
CHAPTER IX 

THE MOD p K-THEORY OF QX 

by J .  E. McClure 

In this chapter we use the theory of H ring spectra to construct and analyze 

Dyer-Lashof operations in the complex K-theory of infinite loop spaces analogous to 

the usual Dyer-Lashof operations in ordinary homology. As an application we compute 

K,(QX;Zp) in terms of the K-theory Bockstein spectral sequence of X. 

Dyer-Lashof operations in K-theory were first considered by Hodgkin, whose 

calculation of K,(QsO;Zp) [41] led him to conjecture the existence of a single 

operation analogous to the sequence of operations in ordinary homology. He con- 

structed such an operation, denoted by Q, for odd primes [42]; a similar construc- 

tion for p = 2 was given independently by Snaith, who later refined Hodgkin's 

construction for odd primes and analyzed the properties of Q. The construction of 

Hodgkin and Snaith was based on the E ~ term of a certain spectral sequence (namely 

the spectral sequence of 1.2.4) and therefore had indeterminacy, and Hodgkin showed 

that in fact any useful operation in the mod p K-homology of infinite loop spaces 

must have indeterminacy. He also observed that the Dyer-Lashof method for calcu- 

lating H,(QX;Zp) by use of the Serre spectral sequence completely failed to 

generalize to K-theory. The indeterminacy was a considerable inconvenience, but the 

operation was still found to have applications, notably in the calculation of 

K,(QRpn;z2 ) given by Miller and Snaith [84]. This result, which was proved by using 

the Eilenberg-Moore spectral sequence starting from Hodgkin's calculation of 

K,(QS0;Zp), was the first indication that K,(QX;Zp) might be tractable in the 

presence of torsion in X. The main technical difficulty in the proof was in 

determining exactly how many times Q could be iterated on a given element, since Q 

could be defined only on the kernel of the Bockstein 6. (Incidentally, a joint 

paper of Snaith and the present author showed that the odd-primary construction of Q 

contained an error and that in this case as well Q could only be defined on the 

kernel of 8.) The answer for RP n was that Q could be iterated on an element exactly 

as many times as the element survived in the Bockstein spectral sequence. 

Unfortunately, the methods used in this case did not extend to spaces more 

complicated than RP n. 

In view of these facts, it is rather surprising that there is in fact a theory 

of primary Dyer-Lashof operations in K-theory for which practically every statement 

about ordinary Dyer-Lashof operations, including the calculation of H,(QX;Zp), has a 

precise analog. We shall remove the indeterminacy of Q by constructing it as an 

operation from mod p2 to mod p K-theory, and more generally from mod pr+l to mod pr 

K-theory. It follows that Q can be iterated on any element precisely as often as 
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the element survives in the Bockstein spectral sequence. There are also operations 

~and R taking mod pr to mod pr+l K-theory in even and odd dimensions respectively 

( ~ is the K-theory analog of the Pontrjagin p-th power [~7, 28], while R has no 

analog in ordinary homology). These will play a key role in determining the proper- 

ties of the Q-operation and in our calculation of K.(QX;Zp). They also give 

indecomposable generators in the K-theory Bockstein spectral sequence for QX. I The 

operations Q,~ and R form a complete set of Dyer-Lashof operations in the sense 

that they exhaust the possibilities in a certain universal case; see Section 8. The 

key to defining primary operations in higher torsion is the machinery of stable 

extended powers, which gives a very satisfactory replacement for the chain-level 

machinery in ordinary homology; more precisely, it allows questions about the 

operations to be reduced to a universal case in the same way that chain-level 

arguments allow reduction to BZp. In applying this machinery to K-theory we make 

essential use of the fact that periodic K-theory is an H ring spectrum, as shown in 

VII §7 and VIII ~4, and the fact that the Adams operations are p-local H maps as 

shown in VIII §7. 

This chapter is largely self-contained, and in particular it does not depend 

logically on the earlier work of Hodgkin, Snaith, Miller and the author. The 

organization is as follows. In section 1 we give a very general definition of Dyer- 

Lashof operations in E-homology for an H ring spectrum E. When E is HZp we recover 

the ordinary Dyer-Lashof operations. In section 2 we use some of the properties 

developed in section 1 to give a new way of computing H,(QX;Zp) for connected X 

without use of the Serre spectral sequence, the Kudo transgression theorem, or even 

the equivalence 2QZX = 03(; instead the basic ingredients are the approximation 

theorem and the transfer. In section 3 we give the properties of Q, ~and R and the 

statement of our calculation of K.(QX;Zp)~ up to isomorphism the result depends only 

on the K-theory Bockstein spectral sequence of X, but for functoriality we need a 

more precise description. Section 4 contains the calculation of K.(QX;Zp), which is 

modeled on that in section 2. Sections ~ through 8 give the construction and 

properties of Q,~, and R. In section 5 we lay the groundwork by giving very 

precise descriptions of the groups K,(D~Sn;Zr ). Section 6 gives enough information 

about Q to calculate K.(DpX;Zp), a result needed in section 4. The argument differs 

from that in [77] in three ways: it is shorter (but less elementary), it gives a 

more precise result, and it applies to the case p = 2. Sections 7 and 8 complete 

Xlt was asserted in the original version of this work ([76, Theorem ~]) that certain 
composites of Q and R gave indecomposable generators in K,(QX;Z). Doug Ravenel has 
since pointed out to the author that this is incorrect: his ar~ment is given in 
Remark (ii) following Theorem 3.6 below. The corrected versions of [76, Theorems 
and 6] are also given in Section 3- (The mistake in the original version was in the 
proof of Len~na 4.7 for M = ZMr, where it was asserted that the r > I and r = i cases 
are similar. They are not.) 
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the construction of Q,~, and R. In section 9 we prove a purely algebraic fact 

needed in section 4; this fact is considerably more difficult than its analog in 

homology because of the nonadditivity of the operations. 

I would like to thank Vic Snaith for introducing me to this subject and for the 

many insights I have gotten from his book and his papers with Haynes Miller. I 

would also like to thank Doug Ravenel for pointing out the mistake mentioned above. 

I owe Gaunce Lewis many commutative diagrams, as well as the first version of 

Definition 1.7. Finally, I would like to thank Peter May for encouragement and for 

his careful reading of the manuscript. 

i. Generalized Homolo~ Operations 

Let E be a fixed H ring spectrum. In this section we shall construct 

generalized Dyer-Lashof operations in the E-homology of H ring spectra X. When E 

is HZp these are (up to reindexing) the ordinary Dyer-Lashof operations defined by 

Steinberger in chapter III, and for E = S they are Bruner's homotopy operations. 

When E is the spectrum K representing integral K-theory we obtain the operations 

referred to in the introduction which will be studied in detail in sections 3-9. 

For simplicity, we shall begin by defining operations in E,X, although 

ultimately (for the application to K-theory) we must introduce torsion coefficients. 

Fix a prime p. For each n ~ Z the operations defined on EnX will be indexed by 

E,(DpSn), i.e., for each e ~Em(DpS n) we shall define a natural operation 

%:EnX * ~X 

in the E-homology of H ring spectra called the internal Dyer-Lashof operation 

determined by e. As usual, Qe will be the composite of the structural map 

with an external operation 

( ¢ p l ,  - EmDpX + ~ X 

which is defined for arbitrary spectra X and is natural for arbitrary maps X + Y. 

Throughout this chapter we shall use the same symbol for corresponding internal and 

external Dyer-Lashof operations, with the context indicating which is intended. In 

this section we shall be concerned only with the external operations, and thus X and 

Y will always denote arbitrary spectra. 

In order to motivate the definition of the external operation Qe we give it in 

stages. Fix m,n ~ Z and e ~ EmDDSn. Let u E E0S denote the unit element. We define 

Qe first on the element 7nu ~Ensn by Qe(Znul = e. If x ~EnX happens to be 
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spherical, then there is a map g:S n + X with g,(znu) = x, and naturality requires 

us to define Qe x = (Dpg),e. Now any element x ~EnX is represented by a map 

f:S n ÷ Eax, and to complete the definition of Qe it suffices to give an analog for 

general x of the homomorphism (Dpg), which exists when x is spherical. It is useful 

to do this in a somewhat more general context, so let Y be any spectrum and let 

f:Y + E^ X be any map. First we define f** to be the composite 

(I ̂  f), (¢ ^ I), 
E,Y = ~,(E^Y) --~,(EAE^X) --~,(E^X) = E,X, 

where ¢ is the product on E. Note that f**Enu = x if f:S n + E^ X represents x. 

Next define -Dr for any ~ c Zj to be the composite 

Df 
D Y ~ ~'D (E^X) 6~'D E^D X ~^!~EAD X, 

II ~ 7T ~ W 

where ~ comes from the H 

map 

structure of E. Combining these definitions we obtain a 

(<f)**:E,D Y ~E,D X . 

Definition i.i. If x 

EmDpSn then 

EnX is represented by f:S n + E^ X and e is an element of 

Qe x = (%f)**(e) ~E D X. mp 

Of course, this agrees with the definition given earlier when x is spherical, 

and in particular when E = S we recover the external version of Bruner's operation. 

Next let E = HZp. The standard external operation (as defined by Steinberger) is 

denoted ei®xP , where e i is the generator of Hi(Ep;Zp(n)) defined in [68,section l] 

(recall that Zp(n) is Zp with Ep acting trivially if n is even and via the sign 

representation if n is odd). Now it is easy to see that the map 

¢:Hi(Zp;Zp(n)) ~ Hi+2pn(DpSn;Z p) 

given by e i ~-~ei® (Enu) p is an isomorphism, and we have 

Proposition 1.2. If e = ¢(e i) then Qe x = ei®xP for all x. 

The proof of 1.2 will be given later in this section. 

It is possible to put Definition 1.1 in a more categorical context. Let ~E be 

the category in which objects are spectra and the morphisms from X to Y are the 

stable maps from X to EAY. The composite in ~E of f:X + E ^Y and g:Y + E^Z is 

the following composite of stable maps 
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X f~E^Y I^KE^E ^Z ~ ̂ ~E^Z . 

The construction D~ on morphisms, combined with D on objects, gives a functor 

and we can also define a smash product ~on E by letting fl A f2 be 

the composite 

x I ̂  x 2 q^ f<-E^ x I ̂ E^ X~ = E^ E ~X l ̂  X 2 - E ̂ X I ̂ X 2 . 

Finally, E homology is a functor on ~E which takes f to f**, and the following 

lemma shows that both Qe and the external product in E-homology are natural 

transformations. 

Lemma 1.3. (i) (%f)**Qe y = Qef**y for any y ~ E,Y and any f:Y + E^X. 

(ii) (fl**Yl) ® (f2**Y2) = (fl ~ fl)**(YI®Y2 )" 

As one would expect, the maps i,~,8 and 8 of I§I also give natural 

transformations. 

Lemma 1.4. (i) 1,(~f)** = (~f)**1, if ~cp. 

(ii) ~,(~f ^ Dpf)** = (~ x pf)**a* " 

(iii) ~,(DAD-/)** : I\,pfl**~, 

(iv) 6,(~(f I X f2)), , = (~fl ~D--~T2)**6*" 

We shall need two further transformations, namely the "diagonal" A:ZDX ÷ D~ZX 

and the transfer T:DpX + D X. The first of these was constructed in II~3. The 

transfer was defined in II§l for certain special cases, and will be defined in IV§3 

of the sequel whenever w C P- 

Lemma 1.5. (i) (~zf)**A, : A,(Z~f)**. 

(ii) T,(~f)** : (~f)**T, • 

The proofs of 1.3, 1.4 and 1.5 are routine diagram chases (using [Equi.,VI.3.9} 

for 1.4(ii) and (iii) and [Equi.,IV.§3] for 1.5(ii)). 

Next we would like to define Dyer-Lashof operations in E-homology with torsion 

coefficients. We shall always abbreviate E,(X;Z r ) by E,(X;r). If M r denotes the 

Moore spectrum s-l%r S O and E r denotes E ̂ zM r ~hen by definition we have ~(X;r) = 

~n(Er^X). Thus if E r is an H ring spectrum (for example, if E is ordinary 

integral homology) we can apply Definition I.i directly to E r. However, it is a 
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melancholy fact that in general E r is not an H ring spectrum, as shown by the 

following, which will be proved at the end of section 7. 

Proposition 1.6. K r is not an H ring spectrum for any r. 

Thus we must generalize I.I. First of all, if f:Y + E^X is any map we define 

f** to be the composite 

(i ~ f), 
E,(Y;r) = w,(E r^Y) ~,(E r^E^X) ~,(E r^X) = E,(X;r). 

Next observe that the Spanier-Whitehead dual of zM r is Mr, so that there is a 

natural isomorphism 

En(X;r) ~ [ZnMr,E^X]. 

In particular, any x ~ En(X;r) is represented by a map f:znM r 

results a homomorphism 

(Dpf)**:E,(Dp~nMr;s) + E~(DpX;S) 

÷ E^X and there 

for any s ~ i. Note that f**znu r = x, where u r is the composite 

M r = S^Mr u ^IpEAMr. We shall call u r the fundamental class of M r . 

Definition 1.7. Let e ~ Em(Dp2nMr;S). Then 

Qe:En(X;r) + Em(DpX;S) 

is defined by Qe x = (~pf)**(e), where f:znMr + E^X is a map representing x. 

Lemmas 1.3, 1.4, and 1.5 remain valid in this generality. 

When E is integral homology and r = s = I Definition 1.7 provides another way 

of constructing ordinary Dyer-Lashof operations, which are of course the same as 

those given by Definition I.i. However, even in this case 1.7 has certain technical 

advantages; for example, it gives the relation between the Bockstein and the Dyer- 

Lashof operations t and by allowing r and s to be greater than I one obtains the 

Pontryagin p-th powers. 

We conclude with the proof of 1.2. We write E for HZp. The result holds by 

definition when x = znu~EnSn,so it suffices to show that 

(Dpf)**(ei®yP) = ei® (f**Y)P 

for all f:Y + E^ X. We shall do this by a direct comparison with the mod p chain 

level. If A, is any chain complex over Zp we write DpA, for W@~ (A,) ®p, where W 

is a fixed resolution of Zp by free Zp[Zp]-modules. We let C, de~ote the mod p 
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cellular chains functor on CW-spectra, and we have a natural equivalence DpC, = C,Dp 

by 1.2.1. If r, denotes the trivial chain complex with Zp in dimension zero then 

there is a natural equivalence between EOx and the chain-homotopy classes of degree 

zero maps from C,X to r,. In particular, we obtain chain maps 0:C,E ÷ r, and 

0':DpC,E + f, representing the identity E ÷ E and the structural map DpE + E. If 

denotes the composite Dpr, = W/Zp ÷ r, (in which the second map is the augmentation) 

then ~ o De is a chain map which, like e', represents an element of EO(DpE) 

extending the product map E (p) ÷ E. But the proof of 1.3.6 shows that there is only 

one such element, hence we have we have ~ o D e = 0'. Next, observe that f** is 
P 

equal to the composite 

E,Y ~E,(E ̂ X) ~ E,X, 

where the second map is the slant product with the identity class in EOE. 

is represented on the chain level by the composite 

h:C,Y~C,(E^X) = C,E®C,X 0 ®~r,®C,X ~ C,X. 

Hence f** 

Since h is a chain map we have 

(Dph),(ei®yP) = ei® (h,Y) p = e i ® (f** y)P, 

so it suffices to show (~pf)** = (Dph)~. Now (Dpf)** is equal to the composite 

where the last map is the slant product with the structural map in EODpE. Hence 

(Dpf)** is represented on the chain level by the composite H around the outside of 

the following diagram 

d 
DpC,Y >DpC,(E^X) = D(C,E®C,X) ~DpC,E®DpC,X 

Dp(r ,  × C,X) d 

DC,X = r , ® D p C , X  ~ - -  D r , ®  DpC,X 

Here d is the evident diagonal transformation and the diagram clearly commutes. 

Inspection of the piece marked Q shows that H = Dph as required. 



298 

2. The Homology of CX 

Our main aim in this chapter is the computation of K,(CX;I). In this section 

we illustrate the basic method in a simpler and more familiar situation, namely the 

computation of the ordinary mod p homology of CX. (All homology in this section is 

to be taken with mod p coefficients for an odd prime p; the p = 2 case is similar.) 

This result is of course well-known, but in fact our method gives some additional 

generality, since both the construction CX and our computation of H, CX generalize to 

the situation where X is a (unital) spectrum, while the usual method of computation 

does not. 

We begin by listing the relevant properties of this spectrum-level construction 

(which is due to Steinberger); a complete treatment will be given in [Equi., chapter 

VII]. By a unital spectrum we simply mean a spectrum X with an assigned map S + X 

called the unit. For any unital spectrum X one can construct an E ring spectrum 

CX, and this construction is functorial for unit-preserving maps. In particular, X 

might be Z~Y + for some based space Y, and there is then an equivalence CX = z'(CY) + 

relating the space-level and spectrum-level constructions. There is a natural 

filtration FkCX of CX and natural equivalences FICX = X and 

FkCX/Fk_ICX = Dk(X/S). 

Finally, there are natural maps Fj CX^ FkCX + Fj +kCX and ~ FkCX ÷ Fj kCX for which the 

following diagrams commute. 

CX^CX ............. ~ CX D. CX ~CX 

t t 
rjcx~r~cx ~ rj+~cx ~rkOX -- , , ~ C X  

Dj ( X / S ) ^ D k ( X / S )  a ~ D.+k(X/S)j D. Dk(X/S ) j  8 - D j k ( X / S )  

Now let X be a unital spectrum and assume the element n ~ HoX induced by the 

unit map is nonzero. We can then choose a set A C H,X such that A~{n} is a basis 

for H.X. Let CA be the free commutative algebra generated by the set 

{Q Ix I x ~A, I is admissible and e(I) + b(I) > Ixl} 

(here Ixl denotes the degree of x; see [28, 1.2] for the definitions of admiss- 

ibility, e(I) and b(1)). The elements of this set, which will be called the 

standard indecomposables for CA, are to be regarded simply as indeterminates since 

the QI do not act on H,X. The basis for CA consisting of products of standard 

indecomposables will be called the standard basis for CA. Using the inclusion 

X + CX and the fact that CX is an E ring spectrum we obtain a ring map 
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k:CA + H, CX 

and we shall show 

Theorem 2.1. k is an isomorphism. 

We shall derive this theorem from an analogous fact about extended powers. Let 

Y be any spectrum and let A be a basis for H,Y. CA is defined as before, and we 

make it a filtered ring by giving QIx filtration p~(I) let DkA = FkCA/Fk_ICA for 

k ~ l; this has a standard basis consisting of the standard basis elements in 

FkCA - Fk_ICA. There is an additive map 

Xk:DkA + H, DkY 

defined as follows. If all Dyer-Lashof operations and products are interpreted 

externally then a standard basis element of D~A represents an element of 

H,((Dp) JIY A --- A(Dp) JsY) with ~pJl + ... + pJ~s = k; here (Do)J denotes the j-th 
I 

iterate of Dp. Applying the natural maps ~, and B, gives an element H,DkY which by 

definition is the value of ~k for the original basis element. We then have 

Theorem 2.2. kk is an isomorphism for all k ~ i. 

Assuming 2.2 for the moment, we give the proof of 2.1. Let X be a unital 

spectrum and let A ~{n} be a basis for H,X. Let Y = X/S. Then A projects to a 

basis for H,Y which we also denote by A. For each k > 1 the map k{FkCA lifts to a 

map k(k):FkCA + H,FkCX and the following diagram commutes. 

0 ~ Fk_ICA ~ FkCA ~ DkA ~ 0 

H,Fk_ICX -------~H,FkCX ~ ~-H,Dk Y 

Since k k is an isomorphism, the map y is onto and hence the bottom row is short 

exact. It now follows by induction and the five lemma that X (k) is an isomorphism 

for all k, and 2.1 follows by passage to colimits. 

We begin the proof of 2.2 with a special case 

Lemma 2.3. kp is an isomorphism for all Y. 

The proof of the lemma is a standard chain-level calculation which will not be 

given here (see [68, section 1]). It is interesting to note, however, that one can 
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prove 2.3 without any reference to the chain-level using the methods of section 6 

below. 

Next we use the machinery of section i to reduce to the case where Y is a wedge 

spheres. For each x~A choose a map fx:S Ixl + HAY representing x. Let 
i i 

of 

Z = VslXl and let f:Z + H^Y be the wedge of the fx" Then f**:H,Z + H,Y is an 

isomorphism. We claim that 2.2 will hold for Y if it holds for Z (where H,Z is 

given the basis B consisting of the fundamental classes of the S1 xl ). To see this, 

consider the following diagram 

Dk(f**) 
DkB -- > DkA 

H, DkZ - -  , H, DkY 

The map Dk(f**) is induced by fix*, which clearly takes B to A. Thus Dk(f**) is an 

isomorphism. The diagram commutes by 1.3 and 1.4(ii) and (iii). The claim now 

follows from 

Lemma 2 • 4. Let h:W + HA X be any map. If h** is an isomorphism, so is (Dkh)** for 

all k. 

Proof. The proof is by induction on k. First suppose that k = jp. Since the case 

k = p of 2.4 follows from 2.3 we may assume j > I. Let ~ = Zj I Zp and consider the 

following diagram 

T, 6, 
H, DkW > H, D W 

H,DkX ~ H,DX 

H Dj tP* H,D W 

The diagram commutes by 1.4(i) and (iii) and 1.5(ii The map B, is an isomorphism. 

The map (~ph)** is an isomorphism by the case k = p, hence so is (DjDph)** by 

inductive hypothesis._ Our assumption on k implies that ~, is monic and ~jp, is 

onto, hence (Dkh)** is sonic by inspection of the first square and onto by 

inspection of the third. The proof is the same when k is prime to p, except that we 

let ~ be ~k-1 × El" 

Next we reduce to the case of a single sphere. To simplify the notation we 

assume that Z is a wedge of two spheres smv sn; the argument is the same in the 

general case. Let B 1 and B 2 be the bases for H,S m and H,S n consisting of the 



301 

fundamental classes, so that B = B I ~ B 2. 

and passing to the associated graded gives a map 

k 

~: ~ (oiB ~ ® Dk_iB 2) 
i=O 

Recall the equivalence 

constructed in II§i. 

There is an evident map CBI®CB 2 + CB 

. OkB. 

k 
V (DiSm^ Dk_iSn) = Dk (SmvSn) : DkZ 
i=O 

Lemma 2.5. 

commutes. 

is an isomorphism, and the diagram 

k 

Z (DiB 1 @ Dk_iB 2) 
i=O 

(X i @ Xk_ i ) 

k 
(H,DiSm @ H,Dk_iSn) 

i=0 

DkB 

H,DkZ 

Proof. ~ is an isomorphism since it takes the standard basis on the left to that on 

the right. The commutativity of the diagram is immediate from the definitions. 

By Lemma 2.5 we see that 2.2 will hold for Z once we have shown the following. 

Let x c HnSn be the fundamental class. 

[emma 2.6. 

integers n. 

kk:Dk{X} + H, DkSn is an isomorphism for all k £ I and all 

Proof. By induction on k. First assume that k = jp for some j > i. For the proof 

in this case we use the following diagram, which will be denoted by (*). 

