NEW INFINITE FAMILIES IN THE STABLE HOMOTOPY GROUPS OF SPHERES

PRASIT BHATTACHARYA, IRINA BOBKOVA, AND J.D. QUIGLEY

Abstract

We identify seven new 192-periodic infinite families of elements in the 2-primary stable homotopy groups of spheres, whose images are nontrivial in the $K(2)$ - as well as the $T(2)$-local stable stems. We also obtain new information about 2-torsion and 2-divisibility of some of the known 192-periodic infinite families in the stable stems.

Contents

1. Introduction 1
2. tmf-homology calculations 5
3. New infinite families 15
References 21

1. Introduction

Computing the stable homotopy groups of spheres, or stable stems, is one of the central problems in homotopy theory, with many applications in topology, geometry, and algebra. There are two main approaches: low-dimensional computations, which attempt to give a complete description of the stable stems up to a finite range using Adams or Adams-Novikov spectral sequences as the primary tools [MT67, Rav86, KM95, Isa19, IWX23], and chromatic computations, which attempt to pick out large-scale periodic patterns instead [Ada66, Smi77, MRW77, Rav86].

The first large-scale phenomena observed in the stable stems, proven by Serre [Ser53], is that all stable stems above dimension zero are finite abelian groups. This motivated the study of the stable stems one prime at a time.

The next set of important developments were due to Toda [Tod62] and Adams [Ada66]. Their work deduced the existence of $(2 p-2)$-periodic families of p-torsion elements for primes $p>2$ and 8 -periodic families when $p=2$ within the stable stems. A decade later, Smith [Smi77] constructed $\left(2 p^{2}-2\right)$-periodic families at $p>3$, and Miller-Ravenel-Wilson [MRW77] constructed $\left(2 p^{3}-2\right)$-periodic families at $p>5$. These examples illustrate an unwritten rule in this subject: the smaller the prime number p, the harder it is to find exact patterns of p-torsion elements in the stable stems.

At the prime 2, the chromatic layer 1 patterns (see [Ada66, Rav86]) are more subtle than those at odd primes, and it is evident from the recent results [Bea15, BO16, BG18, BHHM20, BMQ23, $\mathrm{BBG}^{+} 23$] that the chromatic layer 2 patterns are particularly complicated at $p=2$.

The 2-local connective spectrum of topological modular forms, tmf, is a formidable tool to explore chromatic height 2 at the prime 2. This is because tmf carries intricate patterns [Bau08, DFHH14, BR21] in its homotopy groups reflecting the patterns in the second chromatic layer of the 2-local stable stems, but is more computationally accessible.

Over the last decade, new techniques have been developed to study the tmf-based Adams spectral sequence [BOSS19, BBT21, BBC23], leading to important and interesting results at chromatic height 2 [BHHM20, Bob20, BE20, $\left.\mathrm{BBB}^{+} 21, \mathrm{BMQ} 23\right]$. In fact, the recent work [BMQ23] completely identifies the image of the Hurewicz homomorphism

$$
\mathrm{h}_{\mathrm{tmf}}: \pi_{*} \mathbb{S} \longrightarrow \mathrm{tmf}_{*}
$$

from the stable stems to the coefficients of tmf, thereby proving the existence of new 192-periodic infinite families in the chromatic layer 2 of the 2-local stable stems. In this paper, we show that:

Theorem 1. For each $m \in\{23,47,71,74,95,119,167\}$ and $k \in \mathbb{N}$, there exists an element of order 2 in dimension $m+192 k$ of the stable stems whose image is trivial under the tmf-Hurewicz homomorphism.

Remark 1.1. A comparison of our work with known calculations [Isa19, IWX23] suggests that the elements with May names $h_{1}^{3} g$, $h_{1}^{2} \cdot\left(\Delta h_{1} g\right), h_{1}^{2}$. $\left(\Delta^{2} h_{1} \mathrm{~g}\right), \mathrm{d}_{0} \mathrm{~g}^{3},\left(\Delta \mathrm{~h}_{1}\right)^{3} \mathrm{~g}, \Delta^{4} \mathrm{~h}_{1}^{3} \mathrm{~g}$, and $\Delta^{6} \mathrm{~h}_{1}^{3} \mathrm{~g}$ in the classical Adams spectral sequence detect the elements in dimension 23, 47, 71, 74, 95, 119, and 167 of Theorem 1, respectively.

Remark 1.2. Let $\eta \in \pi_{1} \mathbb{S}$ denote the first Hopf map and let ko denote the connective real K-theory. Then η^{3} is a part of an 8-periodic infinite family in chromatic layer 1 which is not detected in the Hurewicz image of ko. From this perspective, the 192-periodic families in Theorem 1 can be regarded as height 2 analogs of the η^{3} family.

The spectrum TMF $\simeq\left(\Delta^{8}\right)^{-1}$ tmf, obtained from tmf by inverting the periodicity generator Δ in degree 192 , is a $\mathrm{K}(2)$-local spectrum in the sense of Bousfield [Bou79], where $\mathrm{K}(2)$ is the second Morava K-theory. In chromatic homotopy theory, there are also telescopic localizations which are closely related to Bousfield localizations with respect to Morava K-theories. The recent disproof of the telescope conjecture [BHLS23] implies that the natural map from the height 2 telescopic localization to the $\mathrm{K}(2)$-localization of the sphere spectrum

$$
\iota: \mathbb{S}_{\mathrm{T}(2)} \longrightarrow \mathbb{S}_{\mathrm{K}(2)}
$$

is not an equivalence. But the chromatic height 2 elements in the Hurewicz image of tmf do not see this difference as they lift to both the $\mathrm{T}(2)$-local and $\mathrm{K}(2)$-local stable stems. This is because the unit map of TMF

$$
\begin{equation*}
\iota_{\mathrm{tmf}}: \mathbb{S} \longrightarrow \mathbb{S}_{\mathrm{T}(2)} \xrightarrow{\iota} \mathbb{S}_{\mathrm{K}(2)} \longrightarrow \mathrm{TMF} \tag{1}
\end{equation*}
$$

factors through ι. This argument does not apply to elements listed in Theorem 1 because they are not in the Hurewicz image of tmf_{*}. However, we can still show that:

Theorem 2 (Theorem 3.6 and Theorem 3.14). All elements listed in Theorem 1 have nonzero images in the $\mathrm{K}(2)$-local and $\mathrm{T}(2)$-local stable stems.

Although our new infinite families do not contradict the telescope conjecture, they still have significant geometric implications. The groundbreaking work of Kervaire and Milnor [KM63] directly relates the stable stems to the classification of smooth structures on homotopy spheres. In odd dimensions, the work of Kervaire and Milnor [KM63], Browder [Bro69], Hill, Hopkins, and Ravenel [HHR16], and Wang and Xu [WX17] implies that exotic spheres exist in every odd dimension except for $1,3,5$, and 61 . In even dimensions, Adams and Toda's results above imply that exotic spheres exist in at least one quarter of the even dimensions, while the results in [BHHM20, BMQ23] imply that exotic spheres exist in over half of the even dimensions. Wang and Xu [WX17] have conjectured that exotic spheres exist in all dimensions except for a small number of low-dimensional exceptions.

Theorem 1 also has implications for exotic spheres. Following Schultz [Sch85], an exotic sphere is called very exotic if it does not bound a parallelizable manifold. Very exotic spheres are more mysterious than exotic spheres which bound parallelizable manifolds; for instance, the latter are always known to admit Riemannian metrics of positive Ricci curvature [Wra97], while only one very exotic sphere is known to admit such a metric.

In even dimensions, every exotic sphere is a very exotic sphere, but most of the known odd-dimensional exotic spheres are not "very exotic." The results of [BHHM20, BMQ23] imply that very exotic spheres exist in at least 37 of the 96 odd congruence classes of dimensions modulo 192. The 6 odd dimensions in Theorem 1 are not covered by those results, so we obtain:

Corollary. Very exotic spheres exist in at least 43 of the 96 odd congruence classes of dimensions modulo 192.
1.1. Methodology. We consider a type 2 spectrum A_{1} which is constructed using three cofiber sequences

$$
\begin{gather*}
\mathbb{S} \xrightarrow{2} \mathbb{S} \longrightarrow \mathrm{M} \xrightarrow{\mathrm{p}_{1}} \Sigma \mathbb{S}, \tag{2}\\
\Sigma \mathrm{M} \xrightarrow{\eta} \mathrm{M} \longrightarrow \mathrm{Y} \xrightarrow{\mathrm{p}_{2}} \Sigma^{2} \mathrm{M}, \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
\Sigma^{2} \mathrm{Y} \xrightarrow{v} \mathrm{Y} \longrightarrow \mathrm{~A}_{1} \xrightarrow{\mathrm{p}_{3}} \Sigma^{3} \mathrm{Y}, \tag{4}
\end{equation*}
$$

where v is a choice of a v_{1}^{1}-self-map of Y. The recent work of Viet-Cuong Pham [Pha23], which shows that the tmf-Hurewicz homomorphism

$$
\begin{equation*}
\mathrm{h}_{\mathrm{tmf}}: \pi_{*} \mathrm{~A}_{1} \longrightarrow \mathrm{tmf}_{*} \mathrm{~A}_{1} \tag{5}
\end{equation*}
$$

is a surjection, is the starting point of our calculations. We then study long exact sequences associated to the cofiber sequences (2), (3) and (4) using our knowledge of tmf_{*} [Bau08, DFHH14, BR21], as well as $\operatorname{tmf}_{*} \mathrm{M}, \mathrm{tmf}_{*} \mathrm{Y}$, and $\operatorname{tmf}_{*} \mathrm{~A}_{1}$ [BBPX22, Pha23].

By combining this study with our complete knowledge of the Hurewicz image in tmf_{*} [BMQ23], we identify seven new infinite families of elements in $\pi_{*} \mathbb{S}$ (listed in Theorem 1) which are in the image of the pinch map

$$
\begin{equation*}
\mathrm{p}: \mathrm{A}_{1} \xrightarrow{\mathrm{p}_{3}} \Sigma^{3} \mathrm{Y} \xrightarrow{\mathrm{p}_{2}} \Sigma^{5} \mathrm{M} \xrightarrow{\mathrm{p}_{1}} \Sigma^{6} \mathbb{S} \tag{6}
\end{equation*}
$$

in stable homotopy. Combining results and techniques of Pham [Pha23], Laures [Lau04], and [BMQ23] shows that these infinite families have nontrivial images in the $K(2)$-local stable stems. We then use a v_{2}^{32}-self-map of A_{1} [BEM17] to show that these infinite families have nontrivial images in the $\mathrm{T}(2)$-local stable stems, completing the proof of Theorem 2.

The 192-periodic elements in the stable stems constructed in [BMQ23] were all shown to have order at most 8. The tmf-homology calculations of Section 2 lead to new information about the 2-torsion and 2-divisibility of some of the 192-periodic infinite families identified in [BMQ23]. We deduce this from Table 1 using the fact that the elements in the image of p_{1} are simple 2 -torsion and elements with nontrivial image under i_{1} are not 2 -divisible, where p_{1} and i_{1} are the maps defined in (9).

