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Abstract. We prove that the minimal v2-self-map of the 2-local spectrum

A1 has periodicity 32.
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Convention. Throughout this paper we work in the stable homotopy category of
spectra localized at the prime 2.

1. Introduction

Let K(n) be the nth Morava K-theory. Let C0 be the category of 2-local finite
spectra, Cn ⊂ C0 be the full subcategory of K(n − 1)-acyclics and C∞ be the full
subcategory of contractible spectra. Hopkins and Smith [NilpII] showed that the
Cn are thick subcategories of C0 (in fact, they are the only thick subcategories of
C0) and they fit into a sequence

C0 ⊃ C1 ⊃ . . . ⊃ Cn ⊃ . . . ⊃ C∞.
We say a finite spectrum X is of type n if X ∈ Cn \ Cn+1.

A self-map v : ΣkX → X of a finite spectrum X is called a vn-self-map if

K(n)∗(v) : K(n)∗(X) −→ K(n)∗(X)

is an isomorphism. For a finite spectrum X, a self-map v : ΣkX → X can also be
regarded as an element of πk(X ∧DX), where DX is the Spanier-Whitehead dual
of X.
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For any ring spectrum E, let HE denote the E-Hurewicz natural transformation

HE : π∗( ) −→ E∗( ).

Let k(n) denote the connective cover of K(n). If v : Sk → X ∧DX is a vn-self-map
then Hk(n)(v) ∈ k(n)∗(X ∧DX) has to be the image of vmn ∈ k(n)∗ ∼= F2[vn], for
some positive integer m, under the map

k(n)∗ι : k(n)∗ −→ k(n)∗(X ∧DX),

where ι : S0 → X ∧ DX is the unit map. The value m is called the periodicity
of the vn-self-map v. We call v a minimal vn-self-map for X, if v is a vn-self-map
with smallest periodicity. An easy consequence of [NilpII, Theorem 9] is that the
periodicity of a minimal vn-self-map is always a power of 2.

Hopkins and Smith showed, among other things, that every type n spectrum
admits a vn-self-map and the cofiber of a vn-self-map is of type n + 1. However,
not much is known about the minimal periodicity of such vn-self-maps.

The sphere spectrum S0 is a type 0 spectrum with a v0-self-map 2 : S0 → S0.
The cofiber of this v0-self-map is the type 1 spectrum M(1). The spectrum M(1)
is known to admit a unique minimal v1-self-map of periodicity 4. The cofiber
of this v1-self-map is denoted by M(1, 4). In 2008, Behrens, Hill, Hopkins and
the third author [BHHM] showed that the minimal v2-self-map on M(1, 4) is v :
Σ192M(1, 4)→M(1, 4), which has periodicity 32.

Instead of S0, we can start with the type 0 spectrum Cη, the cofiber of
η : S1 → S0. The spectrum Cη admits a non-zero v0-self-map 2 ∧ 1Cη : Cη → Cη,
with cofiber M(1) ∧ Cη := Y . The type 1 spectrum Y admits eight minimal
v1-self-maps of periodicity 1. These eight maps are constructed in [DM81] using
stunted projective spaces. The cofiber of any of the v1-self-maps is referred to as
A1. Though there are eight different v1-self-maps, there are only four different
homotopy types of the cofibers A1 (see [DM81, Proposition 2.1]).

Let A(1) be the subalgebra of the Steenrod algebra A generated by Sq1 and
Sq2. It turns out that the cohomology of any homotopy type of A1 is a free A(1)-
module on one generator. However, different homotopy types of A1 have different
A-module structures, which are distinguished by the action of Sq4. We depict the
cohomologies of the four different spectra A1 in Figure 1.1 where the red square
brackets represent an action of Sq4, the blue curved lines represent an action of
Sq2, and the black straight lines represent an action of Sq1. The subalgebra A(1)
has four different A-module structures each of which corresponds to a homotopy
type of A1. Any A-module structure on A(1) has a nontrivial Sq4 action on the
generator in degree 1 forced by the Adem relations. However, there are choices for
Sq4 actions to be trivial or nontrivial on generators in degree 0 and degree 2, thus
giving us four different A-module structures. We denote different homotopy types
of A1 using the notation A1[ij] where i and j are the indicator functions for the
action of Sq4 on the generators in degree 0 and degree 2 respectively. The spectra
A1[01] and A1[10] are self-dual, i.e. A1[01] = Σ6DA1[01] and A1[10] = Σ6DA1[10],
whereas A1[00] and A1[11] are dual to each other, i.e. A1[00] = Σ6DA1[11]. This
is a consequence of the fact that

χ(Sq4) = Sq4 + Sq3Sq1,

where χ : A→ A is the canonical antiautomorphism of the Steenrod algebra.
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Figure 1.1. The A-module structures of H∗(A1[00]), H∗(A1[10]),
H∗(A1[01]) and H∗(A1[11]).

It is worth noting that A1 is created in a way similar to M(1, 4), where Cη is
analogous to S0, and Y is analogous to M(1). Therefore, it is reasonable to ask
whether A1 has the same v2-periodicity as M(1, 4). The minimal v1-self-map of
Y has periodicity 1, which is less than the periodicity of the minimal v1-self-map
on M(1), which is 4. Hence, it is natural to ask if any of the four models of A1

admit a v2-self-map of periodicity 2k, where k ≤ 4. In [BHHM], the third author
conjectured that the minimal v2-self-map of A1 should have periodicity 32. The
goal of this paper is to prove the following 1:

Main Theorem 1. For all four models of A1, the minimal v2-self-map

v : Σ192A1 → A1

has periodicity 32.

Notation 1.1. For any ring spectrum E, ιE : S0 → E will denote the unit map.
The unit map ιE induces the the Hurewicz natural transformation

HE : π∗( ) −→ E∗( )

as introduced earlier. When E = A1 ∧DA1, we simply use ι : S0 → A1 ∧DA1 to
denote the unit map. Let i : S0 ↪→ A1 be the map that represents the inclusion of
the bottom cell. Let j : A1 ∧DA1 → A1 denote the map 1A1

∧Di.
Notation 1.2. To lighten the notations, we use Exts,tT (X) to denote

Exts,tT (H∗(X),F2), where T is a subalgebra of the Steenrod algebra A.

1.1. Outline. To prove Main Theorem 1, we use the fact that the spectrum tmf
detects certain v2-periodic elements. More specifically, the unit map ιk(2) : S0 →
k(2) factors through tmf , i.e. we have

ιk(2) : S0 ιtmf−→ tmf
r−→ k(2).

The induced map in homotopy

r∗ : tmf∗ −→ k(2)∗

1In [DM81], Davis and the third author claimed, incorrectly, that the periodicity of minimal

v2-self-maps on M(1, 4) and the two self-dual models of A1, namely A1[01] and A1[10], as 8.
After successfully correcting the v2-periodicity of M(1, 4) in [BHHM], the v2-periodicity of A1

was called into question by the third author.



4 PRASIT B., P. EGGER, AND M. MAHOWALD

sends ∆8, the periodicity generator of tmf∗, to v322 . Since A1 is a type 2 spectrum,
we know that ∆8 has a nonzero image under the composition

tmf∗
r∗−→ k(2)∗

k(2)∗ι−→ k(2)∗(A1 ∧DA1).

Therefore, from the commutative diagram

tmf∗
tmf∗ι //

r∗

��

tmf∗(A1 ∧DA1)

r∗(A1∧DA1)

��

k(2)∗
k(2)∗ι

// k(2)∗(A1 ∧DA1)

we see that k(2)∗ι(v
32
2 ) lifts to tmf∗(A1 ∧ DA1). We can choose the lift to be

tmf∗ι(∆
8). This does not eliminate the possibility that smaller powers of k(2)∗ι(v2)

could lift to tmf∗(A1 ∧DA1). However, if k(2)∗ι(v
8
2) and k(2)∗ι(v

16
2 ) do not lift to

tmf∗(A1 ∧DA1), then they will not lift to π∗(A1 ∧DA1). So we analyse the map
of Adams spectral sequences induced by r : tmf → k(2).

It is well-known that H∗(tmf) as an A-module is isomorphic to A//A(2), where
A(2) is the subalgebra of A generated by Sq1, Sq2 and Sq4. Therefore, applying

a change of rings formula, we see that Exts,tA(2)(X) is the E2 page of the Adams

spectral sequence

Es,t2 = Exts,tA(2)(X)⇒ tmft−s(X).

Similarly, we have an Adams spectral sequence

Es,t2 = Exts,tE(Q2)
(X)⇒ k(2)t−s(X),

which is a manifestation of the fact that H∗(k(2)) = A//E(Q2).
The map ι : S0 → A1 ∧ DA1 induces the following commutative diagram of

spectral sequences

(1.3) Exts,tA(2)(S
0)

��

ιtmf
∗ // Exts,tA(2)(A1 ∧DA1)

��

Exts,tE(Q2)
(S0)

ιk(2)
∗ // Exts,tE(Q2)

(A1 ∧DA1).

It is well known that

v82 ∈ Ext8,48+8
E(Q2)

(S0)

is the image of the nonnilpotent element b43,0 ∈ Ext8,48+8
A(2) (S0) (see [Bau, Hen]).

Since A1 is a type 2 spectrum, the element ι
k(2)
∗ (v82) ∈ Ext8,48+8

E(Q2)
(A1 ∧ DA1) is

nonnilpotent. Consequently,

ιtmf∗ (b43,0) ∈ Ext8,48+8
A(2) (A1 ∧DA1)

is nonnilpotent. Thus, ι
k(2)
∗ (v8n2 ) lifts to a nonzero element of Ext8n,48n+8n

A(2) (A1 ∧
DA1) for every n ∈ N, which can be chosen to be ιtmf∗ (b4n3,0).

In Section 2, we warm up by computing Exts,tA(2)(A1) using the May spectral

sequence and compute its vanishing line for later use. In Section 3 we show that
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ιtmf∗ (b43,0) admits a d2 differential and ιtmf∗ (b83,0) admits a d3 differential in the
Adams spectral sequence

Es,t2 = Exts,tA(2)(A1 ∧DA1) =⇒ tmft−s(A1 ∧DA1).

This will imply the nonexistence of a 8-periodic or 16-periodic v2-self-map of A1. We
will recall the algebraic tmf resolution of [BHHM] and use the resulting spectral se-

quence to show that for every n ∈ N, the element ιtmf∗ (b4n3,0) lifts to Ext8n,48n+8n
A (A1∧

DA1) under the map induced by Htmf . Furthermore, we show that the lifts of

ιtmf∗ (b43,0) and ιtmf∗ (b83,0) support a d2 and a d3 differential respectively in the Adams
spectral sequence

Es,t2 = Exts,tA (A1 ∧DA1) =⇒ πt−s(A1 ∧DA1).

This extra effort enables us to identify some d2 and d3 differentials in the above
spectral sequence, which will play a crucial role in the proof of the existence of a 32-
periodic v2-self-map of A1. Thus, the existence of a 32-periodic v2-self-map of A1

boils down to showing that the lift of ιtmf∗ (b163,0), which we’ll call v, is a permanent
cycle in the Adams spectral sequence

Es,t2 = Exts,tA (A1 ∧DA1) =⇒ πt−s(A1 ∧DA1).

Note that v cannot be a target of a differential as its image in Ext32,192+32
E(Q2)

(A1∧
DA1) is not a target of a differential. Further, v cannot support a nontrivial d2 or
d3 differential by the Leibniz rule. In Section 5 we use all prior knowledge of d2 and
d3 differentials, including an important d3 differential found in Section 4, to show
that the potential targets of dr differentials for r ≥ 4 are either zero or not present
in the Adams E4 page. This will conclude the proof of Main Theorem 1.