(*) 

D j •  .......................... 

j (Dpgi), 

= k. 1 
H, Dj Dp Sn 

J 

~j 

~j p* 

Bj p, 

D k ( g i /  

~ Dk{X} 

I X k X k 

- H, Dkgn 

<hg  
....... ~, H,Dk(Sn V S n) . 
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Here y,z¢ Hn(Snvsn) are the fundamental classes of the first and second sun,hands. 

The set ~.CH, DpS r is {sSQSxl2s-s ~ n}. (The reader is warned as this point to 

distinguish carefully between the Bockstein 8 and the natural map 8 of section 1.1. 

This is made easier by the fact that we never use the latter map per se, only the 

homomorphism B, induced by it.) The set (i' C H,?p(SnvS n) is {8~QSy,~SQSzl2s-e £ n} 

if n is odd and is the union of this set with {ylzP-Zll J i J p-l} when n is even. 

Lemma 2.3 implies that O-and 6U are bases, and hence the maps lj are isomorphisms 

by inductive hypothesis. The maps gi:snv S n + S n are defined for i = 0,1 and 2 by 

go = lwl, gl = lv* and g2 = *vl, where 1 and * denote the identity map and the 

trivial map of S n. To complete the construction of the diagram we require 

', independent of i, such that diagram (*) Len~na 2.7. There exist maps yj and yj 

commutes for i = 0,1 and 2. 

The proof of 2.7 is given at the end of this section; all that is involved is 

to "simplify" expressions in Dj 6L' and Dj0. using the Adem relations and the Cartan 

formula in a sufficiently systematic way. 

Now consider the inner square of diagram (*). By assumption on k we see that 

8jp, o x, is an isomorphism, hence Xk is onto. Let %:Dk{X} ÷ Dk{X} be the 

composite yj o i[l o J ~, o ~k" Clearly ~k will be monic if 0 is. In fact we shall 

show that 0 is an isomorphism. We claim first of all that 0 takes the subspace 

¢ Dk{X} generated by the decomposable standard basis elements isomorphically into 

itself. To see this we use the outer square of diagram (*). Let 

+ ~-i o T, o ~k" Let ~' ~ Dk{Y,Z} be e':Dk{Y,Z} Dk{Y,Z} be the composite yj' o J 

k-I 
the image of ~ (Di{Y} ® Dk_i{z}) under the map ~ of Lemma 2.5. Then ~' is the 

i=l 
kernel of the map 

ok(gl) , e ~ (g2) ,  : ~{y,~} - -  ok{X} e ~ { x }  

and hence 0' takes ~' into itself. But Dk(g0),(~') = ~ and 

Dk(gO) , o 6' = 0 o Dk(g0),, hence 0 takes gginto itself and we have the commutative 

diagram 

~' Dk(g0)* ~ 29 - 0 

~ '  D k ( g O ) *  = ~0 ,- 0 . 

Since both ~ and ~)" have finite type 6:79 +~ will be an isomorphism if 

0': 2' ÷ ~9' is monic. But kk is monic on ~' by 2.5 and the inductive hypothesis, 

hence 6' is also monic one' since kk o 6' = (8jp, o x,) o kk" 
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Now let~ = Dk{X}/~ This has the basis {Qlxll admissible, p£(I) = k, 

e(1) + b(1) > n}. We wish to show that the map e: ~ +~ induced by e is an 

isomorphism. The basic idea is to use the homologY suspension, or rather its 

external analog which is the map A.Z:HiDpSn + Hi+lDpSn+l , to detect elements of ~ . 

H+lSU+l be the fundamental class. We define F:J + =D~{~} by F(QIx) = Let 

QI~, where we interpret QI~ as zero if e(I) < n+l and as a p-th power in the usual 

way if e(I) = n+l and b(1) = 0. The key fact is the following, which will be proved 

at the end of this section. 

Lemma 2.8. The diagram 

commutes. 

We also need the fact that the evident action of the Bockstein on ~ commutes 

with 0; this will be clear from the proof of 2.7. 

Now let Jn be the subspace of~ spanned by the set {QIxlI admissible, 

p~(1) = k, e(I) + b(I) < n+m}. We shall show first that ~ is monic on ~I" Let Sl 

be the subspace of Jl spanned by the set {QIxlI admissible, p~(I) = k, e(I) -- n+l, 
! ! 

b(I) = 0}. Then ~l = ~l ®Sj'l" From the definition of F we see that 8~1 is 
! ! 

the kernel of r, that F is monic on~ 1 and that F(~ l) = r(~ ) ~ ~ • Let w be a 

nonzero element ofJ 1 . We claim that ~w lies in so that it can be written 

uniquely in the form w' + ~w" with w',w !'~' and furthermore we claim that w' ~ O. I, 
To see this note that Fw is a nonzero decomposable, hence eFT is also a nonzero 

decomposable, hence r~-w = eFT is a nonzero element of F(J)~ ~9 = r(~' 1)" Thus there 
! ! 

is a nonzero element w' of~ I with rw' = re-w, so that ~w - w' is in ker F = ~I as 
! 

required. Now let Wl,W 2 be any elements of ~l with ~w I = w~ + 8w~ and 

~w 2 = w~ + 8w~. Suppose that v = w I + 6w 2 is the kernel of 0. Then 
t + ! 0 -- e-v = w I 8w~' + ~w~, hence w~ = 0 and w~ + w~ = O. But w{ = 0 implies 

w I = 0, hence w~' = O. Thus w~ = 0, whence w 2 = 0 and v = O, showing that ¢ is 

monic on ~I" 

Next we claim that ~is monic on Jm for all m > I. Let w ~Jm with ~w = 0. 

Let J~ = ~{~}/~ and let r- be the composite J ÷ Dk{~} + ~. Then rw is in the 

subspace m-1 generated by QI~ with I admissible, pZ(I) = k and 

e(I) + b(I) c (n+l) < m-1. Since ~ F--w = F 8w = 0 and since (by induction on m) 8 

is monic on ~m-1 we see that F-w = 0. Now the kernel of ~ is precisely Jl' and we 

have shown already that ~ is monic on J l, hence w = 0 as required. Thus ~: J + 
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is monic, and since has finite type ~is an isomorphism. This completes the 

proof of 2.6 for the case k = jp. 

Now suppose k is prime to p and consider the following diagram 

{Y,z}®Dk_I{Y,Z} 

l ( g i } , ® D k _ l ( g i ) ,  

Dl{X}®Dk_l{X} 
| 

XI® Xk-i ~I kl ® xk-I 

H,(S n^ hk_l Su ) 

~ i  ^ Dk-i )* 

¥' _ .Dk{Y,Z} 

(gi), 

Y ~ Dk{X} 

I ik I k 

(~l,k-1)* r H, DkSn 

_ _  (~l~k~l)* (Dkgi ~'~ 
- ~,DkCSn v snl H,( (snv S n) ̂  Dk_l(Snv sn)) 

Here y and ¥' are obtained from the products in C{x} and C{y,z} by passage to the 

associated graded. The diagram clearly commutes. The analysis of this diagram 

proceeds as before, except that in this case the map Dk(gO) , takes the kernel of 

Dk(gl) , ~Dk(g2) , onto all of Dk{X},SO that we can conclude at once that ~k is an 

isomorphism without having to consider indecomposables. 

This completes the proof of 2.6, and thereby of 2.2, except that we must still 

verify 2.7 and 2.8. For these we need certain properties of the external QS. First 

of all these operations are additive, and QSx = l,(x (p)) if 2s = Ixl. The external 

Caftan formula is 
s 

6,QS(x®y) = ~ Qix®QS-iy. 

i=O 

The external Adem relations are obtained by prefixing 6pp, to both sides of the 

standard Adem relations. All of these relations can be obtained directly from the 

definitions of section l, without any use of internal operations (compare sections 7 

and 8 below). They can also be derived from the corresponding properties for 

internal operations by means of the equivalence 

ci x S°) V 
k~O 

proved in [Equi., Vll§5]. 

Proof of 2.7. Every standard indecomposable in C~ has the form QI(seQSx). We can 

formally simplify such an expression by means of the Adem relations into a sum of 

admissible sequences acting on x (for definiteness we assume that at each step the 
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Adem relations are applied at a position in the sequence as far to the right as 

possible). The result is an element of C{x}, where we agree to interpret all 

sequences with excess less than Ixl as zero, and we extend multiplcatively to get a 

map FjC6L + FkC{X ). The map yj is obtained by passage to quotients. The map 7~ is 

obtained in the same way except that we use the Cartan formula to simplify 

expressions of the form QI(yizp-i) with 0 < i < p. The inner and outer squares of 

diagram (*) commute as a consequence of the external Cartan formula and Adem 

relations, and the upper trapezoid clearly commutes when i is 1 or 2. When i is 

zero the element yizp-i of 6L' goes to QU/2x, and so it is necessary to check that 

the result of simplifying QIQn/2x with the Adem relations is the same as using the 

Cartan formula on QIxP; the result in each case is zero unless all entries of I are 

divisible by p, in which case it is (QI/Px)P. 

Finally, we give the proof of 2.8. We need two facts about A,:H,(ZDkX) + 

H,(DkZX) , namely that A,zQSx = QSzx if k = p and that A,Z(~i,k_i),(x®y) is zero 

for 0 < i < k. The first of these, which is the external version of the stability 

of QS, was proved in II.5.6. For the second, which is the external analog of the 

fact that the homology suspension annihilates decomposables, we use the third 

diagram of II.3.1 with X = S l, noting that the diagonal A:S 1 + S l^ S 1 is 

Now 2.8 is immediate from the commutativity of the following nullhomotopic. 

diagram. 

D << 
D. 
J 

DpS 

J 

Y j__ 

~k 

~J P* ~ H, DkSn ~ 

Ok{x} 

Y 
Ok{x} 

~k 

~HIDkSn+I 

Here ¥~ is the map constructed in the proof of 2.7 and r' is the composite 
J 

Dk{x) = ~ ~ ~Dk{~}. We define r" to take decomposables to zero and QI(~QSx) to 
T 

Q~(8~QS~). Commutativity of the left and right trapezoids follow from the two 

formulas given above. Con~nutativity of the upper trapezoid is obvious except on 

elements of the form QI(8~QSx) with e(I) = n+l + 2s(p-1) - ~ and b(I) = 0, and it 

follows in this case from a simple calculation. 
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3. Dyer-Lashof Operations in K-Theory 

In this section we give our main results about K-theory Dyer-Lashof operations. 

We begin by fixing notations. We shall work in the stable category, so that X will 

always denote a spectrum. Homology operations are to be interpreted as internal 

rather than external. We use Z2-graded K-theory, with Ixl denoting the mod 2 degree 

of x. There are evident natural maps 

: K (X;r) rK (X;r-l) if r ~ 2 

s 
p,: K (X;r) -K (X;r+s) if s ~ 1 

6r : K (X;r) ~ Ka+l(X;r) 

Z : K (X;r)= K +I(ZX;r) . 

(Recall that ZX means S l^ X in this chapter, not X^ S 1 as in chapters I-VII.) 

61 will usually be written simply as ~. We write s for the s-th iterate of ~. 

It will often be convenient to denote the identity map either by 0 or p~. We write 

~ for the reduction map Ka(X;Z) ÷ K (X;r). Our first two results give some useful 

elementary facts about mod pr K-theory; the proofs may be found in [13] (except for 

3.2(iii), which is Lemma 6.4 of [631, and 3.2(iv), which will be proved in section 

7). 

Proposition 3.1. (i) K,(X;r) is a Zpr-module. 

s s 
(ii) If s ~ 1 then ~ Gr+sP * = 6r" 

(iii) ~p, and p,~ are multiplication by p. 

(iv) ~r~r = O. 

Proposition 3.2. For each r > I there is an external product 

K (X;r) ®K ,(Y;r) + K +a,(X^Y;r), 

denoted by x~y, which has the following properties. 

(i) 

(ii) 

(iiil 

(iv) 

(v) 

(vi) 

@is natural, bilinear and associative. 

If u KoS is the unit then x®~u = ~®u®x = x. 

~(x®y) = ~x®~y and ~(x®y) = ~x® ~y. 

p,(x® ~y) = (p,x) ®y. 

~r(X®y) = ~rX®Y + (-l)IXlx®Br y. 

z(x®y) = zx®y = (-1)IXlx®zy. 
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If p is odd then the following also holds, where T:X^ Y + Y ^X switches the factors. 

(vii) T,(x®y) = (-~)lYllxly®x 

If p = 2 there are two external products for each r satisfying (i), (ii), (v) and 

(vi). If these are denoted by®and® ' the relation 

(viii) x®y x® y + 2 r-I 
= , ~rXQ~r y 

holds. Relations (iii) and (iv) hold when either mod 2 r product is paired with 

either mod 2 r-1 product. If r ~ 2 then (vii) holds for both ®and® ', while 

if r = 1 then the following holds. 

(vii)' T,(x®y) = y® ' x = y ® x + By®~x. 

We shall actually give a canonical choice of mod 2 r multiplications in Remark 

3.4(iv) below. When X is a ring spectrum we obtain an internal product denoted xy. 

We write ~ ~ K0(X;r) for the unit in this case, reserving the letter u for the unit 

of KoS. 

Our next result gives the properties of our first operation, which is denoted 

by Q. In order to relate Q to the K-homology suspension we must restrict to the 

space level, and we fix notations for dealing with this case. If Y is any space we 

+ (Y;r) for K,(Z~Y;r). write K,(Y;r) for K,(~ Y ;r) and, if Y is based, we write Kr 

The homology suspension o is the composite 

Ka(aY;r) ~ ~Ka+l(~aY;r) ~Ka+l(Y;r) C K +l(Y;r). 

If Y is an H space then ~Y is also an H space and Z~Y + is an H ring spectrum; see 

1.3.7 and 1.3.8. 

Theorem 3.3. 

operation 

Let X be an H ring spectrum. For each r ~ 2 and a~ Z 2 there is an 

Q:K (X;r) + K (X;r-l) 

with the following properties, where x,y 

(i) Q is natural for H maps of X. 

(ii) Qn = O. 

(iii) Q~x = nQx if r £ 3. 

K,(X;r). 
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(iv) Qp~X = 

xP 

p,Qx - (pp-i _ l)xP 

0 

p,Qx 

if Ixl = 0 and r = 1 

if Ixl = 0 and r > 2 

if Ixl =land~=1 

if Ixl = 1 and r > 2 

(v) 

= ~Q$rX - p~(xP-ISr x) if Ixl = 0 

Sr_l Qx [ (~Srx)P + pQSr x if ixi = I. 

(vi) 
i~ p-i I 
Qx + Qy - ~[ [ P ( p )xiy p-i] if p is odd and IxJ = 1YI = 0 

i=l i 
r-2 

Q(x+ y) = + Qy ~(xy) + 2 (~BrX)(~Sry) if p = 2 and Ixl = lyl : 0 

+ QY if Ixl : lyl : I. 

Q(kx) = kQx - ~ (kP-k)(~x) p if k Z, Ixl = O. 
P 

(vii) Let Ixl = lyl =o. Then 

"Qx'~(y p) + (xP)-Qy + p(Qx)(Qy) if p is odd 

Q(xy) = Qx'~(y 2) + ~(x2)-Qy + 2(Qx)(Qy) + 2r-2~(X~rX)~(ySr y) 

+ 22r-4(Q6rX)(Q~ry) if p : 2. 

Let Ixl = I, IYl = O. Then 

f Qx.~(y p) + p(Qx)(Qy) if p is odd 
Q(xy) 

Qx.~ (y 2 ) 2(Qx)(Qy) + 22r-4(~rX)2(Q~ry) ÷ 

Let Ixl = lyl = 1. Then 

Q(xy) = 

if p= 2. 

(Qx)(Qy) if p is odd 

(Qx)(Qy) + 2r-2~(XSrX)n(y~ry ) + 22r-4(WBrX)2(Q~ry } 

+ 22r-4(Q~rX)(~ry) 2 if p =2. 
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(viii) 

(ix) 

(x) 

If Y is an H space and x ~K (~Y;r) then Qx ~K (GY;r-I) and 

~Q~x if Ix I = 0 

cQx 
l 
[(~xl p + pQox if Ixl = i. 

If k is prime to p then @kQx = Q¢kx, where ¢k is the k-th Adams operation. 

If p = 2 and I xl = I then 

Q~22,x if r = I 

2 

I X = 

[ 2r-2~r2,Qx if r 2. 

particular (~r-lx)2 ~ K0(X;1) is zero if r > 3 and is equal to (~S2x) 2 In 

if r = 2. 

Remarks 3-4. (i) There are no analogs for the Adem relations. 

(ii) We shall write QS:Ka(X;r) + Ka(X;r-s) for the s-th iterate of Q when 

r > s (and similarly for the operations R and ~ to be introduced later). 

(iii) If x ~ K,(X;1) has Sx = 0 then x lifts to y ~ K,(X;2). Thus one can 

define a secondary operation~on the kernel of ~ by~x = Qy. The element y is 

well-defined modulo the image of p, and thus 3.3(iv) shows that ~x is well-defined 

modulo p-th powers if Ixl = 0 and has no indeterminacy if Ixl = 1. This is 

essentially the operation defined by Hodgkin and Snaith 142,99] (although their 

construction is incorrect when p is odd, as shown in 177]). 

(iv) When p = 2, parts (vi) and (vii) are corrected versions of the 

corresponding formulas in [76]. Note that 22r-4 = 0 mod 2 r-1 unless r = 2. The 

formula for Q(xy) with Ixl = IYl = i and p : 2 implicitly assumes that the mod 2 r 

multiplications for r ~ 2 have been suitably chosen, since the evaluation of 

Q(xy + 2r-l(SrX)(Sry)) by means of 3.3(vi) and (vii) gives a different formula. 

Thus we may (inductively) fix a canonical choice of mod 2 r multiplications by 

choosing the mod 2 multiplication arbitrarily and requiring the formula to hold as 

stated for r ~ 2. From now on we shall always use this choice of multiplications. 

Our next result shows that, in contrast to ordinary homology, K,(X;1) will in 

general have nilpotent elements. 

r 
Corollary 3.5. If X is an H ring spectrum and x Kl(X;r) then (~r-lBrx)P = 0 in 

K0(X;1). 
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Proof of 3.5. (By induction on r). If r = I then 

(6x) p = (~82P,x)P = ~Qp, x : 0 

by ).l(ii), 3.3(v) and ).3(iv). If r > 2 then 

r r - 1  
( ~ r - l g r x ) P  = [ ( ~ r - l t 3 r x ) P l P  

by 3.3(v) and the inductive hypothesis. 

r-I 
= (~r-26r_IQx)P =0 

It turns out that iterated Q-operations on r-th Bocksteins are also 

nilpotent. In order to see this we must make use of the operation R described in 

our next theorem. 

Theorem 3.6. Let X be an H. ring spectrum. For each r ~ I there is an operation 

R:KI(X;r) + KI(X;r+I) 

with the following properties, where x,y ~KI(X;r). 

(i) R is natural for H maps of X 

(ii) ~Rx = Qp,x - X(Srx)P-1 , and if r > 2 then Rwx = Qp,x - pp-lx(Brx)P-1 

(iii) p,Rx = Rp,x 

2 
(iv) 8r+lRX = QSr+2P,X 

p-1 1 P ) (p,x) (~r+lP,X)i-l(Sr+lp,y)p-i (v) R(x+y) = Rx + ~j- ~ I~( i 
i=l 

p-i i-i ( ) p-i-i 
+ ( i )~r+IP*(xY)(~r+l p-x) Br+IP*Y ] 

(vi) If Y is an H space and x ~ ~l(Y;r) then 

rp,[(ox)P] if r = I 

oRx I 2 

L p , [ ( o x )  p] + p,Q~x i f  r ~ 2 .  

(vii) If k is prime to p then ckRx = Rckx. 

(viii) If r > 2 then QRx = RQx. If r = I then QRx = O. 

Remarks (i) Le~ x c KI(X;r) and let s ~ I. By 3.3(v) we have 

(r+s-lo, Pr+s.~°s~P~; = ~s-iBsQrRsx. But QrRsx = RS-IQR(Qr-lx) = 0 by 3.6(viii). 

therefore have the following nilpotency relation. 

(#r+s-l~ RSx) pr = 0. 
~r+s 

We 
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Note that this is a smaller exponent than would be given by 3.5. In terms of the Q- 

operation this relation may be written (~r-S-lQSSrx)pr = 0 for s < r and 
^s_ s-r+l ,pr 

~s+iP , xj = 0 for s ~ r. 

(ii) The second statement of 3.6(viii) was not in the original version of this 

work (cf. [76, Theorem 3(iv)]). The decomposability of QRx when r = i (which 

actually implies its vanishing, as we shall see in Section 8) had been asserted by 

Snaith when p = 2 ([99, Proposition 5.2(ii)]), but was not included in [76] because 

the author erroneously thought he could prove QRx to be indecomposable in KI(QX;1) 

whenever x ~ Kl(X;1) had nonzero Bockstein (cf. [76, Theorem 4]). This point was 

recently settled by Doug Ravenel, who observed that if one starts with the descrip- 

tion of K,(Q(SIUp e2);1) given in [76, Theorem 41 and applies the Rothenberg- 

Steenrod spectral sequence (which collapses) then one can see that the only 

indecomposable in Kl(Q(S2 Up e3);1) is the generator of Kl(S 2 U p e3;l), and in 

particular QR of this generator is decomposable. This contradicts part of [76, 

Theorem 4] and a corrected version of that result will be given later in this 

section. We shall give a completely different argument in Section 8 to show that 

QRx is decomposable, and in fact vanishes, for all x ~Kl(X;1). 

We next introduce an operation ~ which is the K-theoretic analog of the 

Pontrjagin p-th power [57, 28]. This operation is a necessary tool in our 

calculation of K,(QX;1) and will also be used to give generators for the higher 

terms of the Bockstein spectral sequence. 

Theorem 3.7. Let X be an H ring spectrum. For each r ~ 1 there is an operation 

:K0(X;r) + Ko(X;r+l) 

with the following properties, where x,y ~K,(X;r). 

(i) ~ is natural for H maps of X. 

(ii) ~x = x p, and if r > 2 then ~x = x p. 

(iii) ~p,x = pp-lp, ~ x. 

(iv) ~6r+l~X = xP-16r x 

{~ 1 p )p, (xi~-i) 

i=l 
(v) ~(x + y) = 

x + ~y + 2,(xy) + (622,x)(S22,Y) 

if p is odd or r > 2 

if p = 2 and r = I. 

(vi) Let Ixl = lyl = o. Then ~(xy) = (~x)(~y) if p is odd, while if p = 2 

there is a constant ~r ~ Z2' independent of x and y, with 
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~(xy) = 

( ~ . ~ x ) ( ~ y )  + (1 + 2 s l ) ( B 2 ~ x ) ( B 2 ~ y )  

(~x)(~y) + 2rsr(~r+l ~x)(~r+l~y) 

Let Ixl =i, lyl = o -  Then 

R(xy) = 

ifr=l 

if r>2. 

~Rx)(~y) if p is odd and r = I 

(Rx)C~y) + 2 p,E(Qx)(Qy)] if p is odd and r > 2 

(Rx)(~y) - (l + 2~l)(~2Rx)(B2~y) if p = 2 and r = 1 

(Rx)(~y) + 4,[(Qx)(Qy)] + 2r-2(~r+14,Qx)(~r+l~y) 

+ 2rsr(~r+lRX)(~r+l~y) if p = 2 and r ~ 2, 

and R(yx) = (~y)(Rx) + (1 + 2~l)(82~y)(B2Rx) if p = 2 and r = 1. Let 

Ixl = IYl = 1. Then there is a constant ~ Zp, independent of x and y, with 

p 

pr~(Rx)(Ry) if p is odd 

(i + 2~)(Rx)(Ry) - (1 + 2s I + 2s~)(82Rx)(~2RY) if p = 2 and r = 1 

~(xy) = 

2r~(Rx)(Ry) + 2r-2(Rx)(4,Qy) + 2r-2(4,Qx)(Ry ) 

+ 22r-4(Br+14,Qx)(Br+14,Qy) if p = 2 and r _ > 2. 