Theorem 3. An element in the stable stems is simple 2-torsion if it maps to $\Delta^{8 k} x, k \geq 0$, where

$$
x \in\left\{\kappa \nu, \bar{\kappa}^{2} \eta^{2}, \eta \Delta \bar{\kappa}^{2}, 4 \Delta^{2} \bar{\kappa}, \bar{\kappa}^{4}, \eta^{2} \Delta^{2} \bar{\kappa}^{2}, 2 \Delta^{4} \cdot 2 \bar{\kappa}, 4 \Delta^{6} \bar{\kappa}\right\}
$$

and not 2-divisible if it maps to $\Delta^{8 k} x, k \geq 0$, where

$$
\begin{gathered}
x \in\left\{\nu^{2}, \nu^{3}, \bar{\kappa} \nu, q \eta, \bar{\kappa}^{2} \eta^{2}, \eta^{2} \Delta^{2} \nu, \nu \Delta^{2} \nu, \nu \Delta^{2} \nu^{2}, \nu \Delta^{2} \nu^{3}, 4 \Delta^{2} \bar{\kappa}, \bar{\kappa}^{4}, \eta \Delta \bar{\kappa}^{3}\right. \\
\left.\quad \eta^{2} \Delta^{2} \bar{\kappa}^{2}, \bar{\kappa}^{5}, \nu^{3} \Delta^{4}, \eta \Delta \bar{\kappa}^{4}, 2 \Delta^{4} \bar{\kappa}, \eta \Delta \bar{\kappa}^{5}, \eta^{2} \Delta^{2} \kappa, \nu \Delta^{6} \nu^{2}, \nu \Delta^{6} \eta \epsilon\right\}
\end{gathered}
$$

Organization of the paper. In Section 2, we perform the tmf-homology calculations necessary in Section 3 to prove Theorem 1 and Theorem 2 .

For the purpose of this paper, a reader may find [DFHH14, Part I, Ch. 12] convenient for looking up the homotopy groups of tmf, where the generators in the Hurewicz image are marked with colored dots. We refer to [BBPX22] for explicit descriptions of $\operatorname{tmf}_{*} M$, $\operatorname{tmf}_{*} Y$, and $\operatorname{tmf}{ }_{*} A_{1}$.

Acknowledgments. The authors would like to thank Mark Behrens, Guozhen Wang, and Zhouli Xu for helpful discussions, as well as Bob Bruner and Dan Isaksen for the predictions in Remark 1.1.
The research for this paper has been supported by the National Science Foundation through the grants DMS-2005627, DMS-2039316, DMS-2135884, and DMS-2414922 (formerly DMS-2203785 and DMS-2314082).

2. tmf-homology calculations

Using our knowledge of tmf_{*} [Bau08, BR 21$], \operatorname{tmf}_{*} \mathrm{M}, \operatorname{tmf}_{*} \mathrm{Y}$, and $\operatorname{tmf}_{*} \mathrm{~A}_{1}$ [BBPX22], we will compute the maps i_{k} and p_{k} in the long exact sequences

$$
\begin{gather*}
\cdots \longrightarrow \operatorname{tmf}_{k} \mathrm{Y} \xrightarrow{i_{3}} \operatorname{tmf}_{k} \mathrm{~A}_{1} \xrightarrow{p_{3}} \operatorname{tmf}_{k-3} \mathrm{Y} \xrightarrow{v_{*}} \cdots \tag{7}\\
\cdots \longrightarrow \operatorname{tmf}_{k-3} \mathrm{M} \xrightarrow{i_{2}} \operatorname{tmf}_{k-3} \mathrm{Y} \xrightarrow{p_{2}} \operatorname{tmf}_{k-5} \mathrm{M} \xrightarrow{\eta_{*}} \cdots \\
\cdots \longrightarrow \operatorname{tmf}_{k-5} \xrightarrow{i_{1}} \operatorname{tmf}_{k-5} \mathrm{M} \xrightarrow{p_{1}} \operatorname{tmf}_{k-6} \xrightarrow{2} \cdots
\end{gather*}
$$

associated to the cofiber sequences (2), (3) and (4), respectively. This is the technical core of the paper and requires careful bookkeeping using AdamsNovikov spectral sequences. In our arguments, we ignore v_{1}-periodic classes for reasons we will now explain.

2.1. Suppression of v_{1}-periodic families.

Note that the element $c_{4} \in \operatorname{tmf}_{*}$ is the v_{1}-periodicity generator as it maps to $v_{1}^{4} \in \mathrm{k}(1)_{*}$ under the composition

$$
\mathrm{tmf} \longrightarrow \mathrm{ko} \longrightarrow \mathrm{k}(1),
$$

where $k(1)$ is the connective height 1 Morava K-theory (see [DM10, BR21]). It is well-known that

$$
v_{1}^{-1} \mathrm{tmf}:=\operatorname{colim}\left\{\operatorname{tmf} \xrightarrow{c_{4}} \operatorname{tmf} \xrightarrow{c_{4}} \ldots\right\} \simeq \mathrm{KO}\left[j^{-1}\right],
$$

where $j=\Delta / c_{4}^{3}$ (see [Lau04, Corollary 3]).
Definition 2.1. For any spectrum X, define the v_{1}-torsion part of $\operatorname{tmf}_{*}(X)$ as the kernel

$$
\operatorname{tmf}_{*}(\mathrm{X})^{\operatorname{tor}}:=\operatorname{ker}\left(\ell: \operatorname{tmf}_{*} \mathrm{X} \longrightarrow v_{1}^{-1} \operatorname{tmf}_{*} \mathrm{X}\right)
$$

of the v_{1}-localization map.
Lemma 2.2. For any nonzero element $a \in \operatorname{tmf}_{*} \mathrm{~A}_{1}$ we have
(a) $p_{3}(a) \in \operatorname{tmf}_{*}(\mathrm{Y})^{\text {tor }}$,
(b) $p_{2}\left(p_{3}(a)\right) \in \operatorname{tmf}_{*}(\mathrm{M})^{\text {tor }}$, and
(c) $p_{1}\left(p_{2}\left(p_{3}(a)\right) \in \operatorname{tmf}_{*}(\mathbb{S})^{\text {tor }}\right.$.

Proof. Since A_{1} is a type 2 spectrum, it follows that $v_{1}^{-1} \operatorname{tmf}_{*} \mathrm{~A}_{1}=0$. Therefore, from the commutative diagram

of long exact sequences, we get

$$
\ell\left(p_{3}(a)\right)=p_{3}(\ell(a))=p_{3}(0)=0
$$

which means $p_{3}(a) \in \operatorname{tmf}_{*}(Y){ }^{\text {tor }}$.
For part (b), we consider the diagram

of long exact sequences, and observe

$$
\ell\left(p_{2}\left(p_{3}(a)\right)\right)=p_{2}\left(\ell\left(p_{3}(a)\right)\right)=p_{2}(0)=0
$$

which implies $p_{1}\left(p_{3}(a)\right) \in \operatorname{tmf}_{*}(\mathrm{M})^{\text {tor }}$.
A similar study of a commutative diagram for the cofiber sequence (2) proves (c).

Definition 2.3. For any spectrum X, define the v_{1}-periodic part of $\operatorname{tmf}_{*} X$ as the cokernel

$$
\operatorname{tmf}_{*}(\mathrm{X})^{\text {per }}:=\operatorname{coker}\left(\operatorname{tmf}_{*}(\mathrm{X})^{\text {tor }} \longleftrightarrow \operatorname{tmf}_{*} \mathrm{X}\right)
$$

of the natural inclusion map.
Remark 2.4 (Exactness of v_{1}-periodic part). Direct calculations show that the long exact sequences in tmf-homology associated to the cofiber sequences (2), (3), and (4) give rise to long exact sequences on v_{1}-periodic parts. The authors are unaware if this is a part of a general pattern, i.e., whether $\operatorname{tmf}_{*}(-)^{\text {per }}$ is a homology theory.

Lemma 2.5. If $p_{2}\left(p_{3}(a)\right)=0$ in $\operatorname{tmf}_{*} \mathrm{M}$, then there exists a class

$$
m_{0} \in \operatorname{tmf}_{*}(\mathrm{M})^{\mathrm{tor}}
$$

such that $i_{2}\left(m_{0}\right)=p_{3}(a)$.
Proof. The map η induces a map

$$
\eta_{*}^{\text {per }}: \operatorname{tmf}_{*-1}(\mathrm{M})^{\text {per }} \longrightarrow \operatorname{tmf}_{*}(\mathrm{M})^{\text {per }}
$$

and we have a commutative diagram

in which the vertical maps are surjections.
If $p_{2}\left(p_{3}(a)\right)=0$ then there exists $m \in \operatorname{tmf}_{*} \mathrm{M}$ such that $i_{2}(m)=p_{3}(a)$. By Lemma 2.2

$$
i_{2}\left(\pi_{2}(m)\right)=\pi_{3}\left(i_{2}(m)\right)=\pi_{3}\left(p_{2}(a)\right)=0,
$$

therefore, by Remark 2.4, $\pi_{2}(m)=\eta_{*}^{\text {per }}\left(m^{\prime}\right)$ for some $m^{\prime} \in \operatorname{tmf}_{*-1}$. Let $m^{\prime \prime} \in \operatorname{tmf}_{*-1} \mathrm{M}$ be a lift of m^{\prime} along π_{1}. It is easy to see that

$$
m_{0}=m-\eta_{*}\left(m^{\prime \prime}\right) \in \operatorname{tmf}_{*}(\mathrm{M})^{\text {tor }}
$$

and $i_{2}\left(m_{0}\right)=i_{2}\left(m-\eta_{*}\left(m^{\prime \prime}\right)\right)=i_{2}(m)-i_{2}\left(\eta_{*}\left(m^{\prime \prime}\right)\right)=i_{2}(m)=p_{3}(a)$.
A similar argument leads to the following result.
Lemma 2.6. If $p_{1}\left(p_{2}\left(p_{3}(a)\right)\right)=0$ in tmf_{*} then there exists a class

$$
s \in \operatorname{tmf}_{*}^{\text {tor }}
$$

such that $i_{1}(s)=p_{2}\left(p_{3}(a)\right)$.

2.2. From $\operatorname{tmf}_{*} \mathrm{Y}$ to $\mathrm{tmf}_{*} \mathrm{M}$.

An element $y \in \operatorname{tmf}_{k-3} \mathrm{Y}$ is in the image of p_{3} for some version of A_{1} if and only if

$$
v_{1} \cdot y=0 \in \operatorname{tmf}_{k-1} \mathrm{Y}
$$

for a choice of v_{1}. Since the action of all v_{1}-self-maps on $\operatorname{tmf}_{*} Y$ have been identified on each generator [BBPX22, Figs. 22, 23], the image of p_{3} is easily determined; we list these elements in the leftmost column of Table 1.

Notation 2.7. Let $\mathrm{s}_{\mathrm{i}, \mathrm{j}}, \mathrm{m}_{\mathrm{i}, \mathrm{j}}$ and $\mathrm{y}_{\mathrm{i}, \mathrm{j}}$ denote elements of $\mathrm{tmf}_{*}, \mathrm{tmf}_{*} \mathrm{M}$, and $\operatorname{tmf}_{*} Y$, respectively, which are detected in filtration ($j, j+i$) of the AdamsNovikov spectral sequence (11). In the bidegrees that we are interested in, there is only one element which is v_{1}-torsion and nonzero, thus $\mathrm{s}_{\mathrm{i}, \mathrm{j}}, \mathrm{m}_{\mathrm{i}, \mathrm{j}}$, and $y_{i, j}$ represents unique elements up to higher Adams-Novikov filtration.

