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FORWARD

In spring 1973 Frank Adams gave a course at the University of Chicago on
localisation and completion. This was in the very early days of the sub-
ject, which arose from disparate constructions of Quillen, Sullivan, Mimura,
Nishida, Toda and others during the period 1969-1971. In those days one
usually assumed the spaces one was localising or completing were simply
connected. There were various proposals for extending the domain of defi-
nition of these constructions to more general spaces, but there was no clear
consensus on how to proceed.

In his lectures Adams gave a lucid and compelling analysis of the properties
one would want of such constructions. He set up an elegant axiomatic treat-
ment of localisation and completion in the framework of category theory and
proposed a vast generalisation of the existing constructions. Unfortunately
Adams’ program for constructing these localisation functors with respect to
arbitrary generalised homology theories ran into a serious difficulty during
the course of these lectures. His proposal involved the use of the Brown
Representability Theorem to construct his localisation functors, but he was
unable to show that the relevant representable functors were set-valued rather
than class-valued. Subsequent work by Bousfield established the existence of
these generalised localisation functors, using more technical simplicial meth-
ods. These functors are now an essential tool in homotopy theory.

At that time I was a graduate student at Chicago and was charged with
the responsibility of taking notes for Adams’ lectures. The resulting notes
were briefly available in mimeographed form from the University of Chicago
Mathematics Department. However these notes were never published in a
more formal venue due to this apparent flaw in the proof.1 The notes also
contain an addendum devoted to establishing that a certain element in the
gamma family of the stable homotopy groups of spheres is nonzero, using
Brown-Peterson (co)homology. At that time this was a matter of controversy,
as Oka and Toda claimed to have proved the contrary result.

I thought I had lost my only copy of these notes a long time ago, but I re-
cently rediscovered them, and I want to make them publicly available again.
Besides being of historical interest, these notes give a very readable intro-

1An announcement of this work was published in [3].



duction to localisation and completion, with minimal prerequisites. I was
long aware that the gap in Adams’ proof was easily mendable, so I have sup-
plemented these notes to include an epilogue explaining this and have made
a few other minor editorial changes. Thus it can now be seen in retrospect
that Adams amazingly succeeded in his project of “constructing localizations
and completions without doing a shred of work” (cf. [9]).

Zig Fiedorowicz
Columbus, Ohio
December, 2010
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1 Introduction to Localisation

“Il y a là possibilité d’une étude locale (au sens arithmetique)
des groupes d’homotopie”

J. P. Serre [17]

In homotopy theory we have known for a long time that it is sufficient to
attack problems one prime at a time. This insight goes back to the pioneering
work of J.-R Serre [17].

More recently we have gained a particularly convenient language and some
particularly convenient machinery for exploiting this insight. This language
and machinery was introduced following an analogy from commutative alge-
bra. In commutative algebra we attack our problems one prime at a time
by using the method of localisation. Thus we seek a comparable method in
homotopy theory.

The earliest reference I have which develops such a method is Sullivan
[19]. This was certainly very influential. At this point perhaps we should
also mention Mimura-Nishida-Toda [12], Mimura-O’Neill-Toda [13], Mimura-
Toda [14], and Zabrodsky [23]. Another reference we might suggest is Quillen
[16].

In the first part of these lectures, I want to present a simple and uniform
method of constructing all functors in homotopy theory which have formal
properties similar to those of Sullivan’s localisation functor. This opens the
way to a study of such functors along axiomatic lines. I may also say some-
thing about Sullivan’s completion functor. However it is clear from Sullivan’s
work that the completion functor enters it for a visibly good and sufficient
reason which is particular to that piece of work. The localisation functor,
however, is of very general use, and every graduate student of topology should
learn about it.

I must begin by sketching some background, and I start with commutative
algebra. Let R be a commutative ring with 1 and S ⊂ R be a multiplicatively
closed subset (i. e. a subset closed under finite products, such that 1 ∈ S).
For example, if R = Z we may take

S = {1, 2, 4, 8, . . . , 2n, . . .}
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or
S = {1, 3, 5, . . .2m+ 1, . . .}.

Let M be an R-module. We say M is S-local if the map M → M given by
multiplication by s, i. e., m 7→ ms, is an isomorphism for any s ∈ S. To
every R-module M we can find a map f :M → M ′ so that

(i) M ′ is S-local

(ii) f is universal with respect to (i). That is, if g : M → M ′′ is another
map such that M ′′ is S-local, then there is a unique map h :M ′ →M”
which makes the following diagram commute

M ′

h

���
�
�
�
�
�
�

M

f
77ooooooooooooo

g
''OOOOOOOOOOOOO

M ′′

Such a map f is called a localisation map; we say f localises M at S.

The usual construction of M ′ is as a module of fractions. We first take
pairs (m, s), m ∈M , s ∈ S. We then define an equivalence relation on pairs:

(m, s) ∼ (m′, s′) ⇐⇒ ∃s′′ ∈ S ∋ ms′s′′ = m′ss′′

We define S−1M to be the set of all equivalence classes. The fraction m
s
is

the equivalence class containing (m, s). We make S−1M into an R-module
in the obvious way. We define the map f : M → S−1M by f(m) = m

1
. We

see that S−1M is S-local and the map f is universal.

Since the ring R is an R-module, S−1R is defined; we can make it into a
ring so that the canonical map R→ S−1R is a map of rings:

(r
s

)(r′
s′

)
=
rr′

ss′

Similarly S−1M becomes a module over S−1R:
(m
s′

)(r
s

)
=
mr

s′s
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Moreover we obtain a commutative diagram

M ⊗R S
−1R

∼=

))TTTTTTTTTTTTTTTT

∼=

��

S−1M

S−1M ⊗R S
−1R

∼=

55jjjjjjjjjjjjjjjj

We often use this fact just as a matter of notation when we have a conve-
nient name for S−1R. For example, suppose R = Z and

S = {1, 2, 4, 8, . . . , 2n, . . .}

so that S−1R = Z
[
1
2

]
. IfM is a Z module, we would usually writeM⊗Z

[
1
2

]

for S−1M .

The most common example of a multiplicatively closed subset S is the
complement of a prime ideal P . If S = CP we write MP for S−1M . For
example, if R = Z, P = (2),

CP = {±1,±3,±5, . . . ,±(2m+ 1), . . .},

then Z(2) is the set of fractions
{

a

2b+ 1

}
⊂ Q.

Often algebraists omit the parenthesis and write Z2.

The construction of localisation in commutative algebra has many good
properties. Most of them need not delay us now; however, it is essential to
know that localisation preserves exactness. If

L
i
−→M

i
−→ N

is exact, then so is

S−1L
i
−→ S−1M

i
−→ S−1N

Example (a) Take the two localisation functors on Z-modules

−⊗ Z

[
1

2

]
and −⊗Z(2)

3



These two functors commute up to isomorphism and for any Z-module M
we have a commutative diagram

M //

��

M ⊗ Z
[
1
2

]

��(
M ⊗ Z

[
1
2

])
⊗ Z(2)

∼=
��

M ⊗ Z(2) // (M ⊗ Z2)⊗ Z
[
1
2

]
∼= M ⊗Q

This diagram is both a pullback and pushout.

Conversely, if we are given : M ′ a Z
[
1
2

]
-module, M ′′ a Z(2)-module , M ′′′

a Q-module, and localising maps f : M ′ → M ′′′, g : M ′′ → M ′′′, then in the
pullback diagram

M
h1 //______

h2

���
�
� M ′

f

��
M ′′

g //M ′′′

h1 and h2 are also localising maps.

Now I want to recall the basic theorem about Sullivan’s localisation func-
tor and give one example of its use to show what it is meant for.

Before we do this, however, we must consider the category on which it
is to be defined. If we stick to simply-connected CW-complexes, everyone
will feel happy and secure. Moreover, it might be a matter of debate exactly
how far we might wish to enlarge the domain of definition of our functor;
and if we take the domain too large, there might be more than one functor
extending the functor we all agree about for simply-connected spaces, and it
might be a matter of debate which extension is best.

So let us take C to be the category whose objects are 1-connected CW-
complexes with basepoint and whose morphisms are homotopy classes of
maps, with both maps and homotopies preserving basepoints.

Let S ⊂ Z be a multiplicatively closed subset. Then Sullivan showed there
is a functor C → C which at the level of homotopy and homology performs
localisation at S.
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Theorem 1.1 (Sullivan). The following conditions on a map f : X → Y in
C are equivalent:

(i) f# : πn(X)→ πn(Y ) localises at S for each n ≥ 1.

(ii) f∗ : Hn(X)→ Hn(Y ) localises at S for each n ≥ 1.

Moreover there is a functor E : C → C and a natural transformation η : 1→
Eso that for each X, ηX : X → EX satisfies both (i) and (ii).

Before we go on, let me comment. Theorems like this usually tell us that
there is something with a stated property when it is not obvious that there
is; but it is obvious that if there is anything with that property, then the
property characterises it. On the face of it this is not a theorem of that form;
the properties do characterise EX and ηX , but it is not obvious they do. Of
course, these are comments on the way I’ve stated the theorem not on the
way Sullivan states it. Still we may make a note to look for other forms of
the statement.

Following the analogy from algebra we use the notation XS or X⊗ZS for
EX . We defer discussing the properties of E until we are forced to do so by
examples.

As an application, I recall that at one time there was a conjecture of the
following sort.

Conjecture. Any finite CW-complex which is an H-space is homotopy-
equivalent to a product of spaces from the classical list: S7, RP 7, compact
Lie groups.

This conjecture must always have looked optimistic, and it is now known
to be false. The first counterexample was due to Hilton and Roitberg. Let
us see how we get one by Zabrodsky’s method of mixing homotopy groups,
expressed in the language of localisation.

The classical list contains two entries S3×S7 and Sp(2). These are differ-
ent at the prime 2 and also at the prime 3 (e.g. because π6(S

3×S7) = Z/12Z
, π6(Sp(2)) = O.) However, if we apply the localisation functor −⊗Q they
become the same:

(S3 × S7)⊗Q = K(Q, 3)×K(Q, 7) = Sp(2)⊗Q.

