
NEW INFINITE FAMILIES IN THE STABLE HOMOTOPY

GROUPS OF SPHERES
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Abstract. We identify seven new 192-periodic infinite families of ele-
ments in the 2-primary stable homotopy groups of spheres, whose images
are nontrivial in the K(2)- as well as the T(2)-local stable stems. We
also obtain new information about 2-torsion and 2-divisibility of some of
the known 192-periodic infinite families in the stable stems.
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1. Introduction

Computing the stable homotopy groups of spheres, or stable stems, is one of
the central problems in homotopy theory, with many applications in topology,
geometry, and algebra. There are two main approaches: low-dimensional
computations, which attempt to give a complete description of the stable
stems up to a finite range using Adams or Adams-Novikov spectral sequences
as the primary tools [MT67, Rav86, KM95, Isa19, IWX23], and chromatic
computations, which attempt to pick out large-scale periodic patterns instead
[Ada66, Smi77, MRW77, Rav86].

The first large-scale phenomena observed in the stable stems, proven by Serre
[Ser53], is that all stable stems above dimension zero are finite abelian groups.
This motivated the study of the stable stems one prime at a time.

The next set of important developments were due to Toda [Tod62] and
Adams [Ada66]. Their work deduced the existence of (2p − 2)-periodic
families of p-torsion elements for primes p > 2 and 8-periodic families when
p = 2 within the stable stems. A decade later, Smith [Smi77] constructed
(2p2 − 2)-periodic families at p > 3, and Miller–Ravenel–Wilson [MRW77]
constructed (2p3 − 2)-periodic families at p > 5. These examples illustrate
an unwritten rule in this subject: the smaller the prime number p, the harder
it is to find exact patterns of p-torsion elements in the stable stems.
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At the prime 2, the chromatic layer 1 patterns (see [Ada66, Rav86]) are more
subtle than those at odd primes, and it is evident from the recent results
[Bea15, BO16, BG18, BHHM20, BMQ23, BBG+23] that the chromatic layer
2 patterns are particularly complicated at p = 2.

The 2-local connective spectrum of topological modular forms, tmf, is a
formidable tool to explore chromatic height 2 at the prime 2. This is because
tmf carries intricate patterns [Bau08, DFHH14, BR21] in its homotopy groups
reflecting the patterns in the second chromatic layer of the 2-local stable
stems, but is more computationally accessible.

Over the last decade, new techniques have been developed to study the
tmf-based Adams spectral sequence [BOSS19, BBT21, BBC23], leading to
important and interesting results at chromatic height 2 [BHHM20, Bob20,
BE20, BBB+21, BMQ23]. In fact, the recent work [BMQ23] completely
identifies the image of the Hurewicz homomorphism

htmf : π∗S tmf∗

from the stable stems to the coefficients of tmf, thereby proving the existence
of new 192-periodic infinite families in the chromatic layer 2 of the 2-local
stable stems. In this paper, we show that:

Theorem 1. For each m ∈ {23, 47, 71, 74, 95, 119, 167} and k ∈ N, there
exists an element of order 2 in dimension m+192k of the stable stems whose
image is trivial under the tmf-Hurewicz homomorphism.

Remark 1.1. A comparison of our work with known calculations [Isa19,
IWX23] suggests that the elements with May names h31g, h

2
1 · (∆h1g), h

2
1 ·

(∆2h1g), d0g
3, (∆h1)

3g, ∆4h31g, and ∆6h31g in the classical Adams spectral
sequence detect the elements in dimension 23, 47, 71, 74, 95, 119, and 167 of
Theorem 1, respectively.

Remark 1.2. Let η ∈ π1S denote the first Hopf map and let ko denote the
connective real K-theory. Then η3 is a part of an 8-periodic infinite family in
chromatic layer 1 which is not detected in the Hurewicz image of ko. From
this perspective, the 192-periodic families in Theorem 1 can be regarded as
height 2 analogs of the η3 family.

The spectrum TMF ≃ (∆8)−1tmf, obtained from tmf by inverting the
periodicity generator ∆ in degree 192, is a K(2)-local spectrum in the sense
of Bousfield [Bou79], where K(2) is the second Morava K-theory. In chromatic
homotopy theory, there are also telescopic localizations which are closely
related to Bousfield localizations with respect to Morava K-theories. The
recent disproof of the telescope conjecture [BHLS23] implies that the natural
map from the height 2 telescopic localization to the K(2)-localization of the
sphere spectrum

ι : ST(2) SK(2)
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is not an equivalence. But the chromatic height 2 elements in the Hurewicz
image of tmf do not see this difference as they lift to both the T(2)-local and
K(2)-local stable stems. This is because the unit map of TMF

(1) ιtmf : S ST(2) SK(2) TMFι

factors through ι. This argument does not apply to elements listed in
Theorem 1 because they are not in the Hurewicz image of tmf∗. However,
we can still show that:

Theorem 2 (Theorem 3.6 and Theorem 3.14). All elements listed in
Theorem 1 have nonzero images in the K(2)-local and T(2)-local stable stems.

Although our new infinite families do not contradict the telescope conjecture,
they still have significant geometric implications. The groundbreaking work
of Kervaire and Milnor [KM63] directly relates the stable stems to the
classification of smooth structures on homotopy spheres. In odd dimensions,
the work of Kervaire and Milnor [KM63], Browder [Bro69], Hill, Hopkins,
and Ravenel [HHR16], and Wang and Xu [WX17] implies that exotic spheres
exist in every odd dimension except for 1, 3, 5, and 61. In even dimensions,
Adams and Toda’s results above imply that exotic spheres exist in at least
one quarter of the even dimensions, while the results in [BHHM20, BMQ23]
imply that exotic spheres exist in over half of the even dimensions. Wang
and Xu [WX17] have conjectured that exotic spheres exist in all dimensions
except for a small number of low-dimensional exceptions.