Next, we determine the effect of the map p_{2} on the classes in $\operatorname{img}\left(p_{3}\right) \subset$ $\mathrm{tmf}_{*-3} \mathrm{Y}$. In particular, we are interested in identifying those classes whose images under p_{2} are nonzero. We will use the long exact sequence (8)

$$
\cdots \longrightarrow \operatorname{tmf}_{k-3} \mathrm{M} \xrightarrow{i_{2}} \operatorname{tmf}_{k-3} \mathrm{Y} \xrightarrow{p_{2}} \operatorname{tmf}_{k-5} \mathrm{M} \xrightarrow{\eta_{*}} \cdots
$$

By Lemma 2.2 and Lemma 2.5, it suffices to study the short exact sequence

$$
\begin{equation*}
\mathrm{C}_{k-3}^{\mathrm{tor}} \longleftrightarrow \operatorname{tmf}_{k-3}(\mathrm{Y})^{\mathrm{tor}} \xrightarrow{p_{2}} \mathrm{~K}_{k-5}^{\mathrm{tor}} \tag{10}
\end{equation*}
$$

where $\mathrm{C}_{k-3}:=\mathrm{C}_{k-3}^{\mathrm{tor}}(\mathrm{Y})$ is the cokernel of η_{*} in (8) and $\mathrm{K}_{k-5}^{\text {tor }}=\mathrm{K}_{k-3}^{\mathrm{tor}}(\mathrm{Y})$ is the kernel of η_{*} in (8) restricted to v_{1}-torsion (we drop Y from notation for convenience). We employ some standard techniques in our analysis which are listed below.

Technique 1 (Vanishing K). If $\mathrm{K}_{k-5}^{\mathrm{tor}}=0$ in (10), then

$$
p_{2}(y)=0
$$

for any $y \in \operatorname{tmf}_{k-3}(\mathrm{Y})^{\mathrm{tor}}$.
Application 1. We employ Technique 1 to conclude that the following elements map to zero under p_{2} :

- $\mathrm{y}_{3,1}$	- $\mathrm{y}_{54,2}$	- $\mathrm{y}_{85,17}$	- $\mathrm{y}_{117,3}$
- $\mathrm{y}_{6,2}$	- $\mathrm{Y}_{60,10}$	- $\mathrm{y}_{86,12}$	- $\mathrm{y}_{117,13}$
- $\mathrm{y}_{14,2}$	- $\mathrm{Y}_{60,12}$	- $\mathrm{Y}_{90,14}$	- $\mathrm{y}_{123,11}$
- $\mathrm{y}_{18,2}$	- $\mathrm{y}_{65,7}$	- $\mathrm{Y}_{91,13}$	- $\mathrm{y}_{132,16}$
- $\mathrm{y}_{21,3}$	- Y65,13	- $\mathrm{Y}_{96,14}$	- $\mathrm{y}_{137,17}$
- $\mathrm{y}_{29,5}$	- $\mathrm{y}_{66,2}$	- $\mathrm{y}_{97,9}$	- $\mathrm{y}_{142,18}$
- $\mathrm{y}_{34,6}$	- $\mathrm{y}_{69,3}$	- $\mathrm{y}_{101,15}$	- $\mathrm{y}_{143,15}$
- $\mathrm{y}_{39,7}$	- $\mathrm{Y}_{75,13}$	- $\mathrm{y}_{105,21}$	- $\mathrm{y}_{148,18}$
- $\mathrm{y}_{40,6}$	- $\mathrm{Y}_{76,10}$	- $\mathrm{y}_{106,16}$	- $\mathrm{y}_{161,7}$
- $\mathrm{y}_{45,9}$	- $\mathrm{Y}_{80,16}$	- $\mathrm{y}_{111,17}$	- $\mathrm{y}_{165,3}$
- $\mathrm{y}_{51,1}$	- $\mathrm{Y}_{81,11}$	- $\mathrm{y}_{112,12}$	- $\mathrm{y}_{168,22}$

Technique 2 (Vanishing C). Suppose $y \in \operatorname{tmf}_{k-3}(Y)^{\text {tor }}$ is a nonzero element and $\mathrm{C}_{k-3}^{\mathrm{tor}}=0$, then

$$
p_{2}(y) \neq 0
$$

in (10). Further, if $\operatorname{rank}_{\mathbb{F}_{2}}\left(\mathrm{~K}_{k-5}^{\mathrm{tor}}\right)=1$ then the image of y is the unique nonzero element of $\mathrm{K}_{k-5}^{\mathrm{tor}}$.

Application 2. We employ Technique 2 to determine the following:

- $p_{2}\left(\mathrm{y}_{8,2}\right)=\mathrm{m}_{6,2}$
- $p_{2}\left(\mathrm{y}_{62,2}\right)=\mathrm{m}_{60,12}$
- $p_{2}\left(\mathrm{y}_{11,3}\right)=\mathrm{m}_{9,3}$
- $p_{2}\left(\mathrm{y}_{68,2}\right)=\mathrm{m}_{66,2}$
- $p_{2}\left(\mathrm{y}_{23,3}\right)=\mathrm{m}_{21,5}$
- $p_{2}\left(\mathrm{y}_{74,4}\right)=\mathrm{m}_{72,6}$
- $p_{2}\left(\mathrm{y}_{26,4}\right)=\mathrm{m}_{24,6}$
- $p_{2}\left(\mathrm{y}_{77,5}\right)=\mathrm{m}_{75,13}$
- $p_{2}\left(\mathrm{y}_{44,8}\right)=\mathrm{m}_{42,8}$
- $p_{2}\left(\mathrm{y}_{82,6}\right)=\mathrm{m}_{80,16}$
- $p_{2}\left(\mathrm{y}_{59,3}\right)=\mathrm{m}_{57,3}$
- $p_{2}\left(\mathrm{y}_{83,3}\right)=\mathrm{m}_{81,3}$
- $p_{2}\left(\mathrm{y}_{87,7}\right)=\mathrm{m}_{85,13}$
- $p_{2}\left(\mathrm{y}_{119,3}\right)=\mathrm{m}_{117,3}$
- $p_{2}\left(\mathrm{y}_{88,6}\right)=\mathrm{m}_{86,12}$
- $p_{2}\left(\mathrm{y}_{127,15}\right)=\mathrm{m}_{125,21}$
- $p_{2}\left(\mathrm{y}_{92,8}\right)=\mathrm{m}_{90,10}$
- $p_{2}\left(\mathrm{y}_{133,11}\right) \neq 0$
- $p_{2}\left(\mathrm{y}_{93,3}\right)=\mathrm{m}_{91,9}$
- $p_{2}\left(\mathrm{y}_{155,3}\right)=\mathrm{m}_{153,3}$
- $p_{2}\left(\mathrm{y}_{98,4}\right)=\mathrm{m}_{96,6}$
- $p_{2}\left(\mathrm{y}_{158,16}\right)=\mathrm{m}_{156,18}$
- $p_{2}\left(\mathrm{y}_{108,10}\right)=\mathrm{m}_{106,16}$
- $p_{2}\left(\mathrm{y}_{167,3}\right)=\mathrm{m}_{165,3}$
- $p_{2}\left(\mathrm{y}_{113,7}\right) \neq 0$
- $p_{2}\left(\mathrm{y}_{170,4}\right)=\mathrm{m}_{168,6}$

Technique 3 (Action of tmf_{*}). The maps i_{2} and p_{2} in (8) and (10) are tmf_{*}-linear, i.e.,
(1) $p_{2}(t \cdot y)=t \cdot p_{2}(y)$,
(2) $i_{2}(t \cdot m)=t \cdot i_{2}(m)$
for all $t \in \operatorname{tmf}_{*}, m \in \operatorname{tmf}_{*} \mathrm{M}$ and $y \in \operatorname{tmf}_{*} \mathrm{Y}$.

Application 3. We use Technique 3 to show that

- $p_{2}\left(\mathrm{y}_{102,10}\right)=p_{2}\left(\bar{\kappa} \cdot \mathrm{y}_{82,6}\right)=\bar{\kappa} \cdot p_{2}\left(\mathrm{y}_{82,6}\right)=\bar{\kappa} \cdot \mathrm{m}_{80,16}=\mathrm{m}_{100,20}$ which forces $p_{2}\left(\mathrm{y}_{102,2}\right)=0$,
- $p_{2}\left(\mathrm{y}_{118,8}\right)=p_{2}\left(\bar{\kappa} \cdot \mathrm{y}_{98,4}\right)=\bar{\kappa} \cdot p_{2}\left(\mathrm{y}_{98,4}\right)=\bar{\kappa} \cdot \mathrm{m}_{96,6}=\mathrm{m}_{116,10}$,
- $p_{2}\left(\mathrm{y}_{138,12}\right)=p_{2}\left(\bar{\kappa} \cdot \mathrm{y}_{118,8}\right)=\bar{\kappa} \cdot p_{2}\left(\mathrm{y}_{118,8}\right)=\bar{\kappa} \cdot \mathrm{m}_{116,10}=\mathrm{m}_{136,14}$,
- $p_{2}\left(\mathrm{y}_{153,15}\right)=p_{2}\left(\bar{\kappa} \cdot \mathrm{y}_{133,11}\right)=\bar{\kappa} \cdot p_{2}\left(\mathrm{y}_{133,11}\right)=\bar{\kappa} \cdot \mathrm{m}_{131,17}=\mathrm{m}_{151,21}$ which forces $p_{2}\left(\mathrm{y}_{153,11}\right)=0$.

The next few techniques use the fact that the tmf-homology of Y and M are calculated in [BBPX22] using the Adams-Novikov spectral sequence

$$
\begin{equation*}
{ }^{(-)} \mathrm{E}_{2}^{s, t}:=\operatorname{Ext}_{\Gamma}^{s, t}\left(\mathrm{~A}, \pi_{*}(\operatorname{tmf} \wedge \mathrm{X}(4) \wedge(-))\right) \Longrightarrow \operatorname{tmf}_{t-s}(-) \tag{11}
\end{equation*}
$$

where the spectrum $\mathrm{X}(4)$ and the Hopf algebroid (A, Γ) are as described in [BBPX22, §2.1].

Technique 4 (Analysis of E_{2}-pages). Corresponding to the cofiber sequence (3), there is a long exact sequence

$$
\begin{equation*}
\ldots \longrightarrow{ }^{M} \mathrm{E}_{2}^{s, t} \xrightarrow{\hat{i}_{2}} \mathrm{Y}_{2}^{\mathrm{E}_{2}^{s, t}} \xrightarrow{\widehat{p}_{2}}{ }^{\mathrm{M}} \mathrm{E}_{2}^{s, t-2} \xrightarrow{\hat{\eta}} \ldots \tag{12}
\end{equation*}
$$

of E_{2}-pages of Adams-Novikov spectral sequences. Suppose $y \in \operatorname{tmf}_{k-3} \mathrm{Y}$ is detected by $\widehat{y} \in{ }^{\mathrm{Y}} \mathrm{E}_{2}^{s, k-3+s}$.
(1) If $m \in \operatorname{tmf}_{k-3} \mathrm{M}$ is detected by $\hat{m} \in{ }^{\mathrm{M}} \mathrm{E}_{2}^{s, k-3+s}$ such that
(a) $\widehat{i}_{2}(\widehat{m})=\widehat{y}$ and
(b) \widehat{m} is a permanent cycle,
then $i_{2}(m)=y$.
(2) If $m \in \operatorname{tmf}_{k-5} \mathrm{M}$ is detected by $\widehat{m} \in{ }^{\mathrm{M}} \mathrm{E}_{2}^{s, k-5+s}$ such that
(a) $\widehat{p}_{2}(y)=\widehat{m}$ and
(b) \widehat{m} is a permanent cycle, then $p_{2}(y)=m$.

