E|=1$. We define $|R E|=1, \quad\|R E\|=\|E\|+1$, and $\cup R E=p u E$.

Note that we have not required formal addition and multiplication to satisfy commutativity, associativity or other properties. However, in writing down particular expressions we shall often omit some of the necessary parentheses, since their precise position will usually be irrelevant. We shall also abbreviate $0_{\alpha, r, j}$ by 0 .

We have given Definition 9.1 in complete detail as a pattern for other inductive definitions about which we will not be so scrupulous. For example, let E be an expression in the indeterminates ξ_{1}, \ldots, ξ_{t}. If E_{1}, \ldots, E_{t} are expressions in another set of indeterminates η_{1}, \ldots, n_{s} with $\left|E_{i}\right|=\left|\xi_{i}\right|,\left\|E_{i}\right\|=\left\|\xi_{i}\right\|$, and $v E_{i}=v u_{i}$ for $1 \leq i \leq t$ then we may (inductively) define the composite expression $E\left(E_{1}, \ldots, E_{t}\right)$ in n_{1}, \ldots, n_{s}. Again, if X is any spectrum and $\left.\left.x_{i} \in K_{\mid \xi_{i}}\right|^{\left(D_{\nu \xi_{i}}\right.} X_{i}\left\|\xi_{i}\right\|\right)$ for $1 \leq i \leq t$ then we can define

$$
E\left(x_{1}, \ldots, x_{t}\right) \in K_{|E|}\left(D_{\nu E} X ;\|E\|\right)
$$

as in section 4 by interpreting $Q, 2, R$ and the multiplication externally and applying α_{*} and β_{*} to formal products and composites.

Definition 9.2. Let ξ_{1}, \ldots, ξ_{t} be a fixed set of indeterminates. Equivalence, denoted by \sim, is the smallest equivalence relation on the set of expressions in ξ_{1}, \cdots, ξ_{t} which satisfies the following.
(1) ~ is preserved by left composition with $Q, 2, R, \pi, p_{*}$ and β_{r} and by formal addition and multiplication.
(2) For each $r \geq 1$ the equivalence classes of expressions of height r, graded by dimension and filtration, form a $Z_{2} \times Z$ graded ring (without unit) with the $0_{\alpha, r, j}$ as zero elements. The relation $E_{1} \cdot E_{2}=(-1)^{\left|E_{1}\right|\left|E_{2}\right|} E_{2} \cdot E_{1}$ is satisfied and left composition with π, β_{r} or p_{*} is additive.
(3) If x and y denote expressions E_{1} and E_{z} having height r and the required dimensions then the following hold with = replaced by \sim : 3.1; 3.2(iii), (iv) and (v); 3.3(iii), (iv), (v), (vi), (vii) and (x); 3.6(ii), (iii), (iv), (v) and (viii); 3.7(ii), (iii), (iv), (v), (vi) and (ix).

Roughly speaking, two expressions are equivalent if one can be transformed into the other by using the relations of Section 3 .

It is easy to see that equivalent expressions must have the same dimension, height, and filtration but not necessarily the same length. An inductive argument shows that $E\left(E_{1}, \ldots, E_{t}\right)$ and $E^{\prime}\left(E_{1}^{\prime}, \ldots, E_{t}^{\prime}\right)$ are equivalent if $E \sim E^{\prime}$ and $E_{i} \sim E_{i}^{\prime}$
for $1 \leq i \leq t$. A similar inductive argument using 3.1, 3.2, 7.6, 8.4 and 8.5 gives the following.

Lemma 9.3. Let E and E^{\prime} be equivalent expressions in ξ_{1}, \ldots, ξ_{t}. Let X be any spectrum and let x_{i} be an element of $\left.\left.K_{\mid \xi_{i}}\right|^{\left(D_{\nu \xi_{i}}\right.} X ;\left\|\xi_{i}\right\|\right)$, for $1 \leq i \leq t$. Then $E\left(x_{1}, \ldots, x_{t}\right)=E^{1}\left(x_{1}, \ldots, x_{t}\right)$.

If $A=\left\{\xi_{1}, \ldots, \xi_{t}\right\}$ is any set of indeterminates we can define the filtered algebra $C A$ and the subquotient groups $D_{j} A$ with their standard bases exactly as in sections 3 and 4. If A^{\prime} is another set of indeterminates and $f: A \rightarrow A^{\prime} \cup\{0\}$ preserves degree, height and filtration we say that f is subbasic. Clearly, the constructions $C A$ and $D_{j} A$ are functorial with respect to subbasic maps. We can think of the elements of $D_{j} A$ as expressions in ξ_{1}, \ldots, ξ_{t} by inserting parentheses so that addition and multiplication are treated as binary operations. (Of course, up to equivalence it doesn't matter how the parentheses are inserted.) This identifies $D_{j} A$ with a subset of the expressions of height 1 and filtration j in ξ_{1}, \ldots, ξ_{t}. By a Cartan formula for an expression E of height 1 we mean simply an equivalent expression in $D_{\nu E} A$. The next result, which will be proved later in this section, provides some examples which will be useful in the proof of 4.7 . We say that two expressions E_{1} and E_{2} are equivalent mod p if there is an expression E^{\prime} with $E_{1} \sim E_{2}+p E^{\prime} ;$ in particular this implies $\pi_{1}^{\left\|E_{1}\right\|-1} E_{1} \sim \pi_{1}^{\left\|E_{1}\right\|-1} E_{2}$.

Proposition 9.4. Let $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$ be indeterminates of height r with dimensions $0,0,1$, 1 respectively. Let $1 \leq s<r$ and let $t \geq 1$.
(i) $\beta_{r-s} Q^{S^{5} \xi_{1}} \sim Q^{s} \beta_{r} \xi_{1} \bmod p$.
(ii) $\quad \beta_{r-s} Q^{s} \xi_{3} \sim\left(\pi^{s} \beta_{r} \xi_{3}\right)^{p^{s}} \bmod p$.
(iii) $\quad Q^{s}\left(\xi_{1} \xi_{3}\right) \sim\left(\pi^{s} \xi_{1}\right)^{p^{s}} Q^{s} \xi_{3}$ mod p if p is odd or $r \geq 3$.
(iv) $Q^{s}\left(\xi_{3} \xi_{4}\right)$ is equivalent to $\left(Q^{s} \xi_{3}\right)\left(Q^{s} \xi_{4}\right)$ if p is odd and to

$$
\left(Q^{s} \xi_{3}\right)\left(Q^{s} \xi_{4}\right)+2^{r-s-1}\left(\pi Q^{s-1} \xi_{3}\right)\left(\pi^{s} \beta_{r} \xi_{3}\right)^{2^{s-1}}\left(\pi Q^{s-1} \xi_{4}\right)\left(\pi^{s} \beta_{r} \xi_{4}\right)^{s-1}
$$

if $p=2$ and $r \geq 3$.
(v) $\quad Q^{s}\left(\xi_{1} \xi_{3} \xi_{4}\right) \sim\left(\pi^{s} \xi_{1}\right)^{s}\left(Q^{s} \xi_{3}\right)\left(Q^{s} \xi_{4}\right)$ if p is odd.
(vi) If $1 \leq i \leq p-1$ then

$$
\begin{aligned}
& \beta_{r-s} Q^{s}\left(\xi_{1} \xi_{2}^{p-1}\right) \sim i\left(\beta_{r-s} Q^{s} \xi_{1}\right)\left(\pi^{s} \xi_{1}\right)^{s}(i-1) \\
&\left(\pi^{s} \xi_{2}\right)^{p}(p-i) \\
&-i\left(\pi^{s} \xi_{1}\right)^{i p^{s}}\left(\beta_{r-s} Q \xi_{2}\right)\left(\pi^{s} \xi_{2}\right)^{p^{s}(p-i-1)} \bmod p
\end{aligned}
$$