Theorem 1 also has implications for exotic spheres. Following Schultz [Sch85],
an exotic sphere is called very exotic if it does not bound a parallelizable
manifold. Very exotic spheres are more mysterious than exotic spheres which
bound parallelizable manifolds; for instance, the latter are always known to
admit Riemannian metrics of positive Ricci curvature [Wra97], while only
one very exotic sphere is known to admit such a metric.

In even dimensions, every exotic sphere is a very exotic sphere, but most
of the known odd-dimensional exotic spheres are not “very exotic.” The
results of [BHHM20, BMQ23] imply that very exotic spheres exist in at least
37 of the 96 odd congruence classes of dimensions modulo 192. The 6 odd
dimensions in Theorem 1 are not covered by those results, so we obtain:

Corollary. Very exotic spheres exist in at least 43 of the 96 odd congruence
classes of dimensions modulo 192.

1.1. Methodology. We consider a type 2 spectrum A1 which is constructed
using three cofiber sequences

(2) S S M ΣS,2 p1

(3) ΣM M Y Σ2M,
η p2
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(4) Σ2Y Y A1 Σ3Y,v p3

where v is a choice of a v11-self-map of Y. The recent work of Viet-Cuong
Pham [Pha23], which shows that the tmf-Hurewicz homomorphism

(5) htmf : π∗A1 tmf∗A1

is a surjection, is the starting point of our calculations. We then study long
exact sequences associated to the cofiber sequences (2), (3) and (4) using
our knowledge of tmf∗ [Bau08, DFHH14, BR21], as well as tmf∗M, tmf∗Y,
and tmf∗A1 [BBPX22, Pha23].

By combining this study with our complete knowledge of the Hurewicz image
in tmf∗ [BMQ23], we identify seven new infinite families of elements in π∗S
(listed in Theorem 1) which are in the image of the pinch map

(6) p : A1 Σ3Y Σ5M Σ6Sp3 p2 p1

in stable homotopy. Combining results and techniques of Pham [Pha23],
Laures [Lau04], and [BMQ23] shows that these infinite families have nontriv-
ial images in the K(2)-local stable stems. We then use a v322 -self-map of A1

[BEM17] to show that these infinite families have nontrivial images in the
T(2)-local stable stems, completing the proof of Theorem 2.

The 192-periodic elements in the stable stems constructed in [BMQ23] were
all shown to have order at most 8. The tmf-homology calculations of Section 2
lead to new information about the 2-torsion and 2-divisibility of some of
the 192-periodic infinite families identified in [BMQ23]. We deduce this
from Table 1 using the fact that the elements in the image of p1 are simple
2-torsion and elements with nontrivial image under i1 are not 2-divisible,
where p1 and i1 are the maps defined in (9).

Theorem 3. An element in the stable stems is simple 2-torsion if it maps
to ∆8kx, k ≥ 0, where

x ∈ {κν, κ2η2, η∆κ2, 4∆2κ, κ4, η2∆2κ2, 2∆4 · 2κ, 4∆6κ},

and not 2-divisible if it maps to ∆8kx, k ≥ 0, where

x ∈ {ν2, ν3, κν, qη, κ2η2, η2∆2ν, ν∆2ν, ν∆2ν2, ν∆2ν3, 4∆2κ, κ4, η∆κ3,

η2∆2κ2, κ5, ν3∆4, η∆κ4, 2∆4κ, η∆κ5, η2∆2κ, ν∆6ν2, ν∆6ηϵ}.

Organization of the paper. In Section 2, we perform the tmf-homology
calculations necessary in Section 3 to prove Theorem 1 and Theorem 2 .

For the purpose of this paper, a reader may find [DFHH14, Part I, Ch. 12]
convenient for looking up the homotopy groups of tmf, where the generators
in the Hurewicz image are marked with colored dots. We refer to [BBPX22]
for explicit descriptions of tmf∗M, tmf∗Y, and tmf∗A1.
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2. tmf-homology calculations

Using our knowledge of tmf∗ [Bau08, BR21], tmf∗M, tmf∗Y, and tmf∗A1

[BBPX22], we will compute the maps ik and pk in the long exact se-
quences

(7) · · · tmfkY tmfkA1 tmfk−3Y · · · .i3 p3 v∗

(8) · · · tmfk−3M tmfk−3Y tmfk−5M · · · .i2 p2 η∗

(9) · · · tmfk−5 tmfk−5M tmfk−6 · · ·i1 p1 2

associated to the cofiber sequences (2), (3) and (4), respectively. This is the
technical core of the paper and requires careful bookkeeping using Adams–
Novikov spectral sequences. In our arguments, we ignore v1-periodic classes
for reasons we will now explain.

2.1. Suppression of v1-periodic families.

Note that the element c4 ∈ tmf∗ is the v1-periodicity generator as it maps to
v41 ∈ k(1)∗ under the composition

tmf ko k(1),

where k(1) is the connective height 1 Morava K-theory (see [DM10, BR21]).
It is well-known that

v−11 tmf := colim {tmf
c4−→ tmf

c4−→ . . . } ≃ KO[j−1],

where j = ∆/c34 (see [Lau04, Corollary 3]).

Definition 2.1. For any spectrum X, define the v1-torsion part of tmf∗(X)
as the kernel

tmf∗(X)
tor := ker

(
ℓ : tmf∗X v−11 tmf∗X

)
of the v1-localization map.