5



So consider for example

Sp(2)⊗ Z
[
1
2

]

��

Sp(2)⊗ Z
[
1
2

]
⊗ Z(2)

∼=
��

(S3 × S7)⊗ Z(2)
// (S3 × S7)⊗ Z(2) ⊗ Z

[
1
2

]

There should be a space X such that

X ⊗ Z

[
1

2

]
≃ SP (2)⊗ Z

[
1

2

]

X ⊗ Z(2) ≃ Sp(2)⊗ Z(2)

It is easy to construct a candidate for X . Suppose we are given a diagram

X ′

p

��
X ′′

g // X ′′′

then the weak pull-back is the space of triples (x′, x”, ω), where ω : I → X ′′′

is a path from p(x′) to g(x′′). Strictly I shall take a weakly equivalent CW-
complex; anyway I get a diagram

X //

��

X ′

p

��
X ′′

g // X ′′′

and an exact homotopy sequence

. . . −→ πn+1(X
′′′) −→ πn(X) −→ πn(X

′)⊕ πn(X
′′) −→ πn(X

′′′) −→ . . .

If we apply this to our case we get a diagram

X //

��

Sp(2)⊗ Z
[
1
2

]

��
(S3 × S7)⊗ Z(2)

// K(Q, 3)×K(Q, 7)

6



and we see that X is 1-connected,

πn(X) −→ πn(SP (2)⊗ Z

[
1

2

]

localises at Z
[
1
2

]
and

πn(X) −→ πn
((
S3 × S7

)
⊗ Z(2)

)

localises at Z(2). In particular

π6(X) = Z/4Z

Therefore X is not equivalent to Sp(2) and it is not equivalent to S3×S7; it
isn’t equivalent to Sp(2) at the prime 2 and it is not equivalent to S3×S7 at
the prime 3. Also it certainly isn’t equivalent to anything else in the classical
list.

Of course I should still convince you that X is an H-space and that it
is equivalent to a finite complex. To do the former, we need to note that
localisation commutes with products. More precisely, we have the projections

X × Y −→ X, X × Y −→ Y.

Localising we get

(X × Y )S −→ XS, (X × Y )S −→ YS.

With these components we get

(X × Y )S −→ XS × YS

This is an equivalence, because on homotopy it induces

(
π∗(X)⊕ π(Y )

)
S
−→ π∗(X)S ⊕ π∗(Y )S.

The product map (
S3 × S7

)2
−→

(
S3 × S7

)

gives ((
S3 × S7

)
⊗ Z(2)

)2
−→

(
S3 × S7

)
⊗ Z(2)

7



and ((
S3 × S7

)
⊗Q

)2
−→

(
S3 × S7

)
⊗Q.

Similarly, the product map

(Sp(2))2 −→ Sp(2)

gives (
Sp(2)⊗ Z

[
1

2

])2

−→ Sp(2)⊗ Z

[
1

2

]

and
(Sp(2)⊗Q)2 −→ Sp(2)⊗Q.

The product maps on Sp(2) ⊗ Q ≃ (S3 × S7) ⊗ Q ≃ K(Q, 3) × K(Q, 7)
agree, since there is only one class of maps

(K(Q, 3)×K(Q, 7))2 −→ K(Q, 3)×K(Q, 7)

which has the basepoint as unit.

Hence we have the following diagram

X2 //

,,YYYYYYYYYYYYYYYYYYYYYY

��

(
Sp(2)⊗ Z

[
1
2

])2

,,XXXXXXXXXXXXXXXXXXXXXXXXXXX

��

X

��

// Sp(2)⊗ Z
[
1
2

]

��

(
(S3 × S7)⊗ Z(2)

)2 //

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYY
(K(Q, 3)×K(Q, 7))2

,,XXXXXXXXXXXXXXXXXXXXXXXXXX

(S3 × S7)⊗ Z(2)
// K(Q, 3)×K(Q, 7)

Since the right-hand square is a weak pull-back, there is a map µ : X2 → X
making the diagram commute. Moreover, consider the map

X × pt −→ X ×X
µ
−→ X

The induced map of homotopy groups becomes the identity if we apply
−⊗ Z

[
1
2

]
or − ⊗ Z(2). Therefore it is the identity. In particular this com-

posite is an equivalence by the theorem of J. H.C. Whitehead. Similarly

pt×X −→ X ×X
µ
−→ X

8



is an equivalence. Hence we can alter µ so that these become the identity
and X becomes an H-space.

Of course if we knew that X was a strict pullback we wouldn’t need that
last argument, but who cares.

Finally, we need to see that X is equivalent to a finite complex. Since
X is 1-connected it is sufficient to show that ⊕nHn(X) is finitely-generated.
From the fact that the maps

X //

��

Sp(2)⊗ Z
[
1
2

]

(S3 × S7)⊗ Z(2)

induce localisation on homotopy, we infer they induce localisation on homol-
ogy. Then we obtain

H∗(X) ∼= H∗(Sp(2)) ∼= H∗(S
3 × S7).

Before we go on, let me make one comment on the above example. If we
want to construct a fake Lie group then the original method of Hilton and
Roitberg is simple and explicit, and why should we use any other? This is
certainly a reasonable objection. On the other hand, if we want to state and
prove that

(F/PL)⊗ Z

[
1

2

]
≃ BO ⊗ Z

[
1

2

]

then the method of Hilton and Roitberg can’t do us much good. Since I
actually want to talk about localisation, I wanted to give a minimal example
which would smuggle in a few of the things I wanted to smuggle in. Thus I
gave a minimal example in the direction of Zabrodsky mixing.

9



2 Idempotent Functors

I want to study functors in homotopy theory with the same formal properties
as localisation, so I’d better say what those properties are.

Suppose we are given a category C, a functor E : C → C and a natural
transformation η : 1→ E. On these I’m going to put two axioms:

Axiom 2.1. EηX = ηEX : EX → E2X

Axiom 2.2. The common value of EηX and ηEX is an equivalence from EX
to E2X .

These axioms say that the functor E is idempotent (in a particular way).
The categorists have already considered this axiom system, and they call
(E, η) an idempotent triple or idempotent monad.

Example 2.3. C = R-modules, EM = S−1M for a fixed S, ηM : M →
S−1M is the canonical map m 7→ m

1
. Then

ηEM is the map
m

s
7→

m
s

1

EηM is the map
m

s
7→

m
1

s

Example 2.4. C is the category in which the objects are metric spaces and
the maps are uniformly continuous functions. EX is the completion X̂ of X ,
constructed for example by taking equivalence classes of Cauchy sequences.
Also ηX : X → X̂ is the canonical map x 7→ {x, x, . . . , x, . . .}.

ηEX is the map {x1, x2, . . .} 7→ {{x1, x2, . . .}, {x1, x2, . . .}, . . .}

EηX is the map {x1, x2, . . .} 7→ {{x1, x1, . . .}, {x2, x2, . . .}, . . .}

Since 2.1 and 2.2 are very simple formal properties, valid in Examples 2.3
and 2.4, we may expect to see them hold in any case which presents a valid
analogy with 2.3 or 2.4. Equivalently suppose that for some C, E, η either
2.1 or 2. 2 is found to fail; then that by itself would tend to discredit any

10



analogy with 2.3 or 2.4 to the point where we would hesitate to use the word
“localisation” or “completion” for such a functor E.

Our programme is now as follows. First we must explore the consequences
of our axioms. More particularly we must understand how to characterise
the map ηX : X → EX by universal properties. For this purpose we need
to introduce two constructions. First one needs to introduce a subset D
of the objects of C and we must do it in such a way so that for Example
2.4, D becomes the subset of complete metric spaces (not just the spaces
which arise as X̂ for some particular choice of completion). There are two
equivalent definitions

Definition 2.5.

(i) X ∈ D if X ≃ EY for some Y in C.

(ii) X ∈ D if ηX : X → EX is an equivalence.

Clearly (ii) implies (i) (take Y = X). Also (i) implies (ii). For if X
f
−→

EY is an equivalence, then Ef is an equivalence and we have

EX
EF

≃
// E2Y

X

ηX

OO

f

≃
// EY

≃ ηEY

OO

so ηX is also an equivalence.

We must also define a subclass S of the morphisms of C.

Definition 2.6. The map f : X → Y lies in S if and only if Ef : EX → EY
is an equivalence.

The notation shows that this subclass of morphisms in a category is to be
thought of as analogous to a multiplicatively closed subset in a ring.

Example 2.7. Let C be the category in which the objects are all CW-
complexes with basepoint and the morphisms are homotopy classes of maps.
When we construct Postnikov systems, we may choose for each complex X
a complex EX = X(1, 2, ..., n) and a map ηX : X → EX such that

11



(i) (ηX)# : πi(X)→ πi(EX) is an isomorphism for i ≤ n

(ii) πi(EX) = 0 for i > n.

There is then a unique way to define Ef for maps f : X → Y so that E
becomes a functor C → C and η becomes a natural transformation. Then
Axioms 2.1 and 2.2 are satisfied. We may call this E the n-type functor.
This shows that even in homotopy theory there are functors E satisfying
2.1 and 2.2 which are very different from localisation. In this example it is
particularly easy to describe the subsets S and D. A map f : X → Y is in
S if and only if

f# : πi(X)→ πi(X) is an isomorphism for i ≤ n.

An object X is in D if and only if

πi(X) = 0 for i > n

Our plan is now this. For those categories C which concern us, we will
characterise by axioms those subclasses S which arise from pairs (E, η) by
Definition 2.6. In the applications we can then proceed as follows: first we
write a definition which defines a subclass S; secondly we check that this
subclass S satisfies the axioms; and finally we apply the main theorem to
deduce that this subset S arises from a pair (E, η) satisfying 2. 1 and 2. 2.

Before we go on, let me make a few comments on why topologists should
study idempotent functors on categories which interest them. First the gen-
eral method of algebraic topology has the following pattern. We wish to
study a category C which is not properly known, like the homotopy cate-
gory. So we apply functors like homotopy and homology which go from C to
categories which are known a bit better. Now if we are ever to get to knowing
C, certainly we must begin by knowing some of those full subcategories D
which are a bit simpler. Once we do, it becomes fruitful to consider functors
on C taking values in D and apply our standard methods.

Secondly, by studying idempotent functors on C we gain a great deal of
understanding of the structure of C. This is in good analogy with the study
of idempotents in a ring or idempotents acting on a module.

Thirdly, the examples suggest that this study is reasonable.

12



Let us now define the notion of equivalence for idempotent functors. The
appropriate equivalence relation is as follows:

Definition 2.8. If (E, η), (E ′, η′) are two idempotent functors on a category
C we say that (E, η) ≃ (E ′, η′), if there is a natural equivalence ǫ : E → E ′

such that η′ = ǫη, i. e.

EX

ǫX

��

X

ηX

77ooooooooooooo

η′
X

''OOOOOOOOOOOOO

E ′X

If (E, η) ≃ (E ′, η′), then S = S ′, D = D′; it is trivial to check it.