(vii) If $1 \leq i \leq p-1$ then $\left.\pi^{r+t-1} \beta_{r+t} R^{t} \mid\left(\beta_{r} \xi_{1}\right) \xi_{1}^{i-1} \xi_{2}^{p-i}\right)$ is equivalent to

$$
i\left(\pi^{r-1} \xi_{1}\right)^{(i-1) p^{t}}\left(\pi^{r-t-\beta_{\beta}}{ }_{r-t^{2}} Q_{1}\right)\left(\pi^{r-1} \xi_{2}\right){ }^{(p-1-1) p^{t}}\left(\pi^{r-t-1} \beta_{r-t^{Q}} \xi_{2}\right)
$$

if $t<r$ and to zero otherwise.
(viii) $\quad B Q^{\mathrm{r}} 2_{1} \xi_{1} \sim 0$.
(ix) If $s \leq t$ then $Q^{s} p^{t} \xi_{1}$ is equivalent mod p^{t-s+2} to

$$
p^{t-s+1}\left(\pi^{s-1} Q_{1}\right) p^{s-1}+c_{1} p^{t-s}\left(\pi_{\xi_{1}}\right)^{s}
$$

where

$$
c_{1}=\left\{\begin{array}{l}
1 \text { if } p \text { is odd or } s<t \\
-1 \text { if } p=2 \text { and } s=t
\end{array}\right.
$$

$Q^{s} p^{s-1} \xi_{1}$ is equivalent mod p to

$$
\left(\pi^{s-1} Q \xi_{1}\right)^{p^{s-1}}+c_{2}\left(\pi^{s} \xi_{1}\right)^{p^{s}}
$$

where

$$
c_{2}=\left\{\begin{array}{l}
0 \text { if } p \text { is odd } \\
1 \text { if } p=2
\end{array}\right.
$$

There remain expressions, such that $Q^{r} 2 \xi_{1}$, for which the Cartan formula is too complicated to give explicitly. Our next result will guarantee the existence of such formulas. Let $A=\left\{\xi_{1}, \ldots, \xi_{t}\right\}$. We say that an element of $D_{j} A$ is homogeneous if it is a sum of standard basis elements each of which involves every ξ_{1}. Note that such elements are in the kernel of $D_{j} f$ whenever $f: A \rightarrow A^{\prime} \cup\{0\}$ takes at least one ξ_{i} to 0 .

Proposition 9.5. Any expression E of height 1 in ξ_{1}, \ldots, ξ_{t} is equivalent to an expression in $D_{j} A$ for some j. If the ξ_{i} have height r and degree 0 then the expression $\pi^{r-s-1} Q^{s}\left(\xi_{1} \cdots \xi_{t}\right)$ is equivalent to a homogeneous expression in $D_{j} A$ for each $s<r$. If the ξ_{i} have height r and degree 1 then $\pi^{r+s-1} \beta_{r+s} R^{s}\left(\xi_{1}\left(\beta_{r} \xi_{2}\right) \cdots\left(\beta_{r} \xi_{t}\right)\right)$ is equivalent to a homogeneous expression in $D_{j} A$ for each $t \geq 0$.

The proof of 9.5 will be given at the end of this section. Unfortunately, there seems to be no direct algebraic proof that the Cartan formulas provided by 9.5 are unique, that is, that distinct elements of $D_{j} A$ cannot be equivalent as expressions. If we had uniqueness in this sense then Lemma 4.7 would be an immediate consequence of 9.5 . Instead we shall have to give a much more elaborate
construction of γ_{j} and γ_{j}^{\prime}, making use of the explicit formulas of 9.4 in order to avoid appealing to uniqueness. (A similar difficulty in ordinary homology is implicit in our proof of 2.7). On the other hand, it is easy to see from 4.1 and 9.3 that uniqueness does hold, but of course such an argument cannot be used in proving 4.7. However, we can and shall use umiqueness in filtrations less than k in the following inductive proof of 4.7 .

Proof of 4.7. We shall give the proof for $r<\infty$. The case $r=\infty$, which is similar and somewhat easier, requires some straightforward modifications in Definition 9.1 to allow for infinite heights; details are left to the reader.

First let $M=M_{r}$ with $r \geq 2$ (the $r=1$ case is similar and easier). We define a to be $\{Q x, 2 x\}$. Let u_{m} and v_{m} respectively denote $y^{m} z^{p-m}$ and $\left(B_{r^{\prime}} y\right) y^{m-1} p^{p-m}$ for $1 \leq m \leq p-1$ and define a^{\prime} to be

$$
\{Q y, Q z, 2 y, 2 z\} \cup\left\{u_{m} \mid 1 \leq m \leq p-1\right\} \cup\left\{v_{m} \mid 1 \leq m \leq p-1\right\}
$$

Lemma 4.3 implies that a and A^{\prime} are in fact subbases for $D_{p} M_{p}$ and $D_{p}\left(M_{r} \vee M_{p}\right)$. Note that $\left(D_{p} g_{1}\right)_{*}$ takes $Q y$ and $2 y$ to $Q x$ and $2 x$ and takes all other elements of a^{\prime} to zero. In particular $\left(D_{p} g_{1}\right)_{*}: a^{\prime} \rightarrow a_{u}\{0\}$ is a subbasic map and hence $F_{1}=D_{j}\left(D_{p} g_{1}\right)_{*}$. Similarly, $F_{2}=D_{j}\left(D_{p} g_{2}\right)_{*}$. On the other hand, $\left(D_{p} g_{0}\right)_{*}$ is not subbasic since it takes u_{m} to $\pi 2 \mathrm{x}$ and v_{m} to $\pi \beta_{\mathrm{r}+1} 2 \mathrm{x}$, hence F_{0} is not induced by functoriality from $\left(D_{p} g_{0}\right)_{*}$. It is determined by $\left(D_{p} g_{0}\right)$, however, in the following way. If

$$
E\left(Q y, Q z, 2 y, 2 z, u_{1}, \ldots, u_{p-1}, v_{1}, \ldots, v_{p-1}\right)
$$

is any expression in $D_{j} Q^{\prime}$ and E^{\prime} is an expression in $D_{j} a$ equivalent to