Lemma 2.2. For any nonzero element a ∈ tmf∗A1 we have

(a) p3(a) ∈ tmf∗(Y)
tor,

(b) p2(p3(a)) ∈ tmf∗(M)tor, and

(c) p1(p2(p3(a)) ∈ tmf∗(S)tor.
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Proof. Since A1 is a type 2 spectrum, it follows that v−11 tmf∗A1 = 0. There-
fore, from the commutative diagram

. . . tmfkY tmfkA1 tmfk−3Y . . .

. . . v−11 tmfkY v−11 tmfkA1 v−11 tmfk−3Y . . .

i3

ℓ

p3

ℓ ℓ

i3 p3

of long exact sequences, we get

ℓ(p3(a)) = p3(ℓ(a)) = p3(0) = 0

which means p3(a) ∈ tmf∗(Y)tor.

For part (b), we consider the diagram

. . . tmfk−3M tmfk−3Y tmfk−5M . . .

. . . v−11 tmfk−3M v−11 tmfk−3Y v−11 tmfk−5M . . .

i2

ℓ

p2

ℓ ℓ

i2 p2

of long exact sequences, and observe

ℓ(p2(p3(a))) = p2(ℓ(p3(a))) = p2(0) = 0

which implies p1(p3(a)) ∈ tmf∗(M)tor.

A similar study of a commutative diagram for the cofiber sequence (2) proves
(c). □

Definition 2.3. For any spectrum X, define the v1-periodic part of tmf∗X
as the cokernel

tmf∗(X)
per := coker

(
tmf∗(X)

tor tmf∗X
)

of the natural inclusion map.

Remark 2.4 (Exactness of v1-periodic part). Direct calculations show that
the long exact sequences in tmf-homology associated to the cofiber sequences
(2), (3), and (4) give rise to long exact sequences on v1-periodic parts. The
authors are unaware if this is a part of a general pattern, i.e., whether
tmf∗(−)per is a homology theory.

Lemma 2.5. If p2(p3(a)) = 0 in tmf∗M, then there exists a class

m0 ∈ tmf∗(M)tor

such that i2(m0) = p3(a).

Proof. The map η induces a map

ηper∗ : tmf∗−1(M)per tmf∗(M)per,
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and we have a commutative diagram

. . . tmf∗−1M tmf∗M tmf∗Y . . .

. . . tmf∗−1M
per tmf∗(M)per tmf∗(Y)

per . . .

η∗

π1 π2

i2

π3

ηper∗ i2

in which the vertical maps are surjections.

If p2(p3(a)) = 0 then there exists m ∈ tmf∗M such that i2(m) = p3(a). By
Lemma 2.2

i2(π2(m)) = π3(i2(m)) = π3(p2(a)) = 0,

therefore, by Remark 2.4, π2(m) = ηper∗ (m′) for some m′ ∈ tmf∗−1. Let
m′′ ∈ tmf∗−1M be a lift of m′ along π1. It is easy to see that

m0 = m− η∗(m
′′) ∈ tmf∗(M)tor

and i2(m0) = i2(m− η∗(m
′′)) = i2(m)− i2(η∗(m

′′)) = i2(m) = p3(a). □

A similar argument leads to the following result.

Lemma 2.6. If p1(p2(p3(a))) = 0 in tmf∗ then there exists a class

s ∈ tmftor∗

such that i1(s) = p2(p3(a)).

2.2. From tmf∗Y to tmf∗M.

An element y ∈ tmfk−3Y is in the image of p3 for some version of A1 if and
only if

v1 · y = 0 ∈ tmfk−1Y

for a choice of v1. Since the action of all v1-self-maps on tmf∗Y have been
identified on each generator [BBPX22, Figs. 22, 23], the image of p3 is easily
determined; we list these elements in the leftmost column of Table 1.

Notation 2.7. Let si,j, mi,j and yi,j denote elements of tmf∗, tmf∗M, and
tmf∗Y, respectively, which are detected in filtration (j, j+ i) of the Adams-
Novikov spectral sequence (11). In the bidegrees that we are interested in,
there is only one element which is v1-torsion and nonzero, thus si,j, mi,j, and
yi,j represents unique elements up to higher Adams-Novikov filtration.

Next, we determine the effect of the map p2 on the classes in img(p3) ⊂
tmf∗−3Y. In particular, we are interested in identifying those classes whose
images under p2 are nonzero. We will use the long exact sequence (8)

· · · tmfk−3M tmfk−3Y tmfk−5M · · · .i2 p2 η∗

By Lemma 2.2 and Lemma 2.5, it suffices to study the short exact se-
quence

(10) Ctor
k−3 tmfk−3(Y)

tor Ktor
k−5,

p2
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where Ck−3 := Ctor
k−3(Y) is the cokernel of η∗ in (8) and Ktor

k−5 = Ktor
k−3(Y) is

the kernel of η∗ in (8) restricted to v1-torsion (we drop Y from notation for
convenience). We employ some standard techniques in our analysis which
are listed below.

Technique 1 (Vanishing K). If Ktor
k−5 = 0 in (10), then

p2(y) = 0

for any y ∈ tmfk−3(Y)
tor.

Application 1. We employ Technique 1 to conclude that the following
elements map to zero under p2:

• y3,1

• y6,2

• y14,2

• y18,2

• y21,3

• y29,5

• y34,6

• y39,7

• y40,6

• y45,9

• y51,1

• y54,2

• y60,10

• y60,12

• y65,7

• y65,13

• y66,2

• y69,3

• y75,13

• y76,10

• y80,16

• y81,11

• y85,17

• y86,12

• y90,14

• y91,13

• y96,14

• y97,9

• y101,15

• y105,21

• y106,16

• y111,17

• y112,12

• y117,3

• y117,13

• y123,11

• y132,16

• y137,17

• y142,18

• y143,15

• y148,18

• y161,7

• y165,3

• y168,22

Technique 2 (Vanishing C). Suppose y ∈ tmfk−3(Y)
tor is a nonzero element

and Ctor
k−3 = 0, then

p2(y) ̸= 0

in (10). Further, if rankF2(K
tor
k−5) = 1 then the image of y is the unique

nonzero element of Ktor
k−5.