(vii) Let Y be an H, space and let x ~Ko(Y;r). If p = 2 then a~x = 2rR(cx), 

while if p is odd there is a constant ~r' independent of x, with ~x = pr~rR(Cx). 

(viii) If k is prime to p then ~k~x = ~¢kx. 

• 2 . 

( p ) p l - 2 x P  - l p p , [ ( Q x ) i l  i f  r > 2 
1 i - " 

The undetermined constants ~r in part (vi) depend on the choice of multipli- 

cations; they can be made equal to zero for a suitable choice but it is not clear 
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what their values are for our canonical choice. It is quite possible that the 

' and ~" are all zero. EF' ~r r 

Next we shall use the operations Q and R to describe K,(CX,I) for an arbitrary 

unital spectrum X. If Y is a based space then the homology equivalence of [28, 

Theorem 1.5.10] is also a K-theory equivalence (by the Atiyah-Hirzebrueh spectral 

sequence), hence 

K,(QY;I) = (~oY)-IK,(CY;I) = (~oY)-IK,(CZ~(Y+);I) 

so that our calculation will also give K,(QY;1). 

First recall the K-theory Bockstein spectral sequence Erx (abbreviated BSS) 

from [13, section ll]. X was assumed to be a finite complex in [13] but we wish to 

work in greater generality. The finiteness assumption is necessary for those 

results which deal with the E ~ term, since in general there is no useful relation 

between E~X and K,X (for example, E~RP ~ is concentrated in dimension zero, while 

K,RP * is concentrated in dimension one). On the other hand, the results of [13] 

which deal with E r for r finite remain valid for arbitrary spectra X. In partic- 

ular, any (r-l)-cycle x can be lifted to an element y c K,(X;r) and we have drX = 

~r-18ry. The element y has order pr if and only if x is nonzero in E r. If we write 

K,(X;~) for the inverse limit of the K,(X;r) then an infinite cycle always lifts to 

K,(X;~); we shall frequently use this notation. Our next definition gives the kind 

of data necessary for the description of K,(CX;I). 

Definition 3.8. let I < n < ~. A set A = ~ A r with ArC K,(X;r) is called a 
l~rgn 

subbasis of height n for X if for each s < n the set 

r-1 
{ ~r-lx I x CAr, s < r < n} ~ {~ ~r x I x CAr, s < r < n} 

projects to a basis for ESx. 

If the height of a subbasis is not specified, it will always be assumed to be 

infinite. Subbases with finite height will occur only in sections 7 and 8. It is 

not hard to see that any spectrum has a subbasis of any given height. The term 

subbasis is motivated by our next result, which is an easy consequence of the 

results of [13,§ll]. Recall that a subset S of an abelian group G is a basis for G 

if G is the direct sum of the cyclic subgroups generated by the elements of S. 

Proposition 3.9. If A = ~ A is a subbasis of height n for X and if s < n 
l~r~n r 

(with s < ~ if n = ~) then the set 
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{~r-SxlxE Ar, s < r < n} ~., {~r-Ssrx ] x EAr, s < r < n} 

s-r s-r 
U{p, x I x EAr, r < s} O{8sp , x ] xE Ar, r < s} 

is a basis for K,(X;s). The elements of the form 

and the remaining basis elements have order pS. 

s-r s-r 
p, x and 8sp , x have order pr 

Now let X be a unital spectrum. Let n ~ Ko(X;~) be the unit and suppose that 

~n is nonzero in Ko(X;1). Then we may choose a set A = ~ A r such that 
l~r~ 

A ~{n} is a subbasis for X. We write At, O and At, 1 for the zero- and one- 

dimensional subsets of A r. Let p be odd, and let CA be the quotient of the free 

commutative algebra generated by the three sets 

and 

r-s-l^s EA r, 0 < < < ~} ~ x I x s r 

{ r-s-1 As O < s < r < ~} 
~r_s ~ x I x~ At,o, _ 

r+s-1 
8r+s Rsx I x ~Ar,l, r < ~, 0 < s < ~} 

by the ideal generated by the set 

r 
{(~r+s-16r+sRSx)P ] X~Ar,l, r < ~, 0 < s < ~}. 

The elements of the first three sets will be called the standard indecomposables of 

CA. Here symbols like ~r-S-lQSx are simply indeterminates, since the Dyer-Lashof 

operations are not defined on K,(X;r). However, by means of the inclusion X ÷ CX 

we may interpret these symbols as elements of K,(CX;1). Thus we obtain a ring map 

~:CA + K,(CX;I). 

Our main theorem is 

Theorem 3.10. ~ is an isomorphism. 

We could have defined CA in terms of the Q-operation alone, without using R, 

since the third generating set is equal to 

{ r-s-l_s ~_s s-r+l 
~ ~r x xE Ar,l, r < ~, O < s < r} ~ ~ ~s+IP , x xE A r,l' r < ~, s > r} 

The definition we have given is more convenient for our purposes, however, since it 

allows us to treat the cases s _~ r and s > r in a unified way. 

Theorem 3.10 also holds for p = 2, but the definition of CA in this case is 

more complicated since mod 2 K-theory is not commutative. Recall from 3.2(vii)' 
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that the commutator of two elements is the product of their Bocksteins. To build 

this into the definition of CA we define the modified tensor product C 1 ~ C 1 of 

two Z2-graded differential algbebras over Z 2 to be their Z2-graded tensor product 

with multiplication given by 

(x@y)(x' ~y') = xx' ~yy' + x(dx') ~ (dy)y'. 

We can define the modified tensor product of finitely many C i similarly and of 

infinitely many C i by passage to direct limits. Now for each x ~Ar, 0 we define C x 

to be the free strictly commutative algebra generated by {~r-s-iQSxI0 < s < r} and 

if r < ~, {~r-s-IBr_sQSx I 0 ~ s < r}. Give this the differential which takes Qr-lx 

to 6Qr-lx and all other generators to zero. For each x ~Ar, I we define C x to be the 

commutative algebra generated by the sets {~r-s-iQSxl0 < s < r} and, if r < ~, 

{~r+s-IBr+sRSx]0 ~ s < r}, with the relations 

(~r+s-l~r+sRSx)2r = 0 (i) 

and 

(ii) 
I i~r_iBrx)2r_l if 0 ~ s < r-2 

(~r-S-lQSx)2 = if s = r-2 

r 2 r-1 
(~ ~r+iRx) if s = r-l. 

(Relation (ii) is motivated by 3.3(x)). Give C x the differential which takes Qr-lx 

to (~r-l~rx)2r-1 and all other generators to zero. Finally, we define CA to be the 
N 

modified tensor product x ~ACx . There is an evident rin K map ~:CA + K,(CX;1) and 

with these definitions Theorem 3.10 and its proof are valid. 

Remarks 3.11. (i) When X = S O , or when p = 2 and X is a sphere or a real projective 

space, we recover the calculations of Hodgkin [41] and Miller and Snaith [83,84]. 

(ii) We can describe the additive structure of CA more explicitly as 

follows. When p = 2 we define the standard indecomposables of CA to be the same 

three sets as in the odd-primary case. If we give these some fixed total ordering 

then CA has an additive basis consisting of all ordered products of standard 

indecomposables in which each of the odd-dimensional indecomposables occurs no more 

than once and each ~r+s-16r+sRSx occurs less than 2 r times. This basis will be 

called the standard basis for CA. We define the standard basis in the same way when 

p is odd. 

Next we discuss the functoriality of the description given by 3.10. If X and 

X' are unital spectra with subbases A ~j{n} and A' ~{n} then a unit-preserving map 

f:X ÷ X' will be called based if f,A r~ #~{0} for all r > 1. Such a map clearly 

induces a map f,:CA ÷ CA', and we have ~ o f, = (Cf), o ~. If f is not based, it 
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is still possible in principle to determine (Cf), on K,(CX;1) by using 3.3, 3.6 and 

3.9 (although in practice the formulas may become complicated). For example, if 

f:S 2 + S 2 is the degree p map and x ~ K0($2;2) is the generator then 

(Cf),Qx = Q(f,x) = Q(px) = ~(x p) ~ 0 

in Ko(CS2;1). Since f,:K,(S2;1) + K,(S2;1) is zero this gives another proof of 

Hodgkin's result that K,(CX;I) cannot be an algebraic functor of K,(X;1). A similar 

calculation for the degree pr map shows that K,(CX;I) is not a functor of K,(X;r) 

for any r < ~. Finally, the projection S 1 ~ e 2 + S 2 onto the top cell induces the 

zero map in integral K-homology but is nonzero on K,(C(S 1 U#p e2); l) so that 

K,(CX;1) is not a functor of K,(X;Z). Thus it seems that the use of subbases cannot 

be avoided. 

We conclude this section by determining the BSS for CX. 

Theorem 3.12. For i < m < ~, E TM CX is additively ~somorphic to the quotient of the 
- 

free strictly con~nutative algebra generated by the six sets 

{ T M  I x E A r, m ~ r-s, 0 ~ s < r) 

{wr-s-Isr-sQSx I xE Ar, O, m ~ r-s < ~, 0 < s < r) 

( ~m-l~m-r+sQsx I x EAr,0, 1 ~ r-s < m } 

(~m-lsm~m-r+SQSx I x ~ Ar,O" 1 ~ r-s < m ) 

(~m-lRm-r+sQ sx I XEAr, l, I ~ r-s < m} 

and {~r+s-16r+sRSx I X~Ar,1, m ~ r+s < ~) 

by the ideal generated by the set 

{(~r+s-l~r+sRSx)pt I x ~Ar,1, m ~ r+s < ~, t = mln(r,r+s+l-m)}. 

If p is odd or m ~ 3 the isomorphism is multiplicative. 

The proof of 3.12 is the usual counting argument, and is left to the reader. 

In order to determine the differential in ~,CX one needs the formula 

s 
r-s+t-1 ~ ~t^s (r+t-lBr+t~tx) p 

~r_s+t ~ ~ x = 

for x ~Ar,1, O ~ s < r < ~, t ~ O; this is is a consequence of 3.3(vlii) and 3.3(v). 

4. Calculation of K,(CX~Zp! 

In this section we give the proof of Theorem 3.10, except for two lemmas which 

will be dealt with in Sections 6 and 9. The argument is very similar to that given 
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in Section 2 for ordinary homology, and in several places we shall simply refer to 

that section. 

First we reformulate 3.10 as a result about extended powers. Let Y be any 

spectrum and let A be a subbasis for Y. We define CA with its standard indecom- 

posables and standard basis as in Section 3. We make CA a filtered ring by giving 

elements of A filtration 1 and requiring Q and R to multiply filtration by p. Let 

DkA = FkCA/Fk_ICA for k ~ l; this has a standard basis consisting of the standard 

basis elements in FkCA - Fk_ICA. There is an additive map 

Xk:~A ÷ K,(DkY;I) 

defined as in Section 2 by interpreting Q,R and the multiplication externally and 

then applying ~, and ~,. We shall prove 

Theorem 4.1. X k is an isomorphism for all k ~ I. 

Remark 4.2. Using 4.1 and the external versions of 3.3(v), 3.6(iv) and 3.7(iv) 

(which will be proved in sections 7 and 8) one can determine the BSS for DkY as 

follows. If m ~ 1 let CmA denote the algebra whose generators and relations are 

given in 3.12. We make CmA a filtered ring by giving elements of A filtration 1 and 

requiring R, Q and~ to multiply filtration by p. If ~k A is the k-th subquotient of 

CmA there is an isomorphism D~A + ~k X. The proof is similar to that for 3.12 and 

is left to the reader. 

The derivation of 3.10 from 4.1 is the same as that given for 2.1 in section 2. 

We therefore turn to the proof of 4.1. We need the following special case, which 

will be proved in section 6. 

Lemma 4.3. Xp is an isomorphism for all Y. 

We shall reduce the proof of 4.1 to the case where Y is a wedge of ~oore 

spectra. First we need some notation. As in section 1 we write Mr for s-luJpr e O. 

The set {u r} is a subbasis for M r . We write ~ for the colimit of the M r with 

respect to the maps M r + Mr+l having degree p on the bottom cell. Then Kl(M=;r) = 0 

for all r and KO(M=;r) is a copy of Z r generated by the image of u r. Let 
P 

u ~ K0(M=;~) be the element which projects to the image of u r for all r. Then {u=) 

is a subbasis for M~. 

For each x~ A r we can choose a map fx:ZlXlM~ ÷ K^Y representing x. (If r = 

we let fx be any map which restricts on each ~ IxIMr~ to a representalve for the mod 

pr reduction of x.) Let Z = V V zixIMr and let f:Z + KAY be the wedge 
l~r~ x E A 

r 
of the fx" We give Z the subbasis B consisting of the fundamental classes of the 
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zlXlMr. Then f**:K,(Z;r) + K,(Y;r) gives a one-to-one correspondence between B r 

Ar, and in particular it is an isomorphism for all r. Now consider the diagram 

D k (f**) 
DkB ~- DkA 

~k I (~kf), * I ~k 

K,(OkZ;1) ~ K,(DkY;I) , 

and 

which commutes by 1.3 and 1.4(ii) and (iii). If 4.1 holds for Z, its validity for Y 

will be immediate from the diagram and the following lemma. 

Lemma 4-4. Let h:W + K^ X be any map. If h**:K,(W;1) + K,(X;1) is an isomorphism, 

then 

(i) f**:K,(W;r) + K,(Xir) is an isomorphism for all r, and 

(ii) (Dkf)**:K,(DkW;I) + K,(DkX;I) is an isomorphism for all k. 

Proof. (i) By induction on r. Suppose the result is true for some r > 1 and 

consider the short exact sequence 

0 ~ Z p Z ~Z ~0 • 
p r+l r 

P P 

This gives rise to the following commutative diagram with exact rows. 

K +l(W;r) ~K (W;1) ~ K~(W;r+l) ~ K (W;r) ~K _l(W;1) 

K +l(X;r) ~ K (X;I) ~ K (X;r+l) ~ K (X;r) ~K _I(X;I) 

Part (i) follows by the five lemma. The proof of part (ii) is now completely 

parallel to that of Lemma 2.4. 

Next we reduce to the case of a single Moore spectrum. We assume for 

simplicity that Z is a wedge of two Moore spectra ZmMrV ZnMs; the argument is the 

same in the general case. Let B 1 and B 2 be the subbases {Zmur ) and {~nus}, so that 

B = B l~ B 2. There is an evident map CB l® CB 2 ÷ CB which on passage to the 

associated graded gives a map 

k 

:i!o(DiBl ® Ok_iB 2) + OkB. 
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Lemma 4.9. ~is an isomorphism, and the diagram 

k 
(DiB I ® Dk_iB 2) ............ ~DkB 

i=Ok ]* ~ k  
i Z(xi ® Xk-i) 

(K,(mizmMr;1) @ K,(Dp_iZnMs;1)) = ~ K,(DkZ;I) 
i=O 

commutes 

The proof is the same as for 2.9. The lemma implies that 4.1 will hold for Z 

once we have shown the following. We write x for znu r r;r) • 

Lemma 4.6. Xk:Dk{x} + K,(DkznMr;I) is an isomorphism for all k >_ I and all n. 

Proof. By induction on k. First let k = j p with j > i. We need the commutativity 

of the following diagram for i = O,i and 2. 

(*) 

D° ( ~  ....... 
J 

DjO. ....... 

K,(Dj DpM; i) 

/ D j  D~i)* 

K, (Dj Dp(M vM) ;I ) 

~j 

~j p,  

~j p* 

~ Ok{y,z} 

Dk(gi)~/// 

Dk{X} 

X k X k 

~K,(DkM;I) 

~ kgi), 

~K,(DE(M vM) ;i) 

Here M denotes znMr and y,z EK,(M M;r) are the fundamental classes of the first and 

second summands. The sets (% and Ci' are subbases for DpM and Dp(M v M) which will be 

specified later. The maps gi:MVM + M are defined by go = Ivl, gl = iv*, and 

g2 = *vl, and the F i are determined uniquely by the requirement that the left-hand 

trapezoid con~nute. To complete the diagram we need 

Lemma 4.7. There exist (l, ~, ~j and yj independent of i such that diagram (*) 

commutes f o r  i = O,1 and 2.  
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The proof will be given in Section 9. Like the proof of 2.7, it consists of 

systematic simplifications of the elements of Dj~ and Dj~'. The details are much 

more complicated, however, because of the nonadditivity of the operations. 

Now consider the inner square of the diagram. Since B. , o T_ is an 
-I J p 

isomorphism, we see that k k is onto. Letting e = 7. o k. o ~, o kk, we see as in 
J J 

section 2 that e induces an isomorphism of the subspace~ of Dk{X} spanned by the 

decomposable standard basis elements. In particular, k k is monic on ~. 

The remainder of the proof differs from that in Section 2, and is in fact 

considerably simpler since there are only a few indecomposables. It suffices to 

show the following. 

Len~na 4.8. Let w~ ~. If n = 1 then 
r-s-1 s 

(i) kk(~ Q x - w) ~ O, where k = pS 2 < s < r < 

. , r+s-l^ ~s s 
(ii) Xk~ ~r+s ~ x - w) ~ O, where k = p , r < ~, 2 < s < ~. 

If n = 0 then 

r-s-I s s 
(iii) kk(~ Q x - w) ~ O, where k = p , 2 < s < r < 

• r-s-i _s 
(iv) kkI~ 8r_s Q x - w) ~ 0, where k = pS, 2 < s < r < ~. 

Proof. We need two facts about the map A,:K,(ZDkX;r) + K,(DkZX;r) , 

A,Z(ai,k_l),(x®y) = 0 for 0 < i < k and that, when k = p, 

Q(Zx) if Ixl = 0 

A,zQx = 

~1,(Zx) (p) + pQzx if Ixl = 1 . 

namely that 

The first fact is shown as in the proof of 2.8, while the second, which is the 

external version of 3.3(viii), will be shown in section 7. 

Now consider part (i). We have A,Zw = 0 and 

s 
A,~r-s-IQSx = ~r-11,(zx)P 

S 

But ~r-11,(zx)P is nonzero since ~k is monic on deeomposables. 

Combining part (i) with the fact that ~k is onto and is monic on decomposables, 

we see that 

~k:Dk~X} ÷ ~(Dk~;ll 

is an isomorphism in degree 1 and is onto in degree zero. It is monic in degree 0 

if and only if part (ii) holds. But if not then Ko(DkZMr;I) and KI(DkZMr;I) would 

have different dimensions as vector spaces, and therefore the Bockstein spectral 
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sequence Em(DkEM r) would be nonzero for all m. But the transfer embeds ~DkEM r in 

~,DjDpEMr, and the latter is zero for pm-r-I > j by Remark 4.2 and the inductive 

hypothesis of 4.6. 

Finally, part (iii) follows from (i) and the equation 

A,~r-s-iQSx r-s-IAs 
= ~ ~ Zx, 

while (iv) follows from (iii) using the argument given for (ii). 

This completes the proof of 4.6 for the case k = Jp. The remaining case, when 

k is prime to p, is handled exactly as in Section 2. 

5. Calculation of K,(DpSn;Zpr ) 

In order to construct and analyze the Q-operation we shall need a precise 

description of K,(DpznMr;r-1). In this section we give some facts about K,(DpSU;r) 

which will be used in Sections 6 and 7 to obtain such a description. We work with 

K-theory on spaces in this section. 

If X is a space there is a relative Thom isomorphism 

~:K,(DpX;r) ~* K,(DpE2X;r) 

corresponding to the bundle 

and the inclusion 

EEp P x E (X (p) × R 2p) + EE ×E x(P) 

P P 

× X (p) . 
EZp P 

×Z (~) ÷ EZp Zp 

As we have seen in VII§3 and VII§8, this isomorphism can in fact be defined for an 

arbitrary spectrum X. In calculating K,(D sn;r) we may therefore assume n = 0 or 
0 P+ 

n = l; in the former case we have DpS = BEp . 

Lemma 5.1. K (BZp;I) is zero if ~ = 1 and Zp•Zp if a = 0. ~ (DpSI;I) is zero if 

a = 0 and Zp if a = 1. 

Proof. We use the Atiyah-Hirzebruch spectral sequence for mod p K-homology. By 

pl P~8 [40, III.l.2] the differentials d i vanish for i < 2p-I and d2p_l is B , - 

(here pl denotes Sq2 if p = 2). For spaces of the form DpX, a basis for the ~-term 

consisting of external Dyer-Lashof operations is given in [68, 1.3 and 1.4]. The 

differential d2p_l can be evaluated using the external form of the Nishida relations 



322 

[68, 9.4]; the explicit result is that d2p_l(ei®Y p) is a nonzero multiple of 

(~ei+2_2p) ®Y~ - ei+l_p® (~Y)P 

for any y ~H,(X;I). Letting X = S O or S 1 we see that E 2p is generated by eo®uP 

and e2p_2®uP in the former case and by ep_l® (Zu) p in the latter. Then E 2p = E ~ 

for dimensional reasons and the result follows. 

Usin~ 5.1 and the K-theory BSS we conclude that K,(BZp;r) is free over Zpr on 

two generators in dimension zero and that K,(DS1;r)~ is free over Zpr on one 

generator in dimension one. We wish to give explicit bases. It is convenient to 

work in K-cohomology, as we may by the following. 

Lemma 5.2. The natural map 

~* n 
K (DpS jr) + Hom(K,(DpSn;r),Z r ) 

P 

is an isomorphism for all r < ~. 

Proof. When r = I a cell-by-cell induction and passage to limits gives the results 

for an arbitrary space; in particular it holds for DpS n. The result for general r 

follows from the B&q. 

Next we give a basis for K0(BZp;r). We write I for the unit in this group and 
+ 

l(e ) for the unit of KO(pt.;r). Let x be the transfer z~(BZp) + Z~(Be +) = S. 

Proposition 5.3. K*(BZp;r) is freely generated over Zpr by 1 and ~*l(e ). 

Proof. Let ~ = ~ and denote the inclusion ~ C Zp by I. Then Kl(Bw;r) = 0 and the 

natural map 

R~ ® Z  ÷ KO(B~;r) 
pr 

is an isomorphism. If p is the group of automorphisms of ~ then a standard transfer 

argument shows that the restriction 

* *'B ' + I :K ( Zp;r; K*(B~;r) 

is a monomorphism whose image is contained in the invariant subring K*(Bw;r) p . Now 

l*l is the unit I w of K0(B~;r), while the double coset formula gives 

i T l(e ) = (p-1)!(T') I( 11 where x' is the transfer z~(B~ +) ÷ S. Since 1 and 

~'l(e ) form a basis for ~ B~;r) p the result follows. 
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In order to give a specific generator for ~*(%sl;r) we consider the map 

Lemma 5.4. The composite 

~0(DS2;r) A ~K-O(z.DpSI;r) (ZA)_~O(Z2DpSO r ) =_ KO(BZp;r) 

takes i * 
¢(I) to ~ (p! - T l(e )) and ¢(T*l(e)) to zero. 