Notation 1.4. For the rest of the paper, we will abusively denote any

x ∈ Exts,tA(2)(S
0) and ιtmf∗ (x) ∈ Exts,tA(2)(A1 ∧ DA1) and sometimes their lifts in

Exts,tA (S0) and Exts,tA (A1 ∧ DA1) respectively under Htmf∗, just by x. This will
allow us to suppress cumbersome notations. We will make sure that the ambient
group in which x belongs is clear from the context.

1.2. Use of Bruner’s Ext software. We will use this software (see Appendix A
or [Bru] for a description of the program) for two purposes. Given any A(2)-module
M , finitely generated as an F2-vector space, the program can compute the groups
Exts,tA(2)(M,F2) to the extent of identifying generators in each bidegree within a

finite range, determined by the user. Since we are interested in Exts,tA(2)(X) for

finite spectra X, such as A1 ∧DA1, whose cohomology structures as A(2)-modules
are known, this suits our task perfectly. The second purpose is the following: As
any finite spectrum X is an S0-module, Ext∗,∗A(2)(X) is a module over Ext∗,∗A(2)(S

0).

Given an element x ∈ Exts,tA(2)(X), the action of Ext∗,∗A(2)(S
0) can be computed

using the dolifts functionality of the software. Summary of the output of the
Bruner’s program that is needed for some of the results in Section 4 and Section 5
are listed in Appendix B and Appendix C respectively.

One should also be aware that Main Theorem 1 is by no means a consequence of
the programming output. However, parts of the proof are reduced to pure algebraic
computation, which can be performed using Bruner’s program.
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2. Computation of Exts,tA(2)(A1) and its vanishing line

J.P. May in his thesis [May] introduced a filtration of the Steenrod algebra called
the May filtration, which induces a filtration of the cobar complex C(F2, A∗,F2).
This filtration gives a trigraded spectral sequence

Es,t,u1 = F2[hi,j : i ≥ 1, j ≥ 0]⇒ Exts,tA (S0), |hi,j | = (1, 2j(2i − 1), 2i− 1),

with differentials dr of tridegree (1, 0, 1 − 2r), which converges to the E2 page of
the Adams spectral sequence

Exts,tA (S0)⇒ πt−s(S
0).

The element hi,j corresponds to the class [ξ2
j

i ] in the cobar complex C(F2, A∗,F2).
We stick to the notation introduced by Tangora in his thesis [Tan]. For example,
h1,j is abbreviated by hj . Meanwhile, there are many elements hi,j that are not
d1-cycles in the May spectral sequence, however, even in these cases, the Leibniz
rule means that h2i,j will be d1-cycles. To get around the awkwardness of talking

about h2i,j in later pages of the May spectral sequence, where hi,j may not even

exist, Tangora uses bi,j to denote h2i,j from the E2 page onwards.
One can use the same May filtration on the subalgebra A(2) of A, to obtain

a filtration on the cobar complex C(F2, A(2)∗,F2). Thus we get a May spectral
sequence with finitely many differentials

F2[h0, h1, h2, h2,0, h2,1, h3,0]⇒ Exts,tA(2)(S
0)

all of which have been computed (see [DM]). The bigraded ring Exts,tA(2)(S
0) is the

Adams E2 page for the homotopy groups of tmf .
We have obtained A1 by a series of cofibrations,

S1 η−→ S0 −→ Cη

Cη
2−→ Cη −→ Y

and

Σ2Y
v1−→ Y −→ A1.

The maps 2, η and v1 are detected by h0, h1 and h2,0, respectively, in the May
spectral sequence. Using the fact that cofiber sequences induce long exact sequences
of E1 pages of the May spectral sequence, we get that the E1 page of the May
spectral sequence converging to Exts,tA(2)(A1) is

F2[h2, h2,1, h3,0] =⇒ Exts,tA(2)(A1).

Alternatively, using a change of rings formula, we see that the cobar complex (whose

cohomology is Exts,tA(2)(A1)) is

C(F2, A(2)∗, A(1)∗) ∼= C(F2, (A(2)//A(1))∗,F2),

hence a quotient of C(F2, A(2)∗,F2). Thus, the filtration on C(F2, A(2)∗,F2) in-
duces a filtration on C(F2, A(2)∗, A(1)∗) as a result of which F2[h2, h2,1, h3,0] is a
module over F2[h0, h1, h2, h2,0, h2,1, h3,0].

The d1 differentials in the May spectral sequence

F2[h0, h1, h2, h2,0, h2,1, h3,0]⇒ Exts,tA(2)(S
0)
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come from the coproduct on A(2)∗. It is well known that d1(h2) = 0, d1(h2,1) =
h1h2 and d1(h3,0) = h0h2,1 + h2h2,0. Under the quotient map

F2[h0, h1, h2, h2,0, h2,1, h3,0] � F2[h2, h2,1, h3,0]

all the images of the above differentials map to zero. Therefore, there are no d1
differentials in the May spectral sequence

F2[h2, h2,0, h3,0]⇒ ExtA(2)(A1).

One can use Nakamura’s formula to compute higher May differentials. The opera-
tions Sqi on the cobar complex of C(F2, A∗,F2), defined by Sqi(x) = x∪ix+δx∪i+1x
(see [Nak]), satisfy

Sq0(hi,j) = h2i,j

Sq0(bi,j) = b2i,j

Sq1(hi,j) = hi,j+1

as well as Cartan’s formulas (see [Nak, Proposition 4.4 and Proposition 4.5])

Sq0(xy) = Sq0(x)Sq0(y)

Sq1(xy) = Sq1(x)Sq0(y) + Sq0(x)Sq1(y)

whenever x and y are represented by elements in appropriate pages of the May
spectral sequence. In particular we have

Sq1(x2) = 0

for every x. The differential δ in the cobar complex C(F2, A∗,F2), satisfies the
relation

(2.1) δSqi = Sqi+1δ

for i ≥ 0 (see [Nak, Lemma 4.1]) and is often called Nakamura’s formula in the
literature.

Since the May spectral sequence is obtained by filtering the cobar complex, the
above formula helps in detecting differentials in the May spectral sequence. Since
the cobar complex

C(F2, A(2)∗, A(1)∗) ∼= C(F2, (A(2)//A(1))∗,F2),

is a quotient of C(F2, A(2)∗,F2), we apply (2.1) to find differentials in the May
spectral sequence for A1.

Lemma 2.2. In the May spectral sequence

F2[h2, h2,1, h3,0]⇒ Exts,tA(2)(A1),

we have

• d2(b2,1) = h32
• d3(b3,0) = h22h2,1
• d4(b23,0) = h2b

2
2,1

and the spectral sequence collapses at E5.

Proof. In the May spectral sequence

(2.3) F2[h0, h1, h2, h2,0, h2,1, h3,0]⇒ Exts,tA(2)(S
0)
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the differentials d2(b2,1) = h32 and d4(b23,0) = h2b
2
2,1 translate into differentials in

ExtA(2)(A1). In the cobar complex, b3,0 is represented by the element [ξ3|ξ3]. Since
b3,0 = Sq0h3,0, we apply (2.1), to obtain

d3(Sq0h3,0) = Sq1(d1h3,0)

= Sq1(h0h2,1 + h2h2,0)

= h20h2,2 + h1h
2
2,1 + h22h2,1 + h3h

2
2,0

= h22h2,1 in the May spectral sequence for A1.

Therefore, in the cobar complex C(F2, A(2)∗, A(1)∗), it must be the case that,

δ([ξ3|ξ3]) = [ξ21 |ξ21 |ξ22 ] + elements of higher May filtration.

As a result we have

d3(b3,0) = h22h2,1.

The May spectral sequence 2.3 does not have any differentials dr for r ≥ 5, conse-
quently no differentials in the May spectral sequence

F2[h2, h2,1, h3,0]⇒ Exts,tA(2)(A1).

�

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

6
b22,1

h3,0

h3,0b
2
2,1

28 30 32 34 36 38 40 42 44 46 48 50 52 54 56
5

7

9

11

b42,1

b43,0

Figure 2.1. The E∞-page of the May spectral sequence for
ExtA(2)(A1).

In Figure 2.1, the solid line of slope 1 represents multiplication by h1, the solid
line of slope 1

3 represents multiplication by h2, while the dotted line of slope 1
5

represents multiplication by h2,1. The element b43,0 is the periodicity generator of

Ext∗,∗A(2)(A1) and the blue part is simply a repetition of the earlier black pattern.
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This matches the output of Bruner’s program [Bru] for Exts,tA(2)(A1), though differ-

ent models of A1 may have different extensions some of which might not be detected
in the May spectral sequence.

Having computed the E2 page Exts,tA(2)(A1), we give a vanishing line of this

spectral sequence, which will come in handy later on in the paper.

Lemma 2.4. The group Exts,tA(2)(A1) is zero if

s >
1

5
(t− s) + 1,

and for t− s ≥ 29, it is zero if

s >
1

5
(t− s).

In other words, there is a vanishing line

y =
1

5
x+ 1.

Proof. Of the three generators of the E1 page, h2 has slope 1
3 , h2,1 has slope 1

5 ,

and h3,0 has slope 1
6 . However, while Exts,tA(2)(A1) contains infinitely large powers

of h2,1 and h3,0, it only contains powers up to 2 of h2. Hence, the vanishing line

of Exts,tA(2)(A1) must have slope 1
5 , determined by b22,1. Now, since h2b

2
2,1 = 0, the

vanishing line for stems greater than 29 is y = 1
5x and a glance at Figure 2.1 gives

us the y-intercept of the overall vanishing line. �

3. A d2 and a d3 differential

In this section we first show that b43,0 and b83,0 in Exts,tA(2)(A1 ∧DA1) support a

d2 and a d3 differential respectively. Then we show that these differentials lift to
Exts,tA (A1 ∧ DA1) under the map of spectral sequences induced by Htmf . Some
of the proofs in this section as well as in the subsequent sections use Bruner’s
program [Bru]. We provide Appendix A to help readers familiarize themselves with
this software.

In the Adams spectral sequence

Es,t2 = Exts,tA(2)(S
0) =⇒ tmft−s

it is well known that d2(b43,0) = e0r and d3(b83,0) = wgr (see [Hen]). Using Bruner’s

program, we see that e0r and wgr both have nonzero images in Exts,tA(2)(A1∧DA1).

Lemma 3.1. In the Adams spectral sequence

Es,t2 = Exts,tA(2)(A1 ∧DA1) =⇒ tmft−s(A1 ∧DA1)

we have d2(b43,0) = e0r and d3(b83,0) = wgr.

Proof. In the map of Adams spectral sequences,

Es,t2 = Exts,tA(2)(S
0)

��

+3 tmft−s

��

Es,t2 = Exts,tA(2)(A1 ∧DA1) +3 tmft−s(A1 ∧DA1)
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we have established that (beware of our abusive notations as explained in Nota-
tion 1.1)

Exts,tA(2)(S
0)

ιtmf
∗−→ Exts,tA(2)(A1 ∧DA1)

b43,0 7→ b43,0

b83,0 7→ b83,0

e0r 7→ e0r

wgr 7→ wgr.

Since d2(b43,0) = e0r in the Adams spectral sequence for tmf∗, it follows that we
have a d2-differential

d2(b43,0) = e0r.

As a consequence of the Leibniz rule, d2(b83,0) = 0 and hence b83,0 and its image

under ιtmf∗ are nonzero elements in the E3 pages of Adams spectral sequences for
tmf∗ and tmf∗(A1 ∧DA1), respectively.

Since there is a d3 differential d3(b83,0) = wgr in the Adams spectral sequence

for tmf∗, it will follow that b83,0 supports a d3-differential in the Adams spectral
sequence for tmf∗(A1∧DA1), provided the image of wgr is nonzero in the E3-page
of the Adams spectral sequence for tmf∗(A1 ∧DA1). Thus we have to show that
there does not exist a differential of the form d2(x) = wgr.