Application 2. We employ Technique 2 to determine the following:

• p2(y8,2) = m6,2

• p2(y11,3) = m9,3

• p2(y23,3) = m21,5

• p2(y26,4) = m24,6

• p2(y44,8) = m42,8

• p2(y59,3) = m57,3

• p2(y62,2) = m60,12

• p2(y68,2) = m66,2

• p2(y74,4) = m72,6

• p2(y77,5) = m75,13

• p2(y82,6) = m80,16

• p2(y83,3) = m81,3
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• p2(y87,7) = m85,13

• p2(y88,6) = m86,12

• p2(y92,8) = m90,10

• p2(y93,3) = m91,9

• p2(y98,4) = m96,6

• p2(y108,10) = m106,16

• p2(y113,7) ̸= 0

• p2(y119,3) = m117,3

• p2(y127,15) = m125,21

• p2(y133,11) ̸= 0

• p2(y155,3) = m153,3

• p2(y158,16) = m156,18

• p2(y167,3) = m165,3

• p2(y170,4) = m168,6

Technique 3 (Action of tmf∗). The maps i2 and p2 in (8) and (10) are
tmf∗-linear, i.e.,

(1) p2(t · y) = t · p2(y),

(2) i2(t ·m) = t · i2(m)

for all t ∈ tmf∗, m ∈ tmf∗M and y ∈ tmf∗Y.

Application 3. We use Technique 3 to show that

• p2(y102,10) = p2(κ · y82,6) = κ · p2(y82,6) = κ ·m80,16 = m100,20 which
forces p2(y102,2) = 0,

• p2(y118,8) = p2(κ · y98,4) = κ · p2(y98,4) = κ ·m96,6 = m116,10,

• p2(y138,12) = p2(κ · y118,8) = κ · p2(y118,8) = κ ·m116,10 = m136,14,

• p2(y153,15) = p2(κ · y133,11) = κ · p2(y133,11) = κ · m131,17 = m151,21

which forces p2(y153,11) = 0.

The next few techniques use the fact that the tmf-homology of Y and M are
calculated in [BBPX22] using the Adams–Novikov spectral sequence

(11) (−)E
s,t
2 := Exts,tΓ (A, π∗(tmf ∧X(4) ∧ (−))) tmft−s(−),

where the spectrum X(4) and the Hopf algebroid (A,Γ) are as described in
[BBPX22, §2.1].

Technique 4 (Analysis of E2-pages). Corresponding to the cofiber sequence
(3), there is a long exact sequence

(12) . . . ME
s,t
2

YE
s,t
2

ME
s,t−2
2 . . .

î2 p̂2 η̂

of E2-pages of Adams-Novikov spectral sequences. Suppose y ∈ tmfk−3Y is

detected by ŷ ∈ YE
s,k−3+s
2 .

(1) If m ∈ tmfk−3M is detected by m̂ ∈ ME
s,k−3+s
2 such that

(a) î2(m̂) = ŷ and
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(b) m̂ is a permanent cycle,

then i2(m) = y.

(2) If m ∈ tmfk−5M is detected by m̂ ∈ ME
s,k−5+s
2 such that

(a) p̂2(y) = m̂ and

(b) m̂ is a permanent cycle,

then p2(y) = m.

Application 4. We use Technique 4 to determine

• i2(m20,4) = y20,4 which forces p2(y20,2) = m18,2,

• i2(m103,1) = y103,1 which forces p2(y103,7) = m101,2,

• i2(m150,2) = y150,2.

Definition 2.8. We say an element x ∈ tmf∗(X) has Adams-Novikov filtra-
tion s, denoted AF(x) = s, if it is detected by an element

x̂ ∈ XE
s,∗+s
2

in the E2-page of (11).

Remark 2.9. In Notation 2.7, the Adams filtration of elements si,j, mi,j and
yi,j equals j.

Our next technique follows from the fact that maps of spectra cannot decrease
Adams–Novikov filtration.

Technique 5 (Adams-Novikov filtration argument). Suppose y ∈ tmfk−3Y
is a nonzero element and m ∈ tmf∗M.

(1) If AF(y) > AF(m), then p2(y) ̸= m.

(2) If AF(y) < AF(m), then i2(m) ̸= y.

Application 5. We use Technique 5 to conclude that

• i2(m35,5) ̸= y35,3 and p2(y35,3) ̸= m33,1 which forces p2(y35,3) = m33,3,

• i2(m45,5) ̸= y45,3 which forces p2(y45,3) = m43,9 and p2(y45,9) = 0,

• i2(m55,9) ̸= y55,7 which forces p2(y55,7) = m53,7,

• i2(y56,6) ̸= m54,2 which forces p2(y56,2) = m54,2,

• p2(y57,11) ̸= m55,9 which forces p2(y57,11) = 0,

• p2(y71,9) ̸= m69,3 which forces p2(y71,9) = 0 and p2(y71,3) = m69,3,

• p2(y107,11) ̸= m105,3 which forces p2(y107,3) = m105,3 and p2(y107,11) =
m105,17,
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• p2(y113,7) ̸= m111,3 which forces p2(y113,7) = m111,13,

• p2(y122,14) ̸= m120,6, which forces p2(y122,14) = 0 and p2(y122,4) =
m120,6,

• p2(y133,11) ̸= m133,7 which forces p2(y133,11) = m131,17.