As an immediate consequence we have 

* ~*(DpSl;r). Corollary 5.5. ZA $(1) generates 

Before proving 5.4 we give the desired bases for K,(BZp;r) and K,(DpS1;r). 

Definition~ 5.6. The canonical basis for K,(BZp;r) is the dual of the basis 

{1,,(p_~)! (p! - T*l(e)) ). The canonical basis for K,(DpS1;r) is the dual of 

Note that the unit n in Ko(BZp;r) is the first element of the canonical basis 

for this group. We shall alway s write v for the remaining element and v' for the 

basis element in Kl(DpS1;r), 

Proof of 5.4. Consider the subset of EEp ×Zp(R2) p consisting of points for which 

the sum of the R ~-coordinates is zero. The projection to BZpmakes this subset the 

total space of a bundle ~ over BZp. Now DpS 2 is homeomorphic to the second 

suspension of the Thom complex T~ of ~, and under this homeomorphism the map 

A o ZA:Z2DSUr-- + ~D~-- is the second suspension of the inclusion BZ~ C T~, while 

$(1) agrees with the Aityah-Bott-Shapiro orientation for ~. Thus it suffices to 
i * show that the Euler class of ~ is (p-l)! (p! - T l(e))" If ~ = ~ and i: ~ C Zp is 

the inclusion it suffices to show that the pullback (BI)*~ has Euler class 

p - (x') l(e ) in KO(B~) ~ R~®Z~, where ~' is the transfer Z~(B~ +) + S. Let 

x ~ R~ be any nontrivial irreducible. Then (BI)*~ is the sum of the bundles over B~ 

induced by x,x2,...,x p-1. These bundles have Euler classes 1-x,...,1-x p-I, hence 

(B~)*~ has Euler class (1-x)...(1-xP-1). Evaluation of characters shows that 

(l-x) ... (l-x p-I) = p - (i + x + .-- + x p-I) 

a~d the result follows, 
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Next we collect some information about the elements ~,v and v' for use in 

section 7. 

Pro~gsition 5.7. (i) ~:K,(%sn;r) ÷ K,(%sn;r-l) takes v to v and v' to v'. 

+ 

(ii) A,:KI(Z(BZp);r) ÷ KI(%SI;r) takes Zn to zero and Zv to v'. 

(iii) A,:K0(Z%SI;r) ÷ K0(%~;r) takes Zv' to ¢(~ + pv). 

(iv) ~,:~,(mpsn;r) + ~,((Sn)(P);r) 

n = 0 and takes v' to zero when n = i. 

(v) 6,:K0(BZp;r) + K0(BZ p × BZp;r) takes n to n ®~ and v to 

v®n + ~®v + p(v®v). 

(vil ~,:~l(%Sl;r~ ÷ ~l(%Sl^ B~;r~ t~es v' to v' ® n ÷ p(v' ® v~. 

Iviil 6,:~0<DS2;rl ÷ ~01%Sl^DSl;rl takes ~(nl to zero and ~Cv} 

to v' ® v'. 

takes n to p!u and v to -(p-l)!u when 

For the proof we need a preliminary result. 

Lemma 5.8. (i) If X is a spectrum with E 1 = E r in the K-theory BSS and if Y is any 

spectrum then the external product map 

K,(X;r) ® K,(Y;r) + K,(X^Y;r) 

is an isomorphism, where the tensor product is taken in the Z2-graded sense. 

(ii) If in addition K,(X;1) and K,(Y;I) are finitely generated then the 

external product map 

K*(X;r) ~)K*(Y;r) + K*(X^Y;r) 

is an isomorphism. 

Proof When r = 1 the first statement is well-known (see [13, Theorem 6.2], for 

example). It follows that the external product induces an isomorphism of K-theory 

Bockstein spectral sequences. Hence if B is a basis for K,(X;r) and A is a subbasis 

of height r for Y then the set {#r-Sx®y I x ~ B, y ~As) is a subbasis of height r 

for XAY and part (i) follows. The case r = 1 of part (ii) follows from part (i) by 

duality, and the general case follows from it as in part (i). 

Next we turn to the proof of 5.7, which will conclude this section. In each 

case it suffices by 5.8 to show the dual. Then (i) is immediate and (ii) and (iii) 

follow from 5.4. The first and second statements of part (iv) are trivial, as is 

the third when p = 2. When p is odd we observe that T,v' must be invariant under 

the Zp action on K,((S1)(P);r). Clearly zero is the only invariant element. 
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For part (v) we observe that m*l(e ) ® m l(e ) is m*(l T l(e )) by Frobenius 

r e c i p r o c i t y .  Now ~ -r l ( e  ) = p ! l ( e ) ,  and t h u s  

= ___2___ T* ) [ ~  (P! - ~*l(e) )]2 (p-l){ (p! - l(e) 

in KO(BEp;r); the result follows by duality. 

For part (vi), consider the composite 

+ A, 8, + 
~I(E(BEp);r) ~ ffl(DpSl;r) ~ gI(DpSIA BEp;r) . 

We have a, Zv = v', and 

6 ,A, Zv = (A^I),E6,v 

= (A, Zv) @ n + (A, En) •v + p(A, ZV) @v 

= v' ® n + p(v' ®v). 

For part (vii) observe that part (iii) implies that the map 

sl^D S1;r) + ~l(DpS2AD S1;r) (~ 1)*:Kl(ZDp p P ^ 

is monic and that (A^l),(Zv'®v') = ¢(n) ®v' + pc(v) ~v'. Hence it suffices 

to show that (A^l),(Z6,¢(n)) is zero and that 

(AAI),z6,¢(V) = ¢(n) x v' + pC(v) ®v'. 

Now let 

h:S 1 S 2 = sl^ (SIA S l) = (SI^ S 1)^S l = $2^ S 1 

be the associativity transformation and consider the diagram 

ED S 2 Z8 

z~[ D(SI^ s2) Dph 

ED S 2^ BE + -- '-D S 2^ EBz + 
P P P P 

Z 5 S 1 ̂  DS 1 

; D (S 2^ S I) 
p A^I 

I^A ~D $2^ D S I 
P P 

The upper part clearly commutes, and the lower part also commutes since h is 

homotopic to the map switching the factors S I and S 2. Now 

+ 

~,:~o(DpS2;r) ÷ ~0(DpS2^ BZp;r) 
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clearly takes ¢(q) to ¢(q) ®q and ¢(v) to 

¢(n) ®v + ¢(v) ® n + pC(v) ®v. 

Hence 

(AA I),(Z6,~(U)) = (laa),(~(n) ® Zn) = 0 

by the diagram and part (ii), while 

(A^ l),(~6,~(v)) = (I^ a),[¢(q) ® Zv + ¢(v) ® Zn + pC(v) ® Zv] 

= ~(q) ®v' + pC(v) ®v' . 

6. Calculation of K,(DpX;Zp) 

In this section we define Q on K,(X;2) and prove Lemma 4.3. We work with 

K-theory on spectra in this section. 

Our first result collects the information about K,(DoznMr;1) which will be used 

in this and later sections. We let i and j respectively denote the inclusion of the 

bottom cell of ZnM r and the projection onto the top cell. Note that j,znu r = znu 

and i,zn-lu = 6rZnUr , where u r and u are the fundamental classes of M r and S O . 

Lermna 6.1. (i) For any n ~Z and ~ ~Z2, K (DoZnMI;I) has dimension I over Zp. 

(ii) For any n ~ Z, ~ EZ 2 and r ~ 2, K (DpZnMr;1) has dimension 2 over Zp. 

(iii) (D~),:Ko(DpMr;1) + Ko(DpsO;I) is monic, and if r ~ 2 it is an 

isomorphism. 

(iv) (D~), ~ ~,:KI(DpZMr;I) + KI(DpSI;I) ~KI((ZMr)(P);I) Zp is monic, and is 

an isomorphism if r ~ 2. 

(v) (Dpi),:K0(DpSO;l) + K0(DpZMr;I) is onto. 

by n and if r ~ 2 it is an isomorphism. 

(vi) The sequence 

~Kl(DpMr;l) ~((M r) ;I) ~p ~0 

If r = I it has kernel generated 

is exact, and if r ~ 2, (Dpi), is a monomorphism. 

In parts (iv) and (vi), KI((ZnMr)(P);1) zp denotes the subgroup invariant under 

the evident Zp-action; this subgroup can easily be calculated using 5.8(i). The 

proof of 6.1 is similar to that of 5.1 and is left to the reader. 
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We can now define elements v I ~ K0(DpM2;I) and v~ ~ KI(DpZM2;I) by the 

equations (D~),v I = v, (Dj).v~ = v', and T.v~ = 0. We use definition 1.6 to 

construct Q. 

Definition 6.2. Q:Ka(X;2) ÷ Ka(DpX;l) is the generalized Dyer-Lashof operation ~I 

if~ooand %{ if~l. 

= , _- Q~u 2. 
Observe that v I Qu 2 and v 1 

Next we turn to the proof of 4-3. We use the spectral sequence of 1.2.4 with 

equal to Zp or Zp and E = X. This spectral sequence will be denoted by Eq,a(~;X) ; 

by Bott periodicity it is Z x Z2-graded , so that a ~ Z 2. 

We can describe 2 ~;X) = = 0 it Eq,,( H(~;K,(X;I) ~9 P) as follows. When q 

is just the coinvariant quotient of K,(X;1) ® P. Let ~ = Zp with p odd. If 

x ~ K~(X;1) then x p K,(X;1) ® P generates a trivial ~-submodule and we write 

eq ® x p for the image of eq ~ Hq(B~;1) under the inclusion of this submodule. Now 

K,(X;I) ® P can be written as a direct s~n of trivial ~-modules of this kind and free 

-modules generated by x I ® ... ®Xp with not all x i's equal. Hence the map 

Ka(X;I) ÷ E 2 (Z ;X) 
q,~ P 

taking x to eq®X p is an isomorphism if q > 0 and p is odd. We continue to write 

eq ® x p for the image of this element under the natural map 

~q,a(Zp;X) + ~q, (Zp;X). 

By [68,1.4] we see that this map is onto in all bidegrees, is an isomorphism when 

q = (2i-s)(p-l) or (2i-m)(p-l)-i for son~ i > I, and is zero in all other bidegrees 

wlth q > 0. Finally, if p = 2 then by 3.2(vil)' the Z2-action on K.(X;I) @ 2 is 

given by x @ y| ~y @ x + By@ ~x; in particular, x 2 is invariant if and only if 

~x = O. Using this it is easy to see that the map taking x to eq @ x 2 induces an 

isomorphism from ker 8/im 8 to Eq,0(Z2;X) if q > 0, while Eq/I(Z2;X) = 0 for q > 0. 

Our next_ two results describe the groups E~, (Zp;X). Let A be a subbasls for 

X and let ~CK.(X;2) be the set 

r-2 
{ ~r-2x I X~Ar, 2 < r < ®} ~_j{7 SrX I x ~Ar, 2 < r < ~}. 

Let A2,0 and A2,1 be the zero- and one-dimensional subsets of ~. 

Proposition 6.3. (i) The kernel of the epimorphism E~,,(Zp;X) 

generated by the set { (8x)p I x ~ KI(X;1)) if p is odd and by 

{(~2 x)2 + (~x)2 I x ~ Kl(X;2)} if p = 2. 

+ EO ,(Zp;X) is 
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(ii) The terms 

and, if p is odd, 

E~, (Zp;X) with q > 0 are freely generated by the sets 

{e2p_2® (~x)Pl x ~A2,0 } 

{ep_l® (~x)P I xEA2, I} 

{ep_ 2 ® xp I x ~A i,I } 

Proposition 6.4. (i) If x ~ A2, 0 then Qx is represented in E**(Ep;X) by a nonzero 

multiple of e2p_2 × (~x) p. 

(ii) If x ~A--2,1 then Qx is represented by a nonzero multiple of ep_l® (~x) p. 

(iii) If x ~ A1,1 then Q~2P,X is represented by a nonzero multiple of 

ep_2®xP. 

Note that Lemma 4.3 is an immediate consequence of 6.3, 6.4 and the external 

versions of 3.3(iii), 3.3(v), and 3.6(iv). 

When p is odd, Proposition 6.3 is Corollary 3.2 of [77]. We shall give a 

different proof, using the methods of Section I, which also works for p = 2. First 

observe that there are two equivalent ways of constructing the spectral sequence 
r E**(~;X); one can either apply mod p K-theory to the filtration of DpX given in 

Section 1.2 or one can apply mod p stable homotopy to the corresponding filtration 

of K^DpX. The latter procedure has the advantage that the map 

D f:DY + K^D X 

induced by any map f:Y + K^ X clearly gives rise to a homomorphism 

of spectral sequences. 

Lemma 6.5. If ~ = Zp or Zp and ye K,(Y;I) (with ~y = 0 if p = 2) then 

(D f)**(eq®y ~) = eq ® (f**y)P. 

Proof of 6.5. It suffices to consider the case ~ = Zp. The composite 

induces a coproduct 

and we have 

D X = D ( X ^ S  O) 6 , , D  XAD S O 
"If I[  II  W 

r E~,(~;X) r 0 ~:E**(~;X) + ®E**(~;S ) 

o (~f)** = [(~f)**® 1] o ~. 
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The lemma clearly holds for q = O, and it follows for all q since the component of 

• Ceq ® in ® is o ® ® eq 

Proof of 6.4. (i) Let x be represented by f:M 2 ÷ K^ X. Then f**u 2 = x, 

(Dpf)**Qu2 = Qx, and (Dpf)**(ep_ 2 ® u~) = e2p_2 ® x p. Hence we may assume that 

X = M 2 and x = u2, and it suffices to show that v I = Qu 2 is not in the image of 

Ko(~P);I) + Ko(Dp~;I)- 

But this is clear since (D~),v I = v. 

Part (ii) is similar. For part (iii) we may assume that X = ZM 1 and x = Zu I. 

In this case it suffices to show that Q82P,U 1 is nonzero. But 82P,U 1 = i,u, where 

u E~(S0;2) is the unit, and Qu = v. Hence QS2P,U 1 = (Dpi),v is nonzero by 

6.1(iii). 

Proof of 6.3. First let p = 2. Since every element of ker B lifts to K,(X;2), 

Proposition 6.3 will be a consequence of the following facts. 

(a) d 2 = 0 

(b) d3(e2q_~_l@ (wx) 2) = e2q_a_4® (W82x)2 

(c) d3(e2q_a® (~x) 2) = e2q_~_3 ® [(~x) 2 + (~2x)2]. 

Note that, when 82 x / O, formulas (b) and (c) differ from those given in 

[99, 3.8(a)(ii)]. 

First consider the case X = S O . Then the spectral sequence of 1.2.4 is 

isomorphic to the Atiyah-Hirzebruch spectral sequence, so that (a), (b) and (e) hold 

in this case by 5.1. 

Next we need the eoproduct ~ defined in the proof of 6.5. this has the form 

q 
~(eq @x 2) = [ (e i ® x 2) @ eq_ i , 

i=O 

and it follows that if x and y satisfy 

then we also have 

and 

for all s _> i. 

Now let X = S 1. 

d3(e 3 ® x 2) = e 0 ®~ 

d3(e2s+l@X2) = e2s_2 ®~ 

d3(e2s+2Qx2 ) = e2s_lQ [y2 ÷ x 2] 

In this case d 2 = 0 for dimensional reasons, and there are 

only two possibilities for d 3 consistent with the eoproduct, namely 
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or 

d3(e2q® (Zu) 2) = e2q_3® (Zu) 2 

d3(e2q_l® (Zu) 2) = e2q_4® (Zu) 2- 

Only the second is consistent with 5.1, and hence (b) and (c) hold in this case. 

Next observe that, by 6.5, d 2 vanishes in general if it does for MS and ZM 2. 

In each of these cases, d 2 is zero for dimensional reasonsoexcept on ~2,O' and the 

only element that could be hit is (wZau2)(~S2Zau 2) in __~O,l" But the correspond- 

ing element of KI(D2z~M2;I) is nonzero since its transfer it nonzero in 

KI((ZaM2)(2)). Hence d 2 = O. 

Finally, (b) and (c) will hold for all x if they hold for x = u 2 and x = Zu 2. 

First consider Zu 2. It suffices to show that 

d3(e3® (~u2)2) = (~u2)2 + (w82u2)2. 

From inspection of the maps 

3 0 E~,(Z2;ZM2 ) E**(Z2;S ) + 

3 3 and E**(Z2;zM2) + E**(Z2;S l) 

we see that d~(e3~ (~62Zu2)2) is zero and that d3(e3® (~Zu2)2) projects to (Zu) 2 

in E~,o(Z2;S~). Hence 

d3(e3® (~u2)2) = (~Zu2)2 + ~(~62Zu2 )2 

for some ~ ~ Z 2 and there are no further differentials. But by the external version 

3.3(x) we have i,(~Zu2)(2) = ~,(~82Zu2)(2) in Ko(D2EM2;I) , hence c = i as of 

required. 

It remains to show that 

For this we use the map 

induced by 

d3(e3® (~u2)2) = (~62u2)2. 

~':E~,(Z2;ZM 2) ÷ E~,(Z2;Sl)®E~,CZ2;M2) 

6:D2~ ~ + D2SIA D2M 2 • 

We have 

(~u2)2) q 2 (~u2)2) ~'(eq@ = [ (ei@ (~Zu)) @ (eq_ i × 
i=O 

and therefore 

d3W'(e3® (~Zu) 2) = (e0® (~Zu)2)® [d3(e 3® (~u2)2) + eo® (~u2)2] 
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while ~'d3(e3® (~Zu) 2) = (e0® (~Zu)2) ® le O® (~u2)2 + eo® (~82u2)2] 

and the result follows. 

Next let p be odd. We must show the following 

(a) d i = 0 for i ~ p-2 

(b) ~_l(eq®xP) = eq+l_p® (Bx) p 

(c) d i = 0 for p ~ i ~ 2p-2 

(d) d2p_l(eq®xP) = eq+l_2p®xP 

(e) d i = 0 for i > 2p. 

As before, when X = S O the 

Hirzebruch spectral sequence so 

X = S 1 by 5.1 and the coproduct 

X if they do for X = M 1 and X = 

r ~-i 
E** ( Zp; S 

spectral sequence is isomorphic to the Atiyah- 

that (a)-(e] hold for 5.1. They also hold for 

• Now 6.5 implies that (a) and (b) will hold for all 

EM 1. Inspection of the maps 

) + E~,(Zp;ZaMI ) 

and E~,(Zp,~ l) ÷ E~,(~p~S~I 

and the coproduct shows in each case that either (a) and (b) hold or (a),(c),(d), 

and (e) hold with ~-I = O. Only the former gives an E term compatible with 

6.1(i). Hence (a) and (b) hold for all x. 

Now applying 6.5 again we see that (c), (dl and (e) will hold in general if 

they hold for ~ and Z~. But one can see that they do by inspection of the maps 

E~(Zp;S ) + 

r r 
and E**(Zp;ZaM2 ) + 

and the proof is complete. 

7. Construction and properties of Q. 

In this section we complete the construction of Q and prove external and 

internal versions of Theorem 3.3. 

As in section 6, we shall construct Q by specifying elements Vr_ 1 ~ K0(DpMr;r-1) 

and v~ ~ Kl(DZMr;r-1). In order to do this we need a stronger version of 6.1. 

Lemma 7.1. Let r ~ 2. The maps 

(Dt~) , : Ko(DpMr;r-1) + Ko(DpSO;r-1] 
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(D~),QT,:KI(DpZMr;r-I) ÷ Kl(DpSl;r-l) ~KI((ZMr)(P);r-I) Zp 

and (Dpi),:Ko(DpSO;r-l) ÷ Ko(DpZMr;r-I) 

are isomorphisms, and the sequence 

(Di), T, Zp 
0--*KI(DpSI;r-I) ~ Kl(DpMr;r-l) -----~ KI((Mr)(P) ;r-l) --~O 

is exact. 

Note that the terms in 7.1 which involve iterated smash products may be 

calculated by using 5.8. Assuming 7.1 for the moment we may define Vr_ I and v' by r-I 
the equations (D~),Vr_ 1 = v, (D~),v~_ I = v', and ~,v~_ 1 = O. 

Definition 7.2. Q:K (X;r) + K~(DpX;r-I) is the operation QVr_l if a = 0 and ~, 
r-I if ~ = i. 

Observe that Vr_l, v, v~_ 1 and v' are equal respectively to QUr, Qu, QZUr, and 

Qzu. From now on we shall always use the latter notations for these elements. 

We shall prove 7.i by showing that E 1 = E r-I in the K-theory BSS for DoznMr 

when r ~ 2. For this we shall require a formula for the Bockstein of the external 

Q-operation, and this in turn depends on the other formulas collected in the 

following lemma. 

Lemma 7.3. Let x,y cKa(X;r) with r _> 2. {o 
(i) T,Qx = -(p-l)!~x (p) 

(2) r-2 
-wx + ~2 ~ ( 8r x) 

(2) 

if a =i 

if a = 0 and p is odd 

if ~ = 0 and p = 2 . 

Here ~ Z 2 is independent of x. 

(ii) ~Qx = Q~x if r k 3. 

(iii) 

I~ + ~ - ~,~P[I ! ([]x(i) ® y{P-i)l if ~ : 0and p is odd 
i=l p 

Q(x+y) = + Qy ~l,(x®y) + ~2r-2~l,[(BrX) ® 8ry)] if e = 0 and p = 2 

[Qx + Qy if ~ = I. 

(iv) Let k ~ Z. Then 
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(v) 

I 
(k p - ~ -k)~1. x(p) kQx 

Q(kx) = 

kQx 

A,EQX -- I QEx 

[~l,(Ex) (p) + pQZx 

ifa--O 

if~=l. 

if~=O 

ifa=l. 

(vi) 

=I QSrx - P~*(x(P-I) ® 6rx) 

~r_l Qx 

L ~l,(~rx)(P) + pQSr x 
ifa=O 

if~=l. 

The constant ~ in Ix~rts (i) and (iii) will turn out to be I, as required for 

3.3(vi). In order to avoid circularity, we shall prove 7.1 and 7.3 by a simul- 

taneous induction. More precisely, we shall assume that 7.1 holds for r _< r O and 

that 7.3 holds for r < r 0 (vacuously if r 0 = 2) and then prove 7.3 for r -- r 0 and 

7.1 for r = r 0 + i. Before beginning, we need two technical lemmas. 

Lemma 7.4. Let Y fpz g;cf h-EY be a cofiber sequence inKZ and let 

r _> 2. Suppose that 8r-I vanish on KI(Z;r-I). Let Y~KI(EY;2r-2) , z~ Ko(Z;r-I) 

and w ~Kl(Cf;r-l) be any elements satisfying r-ly = h,w and pr-l(Ez) = f,y. Then 

8r_l w = g,z. 

Proof Consider the following diagram in ~ ~ . 

K^Cf i h pK^EY i Ef~K^E Z i Zg ;K^ECf 

w y i ~ Zw 

E -i "~ EM2r-2 ~ ~ ZMr-I ~ ERr 

Here the bottom row is the evident cofiber sequence, with the first map induced by 

the inclusion Z r-i C Z 2r-2 and the second by the projection Zp2r_ 2 ÷ Z r_l. 
P P 

Precomposition with the first, second, and third maps in this sequence i~duces the 

transformations r-i pr-I and (because of the suspension) -Br+l, respectively. The 

left-hand square commutes up to homotopy since ~r-ly = h,w. Hence there exists an 

element ~ making the other two squares commute, and we have -Sr_iEw =(Eg)w~. Now 

the map 

Ez : EMr_ I + K^EZ 

makes the middle square commute, hence ~ - Zz restricts trivially to EM2r_2. 