Application 4. We use Technique 4 to determine

- $i_{2}\left(\mathrm{~m}_{20,4}\right)=\mathrm{y}_{20,4}$ which forces $p_{2}\left(\mathrm{y}_{20,2}\right)=\mathrm{m}_{18,2}$,
- $i_{2}\left(\mathrm{~m}_{103,1}\right)=\mathrm{y}_{103,1}$ which forces $p_{2}\left(\mathrm{y}_{103,7}\right)=\mathrm{m}_{101,2}$,
- $i_{2}\left(\mathrm{~m}_{150,2}\right)=\mathrm{y}_{150,2}$.

Definition 2.8. We say an element $x \in \operatorname{tmf}_{*}(\mathrm{X})$ has Adams-Novikov filtration s, denoted $\mathrm{AF}(x)=s$, if it is detected by an element

$$
\widehat{x} \in \mathrm{X}_{\mathrm{E}_{2}^{s, *+s}}
$$

in the E_{2}-page of (11).
Remark 2.9. In Notation 2.7, the Adams filtration of elements $s_{i, j}, m_{i, j}$ and $y_{i, j}$ equals j .

Our next technique follows from the fact that maps of spectra cannot decrease Adams-Novikov filtration.

Technique 5 (Adams-Novikov filtration argument). Suppose $y \in \operatorname{tmf}_{k-3} Y$ is a nonzero element and $m \in \operatorname{tmf}_{*} \mathrm{M}$.
(1) If $\mathrm{AF}(y)>\mathrm{AF}(m)$, then $p_{2}(y) \neq m$.
(2) If $\mathrm{AF}(y)<\mathrm{AF}(m)$, then $i_{2}(m) \neq y$.

Application 5. We use Technique 5 to conclude that

- $i_{2}\left(\mathrm{~m}_{35,5}\right) \neq \mathrm{y}_{35,3}$ and $p_{2}\left(\mathrm{y}_{35,3}\right) \neq \mathrm{m}_{33,1}$ which forces $p_{2}\left(\mathrm{y}_{35,3}\right)=\mathrm{m}_{33,3}$,
- $i_{2}\left(\mathrm{~m}_{45,5}\right) \neq \mathrm{y}_{45,3}$ which forces $p_{2}\left(\mathrm{y}_{45,3}\right)=\mathrm{m}_{43,9}$ and $p_{2}\left(\mathrm{y}_{45,9}\right)=0$,
- $i_{2}\left(\mathrm{~m}_{55,9}\right) \neq \mathrm{y}_{55,7}$ which forces $p_{2}\left(\mathrm{y}_{55,7}\right)=\mathrm{m}_{53,7}$,
- $i_{2}\left(\mathrm{y}_{56,6}\right) \neq \mathrm{m}_{54,2}$ which forces $p_{2}\left(\mathrm{y}_{56,2}\right)=\mathrm{m}_{54,2}$,
- $p_{2}\left(\mathrm{y}_{57,11}\right) \neq \mathrm{m}_{55,9}$ which forces $p_{2}\left(\mathrm{y}_{57,11}\right)=0$,
- $p_{2}\left(\mathrm{y}_{71,9}\right) \neq \mathrm{m}_{69,3}$ which forces $p_{2}\left(\mathrm{y}_{71,9}\right)=0$ and $p_{2}\left(\mathrm{y}_{71,3}\right)=\mathrm{m}_{69,3}$,
- $p_{2}\left(\mathrm{y}_{107,11}\right) \neq \mathrm{m}_{105,3}$ which forces $p_{2}\left(\mathrm{y}_{107,3}\right)=\mathrm{m}_{105,3}$ and $p_{2}\left(\mathrm{y}_{107,11}\right)=$ $\mathrm{m}_{105,17}$,
- $p_{2}\left(\mathrm{y}_{113,7}\right) \neq \mathrm{m}_{111,3}$ which forces $p_{2}\left(\mathrm{y}_{113,7}\right)=\mathrm{m}_{111,13}$,
- $p_{2}\left(\mathrm{y}_{122,14}\right) \neq \mathrm{m}_{120,6}$, which forces $p_{2}\left(\mathrm{y}_{122,14}\right)=0$ and $p_{2}\left(\mathrm{y}_{122,4}\right)=$ $\mathrm{m}_{120,6}$,
- $p_{2}\left(\mathrm{y}_{133,11}\right) \neq \mathrm{m}_{133,7}$ which forces $p_{2}\left(\mathrm{y}_{133,11}\right)=\mathrm{m}_{131,17}$.

Technique 6 (Geometric boundary theorem [Beh12, Lemma A.4.1 (5)]). Consider the maps of the Adams-Novikov spectral sequences induced by (3)

$$
{ }^{\Sigma \mathrm{M}} \mathrm{E}_{r}^{s, *+s} \xrightarrow{\widehat{\eta}}{ }^{\mathrm{M}} \mathrm{E}_{r}^{s, *+s} \xrightarrow{\widehat{i}_{2}}{ }^{\mathrm{Y}} \mathrm{E}_{r}^{s, *+s} \xrightarrow{\widehat{p}_{2}} \Sigma^{2} \mathrm{M}_{\mathrm{E}_{r}^{s, *+s}} .
$$

Suppose $\widehat{m} \in{ }^{\mathrm{M}} \mathrm{E}_{r}^{s, *+s}$ such that

- $d_{r}(\widehat{m})=\widehat{\eta}\left(\widehat{m}^{\prime}\right)$,
- $\widehat{i}_{2}(\widehat{m})=\widehat{y}$ is a nonzero permanent cycle,
then $\widehat{p}_{2}(\widehat{y})=\widehat{m}^{\prime}$.
Application 6. We use Technique 6 in the following arguments:
- Since $d_{5}\left(\mathrm{~m}_{50,6}\right)=\widehat{\eta}\left(\mathrm{m}_{48,6}\right)$ and $\widehat{i}_{2}\left(\mathrm{~m}_{50,6}\right)=\mathrm{y}_{50,6}$ is a nonzero permanent cycle, we get $p_{2}\left(\mathrm{y}_{50,6}\right)=\mathrm{m}_{48,6}$. Consequently, $p_{2}\left(\mathrm{y}_{50,4}\right)=0$.
- Since $d_{5}\left(\mathrm{~m}_{70,10}\right)=\widehat{\eta}\left(\mathrm{m}_{68,10}\right)$ and $\widehat{i_{2}}\left(\mathrm{~m}_{70,10}\right)=\mathrm{y}_{70,10}$ is a permanent cycle, we get $p_{2}\left(\mathrm{y}_{70,10}\right)=\mathrm{m}_{48,10}$. Consequently, $p_{2}\left(\mathrm{y}_{70,8}\right)=0$. Alternatively, this case follows from the previous case using $\bar{\kappa}$-linearity.
- Since $d_{5}\left(\mathrm{~m}_{128,14}\right)=\widehat{\eta}\left(\mathrm{m}_{126,20}\right)$ and $\widehat{\hat{i}_{2}}\left(\mathrm{~m}_{128,14}\right)=\mathrm{y}_{128,14}$ is a permanent cycle, we get $p_{2}\left(\mathrm{y}_{128,14}\right)=\mathrm{m}_{126,20}$. Alternatively, this follows using $\bar{\kappa}$-linearity from the fact that $p_{2}\left(\mathrm{y}_{108,10}\right)=\mathrm{m}_{106,16}$ which was established earlier using Technique 2.

2.3. From $\operatorname{tmf}_{*} M$ to tmf $_{*}$.

All the techniques above have analogs corresponding to the cofiber sequence (2). We use them to study the short exact sequence

$$
\begin{equation*}
\mathrm{C}_{k-3}^{\mathrm{tor}} \longleftrightarrow \operatorname{tmf}_{k-3}(\mathrm{M})^{\mathrm{tor}} \longrightarrow \mathrm{~K}_{k-4}^{\mathrm{tor}}, \tag{13}
\end{equation*}
$$

where $\mathrm{C}_{k-3}^{\mathrm{tor}}$ is the cokernel of i_{1} and $\mathrm{K}_{k-4}^{\mathrm{tor}}$ is the kernel of p_{1}, both restricted to v_{1}-torsion.

Example 2.10. We use the analog of Technique 1 to determine

- $i_{1}\left(\mathrm{~s}_{6,2}\right)=\mathrm{m}_{6,2}$
- $i_{1}\left(\mathrm{~s}_{48,0}\right)=\mathrm{m}_{48,6}$
- $i_{1}\left(\mathrm{~s}_{9,3}\right)=\mathrm{m}_{9,3}$
- $i_{1}\left(\mathrm{~s}_{53,7}\right)=\mathrm{m}_{53,7}$
- $i_{1}\left(\mathrm{~s}_{21,5}\right)=\mathrm{m}_{21,5}$
- $i_{1}\left(\mathrm{~s}_{57,3}\right)=\mathrm{m}_{57,3}$
- $i_{1}\left(\mathrm{~s}_{24,0}\right)=\mathrm{m}_{24,0}$
- $i_{1}\left(\mathrm{~s}_{60,12}\right)=\mathrm{m}_{60,12}$
- $i_{1}\left(\mathrm{~s}_{68,4}\right)=\mathrm{m}_{68,10}$
- $i_{1}\left(\mathrm{~s}_{100,20}\right)=\mathrm{m}_{100,20}$
- $i_{1}\left(\mathrm{~s}_{72,0}\right)=\mathrm{m}_{72,6}$
- $p_{1}\left(\mathrm{~m}_{105,3}\right)=0$
- $i_{1}\left(\mathrm{~s}_{75,3}\right)=\mathrm{m}_{75,13}$
- $p_{1}\left(\mathrm{~m}_{105,17}\right)=0$
- $i_{1}\left(\mathbf{s}_{80,16}\right)=\mathrm{m}_{80,16}$
- $i_{1}\left(\mathrm{~s}_{116,4}\right)=\mathrm{m}_{116,10}$
- $i_{1}\left(\mathrm{~s}_{85,13}\right)=\mathrm{m}_{85,13}$
- $i_{1}\left(\mathrm{~s}_{120,0}\right)=\mathrm{m}_{120,6}$
- $i_{1}\left(\mathrm{~s}_{90,10}\right)=\mathrm{m}_{90,10}$
- $i_{1}\left(\mathrm{~s}_{153,3}\right)=\mathrm{m}_{153,3}$
- $i_{1}\left(\mathrm{~s}_{96,0}\right)=\mathrm{m}_{96,6}$
- $i_{1}\left(\mathrm{~s}_{168,0}\right)=\mathrm{m}_{168,6}$.