Technique 6 (Geometric boundary theorem [Beh12, Lemma A.4.1 (5)]).
Consider the maps of the Adams-Novikov spectral sequences induced by (3)

ΣME
s,∗+s
r

ME
s,∗+s
r

YE
s,∗+s
r

Σ2ME
s,∗+s

r .
η̂ î2 p̂2

Suppose m̂ ∈ ME
s,∗+s
r such that

• dr(m̂) = η̂(m̂′),

• î2(m̂) = ŷ is a nonzero permanent cycle,

then p̂2(ŷ) = m̂′.

Application 6. We use Technique 6 in the following arguments:

• Since d5(m50,6) = η̂(m48,6) and î2(m50,6) = y50,6 is a nonzero perma-
nent cycle, we get p2(y50,6) = m48,6. Consequently, p2(y50,4) = 0.

• Since d5(m70,10) = η̂(m68,10) and î2(m70,10) = y70,10 is a permanent
cycle, we get p2(y70,10) = m48,10. Consequently, p2(y70,8) = 0. Alter-
natively, this case follows from the previous case using κ̄-linearity.

• Since d5(m128,14) = η̂(m126,20) and î2(m128,14) = y128,14 is a perma-
nent cycle, we get p2(y128,14) = m126,20. Alternatively, this follows
using κ̄-linearity from the fact that p2(y108,10) = m106,16 which was
established earlier using Technique 2.

2.3. From tmf∗M to tmf∗.

All the techniques above have analogs corresponding to the cofiber sequence
(2). We use them to study the short exact sequence

(13) Ctor
k−3 tmfk−3(M)tor Ktor

k−4,

where Ctor
k−3 is the cokernel of i1 and Ktor

k−4 is the kernel of p1, both restricted
to v1-torsion.

Example 2.10. We use the analog of Technique 1 to determine

• i1(s6,2) = m6,2

• i1(s9,3) = m9,3

• i1(s21,5) = m21,5

• i1(s24,0) = m24,0

• i1(s48,0) = m48,6

• i1(s53,7) = m53,7

• i1(s57,3) = m57,3

• i1(s60,12) = m60,12
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• i1(s68,4) = m68,10

• i1(s72,0) = m72,6

• i1(s75,3) = m75,13

• i1(s80,16) = m80,16

• i1(s85,13) = m85,13

• i1(s90,10) = m90,10

• i1(s96,0) = m96,6

• i1(s100,20) = m100,20

• p1(m105,3) = 0

• p1(m105,17) = 0

• i1(s116,4) = m116,10

• i1(s120,0) = m120,6

• i1(s153,3) = m153,3

• i1(s168,0) = m168,6.

Example 2.11. We use the analog of Technique 2 to determine

• p1(m18,2) = s17,2

• p1(m43,9) = s42,11

• p1(m69,3) = s68,4

• p1(m81,3) = s80,16

• p1(m86,12) = s85,13

• p1(m91,9) = s90,10

• p1(m101,7) = s100,20

• p1(m106,16) = s105,17

• p1(m126,20) = m125,21

• p1(m131,17) = s130,18

• p1(m151,21) = s150,22

• p1(m165,3) = s164,4.

Example 2.12. We use the analog of Technique 3 to deduce that

• p2(m111,13) = p2(κ ·m91,9) = κ · s90,10 = s110,14,

• i1(s136,8) = i1(κ · s116,4) = κ ·m116,10 = m136,14,

• i1(s156,12) = i1(κ · s136,8) = κ ·m136,14 = m156,18.

Example 2.13. We use the analog of Technique 4 to argue that:

• i2(s54,2) = m54,2.

Example 2.14. The analog of Technique 5 is used to deduce that

• i1(s9,3) ̸= m9,1 which forces i1(s9,3) = m9,3,

• p1(m33,3) ̸= s32,2 which forces i1(s33,3) = m33,3,

• i1(s42,10) ̸= m42,8 which forces i1(s42,10) = m42,10,

• i1(s60,12) ̸= m60,7 which forces p1(m60,7) = s59,7,

• p1(m66,8) ̸= s65,3 and i1(s66,10) ̸= m66,8 which forces p1(m66,8) = s65,9,
which along with i1(s66,10) ̸= m66,2 forces p1(m66,2) = s65,3,

• i1(s105,11) ̸= m105,3 which forces i1(s105,11) = m105,11 and consequently
i1(s105,3) = m105,3,

• i1(s117,5) ̸= m117,3 which forces p1(m117,3) = s116,4,

• p2(m125,21) ̸= s124,6 which forces i1(s125,21) = m125,21.
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2.4. Summary Table. We summarize our calculations in Table 1 as follows.
The leftmost column lists the image of p3 in tmf∗Y. We determine their
image in column 2 and indicate the technique used, among Technique 1
through Technique 6, in column 3.

We calculate the image under p1 of nonzero elements in column 2 and record
them in column 4. If the image is zero, we identify a v1-torsion element
which is its lift along i1 and record it in column 5. We indicate the technique
in column 6.

Note that the elements listed in columns 4 and 5 are elements of tmf∗. We
record their familiar names from [DFHH14] in column 7.