Using Bruner’s program [Bru], we check that wgr ∈ Ext19,95+19
A(2) (S0) maps non-

trivially to Ext19,95+19
A(2) (A1). Thus, if there exists an x such that d2(x) = wgr

in

Exts,tA(2)(A1 ∧DA1) =⇒ tmft−s(A1 ∧DA1),

then the image of x, call it x′, must be nontrivial under the map

j∗ : Ext17,96+17
A(2) (A1 ∧DA1) −→ Ext17,96+17

A(2) (A1)

and we will have d2(x′) = wgr in

Exts,tA(2)(A1) =⇒ tmft−s(A1).

There is exactly one generator of Ext17,96+17
A(2) (A1), and that generator is b43,0 · y

under the pairing

Ext8,48+8
A(2) (S0)⊗ Ext9,48+9

A(2) (A1) −→ Ext17,96+17
A(2) (A1).

It is clear that d2(y) = 0 as Ext11,47+11
A(2) (A1) = 0 (see Chart 2.1). Thus using the

Leibniz rule, we see that

d2(b43,0y) = e0r · y.
Using [Bru], we check that e0r · y = 0. Therefore, wgr is nonzero in the E3-page of
the spectral sequence

Exts,tA(2)(A1 ∧DA1) =⇒ tmft−s(A1 ∧DA1),

and therefore

d3(b83,0) = wgr

in this spectral sequence. �
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As a consequence of Lemma 3.1, we see that v82 and v162 in k(2)∗(A1 ∧DA1) do
not lift to tmf∗(A1 ∧DA1) and hence cannot lift to π∗(A1 ∧DA1). Thus we have
established:

Theorem 3.2. The spectra A1 do not admit an 8-periodic or 16-periodic v2-self-
map.

Next we describe an algebraic resolution which will allow us to lift the d2 differ-
ential and the d3 differential of Lemma 3.1 to the Adams spectral sequence

Es,t2 = Exts,tA (A1 ∧DA1) =⇒ πt−s(A1 ∧DA1).

We will briefly recall the resolution described in [BHHM, Section 5], and how it
is used to lift elements of Ext groups over A(2) to Ext groups over A. Consider the
A-module

A//A(2) := A⊗A(2) F2

and denote by A//A(2) the kernel of the augmentation map

A//A(2) −→ F2.

When we consider the triangulated structure of the derived category of A-modules,
we get maps

A//A(2) −→ F2 −→ A//A(2)[1],

and a resulting diagram

F2
// A//A(2)[1] // A//A(2)

⊗2
[2] // · · ·

A//A(2)

OO

A//A(2)⊗A//A(2)[1]

OO

A//A(2)⊗A//A(2)
⊗2

[2]

OO

to which we shall apply the functor Exts,tA (H∗(X) ⊗ −,F2) to get a spectral se-
quence, which we shall refer to as the algebraic tmf spectral sequence to reflect
the fact that A//A(2) is the cohomology of tmf . This spectral sequence will be
trigraded, with E1 page

Es,t,n1 = Exts,tA (H∗(X)⊗A//A(2)⊗A//A(2)
⊗n

[n],F2)

∼= Exts−n,tA(2) (H∗(X)⊗A//A(2)
⊗n
,F2)

which converges to

Exts,tA (H∗(X),F2).

For any element in the algebraic tmf spectral sequence in tridegree (s, t, n), we will
refer to s as its Adams filtration, t as the internal degree and n as the algebraic
tmf filtration. The differential dr has tridegree (1, 0, r). It is shown in [DM] that

A//A(2) ∼=
⊕
i≥0

H∗(Σ8iboi),

where boi denotes the i-th bo-Brown-Gitler spectrum of [GJM]. As a result the E1

page of the algebraic tmf spectral sequence simplifies to

Es,t,n1 =
⊕

i1,...,in≥1

Ext
s−n,t−8(i1+···+in)
A(2) (X ∧ boi1 ∧ . . . ∧ boin) =⇒ Exts,tA (X).
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We will attempt to exploit the relative sparseness of the E1 page, especially its
vanishing line properties, in the case when X = A1 ∧DA1.

Remark 3.3 (The cellular structure of bo-Brown-Gitler spectra). The spectrum bo0
is the sphere spectrum. The cohomology of the spectrum bo1 as a module over the
Steenrod algebra can be described through the following picture, with the genera-
tors labelled by cohomological degree:

•
0

•
4

•
6

•
7

where the black, blue and red lines describe the actions of Sq1, Sq2 and Sq4 re-
spectively. Note that the 4-skeleton of bo1 is Cν. Indeed, the boi’s fit together to
form the following cofiber sequence

boi−1 −→ boi −→ Σ4iB(i)

where B(i) is the i-th integral Brown-Gitler spectrum as described in [GJM]. There-
fore for every i ≥ 1, the 7-skeleton of boi is bo1 and the 4-skeleton of boi is Cν.

One can compute Exts,tA(2)(A1 ∧DA1 ∧ boi) from Exts,tA(2)(A1 ∧DA1) using the

Atiyah-Hirzebruch spectral sequence or with Bruner’s program [Bru].

Lemma 3.4. The group

Exts,tA(2)(A1 ∧DA1 ∧ boi1 ∧ . . . ∧ boin)

is zero if s > 1
5 ((t− s) + 6).

Proof. We showed in Lemma 2.4 that Exts,tA(2)(A1) has a vanishing line s = 1
5 (t−s)

for t− s ≥ 30 and a vanishing line of s = 1
5 (t− s) + 1 overall. The only generator

of Exts,tA(2)(A1) with a slope greater than 1
5 is h2, so if we kill off h2 by considering

Exts,tA(2)(A1 ∧ Cν) then the vanishing line is precisely s = 1
5 (t− s).

As we mentioned in Remark 3.3, the 4-skeleton of any boi is Cν and the next
cell is in dimension 6. So we can build boi by attaching finitely many cells to Cν
of dimension ≥ 6. Hence by using the Atiyah-Hirzebruch spectral sequence and
the fact that 1

5 (x − 6) + 1 < 1
5x, one can see that the vanishing line of A1 ∧ boi is

s = 1
5 (t−s). One can buildA1∧boi1∧. . .∧boin fromA1∧boi1 , iteratively using cofiber

sequences, which depend on the cell structure of boi2 ∧ . . . ∧ boin . Since we have

already established that Exts,tA(2)(A1∧ boi1) has vanishing line s = 1
5 (t−s) and that

boi2 ∧ . . .∧ boin is a connected spectrum, we conclude, using the Atiyah-Hirzebruch

spectral sequence, that the vanishing line for Exts,tA(2)(A1 ∧ boi1 ∧ . . . ∧ boin) is

s = 1
5 (t− s).

However, DA1 has cells in negative dimension, in fact the bottom cell is in dimen-
sion −6. Again by using the Atiyah-Hirzebruch spectral sequence, one concludes
that the vanishing line for Exts,tA(2)(A1 ∧DA1 ∧ boi1 ∧ . . . ∧ boin) is

s =
1

5
(t− s+ 6)

for any ik ≥ 1, completing the proof. �
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Corollary 3.5. The group Exts,tA (A1 ∧DA1) is zero if

s >
1

5
(t− s) +

11

5

and for t− s ≤ 23, it is zero if

s >
1

5
(t− s) +

6

5
.

The result is a straightforward consequence of Lemma 2.4, Lemma 3.4 and the
algebraic tmf spectral sequence.

Lemma 3.6. The element

b43,0 ∈ Ext8,48+8
A(2) (A1 ∧DA1)

is in the image of the map

Ext8,48+8
A (A1 ∧DA1) −→ Ext8,48+8

A(2) (A1 ∧DA1).

Proof. Clearly b43,0 is in bidegree (s, t) = (8, 48 + 8) = (8, 56) of the E1 page of the
algebraic tmf spectral sequence, so we must verify that it is a permanent cycle,
which we will do by showing that the E1 page is zero in bidegree (s, t) = (9, 56)
when n ≥ 1. Namely, we must show that for every n ≥ 1, the group⊕

i1,...,in≥1

Ext
9−n,56−8(i1+···+in)
A(2) (A1 ∧DA1 ∧ boi1 ∧ . . . ∧ boin)

is zero. Using the vanishing line in Lemma 3.4, the group is zero for all i1, . . . , in ≥ 1
such that

1

5
(56− 8(i1 + · · ·+ in)− 9 + n+ 6) < 9− n

or

(3.7)
1

5
(53 + n− 8(i1 + · · ·+ in)) < 9− n.

Of course, we have

1

5
(53 + n− 8(i1 + · · ·+ in)) ≤ 1

5
(53− 7n),

and if n > 4, we also have
1

5
(53− 7n) < 9− n.

Assume n = 1, then (3.7) becomes

1

5
(54− 8i1) < 8,

or

i1 > 1,

so it suffices to verify that

Ext8,48A(2)(A1 ∧DA1 ∧ bo1) = 0.

Assume n = 2, then (3.7) becomes

1

5
(55− 8(i1 + i2)) < 7,

or

i1 + i2 > 2,
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so it suffices to verify that

Ext7,40A(2)(A1 ∧DA1 ∧ bo1 ∧ bo1) = 0.

Assume n = 3, then (3.7) becomes

1

5
(56− 8(i1 + i2 + i3)) < 6,

or

i1 + i2 + i3 > 3,

so it suffices to verify that

Ext6,32A(2)(A1 ∧DA1 ∧ bo1 ∧ bo1 ∧ bo1) = 0.

Assume n = 4, then (3.7) becomes

1

5
(57− 8(i1 + i2 + i3 + i4)) < 5,

or

i1 + i2 + i3 + i4 > 4,

so it suffices to verify that

Ext5,24A(2)(A1 ∧DA1 ∧ bo1 ∧ bo1 ∧ bo1 ∧ bo1) = 0.

For all four models of A1, Bruner’s program [Bru] shows that all the groups we
expected to be zero are in fact zero. �

Corollary 3.8. For all n ∈ N, the elements b4n3,0 ∈ Ext8n,48n+8n
A(2) (A1 ∧DA1) lift to

Ext8n,48n+8n
A (A1 ∧DA1) under the map induced by Htmf .

Proof. Since A1 ∧DA1 is a ring spectrum, it follows that the map

Exts,tA (A1 ∧DA1) −→ Exts,tA(2)(A1 ∧DA1)

induced by Htmf is a map of algebras. By Lemma 3.6, b43,0 lifts and thus b4n3,0 lifts
for every n ∈ N. �

Remark 3.9. The lift of b4n3,0 ∈ Ext8n,48n+8n
A(2) (A1∧DA1) to Ext8n,48n+8n

A (A1∧DA1)

may not be unique. The conclusions of Lemma 3.10 will not depend on the choice
of lift.

Lemma 3.10. In the Adams spectral sequence

Es,t2 = Exts,tA (A1 ∧DA1) =⇒ πt−s(A1 ∧DA1)

there is a d2-differential

d2(b43,0) = ẽ0r = e0r +R

and a d3-differential

d3(b83,0) = w̃gr = wgr + S

for some R and S in algebraic tmf filtration greater than zero.
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Proof. Recall that the element e0r ∈ Ext10,47+10
A (S0) (see [Tan]) maps to a nonzero

element in Ext10,47+10
A(2) (S0) which is also called e0r in the literature, and that

d2(b43,0) = e0r in

Exts,tA(2)(S
0) =⇒ tmft−s.

In Lemma 3.1, we argued that e0r has a nonzero image under the map

Ext10,47+10
A(2) (S0) −→ Ext10,47+10

A(2) (A1 ∧DA1).