Example 2.11. We use the analog of Technique 2 to determine

- $p_{1}\left(\mathrm{~m}_{18,2}\right)=\mathrm{s}_{17,2}$
- $p_{1}\left(\mathrm{~m}_{101,7}\right)=\mathrm{s}_{100,20}$
- $p_{1}\left(\mathrm{~m}_{43,9}\right)=\mathrm{s}_{42,11}$
- $p_{1}\left(\mathrm{~m}_{106,16}\right)=\mathrm{s}_{105,17}$
- $p_{1}\left(\mathrm{~m}_{69,3}\right)=\mathrm{s}_{68,4}$
- $p_{1}\left(\mathrm{~m}_{126,20}\right)=\mathrm{m}_{125,21}$
- $p_{1}\left(\mathrm{~m}_{81,3}\right)=\mathrm{s}_{80,16}$
- $p_{1}\left(\mathrm{~m}_{131,17}\right)=\mathrm{s}_{130,18}$
- $p_{1}\left(\mathrm{~m}_{86,12}\right)=\mathrm{s}_{85,13}$
- $p_{1}\left(\mathrm{~m}_{151,21}\right)=\mathrm{s}_{150,22}$
- $p_{1}\left(\mathrm{~m}_{91,9}\right)=\mathrm{s}_{90,10}$
- $p_{1}\left(\mathrm{~m}_{165,3}\right)=\mathrm{s}_{164,4}$.

Example 2.12. We use the analog of Technique 3 to deduce that

- $p_{2}\left(\mathrm{~m}_{111,13}\right)=p_{2}\left(\bar{\kappa} \cdot \mathrm{~m}_{91,9}\right)=\bar{\kappa} \cdot \mathrm{s}_{90,10}=\mathrm{s}_{110,14}$,
- $i_{1}\left(\mathrm{~s}_{136,8}\right)=i_{1}\left(\bar{\kappa} \cdot \mathrm{~s}_{116,4}\right)=\bar{\kappa} \cdot \mathrm{m}_{116,10}=\mathrm{m}_{136,14}$,
- $i_{1}\left(\mathrm{~s}_{156,12}\right)=i_{1}\left(\bar{\kappa} \cdot \mathrm{~s}_{136,8}\right)=\bar{\kappa} \cdot \mathrm{m}_{136,14}=\mathrm{m}_{156,18}$.

Example 2.13. We use the analog of Technique 4 to argue that:

- $i_{2}\left(\mathrm{~s}_{54,2}\right)=\mathrm{m}_{54,2}$.

Example 2.14. The analog of Technique 5 is used to deduce that

- $i_{1}\left(\mathrm{~s}_{9,3}\right) \neq \mathrm{m}_{9,1}$ which forces $i_{1}\left(\mathrm{~s}_{9,3}\right)=\mathrm{m}_{9,3}$,
- $p_{1}\left(\mathrm{~m}_{33,3}\right) \neq \mathrm{s}_{32,2}$ which forces $i_{1}\left(\mathrm{~s}_{33,3}\right)=\mathrm{m}_{33,3}$,
- $i_{1}\left(\mathrm{~s}_{42,10}\right) \neq \mathrm{m}_{42,8}$ which forces $i_{1}\left(\mathrm{~s}_{42,10}\right)=\mathrm{m}_{42,10}$,
- $i_{1}\left(\mathrm{~s}_{60,12}\right) \neq \mathrm{m}_{60,7}$ which forces $p_{1}\left(\mathrm{~m}_{60,7}\right)=\mathrm{s}_{59,7}$,
- $p_{1}\left(\mathrm{~m}_{66,8}\right) \neq \mathrm{s}_{65,3}$ and $i_{1}\left(\mathrm{~s}_{66,10}\right) \neq \mathrm{m}_{66,8}$ which forces $p_{1}\left(\mathrm{~m}_{66,8}\right)=\mathrm{s}_{65,9}$, which along with $i_{1}\left(\mathrm{~s}_{66,10}\right) \neq \mathrm{m}_{66,2}$ forces $p_{1}\left(\mathrm{~m}_{66,2}\right)=\mathrm{s}_{65,3}$,
- $i_{1}\left(\mathrm{~s}_{105,11}\right) \neq \mathrm{m}_{105,3}$ which forces $i_{1}\left(\mathrm{~s}_{105,11}\right)=\mathrm{m}_{105,11}$ and consequently $i_{1}\left(\mathrm{~s}_{105,3}\right)=\mathrm{m}_{105,3}$,
- $i_{1}\left(\mathrm{~s}_{117,5}\right) \neq \mathrm{m}_{117,3}$ which forces $p_{1}\left(\mathrm{~m}_{117,3}\right)=\mathrm{s}_{116,4}$,
- $p_{2}\left(\mathrm{~m}_{125,21}\right) \neq \mathrm{s}_{124,6}$ which forces $i_{1}\left(\mathrm{~s}_{125,21}\right)=\mathrm{m}_{125,21}$.
2.4. Summary Table. We summarize our calculations in Table 1 as follows. The leftmost column lists the image of p_{3} in $_{\mathrm{tmf}}^{*}$ Y. We determine their image in column 2 and indicate the technique used, among Technique 1 through Technique 6, in column 3.
We calculate the image under p_{1} of nonzero elements in column 2 and record them in column 4. If the image is zero, we identify a v_{1}-torsion element which is its lift along i_{1} and record it in column 5 . We indicate the technique in column 6.

Note that the elements listed in columns 4 and 5 are elements of tmf_{*}. We record their familiar names from [DFHH14] in column 7.

Table 1: Detecting elements in tmf_{*}

$\operatorname{img}\left(p_{3}\right)$	$\operatorname{img}\left(p_{2}\right)$	(T)	$\operatorname{img}\left(p_{1}\right)$	$i_{1}^{-1}(-)$	(T)	name in tmf_{*}
Y3,1	0	(1)				
$\mathrm{y}_{6,2}$	0	(1)				
$\mathrm{y}_{8,2}$	$\mathrm{m}_{6,2}$	(2)	0	$\mathrm{s}_{6,2}$	(1)	ν^{2}
$\mathrm{y}_{11,3}$	$\mathrm{m}_{9,3}$	(2)	0	$\mathrm{s}_{9,3}$	(5)	ν^{3}
$\mathrm{y}_{14,2}$	0	(1)				
$\mathrm{y}_{18,2}$	0	(1)				
$\mathrm{y}_{20,2}$	$\mathrm{m}_{18,2}$	(4)	$\mathrm{S}_{17,2}$		(2)	$\kappa \nu$
$\mathrm{y}_{21,3}$	0	(1)				
$\mathrm{y}_{23,3}$	$\mathrm{m}_{21,5}$	(2)	0	$\mathrm{s}_{21,5}$	(1)	$\bar{\kappa} \nu$
$\mathrm{y}_{26,4}$	$\mathrm{m}_{24,6}$	(2)	0	$\mathrm{s}_{24,0}$	(1)	8Δ
$\mathrm{y}_{29,5}$	0	(1)				
$\mathrm{y}_{34,6}$	0	(1)				
$\mathrm{y}_{35,3}$	$\mathrm{m}_{33,3}$	(5)	0	$\mathrm{s}_{33,3}$	(5)	$q \eta$
$\mathrm{y}_{39,7}$	0	(1)				
$\mathrm{y}_{40,6}$	0	(1)				
$\mathrm{y}_{44,8}$	$\mathrm{m}_{42,10}$	(2)	0	$\mathrm{s}_{42,10}$	(5)	$\bar{\kappa}^{2} \eta^{2}$
$\mathrm{y}_{45,3}$	$\mathrm{m}_{43,9}$	(5)	$\mathrm{s}_{42,10}$		(2)	$\bar{\kappa}^{2} \eta^{2}$
$\mathrm{y}_{45,9}$	0	(1)				
$\mathrm{y}_{50,4}$	0	(6)				
$\mathrm{y}_{50,6}$	$\mathrm{m}_{48,6}$	(6)	0	$\mathrm{s}_{48,0}$	(1)	$4 \Delta^{2}$
$\mathrm{y}_{51,1}$	0	(1)				
$\mathrm{y}_{54,2}$	0	(1)				
$\mathrm{y}_{55,7}$	$\mathrm{m}_{53,7}$	(5)	0	$\mathrm{s}_{53,7}$	(1)	$\eta^{2} \Delta^{2} \nu$
$\mathrm{y}_{56,2}$	$\mathrm{m}_{54,2}$	(5)	0	$\mathrm{S}_{54,2}$	(4)	$\nu \Delta^{2} \nu$
$\mathrm{y}_{57,11}$	0	(5)				
$\mathrm{y}_{59,3}$	$\mathrm{m}_{57,3}$	(2)	0	$\varsigma_{57,3}$	(1)	$\nu \Delta^{2} \nu^{2}$
$\mathrm{y}_{60,10}$	0	(1)				
$\mathrm{y}_{60,12}$	0	(1)				
$\mathrm{y}_{62,2}$	$\mathrm{m}_{60,12}$	(2)		$s_{60,12}$	(1)	$\nu \Delta^{2} \nu^{3}$
$\mathrm{y}_{65,7}$	0	(1)				
$\mathrm{y}_{65,13}$	0	(1)				
$\mathrm{y}_{66,2}$	0	(1)				