$$
E\left(Q x, Q x, 2 x, 2 x, \pi 2 x, \ldots, \pi 2 x, \pi \beta_{r+1} 2 x, \ldots, \pi \beta_{r+1} 2 x\right)
$$

then by 9.3 we have $\lambda_{j}\left(F_{0}(E)\right)=\lambda_{j}\left(E^{\prime}\right)$, hence $F_{0} E=E^{\prime}$.
Next we shall construct γ_{j} and γ_{j}^{\prime}. We assume inductively that γ_{ℓ} and γ_{ℓ}^{\prime} with the required properties have been constructed for all $\ell<j$. By using the values of γ_{ℓ} and γ_{ℓ}^{\prime} on indecomposables and extending multiplicatively, we can define γ_{j} and γ_{j}^{\prime} on the decomposables of $D_{j} a$ and $D_{j} a^{\prime}$ so that the diagram conmutes when restricted to decomposables. It remains to define y_{j} and Y_{j} on the standard indecomposables of $D_{j} a$ and $D_{j} a^{\prime}$. We may assume that $j=p^{5}$ for some since otherwise there are no indecomposables in filtration j.

Let ξ_{1}, \ldots, ξ_{p} be indeterminates with dimension zero, height r, and filtration 1. If $s<r$ we use 9.5 to choose a homogeneous expression E in $D_{K}\left\{\xi_{1}, \ldots, \xi_{p}\right\}$ equivalent to $\pi^{r-s-1} Q_{Q}\left(\xi_{1} \cdots \xi_{p}\right)$. If $s=r$, let E be an expression in $D_{k}\left(\xi_{1}, \ldots, \xi_{p}\right)$ equivalent to $Q^{2} 2 \xi_{1}$. We define subbasic maps

$$
f_{m}:\left\{\xi_{1}, \ldots, \xi_{p}\right\} \rightarrow A^{\prime} \cup\{0\}
$$

for $0 \leq m \leq p$ by

$$
f_{m}\left(\xi_{\ell}\right)= \begin{cases}y & \text { for } \ell<m \\ z & \text { for } \ell>m\end{cases}
$$

Finally, we define $h:\left\{\xi_{1}, \ldots, \xi_{p}\right\} \rightarrow A$ by $h\left(\xi_{\ell}\right)=x$ for all ℓ. Note that $\left(g_{0}\right) * f_{m}=h$ for all m.

We define γ_{j} and γ_{j} on indecomposables in table 1 . The first colum lists the standard indecomposables in $D_{j} A^{\prime}$, and the second column (we claim) gives the value of F_{0} on each. The first four entries in column 2 are precisely the standard indecomposables in $D_{j} a$, and the corresponding entries in colum 3 define γ_{j} on each. The remaining entries in column 3 then give the resulting values of γ_{j} on the other entries of column 2. Finally, column 4 defines γ_{j}^{\prime} on each entry in column 1. Note that we have denoted iterates of π in the table simply by π; the precise iterate intended can easily be determined since all entries in the table are to have height 1.

The values of F_{0} claimed in column 2 are either obviously correct or follow easily from 9.4 or the formulas of section 3. For example, in line 10 we have

$$
\pi^{r-s} \beta_{r-s+1} Q^{s} \pi 2 x \sim \pi^{r-s} \beta_{r-s+1} \pi^{s} 2 x \sim p^{r-s+1} \beta_{r-s+2} Q^{s} 2 x \sim 0
$$

and in line 12 we have

$$
\pi^{r+s-1} \beta_{r+s} R^{s} \pi \beta_{r+1} 2 x \sim \pi^{r+s-1} Q^{s} \beta_{r+2 s} p_{*}^{2 s} \pi \beta_{r+1} 2 x \sim 0 .
$$

Table 1
$\overline{\rho_{d}}$
$\pi^{8}(2 x)$
$\underline{r_{j} \circ F_{0}}$

${ }_{\pi \beta_{r-s-}-1^{q^{8+1}} x}$
$\begin{array}{ll}\pi Q^{s}(2 x) & \left(D_{k^{h}}\right)(E) \\ \pi B_{r-s+1} Q^{8}(2 x) & \text { same as 1ine 2 }\end{array}$
same as line 2
$\pi Q^{s+1} \mathbf{x}$
${ }^{\pi B_{r-s-1}} Q^{Q^{s+1}} x$
($D_{k} h$) (E)
0
$m\left(B_{r-s} Q^{S} y\right)(\pi y)^{(m-1) j(\pi z)^{(p-m) j}}$
$-m(\text { my })^{m j}\left(\beta_{r-s} Q^{s} z\right)(\pi z)^{(p-m-1) j}$

$\left.m(\pi y)^{(m-1) j}{ }_{(\pi z)}(p-m-1) j_{\left(\pi \beta_{r-s}\right.} Q^{s} y\right)\left(\pi B_{r-s} Q^{s} z\right)$

The listed generators occur only for certain values of s. In lines $1,2,5$ and 6 we require $s \leq r$; in 1 ines 9 , 10 , and $11, \mathrm{~s} \leq \mathrm{r}-1$; and in lines $3,4,7$ and $8, \mathrm{~s} \leq \mathrm{r}-2$.

To complete the proof of 4.7 for $M=M_{P}$ it remains to show that diagram (*) of section 4 commutes for $i=0,1,2$. In order to see that the inner square commutes it suffices, by Lemma 9.3, to show that the first four entries in columns 2 and 3 are equivalent as expressions in x. This is clear for lines 1,3 and 4 and for line 2 if $s=r$ (by $9.4(v i i i))$. If $s<r$ in line 2 we have

$$
\pi^{r-s} \beta_{r-s+1} Q^{s}(2 x) \sim \pi^{r-s-1} Q^{s} \pi \beta_{r+1} 2 x \sim \pi^{r-s-1} Q^{s}\left(x^{p-1} \beta_{r} x\right)
$$

which is equivalent to the required formula by 9.4 (iii).
To see that the outer square commutes, we must show that the entries in columns 1 and 4 are equivalent as expressions in y and z. The first eight cases follow as in the preceding paragraph. Line 9 follows from the definition of E, line 10 from 9.4(vi), line 11 from 9.4(iii), and line 12 from 9.4(vii).

For commutativity of the upper trapezoid when $i=1$, we must show that $D_{k}\left(g_{1}\right)_{*}$ takes the first four entries in column 4 to the corresponding entries in colum 3 (which is obvious) and takes the remaining entries in colum 4 to zero. This follows in line 9 from the fact that E is homogeneous (since $\left(g_{1}\right) * \circ f_{m}$ takes at least one ξ_{ℓ} to zero if $\left.l \leq m \leq p-1\right)$ and the remaining cases are clear. Similarly, we see that the upper trapezoid commutes when $i=2$. Finally, we observe that each entry of column 4 goes to the corresponding entry of column 3 under $D_{k}\left(g_{0}\right)$, and hence the upper trapezoid commutes when $i=0$. This completes the proof of 4.7 for $M=M_{r}$.