Therefore by inspecting the commutative diagram

(3.11) Ext10,47+10
A (S0)

��

// Ext10,47+10
A (A1 ∧DA1)

��

Ext10,47+10
A(2) (S0) // Ext10,47+10

A(2) (A1 ∧DA1),

we see that e0r ∈ Ext10,47+10
A (S0) has a nonzero image in Ext10,47+10

A (A1 ∧DA1).
Since d2(b43,0) = e0r in ExtA(2)(A1 ∧DA1), it follows that

d2(b43,0) = e0r +R

in ExtA(A1 ∧DA1) for some R in algebraic tmf filtration greater than zero.
Consequently, d2(b83,0) = 0 in

Exts,tA (A1 ∧DA1) =⇒ πt−s(A1 ∧DA1),

and clearly b83,0 is not hit by a d2 in this spectral sequence, otherwise it would be
hit by a differential in

Exts,tA(2)(A1 ∧DA1) =⇒ tmft−s(A1 ∧DA1).

However, b83,0 could support a nonzero d3. The element wgr ∈ Ext19,95+19
A (S0)

maps to a nonzero element of Ext19,95+19
A(2) (S0) we will also call wgr. We showed,

in Lemma 3.1, that the image of wgr is nonzero in Ext19,95+19
A(2) (A1 ∧ DA1). The

diagram

(3.12) Ext19,95+19
A (S0)

��

// Ext19,95+19
A (A1 ∧DA1)

��

Ext19,95+19
A(2) (S0) // Ext19,95+19

A(2) (A1 ∧DA1),

makes it clear that the image of wgr is nonzero in Ext19,95+19
A (A1 ∧DA1).

Note that wgr ∈ Ext19,95+19
A (A1 ∧ DA1) cannot support a d2-differential as

d2(wgr) would have bidegree (21, 94 + 21) and

Ext21,94+21
A (A1 ∧DA1) = 0

by Corollary 3.5. Moreover, wgr cannot be target of a d2-differential as this will
force a d2-differential in ExtA(2)(A1 ∧DA1), which is not possible, as we argued in
the proof of Lemma 3.1. Thus, wgr is in the E3-page.

From Lemma 3.1, we know that d3(b83,0) = wgr in the Adams spectral sequence
for tmf∗(A1 ∧DA1). It follows that

d3(b83,0) = wgr + S,



16 PRASIT B., P. EGGER, AND M. MAHOWALD

for some S in algebraic tmf filtration greater than zero, in the Adams spectral
sequence for π∗(A1 ∧DA1). �

4. Another d3 differential

In the Adams spectral sequence

Exts,tA(2)(S
0) =⇒ tmft−s,

there is a well-known d3 differential

d3(v202 h1) = g6.

The element g is Tangora’s name [Tan] for the element detected by b22,1 in the E∞
page of the May spectral sequence

F2[hi,j : i > 0, j ≥ 0] =⇒ Exts,tA (S0).

In the literature, the same name is adopted for its image in Ext24,120+24
A(2) (S0). The

goal of this section is to show that this differential induces a d3 differential in

Exts,tA(2)(A1 ∧DA1) =⇒ tmft−s(A1 ∧DA1)

and it lifts to a d3 differential under the map of spectral sequences

Exts,tA (A1 ∧DA1)

��

+3 πt−s(A1 ∧DA1)

��

Exts,tA(2)(A1 ∧DA1) +3 tmft−s(A1 ∧DA1).

Lemma 4.1. In the Adams spectral sequence

Exts,tA(2)(A1 ∧DA1) =⇒ tmft−s(A1 ∧DA1),

the element g6 is killed by a d3 differential

d3(v202 h1) = g6.

Proof. From the calculation in Lemma 2.2, it is clear that g6 = b122,1 has a nonzero

image in Ext24,120+24
A(2) (A1). Since we have a factorization of maps

Ext24,120+24
A(2) (S0) −→ Ext24,120+24

A(2) (A1 ∧DA1) −→ Ext24,120+24
A(2) (A1),

g6 must also be nonzero in Ext24,120+24
A(2) (A1 ∧DA1). Furthermore, because it is hit

by a d3 differential in

Exts,tA(2)(S
0) =⇒ tmft−s,

it must also be hit by a d3 differential in

Exts,tA(2)(A1 ∧DA1) =⇒ tmft−s(A1 ∧DA1).

However, this does not preclude the possibility that it might be hit by a d2 differ-
ential in this spectral sequence. Indeed, there are elements x̃ ∈ Ext22,121+22

A(2) (A1 ∧
DA1) that could support a d2 differential

d2(x) = g6.
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In such a case, x would have to map to a nonzero element x ∈ Ext22,121+22
A(2) (A1)

and there would exist a differential

d2(x) = g6

in

Exts,tA(2)(A1) =⇒ tmft−s(A1).

From the calculations of Lemma 2.2, there is exactly one possible nonzero x ∈
Ext22,121+22

A(2) (A1). Using Bruner’s program [Bru] (see Equation (A.2)) we see that

this x is a multiple of gb43,0 under the pairing

Ext12,68+12
A(2) (S0)⊗ Ext10,53+10

A(2) (A1) −→ Ext22,121+22
A(2) (A1)

gb43,0 ⊗ x 7→ x.

Clearly d2(x) = 0 as Ext9,55+9
A(2) (A1) = 0. We apply the Leibniz rule to see that

d2(x) = ge0r · x.
However, ge0r = 0 in Ext14,67+14

A(2) (S0), therefore d2(x) = 0. Consequently, g6 is

present and nonzero in the E3 page of the spectral sequence

Exts,tA(2)(A1 ∧DA1) =⇒ tmft−s(A1 ∧DA1).

Since we have a map of spectral sequences

Exts,tA(2)(S
0)

��

+3 tmft−s

��

Exts,tA(2)(A1 ∧DA1) +3 tmft−s(A1 ∧DA1).

the result follows. �

Our next goal is to lift this d3 differential to the Adams spectral sequence

Exts,tA (A1 ∧DA1) =⇒ πt−s(A1 ∧DA1).

The main tool at our disposal is the algebraic tmf spectral sequence, described in
Section 3.

Notation 4.2. The elements of Es,t,n1 , the E1 page of the algebraic tmf spectral
sequence for A1 ∧ DA1, which are nonzero permanent cycles, will detect nonzero
elements of Exts,tA (A1∧DA1). Therefore we place an element x ∈ Es,t,n1 in bidegree
(t− s− n, s+ n). Thus the elements that may contribute to the same bidegree of

Exts,tA (A1∧DA1) are placed together. With this arrangement any differential in the
algebraic tmf spectral sequence will look like Adams d1 differential. The generators
of

Es,t,n1 =
⊕

i1,...,in≥1

Ext
s−n,t−8(i1+···+in)
A(2) (A1 ∧DA1 ∧ boi1 ∧ . . . ∧ boin)

will be denoted by dots in the following manner (recall that bo0 = S0):

• elements with n = 0 are denoted by a •,
• elements with n = 1, i1 = 1 are denoted by a ◦1,
• elements with n = 1, i1 = 2 are denoted by a ◦2,
• elements with n = 2, i1 = 1, i2 = 1 are denoted by a �,
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• and N/A stands for ‘not applicable,’ i.e. coordinates of the table which
are irrelevant to our arguments.

Lemma 4.3. The elements g6 and v202 h1 lift to Exts,tA (A1 ∧DA1) under the map

ι∗ : Exts,tA (A1 ∧DA1) −→ Exts,tA(2)(A1 ∧DA1).

Proof. We use the algebraic tmf spectral sequence to show that g6 and v202 h1 lift
to ExtA(A1 ∧DA1). A dr differential in the algebraic tmf spectral sequence will
increase the algebraic tmf filtration by r. Since g6 and v202 h1 are in algebraic tmf
filtration 0, they cannot be a target of a differential. We will now show that both g6

and v202 h1 cannot support a nonzero differential. The argument varies for different
models of A1.

Case 1. When A1 = A1[01], Table 4.0.1 shows the relevant part of the E1 page of
the algebraic tmf spectral sequence.

Table 4.0.1. E1 page of the algebraic tmf spectral sequence for
Exts,tA (A1 ∧DA1), where A1 = A1[01]

s\t− s 119 120 121

25 0 N/A N/A
24 N/A {• • ••} := X0

24 3 g6 N/A
23 N/A N/A N/A
22 N/A 0 N/A
21 N/A N/A {•} := X0

21 3 v202 h1
◦1 ◦1 ◦1 ◦1 ◦1
◦2 ◦2 ◦2◦2
��

Elements of X0
24 or X0

21 in Table 4.0.1 clearly do not support a differential, and

hence g6 and v202 h1 lift to Exts,tA (A1 ∧DA1).

Case 2. The case A1 = A1[10] is very similar to the previous one.

Table 4.0.2. E1 page of the algebraic tmf spectral sequence for
Exts,tA (A1 ∧DA1), where A1 = A1[10]

s\t− s 119 120 121

25 0 N/A N/A
24 N/A {• • ••} := X0

24 3 g6 N/A
23 N/A N/A N/A
22 N/A 0 N/A
21 N/A N/A {•} := X0

21 3 v202 h1
◦1 ◦1 ◦1 ◦1 ◦1
◦2 ◦2 ◦2◦2
��
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Elements of X0
24 or X0

21 in Table 4.0.2 clearly do not support a differential, and

hence g6 and v202 h1 lift to Exts,tA (A1 ∧DA1).

Case 3. The analysis for A1 = A1[00] or A1 = A1[11] are the same as A1[00] and
A1[11] are dual to each other. In either case the E1-page of the algebraic tmf
spectral sequence around stem 120 looks like the following:

Table 4.0.3. E1 page of the algebraic tmf spectral sequence for
Exts,tA (A1 ∧DA1), where A1 = A1[00] or A1 = A1[11]

s\t− s 119 120 121

25 • N/A N/A
24 N/A {• • • • •} := X0

24 3 g6 N/A
23 N/A N/A N/A
22 N/A • • • N/A

����
21 N/A N/A {••} := X0

21 3 v202 h1
◦1 ◦1 ◦1 ◦1 ◦1
◦2 ◦2 ◦2 ◦2 ◦2◦2
������

Elements of X0
24 in Table 4.0.3 clearly do not support a differential, and hence

g6 lifts to Exts,tA (A1 ∧DA1). Unfortunately, it is possible that an element of X0
21

might support a differential.
However, it is known that v202 h1 is a multiple of b83,0 under the pairing

Ext16,96+16
A(2) (S0)⊗ Ext5,25+5

A(2) (S0) −→ Ext21,121+21
A(2) (S0)

b83,0 ⊗ v42h1 7→ v202 h1.

Therefore the same is true for v202 h1 ∈ Ext21,121+21
A(2) (A1 ∧DA1) as

ι∗ : Exts,tA(2)(S
0) −→ Exts,tA(2)(A1 ∧DA1)

is a map of algebras. By Corollary 3.8, we know that b83,0 lifts to Ext16,96+16
A (A1 ∧

DA1). If we show that v42h1 lifts to Ext5,25+5
A (A1 ∧DA1) as well, then the result

will follow as

Htmf∗ : Exts,tA (A1 ∧DA1) −→ Exts,tA(2)(A1 ∧DA1)

is a map of algebras. Looking at Table 4.0.4 makes it clear that every element of
b−83,0X

0
21, including v42h1, lifts to Ext5,25+5

A (A1∧DA1), and hence that every element

of X0
21, including v202 h1, lifts to Ext21,121+21

A (A1 ∧DA1).
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Table 4.0.4. E1 page of the algebraic tmf spectral sequence for
Exts,tA (A1 ∧DA1), where A1 = A1[00] or A1 = A1[11]

s\t− s 24 25

6 • • • •
5 N/A {••} = b−83,0X

0
21

◦1

�

The lift of v202 h1 ∈ Ext21,121+21
A(2) (A1 ∧DA1) to Ext21,121+21

A (A1 ∧DA1) found in

Lemma 4.3 is not unique. More precisely, every such lift is

v202 h1 + S ∈ Ext21,121+21
A (A1 ∧DA1)

for some element S in the higher algebraic tmf filtration. Notice that the Adams
differentials di(S) are zero for i ∈ {2, 3} as there are no element of algebraic

tmf filtration greater than zero in Ext10,10+47
A (A1 ∧ DA1) and Ext11,11+47

A (A1 ∧
DA1). Therefore the following lemma holds for any choice of lift of v202 h1 ∈
Ext21,121+21

A(2) (A1 ∧DA1).