- Ez extends to a map 

~:E2Mr ÷ K~EZ 

Thus 
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with 8r_l~ = ~ - ~z. Since ~r-I vanishes on Ko(ZZ;r-I) we have ~ = ~z. Thus 

-Gr_lZW = Z(g,z) and the result follows. 

Lemma 7.5. If f:X + KAY is any map then f** commutes with w, Sr, p, and Z. 

The proof of 7.5 is trivial. Before proceeding we use 7.5 to dispose of 

3.2(iv). 

Proof of 3.2(iv). For any x ~K,(X;r-1) and y K,(Y;r) there exist maps 

f:~IXlHr_ 1 + K^X and g:zIYIM r , KAY with f**~IXlur_ 1 = x and g**~lYlu r = y. 

Thus by 7.7 and 1.3(ii) we may assume X = zlXlMr_ 1 and Y = F IY[M r with x = zlXlur_ 1 

and y = zlYlu r. By 3.2(vi) we may assume Ixl = IYl = O. Clearly the set 

(Ur_ I ® ~u r, Ur_ I ® ~rUr ) 

is a subbasis for Mr_l ̂  M r . Hence by 3.9 we have 

(1) (P, Ur_ I) ® u r = ~p,(Ur_ 1 ® ~u r) + a2~rP,(Ur_ 1 ® ~6rU r) 

for some al,a 2 ~ Zpr_l. Applying ~ to each side gives 

PUr_ 1 ® ~u r = alPUr_ 1 ® ~u r + a26r_l(Ur_ 1 ® ~6u r) 

= + ® ~BrU alPur-1 ® ~Ur a26r-lUr-1 r 

Hence a 2 = O. Now applying (j~j), to each side of equation (1) gives 

p(u® u) = alP,(U® u) = alP(U® u) 

in Ko(DpSADpS;r) ~ Zpr. Hence a I = I in Zpr_l. 

Next we give the proof of 7.3 for r = r O. The proof of each part will be quite 

similar to that Just given for 3.2(iv). First we observe that by 1.3, 1.4, 1.5 and 

7.5 we may assume in each part except (iii) that X is 2~M r and that x is the 

fundamental class ~u r. 

(i). If m = I the result holds by Definition 7.2. Suppose a = 0 and consider 

the map 

j~P):Ko(M(rP);r-I) Zp + Ko(SO;r-I). 

This is monic when p is odd and has kernel generated by 2r-2~(BrUr) (2) when p = 2. 

The result follows since ~ (P)~ (p) K0(S0;r) • ~r = u £ and 
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J~P)~,Qu r = T,(DpJ),Qu r = T,Qu = -(p-l)lu; 

the last equality is 5.7(iv). 

(ii). Let ~ = I. By 7.1 it suffices to show that 

and that 

(Dpj),~QZu r = (DpJ),Q~Zu r 

x,~QZu r = x,Q~Zu r . 

This second equation follows from part (i) and the first from 5.7(i). The case 

= 0 is similar. 

(iii). Let ~ = O with p odd. By 1.3, 1.4 and 7.5 we may assume that X is 

MrVM r with x and y being the fundamental classes of the two summands. Let 

P 

be the equivalence of II.I.I and let f:M r + MrVM r be the pinch map. Then 

(Dpf),Qu r = Q(x + y), and it suffices to show that 

- ~ = + u® - p-i I ~p. u(1) ® ~ I u (p-i) 
F*l(~pf)*QUr QUr®U QUr i! I p ~i j * r * r 

since F, applied to the right side of this equation clearly gives the right side of 

the desired formula. Now the projection of F-lo Dpf on the i-th wedge summand is 

the transfer 

Xi,p_ i : DpM r + DiMr^ Dp_iM r . 

When i is 0 or p this transfer is the evident natural equivalence, hence it suffices 

to show 

I :P~t u (i) (p-i) 
(2) (Ti,p-i)*QUr = - p ~i j * r ®~1*Ur 

for 0 < i < p. Now the transfer 

+ M (p) Xi,p-i:DIMr^Dp-iMr r 

induces a monomorphism since the order of Z i × Zp_ i is prime to p for 0 < i < p. 

We have 

= • l)lu(P ) (~ -),(T- _),Qu = ~*QUr -~P- r l,p-I l,p-I r 

by part (i) while 

(~i,p-i)*[~1*u(i)r ® ~l*U~ p-i)] = i! (p-i)!U~ p) 
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by the double coset formula. Equation (2) follows. The proof when p = 2 or ~ = 1 

is similar. 

Part (iv) follows from (iii) by induction on k. When p = 2 and ~ : 0 we need 

2r-2~,(BrX)(2) = 0. If r > 2 this is evident since ~,(SrX) (2) has to know that 

order 2 by 3.2(viii). If r = 2 then by 6.4(iii) we have 

i,(~82x)(2) = Q822,w82x : 0. 

(v). Let m = O. By 7.1 is suffices to show 

and 

(ZDpJ),A, ZQu r = QZu 

x,A, ZQu r = 0. 

The first equation is immediate from 7.2 and }.7(li). For the second, consider the 

diagram 

S I ^DpM r A ~ Dp(SI^ M r ) 

~ I^~ t I 

SI~M(P)r A' ~ (SI^Mr)(p) 

Here the map A' is induced by the diagonal of S I. By definition, the map A is 

obtained by aplying the functor E~p ^ ( ) to the map of Zp-Spectra 

P 

Sl^ (Mr)(P) + (SI^Mr)(p) 

induced by the diagonal of S I. Hence the diagram com~utes by naturallty of ~. 

the diagonal map of S 1 is nonequivariantly trivial, hence x,A, ZQu r = 0 as 

required. The proof when a = 1 is similar. 

But 

(vi). Suppose first that e = I. Consider the following diagram 

DS 
P 

Df 
P DpS g ~ C - h = ZDpS 

p r p 

Here f:S + S has degree pr and the top row is the cofiber sequence of Dpf. The map 

y is that constructed in II.3.8, where it was called $, and the diagram commutes. 

For any s > I the map 

(Opf),: (DpS s) Ko(OpS;s) 

is given by the formula (Dpf),n -- pprq and 

(Dpf),Qu = Q(pru) = prQu _ (ppr-I _ pr_l)n 
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In particular, when s = r-I the map (Dpf), is zero, and since Kl(Dps;r-l) : O we see 

that 

h,:Kl(C;r-l) + KI(ZDpS;r-I) 

is an isomorphism. Thus there is a unique w (Kl(C;r-1) with h,w = ZQu. Letting 

y = ZQu(KI(*ZDpS;2r-2) 

and z : pQu + ~(K0(DpS;r-l) 

r-I = (Df),y, hence by Lemma 7.4 we conclude that we have r-ly = h,w and p, Zz 

8r_l w = g,z in KI(C;r-I). 

Next we shall show that y~w = Qzu r. Assuming this for the moment, we have 

8r_iQzu r = ¥,8r_1 w = ¥,g,zx = (Dpi),z = pQSrU r + ~l,(SrUr)(P) 

which gives (vi) when ~ = I. To show y,w = QZUr, we must show that (Dpj),y,w = Qzu 

and x,y,w = O. The first equation is immediate from the diagram and part (v). For 
+ 

the second, we observe that Dpf and y are obtained by applying EZp a z ( ) to 

certain gp-equivariant maps F and F, so that by naturality of T we hav~ the 

following commutative diagram of nonequivariant spectra. 

+ T C == EZpAz CF r CF 

Thus it suffices to show F,~, = 0 on KI(C;r-I). As a nonequivarl~nt mp F is the 

map S ÷ S of degree ppr, hence the cofiber CF is nonequivariantly equivalent to 

~r" The resulting Ep-action is clearly trivial on Ko(Z~r;Pr) , hence also on 

Kl(Z~r;Pr) since the Bockstein 8pr is an isomorphism between these two groups. 

Thus 

r~:Kl(ZMpr;Pr) + KI((~M r)(p);pr) 

lands in the ~p-invariant subgroup. We claim that this subgroup is generated by the 

element 
ppr-rf 
, ~(Zu r) ® (grZur)P-ll 

when p is odd and by this element together with 

2r-l~2r2r[(ZUr ) *  ® (ZUr)] 
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when p = 2. From this it will follow that wpr-r+l vanishes on this subgroup and 

therefore that r, vanishes on Kl(Z~r;r-1) , since wpr-r+l maps onto the latter 

group; thus we will have shown F,x,w = 0 as required. To verify the claim we 

observe that the set 

{Zu r ® x 2 @ --. ®Xp I x i = Zu r or ~rNUr} 

is a subbasis for (Z~) (p). Using the basis for Kl((ZMr)(P);pr) given by 3.9, we 

see at once that the elements 

Zl = ~,-pr-r (EUr) ® (6rZUr)(P-l) ] 

^ pr-r[ p-1 ,(i) (p-i-l)] 
and z 2 = ~prP, Zu r ® [ ~ (Sr~Ur~ QZu • (8rZU r) ] 

i=l r 

are a basis for the E 1 × ~_ 1 invarlant subgroup. Now if T is the map switching the 

first two factors of (ZMr)~P) we have T,z I = z I and 

pr-r (p-2) 
T,z 2 : z 2 - 2~prP , [(ZUr)(2) ® (Sr~Ur) ]; 

the claim follows. 

Finally, we must prove part (vl) with ~ = O. By 7.1 we have 

(3) ~r_lQUr = alQ~rU r + a2~1,(u(rP-1) G 8rU r) 

for some al, a 2 ~ Zpr_l. Applying A,Z and using part (v) gives 

8r_lQZUr = al[~1,(6rZUr )(p) + pQSrZUr]. 

Comparing this with the case a -- 1 of (vi) gives a I = 1. Now applying x, to (3) and 

using part (i) gives 

p-1 u (p-i-1) 1. 
-(p-l)!(8 r l~(U (p)) : ~(p-l)!~[ ~ u (i) ® 6rUt® 

- r r 
i=O 

But Sr_l~(U(r p)) = p~r(Ur (p)) and it follows that a 2 = -p as required. 

This completes the case r = r 0 of 7.3. Next we must show 7.1 for r = ro+l ~ 3. 

It suffices to show that E 1 = E r-1 in the K-theory BSS for DpM r and Dp~M r. We shall 

give the proof for DpMr, the other case being similar. Let x and y denote the 

elements ~u r and W~rUr . by 6.1,7.2 and 7.3(ii) we see that the set 

{ r-21,x(p) ' r-3Qx ' r-2 ,(x(P-l) ®y), r-3Qy} 

is a basis for K,(DpMr;I). Since all elements of this basis lift to K,(DpMr;r-2) we 

have E 1 = E r-2 in the BSS. The elements ~r-2x(P) and ~r-2(x(P-l) ®y) are (r-2)- 
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cycles since they clearly lift to KO(DpMr;r-l). Next we have 

dr_2~r-3Qx = r-36r_2Qx = r-3Q6r_iX = r-3Qpy = O, 

where the 2 nd and 4 th equalities follow from 7.3(vi) and 7.3(iv) respectively. 

Similarly, 

_ r-2( )(P) O. dr_2~r-3Q~ = ~r-36r 2Qy = ~r_lY = 

This completes the inductive proof of 7.1 and 7.3. 

Next we shall prove the external version of 3.3. Rather than write out the 

complete list of external properties, we give rules for changing the internal 

statements to their external analogs. All internal products and Dyer-Lashof 

operations are to be changed to external ones, with the map t, prefixed to any 

p-fold product which is to lie in K,(DpX;r). The map 6, is to be prefixed to the 

left-hand side of each Caftan formula. In the stability formulas, G is to be 

changed to Z and A, prefixed to the left-hand side. These conventions give the 

correct external analog for each part of 3.3 except for part (ii) which has no 

external analog. 

Proposition 7.6. The external Q-operation satisfies the external versions of each 

part of Theorem 3.3 except part (ii). 

Before beginning the proof we need a len~na to deal with the prime 2. (See 

II.4.3 for another proof of this lemma.) 

Lemma 7.7. Let X be any spectrum. The sequence 

ZD2X A --D27~ X • r Z2(X^X ) Z2~ 72D2 X 

is a cofibering. 

Proof. Consider the cofiber sequence 

(4) S I a ~S I^S I ~S 2^S 2 ~S 2 

of Z2-spaces. Here Z 2 acts trivially on the first and fourth terms and by switching 

factors (respectively, wedge summands) in the second and third terms. Now S1^S 1 is 

the one-point compactification sV of the regular representation V of Z2, and it is 

easy to see that the second map in the sequence (4) stabilizes to the transfer 

S V ÷ Z 2+ ̂ S V. The sequence of the lemma is obtained by applying the f~ctor 

EZ~Az2(?^X^X)~ to the sequence (4). 



340 

Next we turn to the proof of 7.6. Part (i) is trivial and parts (iii), (v) and 

(viii) are contained in 7.3. 

(iv). We may assume X = ~aMr, x = Zau r. Suppose a = i. By 7.1 and 7.3(vi) we 

see that the set 

{Q~u r, 1,[(zu r) Q (~rZUr)(P-l)],Q~r+iP,ZU r} 

is a subbasis of height r for DpZMr, hence the set 

{P,Q~u r, ~,[(~u r) ® (Br~Ur)(P-l)l} 

is a basis for Kl(DpZMr;r). It follows that the map 

(Dj),~ ~, : Kl(D~r;r) ~KI(DSI;r) + KI((XMr)(P);r) 

is monic. Now 

(Dj),Qp,zu r = Q(p,J,zu r) = Q(pzu) =pQzu 

=f~ if r =I 

(Dpj),p, QZu r if r ~ 2, 

x,Qp,zu r = 0 for all r. The result follows, and the case ~ = 0 is similar. 

Next we prove part (x). The proof is by induction on r. If r = i we have 

The set 

and 

l,x (2) = Q622,x by 6.4(iii). Suppose r > 2. We may assume x = Zu r. 

{Q~Ur,1,(ZUr~ ~rZUr),Q~r+12,~Ur ) 

is a subbasis of height r for ~ZMr, hence by 3.9 we have 

(5) 1,(ZUr)(2) = al~r2,QZu r + a2QBr+12,Eu r 

with a I ~ Z2r_l and a 2 ~ Z2r. Applying ~, to (5) gives 

0 = -a2(~rZUr)(2) 

hence a 2 = 0. Now applying u to (5) gives 

(6) 1,(UZUr)(2) = al6r_iQzu r. 

If r = 2 the inductive hypothesis gives 

i,(~Zu2,)(2) = Q~22,(u~u2 ) = Q(2~2zu 2) = v~,(~2zu2 ~2) = ~Q~u 2 

(where the third and fourth equalities follow from 7.3(iv) and 7.3(vi)) and we 

conclude that a I = 1 as required. If r ~ 3 the inductive hypothesis gives 
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~,(~ZUr)(2) = 2r-36r_12,Q(~ZUr) = 2r-26r_iQZu r 

and comparing with (6) gives a I = 2 r-2 as required. 

Next we show part (vi). This will follow immediately from 7.3(iii) and 7.3(iv) 

once we show that ~ = I in 7.3(i). Letting X = ~M r in 7.7, we have 

0 = (z21),~,QZ2Ur 

= (z21),n[-(Z2Ur)(2) + ~2r-2(gr~Ur)(2) l 

= z2~t,[(ZUr )(2) + ~2r-2(6rZUr)(2)l. 

By part (ix), we have 

~t,(gUr)(2) = 2r-26r_iQ~Ur = 2r-2~,(~6rZUr)(2) * 0. 

Hence ~ ~ 0 as required. 

(vii) Let p = 2; the odd primary case is similar and somewhat easier. First 

let Ixl = [Yl = 1. We may assume x = ZUr, y = Zu r. We assume by induction on r 

that we have chosen mod 2 s multiplications for s < r such that the desired formula 

holds. We begin by giving a basis for 

K0(D2ZM r ~ O2ZMr;r-~ 1. 

The set 

{~i,( Zu r ® 8r~U r) ,~,(~rZUr) (2) ,QZUr, Q6rZUr) 

is a subbasis of height r-i for D2ZM r and in particular it is a basis for 

K,(D2~Mr;r-I). By 5.8 we have 

K,(D2~r~D2ZMr;r-I) ~ K,(D2ZMr;r-I) ® K,(D2ZMr;r-I) 

with the tensor product taken in the Z2-graded sense. We therefore obtain a basis 

for K,(D2ZM r ^D2ZMr;r-l) by takin4 all 16 external products of the elements in the 

set given above. It will be convenient to denote Zu r by x in the first factor and 

by y in the second factor. Let al,...,a 8 ~Z2r_l be the coefficients of ~,Q(x®y) 

with respect to this basis, so that we have 

(7) 6,Q(x Sy) = al~,(x ® 6rX) • ~,(y Q 6ry) + a2Qx $ ~1,(y® ~ry) 

+ a3~,(x® 6rX) SQy + a4Qx® Qy + a5~i,(~rX)(2) ® ~,(6ry) (2) 

+ a6~l,(~rX)(2) ® Q6r y + ~QBrX ® ~1,(6ry) (2) + asQBrX® Q~r y- 

We claim first that 2a 5 = 0, so that a§ is either 2 r-2 or O. When r = 2 this is 
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trivial, while for r 2 3 it follows from the inductive hypothesis and the equation 

~Q(x®y) = Q(~x® ~y). Now as in Remark 3.4(iv) we see that changing the choice of 

mod 2 r multiplication changes the value of a 5 without changing the other ai. We can 

therefore choose the mod 2 r multiplication for which a 5 = O. (When p is odd the 

commutativity of the multiplications gives a 5 = 0.) 

It remains to determine the other coefficients in equation (7). If we apply 

the map (D2J ̂ D2J ), to this equation, the left side becomes O~uSQzu by 5.7(vii) 

while the right side becomes a4Qzu®Q~u. Hence a 4 = I. Next consider the 

following diagram 

D 2 (X ̂ Y) .... 

1" 
X^Y^X^Y 

6 

I^T^I 
X ^XAy ,.y 

D2X ̂  D2Y 

xAl 

i^ ~ ~ X^X ^D2Y 

The com~utativity of this diagram will be proved in VI.3.10 of the sequel. With 

X = Y = ZM r we obtain 

(x^l),6,Q(xSy) = (i^ 1),(l^T^l),x,Q(xQy) 

= (I^ 1),(l^T^l),~[-x ®ySx®y + 2r-28r(X®y) ® 8r(X®y)] 

= (I^ 1),w[x (2) ®y(2) + 2r-2x(2) ~ (Sry)(2) 

+ 2r-2BrX~X®YQBry + 2r-2x~)BrX@~ry~y + 2r-2(6rX)(2) ®y(2)] 

= ~x (2) $~i,y (2) + 2r-2~x (2) $~i,(8ry) (2) 

+ 2r-2~x,l,(X®~rX) ®~1,(y®6ry ) + 2r-2 (6rX)(2) ®~,y(2) 

r-2 
= 2 ~x, 1,(X®6rX) @~,(y$ 6ry ) + 22r-4~(6rX)(2) ®~,(Sry) {2) 

with the last equation following from part (x). Now applying (T ̂  I), to the right 

side of (7) and comparir~ coefficients gives a I = 2 r-2, a 3 = O, a 7 = 22r-4 and 

a 8 = 2a 6. Similarly, applying (l~x), to equation (7) gives a 2 = 0 and a 6 = 22r-4, 

whence a 8 = 2a 6 = O. This completes the proof of part (vii) when Ixl = IYl = 1. 
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Next let Ixl = i, IYl = 0. Consider the following commutative diagram 

~o2(x ^y~ ~s ~ ~o2x ̂ D2Y 

I A IT ̂ i 

D 2 ( ~X ̂  Y ) D2X ^ ~D2Y 

D2(T,- i) [I^A 

D2(X^ ZY) .... 6 ~ D2X ̂  D2ZY 

If we let X = Mr, Y = Z-1M r we obtain 

(I0) 6,[D2(T^I)],A,zQ(-~u r ® Z-Iu r) = (I^A),(T^I),(~8),Q(-Zu r® ~-lu r) 

We can evaluate the left side of (10) using 7.3(v); the result is 8,Q(zu r ® Ur). 

On the other hand we can evaluate the right side of (lO) by using 7.3(v) and the 

part of 7.6(vii) just shown; the result is 

Q~u r ® 71,u(21)r + 2QZUr ®QUr + 22r-4~l*(Sr TMr 7(27 @ Q6rUr" 

Thus equation (10) gives the desired formula when x = Zu r and y = Ur, and therfore 

this formula holds in general. 

Finally, let Ixl = IYl = 0. We may assume x = Ur, y = u r. The set 

{~1,x (p) ® ~l,y (p),Qx ® ~1,y (p), ~1,x (p) ® Qy, Qx ® Qy, 

~t,(x ® ~r x) ® ~l,(y ® ~ry),Q~r x ® ~,(y ® ~ry), 

~l,(x® ~r x) ® QBry , Q~r x® QBry ) 

is a basis for KO(D2Mr^D2Mr;r-I). Let al,...,a 8 be the coefficients of 8,Q(x ® y) 

in this basis. By 5.7(v) we have 

(D2J^D2J),6,Q(x ®y) = 8,Q(u®u) = Qu® n + q @Qu + pQu® Qu, 

hence a I = O, a 2 = a 3 = 1 and a 4 = 2. Diagram (87 gives 

(~^l),~,Q(x ®y) = (l^ t),6,T,Q(x ® y) 

and it follows that a 5 = 2 r-2 and a 6 = 0. Similarly, 

(l^~),~,Q(x ®y) = (~^ l),6,x,Q(x ® y) 

and hence a 7 = 0. Thus we have 
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(ii) 6,Q(x ®y) : Qx® ~1,y (2) + ~1,x (2) @Qy + 2Qx ® Qy 

+ 2r-2~1,(x ® BrX) ® w1,(y ® Sry) + a8QBr x ® Q~r y 

and it remains to determine a 8. Consider the following commutative diagram 

(12) 

~hlx ^y) ~6 . ~D2x ̂ D2y 

~IA IA ̂ I 

o2(zx ̂ y) 6 . ORZX ̂ D2y 

With X = Y = M r we have 

(13) (AAI),~6,Q(x × y) = 6, A, ZQ(x @y). 

We evaluate the left side of (13) using 7.3(v) and equation (Ii); the result is 

QZx @ ~,y(2) + 2QZx ®Qy + a8~l,(Br~X)(2) ®Q~ry + 2a8Q~rZXQQ~ry. 

Evaluating the right side of (13) using 7.34(v) and the part of 7.6(vii) already 

shown gives 

QZx ® ~l,y (2) + 2QZx ®Qy +22r-4~l,(BrZX) (2) Q Q~ry. 

Hence a 8 = 22r-4 as required. 

(ix) We have seen in VIII.7.4 that ¢k is an H ring map of K(p) for k prime 

to p. Hence we have 

I~f~.~ = ,~%f). ~,I~Y;r 11 + ~,I~X;r iI 

for any map f:Y + K^X. 

= 0. Since the map 

Thus we may assume x = Z~Ur with a = O or I. 