Next suppose $M=\Sigma M_{r}$. We define $a=\{R x\}$ when $r=1$ and $a=\{Q x, R x\}$ when $r \geq 2$. Let $u_{m}=y\left(\beta_{r} y\right)^{m-1}\left(\beta_{r} z\right)^{p-m}$ and $v_{m}=y\left(\beta_{r} y\right)^{m-1} z\left(\beta_{r}\right)^{p-m-1}$ for $1 \leq m \leq p-1$. We define

$$
a^{\prime}=\{\mathrm{By}, \operatorname{Rz}\} \cup\left\{u_{m} \mid 1 \leq m \leq p-1\right\} \cup\left\{v_{m} \mid 1 \leq m \leq p-1\right\}
$$

when $r=1$ and

$$
a^{\prime}=\{Q y, Q z, R y, R z\} \cup\left\{u_{m} \mid 1 \leq m \leq p-1\right\} \cup\left\{v_{m} \mid 1 \leq m \leq p-1\right\}
$$

when $r \geq 2$.
Then $\left(D_{p} g_{1}\right)_{*}$ and $\left(D_{p} g_{2}\right)_{*}$ induce subbasic maps from a^{\prime} to a and we therefore have $F_{i}=D_{j}\left(D_{p} g_{i}\right)_{*}$ if $i=1$ or 2 . The map $\left(D_{p} g_{0}\right)$ takes u_{m} to $-\pi R x$ when $r=1$ and to $p_{*} Q x-\pi R x$ when $r \geq 2$. it takes v_{m} to zero when p is odd. When $p=2,3.3(x)$ implies

$$
\left(D_{p} g_{0}\right)_{*} v_{m}= \begin{cases}Q \beta_{2} 2_{*} x & \text { uf } r=1 \\ 2^{r-2} B_{r} 2^{Q x} & \text { if } r \geq 2\end{cases}
$$

We begin with the case $r=1$. We define γ_{j} and γ_{j}^{\prime} on decomposables by inductive hypothesis as in the $M=M_{r}$ case. To define γ_{j} and γ_{j}^{\prime} on indecomposables
we use Table 2.

		Table 2		
		F_{0}	$r_{j} \circ F_{0}$	Y_{j}^{1}
1.	Q(Ry)	$Q(R x)$	0	0
2.	$\pi \beta_{S+2} 2^{\text {P }}(\mathrm{Ry})$	$\pi \beta_{s+2} \mathrm{R}^{s}(\mathrm{Rx})$	$\pi \beta_{S+2} \mathrm{R}^{S+1} \mathrm{X}$	$\pi \beta^{+}+2^{R^{s+1}} \mathrm{y}$
3.	$Q(R z)$	$Q(R x)$	0	0
4.	$\pi{ }^{3}+2^{R^{s}(R z)}$	$\pi \beta^{3}+2^{R^{s}}(\mathrm{RX})$	$\pi B_{S+} 2^{R^{S+1}} \mathrm{X}$	$\pi \beta_{S+} 2^{R^{S+1}}$
5.	$\pi \beta_{S+1} R^{s} u_{m}$	$\mathrm{F}_{0}\left(\pi \beta_{S+1} \mathrm{R}^{S u_{m}}\right)$	0	0

Here the first column lists the indecomposables of $D_{j} A^{\prime}$ and the second column (we claim) gives the value of F_{0} each (note that lines 1 and 3 are relevant only when s $=1$, i.e., when $k=p^{2}$). The first two entries in column 2 are the indecomposables of $D_{j} a$, and the corresponding entries in column 3 give our definition of γ_{j} on each, while the remaining entries in column 3 are claimed to be values of Y_{j} determined by the definition we have just given. The entries in column 4 define γ_{j}^{\prime} on indecomposables. The necessary verifications are similar to those in the case $M=M_{r}$, and they are straightforward except in line 5 . Here we must show that that $\gamma_{j} F_{0}\left(\pi^{s} \beta_{S+1} R^{s} u_{m}\right)$ is equal to zero and that $\pi^{s} \beta_{s+1} R^{s}\left(y(\beta y)^{m-1}(\beta z)^{p-m}\right)$ is equivalent to zero as an expression in y and z. For simplicity we assume that p is odd -- the case $p=2$ differs only slightly. First recall that to calculate $F_{0}\left(\pi^{s} \beta_{S+1} R^{S} u_{m}\right)$ we need only find an element of $D_{j} a$ which is equivalent to $-\pi \beta_{S+1} R^{s} \pi(R X)$ as an expression in the indeterminate $R x$. Now

$$
\begin{aligned}
-\pi^{s} \beta_{s+1} R^{s}{ }_{\pi}(R x) & \sim-\pi^{s} Q^{s} \beta_{2 s+1} p_{*}^{2 s} \pi(R x) \quad \text { by } 3.6(i v) \\
& \sim-Q^{s} p\left(\beta_{s+1} p_{*}^{s-1}(R x)\right) .
\end{aligned}
$$

We see by induction on t using (3.3(vi) and 3.3 (vii) that Q^{t} of a multiple of p is equivalent to a sum of terms each of which has either p or a p-th power as a factor. Hence $F_{0}\left(\pi^{s} B_{S+1} R^{S} u_{n}\right)$ is a sum of terms each of which has a p-th power factor, and the same is true for the element $\gamma_{j} F_{0}\left(\pi^{s} \beta_{s+1} R^{S} u_{m}\right)$ of $D_{k}\{x\}$. But by definition all p-th powers in $C\{x\}$ are zero when $r=1$, so that $\gamma_{j} F_{0}\left(\pi^{s} B_{s+1} R^{s} u_{m}\right)=0$ as required. The proof that $\pi^{s} \beta_{s+1} R^{s}\left(y(B y)^{m-1}(\beta z)^{p-m}\right)$ is equivalent to zero is similar. We have

$$
\begin{aligned}
\pi^{s} B_{s+1} R^{s}\left(y(B y)^{m-1}(B z)^{p-m}\right) & \sim \pi^{s} Q_{B_{2 s+1}} p_{*}^{2 s}\left(y(B y)^{m-1}(\beta z)^{p-m}\right) \\
& \sim Q^{s}\left(\left(\beta_{S+1} p_{*}^{s y}\right)^{m}\left(\beta_{S+1} p_{* z}^{s}\right)^{p-m}\right),
\end{aligned}
$$

and 3.3 (vi) and 3.3 (vii) show that Q^{t} of a product of elements of degree zero is equivalent to a sum of terms each of which has either por a p-th power as a factor. But again p-th powers in $C\{y, z\}$ are zero and we see that $\pi^{s} \beta_{s+1} R^{s}\left(y(\beta y)^{m-1}(\beta z)^{p-m}\right) \sim 0$ as required. This completes the proof of Lemma 4.7 for $M=\Sigma M_{1}$.