The categorists know some things about idempotent monads, and I must
run through some of them. The first thing you know about any monad is
that the functor factors through a pair of adjoint functors. In our case it is
very easy to display the factorisation. On the one hand we can regard E as
taking values in the full subcategory D

C
E
−→ D D

I
−→ C

and on the other hand we have the inclusion of D in C. I must prove that
these are adjoint functors.

Lemma 2.9.If X ∈ C, Y ∈ D then

[X, Y ]
η∗
X←− [EX, Y ]

is an isomorphism.

Proof. (i) η∗X is epi: Suppose f : X → Y . From the diagram

EX
EF // EY

X

ηX

OO

f // Y

ηY≃

OO

we see that f factors through ηX .

13



(ii) η∗X is mono: Take f, g : EX → Y and assume that f · ηX = g · ηX . Then
Ef · EηX = Eg · EηX . But since ηEX = EηX , it follows from the diagram

E2X
Ef //

Eg
// EY

EX

ηEX

OO

f //

g
// Y

ηY

OO

that ηY · f = ηY · g. Since ηY is an equivalence, f = g. 2

The next proposition shows how S and D determine each other.

Proposition 2.10. (i) Suppose f : X → Y is a morphism in C. Then f
lies in S if and only if

f ∗ : [Y, Z] −→ [X,Z]

is an isomorphism for all Z in D.
(ii) If Z is an object in C, then Z is in D if and only if

f ∗ : [Y, Z] −→ [X,Z]

is an isomorphism for all morphisms f : X → Y in S. Indeed it is sufficient
to check that f ∗ is epi for all f in S.

Proof. We must prove that if f : X → Y lies in S and Z lies in D, then

f ∗ : [Y, Z] −→ [X,Z]

is an isomorphism. This is immediate from the following commutative dia-
gram

[Y, Z]
f∗ // [X,Z]

[EY, Z]

η∗
Y ≃

OO

(Ef)∗ // [EX,Z]

η∗
X ≃

OO

and since η∗Y and η∗X are isomorphisms by 2.9, while (Ef)∗ is an isomorphism
because f ∈ S.

14



(i) Conversely suppose

f ∗ : [Y, Z] −→ [X,Z]

is an isomorphism for all Z in D; we wish to show that f ∈ S. By the same
diagram as above, we see that

(Ef)∗ : [EY, Z] −→ [EX,Z]

s an isomorphism for all Z ∈ D. Now we argue in the standard fashion.
Taking Z = EX we see that there is a g : EY → EX such that

g ·Ef = 1EX .

Then
Ef · g · Ef = Ef · 1EX = 1EY · Ef.

But taking Z = EY and using the fact that (Ef)∗ is an isomorphism we get

Ef · g = 1EY .

Hence Ef is an equivalence and f ∈ S.

(ii) Suppose f ∗ : [Y, Z] → [X,Z] is epi for all f in S, we wish to show
Z ∈ D. Take f = ηZ : Z → EZ. This lies in S because Ef = EηZ is an
equivalence by Axiom 2.2. Hence

η∗Z : [EZ,Z]→ [Z,Z]

is epi and there is a map ζ : EZ → Z such that

ζ · ηZ = 1Z .

Then
ηZ · ζηZ = ηZ · 1Z = 1Z · ηZ

But
η∗Z : [EZ,EZ]→ [Z,EZ]

is an isomorphism by 2.9, since EZ ∈ D. Therefore

ηZ · ζ = 1EZ ,

15



ηZ is an equivalence, and Z ∈ D. 2

The next proposition shows that the pair (E, η) is determined up to equiv-
alence by either S or D.

Proposition 2.11. The following conditions on a map f : X → Y are
equivalent.

(i) There is a commutative diagram

YOO

≃

��

X

f

77oooooooooooooo

ηX ''OOOOOOOOOOOOO

EX

In other words, f is a map ηX up to equivalence.

(ii) f is in S and Y is in D.

(iii) f is in S and is couniversal with respect to that property. That is,
given a map s : X → X ′ in S, there is a unique map h : X ′ → Y which
makes the following diagram commute.

X ′

h

���
�
�
�
�
�
�

X

s

88ppppppppppppp

f
''NNNNNNNNNNNNN

Y

16



(iv) Y is in D and is universal with respect to that property. That is, if
g : X → Z is a map with Z ∈ D, then there is a unique map h : Y → Z
which makes the following diagram commute.

Y

h

���
�
�
�
�
�
�

X

f

88ppppppppppppp

g
&&NNNNNNNNNNNNN

Z

Proof. (i) =⇒ (ii) Suppose we have a commutative diagram

YOO

≃

��

X

f

77oooooooooooooo

ηX ''OOOOOOOOOOOOO

EX

Applying E we obtain the commutative diagram

EYOO

≃

��

EX

Ef
66nnnnnnnnnnnnn

EηX ''PPPPPPPPPPPP

E2X

But EηX is an equivalence by 2.2. Therefore Ef is an equivalence and f ∈ S.
Also Y ∈ D since Y ≃ EX .

(ii)=⇒ (iii) Suppose f is in S and Y is in D. Suppose s : X → X ′ is in
S. Then

s∗ : [X ′, Y ] −→ [X, Y ]

is an isomorphism by 2.10, so f has the couniversal property required.

(ii) =⇒ (iv) Suppose f is in S and Y ∈ D. Let g : X → Z with Z ∈ D
be given. Then

f ∗ : [Y, Z]−+[X,Z]

17



is an isomorphism by 2.10, so f has the universal property required.

(iii) =⇒ (i) Suppose f is in S and has the couniversal property. We know
ηX is in S and we have shown it has the couniversal property, so f and ηX
differ by a canonical equivalence:

YOO

≃

��

X

f

77oooooooooooooo

ηX ''OOOOOOOOOOOOO

EX

Similarly for (iv) =⇒ (i). 2

Remark. In Example 2.7, I gave a description of the n-type functor. If you
look back you will see that this is a description of the type 2.11(ii) – ηX is
in S and EX is in D. In the situation we wish to study, such a description
is adequate to characterise E and η.

You might think this was enough of §2, and so did I when I first wrote
this lecture, but then I found there was some more material I needed here.
In fact, I must first recall some of the standard material on the category of
fractions.

Suppose we are given a category C and a subset S of the morphisms in
C. Then there is a category S−1C and a functor Q : C → S−1C with the
following properties

(i) If s ∈ S, Qs is invertible in S−1C;

(ii) Q is universal with respect to property (i). That is, suppose we are
given a functor T : C → C ′ such that Ts is invertible for any s ∈ S;
then there exists a unique functor U : S−1C → C ′ such that T = UQ,

18



i. e.,

S−1C

U

���
�
�
�
�
�
�

C

Q
77ooooooooooooo

T
''OOOOOOOOOOOOOO

C ′

In fact, to construct these things, you take S−1C to have the same ob-
jects as C and you take Q to be the identity on objects. To construct the
morphisms of S−1C you start with long words

. . . (Qs2)
−1(Qf2)(Qs1)

−1(Qf1)

which are grammatical, i. e.,

Y1 Y2

X1

f1
>>}}}}}}}}

X2

s1

``AAAAAAAA

f2
>>}}}}}}}}

X3

s2

``AAAAAAAA
. . . .

You then divide these words into equivalence classes in an obvious way and
check that everything works.

N. B. In practice, however, the collection of morphisms S we wish to invert
is not a set but a class. In this case there are serious set-theoretic objections
against the legitimacy of our constructing the category S−1C, e. g. for
general classes S and X, Y ∈ C, HomS−1C(QX,QY ) need not be a set. To
overcome these objections we need a condition analogous to the solution set
condition in Freyd’s adjoint functor theorem.

Lemma 2.12. Let T0, T1 : S
−1C → Γ be functors and let β : T0Q→ T1Q be

a natural transformation. Then there is one and only one natural transfor-
mation α : T0 → T1 such that βX = αQX for each X in C.

Proof. (1) First proof. Since Q is a one-to-one correspondence on objects,
the equation βX = αQX defines α; we have only to check that it is natural.

19



We are given that the diagram

T0QX
αQX //

T0g

��

T1QX

T1g

��
T0QY

αQX // T1QY

commutes when g is of the form Qf , f in C. Therefore it commutes when g
is of the form (Qs)−1. Therefore it commutes when g is of the form

. . . (Qs2)
−1(Qf2)(Qs1)

−1(Qf1)

(2) Second proof: We construct a category ΓI as follows: An object in
ΓI is a map f : X0 → X1 in Γ. A morphism in ΓI from f : X0 → X1 to
g : Y0 → Y1 is a square diagram of the following form

X0
f //

h0

��

X1

h1

��
Y0

g // Y1

There are functors πi : ΓI → Γ for i = 0, 1; the value of πi on the
square diagram displayed above is hi : Xi → Yi. The natural transformation
β : T0Q→ T1Q may be interpreted as a functor β : C → ΓI such that πiβ =
TiQ. Similarly,a natural transformation α : T0 → T1 may be interpreted
as a functor α : S−1C → ΓI such that πiα = Ti. It can be checked that
our problem is now to factorise the functor β in the form β = αQ. This
factorisation is possible and unique by the universal property of Q. More
precisely, let s ∈ S; then TiQs is invertible in Γ. That is, βs is a square
diagram whose two vertical arrows are invertible in Γ; so βs is invertible in
ΓI . Therefore β factors uniquely through Q. 2

Conditions are known under which we can get a much better hold on
S−1C. Among them are the following:

Axiom 2.13. The set S is closed under finite compositions.

Axiom 2.14. Given any diagram

X

W

s

OO

f // Y

20



with s in S, there is a diagram

X
g // Z

W

s

OO

f // Y

t

OO

with t ∈ S and gs = tf .

Axiom 2.14 allows us to rewrite (Qf)(Qs)−1 as (Qt)−1(Qg); with the use
of Axiom 2.13 it allows us to reduce every long word

. . . (Qs2)
−1(Qf2)(Qs1)

−1(Qf1)

to a short word
(Qs)−1(Qf)

so that every morphism in S−1C can be represented as a short word.

Axiom 2.15. Given any diagram

W
s // X

f //

g
// Y

with s ∈ S and fs = gs, there exists a diagram

W
s // X

f //

g
// Y

t // Z

with t ∈ S and to tf = tg.