Table 1: Detecting elements in tmf∗

img(p3) img(p2) (T) img(p1) i−11 (−) (T) name in tmf∗

y3,1 0 (1)
y6,2 0 (1)
y8,2 m6,2 (2) 0 s6,2 (1) ν2

y11,3 m9,3 (2) 0 s9,3 (5) ν3

y14,2 0 (1)
y18,2 0 (1)
y20,2 m18,2 (4) s17,2 (2) κν
y21,3 0 (1)
y23,3 m21,5 (2) 0 s21,5 (1) κν
y26,4 m24,6 (2) 0 s24,0 (1) 8∆
y29,5 0 (1)
y34,6 0 (1)
y35,3 m33,3 (5) 0 s33,3 (5) qη
y39,7 0 (1)
y40,6 0 (1)
y44,8 m42,10 (2) 0 s42,10 (5) κ2η2

y45,3 m43,9 (5) s42,10 (2) κ2η2

y45,9 0 (1)
y50,4 0 (6)
y50,6 m48,6 (6) 0 s48,0 (1) 4∆2

y51,1 0 (1)
y54,2 0 (1)
y55,7 m53,7 (5) 0 s53,7 (1) η2∆2ν
y56,2 m54,2 (5) 0 s54,2 (4) ν∆2ν
y57,11 0 (5)
y59,3 m57,3 (2) 0 s57,3 (1) ν∆2ν2

y60,10 0 (1)
y60,12 0 (1)
y62,2 m60,12 (2) s60,12 (1) ν∆2ν3

y65,7 0 (1)
y65,13 0 (1)
y66,2 0 (1)
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Table 1: Detecting elements in tmf∗

img(p3) img(p2) (T) img(p1) i−11 (−) (T) name in tmf∗

y68,2 m66,2 (2) s65,3 (5) η∆κ̄2

y69,3 0 (1)
y70,8 0 (6)
y70,10 m68,10 (6) 0 s68,4 (1) 4∆2κ̄
y71,3 m69,3 (5) s68,4 0 (2) 4∆2κ̄
y71,9 0 (5)
y74,4 m72,6 (2) 0 s72,0 (1) 8∆3

y75,13 0 (1)
y76,10 0 (1)
y77,5 m75,13 (2) 0 s75,3 (1) (η∆)3

y80,16 0 (1)
y81,11 0 (1)
y82,6 m80,16 (2) 0 s80,16 (1) κ4

y83,3 m81,3 (2) s80,16 (2) κ4

y85,17 0 (1)
y86,12 0 (1)
y87,7 m85,13 (2) 0 s85,13 (1) η∆κ̄3

y88,6 m86,12 (2) s85,13 (2) η∆κ̄3

y90,14 0 (1)
y91,13 0 (1)
y92,8 m90,10 (2) 0 s90,10 (1) η2∆2κ̄2

y93,3 m91,9 (2) s90,10 (2) η2∆2κ̄2

y96,14 0 (1)
y97,9 0 (1)
y98,4 m96,6 (2) 0 s96,0 (1) 2∆4

y101,15 0 (1)
y102,2 0 (3)
y102,10 m100,20 (3) 0 s100,20 (1) κ5

y103,7 m101,7 (4) s100,20 (2) κ̄5

y105,21 0 (1)
y106,16 0 (1)
y107,3 m105,3 (5) 0 s105,3 (1,5) ν3∆4

y107,11 m105,11 (5) 0 s105,17 (1,5) η∆κ4

y108,10 m106,16 (2) s105,17 (2) η∆κ4

y111,17 0 (1)
y112,12 0 (1)
y113,7 m111,13 (2,5) s110,14 (3) η2∆2κ̄3

y117,3 0 (1)
y117,13 0 (1)
y118,8 m116,10 (3) 0 s116,4 (1) 2∆4κ̄
y119,3 m117,3 (2) s116,4 (5) 2∆4 · 2κ̄
y122,4 m120,6 (5) 0 s120,0 (1) 8∆5

y122,14 0 (5)
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Table 1: Detecting elements in tmf∗

img(p3) img(p2) (T) img(p1) i−11 (−) (T) name in tmf∗

y123,11 0 (1)
y127,15 m125,21 (2) 0 s125,21 (5) η∆κ̄5

y128,14 m126,20 (6) s125,21 (2) η∆κ̄5

y132,16 0 (1)
y133,11 m131,17 (2,5) s130,18 (2) η2∆2κ̄4

y137,17 0 (1)
y138,12 m136,14 (3) 0 s136,8 (3) η2∆5κ
y142,18 0 (1)
y143,15 0 (1)
y148,18 0 (1)
y150,2 0 (4)
y153,11 0 (3)
y153,15 m151,21 (3) s150,22 (2) η2∆2κ̄5

y155,3 m153,3 (2) 0 s153,3 (1) ν∆6ν2

y158,16 m156,18 (2) 0 s156,12 (3) ν∆6ηϵ
y161,7 0 (1)
y165,3 0 (1)
y167,3 m165,3 (2) s164,4 (2) 4∆6κ̄
y168,22 0 (1)
y170,4 m168,6 (2) 0 s168,0 (1) 8∆7

3. New infinite families

We begin by studying the commutative diagram of long exact sequences

(14)

· · · πkY πkA1 πk−3Y · · ·

· · · tmfkY tmfkA1 tmfk−3Y · · · .

i3

htmf

p3

htmf

v∗

htmf

i3
p3

v∗

associated to the cofiber sequence (4).

Lemma 3.1. Any nonzero element of the form p3(a) ∈ tmf∗Y admits a lift
in π∗Y along the tmf-Hurewicz homomorphism.

Proof. This is a straightforward consequence of the fact that the tmf-Hurewicz
map for A1 (5) is a surjection [Pha23], along with the commutativity of
(14). □
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Next, we study the commutative diagram of long exact sequences

(15)

· · · πk−3M πk−3Y πk−5M · · ·

· · · tmfk−3M tmfk−3Y tmfk−5M · · · .

i2

htmf

p2

htmf

η∗

htmf

i2 p2 η∗

associated to the cofiber sequence (3).