Next let $r \geq 2$. We can define γ_{j} and γ_{j}^{\prime} on decomposables precisely as before. In defining γ_{j} and γ_{j}^{\prime} on indecomposables when $r \geq 2$, it will be convenient to modify the standard basis we have been using as follows. Let n_{1} and n_{2} be indeterminates with dimension 1, filtration p and heights $\left\|\eta_{1}\right\|=r-1,\left\|n_{2}\right\|=r+1$. We use 9.5 to obtain an expression $E\left(n_{1}, n_{2}\right)$ in $D_{j}\left\{n_{1}, n_{2}\right\}$ equivalent to $\pi^{r+s-1} \beta_{r+s} R^{s}\left(p_{*} n_{1}-\pi n_{2}\right)$. We claim that the coefficient of $\pi^{r+s-2}{ }_{\beta}{ }_{r+s-1} R^{s} \eta_{1}$ in $E\left(n_{1}, n_{2}\right)$ is 1 . To see this, write $E\left(n_{1}, \eta_{2}\right)$ as $E_{1}+E_{2}$, where E_{1} involves only η_{1} and every standard basis element in E_{2} involves n_{2}. If $f:\left\{n_{1}, \eta_{2}\right\} \rightarrow\left\{n_{1}\right\} \cup\{0\}$ takes n_{1} to itsel \hat{H} and n_{2} to zero then $\left(D_{j} f\right)\left(E\left(\eta_{1}, \eta_{2}\right)\right)=E_{1}$. On the other hand,

$$
\left(D_{j} f\right)\left(E\left(\eta_{1}, n_{2}\right)\right) \sim E\left(\eta_{1}, 0\right) \sim \pi^{r+s-1} \beta_{r+s} R^{s} p_{*} \eta_{1} \sim \pi^{r+s-2} \beta_{r+s-1} R^{s} \eta_{1} .
$$

Since uniqueness holds (by inductive hypothesis) in filtration j we have

$$
E_{1}=\pi^{r+s-2} \beta_{r+s-1} R^{s^{s}} \eta_{1},
$$

proving the claim. We can therefore give new bases for the indecomposables of D_{j} and $D_{j} A^{\prime}$ when $r \geq 2$ by replacing $\pi^{r+s-2} \beta_{r+s-1} R^{s}(Q x), \pi^{r+s-2} \beta_{r+s-1} R^{s}(Q y)$ and $\pi^{r+s-2} \beta_{r+s-1} R^{s}(Q z)$ in the standard bases by $E(Q x, R x), E(Q y, R y)$ and $E(Q x, R z)$ respectively.

Next let ξ_{1}, \ldots, ξ_{p} be indeterminates with dimension 1 , height r and filtration 1. We use 9.5 to choose a homogeneous expression $E^{\prime}\left(\xi_{1}, \ldots, \xi_{p}\right)$ in $D_{k}\left\{\xi_{1}, \ldots, \xi_{p}\right\}$ equivalent to

$$
\pi_{r+s-1} \beta_{r+s} R^{s}\left(\xi_{1}\left(\beta_{r} \xi_{2}\right) \cdots\left(\beta_{r} \xi_{p}\right)\right)
$$

Finally, we define the subbasic maps f_{m} and h exactly as in the case $M=M_{r}$.
We can now define γ_{j} and γ_{j}^{\prime} on indecomposables by means of Table 3. The first colum lists the new basis for the indecomposables of $D_{j} a^{\prime}$. The second solumn (we claim) gives the values of F_{0} on each basis element.
$\left(-\left(\pi^{S} y\right)\left(\pi B_{r} y\right)(p-1) j\right.$ if $s<r$
$\left\{\begin{array}{l}-\left(\pi Q^{s} y\right)\left(\pi \beta_{r} y\right)^{(p-1) j} \text { if } s<r \\ 0 \text { if } s=r\end{array}\right.$

$\pi 3^{n+S+1}$
$R^{S+1} y$
$\pi Q^{s+1} Z_{z}$ ($\mathrm{D}_{\mathrm{k}} \mathrm{F}_{\mathrm{O}}$) (E)
 $\left\{\begin{array}{l}-\left(\pi Q^{s} z\right)\left(\pi \beta_{r}\right)^{(p-1) j} \text { if } s<r \\ 0 \text { if } s=r \\ \pi \beta_{r+s+1} R^{s+1} z\end{array}\right.$ ${ }^{\pi \beta_{r+s+1}} R^{s+1} z$ $\pi \beta^{3}+s+1^{R-1} z$
$\pi Q^{s+1} z$ $\pi \mathrm{Q} \mathrm{Z}_{2}$
$\left(D_{K^{\prime}} f_{0}\right)\left(E^{\prime}\right)$
$\left(\pi Q^{s} y\right)\left(\pi \beta_{r} y\right)^{(m-1) j}\left(\pi \beta_{r} z\right)^{(p-m) j}$ $\left(D_{K^{f}} m^{\prime}\right)\left(E^{\prime}\right)$
$\left\{\begin{array}{l}-\left(\pi Q^{s} x\right)\left(\pi B_{r} x\right)^{(p-1) j} \text { if } s<r \\ 0 \text { if } s=r\end{array}\right.$
 $\pi \beta^{2} r+\mathrm{S}^{+1} \mathrm{R}^{\mathrm{S}+1} \mathrm{x}$
$\pi \mathrm{Q}^{\mathrm{S}+1} \mathrm{x}$ $\left(D_{k} h\right)\left(E^{\prime}\right)$
$\left(\pi Q^{S} x\right)\left(\pi \beta_{r} x\right)^{(p-1) j}$ $\left(D_{k^{h}}\right)\left(E^{\prime}\right)$
$L+s^{z^{\left(x^{3} g i\right)}}$
$\left(\pi \beta_{r} x\right){ }^{s}$

\int_{0}^{x+1}
0

$\left(\pi \beta_{r} y\right)^{m j}\left(\pi Q_{z} z_{z}\left(\pi \beta_{r}\right)^{(p-m-1) j}\right.$
$-\left(\pi Q^{s} y\right)\left(\pi \beta_{r} y\right)^{(m-1) j}\left(\pi \beta_{r} z\right)^{(p-m) j}$ The elements listed in lines 3 and 7 occur only when $s \leq r-2$. In ines 9,11 , and 12 they occur only when $s \leq r-1$, and in lines
1 and 5 only when $s \leq r$.
$\frac{(\mathrm{XH})_{\mathrm{S}^{201}}^{\mathrm{O}^{1 / 2}}}{}$
$\pi Q^{s}(R x)$
$\pi \beta_{r}+S+1^{R^{5}(R x)}$
$\pi Q^{s}(Q x)$
$E(Q x, R x)$
$\pi Q^{s}(R x)$
$\pi \beta_{r+s+1} R^{s}(R x)$ $\pi Q^{s}(Q x)$ $E(Q x, R x)$

$$
\begin{aligned}
& -\pi Q^{S}(R x) \\
& E(Q x, R x)
\end{aligned}
$$

$\tau-\Omega=s{ }^{\prime} \tau=d I \xi_{s^{2}}\left(\left(x_{0}\right)^{\left.\tau-I_{d H}\right)}\right.$
$\begin{gathered}7 \\ 4 \\ 11 \\ 6 \\ 2 \\ 2 \\ 11 \\ 3 \\ 4\end{gathered}$