Table 1: Detecting elements in tmf_{*}

$\operatorname{img}\left(p_{3}\right)$	$\operatorname{img}\left(p_{2}\right)$	(T)	img (p_{1})	$i_{1}^{-1}(-)$	(T)	name in tmf_{*}
$\mathrm{y}_{68,2}$	$\mathrm{m}_{66,2}$	(2)	$5_{65,3}$		(5)	$\eta \Delta \bar{\kappa}^{2}$
$\mathrm{y}_{69,3}$	0	(1)				
$\mathrm{y}_{70,8}$	0	(6)				
$\mathrm{y}_{70,10}$	$\mathrm{m}_{68,10}$	(6)	0	$\mathrm{s}_{68,4}$	(1)	$4 \Delta^{2} \bar{\kappa}$
$\mathrm{y}_{71,3}$	$\mathrm{m}_{69,3}$	(5)	$\mathrm{S}_{68,4}$	0	(2)	$4 \Delta^{2} \bar{\kappa}$
$\mathrm{y}_{71,9}$	0	(5)				
$\mathrm{y}_{74,4}$	$\mathrm{m}_{72,6}$	(2)	0	$\mathrm{s}_{72,0}$	(1)	$8 \Delta^{3}$
$\mathrm{y}_{75,13}$	0	(1)				
$\mathrm{y}_{76,10}$	0	(1)				
$\mathrm{y}_{77,5}$	$\mathrm{m}_{75,13}$	(2)	0	$\mathrm{s}_{75,3}$	(1)	$(\eta \Delta)^{3}$
Y80,16	0	(1)				
Y81,11	0	(1)				
$\mathrm{y}_{82,6}$	$\mathrm{m}_{80,16}$	(2)	0	$\mathrm{s}_{80,16}$	(1)	$\bar{\kappa}^{4}$
Y83,3	$\mathrm{m}_{81,3}$	(2)	$\mathrm{s}_{80,16}$		(2)	$\bar{\kappa}^{4}$
$\mathrm{y}_{85,17}$	0	(1)				
Y86,12	0	(1)				
$\mathrm{y}_{87,7}$	$\mathrm{m}_{85,13}$	(2)	0	$\mathrm{s}_{85,13}$	(1)	$\eta \Delta \bar{\kappa}^{3}$
$\mathrm{y}_{88,6}$	$\mathrm{m}_{86,12}$	(2)	$\mathrm{S}_{85,13}$		(2)	$\eta \Delta \bar{\kappa}^{3}$
$\mathrm{Y}_{90,14}$	0	(1)				
Y91,13	0	(1)				
$\mathrm{y}_{92,8}$	$\mathrm{m}_{90,10}$	(2)	0	$\mathrm{s}_{90,10}$	(1)	$\eta^{2} \Delta^{2} \bar{\kappa}^{2}$
Y93,3	$\mathrm{m}_{91,9}$	(2)	S90,10		(2)	$\eta^{2} \Delta^{2} \bar{\kappa}^{2}$
Y96,14	0	(1)				
$\mathrm{y}_{97,9}$	0	(1)				
y98,4	$\mathrm{m}_{96,6}$	(2)	0	$\mathrm{S}_{96,0}$	(1)	$2 \Delta^{4}$
y 101,15	0	(1)				
$\mathrm{y}_{102,2}$	0	(3)				
$\mathrm{y}_{102,10}$	$\mathrm{m}_{100,20}$	(3)	0	$\mathrm{S}_{100,20}$	(1)	$\bar{\kappa}^{5}$
$\mathrm{y}_{103,7}$	$\mathrm{m}_{101,7}$	(4)	$\mathrm{s}_{100,20}$		(2)	$\bar{\kappa}^{5}$
$\mathrm{y}_{105,21}$	0	(1)				
$\mathrm{y}_{106,16}$	0	(1)				
$\mathrm{y}_{107,3}$	$\mathrm{m}_{105,3}$	(5)	0	$\mathrm{s}_{105,3}$	$(1,5)$	$\nu^{3} \Delta^{4}$
$\mathrm{y}_{107,11}$	$\mathrm{m}_{105,11}$	(5)	0	$\mathrm{s}_{105,17}$	$(1,5)$	$\eta \Delta \bar{\kappa}^{4}$
$\mathrm{y}_{108,10}$	$\mathrm{m}_{106,16}$	(2)	$\mathrm{s}_{105,17}$		(2)	$\eta \Delta \bar{\kappa}^{4}$
$\mathrm{y}_{111,17}$	0	(1)				
$\mathrm{y}_{112,12}$	0	(1)				
$\mathrm{y}_{113,7}$	$\mathrm{m}_{111,13}$	$(2,5)$	$\mathrm{s}_{110,14}$		(3)	$\eta^{2} \Delta^{2} \bar{\kappa}^{3}$
$\mathrm{y}_{117,3}$	0	(1)				
$\mathrm{y}_{117,13}$	0	(1)				
$\mathrm{y}_{118,8}$	$\mathrm{m}_{116,10}$	(3)	0	$\mathrm{s}_{116,4}$	(1)	$2 \Delta^{4} \bar{\kappa}$
$\mathrm{y}_{119,3}$	$\mathrm{m}_{117,3}$	(2)	$\mathrm{s}_{116,4}$		(5)	$2 \Delta^{4} \cdot 2 \bar{\kappa}$
$\mathrm{y}_{122,4}$	$\mathrm{m}_{120,6}$	(5)	0	$\mathrm{s}_{120,0}$	(1)	$8 \Delta^{5}$
$\mathrm{y}_{122,14}$	0	(5)				

Table 1: Detecting elements in tmf_{*}

$\operatorname{img}\left(p_{3}\right)$	$\\| \operatorname{img}\left(p_{2}\right)$	(T)	$\operatorname{img}\left(p_{1}\right)$	$i_{1}^{-1}(-)$	(T)	name in tmf_{*}
$\mathrm{y}_{123,11}$	0	(1)				
$\mathrm{y}_{127,15}$	$\mathrm{~m}_{125,21}$	(2)	0	$\mathrm{~s}_{125,21}$	(5)	$\eta \Delta \bar{\kappa}^{5}$
$\mathrm{y}_{128,14}$	$\mathrm{~m}_{126,20}$	(6)	$\mathrm{s}_{125,21}$		(2)	$\eta \Delta \bar{\kappa}^{5}$
$\mathrm{y}_{182,16}$	0	(1)				
$\mathrm{y}_{133,11}$	$\mathrm{~m}_{131,17}$	$(2,5)$	$\mathrm{s}_{130,18}$		(2)	$\eta^{2} \Delta^{2} \bar{\kappa}^{4}$
$\mathrm{y}_{137,17}$	0	(1)				
$\mathrm{y}_{138,12}$	$\mathrm{~m}_{136,14}$	(3)	0	$\mathrm{~s}_{136,8}$	(3)	$\eta^{2} \Delta^{5} \kappa$
$y_{142,18}$	0	(1)				
$\mathrm{y}_{143,15}$	0	(1)				
$\mathrm{y}_{148,18}$	0	(1)				
$\mathrm{y}_{150,2}$	0	(4)				
$\mathrm{y}_{153,11}$	0	(3)				
$\mathrm{y}_{153,15}$	$\mathrm{~m}_{151,21}$	(3)	$\mathrm{s}_{150,22}$		(2)	$\eta^{2} \Delta^{2} \bar{\kappa}^{5}$
$\mathrm{y}_{155,3}$	$\mathrm{~m}_{153,3}$	(2)	0	$\mathrm{~s}_{153,3}$	(1)	$\nu \Delta^{6} \nu^{2}$
$\mathrm{y}_{158,16}$	$\mathrm{~m}_{156,18}$	(2)	0	$\mathrm{~s}_{156,12}$	(3)	$\nu \Delta^{6} \eta \epsilon$
$\mathrm{y}_{161,7}$	0	(1)				
$\mathrm{y}_{165,3}$	0	(1)			(2)	$4 \Delta^{6} \bar{\kappa}$
$\mathrm{y}_{167,3}$	$\mathrm{~m}_{165,3}$	(2)	$\mathrm{s}_{164,4}$		(2)	
$\mathrm{y}_{168,22}$	0	(1)				
$\mathrm{y}_{170,4}$	$\mathrm{~m}_{168,6}$	(2)	0	$\mathrm{~s}_{168,0}$	(1)	$8 \Delta^{7}$

3. New infinite families

We begin by studying the commutative diagram of long exact sequences

associated to the cofiber sequence (4).

Lemma 3.1. Any nonzero element of the form $p_{3}(a) \in \operatorname{tmf}_{*} \mathrm{Y}$ admits a lift in $\pi_{*} \mathrm{Y}$ along the tmf-Hurewicz homomorphism.

Proof. This is a straightforward consequence of the fact that the tmf-Hurewicz map for $\mathrm{A}_{1}(5)$ is a surjection [Pha23], along with the commutativity of (14).

Next, we study the commutative diagram of long exact sequences

associated to the cofiber sequence (3).
Lemma 3.2. Any nonzero element of the form $p_{2}\left(p_{3}(a)\right) \in \operatorname{tmf}_{*} \mathrm{M}$ admits a lift in $\pi_{*} \mathrm{M}$ along the tmf-Hurewicz homomorphism.

Proof. If $p_{2}\left(p_{3}(a)\right) \neq 0$ then, in particular, $p_{3}(a) \neq 0$. Thus, by Lemma 3.1, there exists

$$
\tilde{y} \neq 0 \in \pi_{*} Y
$$

such that $\mathrm{h}_{\mathrm{tmf}}(\tilde{y})=p_{3}(a)$. The result then follows from (15).
Remark 3.3. The action of Δ^{8} is faithful on $\operatorname{tmf}_{*} \mathrm{~A}_{1}$ [Pha23], $\operatorname{tmf}_{*} \mathrm{Y}$ [BBPX22], $\operatorname{tmf}_{*} \mathrm{M}$ [BBPX22], tmf_{*} [Bau08], the Hurewicz image of tmf_{*} [BMQ23], and the cokernel of the tmf-Hurewicz map [BMQ23].

3.1. Infinite families in 2-local stable stems.

Our final step is studying the commutative diagram of long exact sequences

associated to the cofiber sequence (2).
Suppose $p_{1}\left(p_{2}\left(p_{3}(a)\right)\right) \neq 0$ for some $a \in \operatorname{tmf}_{k} \mathrm{~A}_{1}$. Then it follows from (14), Lemma 3.2, and Remark 3.3 that there is a 192 -periodic infinite family

$$
\left\{\tilde{\mathrm{s}}_{k-6+192 i} \in \pi_{k-6+192 i}(\mathbb{S}): i \in \mathbb{N}\right\}
$$

such that
(1) $\boldsymbol{h}_{\text {tmf }}\left(\tilde{\mathbf{s}}_{k-6}\right)=p_{1}\left(p_{2}\left(p_{3}(a)\right)\right)$,
(2) $h_{\text {tmf }}\left(\widetilde{s}_{k-6+192 i}\right) \neq 0$ for all $i \in \mathbb{N}$.

We are interested in the case when $p_{1}\left(p_{2}\left(p_{3}(a)\right)\right)=0 \in \operatorname{tmf}_{k-6}$.
Theorem 3.4. Let $a \in \operatorname{tmf}_{k} \mathrm{~A}_{1}$ such that $p_{2}\left(p_{3}(a)\right) \neq 0$ and $p_{1}\left(p_{2}\left(p_{3}(a)\right)\right)=$ 0.
(I) If $i_{1}^{-1}\left(p_{2}\left(p_{3}(a)\right)\right) \cap \operatorname{img}\left(\mathrm{h}_{\text {tmf }}\right) \neq \emptyset$, then there exists a 192-periodic infinite family of elements in the stable stems

$$
\left\{\tilde{\mathbf{s}}_{k-5+192 i} \in \pi_{k-5+192 i}(\mathbb{S}): i \in \mathbb{N}\right\}
$$

such that $\left.i_{1}\left(\mathrm{~h}_{\mathrm{tmf}}\left(\tilde{\mathrm{s}}_{k-5}\right)\right)=p_{2}\left(p_{3}(a)\right)\right)$ and $\mathrm{h}_{\mathrm{tmf}}\left(\tilde{\mathrm{s}}_{k-5+192 i}\right) \neq 0$ for all $i \in \mathbb{N}$.
(II) If $i_{1}^{-1}\left(p_{2}\left(p_{3}(a)\right)\right) \cap \operatorname{img}\left(\mathrm{h}_{\text {tmf }}\right)=\emptyset$, then there exists a 192 -periodic infinite family of elements in the stable stems

$$
\left\{\tilde{\mathbf{s}}_{k-6+192 i} \in \pi_{k-6+192 i}(\mathbb{S}): i \in \mathbb{N}\right\}
$$

such that $\tilde{\mathbf{s}}_{k-6+192 i} \neq 0$ and $\mathrm{h}_{\mathrm{tmf}}\left(\tilde{\mathbf{s}}_{k-6+192 i}\right)=0$ for all $i \in \mathbb{N}$.
Proof. If $p_{2}\left(p_{3}(a)\right) \in \operatorname{tmf}_{k-5} \mathrm{M}$ is nonzero, then by Remark 3.3,

$$
p_{2}\left(p_{3}\left(\Delta^{8 i} \cdot a_{k}\right)\right)=\Delta^{8 i} \cdot p_{2}\left(p_{3}\left(a_{k}\right)\right) \neq 0 .
$$

Thus, by Lemma 3.2, there exist nonzero elements

$$
\begin{equation*}
\tilde{m}_{k-5+192 i} \in \pi_{k-5+192 i}(\mathrm{M}) \tag{17}
\end{equation*}
$$

such that $\mathrm{h}_{\mathrm{tmf}}\left(\tilde{m}_{k-5+192 i}\right)=\Delta^{8 i} \cdot p_{2}\left(p_{3}\left(a_{k}\right)\right)$ for all $i \in \mathbb{N}$.
Suppose $p_{2}\left(p_{3}(a)\right)$ admits a lift $s_{k-5} \in \operatorname{tmf}_{k-5}$ along i_{1} which is in the Hurewicz image. Then, by Remark 3.3, $\Delta^{8 i} \cdot s_{k-5}$ is also in the Hurewicz image, and a collection

$$
\left\{\tilde{\mathbf{s}}_{k-5+192 i} \in \pi_{k-5+192 i}(\mathbb{S}): i \in \mathbb{N}\right\}
$$

such that $\mathrm{h}_{\text {tmf }}\left(\tilde{\mathrm{s}}_{k-5+192 i}\right)=\Delta^{8 i} \cdot s_{k-5}$ forms an infinite family with the desired properties.