Using Axiom 2.15 we can tell if two short words are equivalent. Suppose
the short words are (Qs1)

−1(Qf1), (Qs2)
−1(Qf2) so that

Y1
g1

&&M
M

M
M

M
M

M

X

f1

88qqqqqqqqqqqqq

f2
&&MMMMMMMMMMMMM Y

s1

OO

s2

��

s3 //______ Y3

Y2

g2

88q
q

q
q

q
q

q
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Then the condition is that there exists s3 : Y → Y3 in S and maps gi : Yi → Y3
for i = 1, 2 such that

g1f1 = g2f2 and g1s1 = g3 = g2s2.

For our purposes, it is sufficient to assume that S satisfies 2.13, 2.14 and
2.15; hence we can construct the category of fractions S−1C as follows: Take
as objects the objects of C. For morphisms from X to Y , first take the
diagrams

Y1

X

f

88qqqqqqqqqqqqq

Y

OO

Define two diagrams
Y1

X

f1

88qqqqqqqqqqqqq

f2 &&MMMMMMMMMMMMM Y

s1

OO

s2
��
Y2

to be equivalent if there is a diagram

Y1
g1

&&MMMMMMMMMMMMM

X

f1

88qqqqqqqqqqqqq

f2
&&MMMMMMMMMMMMM Y

s1

OO

s2

��

s3 // Y3

Y2

g2

88qqqqqqqqqqqqq

such that g1f1 = g2f2 and g1s1 = g3 = g2s2. We check that this is an equiv-
alence relation and take the morphisms from X to Y to be the equivalence
classes. We define composition appropriately, check that we get a category.
Finally we define Q in the obvious way and check that it has the stated
properties. See Gabriel and Zisman [7].
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3 Axiomatic Characterisation of Classes S

Suppose we are given a subclass S of the morphisms in a category C. Then
we inquire whether it satisfies the following six axioms, and I intend to prove
that they characterise the subsets S which arise by Definition 2.6 at least for
the categories which concern us.

Axiom 3.1. The class S is closed under finite compositions.

Axiom 3.2. Given any diagram

X

W

s

OO

f // Y

with s in S, there is a diagram

X
g // Z

W

s

OO

f // Y

t

OO

with t ∈ S and gs = tf .

Axiom 3.3. Given any diagram

W
s // X

f //

g
// Y

with s ∈ S and fs = gs, there exists a diagram

W
s // X

f //

g
// Y

t // Z

with t ∈ S and to tf = tg.

The next axiom is a solution set condition necessary for constructing the
quotient category S−1C.
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Axiom 3.4. To each object Y in C there is a set of arrows
{
Y

sα−→ Zα

}

in S which are cofinal in S, i. e., given any s : Y → Z, there is an arrow
sα : Y → Zα and a map f : Z → Zα such that fs = sα

Z

f

��

Y

s

88ppppppppppppp

sα
&&NNNNNNNNNNNNN

Zα

In algebra several subsets of a ring may give the same localisation. For
instance if R = Z and

S1 = {1, 2, 4, 8, . . . , 2n, . . .}

S2 = {1, 4, 16, 64, . . . , 4n, . . .}

then S−1
1 R = S−1

2 R. To simplify matters we usually consider the biggest
such S. The following axiom imposes a condition of a similar sort on our
class S.

Axiom 3.5. If f is a morphism in C such that Qf is invertible in S−1C,
then f ∈ S.

Remark. Strictly speaking, Axiom 3.5 renders Axiom 3.1 redundant, but
3.1 is so elementary it seems foolish not to state it first.

Axiom 3.5 also admits the following equivalent formulation.

Axiom 3.5∗. Given maps

W
f
−→ X

g
−→ Y

h
−→ Z

with gf and hg in S, then g ∈ S.

This version of 3.5 has the advantage that it makes perfect sense without
assuming 3.4.
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For the next axiom, I assume that my category C has arbitrary coproducts;
since I am interested in the case of homotopy theory, I write the coproduct
of factors {Xα} as

∨
αXα.

Axiom 3. 6. If sα : Xα → Yα lies in S for each α, then
∨

α

sα :
∨

α

Xα −→
∨

α

Yα

lies in S.

The easier half of our work is as follows.

Proposition 3.7. Let C be a category with arbitrary coproducts, (E, η) a
pair satisfying 2.1, 2.2, and D, S as constructed in Definitions 2.5-2.6. Then
S satisfies 3.1 to 3. 6 inclusive. Moreover, E factors as

C
Q
−→ S−1C −→ D

I
−→ C

where S−1C → D is an equivalence.

The harder half is as follows.

Theorem 3.8. Let C be the category in which the objects are connected
CW-complexes with basepoint and the maps are homotopy classes. Let S be
a subclass of the morphisms of C, satisfying 3.1 to 3.6 inclusive. Then S
arises by 2.6 from a pair (E, η) satisfying 2.1 and 2.2.

Note. I really need only one thing about C. I want to use Brown’s Repre-
sentability Theorem. Therefore the same result is true if we take C to be the
category of 1-connected complexes or the category of spectra, etc.

In the categories which categorists usually consider one can probably get
through even more easily by using standard adjoint functor theorems, but
one presumably has to modify the axioms accordingly.

Proof of Proposition 3.7. To prove Axiom 3.1 suppose

X1
f1
−→ X2

f2
−→ X3 −→ . . . −→ Xn

fn
−→ Xn+1
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all lie in S, i. e., Ef1, Ef22 ...,Efn are all equivalences. Then

E(fnfn−1 . . . f2f1) = (Efn)(Efn−1) . . . (Ef2)(Ef1)

is an equivalence, i.e , fnfn−1 . . . f2f1 lies in S.

(ii) Suppose we are given the diagram

X

W

s

OO

f // Y

with s in S. Then we can form the diagram

EX

X

ηX

77ooooooooooooo
EW

≃ Es

OO

Ef // EY

W

s

OO
ηW

77ooooooooooooo f // Y

ηY
=={{{{{{{{

Then (Ef)(Es)−1ηX : X → EY is a map such that

[
(Ef)(Es)−1ηX

]
s = ηY f,

and ηY ∈ S, since EηY is an equivalence.

(iii) To prove Axiom 3.3, suppose we are given

W
s // X

f //

g
// Y

with s ∈ S and fs = gs. Applying E we obtain (Ef)(Es) = (Eg)(Es).
Since Es is an equivalence, Ef = Eg. But then (Ef)ηX = (Eg)ηX so by the
diagrams

X
f //

ηX

��

Y

ηY

��
EX

Ef // EY

X
g //

ηX

��

Y

ηY

��
EX

Eg // EY
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we obtain ηY f = ηY g. Since ηY ∈ S, this proves 3.3.

(iv) Take the set {sα : Y → Zα} to consist of the single map ηY : Y → EY .
Then given any s : Y → Z in S, we have the diagram

Z
ηZ // EZ

Y

s

OO

ηY // EY

≃ Es

OO

whence ηY = (Es)−1ηZs. Since ηY ∈ S, ηY : Y → EY is cofinal in S and S
satisfies Axiom 3.4.

(v) To prove Axiom 3.5, we first note that by definition, if s ∈ S, then Es
is invertible. Hence E factors through S−1C:

C
E //

Q ""F
FF

FF
FF

FF
C

S−1C

R

<<xxxxxxxx

Now suppose f is a morphism in C such thatQf is invertible. ThenRQf = Ef
is invertible, so f ∈ S.

(vi) To prove Axiom 3.6 suppose that sα : Xα → Yα lies in S for each α.
Then

s∗α : [Yα, Z] −→ [Xα, Z]

is an isomorphism for any Z ∈ D, by 2.10. Consider the following diagram

[
∨

α Yα, Z]
(
∨

α sα)∗ //

≃

��

[
∨

αXα, Z]

≃

��∏
α[Yα, Z]

∏
α s∗α

≃
//
∏

α[Xα, Z]

We conclude that (
∨

α sα)
∗ is an isomorphism for any Z ∈ D. Therefore∨

α sα lies in S, by 2.10.

It is clear that the functor E : C → C factors through D considered as a
full subcategory of C. Since f ∈ S implies that Ef is invertible the functor
C → D factors through S−1C. It remains to prove that S−1C → D is an
equivalence of categories.
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(i) Certainly every object of D is equivalent to an object EX , i.e., an
object in the image of C or S−1C.

(ii) Take a map f : EX → EY in D. Then we have a diagram

E2X
Ef // E2Y

EX

EηX=EηX ≃

OO

f // EY

EηY =EηY≃

OO

Therefore

EX
f // EY

X

ηX

OO

Y

ηY

OO

represents an element of S−1C whose image in D is the given element.

(iii) Take two morphisms of S−1C which have the same images in D, say
represented by diagrams

Y1

X

f1

88qqqqqqqqqqqqq
Y

s1

OO Y2

X

f2

88qqqqqqqqqqqqq
Y

s2

OO

I claim that without loss of generality we may suppose s1 = s2. For by 3.2
we can construct the following diagram

Y1 // Y3

Y
s2 //

s

88qqqqqqqqqqqqq

s1

OO

Y2

s3

OO

with s3 ∈ S so s = s3s2 ∈ S. Then the two elements are equally well
represented by

Y3

Y1

>>~~~~~~~

X

f1
>>}}}}}}}

Y

s

OO Y3

Y2

>>~~~~~~~

X

f2
>>}}}}}}}

Y

s

OO
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So suppose s1 = s2 and revert to the notation f1, f2. Now the condition that
the two elements have the same images in D is

(Es)−1(Ef1) = (Es)−1(Ef2)

whence
Ef1 = Ef2

Now we can make the argument that

ηY1f1 = (Ef1)ηX = (Ef2)ηX = ηY1f2

and ηY1 ∈ S whence the diagram

Y1
ηY1

''NNNNNNNNNNNNN

X

f1
??~~~~~~~~

f2 ��@
@@

@@
@@

@ Y

s

OO

s

��

(Es)ηY // EY1

Y1

ηY1

77ppppppppppppp

shows that the two given elements are equal in S−1C. 2

Before we start the proof of Theorem 3.8 let’s just observe one thing.
When we proved Axiom 3.2, we took t to be the map ηY independent of all
the other data. But when we want to use Axiom 3.2, it only delivers a map t
depending on all the other data. However, we can use Axiom 3.6 to mitigate
this effect.