The first six entries in this colum are the new basis for the indecomposables of $D_{j} a$, and the first six entries in column 3 define γ_{j}, while the remaining entries in column 3 give the values of γ_{j} on the remaining entries in column 2. The entries in column 4 define γ_{j}^{\prime}. The verifications necessary to prove 4.7 in this case are again similar to those in the case $M=M_{r}$. The less obvious ones are the following. If $s<r$ we have

$$
\begin{aligned}
\pi^{r-s_{Q}} s_{R x} & \sim \pi^{r-s-1} Q^{s}{ }_{\pi R x} \sim \pi^{r-s-1} Q^{s+1} p_{*} x-\pi^{r-s-1} Q_{Q}\left(x\left(\beta_{r} x\right)^{p-1}\right) \\
& \sim-\left(\pi^{r-s-1} Q_{Q} s_{x}\right)\left(\pi^{r-1} \beta_{r} x\right)^{(p-1) j}
\end{aligned}
$$

in lines 1,5 and 9 by 9.4 (iii). (In particular we observe, as claimed in the proof of 8.4 (viii), that the relation 3.6 (viii) is not used in the present proof when $s=1$ and $r \geq 2$.) If $s=r$ we have

$$
Q^{S} R X \sim Q R Q^{s-1} x \sim 0
$$

in lines 1 and 5 by 3.6 (viii). In line 11 with $p=2$ we apply 9.4 (ix) to show

$$
\begin{aligned}
& F_{O}\left(\pi^{r-s-1} Q^{s} v_{m}\right) \sim \pi^{r-s-1} Q^{s}\left(2^{r-2} \beta_{r}{ }^{2} Q x\right) \\
& 0 \text { if } s<r-2 \\
& \sim\left(\pi^{r-1} \beta_{r} 2^{Q X}\right)^{2^{r-2}} \text { if } s=r-2 \\
& \left(\pi^{r-2} Q B_{r}{ }^{2} Q x\right)^{2^{r-2}}+\left(\pi^{r-1} B_{r}{ }^{2} *^{Q x}\right)^{2^{r-2}} \text { if } s=r-1
\end{aligned}
$$

and the claimed values of F_{0} follow from $3.1(i i), 3.5$ and $3.6(i i i)$ and (iv). This concludes the proof of 4.7 .

Proof of 9.4. Let \approx denote mod p equivalence. Parts (i), (ii), (iii), and (iv) follow easily by induction from $3.3(v)$ and 3.3 (vii). For part (v) we have

$$
Q^{s}\left(\left(\xi_{1} \xi_{2}\right) \xi_{4}\right) \approx Q^{s}\left(\xi_{1} \xi_{3}\right) Q^{s}\left(\xi_{4}\right) \approx\left(\pi^{s} \xi_{1}\right)^{P^{s}}\left(Q^{s} \xi_{3}\right)\left(Q^{s} \xi_{4}\right)
$$

by (iii) and (iv). For part (vi) we have

$$
\begin{aligned}
& \beta_{r-s} Q^{s}\left(\xi_{1}^{i} \xi_{2}^{p-i}\right) \approx Q^{s} \beta_{r}\left(\xi_{1}^{i} \xi_{2}^{p-i}\right) \\
& \approx Q^{s}\left[i\left(\beta_{r} \xi_{1}\right) \xi_{1}^{i-1} \xi_{2}^{p-i}=(p-i) \xi_{1}^{i}\left(\beta_{r} \xi_{2}\right)^{p-i-1}\right] \\
& \approx i Q^{s}\left[\left(\beta_{r} \xi_{1}\right) \xi_{1}^{i-1}{ }_{\xi_{2} p-i}^{p-i Q^{s}\left[\xi_{1}^{i}\left(\beta_{r} \xi_{2}\right) \xi_{2}^{p-i-1}\right]}\right. \\
& \approx i\left(Q^{s} \beta_{r} \xi_{1}\right)\left(\pi^{s} \xi_{1}\right)(i-1) p_{\left(\pi^{s} \xi_{2}\right)}(p-i) p^{s} \\
&-i\left(\pi^{s} \xi_{1}\right)^{p^{s}}\left(Q^{s} \beta_{r} \xi_{2}\right)\left(\pi^{s} \xi_{2}\right)(p-i-1) p^{s}
\end{aligned}
$$

and the result follows by part (i).
(vii) First we claim

$$
\begin{equation*}
Q^{T_{\beta} \beta_{r+1}} p_{*} \xi_{1} \sim 0 . \tag{*}
\end{equation*}
$$

This is true when $r=1$ by 3.3 (iv) and $3.3(v)$. If $r \geq 2$ we have

$$
\begin{aligned}
Q^{r} \beta_{r+1} p_{*} \xi_{1} & \sim Q^{r-1} B_{r} Q p_{*} \xi_{1} \\
& \sim Q^{r-1} B_{r}\left[p_{*} Q \xi 1-\left(p^{p-1}-1\right) \xi_{1}^{P}\right) \\
& \sim Q^{r-1} \beta_{r} p_{*} Q \xi 1
\end{aligned}
$$

and the claim follows by induction on r.
Now we have

$$
\begin{aligned}
& \pi^{r+t-1} \beta_{r+1} R^{t}\left[\left(\beta_{r} \xi_{1}\right) \xi_{1}^{i-1} \xi_{2}^{p-i}\right] \sim \pi^{r+t-1} Q_{Q}^{t} \beta_{r+2 t} p_{*}^{2 t}\left[\left(\beta_{r} \xi_{1}\right) \xi_{1}^{i-1} \xi_{2}^{p-i}\right] \\
& \sim \pi^{r+t-1} Q^{t} \beta_{r+2 t}\left[\left(\beta_{r+2 t} p_{*}^{2 t} \xi_{1}\right) p_{*}^{2 t}\left(\xi_{1}^{i-1} \xi_{2}^{p-i}\right)\right] \\
& \sim-\left(\pi^{r+t-1} Q_{Q}^{\left.\left.t_{B_{r+2}} p_{*}^{2 t} \xi_{1}\right)!\pi^{r+t-1} Q^{t} \beta_{r+2 t} p_{*}^{2 t}\left(\xi_{1}^{i-1} \xi_{2}^{p-i}\right)\right]}\right.
\end{aligned}
$$