I~j l,:KOI~Mr~r 11 + KOI~S~r 11 

First let 

is monic and since cku = u, it suffices to show ¢~u = Qu. Dually, it suffices to 

show that ck is the identity on KO(BZp;r-I). But this is immediate from 5.3 since 

¢k commutes with ~*. Now, if a = i we have 

@kQZur = @kA, ZQUr = A,z¢kQur = A, ZQu r = Qzu r. 

This completes the proof of 7.6. 

Next we must prove 3.3. Each part of this theorem is in fact an easy 

consequence of the corresponding external formula except for parts (ii) and 

(viii). For part (ii) we may clearly assume X = S, and it suffices to show that Qu 
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goes to zero under the nontrivial map from BE + to S O . But the induced map 
P 

~O{s°;r) + ~°(B~p;r) 

takes 1 to l, and <l,Qu> = 0 by Definition 5.6, whence the result follows. 

The proof of part (viii) is more difficult. First recall that if X is any 

nondegenerately based space and ~:X + ÷ X is the identity on X then the cofiber 

sequence 

z~sO Z~q ~ Z~X + Z~ ~ Z~X 

is naturally split by the evident retraction ~:X + + S 0. 

natural transformation 

and the inclusion 

can be identified with ~,. 

be the counit. Then 

v:Z~X+ Z~X + 

K,(X;r) a K,(X;r) 

In particular, there is a 

Now let Y be an H~ space, let Z = GY, and let ~:ZZ ÷ Y 

c:~m(GY;r) + Ka+ l(Y;r) 

is the composite v,a,Z. 

Let x ~K0(GY;r); the case Ixl =l is similar. First we must show that Qx is 

in ~ (~Y;r-l), i.e., that ~,Qx O. But ~:Z~(~Y) + = + Z~S 0 is clearly an H~ ring a 

map, and therefore ~,Qx = Q~,x = O. Next we state the required formula more 

precisely as follows: 

(14) cX,Qv,x = Qox. 

Since ~, applied to each side of (14) gives zero, it suffices to show that k, makes 

the two sides of (14) equal, i.e., that 

This in turn follows at once from 7.3(v) and the commutativity of the following 

diagram in h~ (where we suppress Z ~ to simplify the notation). 
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(i~) 

~]D Z A 
P 

ZD 
P 

+ 

ZD Z 
P 

z(Z ) zx *.zZ- 

~-D ZZ 
P 

DY 
P 

D (g÷) 
P 

y÷ 

~-g 

Here C and ~ are the H~ structural maps for Z + and Y+ respectively. In order to see 

that (19) commutes we need two further diagrams. The first is the following in the 

catgory of spaces. 

(16) 

ZDp(Z +) = Z[(EZp ×~ zP) +] 

P 

~(Z +) Zk~%Z ~ ~Y ~ 

-EZp P I I 

x (ZZ) p 

D [(zZ)+I/S 0 
P 

I D(JI 
EZp x YP = Dp(Y+)/S O) 

P 

Here % is the evident diagonal map. This diagram commutes by definition of ~; see 

[69, Lemma 1.5]. Next we have the following diagram in ~ (where we again suppress 
Z'). 

(17) 

W^DZ ......... A ............. 
P P 

/~D (X^I) 

ZD Z 
P 

W~ 

ZD 
P 

l^Dv 
P 

ZD Z + ,, 
P j/ 

--D ZZ 
P 

® 

Dp[ (ZZ)+I 

,-D [(ZZ) ] / ~ k  
P 

-~ D (W^Z) 

Dp(W^ Z +) 
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Here W = (SI) + and the unlabeled arrows are the evident quotient maps. It suffices 

to show that the inner square of this diagram commutes, since combining it with 

diagram (16) gives diagram (1G). Since 

^I:W^D Z + ED Z 
P P 

is a split surJection, the commutativity of the inner square will be a consequence 

of the commutativity of the rest of the diagram. Each of the remaining parts 

clearly commutes except that marked ~. To show that ~ commutes it suffices to 

show that the composites 

and 

are equal. 

either of the maps ~:(sl^ Z) + + sl^ Z and u:(sl^ Z) + + sO; 

equal since wedges are products in~ . 

W^Z I^V>W^Z + = (Six Z) + ~ (SI^ Z) + 

WAZ l ̂ I~SIA Z v~ (SI^z) + 

But is is easy to see that these composites agree when composed with 

they are therefore 

This completes the proof of 3.3. 

We conclude this section with the proof of 1.6. First we calculate 

6rP,QEu r = 6rQP, EU r = ~,(6rEUr)(P) +PQSr+lP,EUr 

in KO(OpEMr;r). Multiplying by pr-i gives 

r-i Eu = r-I (p) 
O = p 6r p*Q r P 1*(6rEUr) ' 

hence ~,(6rEUr )(p) has order ~ pr-1. How suppose K r has an H~ structure. Let 

u:S + K r be the unit map for this structure. Then u = cu ~Ko(S;r) for some c 

prime to p. Let f be the composite 

r/~ r = S^EM r u ̂ I= K^EM r = K r 

and let F be the composite 

Ko(DpEMr;r) 

(Dpf), ~, 

Ko(DKr;r) ~Ko(Kr;r) ~Ko(S;r), 

where the last map is induced by the product for K r. We claim 

cP+iF~,(BrEUr )(p) = ~, which contradicts the fact that t,(BrZUr)(P) has order 

pr-1. The claim is a consequence of the commutativity of the following diagram 
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S ̂ s(p) u ^(ci) (p) _.. Kr A (ZMr) (P) 

I 1 ̂  * u^D (ci 

S^S SAD S ......... P 

u 

I^~ 

i^~ ,K ^DZM 
p r p r 

K ^ K I "- ~ "~ ~ Kr ~ DpKr Kr r r 

Here the composite (i^ i) o [~^(ci) (p)] represents c:,(C~rZUr )(p) 

diagram commutes since u is an H ring map. 

and the 

8. Constructio n and properties of R and~ . 

In this section we construct R and ~and prove the external and internal 

versions of 3.6 and 3.7. 

We begin with the construction. 

Le~ma 8.1. The map 

is an isomorphism. 

~r+l :~ (DZMr ;r+l ) : K o (%z% ;r+l I 

Lemma 8.2. The map 

is monic if s = r or s = r+l, and q ~ Ko(%S;r+I) is in the image of (%J),. 

Definition 8.3. Let e c Kl(DpZMr;r+l ) be the unique element with 
2 

Br+l e = Q8r+2P,ZUr. Let e'c K0(%Mr;r+l) be the unique element with (DpJ),e' = n. 

Then 

R:Kl(X;r) ÷ Kl(DpX;r+l) 

and ~:Ko(X;r) + KO(OpX;r÷:) 

are the operations Qe and Qe'" 

Note that e and e' are equal to R~u r and ~u r respectively. We shall always 

use the latter notations for these elements. Also note that ~u = ~ in Ko(B2p;r+l). 

Proof of 8.1. Let r _> 2; the case r = I is similar. Consider the K-theory BSS for 

%~M r. By 6.1 the set 
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r-2 r-I (p-l) r-I (p) 
{~r-2QZUr,~ Q8rZUr,~ ~,[ZUr® (SrZUr) ],~ ~,(SrZUr) } 

is a basis for E 1 . By 7.6(v) we have 

(I) dr_l~r-2QZUr = =r-11,(SrZUr)(P) , 

while clearly dr_l~r-2QSrZU r = 0 and 

dr_l~r-l~,[ZUr ® (SrZUr)(p-l)] = O; 

hence the set 

r-2 r-I 
{~ QSrZUr,~ l,[zu r ® (SrZur)P-l]} 

is a basis for E r. Now dr~r-2Q~rZU r = O by 7.6(v), and 

dr~r-11,[ZUr @ (SrUr)(p-I)] = ~r-l~,(BrZUr)(P) , 

which is zero in E r. Thus there is an element x in Kl(DpZMr;r+l) with 

r r-1 
x = ~ ~,[Zu r ® (~rZUr)(P-l)], 

2 
and the set {QZUr,X,QSr+2P,ZUr} is a subbasis of height r+l for DpEM r. In 

particular the group Ka(DpT~;r+l) has the same order p2r for ~ = 0 and s = i. The 

lepta will follow if we show that 8r+ 1 ® Zp maps onto ~(DpZ~;r+l) ® Zp. But the 

map 

r ® ® Zp +  OI% Mr;l  ® Zp : 

is an isomorphism, hence it suffices to show that ~rSr+ I maps onto ~(DpZ~;l). 

r-I ,(SrZUr ) r equation (1) shows that (P) is in the image of ~ 8r+l, and it 

remains to consider ~r-2Q~rZU r. By the exact sequence 

r r+l 

Kl(%L~r;r+l) ~ 8r+lrKo(%ZMr;1) P* ~Ko(%ZMr;r+2 ) 

r+l r-2- = O. But 7.6(vi) gives it suffices to show p, ~ QSrZU r 

0 Qpr+lsr+3P~ZU r r+l^_ 3 u r 2 (p) = = P ~r+3 p*~ r - (ppr+p-I _ P )1,(~r+2P,ZUr) 

r+l~ 3 u r+l r-2- 
= P ~Sr+3P*Z r = P* ~ QSrZUr 

Now 

which completes the proof. 

r-l~ , (p-l) 
Proof of 8.2. It is easy to see that ~r-l~rl,ur(P) and ~ ~r~,tu r ~rUr ] 

zero, hence by the exact sequence 

r-18 

are 
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i u (p) and ~y = 1,[u~ p-I) ®BrUr]. there exist elements x and y with ~x = * r 

Clearly the set {x,y,Qu r) is a subbasis of height r+l for DpM r. in particular the 
2 

set {x,p, Qu r} is a basis for KO(DpMr;r+l). Since {u,Qu} is a basis for 

K0(DpS;r+l) we have 

(2) (DpJ),x = aln + a2Qu. 

where al, a 2 Zpr+l. Applying ~ to both sides of (2) gives 

in KO(DpS;r) , hence a I = i + aJp r and a~ = a~p r for some al,a 2 ( Zp. This fact, 
± 2 together with the equation (Dpj)wp, Qu r = p2Qu, shows that (Dpj), is monic on 

KO(DpMr;r+l). A similar argument shows that (Dpj), is monic on Ko(~Mr;r). If 

r > 2 we have 
(Dpj),[x a~p r - I  (p) , r-2 2^ , 

- p,~,u r - a2P P,~Ur! = n 

so that n E Ko(DpS;r+I) is in the image of (Dpj), as required. If r = I we must show 

a~ = 0. For this we need the map j': M I + M 2 induced by the inclusion ~C Zp2. We 

have j' o j = j:~ ÷ S, hence 

(Dpj),(Dj'),(x) : (i + a~p)n + a~pQu 

= (Dpj),[(l + a~p)u2(P) + a~p,Qu 2] • 

Since (DpJ), is monic we conclude 

: ( l ÷  pal)u (P) ÷ a p,% • 

Hence 

(3) ~S2(Dpj'),(x) = ~BQu 2 = a~QS2u 2 - 

On the other hand, 6.1(vi) implies that i,[~ p-I) ® BuI] 
• (p-l) 

hence ~82 x = c1,~u I ® 8u I) for some c E Zp and 

(4) ~S2(Dpj'),(x) = (Dpj'),(~2x) : c1,[(J~Ul)(P-l) ®J~Su 1 

since j~u I = O. Comparing (3) and (4) gives a~ = 0 and thus 

(Opj) ix alp , u P), =0 
which completes the proof. 

generates KI(DpMI;I) , 

] =0 

Next we shall prove the external analogs of 3.6 and 3.7. The conventions 

preceding 7.6 give the correct external version of each statement except for 

3.6(viii) and 3.7(ix). For 3.6(viii) we must prefix (Bp,p), to both sides, where 
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6p,p is the natural map DpDpX ÷ D 2 X defined in 1.2, and for 3.7(ix) we prefix 

(Sp,p), to the left and (ap,p,...Pp), to the right. 

Proposition 8.4. The operation 

R:KI(X;r)---~KI(DpX;r+I) 

satisfies the external analog of each part of 3.6. 

Proposition 8.5. The operation 

:K0(X;r) + K0(DpX;r+l) 

satisfies the external analog of each part of 3.7. 

Theorems 3.6 and 3.7 will follow at once from 8.4 and 8.5 by the same proof 

given for 3.3. The rest of this section is devoted to the proofs of 8.4 and 8.5. 

Proof of 8.4. Part (i) is trivial. In each of the remaining parts except (v) we 

may assume X = ~M r with x = ZUr; part (iv) now follows from Definition 8.3. 

Observe that by the proof of 8.1 the set {QZUr,RZu r) is a subbasis for DpZM r if 

r > 2 while {RZUl} is a subbasis for DpZM 1. 

(iii). The map 

~6r+2:Kl(DZMr;r+2) + K0(DZMr;r+l) 

is an isomorphism since it takes the basis for the first group to that for the 

second. Now 

= ~Q6r+3p3ZUr, 2 ~6r+2RP,ZU r = QBr+2P,ZUr 

and the result follows. 

(iv). The map 

= ~r+IRZUr = ~6r+2P,RZUr 

6r+IP~:KI(DpZMr;r) + Ko(DpZMr;r+I) 

is monic since it takes the basis elements ~RZu r and (when r ~ 2) p,Q~u r 
2 

p6r+lRZUr and 6r+lP,QZUr respectively. We have 

2 
6r+lP,~RZUr = p6r+lRZUr = PQBr+2P,ZUr 

= 6r+iQP~ZU r - t,(6r+lP,ZUr )(p) 

= 6r+IP,IQp,zu r - t,(~Ur® (6r~Ur)(p-I)] 

to 
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which gives the first formula. For the second formula, we have 

8r+iP,R~EUr = 8r+iRP,~ZUr = 8r+lRpEUr 

2 2 
= QSr+2p,(pEu r) = Qp~r+2P,ZUr 

2 
= pQBr+2P~EU r _ (pp-I _ l)l,(~r+iP, EUr)(p) 

2 • ~u )(P) 
= 8r+iQP,EU r pp-ll,( 

- 5r+l p* r 

= 8r+iP,[Qp,Eu r - pp-l~,(EUr® (SrEUr)(P-l))] 

and the result follows. 

(v). Let z denote Zu r and fix i with 0 < i < p. 

it suffices to show that the equation 

(5} 

As in the proof of 7.3(iii) 

(Ti,p_i),Rx = al1,[p,z® (~r+IP,Z) (i-l)] ®~,(Sr+iP,Z) (p-i) 

+ a28r+lP,[~,(z® (SrZ)(i-l)) ® 1,(z® (Srz)(P-i-1))] 

I holds in KI(DiEMr^Dp_iEMr;r+I) with a I = - ~ ( ~ ) and a 2 = ( Pi I ). First 

observe that the group K,(DiEMr;1) is the Ei-eoinvariant quotient of K,( (E~)( i ) ;1)  
= K,(~Mr;I ) $i, so that the set {~,(z@ (~rZ) (i-l)} is a subbasis for DiEM r. 

Thus the set 

{1,[z® (6rZ) (i-l)] ® 1,(Srz)(P-i),i,[z$ (SrZ) (i-l)] ~ 1,[z ® (Brz)(P-i-l)]} 

is a subbasis for DiEMr^Dp_iZMr and we see that equation (5) holds for some 

al,a 2~ Zpr. Now applying (Xi,p_i),~r+l to both sides of (5) gives 

~,~r+iRz = i!(p-i)!al(Br+iP,z)(P) 

On the other hand we have 

hence a I = - 

X,Br+IRZ = T,Q6r+2P~Z = -(p-l)i(~r+iP.z)(P) ; 

(p-l)! I p 
i|(p-i)] = - p ( i )" Next we apply ~ to (5) to get 

(6) (*i,p_i),~Rz = -( pi )1,[z® (~rZ) (i-l)] ® 1,(SrZ) (p-i) 

+ a21,(~rZ) (i) ® 1.[z® (~rZ) (p-i-l) ] 

- a21,[z$ (~rZ)(i-l) ] ® 1,(~rZ) (p-i) 

But we have 
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(Ti,p_i),~Rz = (~i,p_i),[Qp,z - 1,(z@ (SrZ) (p-I)] 

= -(Ti,p..i),i,(z® (~rZ) (p-i)) 

= - (~]l,(z® (~rZ) (i-l)) @ 1,(Brz)(P-i) 

_ ~ z)(P-i-l)), (P~l)1*(SrZ)(i) ® l*(z® (Sr 

where the last equality follows from the double-coset formula; comparing with (6) 

gives a 2 = - ( Pi I ) as required. 

(vi). Let r ~ 2; the case r = 1 is similar. Let f be the composite 

= ~-2u^ i ~-2 K ^zM ~K^ZM r , Z-IMr S-2^ ~Mr r 

where B is the Bott equivalence. 

Now 

We have f**z-lur = ZUr, hence it suffices to prove 

(P) 2Qu 
A*ZR(z-Iur) = P*l*Ur + P* r" 

(Dpj),A,R(z-lur) = A,ZR(z-lu) = A,zR(~z-lu) 

= A,ZQp~-Iu = pA,ZQz-Iu 

= pl,u (p) + p2Qu 

• (p) 2 
• P*QUr); = (Dj),(p,l,u r + 

the result follows since (Dpj), is monic by 8.2. 

k 2 
(vii) g r + l ¢ k R r . U r  = ~ k B r + ) R Z u  r = ~ Q B r + 2 P , Z U r  

2 k 
= Q~r+2P,~ u r = ~r+iR~u r , 

the last equality following from the fact that ~ku r = u r. The result now follows 

by 8.1. 

(viii). Let z denote ZUr, and abbreviate (~p,p), by 8, and (ap,...,p), by ~, 

(the reader is requested to remember that 8, is not a Bockstein). We must show 

~0 if r = I 

~,QRx 

I ~,RQz if r > 2 

in KI(%2 ZMr;r). We shall need the equation 

n 

(7) ~,Q x(nl = X 
i=l 

(~)pi-l(~,x(P))(n-i) ® (Qx) (i) 
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which holds in Ko((DoX)(n);r-1) for each x EKo(X;r) provided that p is odd (the 

proof is by induction on n from 7.6(ii)). 

First let r = i. The set {QRz,RRz} is a subbasis for DpDpZM1, and it follows 

easily from Proposition 3.9 that the map 

~3P,:KI 

is a monomorphism. Since KI(D2 EMI;I) is imbedded in KI(DoDDZMI;I) by the transfer 
iJ 

we see that 
2 

83P,:KI(D 2 z ~;I) --*Ko(D 2 Z~;3) 
P P 

2 is a monomorphism. It therefore suffices to show that ~,83P,QRz is zero. We have 

2 
g, g3P,QRz = ~,g3QP,(Rp,z) by 7.6(iv) and 8.4(iii) 

= B,~3IR~Rp,z + pp-11,(Rp,z ® (83RP,z)(P-l))l 

= g,83R[Qp~z - l,(p,z® (82p, z)(P-l))] + pp-lg, t,(~3RP, z)(P) , 

where the last two equalities follow from the second and first parts of 8.4(ii). 

Now Qp~z = 0 by 7.6(iv), and 

S,S3RI,¢P,Z ~) (~2P,z) (p-I)) = ~,6,~(p,z® (82p,z) (p-I)) by 1.2.12 

s,6,Q((84p~z)(P)) by 8.4(iv) = 

~-Ia,(Q84p~z)(P) by 7.6(vii) when p = 2 and equation (7) when p is odd 

~-Is,I,(83RP,z)(P) by 8.4(iv) and 1.2.11. 

2 
We conclude that 8,S3P,QRz = 0 as required, which concludes the case r = I. 

Next let r = 2. We have 

~,(QRz - RQz) = ~,[Q[Qp,z - l,(z® (8rZ) (p-I)] 

- Qp,Qz + l,(Qz® (~r_iQz)(P-l))] 

= ~,[-Q1,(z ® (6rZ) (p-l)) + ~,(Qz ® (Sr_iQz) (p-I)] 

= a,[-6,Q(Z®6rz)(P-l)) + Qz® (~r_iQz) (p-I)] by 1.2.11 

and 1.2.12. 

= ~,[-Qz® (~1,(~rz)(P))P-I - pQz®6,Q(~rz)(P-l) 

+ Qz~ (l,(~rz)(P) + pQ~rz)P-l]. 
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When p = 2 the last expression is clearly zero, while if p is odd it is zero by (7). 

Hence we have 

(8) ~8,(QRz - RQz) = O. 

A similar calculation gives 

2 
(9) Pr+2P, B,(QRz - RQz) = 0. 

To proceed further we need the case k = p2 of 4.1. First we must check that the 

argument is not circular, since the present result is certainly used in the proof of 

4.1. However, it enters only through the proof of 4.7, to be given in Section 9. An 

inspection of Section 9 will show that only the case r = 1 of the present result is 

used in proving the case k = p2 of 4.7. Thus we may proceed. We suppose r ~ 3; the 

case r = 2 differs only slightly. By Remark 4.2 we obtain a subbasis 

A = ~-2 <j Ar-I ~-j Ar ~ Ar+2 

for Dp2 ZM r with At_ 2 = {6,QQz}, 

Ar_l, 1 = {a,[Qz ® (Sr_iQz) (i) ® (~2Br+IRz)(P-i-l)] ] 0 < i < p-2}, 

At_l, 0 = {a,[Qz® ~2Rz ® (Sr_iQz) (i-l) ® (~28r+lRz)(P-i-1)] ] 1 < i ~ p-2), 

A r = {8,RQz} and At+ 2 = {B,RRz}. Therefore the set 

{~r-38,QQz,~r-l~,RQz,~r+Ip, RRz}~j~r-2Ar_l,l~r-26r_lAr_l,0 

is a basis for KI(DnZM~;I) , and the subset ~r-2B ^ is a basis for the image r-l~r-1,0 
r-I of ~r-2pr_l, hence for the kernel of p, . By (8) we see that 6,(QRz - RQz) is 

r-1 
in the image of p, , hence there exist constants a,b,c,do,...,%_2 Zp with 

r-I r-3 r-i 
(I0) ~,(Q~ - RQz) = p, [an 8,QQz + b~ ~,RQz 

p-2 ^ ,(i) (p-i-l) 
+ c~r+l~,RRz + a~ r-2 ~ (diQz® (~r_l~ZJ ® (~28r+iRz) )1. 

i=0 

2 
If we apply Pr+2P , to both sides of (I0) then the left side becomes zero by (9), 

hence we have 

0 = apr-36r+2P%,8,QQz bpr-I 2 r+l + p,~,RQz + cp 8r+26,RRz 

p-2 d r-2_ 3a (p-i-l)]. 
+ ~ ip ~r+2P , ,[Qz ® (Br_lQZ) (i) ® (~2~r+lRZ) 

i=0 

Since the set A is a subbasis this gives a = b = c = d O .... ~-2 = 0 as required. 

This completes the proof of 8.4. 
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Proof of 8.5. Part (i) is trivial. 

(ii) We may assume x = u r. We have 

( D p j ) , ~ . % u  r = q = l , u  (p) : ( D j ' , , I , u  r(p) 

= t u (p) by 8.2. If r > 2 then hence ~Ur * r 

(DpJ), ~u r = ~u = ~u = (DpJ ~ (P) J~l~U r 

hence ~u r = i u (p) by 8.2. 
r 

(v) As in the proof of 7.3(iii) it suffices to show 

T, ~ U r 

IP, U r = I (p-I)" (P) if p is odd or r > 2 

if p = 2 and r = I. 