Lemma 3.9. Suppose there is given a set of diagrams

Xα

Wα

sα

OO

fα // Y

with a common Y and sα in S. Then there exists a single map t : Y → Z in
S so that we can complete all the diagrams

Xα

gα // Z

Wα

sα

OO

fα // Y

t

OO
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Proof. Consider the diagram

∨
αXα

∨
αWα

∨
α sα

OO

{fα} // Y

By 3.6,
∨

α sα lies in S, so by 3.2 we can fill the diagram to get

∨
αXα

gα // Z

∨
αWα

∨
α sα

OO

{fα} // Y

t

OO

It is clear that t has the required properties. 2

Corollary 3.10. Suppose there is given a set of maps {sα : Y → Xα} in S.
Then there exists a single map t : Y → Z in S which factors through each
sα.

Proof. This is a special case of 3.9 with Wα = Y and fα = 1Y each α. 2

We operate similarly on Axiom 3.3.

Lemma 3.11. Suppose there is given a set of diagrams

{
Xα

fα //

gα
// Y

}

such that Qfα = Qgα in S−1C for each α. Then there exists a single map
t : Y → Z in S such that tfα = tgα for each α.

Proof. There is for each α a map sα : Y → Zα such that sfα = sgα. By
Corollary 3.10 there is a single map t : Y → Z in S which factors through
each sα. Then tfα = tgα for each α. 2

Lemma 3.12. A coproduct
∨

αXα in C remains a coproduct in S−1C.
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Proof. Let iα : Xα →
∨

αXα be the canonical injections; then Qiα : QXα →
Q (
∨

αXα) induces a map

(Qiα)
∗ :

[
Q

(
∨

α

Xα

)
, Y

]

S−1C

−→ [QXα, Y ]S−1C

for any Y in S−1C. We have to show that

{(Qiα)
∗} :

[
Q

(
∨

α

Xα

)
, Y

]

S−1C

−→
∏

α

[QXα, Y ]S−1C

is an isomorphism.

First we prove that the map is epi. Suppose we are given diagrams in C

Yα

Xα

fα

88ppppppppppppp
Y

sα

OO

representing elements of [QXα, Y ]S−1C . By 3.10 there is a single map t : Y → Z
in S through which all the sα factor. Then the elements in [QXα, Y ]S−1C are
equally well represented by diagrams

Z

Xα

gα

88ppppppppppppp
Y

t

OO

Then

Z

∨
αXα

{gα}

77ooooooooooooo

Y

t

OO

represents an element in [Q (
∨

αXα) , Y ]S−1C
which restricts to the given

elements.

It remains to show that the function is mono. Suppose we are given two
elements in [Q (

∨
αXα) , Y ]S−1C

with the same image in
∏

α[QXα, Y ]S−1C .
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They may be represented as diagrams

Y1

∨
αXα

f

77ooooooooooooo

Y

s1

OO Y2

∨
αXα

g

77ooooooooooooo

Y

s2

OO

By the same argument as was used in the latter part of the proof of Propo-
sition 3.7, we may assume s1 = s2. Our data now says that for each α, the
components

Xα

fα //

gα
// Y

satisfy (Qs1)
−1(Qfα) = (Qs1)

−1(Qgα), i. e. Qfα = Qgα. Now Lemma 3.11
states that there is a single map t : Y → Z in S such that tfα = tgα for each
α. Then we conclude that tf = tg in C, and so Qf = Qg. Hence

(Qs1)
−1(Qf) = (Qs1)

−1(Qg)

in S−1C. This completes the proof of Lemma 3.12. 2

The above results were derived for any category with arbitrary coproducts,
with S satisfying 3.1-3.6. Now we restrict our attention to the category whose
objects are connected CW-complexes with basepoint and whose morphisms
are homotopy classes.

Lemma 3.13. The diagram

U
� � i1 // U ∪ V

U ∩ V
?�

j1

OO

� � j2 // V
?�

i2

OO

remains a weak pushout in S−1C.

Proof. Let Y be an object in S−1C and let the diagrams

Y1

U

f1

88qqqqqqqqqqqqq
Y

s1

OO Y1

V

f2

88qqqqqqqqqqqqq
Y

s2

OO
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with s1, s2 in S represent morphisms in S−1C such that

(Qs1)
−1(Qf1)(Qj1) = (Qs2)

−1(Qf2)(Qj2)

Now as noted previously we may assume s1 = s2. Then (Qf1)(Qj1) =
(Qf2)(Qj2) Hence by 3.11 there is a t : Y1 → Z such that tf1j1 = tf2j2.
Since the diagram is a weak pushout in C there is a map f : U ∪ V → Z
such that fi1 = tf1, fi2 = tf2. Then

(
[Q(ts1)]

−1Qf
)
Qi1 = [Q(ts1)]

−1Q(fi1)

= [Q(ts1)]
−1Q(tf1)

= (Qs1)
−1Qf1

Similarly (
[Q(ts1)]

−1Qf
)
Qi2 = (Qs1)

−1Qf2

2

Lemma 3.14. The functor Q : C → S−1C has a right adjoint R : S−1C → C.

Proof. Consider [QX, Y ]S−1C where X varies over C and Y stays fixed in
S−1C. We get a contravariant functor from C to sets. I claim it satisfies the
hypotheses of E. H. Brown’s Representability Theorem. In fact, I have just
proved in Lemma 3.12 that it satisfies the Wedge Axiom, and in Lemma 3.13
that it satisfies the Mayer-Vietoris Axiom. We conclude that for fixed Y in
S−1C there is an object RY in C and an isomorphism

[QX, Y ]S−1C ←→ [X,RY ]C

natural for maps of X.

It is now standard that there is just one way to define R on maps so that
R becomes a functor and the above isomorphism becomes natural for maps
of Y. This proves 3.14. 2

Proof of Theorem 3.8. We now define E to be the composite

C
Q
−→ S−1C

R
−→ C

We define η as follows. Since there is an isomorphism

[QX,QX ]S−1C ←→ [X,RQX ]C ,
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let ηX ∈ [X,RQX ] be the element corresponding to 1QX . It is standard that
η is natural.

We have to check that (E, η) satisfies 2.1 and 2.2, and that they yield (via
2.6) the same class S we started from.

Let us use the isomorphism

[QRY, Y ]S−1C ←→ [RY,RY ]C

to define ξY ∈ [QRY, Y ]S−1C as the map corresponding to 1RY . Then it is
standard that ξ is natural and ξ, η satisfy the following identities
(3.15) ξQX ·QηX = 1QX

(3.16) RξY · ηRY = 1RY

Now QηX : QX → QRQX is a natural transformation. By Lemma 2.12
there is one and only one natural transformation

ζY : Y −→ QRY

natural for maps of Y in S−1C and such that

ζQX = QηX .

Now (3.15) gives ξQX · ζQX = 1QX . Since Q is a one-to-one correspondence
on objects, this is the same as

ξY · ζY = 1Y , Y ∈ S−1C.

By the naturality of ζ we have the following commutative diagram

QRY
ξY //

ζQRY

��

Y

ζY
��

QRQRY
QRξY // QRY

But applying Q to (3.16) we get

QRξY ·QηRY = 1QRY

whence
1QRY = QRξY · ζQRY = ζY · ξY .

34



We thus conclude that ξ and ζ are mutually inverse natural equivalences.
Applying R to (3.15) we get

RξQX · ηRQX = 1RQX ;

substituting Y = QX in (3.16) we get

RξQX · ηRQX = 1RQX

Then EηX = RQηX and ηEX = ηRQX are both inverses to the natural
equivalence RξQX so they must be equal and natural equivalences. This
proves (E, η) satisfy 2.1 and 2.2.

If f ∈ S, then Qf is invertible so Ef = RQf is invertible. Conversely,
suppose there is given f : X → Y in C such that Ef = RQf is invertible.
Then QRQf is invertible. However, we have the following commutative
diagram

QX

Qf

��

QRX≃oo

QRQf≃
��

QY QRQY≃oo

the horizontal arrows are given by ξ or ζ . Therefore Qf is invertible. Now
Axiom 3.5 shows f ∈ S.

This proves that S does arise from (E, η), by 2.6. This completes the
proof of Theorem 3,8. 2
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4 A Further Axiom

In the applications, Axioms 3.1, 3.5 and 3.6 are very easy to verify, as we will
see. However, 3.2 and 3.3 (as well as 3.4) are less convenient because they
are existence statements and they leave us to construct

X
g //___ Z

Y

t

OO�
�
�

for 3.2, or

X
t //___ Z

for 3.3. It is much more convenient to be given a definite map and be told to
verify that it lies in S (cf. 3. 6). We therefore introduce the following axiom.
For it we assume that U ∪V is a complex which is the union of subcomplexes
U , V .

Axiom 4.1. If i : U ∩ V −→ U is in S, then j : V −→ U ∪ V is in S.

Remarks. This is a sort of excision axiom (cf. following page). To show
j ∈ S it is sufficient to verify that

[U ∪ V, Z]
j∗

−→ [V, Z]

is a bijection for all Z ∈ D. We now show j∗ is automatically surjective.
Hence to check that S satisfies 4.1, it suffices to verify that j∗ is injective.

For if i ∈ S and Z ∈ D the map

i∗ : [U,Z] −→ [U ∩ V, Z]

is a bijection. Hence given g ∈ [V, Z] there is a map f ∈ [U,Z] such that
gi′ = fi where i′ : U ∩ V −→ U . Since the following diagram is a weak
pushout

Z

X

g

33fffffffffffffffffffffffffffffffff

j
// U ∪ V

∃h

77n
n

n
n

n
n

n

U ∩ V

i′

OO

i // U

j′

OO f

>>}}}}}}}}}}}}}}}}}}
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there is a map h : U ∪ V −→ Z such that hj = g. Hence j∗ is always
surjective.

Proposition 4.2. If S satisfies 3.1, 3.4, 3.5, 3.6 and 4.1, then S satisfies
3.2 and 3.3.

Proposition 4.3. There exist subclasses S in C satisfying Axioms 3.1 to
3.6 inclusive but not 4.1.

Proof of 4.2. (i) We wish to prove Axiom 3.2. Suppose we are given a
diagram

X

W

s

OO

f // Y

with s in S. Without loss of generality we may suppose s and f are injections
of complexes. For we may represent s and f as cellular maps and then take
the corresponding mapping cylinders X ′, Y ′. The diagram

X oo ≃ // X ′

W

s

``AAAAAAAA
.
�

==||||||||

and Axiom 3.5 imply the inclusion W →֒ X ′ also is in S. (More generally,
3.5 allows us to change maps in S by equivalences without leaving S.)

We now take Z = X ∪W Y . Then we get a commutative diagram

X
� � // Z

W
?�

s

OO

� � f // Y
?�

OO

Since W →֒ X is in S, by Axiom 4.1 Y →֒ Z is in S.