If $t \geq r$ then

$$
\pi^{r+t-1} Q_{B_{r+2 t}} p_{*}^{2 t} \xi_{1} \sim Q^{t} \beta_{t+1} p_{*}\left(p_{*}^{t-r_{\xi_{1}}}\right)
$$

which is equivalent to 0 by (*). Otherwise we have

$$
\begin{aligned}
&\left(\pi^{r+t-1} Q_{Q}^{t} \beta_{r+2 t} p_{*}^{2 t} \xi_{1}\right)\left(\pi^{r+t-1} Q_{Q}^{t} \beta_{r+2 t} p_{*}^{2 t}\left(\xi_{1}^{i} \xi_{2}^{p-i}\right)\right] \\
& \sim\left(\pi^{r-t-1} Q_{Q}^{t} \beta_{r} \xi_{1}\right)\left(\pi^{r-t-1} Q_{Q}^{t} \beta_{r}\left(\xi_{1}^{i} \xi_{2}^{p-i}\right)\right]
\end{aligned}
$$

and the result follows from part (iii).
For (viii), we have

$$
\begin{aligned}
\beta Q^{r} 2 \xi_{1} & \sim Q^{r-1} \beta Q 2 \xi_{1} \\
& \sim\left\{\begin{array}{l}
\frac{1}{p}\binom{p}{i}\left(\pi^{r-1} x\right)\left(p^{2}-p\right)(r-1)_{Q} r-1_{B_{r}} p_{*} Q x \quad \text { if } r \geq 2 \\
0 \quad \text { if } r=1,
\end{array}\right.
\end{aligned}
$$

but the expression for $\mathbf{r} \geq 2$ is also equivalent to zero by (*).
Finally, part (ix) follows from $3.3(v i)$ by induction on s.

It remains to prove 9.5. In order to keep track of when an element of $D_{j}\left\{\xi_{1}, \ldots, \xi_{t}\right\}$ is homogeneous, we make the following definition. Let S be a fixed set and suppose that we have assigned to each ξ_{i} a subset $h\left(\xi_{i}\right)$ of S called the homogeneity of ξ_{i}. Then we define the homogeneity of an arbitrary expression in ξ_{1}, \ldots, ξ_{t} by requiring that $O_{\alpha, r, j}$ have homogeneity S, that $p_{*}, \beta_{r}, \pi, Q, 2$ and R commute with h and that $h\left(E+E^{\prime}\right)=h(E) \cap h\left(E^{\prime}\right)$ and $h\left(E \cdot E^{\prime}\right)=h(E) \cup h\left(E^{\prime}\right)$. We say that an expression $E\left(\xi_{1}, \ldots, \xi_{t}\right)$ of height 1 is reducible with respect to h if there is an $E^{\prime} D_{j}\left\{\xi_{1}, \ldots, \xi_{t}\right\}$ with $E^{\prime} \sim E$ and $h\left(E^{\prime}\right) \rho h(E)$.

Proposition 9.6. If S is any set and $h\left(\xi_{1}\right), \ldots, h\left(\xi_{t}\right)$ are any subsets of S then every expression of height 1 in ξ_{1}, \ldots, ξ_{t} is reducible with respect to h.

If $S=\left\{\xi_{1}, \ldots, \xi_{\tau}\right\}$ and $h\left(\xi_{i}\right)=\left\{\xi_{i}\right\}$ for $1 \leq i \leq t$ then the expressions listed in 9.5 have homogeneity S, while an expression in $D_{j}\left\{\xi_{1}, \ldots, \xi_{t}\right\}$ has homogeneity S if and only if it is homogeneous. Thus 9.5 follows from this case of 9.6 . The extra generality allowed for S and h is technically useful in proving 9.6 .

In the remainder of this section we prove 9.6. We fix a set S and assume from now on that any indeterminates mentioned have been assigned homogeneities contained in S as well as dimensions, heights and filtrations. It will be convenient to let ξ, n and θ denote indeterminates and to let E, F, G and H denote expressions. We say that two expressions (possibly involving different sets of indeterminates) match if they have the same dimension, height, filtration and homogeneity. We shall frequently use the fact that a sum or product of reducible expressions is reducible and that homogeneity is preserved by substitution, i.e., if F is any expression in η_{1}, \ldots, n_{s} and E_{1}, \ldots, E_{s} matching n_{1}, \ldots, n_{s} respectively then $h\left(F\left(E_{1}, \ldots, E_{s}\right)\right)=h(F)$. Note, however, that equivalent expressions generally have different homogeneities; for example, $p \xi$ is equivalent to 0 if $\|\xi\|=1$ but $h(\xi)$ is not necessarly equal to S.

For our next two results we fix a set $\left\{\eta_{1}, \ldots, \eta_{s}, \eta_{1}^{\prime}, \ldots, \eta_{s}^{\prime}, n_{1}^{\prime \prime}, \ldots, n_{s}^{\prime \prime}\right\}$ of indeterminates such that each n_{i}^{\prime} matches $Q n_{i}$ and each $n_{i}^{\prime \prime}$ matches $R n_{i}$. Here and elsewhere we shall interpret $Q n_{i}$ as $O_{1,1,1}$ if $\left\|n_{i}\right\|=1$ and $R n_{i}$ as $O_{1,1,1}$ if $\left|n_{i}\right|=0$. We say that an expression is elementary if it does not involve Q or R.

Lemma 9.7. Let G be an elementary expression of length 2 in n_{1}, \ldots, n_{s} and let θ match G.
(i) If F is $\pi^{\|\theta\|-1} \theta$ or $\pi^{\|\theta\|-1} \beta_{\|\theta\|} \|^{\theta}$ then there is an elementary expression $G^{\prime} \quad D_{v G}\left\{\eta_{1}, \ldots, \eta_{s}\right\}$ with $G^{\prime} \sim F(G)$ and $h G^{\prime} \supset h F$.
(ii) If $F=Q \theta$ or $F=R \theta$ then there is an elementary expression $G^{\prime}\left(n_{1}, \ldots, n_{s}, n_{1}^{\prime}, \ldots, n_{s}^{\prime}, n_{1}^{\prime \prime}, \ldots, n_{s}^{n}\right)$ with $h G^{\prime} 2 h F$ and

$$
F(G) \sim G^{\prime}\left(n_{1}, \ldots, n_{s}, Q n_{1}, \ldots, Q n_{s}, R n_{1}, \ldots, R n_{s}\right) .
$$

Proof. The possibilities for G are $\pi n_{i}, p_{*} \eta_{i}, \beta_{r} \eta_{i}, \eta_{i}+\eta_{j}, \eta_{i} \eta_{j}$ and η_{i}. The result can be checked in each case from the formulas of section 3 .

Next we define the complexity $c(E)$ of a standard indecomposable E in $D_{j}\left\{\eta_{1}, \ldots, \eta_{s}\right\}$ to be the total number of $Q^{\prime} s$ and R 's that appear in it. We define $c(E)$ for an arbitrary expression E in $D_{j}\left\{\eta_{1}, \ldots, \eta_{s}\right\}$ to be the maximum of the complexities of the indecomposables that appear as factors in the terms of E.