Lemma 3.2. Any nonzero element of the form p2(p3(a)) ∈ tmf∗M admits a
lift in π∗M along the tmf-Hurewicz homomorphism.

Proof. If p2(p3(a)) ̸= 0 then, in particular, p3(a) ̸= 0. Thus, by Lemma 3.1,
there exists

ỹ ̸= 0 ∈ π∗Y

such that htmf(ỹ) = p3(a). The result then follows from (15). □

Remark 3.3. The action of ∆8 is faithful on tmf∗A1 [Pha23], tmf∗Y
[BBPX22], tmf∗M [BBPX22], tmf∗ [Bau08], the Hurewicz image of tmf∗
[BMQ23], and the cokernel of the tmf-Hurewicz map [BMQ23].

3.1. Infinite families in 2-local stable stems.

Our final step is studying the commutative diagram of long exact sequences

(16)

· · · πk−5S πk−5M πk−6S · · ·

· · · tmfk−5 tmfk−5M tmfk−6 · · ·

i1

htmf

p1

htmf

·2

htmf

i1 p1 ·2

associated to the cofiber sequence (2).

Suppose p1(p2(p3(a))) ̸= 0 for some a ∈ tmfkA1. Then it follows from (14),
Lemma 3.2, and Remark 3.3 that there is a 192-periodic infinite family

{s̃k−6+192i ∈ πk−6+192i(S) : i ∈ N}

such that

(1) htmf (̃sk−6) = p1(p2(p3(a))),

(2) htmf (̃sk−6+192i) ̸= 0 for all i ∈ N.

We are interested in the case when p1(p2(p3(a))) = 0 ∈ tmfk−6.

Theorem 3.4. Let a ∈ tmfkA1 such that p2(p3(a)) ̸= 0 and p1(p2(p3(a))) =
0.

(I) If i−11 (p2(p3(a))) ∩ img(htmf) ̸= ∅, then there exists a 192-periodic
infinite family of elements in the stable stems

{s̃k−5+192i ∈ πk−5+192i(S) : i ∈ N}
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such that i1(htmf(s̃k−5)) = p2(p3(a))) and htmf(s̃k−5+192i) ̸= 0 for all
i ∈ N.

(II) If i−11 (p2(p3(a))) ∩ img(htmf) = ∅, then there exists a 192-periodic
infinite family of elements in the stable stems

{s̃k−6+192i ∈ πk−6+192i(S) : i ∈ N}
such that s̃k−6+192i ̸= 0 and htmf (̃sk−6+192i) = 0 for all i ∈ N.

Proof. If p2(p3(a)) ∈ tmfk−5M is nonzero, then by Remark 3.3,

p2(p3(∆
8i · ak)) = ∆8i · p2(p3(ak)) ̸= 0.

Thus, by Lemma 3.2, there exist nonzero elements

(17) m̃k−5+192i ∈ πk−5+192i(M)

such that htmf(m̃k−5+192i) = ∆8i · p2(p3(ak)) for all i ∈ N.

Suppose p2(p3(a)) admits a lift sk−5 ∈ tmfk−5 along i1 which is in the
Hurewicz image. Then, by Remark 3.3, ∆8i · sk−5 is also in the Hurewicz
image, and a collection

{s̃k−5+192i ∈ πk−5+192i(S) : i ∈ N}
such that htmf (̃sk−5+192i) = ∆8i ·sk−5 forms an infinite family with the desired
properties.

On the other hand, if none of the lifts of p2(p3(a)) along i1 is in the Hurewicz
image, then the same holds for ∆8i · p2(p3(a)) for all i ∈ N by Remark 3.3.
Thus, p1(m̃k−5+192i) ̸= 0 for all i ∈ N, and

{s̃k−6+192i = p2(m̃k−5+192i) : i ∈ N}
is the desired infinite family. □

Proof of Theorem 1. From Table 1 we notice that there exists an element
ak ∈ tmfkA1 such that

(i) p2(p3(ak)) ̸= 0,

(ii) p1(p2(p3(ak))) = 0,

(iii) there exists sk−5 ∈ tmftork−5 such that i1(sk−5) = p2(p3(ak)),

for each k ∈ {29, 53, 77, 80, 101, 119, 173}. However, the Hurewicz image is
trivial in degrees 24, 48, 72, 75, 96, 114, and 168. Thus, the result follows
from Case (II) of Theorem 3.4. □

Remark 3.5. To summarize, the seven infinite families in Theorem 1 are a
consequence of the fact that the elements

(18) 8∆, 4∆2, 8∆3, (η∆)3, 2∆4, 8∆5, 8∆7

which are not in the Hurewicz image of tmf∗ are the lifts of nonzero elements
in the image of p2 ◦ p1 : tmf∗A1 → tmf∗−5M along i1.
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3.2. Infinite families in K(2)-local stable stems.

Theorem 3.6. All elements listed in Theorem 1 have nonzero images in
the K(2)-local stable stems.

Notation 3.7. For a finite spectrum X, let X̂ denote its K(2)-localization.

The work in [Pha23] shows that K(2)-local Hurewicz map of A1

hTMF : π∗Â1 TMF∗A1

is a surjection.