If you don’t wish to replace s and f by inclusions, but merely to suppose
they are cellular maps, you can construct Z as

X ∪s

(
I ×W

I × pt

)
∪f Y
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and then of course you can divide this into two parts U and V at 1
2
×W and

argue similarly. 2

Before we go on with the proof of 4.2, we need the following lemma. We
assume S satisfies 3.1, 3.4, 3.5, 3.6, and 4.1.

Lemma 4.4. Suppose the inclusion A −→ X is in S. Then the inclusion

(0×X) ∪
I × A

I × pt
∪ (1×X) −→

I ×X

I × pt

is also in S.

Proof. The inclusion

(0× A) ∨ (1× A) −→ (0×X) ∨ (1×X)

is in S by Axiom 3.6. Let

U = (0×X) ∨ (1×X)

V =
I ×A

I × pt

Then we have

U ∩ V = (0× A) ∨ (1× A)

U ∪ V = (0×X) ∪
I ×A

I × pt
∪ (1×X)

so the inclusion U ∩ V −→ U is in S. By 4.1, the inclusion V −→ U ∪ V is
in S. Now since the inclusion A −→ X is in S, it follows from the diagram

A oo ≃ //

��

I×A
I×pt

= V

��

X oo ≃ // I×X
I×pt

and 3.5 that the inclusion V −→ I×X
I×pt

is in S. Now in the following diagram

V = I×A
I×pt

� � //
� v

((RRRRRR
(0×X) ∪ I×A

I×pt
∪ (1×X)

E e

ssggggggggggg

I×X
I×pt
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two of the three maps have been shown to be in S. By 3.5 it follows that the
third is also in S. 2

Proof of 4. 2 (ii) We wish to prove Axiom 3.3. Suppose we are given a
diagram

W
s // X

f0 //

f1

// Y

of maps rather than homotopy classes with f0s ∼ f1s. Again we may assume
s is an inclusion of complexes. Now the homotopy f0s ∼ f1s provides a map
h : (0×X) ∪ I×W

I×pt
∪ (1×X) −→ Y and we get the diagram

I×X
I×pt

//___________ Z

(0×X) ∪ I×A
I×pt
∪ (1×X)

i

OO

h // Y

t

OO�
�
�
�

Now i is in S by 4.4. Hence by Axiom 3.2 which we have already proved, we
can fill in the above diagram. Then tf0 ∼ tf1. 2

Proof of 4.3. We need a counterexample. Let k be a field such that the
product map k ⊗Z k −→ k is an isomorphism; this holds precisely for the
prime fields k = Zp,Q. Passing to direct sums, we see that for any vector
space V over k the product map k ⊗Z V −→ V is an isomorphism. So if Y
is an Eilenberg-MacLane space of type (V, n) we have

Hn(Y ; k) ∼= V

as a k-module. Now I recall that maps f : X → Y are in one-to-one corre-
spondence with k-linear maps

Hn(X ; k) −→ Hn(Y ; k)

under f 7→ f∗. So given X , choose EX to be an Eilenberg-MacLane space
of type (V, n) such that

Hn(EX ; k) ∼= Hn(X ; k)

and let the map ηX : X → EX realise the isomorphism. Clearly we have an
idempotent triple. A map f : X → Y is in S if and only if f∗ : Hn(EX ; k) −→
Hn(Y ; k) is an isomorphism.
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Now let U , V denote the upper and lower hemispheres of the n-sphere,
i. e.,

U = En
+

V = En
−

U ∩ V = Sn−1

U ∪ V = Sn

Then U ∩ V −→ U lies in S, but V −→ U ∪ V does not lie in S.

Example 4.5. Let K∗ be a generalised homology theory satisfying the usual
axioms including

colimαK∗(Xα)
∼=
−→ K∗(X)

where Xα runs over the finite subcomplexes of X . Define S as follows: a
map f : X → Y is to lie in S if and only if f∗ : K∗(X) −→ K∗(Y ) is an
isomorphism. I claim this satisfies all the axioms, except possibly 3.4. We
check 3.1. Suppose

X1
f1
−→ X2

f2
−→ X3 −→ . . . −→ Xn

fn
−→ Xn+1

are maps such that (fi)∗ : K∗(Xi) −→ K∗(Xi+1) are isomorphisms. The
composite

X1
fnfn−1...f2f1// Xn+1

has the same property.

We check 3.5. By construction, the functor C
K∗−→ (graded groups) has

the property that f ∈ S implies K∗(f) is invertible. Therefore K∗ factors
through S−1C:

C
K∗ //

Q ""E
EE

EE
EE

EE
graded groups

S−1C

T

77ooooooooooo

Now suppose f : X → Y in C is such that Qf is invertible. Then TQf is
invertible, i. e., K∗(f) is invertible so f ∈ S.
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We check 3.6. Suppose fα : Xα → Yα is in S for each α, i. e. (fα)∗ :
K∗(Xα)→ K∗(Yα) is an isomorphism for all α. Then we obtain the diagram

K̃∗ (
∨

αXα)
(
∨

α fα)
∗ // K̃∗ (

∨
α Yα)

⊕
α K̃∗ (Xα)

∼=

OO

⊕α(fα)∗
∼=

//⊕
α K̃∗ (Yα)

∼=

OO

whence (
∨

α fα)∗ is an isomorphism and
∨

α fα lies in S.

We check 4.1. Suppose i : U ∩ V −→ U lies in S, i. e.,

i∗ : K∗(U ∩ V ) −→ K∗(U)

is an isomorphism. By exactness this is the same as saying K∗(U, U∩V ) = 0.
By excision this is the same as saying K∗(U ∪ V, V ) = 0. Then by exactness
again

j∗ : K∗(V ) −→ K∗(U ∪ V )

is an isomorphism, so j ∈ S. 2

Remark. Unfortunately there seems to be no way in the above example
to verify that S satisfies the set-theoretic condition expressed in Axiom 3.4.
Until we get around to verifying 3.4 under suitable extra assumptions or
proving the existence of the desired idempotent functors (E, η) in some other
way, the following two conjectures remain pious hopes or indications of what
we wish to prove.

Editorial Note. The pessimism expressed in the above remark proved to
be unwarranted. It turns out that there is a simple alternative to Axiom 3.4
which allows us to prove the the existence of idempotent functors (E, η) for
these classes S. See the epilogue for details. The editor has thus taken the
liberty of upgrading the following two statements in the original manuscript
from conjectures to theorem/corollary and made a few other revisions in some
subsequent statements referring to the conjectural status of these results.
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Theorem 4.6. Suppose there is given a generalised homology theory K∗.
Then for each X ∈ C, there exists an object EX and a map ηX : X → EX
such that

(i) (ηX)∗ : K∗(X) −→ K∗(EX) is an isomorphism,

(ii) ηX is couniversal with respect to (i).

This follows from the slight revision of the main theorem 3.8, discussed
in the epilogue, and from 2.11. In this case the category of fractions S−1C
gives you as much of homotopy theory, as you can see through the eyes
of K∗-theory. Up to equivalence, it would be embedded in C as the full
subcategory D.

Corollary 4.7. Take K∗(−) to be H∗(−;A) where A is a subring of Q, i. e.,
A is obtained by localising Z. In this way we get a localisation functor defined
without restrictions on π∗(X).

For the remainder of this section, let (E, η) and S be as in Corollary 4.7,
i. e., f : X → Y is in S if and only if f∗ : H∗(X ;A) −→ H∗(Y ;A) is an
isomorphism. Let D be the corresponding subclass of C, i. e., Z ∈ D if and
only if

f ∗ : [Y, Z] −→ [X,Z]

is an isomorphism for all f ∈ S.

Lemma 4.8. Let Z ∈ D and let Γ be a subgroup of π1(Z) such that
(Γ/[Γ,Γ])⊗ A = 0. Then Γ = 0.

Proof. Let {γα} be a set of generators for Γ. Since [γα] ⊗ 1 is zero in
(Γ/[Γ,Γ])⊗ A, there exists an integer n which is invertible in A such that

γnα = 1 in Γ/[Γ,Γ]

Then γnα is a product of commutators, say

γnα =
∏

β

[δαβ, ǫαβ ], δαβ , ǫαβ ∈ Γ
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Define a map
∨

α S
1 −→ Z such that

ια 7→ γα,

where ια is a generator of the α-th free summand of π1 (
∨

α S
1). Then

π1

(
∨

α

S1

)
−→ Γ ⊆ π1(Z)

is epi. Choose elements, δαβ, ǫαβ in π1 (
∨

α S
1) mapping onto δαβ , ǫαβ . Form

a space X by attaching to
∨

α S
1 a 2-cell e2α, one for each α, by a map in the

class
ι−n
α

∏

β

[δαβ, ǫαβ ].

Then the map
∨

α S
1 −→ Z extends to give a map X → Z and the attaching

maps induce isomorphisms on H∗(−;A). Computing with the cellular chain

complex of X we obtain H̃∗(X ;A) = 0, and so the constant map X → pt
lies in S. Since Z ∈ D, the map X → Z factors to give

X //

  A
AA

AA
AA

Z

pt

??~~~~~~~

Therefore the map π1(X)→ π1(Z) is zero. But it mapped onto Γ, so Γ = 0.
2

Corollary 4.9. If π1(X) = 0, then π1(EX) = 0.

Proof. If π1(X) = 0, then H1(X ;A) = 0; therefore H1(EX ;A) = 0 since
ηX ∈ S. Now apply Lemma 4.8 with Z = EX , Γ = π1(Z). 2

Next we show that the homotopy groups of EX are always local.

Proposition 4.10. If Z ∈ D and n is invertible in A, then division by n is
possible and unique in each homotopy group πi(Z) (including i = 1).

Proof. Let n : Si → Si be the map which induces multiplication by n
on the homotopy group πi(S

i). Then n∗ : H̃∗(S
i;A) −→ H̃∗(S

i;A) also is
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multiplication by n and hence is an isomorphism, so n ∈ S. Hence

πi(Z) = [Si, Z] −→ [Si, Z] = πi(Z),

which is again multiplication by n, is an isomorphism.

Proposition 4.11. Suppose π1(Y ) = 0. Then there is a map s : Y → Y (∞)

in S with π1
(
Y (∞)

)
= 0 and with all πi

(
Y (∞)

)
being A-modules.