Lemma 4.4. In the Adams spectral sequence

Exts,tA (A1 ∧DA1) =⇒ πt−s(A1 ∧DA1),

there exists a d3 differential

d3(v202 h1) = g6.

Proof. Consider the map of Adams spectral sequence

Es,t2 = Exts,tA (A1 ∧DA1) +3

��

πt−s(A1 ∧DA1)

��

Es,t2 = Exts,tA(2)(A1 ∧DA1) +3 tmft−s(A1 ∧DA1)

induced by Htmf . The fact that g6 and v202 h1 are nonzero in the E3 page of the
Adams spectral sequence for tmf∗(A1∧DA1) (see Lemma 4.1), forces g6 and v202 h1
have nonzero lift in the E3 page of the Adams spectral sequence for π∗(A1 ∧DA1).
Moreover the map of E3 pages of the spectral sequences commutes with differentials.
Thus in the E3 page of the Adams spectral sequence for π∗(A1 ∧DA1)

d3(v202 h1) = g6 +R,

where R is an element of algebraic tmf filtration greater than zero. Furthermore,
Table 4.0.1, Table 4.0.2 and Table 4.0.3 make clear that in the bidegree of g6, there
are no elements of higher algebraic tmf filtration, and therefore R = 0. �
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5. A1 admits a 32 periodic v2-self-map

In Section 3, we established that the potential candidates for 8-periodic and 16-
periodic v2-self-maps on A1 support a d2 and a d3 differentials respectively (see
Lemma 3.10). So we know by the Leibniz formula that the candidates for 32-
periodic v2-self-map is a nonzero d3-cycle. So the only way these candidates can
fail to converge to an element of π∗(A1∧DA1) is by supporting a dr differential for
r ≥ 4 in the Adams spectral sequence

E2 = ExtA(A1 ∧DA1)⇒ π∗(A1 ∧DA1).

So we look for potential targets in Exts,tA (A1 ∧DA1) when t− s = 191 with Adams
filtration s ≥ 36. In order to detect elements with t− s = 191 we use the algebraic-
tmf spectral sequence

Es,t,n1 = Exts−n,tA(2) (A//A(2)
⊗n ⊗H∗(X),Z/2).

As pointed out in Remark 3.9 the candidates for 32-periodic v2-self-map may
not be unique. To show the existence it is enough to show that one of those
candidates is a nonzero permanent cycle in the E∞ page of the Adams spectral
sequence. We conveniently choose b4n3,0 ∈ Ext8n,48n+8n

A (A1 ∧DA1) to be the lift of

b4n3,0 ∈ Ext8n,48n+8n
A(2) (A1 ∧DA1) whose algebraic tmf filtration is precisely zero.

Recall that, as an A(2)-module

A//A(2) =
⊕
i∈N

H∗(Σ8iboi)

where the boi are the bo Brown-Gitler spectra defined by Goerss, Jones and the
third author [GJM]. Because of this splitting we get

Es,t,n1 =
⊕

i1...,in≥1

Ext
s−n,t−8(i1+...+in)
A(2) (boi1 ∧ . . . ∧ boin ∧A1 ∧DA1)

for the E1 page of the algebraic tmf spectral sequence.
An easy consequence of the vanishing line established in Lemma 3.4 is the fol-

lowing.

Lemma 5.1. The only potential contributors to Exts,tA (A1 ∧DA1) for t− s = 191
and s ≥ 36 come from the following summands of the algebraic tmf E1 page:

Exts,tA(2)(A1 ∧DA1)

⊕
⊕

1≤i≤3

Exts−1,t−8iA(2) (A1 ∧DA1 ∧ boi)

⊕
⊕

1≤i≤2

Exts−2,t−8−8iA(2) (A1 ∧DA1 ∧ bo1 ∧ boi)

⊕ Exts−3,t−24A(2) (A1 ∧DA1 ∧ bo1 ∧ bo1 ∧ bo1).

We know that, in the Adams spectral sequence for A1 ∧DA1, b163,0 can support
dr differential only if r ≥ 4. The broad idea is to show that all potential targets for
a dr differential for r ≥ 4 are either zero or do not lift to E4 page. While the result
holds for all models of A1, the computations will be slightly different for different
models, and so we will treat these models separately. Since A1[00] and A1[11] are
Spanier-Whitehead dual to each other, we can treat the cases of A1[00] and A1[11]
as one case. We will then have to treat the cases of the selfdual spectra A1[01] and
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A1[10] separately. The completeness of the tables in this section will be justified
by the more detailed tables in Appendix C.

5.1. The case A1 = A1[00] or A1 = A1[11]. We begin by laying out, in Table 5.1.1,
the elements of the E1 page of algebraic tmf spectral sequence, in Notation 4.2. The
table makes it clear that all elements with t− s = 191, with the possible exception
of those in X0

36, are permanent cycles in the algebraic tmf spectral sequence.

Table 5.1.1. E1 page of the algebraic tmf spectral sequence for
Exts,tA (A1 ∧DA1), where A1 = A1[00] or A1 = A1[11], stem 189-
191

s\t− s 189 190 191

40 0 0 0
39 0 {••} := Y 0

39 {• • •} := X0
39

38 N/A {• • • • •} := Y 0
38 {• • •} := X0

38

37 N/A • • • • • {• • • • •} := X0
37

◦1 ◦1 ◦1 ◦1 ◦1◦1 {◦1 ◦1 ◦1 ◦1 ◦1 ◦1 ◦1◦1} := X1
37

36 N/A N/A {• • •} := X0
36

{◦1◦1} := X1
36

{� �����} := X1,1
36

Our goal is to show that every linear combination of elements in Xi1,...,in
s were

either absent or zero in the E4 page of the Adams spectral sequence. Using Bruner’s
program (for details see Tables C.1.1, C.1.2, C.1.3, and C.1.4 of Appendix C), we
observe that a lot of these elements are multiples of g6 in the E1 page of the
algebraic tmf spectral sequence, which we record in Table 5.1.2.

Table 5.1.2. E1 page of the algebraic tmf spectral sequence for
Exts,tA (A1 ∧DA1), where A1 = A1[00] or A1 = A1[11], stem 70-71

s\t− s 70 71

15 {••} = g−6Y 0
39 {• • •} = g−6X0

39

14 {• • • • •} = g−6Y 0
38 {• • ••} = g−6X0

38

13 • • • • • {• • • • • • •} = g−6X0
37

◦1 ◦1 ◦1 ◦1 ◦1◦1 {◦1 ◦1 ◦1 ◦1 ◦1 ◦1 ◦1◦1} = g−6X1
37

12 N/A {◦1 ◦1 ◦1 ◦1 ◦1◦1} = g−6X1
36

{� �����} = g−6X1,1
36

Tables C.1.1, C.1.2, C.1.3, and C.1.4 make clear that

• multiplication by g6 surjects onto X0
39 ⊕X0

38 ⊕X0
37 ⊕X1

37 ⊕X1
36 ⊕X1,1

36 ,
and

• Elements in g−1(X0
39⊕X0

38⊕X0
37⊕X1

37⊕X1
36⊕X1,1

36 ) have nonzero images
under multiplication by v202 h1 if and only if multiplication by g6 is nonzero.

Lemma 5.2. Every element of

X0
39 ⊕X0

38 ⊕X0
37 ⊕X1

37 ⊕X1
36 ⊕X1,1

36

is present in the Adams E2 page, but is either zero or absent in the Adams E4 page.
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Proof. Notice that for any x = g6 · y ∈ X0
39 ⊕ X0

38 ⊕ X0
37 ⊕ X1

37 ⊕ X1
36 ⊕ X1,1

36 ,
both x and y is a nonzero permanent cycle of the algebraic tmf spectral sequence.
Indeed, the target of any differential supported by y, must have algebraic tmf
filtration greater than y and from Table 5.1.2 it is clear no such element is present
in appropriate bidegree. Hence y is present in the Adams E2 page. Same argument
holds for x.

Case 1. When x = g6 · y ∈ X0
39 ⊕X0

38, clearly y is then a permanent cycle in the
Adams spectral sequence. Using Leibniz rule, we see that

d2(x) = d2(g6 · y) = 0

and

d3(v202 h1 · y) = v202 h1 · d3(y) + d3(v202 h1) · y = g6 · y = x.

Therefore, if x = g6 · y is nonzero in E3 page, then x is zero in E4 page.

Case 2. When x = g6 ·y ∈ X1
37⊕X1

36⊕X1,1
36 , then dr(y) for r ≥ 2, if nonzero, must

have algebraic tmf filtration greater than zero, as

ExtA(A1 ∧DA1)

��

+3 π∗(A1 ∧DA1)

��

ExtA(2)(A1 ∧DA1) +3 tmf∗(A1 ∧DA1)

is a map of spectral sequence. Since there are no elements of algebraic tmf filtration
greater than zero in bigree (s, 71 + s) for s ≥ 14, it follows that dr(y) = 0 for r ≥ 2
and y a permanent cycle in the Adams spectral sequence. If y is a target of a
differential in algebraic tmf spectral sequence or a Adams d2 differential, then
x = 0 in E3 page. Consequently, g6x = 0 in the E3 page as well. If y is not a target
of such differentials, then we have

d3(v202 h1 · y) = v202 h1 · d3(y) + d3(v202 h1) · y = g6 · y = x.

In either case, g6 · y = x = 0 in E4 page.

Case 3. When x = g6 · y ∈ X0
37 and y is a permanent cycle, then we can argue

g6 · y = x = 0 in the E4 page as we did in the previous cases. If

d2(y) = y′

then y′ must belong to g−1Y 0
39. Since multiplication by g6 is a bijection between

g−1Y 0
39 and Y 0

39, we get

d2(x) = d2(g6 · y) = g6 · d2(y) + d2(g6) · y = g6 · y′ 6= 0.

Therefore, x is absent in the E4 page.

�

Thus we are left with the case when x ∈ X0
36.

Lemma 5.3. Every element of X0
36 is either zero or absent in the Adams E4 page.
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Proof. X0
36 is spanned by three generators {s1, t1, t2}. Using Bruner’s program (see

), we explore the following relations:

s1 = b43,0 · x1
t1 = b43,0 · y1 = b83,0 · z1
t2 = b43,0 · y2 = b83,0 · z2

Y 0
38 3 e0r · x1 6= 0

e0r · y1 = 0
e0r · y2 = 0

Y 0
39 3 wgr · z1 6= 0
Y 0
39 3 wgr · z2 6= 0

and wgr · z1 and wgr · z2 are linearly independent. In Bruner’s notation, s1 = 3664,
t1 = 3665, t2 = 3666, x1 = 2832, e0r · x1 = 3825, y1 = 2833, y2 = 2834, z1 = 201,
wgr · z1 = 391, z2 = 202 and wgr · z2 = 392 (see Table C.1.5) .