On the other hand, if none of the lifts of $p_{2}\left(p_{3}(a)\right)$ along i_{1} is in the Hurewicz image, then the same holds for $\Delta^{8 i} \cdot p_{2}\left(p_{3}(a)\right)$ for all $i \in \mathbb{N}$ by Remark 3.3. Thus, $p_{1}\left(\tilde{m}_{k-5+192 i}\right) \neq 0$ for all $i \in \mathbb{N}$, and

$$
\left\{\tilde{\mathbf{s}}_{k-6+192 i}=p_{2}\left(\tilde{m}_{k-5+192 i}\right): i \in \mathbb{N}\right\}
$$

is the desired infinite family.

Proof of Theorem 1. From Table 1 we notice that there exists an element $a_{k} \in \operatorname{tmf}_{k} \mathrm{~A}_{1}$ such that
(i) $p_{2}\left(p_{3}\left(a_{k}\right)\right) \neq 0$,
(ii) $p_{1}\left(p_{2}\left(p_{3}\left(a_{k}\right)\right)\right)=0$,
(iii) there exists $s_{k-5} \in \operatorname{tmf}_{k-5}^{\text {tor }}$ such that $i_{1}\left(s_{k-5}\right)=p_{2}\left(p_{3}\left(a_{k}\right)\right)$,
for each $k \in\{29,53,77,80,101,119,173\}$. However, the Hurewicz image is trivial in degrees $24,48,72,75,96,114$, and 168 . Thus, the result follows from Case (II) of Theorem 3.4.

Remark 3.5. To summarize, the seven infinite families in Theorem 1 are a consequence of the fact that the elements

$$
\begin{equation*}
8 \Delta, 4 \Delta^{2}, 8 \Delta^{3},(\eta \Delta)^{3}, 2 \Delta^{4}, 8 \Delta^{5}, 8 \Delta^{7} \tag{18}
\end{equation*}
$$

which are not in the Hurewicz image of tmf_{*} are the lifts of nonzero elements in the image of $p_{2} \circ p_{1}: \operatorname{tmf}_{*} \mathrm{~A}_{1} \rightarrow \operatorname{tmf}_{*-5} \mathrm{M}$ along i_{1}.

3.2. Infinite families in $\mathrm{K}(2)$-local stable stems.

Theorem 3.6. All elements listed in Theorem 1 have nonzero images in the $\mathrm{K}(2)$-local stable stems.

Notation 3.7. For a finite spectrum X , let $\widehat{\mathrm{X}}$ denote its $\mathrm{K}(2)$-localization.
The work in [Pha23] shows that $\mathrm{K}(2)$-local Hurewicz map of A_{1}

$$
\mathrm{h}_{\mathrm{TMF}}: \pi_{*} \widehat{\mathrm{~A}}_{1} \longrightarrow \mathrm{TMF}_{*} \mathrm{~A}_{1}
$$

is a surjection.
Since $\mathrm{TMF}_{*} \mathrm{~A}_{1} \cong\left(\Delta^{8}\right)^{-1} \operatorname{tmf}_{*} \mathrm{~A}_{1}$ and the action of Δ^{8} on $\operatorname{tmf}_{*} \mathrm{~A}_{1}$ is faithful (see Remark 3.3), the natural map

$$
\ell: \operatorname{tmf}_{*} \mathrm{~A}_{1} \longrightarrow \mathrm{TMF}_{*} \mathrm{~A}_{1}
$$

is an injection. Thus the image of $\ell(a) \in \mathrm{TMF}_{*} \widehat{\mathrm{~A}}_{1}$ under the map

$$
p_{2} \circ p_{3}: \mathrm{TMF}_{*} \mathrm{~A}_{1} \longrightarrow \mathrm{TMF}_{*} \mathrm{M}
$$

is nonzero if and only if $p_{2}\left(p_{3}(a)\right) \in \operatorname{tmf}_{*} \mathrm{M}$ is nonzero. Similarly, the image of $\ell(a) \in \mathrm{TMF}_{*} \widehat{\mathrm{~A}}_{1}$ under the map

$$
p_{1} \circ p_{2} \circ p_{3}: \mathrm{TMF}_{*} \widehat{\mathrm{~A}}_{1} \longrightarrow \mathrm{TMF}_{*-6}
$$

is zero if and only if $p_{1}\left(p_{2}\left(p_{3}(a)\right)\right) \in \mathrm{TMF}_{*-6}$. Therefore, the proof of Theorem 3.6 can follow the exact same arguments to that of Theorem 1 provided

$$
8 \Delta, 4 \Delta^{2}, 8 \Delta^{3},(\eta \Delta)^{3}, 2 \Delta^{4}, 8 \Delta^{5}, 8 \Delta^{7}
$$

are not in the $\mathrm{K}(2)$-local Hurewicz image of TMF_{*} (also see Remark 3.5).
Proof of Theorem 3.6. Since the elements

$$
8 \Delta, 4 \Delta^{2}, 8 \Delta^{3}, 2 \Delta^{4}, 8 \Delta^{5}, 8 \Delta^{7}
$$

are integral classes and $\pi_{*} \widehat{\mathbb{S}}$ is a finite group in degrees $24,48,72,96,120$, and 168 (see [BSSW24, Theorem A]), they cannot be in the K(2)-local Hurewicz image. Further, $(\eta \Delta)^{3}$ is also not in the Hurewicz image by Lemma 3.8. Hence, the result.

Lemma 3.8. The element $(\eta \Delta)^{3}$ is not in the image of the $\mathrm{K}(2)$-local Hurewicz map of TMF

$$
\begin{equation*}
\mathrm{h}_{\mathrm{TMF}}: \pi_{*} \widehat{\mathbb{S}} \longrightarrow \mathrm{TMF}_{*} \tag{19}
\end{equation*}
$$

Proof. By [Lau04, Corollary 3]

$$
v_{1}^{-1} \mathrm{TMF} \simeq \mathrm{KO}\left[j^{ \pm}\right],
$$

which implies that the $\mathrm{K}(2)$-local Hurewicz map of v_{1}^{-1} TMF factors through KO_{*}

Then we simply implement the arguments of [BMQ23, Theorem 6.1].
More precisely, we observe that $(\eta \Delta)^{3}$ lifts to an element in $\mathrm{TMF}_{*} \mathrm{M}(\infty)$, where $\mathrm{M}(\infty):=\underset{i \rightarrow \infty}{\operatorname{colim}} \mathrm{M}(i)$ (see Notation 3.11), whose image after inverting c_{4} is

$$
\overline{v_{1}^{38}} j^{-3} \in v_{1}^{-1} \mathrm{TMF}_{*} \mathrm{M}(\infty)
$$

in the notations of [BMQ23, $\S 6]$. If $(\eta \Delta)^{3}$ is in the image of the Hurewicz map (19), then $\overline{v_{1}^{38}} j^{-3}$ must also be in the image of $\ell \circ \mathrm{h}_{\mathrm{TMF}}$ in the diagram

which contradicts the fact that $\ell \circ \mathrm{h}_{\text {TMF }}$ factors through $\mathrm{KO}_{*} \mathrm{M}\left(2^{\infty}\right)$.
Since the unit map of $\widehat{\mathbb{S}}$ factors through that of $\mathbb{S}_{\mathrm{T}(2)}$ (see (1)), the proof of Theorem 3.6 completes the proof of Theorem 2. Nevertheless, we take this opportunity to give an independent proof of the fact that the elements listed in Theorem 1 are nontrivial after $T(2)$-localization.

3.3. Infinite families in $T(2)$-local stable stems.

It is well-known that A_{1} admits a v_{2}^{32}-self-map

$$
v: \Sigma^{192} \mathrm{~A}_{1} \longrightarrow \mathrm{~A}_{1}
$$

detected by $\Delta^{8} \in \operatorname{tmf}_{*}$ [BEM17]. Therefore, for any lift $\tilde{a} \in \pi_{k} \mathrm{~A}_{1}$ of $a \in \operatorname{tmf}_{k}\left(\mathrm{~A}_{1}\right)$ we have

$$
\mathrm{h}_{\mathrm{tmf}}\left(v_{2}^{32 i} \cdot \tilde{a}\right)=\Delta^{8 i} \cdot a
$$

for all $i \in \mathbb{N}$.

Notation 3.9. For a spectrum E and a finite spectrum X with a v_{n}-self-map $v: \Sigma^{|v|} \mathrm{X} \rightarrow \mathrm{X}$, let

$$
\Phi_{\mathrm{X}}(\mathrm{E}):=\operatorname{colim}\left\{\mathrm{E}^{\mathrm{X}} \xrightarrow{\mathrm{v}^{*}} \Sigma^{-|\mathrm{v}|} \mathrm{E}^{\mathrm{X}} \xrightarrow{\mathrm{v}^{*}} \Sigma^{-2|\mathrm{v}|} \mathrm{E}^{\mathrm{X}} \longrightarrow \ldots\right\} .
$$

The is a natural map from E to $\Phi_{\mathrm{X}}(\mathrm{E})$ which we will denote by α (sometimes with subscripts).

Suppose $\tilde{a} \in \pi_{k} \mathrm{~A}_{1}$ such that $\mathrm{p}_{*}(\tilde{a}) \in \pi_{k-6}(\mathbb{S})$ is listed in Theorem 1, then we can choose $\tilde{m}_{k-5+192 i}$ of (17) as

$$
\tilde{m}_{k-5+192 i}:=p_{2}\left(p_{3}\left(v_{2}^{32 i} \cdot \tilde{a}\right)\right)
$$

for all $i \in \mathbb{N}$ in the proof of Theorem 3.4 (II). As a result, we conclude:
Lemma 3.10. Suppose $\tilde{a} \in \pi_{k} \mathrm{~A}_{1}$ such that $\mathrm{p}_{*}(\tilde{a}) \in \pi_{k-6}(\mathbb{S})$ is listed in Theorem 1. Then the image \tilde{a} under the map

$$
\alpha_{1}: \pi_{*} \mathbb{S} \longrightarrow \pi_{*}\left(\Phi_{\mathrm{A}_{1}}(\mathbb{S})\right)
$$

is nonzero.
Notation 3.11. Let $\mathrm{M}(\mathrm{i}, \mathrm{j})$ denote the cofiber of a v_{1}^{j}-self-map on $\mathrm{M}(\mathrm{i})$, the cofiber of multiplication by 2^{i} on \mathbb{S}.