Proof. We define inductively a sequence of spaces Y (i) and maps si : Y
(i) −→ Y (i+1)

in S such that πj
(
Y (i)

)
is an A-module and (si)# : πj

(
Y (i)

)
−→ πj

(
Y (i+1)

)

is an isomorphism for j ≤ i. We choose Y (1) = Y .

Having chosen Y (i), let W be a Moore space of type πi+1

(
Y (i)

)
in di-

mension i + 1, and let f : W −→ Y (i) be a map inducing an isomor-

phism πi+1(W )
∼=
−→ πi+1

(
Y (i)

)
. Now embed W in a Moore space X of

type πi+1

(
Y (i)

)
⊗A in dimension i+ 1, so that the map e : W → X is in S.

Then we have a commutative diagram

W
f //

e

��

Y (i)

j
��

X
k // X ∪ I×W

I×pt
∪ Y (i)

with e, j ∈ S. If we let Y (i+1) = X ∪ I×W
I×pt
∪ Y (i) and si = j, we see that

si : Y
(i) −→ Y (i+1) and Y (i+1) have all the required properties.

Having defined the Y (i)’s, define Y (∞) to be the colimit of the Y (i)’s.
Clearly the induced map s : Y = Y (1) → Y (∞) is in S, π1

(
Y (∞)

)
= 0 and

πi
(
Y (∞)

)
is an A-module for all i. 2

We note that the construction of Proposition 4.11 is precisely Sullivan’s
cellular construction of his localisation functor for simply connected spaces.
We now show that it is equivalent to our localisation functor.

Proposition 4.12. If π1(Z) acts trivially on πi(Z) (which implies π1(Z) is
abelian) and each πi(Z) is an A-module, then Z ∈ D.

Proof. By 2.10 it suffices to show that whenever f : X → Y is in S, then

f ∗ : [Y, Z] −→ [X,Z]

44



is epi. We may assume that f is an inclusion.

Now let g : X → Z be a map. Since f is in H∗(Y,X ;A) = 0. Hence
H i+1(Y,X ; πi(Z)) = 0). Therefore by obstruction theory, g extends to a
map g̃ : Y → Z, i. e., g̃f = g. Hence f ∗ is epi and Z ∈ D. 2

Proposition 4.13. For simply connected spaces Y the localisation ηY : Y → EY
of Corollary 4.7 is equivalent to the construction of Proposition 4.11 (i. e.
Sullivan’s localisation). Moreover (ηY )# : πi(Y ) → πi(EY ) is a localising
map for all i.

Proof. By 4.11 s : Y → Y (∞) is in s, π1
(
Y (∞)

)
= 0 and πi

(
Y (∞)

)
are

A-modules for all i. By Proposition 4.12 it follows that Y (∞) ∈ D. By
Proposition 2.11 EY ≃ Y (∞) and we have a commutative diagram

Y (∞)
OO

≃

��

Y

s
77ooooooooooooo

ηY
''OOOOOOOOOOOOO

EY

Thus EY is simply connected and the homotopy groups of EY are A-local.

By definition of S

(ηY )∗ : H∗(Y ;A) −→ H∗(EY ;A)

is an isomorphism. But since Y and EY are simply connected, then by
Serre’s C-theory this is equivalent to saying that

(ηY )# ⊗ 1 : πi(Y )⊗ A −→ πi(EY )⊗A

is an isomorphism for each i (Spanier [18, p. 512, Thm. 22]).

Now consider the following diagram

πi(Y )
(ηY )# //

��

πi(EY )

∼=
��

πi(Y )⊗A
(ηY )#⊗1

∼=
// πi(EY )⊗A
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We have just shown the bottom arrow is an isomorphism. The right-hand
arrow is an isomorphism since the homotopy groups of EY are A-modules.
The left-hand arrow is a localising map. Therefore the top arrow is also a
localising map. 2
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5 Behaviour of Idempotent Functors with Re-

spect to Fiberings; Construction of Locali-

sation Using Postnikov Decomposition

Assume C is the homotopy category of connected CW-complexes and S is
class of morphisms which satisfies 3.1, 3.5, 3.6 and 4.1 but not necessarily 3.4.
We define D to be the class of all spaces Z such, that whenever f : X → Y
is in S then

f ∗ : [Y, Z] −→ [X,Z]

is an isomorphism.

If we knew that S defined an idempotent functor (E, η), then by 2.10 in
order to show that Z ∈ D it would suffice to check that f ∗ is epi for all f ∈ S.
Since we do not require S to satisfy 3.4, we need the following lemma.

Lemma 5.1. A space Z is in D if and only if

f ∗ : [Y, Z] −→ [X,Z]

is epi for all f ∈ S.

Proof. First note that if i : X → Y is an inclusion and if i∗ : [Y, Z] −→ [X,Z]
is epi, then each map g : X → Z can be extended over Y . For if this is the
case, some homotopic map g′ extends to h′ : Y → Z and we can use the
homotopy extension property to extend g.

Now assume f ∗ : [Y, Z] −→ [X,Z] is epi for all f ∈ S. Assume f : X → Y
is in S. We wish to show f ∗ : [Y, Z] −→ [X,Z] is an isomorphism. Without
loss of generality we may suppose f is an inclusion.

We already know that f ∗ is epi, so we only have to check that it is also
mono. Suppose we are given g0, g1 : Y → Z and a homotopy g0|X ≃ g1|X .
This defines a map h : 0× Y ∪ I×X

I×pt
∪ 1× Y −→ Z. Now by Lemma 4.4, the

inclusion

0× Y ∪
I ×X

I × pt
∪ 1× Y −→

I × Y

I × pt
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lies in S. So by our assumption h extends to a map H over I×Y
I×pt

0× Y ∪ I×X
I×pt
∪ 1× Y

h

))TTTTTTTTTTTTTTTTT� _

��

Z

I×Y
I×pt

H

55jjjjjjjjjjj

which gives a homotopy g0 ≃ g1. Hence f
∗ is mono and therefore an isomor-

phism. 2

Proposition 5.2. Suppose we are given a diagram

V

q

��
U

p //W

and form the homotopy pullback

F //

��

V

q

��
U

p //W

If U , V , and W are in D, then F is (weakly) in D.

Note. By the standard construction, a point in F is a triple (u, v, ω) where
u ∈ U , v ∈ V , and ω : I →W is a path from ω(0) = p(u) to ω(1) = q(v). So
on the face of it, F is not a CW-complex; we should simply assert that any
weakly equivalent CW-complex is in D.

Proof of 5.2. We want to prove f ∗ : [Y, F ] −→ [X,F ] is epi for all f : X →
Y in S. Without loss of generality we can suppose f is an inclusion.

Suppose we are given a map X → F , that is, a pair of maps

g′ : X −→ U, g′′ : X −→ V
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and a specific homotopy

h :
I ×X

I × pt
−→ W

between pg′ and qg′′. Since X →֒ Y is an inclusion in S and U , V are in D,
we can extend g′, g′′ to g̃′, g̃′′ over Y . Now we have a map

h̃ : 0× Y ∪
I ×X

I × pt
∪ 1× Y −→W

defined by pg̃′, qg̃′′ and h. By 4.4, the inclusion

0× Y ∪
I ×X

I × pt
∪ 1× Y →֒

I × Y

I × pt

lies in S. Since W is in D, we can extend h to a map H over I×Y
I×pt

. Now the
maps g̃′, g̃′′ and H give a map Y → F extending the given map X → F .
This proves the proposition. 2

Remark. The study of homotopy pullbacks includes that of fiberings as the
special case:

F //

��

E

��
pt // B

The more general study is desirable, e. g., for the study of Postnikov decom-
positions in the non-simply connected case.

Now we introduce another axiom.
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Axiom 5.3. Suppose we are given a strictly commutative diagram of maps

V
v //

q

��

V ′

q′

��

F

���
�
�
�
�
�
�

>>}
}

}
} f //_______ F ′

���
�
�
�
�
�
�

=={
{

{
{

W w
//W ′

U

p
>>}}}}}}}}

u
// U ′

p′

=={{{{{{{{

and form the homotopy pullback. If u, v, w are in S, then f is in S.

Corollary 5.4. If E exists and S satisfies 4.1 and 5.3, then E preserves
homotopy pullbacks. More precisely, if EU , EV and EW exist, then EF
exists and is their homotopy pullback.

Proof. Take a diagram

V
ηV //

q

��

EV

Eq

��

F

���
�
�
�
�
�
�

>>}
}

}
} f //________ F ′

���
�
�
�
�
�
�

;;w
w

w
w

w

W ηW
// EW

U

p
>>}}}}}}}}

ηU
// EU

Ep

;;wwwwwwww

If you wish we can suppose the diagram is strictly commutative (replace EU ,
EV by mapping cylinders). Complete the diagram of homotopy pullbacks.
Then f is in S by Axiom 5.3 and F ′ is in D by Proposition 5.2, so up to
equivalence f is the map ηF . 2

Proposition 5.5. The localisation functor of Corollary 4.7 preserves ho-
motopy pullbacks with 1-connected base W . More precisely, if π1(W ) = 0,
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then

EF //

��

EV

��
EU // EW

is a homotopy pullback.

Proof. If W is 1-connected, then EW is 1-connected by 4.9. So in order to
apply the argument of Corollary 5.4, it is sufficient to check Axiom 5.3 with
W and W ′ 1-connected.

Consider first the diagram

G
g //______

���
�
� G′

���
�
�

V
v //

q

��

V ′

q′

��
W

w //W ′

Let us supply homotopy fibres G, G′. In the Serre spectral sequence the
operations of π1(W ), π1(W

′) on H∗(G;A), H∗(G
′;A) are trivial, because

π1(W ) = 0, π1(W
′) = 0. We are given

v∗ : H∗(V ;A) −→ H(V
′;A), w∗ : H∗(W ;A) −→ H(W

′;A)

are isomorphisms. Therefore the comparison theorem for spectral sequences
allows one to prove that

g∗ : H∗(G;A) −→ H∗(G
′;A)

is an isomorphism. But now consider

G
g //______

���
�
� G′

���
�
�

F
f //

��

F ′

��
U

u // U ′
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Let us supply the homotopy fibres; they are G, G′ up to equivalence carrying
the map we want into g. In the Serre spectral sequence the actions of π1(U),
π1(U

′) on H∗(G;A), H∗(G
′;A) are trivial, since they factor through π1(W ),

π1(W
′). Now the Serre spectral sequence shows that

f∗ : H ∗ (F ;A) −→ H∗(F
′;A)

is an isomorphism. This concludes the proof. 2

Proposition 5.5. Let π be an abelian group. Then the localisation of K(π, n)
is K(π ⊗A, n). More precisely, the following diagram is commutative

H̃∗ (K(π, n)) //

��

H̃∗ (K(π ⊗A, n))

∼=
��

H̃∗ (K(π, n);A)
∼= // H̃∗ (K(π ⊗ A, n);A)

Proof. First we tackle the case n = 1. Suppose π = Z. Then we get 0
except in dimension 1, and there

Z //

��

A

��
A // A⊗Z A

with the obvious maps.