Table 5.1.3. E1 page of the algebraic tmf spectral sequence for
Exts,tA (A1 ∧DA1), where A1 = A1[00] or A1 = A1[11]

s\t− s 94 95
23 0 0
22 0 0
21 0 0
20 N/A {• = z1, • = z2} := Z20

s\t− s 142 143
30 0 0
29 • • • • • • • • • •
28 N/A {• = x1, • = y1, • = y2} := Z28

◦1◦1

From the Table 5.1.3, it is clear that any element in Z20 and Z28 are permanent
cycles.

Case 1. If x = ε1s1 + δ1t1 + δ2t2 6= 0 in the Adams E2 page with ε1 6= 0, then

d2(x) = ε1(e0r · x1) 6= 0.

Thus x is not present in E4 page.

Case 2. If x = δ1t1 + δ2t2 6= 0, then

d2(x) = 0.

If x 6= 0 in the Adams E3 page then

d3(x) = δ1d3(b43,0 · z1) + δ2d3(b43,0 · z2) = wgr · (δ1z1 + δ2z2) 6= 0

Thus x is not present in E4 page.

�

This proves Theorem 1 in the cases A1 = A1[00] or A1 = A1[11].
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5.2. The case A1 = A1[01] or A1 = A1[01]. Even though, in principle, we should
treat A1[01] and A1[10] as two different cases, but it turns out that Tables 5.2.1,
and 5.2.2 are identical in both the case and the arguments remain exactly the
same for both of them. For A1[01], refer to Tables C.2.1, C.2.2, C.2.3, and C.2.4
of Appendix C, and for A1[10], refer to Tables C.3.1, C.3.2, C.3.3, and C.3.4 of
Appendix C, to observe that most of the elements in Table 5.2.1 are multiples by
g6 of elements in Table 5.2.2.

Table 5.2.1. E1 page of the algebraic tmf spectral sequence for
Exts,tA (A1 ∧DA1), where A1 = A1[01]

s\t− s 190 191

39 0 {•} := X0
39

38 {• • ••} := Y 0
38 {•} := X0

38

37 • • •• {• • • • •} := X0
37

◦1 ◦1 ◦1 ◦1 ◦1◦1 {◦1 ◦1 ◦1 ◦1 ◦1 ◦1 ◦1◦1} := X1
37

36 N/A {��} := X1,1
36

Table 5.2.2. E1 page of the algebraic tmf spectral sequence for
Exts,tA (A1 ∧DA1), where A1 = A1[01]

s\t− s 70 71

15 0 {•} = g−6X0
39

14 {• • ••} = g−6Y 0
38 {••} = g−6X0

38

13 • • • • • {• • • • • • •} = g−6X0
37

◦1 ◦1 ◦1 ◦1 ◦1◦1 {◦1 ◦1 ◦1 ◦1 ◦1 ◦1 ◦1◦1} = g−6X1
37

12 N/A ◦1 ◦1 ◦1 ◦1 ◦1◦1
{��} = g−6X1,1

36

Tables C.2.1, C.2.2, C.2.3, and C.2.4 and Tables C.3.1, C.3.2, C.3.3, and C.3.4
make clear that

• multiplication by g6 is surjective onto X0
39⊕X0

38⊕X0
37⊕X1

37⊕X1,1
36 , and

• elements in g−6(X0
39⊕X0

38⊕X0
37⊕X1

37⊕X1,1
36 ) have nonzero images under

multiplication by v202 h1 if and only if multiplication by g6 is nonzero.

Lemma 5.4. All elements of

X0
39 ⊕X0

38 ⊕X0
37 ⊕X1

37 ⊕X1,1
36

are present in the Adams E2 page, but are zero in the Adams E4 page.

Proof. Notice that for any x = g6 · y ∈ X0
39 ⊕X0

38 ⊕X0
37 ⊕X1

37 ⊕X1,1
36 , both x and

y is a nonzero permanent cycle of the algebraic tmf spectral sequence. Indeed, the
target of any differential supported by y, must have algebraic tmf filtration greater
than y and from Table 5.2.2 it is clear no such elements are present in appropriate
bidegrees. Hence y is present in the Adams E2 page. Same argument holds for x.

Any y ∈ g−6(X0
39 ⊕X0

38 ⊕X0
37 ⊕X1

37) is a permanent cycle in Adams spectral

sequence, as it is clear from Table 5.2.2 that Exts,70+sA (A1∧DA1) = 0 for s ≥ 15. If
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y ∈ g−6X1,1
36 , then y has algebraic tmf filtration greater than zero, therefore dr(y)

must have algebraic tmf filtration greater than zero. From Table 5.2.2, we observe
that Exts,70+sA (A1 ∧DA1) when s ≥ 14, does not contain any element of algebraic

tmf filtration greater than zero. Therefore, any y ∈ g−6X1,1
36 is a permanent cycle

as well.
Since d2(g6) = 0, for any x = g6 · y ∈ X0

39 ⊕X0
38 ⊕X0

37 ⊕X1
37 ⊕X1,1

36

d2(x) = d2(g6 · y) = d2(g6) · y + g6 · d2(y) = 0.

Hence x is present in E3 page.
If x = g6 · y is nonzero in E3 page, Bruner’s program shows that v202 h1 · y is

nonzero as well. Thus, using Leibniz rule

d3(v202 h1 · y) = d3(v202 h1) · y + v202 h1 · d3(y) = g6 · y = x.

Thus, x is zero in E4 page. �
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Appendix A. General remarks on the use of Bruner’s program

Since many of our proofs relied on the output of Bruner’s program, we append
some facts about the program to justify our claims.

The program takes as input a graded module M over A (or A(2)) that is a finite

dimensional F2-vector space and computes Exts,tA (M,F2) (or Exts,tA(2)(M,F2)) for

t in a user-defined range, and 0 ≤ s ≤ MAXFILT, where one has MAXFILT = 40 by
default. The structure of M as an A-module is encoded in a text file named M,
placed in the directory A/samples in the way we will now describe.

The first line of the text file M consists of a positive integer n, the dimension of M
as an F2-vector space, whose basis elements we will call g0, . . . , gn−1. The second
line consists of an ordered list of integers d0, . . . , dn−1, which are the respective
degrees of the gi. Every subsequent line in the text file describes a nontrivial action
of some Sqk on some generator gi. For instance, if we have

Sqk(gi) = gj1 + · · ·+ gjl,

we would encode this fact by writing the line

i k l j1 ...jl

followed by a new line. Every action not encoded by such a line is assumed to be
trivial. To ensure that such a text file in fact represents an honest A-module, we
must run the newconsistency script, which will alert us if:

• the text file contains a line

i k l j1 ...jl

and it turns out that one of the dj ’s is not equal to di + k, or
• the module taken as a whole fails to satisfy a particular Adem relation.

Example A.1. Consider the A-module given by Figure A.1, where generators are
depicted by dots and actions of Sq1, Sq2, and Sq4 are depicted by black, blue and
red lines respectively:

• g0

• g1

• g2

• g3

• g7

• g6

•g5

•g4

Figure A.1. H∗A1[00] as an A-module

Based on this picture, we get the text file in figure A.2, which we call A1-00 def:
We go to the directory A2 and run
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8

0 1 2 3 3 4 5 6

0 1 1 1

0 2 1 2

1 2 1 4

1 4 1 6

2 1 1 3

2 2 1 5

3 2 1 6

4 1 1 5

5 2 1 7

6 1 1 7

Figure A.2. The text file A/samples/A1-00 def

./newmodule A1-00 ../A/samples/A1-00 def

cd A1-00.

Now we are ready to compute. Running the script

./dims 0 250&

will compute Exts,tA(2)(A1[00]) for 0 ≤ s ≤ MAXFILT = 40 and 0 ≤ t ≤ 250. The & is

not strictly necessary, but may be a good idea if running a computation expected
to take a long time and if one would like to do other things in the meantime. Then,
to see the Ext group, one runs

./report summary

./vsumm A1-00 > A1-00.tex

pdflatex A1-00.tex

to produce a pdf document A1-00.pdf resembling Figure A.3. As the figure makes
apparent, the generators of the Ext group (as an F2 vector space) are stored in the
computer with names such as sg, where s is the Adams filtration of the generator,
and g is some way of ordering all generators of filtration s. It should be emphasized
that g is not the stem of the generator. In figure A.3 for instance, the generator 12
is the second generator of filtration 1, but it is in stem 6. The figure also tells us the
action of the Hopf elements h0 through h3, so that in our example, h2 multiplied
by the generator 12 equals the generator 22.

By running

./display 0 A1-00

to produce single-page pdf documents A1-00 1.pdf, A1-00 2.pdf..., it is also pos-
sible to see the Ext group in the visually more appealing form of a chart, as shown
in figure A.4. What is gained in esthetics is however lost in completeness, as these
charts only display the action of h0 (via a vertical solid line), h1 (via a solid line of
slope 1), and h2 (via a dotted line of slope 1

3 ).
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A1-00

July 11, 2015

Notes:

1. Stem refers to the geometric total degree n = t− s, where t is the internal
degree and s is the homological degree (or ‘filtration’).

2. If a stem is not printed, there are no elements in that stem.

3. The notation sg refers to generator number g in filtration s.

4. Dashes (–) are used to indicate that an hi multiplen is beyond the range
which has been calculated.

Table 1: Stem 0

n s g h0 h1 h2 h3 h4 h5 h6 h7

0 0 00 10

Table 2: Stem 3

n s g h0 h1 h2 h3 h4 h5 h6 h7

3 1 10 20

Table 3: Stem 5

n s g h0 h1 h2 h3 h4 h5 h6 h7

5 1 11 20 21

Table 4: Stem 6

n s g h0 h1 h2 h3 h4 h5 h6 h7

6 1 12 22
6 2 20

1

Figure A.3. First page of A1-00.pdf

The program is also capable of computing dual modules via the dualizeDef

script, and tensor products via the tensorDef script. Both executables are con-
veniently located in the A/samples directory where we put our module definition
text files. Thus, running
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A1-00/A2 from s,n=0,0

Figure A.4. The file A1-00 1.pdf

./dualizeDef A1-00 def DA1-00 def

./tensorDef A1-00 def DA1-00 def ADA1-00 def,

produces the text file ADA1-00 def, with which we proceed in the same way as
earlier with A1-00 def.
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g = 48 ∈ Ext4,20+4
A(2) (S0)

b43,0 = 819 ∈ Ext8,48+8
A(2) (S0)

e0r = 1018 ∈ Ext10,47+10
A(2) (S0)

b83,0 = 1654 ∈ Ext16,96+16
A(2) (S0)

wgr = 1956 ∈ Ext19,95+19
A(2) (S0)

v202 h1 = 2185 ∈ Ext21,121+21
A(2) (S0)

g6 = 2490 ∈ Ext24,120+24
A(2) (S0)

Figure A.5. sg representation of important elements of Exts,tA(2)(S
0)

While ADA1-00.pdf only shows the action of the Hopf elements h0 through h3,
the scripts cocycle and dolifts enable the user to input a specific generator and
find the action of much of Exts,tA(2)(S

0) on that specific generator. Let us do this

with the generator 06 ∈ Ext0,0A(2)(A1[00] ∧ DA1[00]) by going to directory A2 and

running

./cocycle ADA1-00 0 6

which will create a subdirectory A2/ADA1-00/0 6. To find the action of all elements
of Exts,tA(2)(S

0) with 0 ≤ s ≤ 20 on 06, we go back to directory A2/ADA1-00 and
run

./dolifts 0 20 maps

Now ADA1-00/0 6 will contain several text files, among them brackets.sym (which
contains information about Massey products) and Map.aug (which contains infor-

mation about the action of Exts,tA(2)(S
0) on 06).