Proposition 3.12. The map p: $\Sigma^{-6} \mathrm{~A}_{1} \longrightarrow \mathbb{S}$ factors through $\mathrm{M}(1,4)$.
Proof. Let ko denote the connective real K-theory. Since $\mathrm{ko}_{6} \mathrm{M} \cong 0$ it follows that the composite

$$
\Sigma^{6} \mathbb{S} \longleftrightarrow \Sigma^{6} \mathrm{Y} \xrightarrow{v_{1}^{3}} \mathrm{Y} \xrightarrow{\mathrm{p}_{2}} \Sigma^{2} \mathrm{M}
$$

is nonzero in ko-homology, and hence, in stable homotopy. Further, we have a commutative diagram

which implies that there is a map $\Sigma^{4} \mathrm{~A}_{1} \longrightarrow \mathrm{M}(1,4)$ which factors the pinch map of $\Sigma^{4} \mathrm{~A}_{1}$ to its top cell.

A consequence of Proposition 3.12 is that we have a directed system

$$
\begin{equation*}
\Sigma^{-6} \mathrm{~A}_{1} \rightarrow \mathrm{M}(1,4) \rightarrow \Sigma^{-18} \mathrm{M}(2,8) \rightarrow \ldots \tag{20}
\end{equation*}
$$

of type 2 spectra which is cofinal among all type 2 spectra with a 'pinch' map to \mathbb{S}.

Notation 3.13. Let $\Phi_{k}(-)$ denote $\Phi_{\mathrm{V}_{k}}(-)$, where V_{k} is the k-th entry of the sequence (20).

Theorem 3.14. All elements listed in Theorem 1 have nonzero images in the $\mathrm{T}(2)$-local stable stems.

Proof. We will make use of the standard theory of Bousfield-Kuhn functors (see [Kuh08]) which implies

$$
\mathbb{S}_{\mathrm{T}(2)} \simeq \lim _{\leftarrow} \Phi_{k}(\mathbb{S}) .
$$

Since, the image under α_{1} of an element $\tilde{a} \in \pi_{*}\left(\mathrm{~A}_{1}\right)$ listed in Theorem 1 is nonzero, the diagram

implies that the image of \tilde{a} in $\lim _{\leftarrow} \pi_{*} \Phi_{k}(\mathbb{S})$ is nonzero. Then the result follows from the fact that the natural map

$$
\pi_{*}\left(\mathbb{S}_{\mathrm{T}(2)}\right) \cong \pi_{*}\left(\lim _{\leftarrow} \mathbb{S}_{\mathrm{T}(2)}\right) \longrightarrow \lim _{\leftarrow} \pi_{*} \Phi_{k}(\mathbb{S})
$$

is a surjection (with Milnor $\lim ^{1}$ term as the kernel).

References

[Ada66] John Frank Adams. On the groups J(X) - IV. Topology, 5(1):21-71, 1966.
[Bau08] Tilman Bauer. Computation of the homotopy of the spectrum tmf. In Proceedings of the conference on groups, homotopy and configuration spaces, University of Tokyo, Japan, July 5-11, 2005 in honor of the 60th birthday of Fred Cohen, pages 11-40. Coventry: Geometry \& Topology Publications, 2008.
$\left[\mathrm{BBB}^{+} 21\right]$ Agnès Beaudry, Mark Behrens, Prasit Bhattacharya, Dominic Culver, and Zhouli Xu. The telescope conjecture at height 2 and the tmf resolution. J. Topol., 14(4):1243-1320, 2021.
[BBC23] Mark Behrens, Prasit Bhattacharya, and Dominic Culver. The structure of the v_{2}-local algebraic tmf resolution. available at https://arxiv.org/abs/2301.11230, 2023.
$\left[\mathrm{BBG}^{+} 23\right]$ Agnes Beaudry, Irina Bobkova, Paul G. Goerss, Hans-Werner Henn, Viet-Cuong Pham, and Vesna Stojanoska. Cohomology of the morava stabilizer group through the duality resolution at $\mathrm{n}=\mathrm{p}=2$. available at https://arxiv.org/abs/2210.15994, 2023.
[BBPX22] Agnès Beaudry, Irina Bobkova, Viet-Cuong Pham, and Zhouli Xu. The topological modular forms of $\mathbb{R} P^{2}$ and $\mathbb{R} P^{2} \wedge \mathbb{C} P^{2}$. J. Topol., 15(4):1864-1926, 2022.
[BBT21] Prasit Bhattacharya, Irina Bobkova, and Brian Thomas. The P_{2}^{1} Margolis homology of connective topological modular forms. Homology Homotopy Appl., 23(2):379-402, 2021.
[BE20] Prasit Bhattacharya and Philip Egger. Towards the $K(2)$-local homotopy groups of Z. Algebr. Geom. Topol., 20(3):1235-1277, 2020.
[Bea15] Agnès Beaudry. The algebraic duality resolution at $p=$ 2. Algebr. Geom. Topol., 15(6):3653-3705, 2015.
[Beh12] Mark Behrens. The Goodwillie tower and the EHP sequence, volume 1026 of Mem. Am. Math. Soc. Providence, RI: American Mathematical Society (AMS), 2012.
[BEM17] Prasit Bhattacharya, Philip Egger, and Mark Mahowald. On the periodic v_{2}-self-map of A_{1}. Algebr. Geom. Topol., 17(2):657-692, 2017.
[BG18] Irina Bobkova and Paul G. Goerss. Topological resolutions in $K(2)$-local homotopy theory at the prime 2. J. Topol., 11(4):918-957, 2018.
[BHHM20] M. Behrens, M. Hill, M. J. Hopkins, and M. Mahowald. Detecting exotic spheres in low dimensions using coker J. J. Lond. Math. Soc., II. Ser., 101(3):1173-1218, 2020.
[BHLS23] Robert Burklund, Jeremy Hahn, Ishan Levy, and Tomar M. Schlank. Ktheoretic counterexamples to ravenel's telescope conjecture. available at https://arxiv.org/abs/2310.17459, 2023.
[BMQ23] Mark Behrens, Mark Mahowald, and J.D. Quigley. The 2-primary Hurewicz image of tmf. Geometry $\&$ Topology, 27(7):2763-2831, 2023.
[BO16] Mark Behrens and Kyle Ormsby. On the homotopy of $Q(3)$ and $Q(5)$ at the prime 2. Algebr. Geom. Topol., 16(5):2459-2534, 2016.
[Bob20] Irina Bobkova. Spanier-Whitehead duality in the $K(2)$-local category at $p=2$. Proc. Amer. Math. Soc., 148(12):5421-5436, 2020.
[BOSS19] Mark Behrens, Kyle Ormsby, Nathaniel Stapleton, and Vesna Stojanoska. On the ring of cooperations for 2-primary connective topological modular forms. Journal of Topology, 12(2):577-657, 2019.
[Bou79] Aldridge K Bousfield. The localization of spectra with respect to homology. Topology, 18(4):257-281, 1979.
[BR21] Robert R. Bruner and John Rognes. The Adams spectral sequence for topological modular forms, volume 253 of Math. Surv. Monogr. Providence, RI: American Mathematical Society (AMS), 2021.
[Bro69] William Browder. The Kervaire invariant of framed manifolds and its generalization. Ann. of Math. (2), 90:157-186, 1969.
[BSSW24] Tobias Barthel, Tomer M. Schlank, Nathaniel Stapleton, and Jared Weinstein. On the rationalization of the $k(n)$-local sphere. available at https://arxiv.org/abs/2402.00960, 2024.
[DFHH14] Christopher L Douglas, John Francis, André G Henriques, and Michael A Hill. Topological modular forms, volume 201. American Mathematical Soc., 2014.
[DM10] Donald M. Davis and Mark Mahowald. Connective versions of TMF(3). Int. J. Mod. Math., 5(3):223-252, 2010.
[HHR16] Michael A Hill, Michael J Hopkins, and Douglas C Ravenel. On the nonexistence of elements of Kervaire invariant one. Annals of Mathematics, 184(1):1-262, 2016.
[Isa19] Daniel C. Isaksen. Stable stems. Mem. Amer. Math. Soc., 262(1269):viii+159, 2019.
[IWX23] Daniel C. Isaksen, Guozhen Wang, and Zhouli Xu. Stable homotopy groups of spheres: from dimension 0 to 90. Publ. Math. Inst. Hautes Études Sci., 137:107-243, 2023.
[KM63] Michel A. Kervaire and John W. Milnor. Groups of homotopy spheres. I. Ann. Math. (2), 77:504-537, 1963.
[KM95] Stanley O. Kochman and Mark E. Mahowald. On the computation of stable stems. In The Čech centennial (Boston, MA, 1993), volume 181 of Contemp. Math., pages 299-316. Amer. Math. Soc., Providence, RI, 1995.
[Kuh08] Nicholas J. Kuhn. A guide to telescopic functors. Homology Homotopy Appl., 10(3):291-319, 2008.
[Lau04] Gerd Laures. K(1)-local topological modular forms. Invent. Math., 157(2):371403, 2004.
[MRW77] Haynes R Miller, Douglas C Ravenel, and W Stephen Wilson. Periodic phenomena in the Adams-Novikov spectral sequence. Annals of Mathematics, 106(3):469-516, 1977.
[MT67] Mark Mahowald and Martin Tangora. Some differentials in the Adams spectral sequence. Topology, 6:349-369, 1967.
[Pha23] Viet-Cuong Pham. On the surjectivity of the tmf-Hurewicz image of A_{1}. Algebr. Geom. Topol., 23(1):217-241, 2023.
[Rav86] Douglas C. Ravenel. Complex cobordism and stable homotopy groups of spheres, volume 121 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1986.
[Sch85] Reinhard Schultz. Transformation groups and exotic spheres. Group actions on manifolds, Proc. AMS-IMS-SIAM Joint Summer Res. Conf., Boulder/Colo. 1983, Contemp. Math. 36, 243-267 (1985)., 1985.
[Ser53] Jean-Pierre Serre. Groupes d'homotopie et classes de groupes abéliens. Ann. Math. (2), 58:258-294, 1953.
[Smi77] Larry Smith. On realizing complex bordism modules. IV: Applications to the stable homotopy groups of spheres. Am. J. Math., 99:418-436, 1977.
[Tod62] Hirosi Toda. Composition methods in homotopy groups of spheres, volume 49 of Ann. Math. Stud. Princeton University Press, Princeton, NJ, 1962.
[Wra97] David Wraith. Exotic spheres with positive Ricci curvature. J. Differ. Geom., 45(3):638-649, 1997.
[WX17] Guozhen Wang and Zhouli Xu. The triviality of the 61 -stem in the stable homotopy groups of spheres. Annals of Mathematics, 186(2):501-580, 2017.

New Mexico State University
Email address: prasit@nmsu.edu

Texas A\&M University
Email address: ibobkova@tamu.edu

University of Virginia
Email address: mbp6pj@virginia.edu