We prove this when p = 2; the odd primary case is similar. The element T,~u r is in 

the Z2-invariant subgroup of K0(~ 2-~ );r+l), and this subgroup has a basis 
12J 

consisting of 2,u r with order 2 r and 2r-l(6r+12,Ur )(2) with order 2. Thus we have 

T,~u r = al * r2 u'2)+ (a22r-l(6r+12,ur)(2) (ll) 

with a I ~ Z2r and a 2 cZ 2. Now 

J~2)x,~u r = T,(D2J),~U r = ~,q = 2u; 

thus applying j~2) to both sides of (ll) gives 2u = 2alu in Ko(S;r+l) so that 

a I = 1. Next we have 

2u 2) if r > 2 
r 

W~,~U r = %t,U~ 2) = 

(~Ul)(2) if r =I, 

hence applying ~ to (ll) gives a 2 = 0 if r ~ 2 and a 2 = I if r = 1. 

(iv) We may assume x = u r. Let r ~ 2; the ease r = 1 is similar. The set 

(P) i (u (p-I) ®brUr)} {QUr'1*Ur ' * r 

is a subbasis of height r for DpMr, hence we have 

(12) ~6r+l~Ur = a (u (p-l) I x* r ®6fUr ) + a26rP*QUr 

with ale Z r' a2 ~ Z r-l" Let J':M r + Mr+ I be the map induced by the inclusion 
P P 

C Z Then j o j' = + = = Z r r+l" J:M r S, hence (j'),u r ~ur+ I and (j'),grUr 
P P 
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(Dpj'),~6r+l~Ur 
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= , u(P ) 
= ~Sr+l~Ur+ 1 ~6r÷l., r+ I 

,u(P-l) 
= p~1,~ r+l ®6r+lUr+l ) 

and comparing with (12) gives a 2 = O. Next we have 

r (P) "^ (P) 
• ,~r+l~Ur =~6r+l(P-l).P~Ur = (p-l),~rU r 

and comparing wlth (12) glves a I = I. 

(ill) By part (iv) we see that the set 

r { 2, while {~Ur} is a subbasis for DpM I. 

= T,1,(u5 p-I) ®6rut) 

{QUr,~U r }  is a subbasis for DpM r if 

It follows that the map 

(Dj) , :K0(DMr;r+2)  + K0(DS;r÷2/ 
is monic. But 

(Dpj)~p,u r = ~(pu) = ~ (~pu) = t,(pu) (p) = pp-lp, n = (Dj),pp-lp,~Ur 

and the result follows. 

(vi). Let p = 2; the odd primary case is similar. First let Ixl = IYl = 0 

with r ~_ 2. We may assume x = Ur, y = u r. The set 

(~x ® ~y,~l,X (2) ® Qy,Qx ® ~t,p(2),Qx ® Qy, ~.x ® 6r+l~ly , 

~x ® 8r+14,Qy,Qx ® ~26r+l~Y,Qx (9 6r_iQy} 

is a subbasis for D2M r ^ D2Mr, hence we have 

(13) 6,~(x®y) = al~x®;~y + a2~x®4,Qy + a34,Qx® ~y 

+ a44,(Qx ~ Qy) + a5~r+ I ~x (9 ~r+l~y 

+ a6~r+l~ZX ® Sr+I4,QY + a7~r+14,Qx ~ 6r+ I ~Y 

+ a86r+14,Qx ® 6r+I4,QY 

with al,a 5 E Z2r+l and a2,a3,a4,a6,a7,a 8 E Z2r_ I. Since 

~6,~(x®y) = 6,t,(x®y) (2) = 1,x (2) ® 1,y (2) 

we have a 6 = a 7 = a 8 = O. ~he equation 

(O2J^O2J),6,~(x ®y) = 6,~u = 6,q = q ®n 

implies a I = 1 and a 2 = a 3 = a 4 = O. Hence we have 
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(14) 6,~(x ®y) =~x Q~y + a56r+l~X® 6r+l~y 

with a 5 depending on r. A similar argument shows that (14) holds also when r = 1. 

Now let T 1 and T 2 switch the factors of Mr^M r and D2Mr^D2M,r . Then 

6,~(Wl,(X ®y)) = T2,6,~(x ®y) =~y®~x - a56r+l~y ® 6r+ l~x. 

On the other hand, if r > 2 then 

6,~(Tl,(X ®y)) = 6,~(y Q x) =~y ®~x + a5Sr+l~_y® ~r+l~.X, 

hence 2a 5 = O as required. If r = 1 then 

6,~(TI,(X ®y)) = 6,~(y Q x + 6Y® 6x) 

6,~(y ®x) + 262~yQ 62~x. 

Hence in this case -a 5 = a 5 + 2 mod 4, so that a 5 ~ 1 mod 2 as required. 

Next let Ixl = I, IYI = 0 with r > 2 we may assume x = ZUr, y = u r. Choosing a 

subbasis for D2ZMr~D2Mr as in the preceeding case, we see that 

(15) 6,R(x ~y) = alRX ®~y + a2Rx ® 4,Q~ + a34,Qx®~y 

+ a44,(Qx®Qy) + a5Sr+IRX® Sr+I~Y 

+ a66r+iRx® 6r+14~Qy + av6r+14,Qx@ 6r+ l~y 

+ asSr+14,QX®Br+14,Qy 

with al,a 5 ¢ Z2r÷l and the remaining a i in Z2r_l. If f denotes the composite 

1 ~ D2j 1 ̂  ~ : D2~M r D2~M r ~ D2M r ~ D2~M r ~ D2sO > D2~M r ̂  S O 

then the diagram 

DI(~Mr~Mr) 6 p D2ZMr^D2Mr 

ID2 (l^j) I f 

o 2 (~ ^ s °) o2~M r 

commutes. Applying f, to (15) and using the equation 

the proof of 3.3(ii)) gives 

Rx = alRX + a34,Qx , 

~,Qu = O (which was shown in 
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hence a I = I and a 3 = O. To determine a 2 and a 4 we calculate 

~2Br+l~,R(x ®y) = ~,Q6r(X®y) = ~2~r+l[RX$~y + 4,(Qx®Qy)], 

hence a 2 = 0 and a 4 = 1. Next we calculate 

~6,R(x ®y) = 6,~R(x®y) 

= ~Rx® ~y + ~4,(Qx®Qy) + 2r-2~r2,Qx~ ~r+l~Y 

+ 22r-31,(~rX) (2) ® QBr+ I ~Y- 

Now the element 22r-31,(6rX) (2) is zero when r ~ 3 since 2r-3 ~ r while when r = 2 

we have 
(2) 

0 = 2~22,Qx = 2G2Q2,x = 21,(B2x) 

Thus applying ~ to both sides of (15) gives 2a 5 = a 6 = a 8 = 0 and a 7 = 2 r-2. It 

remains to show a 5 = 2r~r, where ~r ¢ Z2 is the constant in the formula for 

6,~(x ®y). But this follows from the equation 

(16) (6^I),6,R((Zu r ®u r) ®u r) = (I^ 6),6,R(~Ur® (u r ®Ur)) 

if we expand both sides using the formulas already shown. 

Next let x = Zu I , y = u I. A suitable choice of subbasis for D2zM l^D2M 1 gives 

6,R(x ®y) = alRX ®~y + a2~2Rx ® ~2~y 

and we see as before that a I = I. Evaluating both sides of equation (16) in this 

case gives a 2 = -(1 + 2~1). Finally, we have 

6,R(y®x) = 6,R(TI,(X $y + ~x® By)) 

= T2,~,R(x ®y + Bx ® By) 

= ~yQRx + (I + 2Sl)~ 2~y® 62Rx 

as required. 

Now let x = Zu r and y = ZUr, with r ~ 2. We have 

(17) 6, (x@y] = alRX ®Ry + a2Rx $4,Qy + a34,Qx® RY 

+ a44,(Qx ® Qy) + as~r+lRX ~ Br+lRY + a6~r+lRX @ Br+14,QY 

+ a76r+14,Qx ~ ~r+lRY + a8~r+14,qx ® 6r+I4,QY 
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with al,a 2 ~ Z2r+l and the remaining a i in Z2r_l. The equation 

= ( 2 )  (18) ~, (x®y) = 6,1,(x®y) (2) 1,x (2) Q t,y = 22r-4~r2,Qx® 6r2,Qy 

shows that a 6 = a 7 = 0, a 8 = 22r-4, and also that a I ~ 0 mod 2 r and that 

a 2 ~ a 3 ~ a 4 = 0 mod 2 r-2. Next we apply (D2J ^D2J) , to both sides of (17). 

The left side becomes 

(D2J ̂ D2J),6, 2(x ®y) = ~, &(zu ® zu) : ~, ~(zu ® zu), 

which is zero by (18). By 8.4(ii) we have 

(D2J),RZu r = Rzu = Rwzu = 2Qzu, 

hence (since 8a I ~ 8a 2 ~ 8a 3 ~ 0 mod 2 r+l) the right side of (17) becomes 

4a4Qzy × Qzu, so that a 4 = 0 in Z2r_l. Next we calculate 

~6r+16,~(x@ y) = 2r-2~r+l[RX® 4,Qy + 4,Qx ®By], 

hence a 2 : a 3 = 2 r-2" Finally, if we expand both sides of the equation 

® (~Ur®Ur)) 

The proof when r = 1 is 

(viii). We may assume x = u r. We have 

(Dpj),~k~u r = ~kau = ckq = q = (Dpj),~ku r 

since ~ku r = Ur; the result follows by 8.2. 

(ix) By equation (7) in the proof of 8.1(viii) and 1.2.14 we have the 

following equation in K0(Dp2X;r-1) when p is odd and r Z 2. 

Since Z ~ u  r 

f o l l o w s .  

(6^I),6,~((~u r® ~u r) ®u r) = (l^~),~,~(2u r 

using the formulas already shown, it follows that a 5 = 0. 

similar. 

(vii). We may assume x = u r. Let r > 2; the case r = 1 is similar. Then 

2 
(19) A,~u r = alP~U r + a2P,QZu r 

with a l~ Z r+l and a 2 ~Z r-l" Applying ~ to (19) shows that a I - 0 mod pr, hence 

applying (~pj), to (19) Pives a 2 = O. It only remains to show that A,E.~u r / 0 when 

p = 2. But Lemma 7.7 gives the exact sequence 

(Z l ), A, 

KI(ZMr ̂  Mr;r+l) ~ Kl(ZO2Mr;r+l) , ~(O2ZMr;r+l). 

has order 2 r÷l, it cannot be in the image of (Zl), and the result 
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(20) 
P ,p, i-l, (p) (p-i) 

8,Q1,x (p) = 1,~,Qx (p) = I,[ ~ [i)p ~1,x ) ® (Qx)(i)]. 
i=l 

When p = 2 this equation follows from 7.6(vii) since 

l,(QSrX®QSrX) are zero by 7.6(x). 

[~t r =^l, 
(pZ) 

{Q ~Ul,l,u I } 

I,(X @ 8r x @X ® 8rX) and 

x = u I. The set {~Ul} is a subbasis for DpMI, hence by 4.3 the set 

is a basis for Ko(DpDpMI;I). Lemma 4.3 also implies that the set 

{Q~u,l,u (p2) } c Ko(%~S;1) 

is linearly independent. Hence (%D~), is monic on KO(%%Mr;I). 

transfer 

is monic and (%D~), 

K0(%2 M1;1). But 

Since the 

P 

o T = ~, o (D ~),, it follows that (D 2 j), is monic on 
P 

(D 2 j),~,Q~u I = B,Q~u = ~,Qi,u(P), 
P 

which is zero by (20), hence 6,Q u I = 0 as required. 

Next let r ~ 2 and let y denote the element 

P (p) ] (p-i) (i) 
8,Q~u r - I, ~ (p)pi-2[~,Ur ®p,[(QUr ) ] 

i=l 

in K0(DD2 Mr;r). Then (20) implies that ~y = 0 and (h2 j ),y : O, and we must show 

y = O. Since ~y = 0 we see that y is in the image of p,r-l. To proceed further we 

need the case k = p2 of 4.1; we may use this result without circularity since only 

the case r = 1 of the present result is used in proving it (see section 9). Now as 

in the proof of 8.4(viii) we see that the union of the sets 

{I*[(~r-11" ru(P)](i) ® (~r-2QUr)(P-i)] I 0_< i < p} 

{i,[( r-I (p) (i-l) r-i , (p-l) 
1,u r ) ®7 1,~u r ®SrU r) 

" r-2 
® (~r-2QUr)(P-1-1) ® ~ 8r_iQu r] I 1 < i < p-l} 

and, if r _> 3, {~r-38,QQUr}, is a basis for Ko(D 2Mr;l). The second of these sets 
I> 

r-I generates the kernel of p, and also the kernel of (D 2 j ),, and it follows that 
3/ 

(%2 j )* is monic on the image of pr-i Since (%2 j )*y = 0 we conclude y = 0 as 

required. 
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9. Cartan formulas 

In this section we shall prove Lemma 4.7. As in the proof of 2.7, the basic 

idea is to "simplify" each expression in C~(respectively CO.') to obtain an expres- 

sion in C{x} (respectively C{y,z}). We shall refer to the simplified expression as 

a Cartan formula for the original one. Some explicit examples of such formulas will 

be given below. However, some of the formulas we need are too complicated to give 

explicitly, and instead we shall use an inductive argument to establish their 

existence. 

In order to do so it is convenient to work in a suitable formal context. Let 

51,...,~t be indeterminates and suppose that to each has been assigned a mod 2 

dimension denoted I~il and two positive integers called the height and filtration 

and denoted USiU and vSi" Intuitively, ~i should be thought of as an element o£ 

KI~ i(D ~ X;LISiII) for some spectrum X. We wish to consider certain finite formal 

combinations E(S1,...,~ t) involving the ~i and the operations of section 3, namely 

those combinations which would represent elements in one o£ the groups K(DjX;r) 

when interpreted "externally" as in section 4. More precisely, we define the 

allowable expressions E(~l,...,5 t) and assign them dimensions, heights and 

filtration by induction on their length as follows. 

Definition 9.1. (i) Each indeterminate ~i is an expression of length i. For each 

~Z2, r > l, j _> 1 there is an expression Oa,r, j (called zero sub ~,r,j) having 

length l, dimension ~, height r and filtration j. These are the only expressions of 

length 1. 

(ii) Suppose that the expressions of length _< ~ have been defined and assigned 

dimensions, heights and filtrations. The expressions of length ~+I are the follow- 

ing, where E ranges over the expressions of length ~. 

(a) p,E. We define Ip.El = IEI, Up, Ell = ~EU + I and v(p,E) = rE. 

(b) BrE if iIEil = r. We define 16rEl = IEI-1, LI~rEU = llEIi and 

V(~rE) = rE. 

(c) uE if 2 < iIE~. We define luE I = iEi, iluE1i = lJEg-1 and v(uE) = rE. 

(d) E 1 + E2, where E 1 and ~ are any expressions whose lengths add up to A+l 

and which satisfy IEIi = iE2], i, El~ = ,IE2,, , and ~E I = vE 2. We define 

IEI + E2] = IEII, il~ + E2~ = ~EIU and v(E I + E 2) = vE I. 

(e) EI.E 2 (the formal product) where E l and F~ are any expressions whose 

lengths add up to ~+I and which satisfy u~u = liE211. We define 

I~'E21 = IEII + IE21, ll~-E211 = lIElll , and v(EI-E 2) = vE I + vE 2. 

(f) QE if 2 < flEli. We define iQEI = IEI, ilQEII = ilEU-I and vQE = pvE. 
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(g) ~ZE if IEI = 0. We define I~EI = O, II~EII = ~IEI~+I, and v~E = pvE. 

(h) RE if I EI = I. We define IRE1 = I, aREII = IIE~+I, and vRE = pvE. 

Note that we have not required formal addition and multiplication to satisfy 

commutativity, associativity or other properties. However, in writing down 

particular expressions we shall often omit some of the necessary parentheses, since 

their precise position will usually be irrelevant. We shall also abbreviate 0~,r, j 

by O. 

We have given Definition 9.1 in complete detail as a pattern for other induc- 

tive definitions about which we will not be so scrupulous. For example, let E be an 

expression in the indeterminates ~i,...,~ t. If ~,...,E t are expressions in another 

set of indeterminates Ul,...,~ s with IEil = l~il , lIEi~i = U~ilJ , and vE i = vu i for 

1 < i < t then we may (inductively) define the composite expression E(E1,...,E t) in 

nl,"',n s. Again, if X is any spectrum and xi~Kl$il(D ~iX;l]$ill) for i < i < t then 

we can define 

E(Xl,-..,xt)~ KIEI(D~EX;UEII) 

as in section 4 by interpreting Q, ~, R and the multiplication externally and 

applying a, and 6, to formal products and composites. 

Definition 9.2. Let ~i,...,~ t be a fixed set of indeterminates. Equivalence, 

denoted by ~, is the smallest equivalence relation on the set of expressions in 

~i,..,~ t which satisfies the following. 

(I) ~ is preserved by left composition with Q,~ ,R, ~, p. and ~r and by formal 

addition and multiplication. 

(2) For each r ~ I the equivalence classes of expressions of height r, graded 

by dimension and filtration, form a Z 2 × Z graded ring (without unit) with the 

(_I)IEIIIE2 I 
Oa,r, j as zero elements. The relation EI.E 2 = E2.E I is satisfied and 

left composition with ~, ~r or p. is additive. 

(3) If x and y denote expressions ~ and E 2 having height r and the required 

dimensions then the following hold with = replaced by ~: 3.1; 3.2(iii),(iv) and 

(v); 3.3(iii), (iv), (v), (vi), (vii) and (x); 3.6(ii), (iii), (iv), (v) and (viii); 

3.7(ii), (iii), (iv), (v), (vi) and (ix). 

Roughly speaking, two expressions are equivalent if one can be transformed into 

the other by using the relations of Section 3. 

It is easy to see that equivalent expressions must have the same dimension, 

height, and filtration but not necessarily the same length. An inductive argument 

shows that E(EI,...,E t) and E'(E~, E~) are equivalent if E ~ E' and E i ~ E! 
°°'' I 



364 

for I < i < t. 

the following. 

A similar inductive argument using 3.1, 3.2, 7.6, 8.4 and 8.5 gives 

Lemma 9.3. Let E and E' be equivalent expressions in ~I,...,~ t. Let X be any 

spectrum and let x i be an element of KI~iI(D iX;~i~) , .  for 1 ~ i < t. Then 

E(Xl,..,x t) = E'(Xl,...,xt). 

If A = {~l,...,~t ) is any set of indeterminates we can define the filtered 

algebra CA and the subquotient groups DjA with their standard bases exactly as in 

sections 3 and 4. If A' is another set of indeterminates and f:A ÷ A' ~ {0} 

preserves degree, height and filtration we say that f is subbasic. Clearly, the 

constructions CA and DjA are functorial with respect to subbasic maps. We can think 

of the elements of DjA as expressions in ~l,...,~ t by insertir 4 parentheses so that 

addition and multiplication are treated as binary operations. (Of course, up to 

equivalence it doesn't matter how the parentheses are inserted.) This identifies 

DjA with a subset of the expressions of height 1 and filtration j in ~l,...,~ t. By 

a Cartan formula for an expression E of height 1 we mean simply an equivalent 

expression in DvEA. The next result, which will be proved later in this section, 

provides some examples which will be useful in the proof of 4.7. We say that two 

expressions E 1 and E 2 are equivalent mod p if there is an expression E' with 

E 1 ~ E 2 + pE'; in particular this implies ~ ~ ~ ~ E 2. 

Proposition 9.4. Let ~i, ~2, ~3' ~4 be indeterminates of height r with dimensions 

O, O, l, 1 respectively. Let 1 ~ s < r and let t ~ 1. 

s 
(i) 8r-sQ ~l ~ QSSr~l mod p. 

s 
s ~ ( ss_~)p mod p. 

(ii) ~r-s Q ~3 ~ ~s 

(iii) QS(~l~ 3) ~ (~S~l)P QS~3 mod p if p is odd or r ~ 3. 

(iv) QS(~3~4) is equivalent to (QS~3)(QS~4) if p is odd and to 

s 2 s-1 s 2 s-I 
(QS~3)(QS~4) + 2r-s-l(~QS-l~3)( ~ ~r~3 ) (~QS-l~4)(~ 8r~ 4) 

if p = 2 and r ~ 3. 
S 

(v) QS(~l~3~ 4) ~ (~S~l)P (QS~3)(QS~4) if p is odd. 

(vi) If 1 < i < p-1 then 

s i p-i s 
8r_s Q (~i~2 ) ~ i(Sr_sQS~l)(~S~l)P (i-l)(~s~2)Ps(p-i) 

- i(~S~l)ipS(sr_sQ~2)(~s~2)Ps(p-i-l) mod p 
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r+t-l~ Rt~,^ ~ ~ i-I p-i~ 
(vii) If i ~ i ~ p-I then ~ ~r+t l~r~lJ~l C2 J is equivalent to 

i(~r-l~l)(i-1)pt(~r-t-lgr tQt~l)(~r-l~2)(P-i-1)pt(gr-t-lgr_tQt~2 ) 

if t < r and to zero otherwise. 

(viii) ~Qr~ ~i ~ O. 

(ix) If s < t then QSpt~l is equivalent mod pt-S+2 to 

s-I s 
pt-s+l(~S-IQ~l)P + clpt-S(~S~l)P , 

where 

~I if p is odd or s < t 

c I 

if p = 2 and s = t. 

QSpS-l~l is equivalent mod p to 

s-i s 
(~S-IQ~I)P + c2(~S~l)P , 

where 

J0 if p is odd 

c 2 

if p=2. 

There remain expressions, such that Qr~ ~I, for which the Cartan formula is too 

complicated to give explicitly. Our next result will guarantee the existence of 

such formulas. Let A = {~l,...,~t }. We say that an element of DjA is homogeneous 

if it is a sum of standard basis elements each of which involves every ~i" Note 

that such elements are in the kernel of Djf whenever f:A + A'~{O) takes at least 

one ~i to 0. 

Proposition 9.5. Any expression E of height 1 in ~l,''',~t is equivalent to an 

expression in DjA for some j. If the ~i have height r and degree 0 then the 

expression ~r-S-lQS(~l.-.~t) is equivalent to a homogeneous expression in DjA for 

each s ( r. If the ~i have height r and degree 1 then 
r+s-i s. 

Br+s R (~l(~r~2)---(~r~t)) is equivalent to a homogeneous expression in DjA 

for each t _> 0. 

The proof of 9.5 will be given at the end of this section, b~afortunately, 

there seems to be no direct algebraic proof that the Cartan formulas provided by 9.5 

are unique, that is, that distinct elements of DjA cannot be equivalent as 

expressions. If we had uniqueness in this sense then Lemma 4.7 would be an 

immediate consequence of 9.5. Instead we shall have to give a much more elaborate 
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construction of ¥j and y~, making use of the explicit formulas of 9.4 in order to 

avoid appealing to uniqueness. (A similar difficulty in ordinary homology is 

implicit in our proof of 2.7). On the other hand, it is easy to see from 4.1 and 

9.3 that uniqueness does hold, but of course such an argument cannot be used in 

proving 4.7. However, we can and shall use uniqueness in filtrations less than k in 

the following inductive proof of 4.7. 