The generators of Exts,tA(2)(S
0) are stored in the computer in the format sg. In

figure A.5, we include a list of important elements of Exts,tA(2)(S
0) and their sg

representation.
We’d like to know what sg(06) ∈ ExtA(2)(A1[00]∧DA1[00]) is in the notation of

ADA1-00.pdf. Of course, sg(06) is in filtration s, so we only need to specify which
of the generators in filtration s make up sg(06). If, for instance, we have

sg(06) = sg1 + . . .+ sgn,

then ADA1-00/0 6/Map.aug will contain the lines

s g1 g

s g2 g

...

s gn g.

Now, in the Adams spectral sequence

Exts,tA(2)(S
0)⇒ tmft−s,

we have

d2(b43,0) = e0r = 1018 ∈ Ext10,47+10
A(2) (S0), d3(b83,0) = 1956 ∈ Ext19,95+19

A(2) (S0).

It follows that if 1018(06) = 10x ∈ Ext8,8+47
A(2) (A1 ∧ DA1) and 1956(06) = 19y ∈

Ext19,19+95
A(2) (A1∧DA1), then b43,0 ∈ Ext8,48+8

A(2) (A1∧DA1) supports a d2 differential,
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and b83,0 ∈ Ext16,96+16
A(2) (A1 ∧ DA1) supports a d3 differential. By doing the above

steps for all four versions of A1, and checking the respective Map.aug files, each
contain lines

10 x 18

19 y 56,

justifying the claim in Lemma 3.1.
Using the tools we have so far described, it is easy to verify the claim from the

proof of Lemma 4.1, that for all four models of A1 we have

(A.2) gb43,0 · 103 = 227.

It is similarly easy to verify that if A1 = A1[00] or A1 = A1[11], we have

ge0r · 103 = 0,

while if A1 = A1[01] or A1 = A1[10], we have

ge0r · 103 = 240 = g6.

Finally, in order to run the algebraic tmf spectral sequence, we will also need
do do computations involving the bo-Brown-Gitler spectra. We give the A-module
definitions for the cohomologies of bo1 and bo2 here:

4

0 4 6 7

0 4 1 1

0 6 1 2

0 7 1 3

1 2 1 2

1 3 1 3

2 1 1 3

(a) The text file bo1 def



ON THE PERIODIC v2-SELF-MAP OF A1 33

11

0 4 6 7 8 10 11 12 13 14 15

0 4 1 1

0 6 1 2

0 7 1 3

1 2 1 2

1 3 1 3

2 1 1 3

2 4 1 5

2 5 1 6

3 4 1 6

3 6 1 8

4 2 1 5

4 3 1 6

4 4 1 7

4 5 1 8

4 6 1 9

4 7 1 10

5 1 1 6

6 2 1 8

7 1 1 8

7 2 1 9

7 3 1 10

9 1 1 10

(b) The text file bo2 def
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Appendix B. Tables from section 4

B.1. The cases A1 = A1[00] or A1 = A1[11].

Table B.1.1. Exts,tA(2)(A1 ∧DA1)

t− s s sg t− s s sg t− s s sg
119 25 250 120 25 252 121 25 255

120 25 251 121 25 254
121 25 253

119 24 120 24 2425 121 24 2428
120 24 2424 121 24 2427
120 24 2423 121 24 2426
120 24 2422
120 24 2421

119 23 120 23 2342 121 23 2347
120 23 2341 121 23 2346
120 23 2340 121 23 2345
120 23 2339 121 23 2344
120 23 2338 121 23 2343

119 22 120 22 2264 121 22 2268
120 22 2263 121 22 2267
120 22 2262 121 22 2266

121 22 2265
119 21 120 21 121 21 2191

121 21 2190

t− s s sg t− s s sg
24 6 61 25 6 64

25 6 63
25 6 62

24 5 525 25 5 527
24 5 524 25 5 526
24 5 523
24 5 522

x b83,0x

527 2191
526 2190
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Table B.1.2. Exts−1,t−8A(2) (A1 ∧DA1 ∧ bo1)

t− s s sg t− s s sg t− s s sg
119 25 120 25 121 25
119 24 120 24 121 24
119 23 225 120 23 2211 121 23 2219
119 23 224 120 23 2210 121 23 2218
119 23 223 120 23 229 121 23 2217
119 23 222 120 23 228 121 23 2216

120 23 227 121 23 2215
120 23 226 121 23 2214

121 23 2213
121 23 2212

119 22 2131 120 22 121 22 2133
119 22 2130 120 22 121 22 2132
119 21 2051 120 21 2057 121 21 2062
119 21 2050 120 21 2056 121 21 2061
119 21 2049 120 21 2055 121 21 2060
119 21 2048 120 21 2054 121 21 2059
119 21 2047 120 21 2053 121 21 2058
119 21 2046 120 21 2052
119 21 2045
119 21 2044

t− s s sg t− s s sg
24 6 25 6
24 5 25 5 40

Table B.1.3. Exts−1,t−16A(2) (A1 ∧DA1 ∧ bo2)

t− s s sg t− s s sg t− s s sg
119 25 120 25 121 25
119 24 120 24 121 24
119 23 120 23 121 23
119 22 120 22 121 22
119 21 120 21 200 121 21 202

121 21 201

t− s s sg t− s s sg
24 6 25 6
24 5 25 5
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Table B.1.4. Exts−2,t−16A(2) (A1 ∧DA1 ∧ bo1 ∧ bo1)

t− s s sg t− s s sg t− s s sg
119 25 120 25 121 25
119 24 120 24 121 24
119 23 120 23 121 23
119 22 201 120 22 205 121 22 2011
119 22 200 120 22 204 121 22 2010

120 22 203 121 22 209
120 22 202 121 22 208

121 22 207
121 22 206

119 21 1941 120 21 1951 121 21 1957
119 21 1940 120 21 1950 121 21 1956
119 21 1939 120 21 1949 121 21 1955
119 21 1938 120 21 1948 121 21 1954
119 21 1937 120 21 1947 121 21 1953
119 21 1936 120 21 1946 121 21 1952
119 21 1935 120 21 1945
119 21 1934 120 21 1944
119 21 1933 120 21 1943
119 21 1932 120 21 1942

t− s s sg t− s s sg
24 6 25 6
24 5 25 5
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B.2. The case A1 = A1[01].

Table B.2.1. Exts,tA(2)(A1 ∧DA1)

t− s s sg t− s s sg t− s s sg
119 25 120 25 121 25 250
119 24 2414 120 24 2418 121 24 2419
119 24 2413 120 24 2417
119 24 2412 120 24 2416
119 24 2411 120 24 2415
119 24 2410
119 23 2320 120 23 2324 121 23 2329

120 23 2323 121 23 2328
120 23 2322 121 23 2327
120 23 2321 121 23 2326

121 23 2325
119 22 2241 120 22 121 22 2241
119 22 2240
119 21 2160 120 21 2164 121 21 2165
119 21 2159 120 21 2163
119 21 2158 120 21 2162
119 21 2157 120 21 2161
119 21 2156
119 21 2155
119 21 2154

t− s s sg t− s s sg
24 6 25 6 61
24 5 524 25 5 525
24 5 523
24 5 522
24 5 521

x b83,0x

525 2165
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Table B.2.2. Exts−1,t−8A(2) (A1 ∧DA1 ∧ bo1)

t− s s sg t− s s sg t− s s sg
119 25 120 25 121 25
119 24 120 24 121 24
119 23 223 120 23 229 121 23 2217
119 23 222 120 23 228 121 23 2216
119 23 221 120 23 227 121 23 2215
119 23 220 120 23 226 121 23 2214

120 23 225 121 23 2213
120 23 224 121 23 2212

121 23 2211
121 23 2210

119 22 120 22 121 22
119 21 2045 120 21 2051 121 21 2056
119 21 2044 120 21 2050 121 21 2055
119 21 2043 120 21 2049 121 21 2054
119 21 2042 120 21 2048 121 21 2053
119 21 2041 120 21 2047 121 21 2052
119 21 2040 120 21 2046
119 21 2039
119 21 2038

t− s s sg t− s s sg
24 6 25 6
24 5 25 5 40

Table B.2.3. Exts−1,t−16A(2) (A1 ∧DA1 ∧ bo2)

t− s s sg t− s s sg t− s s sg
119 25 120 25 121 25
119 24 120 24 121 24
119 23 120 23 121 23
119 22 120 22 121 22
119 21 120 21 121 21

t− s s sg t− s s sg
24 6 25 6
24 5 25 5
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Table B.2.4. Exts−2,t−16A(2) (A1 ∧DA1 ∧ bo1 ∧ bo1)

t− s s sg t− s s sg t− s s sg
119 25 120 25 121 25
119 24 120 24 121 24
119 23 120F 23 121 23
119 22 120 22 121 22 201

121 22 200
119 21 1929 120 21 1937 121 21 1939
119 21 1928 120 21 1936 121 21 1938
119 21 1927 120 21 1935
119 21 1926 120 21 1934
119 21 1925 120 21 1933
119 21 1924 120 21 1932
119 21 1923 120 21 1931
119 21 1922 120 21 1930
119 21 1921
119 21 1920

t− s s sg t− s s sg
24 6 25 6
24 5 25 5
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B.3. The case A1 = A1[10].

Table B.3.1. Exts,tA(2)(A1 ∧DA1)

t− s s sg t− s s sg t− s s sg
119 25 120 25 121 25 250
119 24 2414 120 24 2418 121 24 2419
119 24 2413 120 24 2417
119 24 2412 120 24 2416
119 24 2411 120 24 2415
119 24 2410
119 23 2320 120 23 2324 121 23 2329

120 23 2323 121 23 2328
120 23 2322 121 23 2327
120 23 2321 121 23 2326

121 23 2325
119 22 2240 120 22 121 22 2241
119 22 2239
119 21 2161 120 21 2165 121 21 2166
119 21 2160 120 21 2164
119 21 2159 120 21 2163
119 21 2158 120 21 2162
119 21 2157
119 21 2156
119 21 2155

t− s s sg t− s s sg
24 6 25 6 61
24 5 525 25 5 526
24 5 524
24 5 523
24 5 522

x b83,0x

526 2166



ON THE PERIODIC v2-SELF-MAP OF A1 41

Table B.3.2. Exts−1,t−8A(2) (A1 ∧DA1 ∧ bo1)

t− s s sg t− s s sg t− s s sg
119 25 120 25 121 25
119 24 120 24 121 24
119 23 223 120 23 229 121 23 2217
119 23 222 120 23 228 121 23 2216
119 23 221 120 23 227 121 23 2215
119 23 220 120 23 226 121 23 2214

120 23 225 121 23 2213
120 23 224 121 23 2212

121 23 2211
121 23 2210

119 22 120 22 121 22
119 21 2045 120 21 2051 121 21 2056
119 21 2044 120 21 2050 121 21 2055
119 21 2043 120 21 2049 121 21 2054
119 21 2042 120 21 2048 121 21 2053
119 21 2041 120 21 2047 121 21 2052
119 21 2040 120 21 2046
119 21 2039
119 21 2038

t− s s sg t− s s sg
24 6 25 6
24 5 25 5 40

Table B.3.3. Exts−1,t−16A(2) (A1 ∧DA1 ∧ bo2)

t− s s sg t− s s sg t− s s sg
119 25 120 25 121 25
119 24 120 24 121 24
119 23 120 23 121 23
119 22 120 22 121 22
119 21 120 21 121 21

t− s s sg t− s s sg
24 6 25 6
24 5 25 5
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Table B.3.4. Exts−2,t−16A(2) (A1 ∧DA1 ∧ bo1 ∧ bo1)

t− s s sg t− s s sg t− s s sg
119 25 120 25 121 25
119 24 120 24 121 24
119 23 120 23 121 23
119 22 120 22 121 22 201

121 22 200
119 21 1929 120 21 1937 121 21 1939
119 21 1928 120 21 1936 121 21 1938
119 21 1927 120 21 1935
119 21 1926 120 21 1934
119 21 1925 120 21 1933
119 21 1924 120 21 1932
119 21 1923 120 21 1931
119 21 1922 120 21 1930
119 21 1921
119 21 1920

t− s s sg t− s s sg
24 6 25 6
24 5 25 5
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Appendix C. Tables from section 5

C.1. The case A1 = A1[00] or A1 = A1[11].