Lemma 9.8. Let $H \in D_{j}\left[n_{1}, \ldots, n_{s}, n_{1}^{1}, \ldots, n_{s}^{\prime}, n_{1}^{\prime \prime}, \ldots, n_{s}^{\prime \prime}\right\}$. Then there is an $H^{\prime} \in D_{j}\left(\eta_{1}, \ldots, \eta_{s}\right)$ such that $h\left(H^{\prime}\right) \supset h(H), c\left(H^{\prime}\right) \leq c(H)+1$ and H^{\prime} is equivalent to

$$
H\left(n_{1}, \ldots, n_{s}, Q n_{1}, \ldots, Q n_{s}, \mathrm{Rn}_{1}, \ldots, R n_{s}\right)
$$

In particular, the latter expression is reducible.
Proof. We may assume that H is a standard indecomposable and hence that it involves only one of the indeterminates. If it involves one of the n_{i} the result is trivial. Otherwise H has one of the forms
 $\pi^{\left\|\eta_{i}\right\|+t}{ }^{\beta}\left\|n_{i}\right\|+t+1$ R $\eta_{i} \eta_{i}$. In each case the result follows either trivially or from the formulas of section 3 .

Lemma 9.9. Let E_{1}, \ldots, E_{r} be elementary expressions in ξ_{1}, \ldots, ξ_{t} and let $\theta_{1}, \ldots, \theta_{r}$ match E_{1}, \ldots, E_{r} respectively. Let $F \in D_{j}\left\{\theta_{1}, \ldots, \theta_{r}\right\}$. Then there is an $H \in D_{j}\left\{\xi_{1}, \ldots, \xi_{t}\right\}$ such that $\left.c(H) \leq c(F), h(H) \quad\right) h(F)$ and $H \sim F\left(E_{1}, \ldots, E_{r}\right)$. In particular, $F\left(E_{1}, \ldots, E_{T}\right)$ is reducible.

Proof. Let ℓ be the maximum of the lengths of the E_{i}. If $\ell=1$ the result is trivial. We shall prove the result in general by induction on $c(F)$ with a subsidiary induction on 2 . We may assume that F is a standard indecomposable, and hence that it involves only one of the θ_{i}, say θ_{1}. Now by Definition $9.1, E_{1}$ can be written in the form $G\left(E_{11}, E_{12}\right)$, where $E_{11}\left(\xi_{1}, \ldots, \xi_{t}\right)$ and $E_{12}\left(\xi_{1}, \ldots, \xi_{t}\right)$ are elementary with lengths less than ℓ and $G\left(n_{1}, n_{2}\right)$ is elementary with length 2. If $c(F)=0$ then F has the form $\pi_{1}^{\left\|\theta_{1}\right\|-1} \theta_{1}$ or $\pi_{1}^{\left\|\theta_{1}\right\|-1} \beta_{\left\|\theta_{1}\right\|-1} \theta_{1}$ and the result follows by $9.7(i)$ and the subsidiary inductive hypothesis. Otherwise F has the form
$F^{\prime}\left(F^{\prime \prime}\right)$, where $F^{\prime \prime}=Q \theta_{1}$ or $R \theta_{1}$ and $c\left(F^{\prime}\right)=c(F)-1$. Thus
$F\left(E_{1}\right)=F^{\prime}\left(F^{\prime \prime}\left(G\left(E_{11}, E_{12}\right)\right)\right.$. If $\eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{1}^{\prime \prime}, n_{2}^{\prime \prime}$ are as in 9.7 then by $9.7(i i)$ there is an elementary expression $G^{\prime}\left(\eta_{1}, \eta_{2}, \eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{1}^{\prime \prime}, \eta_{2}^{\prime \prime}\right)$ such that $h\left(G^{\prime}\right) h\left(F^{\prime \prime}\right)$ and $\mathrm{G}^{\prime}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, Q{n_{1}}_{1}, Q n_{2}, R n_{1}, R n_{2}\right) \sim \mathrm{Fn}^{\prime \prime}\left(\mathrm{G}_{1}\left(n_{1}, n_{2}\right)\right)$. Thus

$$
F\left(G\left(n_{1}, n_{2}\right)\right) \sim F^{\prime}\left(G^{\prime}\left(n_{1}, n_{2}, Q n_{1}, Q n_{2}, R n_{1}, R n_{2}\right)\right)
$$

Now since $c\left(F^{\prime}\right)<c(F)$ the inductive hypothesis gives an expression $H \in D_{j}\left\{n_{1}, n_{2}, n_{1}^{\prime}, n_{2}^{\prime}, \eta_{1}^{\prime \prime}, \eta_{2}^{\prime \prime}\right\}$ with $c(H) \leq c\left(F^{\prime}\right)<c(F), h(H) \supset f\left(F^{\prime}\right) \supset h(F)$, and

$$
H \sim F^{\prime}\left(G^{\prime}\left(n_{1}, n_{2}, \eta_{1}^{\prime}, n_{2}^{\prime}, \eta_{1}^{\prime \prime}, \eta_{2}^{\prime \prime}\right)\right)
$$

So that

$$
F\left(G\left(n_{1}, n_{2}\right)\right) \sim H\left(n_{1}, n_{2}, Q n_{1}, Q n_{2}, R n_{1}, R n_{2}\right) .
$$

Now by Lemma 9.8 there is an expression $H^{\prime} \in D_{j}\left\{n_{1}, n_{2}\right\}$ such that $c\left(H^{\prime}\right) \leq c(H)+1 \leq c(F)$ and $h\left(H^{\prime}\right) \geqslant h(H) \quad h(F)$ with $H^{\prime} \sim F\left(G\left(n_{1}, n_{2}\right)\right.$. Hence $F\left(E_{1}\right)$ $\sim H^{\prime}\left(E_{11}, E_{12}\right)$. Since E_{11} and E_{12} both have lengths less than ℓ, the result now follows by the subsidiary inductive hypothesis.

Finally, we complete the proof of 9.6 . Let $G\left(\xi_{1}, \ldots, \xi_{t}\right)$ be any expression of height 1. The proof is by induction on the length of G, which we may assume is \geq 2. It is easy to see from definition 9.1 (by another induction on the length of G) that G can be written in the form $G^{\prime}\left(\xi_{1}, \ldots, \xi_{t}, E\right)$, where $G^{\prime}\left(\xi_{1}, \ldots, \xi_{t}, n\right)$ has length less than ℓ and E has length 2. Then G^{\prime} has height l and $h\left(G^{\prime}\right)=h(G)$. By inductive hypothesis we may assume $G^{\prime} \in D_{V G}\left\{\xi_{1}, \ldots, \xi_{t}, n\right\}$. If E is elementary the result now follows by 9.9 , while if E is Qn or Rn the result follows by 9.8. This concludes the proof.

[^0]: * It was asserted in the original version of this work ([76, Theorem 51) that certain composites of Q and R gave indecomposable generators in $K_{*}\left(Q X ; Z_{p}\right)$. Doug Ravenel has since pointed out to the author that this is incorrect: his argument is given in Remark (i1) following Theorem 3.6 below. The corrected versions of 176 , Theorems 5 and 6] are also given in Section 3. (The mistake in the original version was in the proof of Lenma 4.7 for $M=\Sigma M_{r}$, where it was asserted that the $r>1$ and $r=1$ cases are similar. They are not.)