Since TMF∗A1
∼= (∆8)−1tmf∗A1 and the action of ∆8 on tmf∗A1 is faithful

(see Remark 3.3), the natural map

ℓ : tmf∗A1 TMF∗A1

is an injection. Thus the image of ℓ(a) ∈ TMF∗Â1 under the map

p2 ◦ p3 : TMF∗A1 TMF∗M

is nonzero if and only if p2(p3(a)) ∈ tmf∗M is nonzero. Similarly, the image

of ℓ(a) ∈ TMF∗Â1 under the map

p1 ◦ p2 ◦ p3 : TMF∗Â1 TMF∗−6

is zero if and only if p1(p2(p3(a))) ∈ TMF∗−6. Therefore, the proof of
Theorem 3.6 can follow the exact same arguments to that of Theorem 1
provided

8∆, 4∆2, 8∆3, (η∆)3, 2∆4, 8∆5, 8∆7

are not in the K(2)-local Hurewicz image of TMF∗ (also see Remark 3.5).

Proof of Theorem 3.6. Since the elements

8∆, 4∆2, 8∆3, 2∆4, 8∆5, 8∆7

are integral classes and π∗Ŝ is a finite group in degrees 24, 48, 72, 96, 120, and
168 (see [BSSW24, Theorem A]), they cannot be in the K(2)-local Hurewicz
image. Further, (η∆)3 is also not in the Hurewicz image by Lemma 3.8.
Hence, the result. □

Lemma 3.8. The element (η∆)3 is not in the image of the K(2)-local
Hurewicz map of TMF

(19) hTMF : π∗Ŝ TMF∗.

Proof. By [Lau04, Corollary 3]

v−11 TMF ≃ KO[j±],
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which implies that the K(2)-local Hurewicz map of v−11 TMF factors through
KO∗

KO∗

π∗Ŝ π∗TMF v−11 TMF∗.

Then we simply implement the arguments of [BMQ23, Theorem 6.1].

More precisely, we observe that (η∆)3 lifts to an element in TMF∗M(∞),
where M(∞) := colim

i→∞
M(i) (see Notation 3.11), whose image after inverting

c4 is

v381 j−3 ∈ v−11 TMF∗M(∞)

in the notations of [BMQ23, §6]. If (η∆)3 is in the image of the Hurewicz

map (19), then v381 j−3 must also be in the image of ℓ ◦ hTMF in the diagram

KO∗M(∞)

π∗M̂(∞) TMF∗M(∞) v−11 TMF∗M(∞)
hTMF ℓ

which contradicts the fact that ℓ ◦ hTMF factors through KO∗M(2∞). □

Since the unit map of Ŝ factors through that of ST(2) (see (1)), the proof of
Theorem 3.6 completes the proof of Theorem 2. Nevertheless, we take this
opportunity to give an independent proof of the fact that the elements listed
in Theorem 1 are nontrivial after T(2)-localization.

3.3. Infinite families in T(2)-local stable stems.

It is well-known that A1 admits a v322 -self-map

v : Σ192A1 A1

detected by ∆8 ∈ tmf∗ [BEM17]. Therefore, for any lift ã ∈ πkA1 of
a ∈ tmfk(A1) we have

htmf(v
32i
2 · ã) = ∆8i · a

for all i ∈ N.

Notation 3.9. For a spectrum E and a finite spectrum X with a vn–self-map
v : Σ|v|X → X, let

ΦX(E) := colim
→

{EX v∗−→ Σ−|v|EX v∗−→ Σ−2|v|EX −→ . . . }.

The is a natural map from E to ΦX(E) which we will denote by α (sometimes
with subscripts).
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Suppose ã ∈ πkA1 such that p∗(ã) ∈ πk−6(S) is listed in Theorem 1, then we
can choose m̃k−5+192i of (17) as

m̃k−5+192i := p2(p3(v
32i
2 · ã))

for all i ∈ N in the proof of Theorem 3.4 (II). As a result, we conclude:

Lemma 3.10. Suppose ã ∈ πkA1 such that p∗(ã) ∈ πk−6(S) is listed in
Theorem 1. Then the image ã under the map

α1 : π∗S π∗(ΦA1(S))

is nonzero.

Notation 3.11. Let M(i, j) denote the cofiber of a vj1-self-map on M(i), the
cofiber of multiplication by 2i on S.

Proposition 3.12. The map p : Σ−6A1 −→ S factors through M(1, 4).

Proof. Let ko denote the connective real K-theory. Since ko6M ∼= 0 it follows
that the composite

Σ6S Σ6Y Y Σ2M
v31 p2

is nonzero in ko-homology, and hence, in stable homotopy. Further, we have
a commutative diagram

Σ6Y Σ4Y

Σ8S/2 S/2

v1

p2 p2◦v31

v41

which implies that there is a map Σ4A1 −→ M(1, 4) which factors the pinch
map of Σ4A1 to its top cell. □

A consequence of Proposition 3.12 is that we have a directed system

(20) Σ−6A1 → M(1, 4) → Σ−18M(2, 8) → . . .

of type 2 spectra which is cofinal among all type 2 spectra with a ‘pinch’
map to S.

Notation 3.13. Let Φk(−) denote ΦVk
(−), where Vk is the k-th entry of

the sequence (20).

Theorem 3.14. All elements listed in Theorem 1 have nonzero images in
the T(2)-local stable stems.

Proof. We will make use of the standard theory of Bousfield-Kuhn functors
(see [Kuh08]) which implies

ST(2) ≃ lim
←

Φk(S).
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Since, the image under α1 of an element ã ∈ π∗(A1) listed in Theorem 1 is
nonzero, the diagram

π∗(S)

. . .

π∗(Φ1(S)) π∗(Φ2(S)) · · ·

α1 α2

implies that the image of ã in lim
←

π∗Φk(S) is nonzero. Then the result follows

from the fact that the natural map

π∗(ST(2)) ∼= π∗(lim←
ST(2)) lim

←
π∗Φk(S)

is a surjection (with Milnor lim1 term as the kernel). □
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