Proof of 4.7. We shall give the proof for r < ~. ~e case r : ~, which is similar 

and somewhat easier, requires some straightforward modifications in Definition 9.1 

to allow for infinite heights; details are left to the reader. 

First let M = M r with r ~ 2 (the r =I case is similar and easier). We 

define~to be {Qx,~.x}. Let Umand Vmrespectively denote ymzp-mand (Bry)ym-lz p-m 

for 1 < m < p-I and define ~' to be 

{Qy,Qz,~y,/z} ~ {u m I i < m < p-l} ~_; {v m I i < m < p-i}. 

Lemma 4-3 implies that ~ and ~g' are in fact subbases for DpM r and Dp(~ r v ~). 

Note that (Dpgl) ~ takes Qy and ~ y to Qx and ~x and takes all other elements of~' 

to zero. In particular (Dpgl)~: Q.' +(gu{0} is a subbasic map and hence 

F I = Dj(Dpgl) ~. Similarly, F 2 = Dj(Dpg2) ~. On the other hand, (Dpgo) , is not 

subbasic since it takes u m to ~x and v m to ~8r+l~X, hence F O is not induced by 

functoriality from (Dpgo) ~. It i_~s determined by (Dpgo),, however, in the following 

way. If 

E(Qy,Qz, ~y, ~.z, Ul,...,Up_l,Vl,...,vp_ I) 

is any expression in Dj 6C' and E' is an expression in Dj(~. equivalent to 

E(Qx,Qx, .2. x, 2 x, ~ ~.x, ..., ~.~ x, ~Sr+l~. x, ...,~flr+l ~ x) 

then by 9.3 we have kj (F 0 (E) ) = ~j (E'), hence FoE = E'. 

' with '. We assume inductively that ¥~ and ~ Next we shall construct ¥j and ¥j 

the required properties have been constructed for all £ < j. By using the values of 
I y£ and y£ on indecomposables and extending multiplicatively, we can define 

I 7j and ¥j on the decomposables of Dj (g and Dj 6~. ' so that the diagram commutes when 

restricted to decomposables. It remains to define ¥j and yj on the standard 

indecomposables of Dj 6L and Dj gL'. We may asstume that j = pS for some s, since 

otherwise there are no indecomposables in filtration j. 

Let ~I, "'',~p be indetermlnates with dimension zero, height r, and filtration 

1. If s < r we use 9.5 to choose a homogeneous expression E in Dk{~l ,...,~p} 

equivalent to ~r-s-IQS(~l...~p). If s = r, let E be an expression in Dk{£1,..,gp} 

equivalent to Qr~ ~I" We define subbasic maps 
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for 0 < m < p by 

fm:{~l,...,~p} ÷ A' ~{0} 

fm(~£ ) =ly for £ < m 

z for £ > m . 

Finally, we define h:{~l,...,g p} + A by h(~£) = x for all £. Note that 

(go), o fm = h for all m. 

We define Xj and Xj on indecomposables in table 1. The first column lists the 

standard indecomposables in Dj~l', and the second column (we claim) gives the value 

of F 0 on each. The first four entries in column 2 are precisely the standard inde- 

composables in Dj~ , and the corresponding entries in column 3 define yj on each. 

The remaining entries in column 3 then give the resulting values of yj on the other 

entries of colunm 2. Finally, column 4 defines yj on each entry in column 1. 

Note that we have denoted iterates of ~ in the table simply by ~; the precise 

iterate intended can easily be determined since all entries in the table are to have 

height 1. 

The values of F 0 claimed in column 2 are either obviously correct or follow 

easily from 9.4 or the formulas of section 3- For example, in line IO we have 

r-s+l s r-s s r-s -S~x p~ 6r_s+2 Q ~x ~ 0 
~r_s+l Q ~x ~ ~ 8r_s+l~ ~ 

and in line 12 we have 

r+s-l~ ~s ~ ~x ~ r+s-l-s 2s 
~r+s n ~r+l ~ ~r+2sP, ~r+l~X ~ O. 
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To complete the proof of 4.7 for M = Mr it remains to show that diagram (*) of 

section 4 eom~utes for i = O, l, 2. In order to see that the inner square commutes 

it suffices, by Lemma 9.3, to show that the first four entries in columns 2 and 3 

are equivalent as expressions in x. This is clear for lines l, 3 and 4 and for line 

2 if s = r (by 9.4(viii)). If s < r in line 2 we have 

r-s s r-s-l_s _ r-s-1 s xP-l~ x) 
6r_s+iQ (~Zx) N ~ ~ ~6r+l~ x ~ ~ Q ( Dr 

which is equivalent to the required formula by 9.4(iii). 

To see that the outer square commutes, we must show that the entries in columns 

1 and 4 are equivalent as expressions in y and z. The first eight cases follow as 

in the preceding paragraph. Line 9 follows from the definition of E, line lO from 

9.4(vi), line ll from 9.4(iii), and line 12 from 9.4(vii). 

For commutativity of the upper trapezoid when i = l, we must show that Dk(gl) , 

takes the first four entries in column 4 to the corresponding entries in columm 3 

(which is obvious) and takes the remaining entries in column 4 to zero. This 

follows in line 9 from the fact that E is homogeneous (since (gl), o fm takes at 

least one ~A to zero if 1 _< m _< p-l) and the remaining cases are clear. Similarly, 

we see that the upper trapezoid commutes when i = 2. Finally, we observe that each 

entry of column 4 goes to the corresponding entry of column 3 under Dk(gO),, and 

hence the upper trapezoid com~utes when i = O. This completes the proof of 4.7 for 

M=Mr. 

Next suppose M = ~M r. We define ~= {Rx} when r = i and ~= {Qx,Rx} when r > 2. 

Let u m = y(6ry)m-l(~rz)P -m and v m = y(6ry)m-lz(6rZ) p-m-1 for 1 _< m _< p-1. We define 

~, : {~y,Rz} ~ {Umll <re<p-l} ~{Vmll <m_<p-1} 

when r =I and 

~' = {Qy,Qz, F~,Rz} ~ {Umll < m < p-l} ~ {Vmll < m < p-l} 

when r > 2. 

Then (Dpgl) , and (Dpg2) , induce subbasic maps from ~' to ~and we therefore 

have F i = Dj(Dpgi) , if i = 1 or 2. The map (Dpgo) , takes u m to -~Rx when r = 1 and 

to p.Qx - ~Rx when r > 2. it takes v m to zero when p is odd. When p = 2, 3.3(x) 

implies 

(Dpgo),V m 

We begin with the case r = I. 

inductive hypothesis as in the M = M r 

f 
=rQ622,x uf r = I 

I 
[2r-2~r2,Qx if r > 2 

We define yj and ~ 

case. To define yj 

on decomposables by 

and y~ on indecomposables 
J 
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we use Table 2. 

Table 2 

F o o ! 

i. Q(Ry) Q(Rx) 0 0 

2. ~s+2RS(Ry) ~Bs+2RS(Rx) ~s+2RS+ix ~Ss+2RS+ly 

3- Q(Rz) Q(Rx) 0 0 

4- ~s+2RS(Rz) ~Bs+2RS(Rx) ~Ss+2RS+Ix ~Ss+2RS+Iz 

5. ~s+iRSum Fo(~Ss+iRSu m) 0 0 

Here the first column lists the indecomposables of Dj ~' and the second column (we 

claim) gives the value of F O each (note that lines i and 3 are relevant only when s 

= l, i.e., when k = p2). The first two entries in column 2 are the indecomposables 

of DjC[ , and the corresponding entries in colunm 3 give our definition of yj on 

each, while the remaining entries in col~mm 3 are claimed to be values of yj 

determined by the definition we have j ust given. The entries in column 4 define yj 

on indecomposables. The necessary verifications are similar to those in the case 

M = Mr, and they are straightforward except in line 5. Here we must show that 
S S S S 

that yjF0(~ 8s+l R u m) is equal to zero and that ~ 8s+lR (y(sy)m-l(sz) p-m) is 

equivalent to zero as an expression in y and z. For simplicity we assume that p is 

odd -- the case p = 2 differs only slightly. First recall that to calculate 

F0(wSSs+iRSum ) we need only find an element of Dj 0,, which is equivalent to 

-WSs+IRSw(Rx) as an expression in the indeterminate Rx. Now 

s s s s 2s 
-~ 8s+l R w(Rx) ~ -~ Q 82s+iP , ~(Rx) by 3.6(iv) 

As , s-l, Rx, 
~ -~ p~Ss+iP, ~ J). 

We see by induction on t using (3.3(vi) and 3.3(vii) that Qt of a multiple of p is 

equivalent to a sum of terms each of which has either p or a p-th power as a factor. 

Hence Fo(~SBs+iRSu m) is a sum of terms each of which has a p-th power factor, and 

the same is true for the element yjFo(~SSs+iRSu m) of Dk{X}. But by definition all 
s s 

p-th powers in C{x} are zero when r = I, so that yjF0(~ 8s+l R u m) = 0 as required. 

The proof that ~SSs+iRS(y(~y)m-l(sz)P-m) is equivalent to zero is similar. We 

have 
s R s, , s_s 2s( ( w 8s+l ~Y~67f)m-l(6z)P-m) ~ ~ ~ 82s+IP* Y 8Y)m-l(~z)P-m) 

s ,m, s ,p-m, 
~ QS((Bs+ip~y~ ~Ss+iP,Z; I, 
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and 3.3(vi) and 3.3(vii) show that Qt of a product of elements of degree zero is 

equivalent to a sum of terms each of which has either p or a p-th power as a factor. 

But again p-th powers in C{y,z} are zero and we see that 
s s m-1 
8s+l R (Y(SY) (Sz) p-m) ~ 0 as required. This completes the proof of Lemma 4.7 

for M = zM 1. 

Next let r > 2. We can define yj and yj on decomposables precisely as before. 

In defining yj and y~ on indecomposables when r > 2, it will be convenient to modify 

the standard basis we have been using as follows. Let n I and n 2 be indete~ninates 

with dimension l, filtration p and heights ,nlll= r-l, lln2u = r+l. We use 9.5 to 

obtain an expression E(nl,n 2) in D. {n ,n } equivalent to ~r+s-18 + RS(p.n - ~n )- J 1 2 r s 1 2 
r+s-2 s . . • 

We claim that the coefficient of ~ 8r+s_l R n I In E(ql,~ 2) is I. To see thls, 

write E(nl,n2) as E 1 + E2, where E 1 involves only q I and every standard basis 

element in E 2 involves n 2. If f:{nl,n2 } + {nl} ~ {0} takes n I to itself and n 2 

to zero then (Djf)(E(ql,q2)) = E 1 . On the other hand, 

(Dj f) (E(nl, n2) ) E(~I,O ) r+s-i R s r+s-2 _s 
~ ~ 8r+s P*~l ~ ~ 8r+s-I ~ ~I" 

Since uniqueness holds (by inductive hypothesis) in filtration j we have 

E1 r+s-2^ ns 
= w ~r+s_l ~ nl , 

proving the claim. We can therefore give new bases for the indecomposables of Dj 
r+s-2 r+s-2 s 

and Dj ~' when r ~ 2 by replacing ~ 8r+s_lRS(Qx), Sr+s_l R (Qy) and 

r+s-2 
8r+s_lRS(Qz) in the standard bases by E(Qx,Rx), E(Qy,Ry) and E(Qx,Rz) w 

respectively. 

Next let ~I,...,~ p be indeterminates with dimension I, height r and filtration 

1. We use 9.5 to choose a homogeneous expression E'(~l,...,~ p) in Dk{~l,...,~ p} 

equivalent to 

R s 
~r+s_l~r+s (~l(Sr~2)'''(6r~p))- 

Finally, we define the subbasic maps fm and h exactly as in the case M = M r . 

We can now define ~ and 7~ on indecomposables by means of Table 3. The first 

column lists the new basis for the indecomposables of ~ ~ '. The second ~olumn (we 

claim) gives the values of F O on each basis element. 
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The first six entries in this column are the new basis for the indecomposables 

of Dj~, and the first six entries in column 3 define ~j, while the remaining 

entries in column 3 give the values of yj on the remaining entries in column 2. The 

'. The verifications necessary to prove 4.7 in this entries in column 4 define yj 

case are again similar to those in the case M = M r. The less obvious ones are the 

following. If s < r we have 

~r-SQSRx ~ ~r-s-iQS~R x ~ ~r-s-iQS+ip, x _ ~r-s-IQS(x(Srx)P-I ) 

~ _(~r-s-iQSx)(~r-isrx)(P-l)J 

in lines 1,5 and 9 by 9.4(iii). (In particular we observe, as claimed in the proof 

of 8.4(viii), that the relation 3.6(viii) is not used in the present proof when 

s = 1 and r > 2.) If s = r we have 

QSRx ~ QRQS-lx ~ 0 

in lines 1 and 5 by 3.6(viii). In line II with p = 2 we apply 9.4(ix) to show 

F , r-s-l^s • r-s-I s r-2 
Ot~ ~ VmJ ~ ~ Q (2 Sr2,Qx) 

O if s < r-2 

( r-I .... 2 r-2 

( ~r-2 QSr2.Qx )2 r-2 

if s = r-2 

r-i ..... 2 r-2 
+ ~ ~r~,~x) if s = r-1 

and the claimed values of F O follow from 3.1(ii), 3.5 and 3.6(iii) and (iv). This 

concludes the proof of 4.7. 

Proof of 9.4. Let = denote mod p equivalence. Parts (i), (ii), (iii , and (iv) 

follow easily by induction from 3.3(v) and 3.3(vii). For part (v) we have 

S 

QS((~l~2)~4) = Qs(~I~3)QS(~4) = (~S~l)P (QS~3)(QS~4) 

by (iii) and (iv). For part (vi) we have 

- -s( i p-i, 
8r s Q ~I~2 

i p-i, 
QS~r(~l~2 

I i-I p-i i p-i-I 
QSIi(~r~l ~i ~2 = (P-i)~l(~r~2) ] 

s i )~p-i-I ] 
) i-i p-i] _ iQ [~l(6r~2 iQS[(~r~l ~i ~2 

S 
= i(QS~r£1)(~S~l)(i-l)P (~s$2)(P-i)pS 

- i (~S~l)PS(QS$r~ 2) (ws~2)(P-i-l)pS 
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and the result follows by part (i). 

(vii) First we claim 

r 8 
(*) Q r+lP,~ 1 ~ O. 

This is true when r = 1 by 3,3(iv) and 3.3(v). If r £ 2 we have 

r-l 
QrSr+lP,~ 1 ~ Q ~rQP,~l 

r-1 
~ Q 8r[p,Q~ 1 (pp-! _ I)~] 

~ Qr-lgrp,Q~l 

and the claim follows by induction on r. 

Now we have 

i-i p-i r+t-l_t 2tE(~r~l)~l ~2 ] ~r+t-18r+iRt[(6r~l)~l ~2 ] ~ ~ ~ Sr+2tP* i-I p-i 

r+t-l_t 2t , 2t i-1 p-i 
~ ~ ~ 8r+2t (~r+2t p* ~i ~p* (~I ~2 )] 

, r+t-l_t 2t r+t-l-t 2t i-l~p-i~ 
~ -~ ~ Br+2tP* ~i )[~ ~ ~r+2t p* (~I ~2 ~I 

If t > r then 

r÷t-lQt 2t ~t , t-r 
~r+2t p* ~i ~ ~ ~t+l p*~p* ~i )' 

which is equivalent to 0 by (*). Otherwise we have 

r+t-l~t 2t , r+t-l^t~ 2t, i p-i, 
~ ~r+2tP, ~i )~ ~ ~r+2tP, ~i~2 ~] 

~ ( r-t-IQt~r~l~ )[ r-t-IQt~r(~i~p-i)~l~2 ] 

and the result follows from part (iii). 

For (viii), we have 

8Qr~ 
~i ~ Qr-18QI ~I 

ii P )(~r-lx)(p2-p)(r-l)Qr-lsrP, Qx if r > 2 
i 

if r= l, 

but the expression for r ~ 2 is also equivalent to zero by (*). 

Finally, part (ix) follows from 3.3(vi) by induction on s. 
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It remains to prove 9.5. In order to keep track of when an element of 

D {~l,...,~t } is homogeneous, we make the following definition. Let S be a fixed 

set and suppose that we have assigned to each ~i a subset h(~i) of S called the 

homogeneity of ~i" Then we define the homogeneity of an arbitrary expression in 

~I,...,~ t by requiring that Oa,r, j have homogeneity S, that p,,6r,~,Q,~and R 

commute with h and that h(E + E') = hiE) ~ h(E') and h(E.E') = h(E) v h(E'). We say 

that an expression E(~l,...,~ t) of height 1 is reducible with respect to h if 

there is an E' Dj{~l,...,~ t} with E' ~ E and h(E') D h(E). 

P rQposition 9.6. If S is any set and h(~l),...,h(~t) are any subsets of S then 

every expression of height 1 in ~l,...,~t is reducible with respect to h. 

If S = {~I,...,~G} and h(~i) = {~i ) for i < i ~ t then the expressions listed 

in 9.5 have homogeneity S, while an expression in D{~l,...,~t} has homogeneity S 

if and only if it is homogeneous. Thus 9.5 follows from this case of 9.6. The 

extra generality allowed for S and h is technically useful in proving 9.6. 

In the remainder of this section we prove 9.6. We fix a set S and assume from 

now on that any indeterminates mentioned have been assigned homogeneities contained 

in S as well as dimensions, heights and filtrations. It will be convenient to let 

~, q and 0 denote indeterminates and to let E, F, G and H denote expressions. We 

say that two expressions (possibly involving different sets of indeterminates) match 

if they have the same dimension, height, filtration and homogeneity. We shall 

frequently use the fact that a s~n or product of reducible expressions is reducible 

and that homogeneity is preserved by substitution, i.e., if F is any expression in 

~l,...,Os and EI,...,E s matching nl,...,q s respectively then h(F(~,...,Es)) = h(F). 

Note, however, that equivalent expressions generally have different homogeneities; 

for example, p~ is equivalent to 0 if li~il = 1 but h(~) is not necessarly equal to S. 

I 1! t~ For our next two results we fix a set {ql,...,qs,q~j...,qs,nl,...,qs} of inde- 

" matches Rn i. Here and else- ' matches Qn i and each n i terminates such that each n i 

where we shall interpret Qqi as 01,1,1 if llqill = 1 and Rn i as Ol,1,1 if iqii = 0. 

We say that an expression is elementary if it does not involve Q or R. 

Lemma 9.7. 

match G. 

(i) 

expression G' 

(ii) 

' " " with hG' ~ hF and G' ( h i , . . . ,  ns,n{,... ,ns~nl,... ,n s) 

F(G) ~ G'(nl,...,ns,Qnl,...,Qns,Rql,...,Rn s 

Let G be an elementary expression of length 2 in nl,...,o s and let 0 

w II 011-10 or ~11011-1~110110 then there is an elementary If F is 

D G{ql,''',ns} with G' ~ F(G) and hG' D hF. 

If F = Q0 or F = R0 then there is an elementary expression 

). 
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Proof. The possibilities for G are ~ni,P.ni,Brni, ni+oj, nin j and n i. The 

result can be checked in each case from the formulas of section 3. 

Next we define the complexity c(E) of a standard indecomposable E in 

{nl,...,n s} to be the total number of Q's and R's that appear in it. We define 

c(E) for an arbitrary expression E in D~{nl,...,ns} to be the maximum of the 

complexities of the indecomposables that appear as factors in the terms of E. 

' .. ' " . " Then there is an Lemma 9.8. Let H~ {nl,...,ns,nl , .,ns,nl , "''qs}" 

H' ~ D-{ql,''',qs} such that h(H') 9 h(H), c(H') < c(H) + 1 and H' is equivalent to a 

H(nl,--.,os,Qnl,...,Qns,Rnl,-.-,Ros )- 

In particular, the latter expression is reducible. 

Proof. We may assume that H is a standard indecomposable and hence that it involves 

only one of the indeterminates. If it involves one of the ni the result is 

trivial. Otherwise H has one of the forms 

II nill-t-2Qt nl ' w llqill-t-2 S llqi ll_t_2Qtn~ ' ~ li °i ll-tQtn~ ' ~ II ni II +t-2 6 ~ ni ii +t_i Rt hi" or 

Uqill+t ~t ,, 
611nill+t+l~ q i. In each case the result follows either trivially or from the 

formulas of section 3. 

Lem~a 9.9. Let ~,...,E r be elementary expressions in ~i,...,~ t and let 

el,...,e r match E1,...,~ respectively. Let F ~Dj{el,..,er}. Then there is an 

H ~Dj{~l,...,~t} such that c(H) ~ c(F), h(H) ~ h(F) and H ~ F(E1,...,Er). In 

particular, F(E1,...,Er) is reducible. 

Proof. Let ~ be the maximum of the lengths of the ~. If ~ = I the result is 

trivial. We shall prove the result in general by induction on c(F) with a 

subsidiary induction on ~. We may assume that F is a standard indecomposable, and 

hence that it involves only one of the el, say e 1. Now by Definition 9.1, ~ can be 

written in the form G(EII,~2) , where EII(~I,...,~ t) and ~2(~l,...,~t ) are 

elementary with lengths less than ~ and G(ql,n 2 ) is elementary with length 2. If 

u e I ii-18 ~ @ 1 ~I-I 
c(F) = 0 then F has the form ~ 1 or ~ ~i1811l_181 and the result 

follows by 9.7(i) and the subsidiary inductive hypothesis. Otherwise F has the form 
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F'(F"), where F" = Q81 or Re I and c(F') = c(F) - !. Thus 

F(E I) = F'(F"(G(E ll,E12))). If q~,q~,q~,q~ are as in 9.7 then by 9.7(ii) there 

is an elementary expression G'(nl,q2,~,n~,n~,n ~) such that h(G') h(F") and 

G'(ql,n2,Qol,Qn2,Rnl,Rn2) ~ F"(G(nl,n2)). Thus 

F(G(nl,n2)) ~ F'(O'(nl,n2,Qnl,Qq2,Rnl,Rn2)). 

Now since c(F') < c(F) the inductive hypothesis gives an expression 

{ol,n2,ql,U2,ql,q 2} H~Dj ' ' " " with c(H) ~ c(F') < c(F), h(H) ) f(F') D h(F), and 

! ! I I . I I  
H ~ F (G (ql,q2,nl,n2,ql,q2)) 

So that 

F(G(qI,q2)) ~ H(ql,n2,Qql,Qq2,Rql,Rq2). 

Now by Lemma 9.8 there is an expression H' ~Dj{qI,n2} such that 

c(H') ~ c(H) + 1 ~ c(F) and h(H') ) h(H) ) h(F) with H' ~ F(G(ql,q2)). Hence F(E I) 

~ H'(Ell,E12). Since Ell and El2 both have lengths less than £, the result now 

follows by the subsidiary inductive hypothesis. 

Finally, we complete the proof of 9.6. Let G(~I , ...,~t ) be any expression of 

height 1. The proof is by induction on the length of G, which we may assum~ is > 

2. It is easy to see from definition 9.1 (by another induction on the length of G) 

that G can be written in the form G'(~l,...,~t,E) , where G'(~l,...,,~t,n) has length 

less than £ and E has length 2. Then G' has height 1 and h(G') = h(G). By 

inductive hypothesis we may assume G' E D G{~ l, ...,~t,n}. If E is elementary the 

result now follows by 9.9, while if E is Qq or Rn the result follows by 9.8. This 

concludes the proof. 