Table C.1.1. Exts,tA(2)(A1 ∧DA1)

t− s s sg t− s s sg t− s s sg t− s s sg

70 15 152 71 15 155 190 39 392 191 39 395
70 15 151 71 15 154 190 39 391 191 39 394

71 15 153 191 39 393
70 14 1425 71 14 1429 190 38 3825 191 38 3828
70 14 1424 71 14 1428 190 38 3824 191 38 3827
70 14 1423 71 14 1427 190 38 3823 191 38 3826
70 14 1422 71 14 1426 190 38 3822
70 14 1421 190 38 3821
70 13 1346 71 13 1353 190 37 3742 191 37 3747
70 13 1345 71 13 1352 190 37 3741 191 37 3746
70 13 1344 71 13 1351 190 37 3740 191 37 3745
70 13 1343 71 13 1350 190 37 3739 191 37 3744
70 13 1342 71 13 1349 190 37 3738 191 37 3743

71 13 1348
71 13 1347

190 36 3663 191 36 3666
190 36 3662 191 36 3665
190 36 3661 191 36 3664

n i1, . . . , in x g6x v202 h1x
0 0 155 395 3669
0 0 154 394 3668
0 0 153 393 3667
0 0 152 392 3666
0 0 151 391 3665
0 0 1429 0 0
0 0 1428 3828 3592
0 0 1427 3827 3591
0 0 1426 3826 3590
0 0 1425 3825 3589
0 0 1424 3824 3588
0 0 1423 3823 3587
0 0 1422 3822 3586
0 0 1421 3821 3585
0 0 1353 0 0
0 0 1352 0 0
0 0 1351 3744 34108
0 0 1350 3743 34107
0 0 1349 3743 + 3745 34107 + 34109
0 0 1348 3745 + 3746 + 3747 34109 + 34110 + 34111
0 0 1347 3743 + 3745 + 3746 34107 + 34109 + 34110
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Table C.1.2. Exts−1,t−8A(2) (A1 ∧DA1 ∧ bo1)

t− s s sg t− s s sg t− s s sg t− s s sg

70 15 71 15 190 39 191 39
70 14 71 14 190 38 191 38
70 13 1211 71 13 1219 190 37 3611 191 37 3619
70 13 1210 71 13 1218 190 37 3610 191 37 3618
70 13 129 71 13 1217 190 37 369 191 37 3617
70 13 128 71 13 1216 190 37 368 191 37 3616
70 13 127 71 13 1215 190 37 367 191 37 3615
70 13 126 71 13 1214 190 37 366 191 37 3614

71 13 1213 191 37 3613
71 13 1212 191 37 3612

70 12 1140 71 12 1146 190 36 191 36 3533
70 12 1139 71 12 1145 191 36 3532
70 12 1138 71 12 1144
70 12 1137 71 12 1143
70 12 1136 71 12 1142
70 12 1135 71 12 1141
70 12 1134

n i1, . . . , in x g6x v202 h1x
1 1 1219 3619 3383
1 1 1218 3618 3382
1 1 1217 3617 3379 + 3383
1 1 1216 3616 3379 + 3381
1 1 1215 3615 3380
1 1 1214 3614 3378 + 3379 + 3381 + 3383
1 1 1213 3613 3377
1 1 1212 3612 3376 + 3383
1 1 1146 0 0
1 1 1145 0 0
1 1 1144 0 0
1 1 1143 3533 3297
1 1 1142 3532 3296
1 1 1141 0 0

Table C.1.3. Exts−1,t−16A(2) (A1 ∧DA1 ∧ bo2)

t− s s sg t− s s sg t− s s sg t− s s sg

70 15 71 15 190 39 191 39
70 14 71 14 190 38 191 38
70 13 71 13 190 37 191 37
70 12 71 12 190 36 191 36
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Table C.1.4. Exts−2,t−16A(2) (A1 ∧DA1 ∧ bo1 ∧ bo1)

t− s s sg t− s s sg t− s s sg t− s s sg

70 15 71 15 190 39 191 39
70 14 71 14 190 38 191 38
70 13 71 13 190 37 191 37
70 12 105 71 12 1011 190 36 345 191 36 3411
70 12 104 71 12 1010 190 36 344 191 36 3410
70 12 103 71 12 109 190 36 343 191 36 349
70 12 102 71 12 108 190 36 342 191 36 348

71 12 107 191 36 347
71 12 106 191 36 346

n i1, . . . , in x g6x v202 h1x
2 1, 1 1011 3411 31139
2 1, 1 1010 3410 31138
2 1, 1 109 349 31137
2 1, 1 108 348 31136
2 1, 1 107 347 31135
2 1, 1 106 346 31134 + 31137 + 31138

Table C.1.5. Exts,tA(2)(A1 ∧DA1)

t− s s sg t− s s sg t− s s sg

95 20 202 143 28 2834 191 36 3666
95 20 201 143 28 2833 191 36 3665

143 28 2832 191 36 3664

x b43,0 · x e0r · x b83,0 · x wgr · x
2834 3666 0 N/A N/A
2833 3665 0 N/A N/A
2832 3664 3825 N/A N/A
202 2834 N/A 3666 392
201 2833 N/A 3665 391
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C.2. The case A1 = A1[01].

Table C.2.1. Exts,tA(2)(A1 ∧DA1)

t− s s sg t− s s sg t− s s sg t− s s sg

70 15 71 15 150 190 39 191 39 390
70 14 1418 71 14 1420 190 38 3818 191 38 3819
70 14 1417 71 14 1419 190 38 3817
70 14 1416 190 38 3816
70 14 1415 190 38 3815
70 13 1333 71 13 1340 190 37 3724 191 37 3729
70 13 1332 71 13 1339 190 37 3723 191 37 3728
70 13 1331 71 13 1338 190 37 3722 191 37 3727
70 13 1330 71 13 1337 190 37 3721 191 37 3726
70 13 1329 71 13 1336 191 37 3725

71 13 1335
71 13 1334

70 12 71 12 190 36 191 36

x g6x v202 h1x
150 390 3640
1420 0 0
1419 3819 3559
1418 3818 3558
1417 3817 3557 + 3558
1416 3816 3556
1415 3815 3555 + 3558
1340 0 0
1339 0 0
1338 3729 3469
1337 3728 3468
1336 3727 3467 + 3468
1335 3726 3466 + 3467 + 3469
1334 3725 3465 + 3466
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Table C.2.2. Exts−1,t−8A(2) (A1 ∧DA1 ∧ bo1)

t− s s sg t− s s sg t− s s sg t− s s sg

70 15 71 15 190 39 191 39
70 14 71 14 190 38 191 38
70 13 129 71 13 1217 190 37 369 191 37 3617
70 13 128 71 13 1216 190 37 368 191 37 3616
70 13 127 71 13 1215 190 37 367 191 37 3615
70 13 126 71 13 1214 190 37 366 191 37 3614
70 13 125 71 13 1213 190 37 365 191 37 3613
70 13 124 71 13 1212 190 37 364 191 37 3612

71 13 1211 191 37 3611
71 13 1210 191 37 3610

70 12 1136 71 12 1142 190 36 191 36
70 12 1135 71 12 1141
70 12 1134 71 12 1140
70 12 1133 71 12 1139
70 12 1132 71 12 1138
70 12 1131 71 12 1137
70 12 1130

x g6x v202 h1x
1217 3617 3373
1216 3616 3372 + 3373
1215 3615 3371
1214 3614 3370 + 3371
1213 3613 3369 + 3371 + 3372 + 3373
1212 3612 3368 + 3369 + 3371 + 3372 + 3373
1211 3611 3367 + 3368 + 3369 + 3372
1210 3610 3366 + 3372

Table C.2.3. Exts−1,t−16A(2) (A1 ∧DA1 ∧ bo2)

t− s s sg t− s s sg t− s s sg t− s s sg

70 15 71 15 190 39 191 39
70 14 71 14 190 38 191 38
70 13 71 13 190 37 191 37
70 12 71 12 190 36 191 36
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Table C.2.4. Exts−2,t−16A(2) (A1 ∧DA1 ∧ bo1 ∧ bo1)

t− s s sg t− s s sg t− s s sg t− s s sg

70 15 71 15 190 39 191 39
70 14 71 14 190 38 191 38
70 13 71 13 190 37 191 37
70 12 71 12 101 190 36 191 36 341

71 12 100 191 36 340

x g6x v202 h1x
101 341 3181
100 340 3180

C.3. The case A1 = A1[10].

Table C.3.1. Exts,tA(2)(A1 ∧DA1)

t− s s sg t− s s sg t− s s sg t− s s sg

71 15 150 191 39 390
70 14 1418 71 14 1420 190 38 3818 191 38 3819
70 14 1417 71 14 1419 190 38 3817
70 14 1416 190 38 3816
70 14 1415 190 38 3815
70 13 1334 71 13 1341 190 37 3724 191 37 3729
70 13 1333 71 13 1340 190 37 3723 191 37 3728
70 13 1332 71 13 1339 190 37 3722 191 37 3727
70 13 1331 71 13 1338 190 37 3721 191 37 3726
70 13 1330 71 13 1337 191 37 3725

71 13 1336
71 13 1335

x g6x v202 h1x
150 390 3640
1420 0 0
1419 3819 3559
1341 0 0
1340 0 0
1339 3729 3469
1338 3728 3468
1337 3727 3467
1336 3726 3466
1335 3725 3465
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Table C.3.2. Exts−1,t−8A(2) (A1 ∧DA1 ∧ bo1)

t− s s sg t− s s sg t− s s sg t− s s sg

70 15 71 15 190 39 191 39
70 14 71 14 190 38 191 38
70 13 129 71 13 1217 190 37 369 191 37 3617
70 13 128 71 13 1216 190 37 368 191 37 3616
70 13 127 71 13 1215 190 37 367 191 37 3615
70 13 126 71 13 1214 190 37 366 191 37 3614
70 13 125 71 13 1213 190 37 365 191 37 3613
70 13 124 71 13 1212 190 37 364 191 37 3612

71 13 1211 191 37 3611
71 13 1210 191 37 3610

70 12 1139 71 12 1145 190 36 191 36
70 12 1138 71 12 1144
70 12 1137 71 12 1143
70 12 1136 71 12 1142
70 12 1135 71 12 1141
70 12 1134 71 12 1140
70 12 1133

x g6x v202 h1x
1217 3617 3373
1216 3616 3372
1215 3615 3371
1214 3614 3370
1213 3613 3369
1212 3612 3368 + 3373
1211 3611 3367 + 3373
1210 3610 3366 + 3371 + 3372
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Table C.3.3. Exts−1,t−16A(2) (A1 ∧DA1 ∧ bo2)

t− s s sg t− s s sg t− s s sg t− s s sg

70 15 71 15 190 39 191 39
70 14 71 14 190 38 191 38
70 13 71 13 190 37 191 37
70 12 71 12 190 36 191 36

Table C.3.4. Exts−2,t−16A(2) (A1 ∧DA1 ∧ bo1 ∧ bo1)

t− s s sg t− s s sg t− s s sg t− s s sg

70 15 71 15 190 39 191 39
70 14 71 14 190 38 191 38
70 13 71 13 190 37 191 37
70 12 71 12 101 190 36 191 36 341

71 12 100 191 36 340

x g6x v202 h1x
101 341 3181
100 340 3180
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