Suppose π = Zpk , p invertible in A. Then we have 0 in even dimensions,
while in odd ones

Zpk
//

��

0

��
0 // 0

Suppose π = Zpk , p not invertible in A. Then we have 0 in even dimen-
sions, while in odd ones

Zpk
//

��

Zpk

��
Zpk

// Zpk
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all the maps being isomorphisms.

Suppose π ∼= π′ ⊕ π′′ and the result is true for π′, π′′. The map

K(π′, 1)×K(π′′, 1) −→ K(π′ ⊗ A, 1)×K(π′′ ⊗A, 1)

induces an isomorphism of H̃∗(−;A) by the Künneth theorem. Thus we have

H̃∗ (K(π′, 1)×K(π′′, 1)) //

��

H̃∗ (K(π′ ⊗ A, 1)×K(π′′ ⊗A, 1))

��

H̃∗ (K(π′, 1)×K(π′′, 1);A)
∼= // H̃∗ (K(π′ ⊗ A, 1)×K(π′′ ⊗ A, 1);A)

For the right-hand vertical arrow, suppose m is invertible in A. Then it acts
by an isomorphism on H̃i (K(π′ ⊗ A, 1)) and H̃J (K(π′′ ⊗ A, 1)) and therefore
on the tensor and torsion products of these; so by the Künneth formula
H̃∗ (K(π′, 1)×K(π′′, 1);A) is a module over A, and the right-hand vertical
arrow is an isomorphism. So the result is true for π ∼= π′ ⊕ π′′.

At this point we have proved the result where π is finitely-generated and
n = 1 by the structure theorem for finitely-generated abelian groups.

The result for general π and n = 1 follows by passing to colimits.

Now we prove the general result by induction over n. Assume it for n.
Regard K(π, n) as the space of loops on K(π, n + 1) and similarly with π
replaced by π ⊗ A. If K(π, n) −→ K(π ⊗ A, n) induces an isomorphism of
H̃∗(−;A), then so does K(π, n+1) −→ K(π⊗A, n+1) by the Rothenberg-
Steenrod spectral sequence. Similarly if H̃∗ (K(π ⊗ A, n)) is a module over
A, then so is H̃∗ (K(π ⊗A, n+ 1)) by the Rothenberg-Steenrod spectral se-
quence. 2

Theorem 5.7. Let (E, η) be the localisation of Corollary 4.7. Let X be a
space such that π1(X) is nilpotent and acts trivially on the higher homotopy
groups. Then

(i) the homology groups H̃∗(EX) are A-modules (then of course
(ηX)∗ : H̃∗(X) −→ H̃∗(EX) localises).

(ii) (ηX)# : πi(X) −→ πi(EX) is a localising map. If i = 1 this means
that the induced map on the subquotients of the lower central series is
a localising map.)
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Proof. First suppose that X has all but a finite number of its homotopy
groups zero. Then X can be built up by a finite sequence of fiberings with
1-connected base which is of type K(π, n+ 1)

Xn

ηXn //___________

��

F = EXn

���
�
�

Xn−1

ηXn−1 //

p

��

EXn−1

p′

��
B = K(π, n+ 1) // K(π ⊗A, n+ 1)

Now we assume as an induction hypothesis that (i) and (ii) hold for
ηXn−1 : Xn−1 −→ EXn−1. By 5.5, EB = K(π ⊗ A, n + 1) and p′ = Ep.
By Corollary 5.4, EXn is (up to equivalence) the homotopy fibre F of p′.
Now the homology groups H̃∗(EXn) are A-modules by a spectral sequence
argument, and (ηXn

)# : πi(Xn) −→ πi(EXn) is a localising map.

It remains to pass to the general case.

Suppose we are given a diagram

Z1 Z2p1
oo Z3p2

oo Z4p3
oo . . .

p4
oo

I define the homotopy inverse-limit Z∞ as follows: an element of Z∞ is a
sequence of functions ωn : [n, n+ 1] −→ Zn such that

ωn(n+ 1) = pnωn+1(n).

To conclude the proof, I first prove:

Lemma 5.8. If all the objects Zn are in D, then Z∞ is in D.

Proof. Suppose given f : X → Y in S. Without loss of generality we
can assume f is an inclusion. Suppose we are given a map g : X → Z∞;
equivalently, it is a sequence of maps

gn :
[n, n+ 1]×X

[n, n+ 1]× pt
−→ Zn.

Since X →֒ Y is in S, I can extend gn from n×X to n× Y . Of course, the
extension of gn+1 forces the extension pngn+1 of gn on (n+1)×Y . Now since
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the inclusion

n× Y ∪
[n, n+ 1]×X

[n, n+ 1]× pt
∪ (n + 1)× Y −→

[n, n + 1]× Y

[n, n+ 1]× pt

is in S by 4.1, we can extend gn over [n,n+1]×Y

[n,n+1]×pt
. This extends g to a map

Y → Z. This concludes the proof of the lemma. 2

Conclusion of the Proof of 5.7 To apply the lemma, consider the diagram

X

��

// Z∞

��
...

��

...

��
Xn

//

��

EXn

��
Xn−1

//

��

EXn−1

��
...

��

...

��
X1

// EX1

where the left-hand column is the Postnikov system ofX . Take the homotopy
inverse limit of the right-hand side and call it Z∞. Since the diagram is at
least homotopy commutative we have a mapX → Z∞ (not necessarily unique
at this stage).

Now Z∞ lies in D by 5.8. Since the πi(EX) are at least groups, it makes
sense to observe that there is an exact sequence

0 −→
1

lim
←−

n

πi+1(EXn) −→ πi(Z∞) −→ lim
←−

n

πi(EXn) −→ 0

But by construction πi(EXn) is constant for n≫ i; so we get πi(Z∞)
∼=
−→ πi(EXn)

for n ≫ i. The homotopy diagram shows πi(X) −→ πi(Z∞) localises. Also
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for n≫ i we get a diagram

Hi(X ;A) //

∼=
��

Hi(Z∞;A)

∼=
��

Hi(Xn;A)
∼= // Hi(EXn;A)

Hence X → Z∞ lies in S. Also H̃i(Z∞)
∼=
−→ H̃i(EX) for n≫ i so H̃∗(Z∞) is

an A-module. This concludes the proof of 5.7. 2

Corollary 5.9. (After Serre). Let X and Y be spaces such that π1(X), π1(Y )
are nilpotent and act trivially on πn(X), πn(Y ) for n > 1. Then f ∈ S, i. e.,

f∗ : H∗(X ;A) −→ H∗(Y ;A)

is an isomorphism, if and only if

f# : πi(X)⊗ A −→ πi(Y )⊗ A

is an isomorphism. (For i = 1 this means that the subquotients of the central
series map isomorphically after tensoring with A.)

First proof. (i) Suppose f# : πi(X)⊗ A −→ πi(Y )⊗ A is an isomorphism
for all i. Then 5.5 shows that for all i

(∗) H̃∗ (K(πi(X), i);A) −→ H̃∗ (K(πi(U), i);A)

is an isomorphism. Now we work up the Postnikov system by induction. For
if we assume

H∗ (X(1, . . . , n− 1);A) −→ H∗ (Y (1, . . . , n− 1);A)

is an isomorphism, then applying (∗) with i = n and the Serre spectral
sequence, we conclude that

H∗ (X(1, . . . , n);A) −→ H∗ (Y (1, . . . , n);A)

is an isomorphism. Of course, to deal with π1 we take as many steps as there
are subquotients in the central series. By taking n sufficiently large we see
that

Hm(X ;A) −→ Hm(Y ;A)
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is an isomorphism.

(ii) Conversely, suppose H∗(X ;A) −→ H∗(Y ;A) is an isomorphism. Sup-
pose we have proved that

πi(X)⊗ A −→ πi(Y )⊗A

is an isomorphism for i < n. Then as in part (i),

H∗ (X(1, . . . , n− 1);A) −→ H∗ (Y (1, . . . , n− 1);A)

is an isomorphism. By the five-lemma

H∗ (X(1, . . . , n− 1), X ;A) −→ H∗ (Y (1, . . . , n− 1), Y ;A)

is an isomorphism. But since π1 operates trivially on πn we have

Hn+1 (X(1, . . . , n− 1), X ;A)
∼= // Hn+1 (Y (1, . . . , n− 1), Y ;A)

πn+1 (X(1, . . . , n− 1), X)⊗ A

∼=

OO

// πn+1 (Y (1, . . . , n− 1), Y )⊗A

∼=

OO

πn(X)⊗A //

∼=

OO

πn(X)⊗ A

∼=

OO

This completes the induction. Of course, for n = 1 we need as many steps as
there are in your central series, and the argument requires slight adaptation
(replace πn by the relevant subquotient). 2

Second proof. We have the localisation functor already. So

f∗ : H∗(X ;A) −→ H∗(Y ;A)

is an isomorphism if and only if f ∈ S, if and only if Ef is an equivalence if
and only if

(Ef)# : π∗(EX) −→ π∗(EY )

is an isomorphism, if and only if

f# : π∗(X)⊗ A −→ π∗(Y )⊗A

is an isomorphism. 2
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Corollary 5.10. Let Y be a space such that π1(Y ) is nilpotent and acts
trivially on πn(Y ) for n > 1. Then Y ∈ D if and only if H̃∗(Y ) is local, if
and only if π∗(Y ) is local.

Proof. Consider

H̃∗(Y )
b //

a

��

H̃∗(EY )

∼=
��

π∗(Y )
d //

c

��

π∗(EY )

∼=

��

H̃∗(Y ;A)
∼= // H̃∗(EY ;A) π∗(Y )⊗A

∼= // π∗(EY )⊗A

Then H̃∗(Y ) is local iff a is an isomorphism, iff b is an isomorphism, iff c is an
isomorphism (5.9 with A = Z, iff Y ∈ D, iff d is an isomorphism, iff π∗(Y )
is local. 2

Corollary 5.11. Let X, Y be spaces such that π1 is nilpotent and acts
trivially on πn for n > 1. Then the following conditions on f : X → Y are
equivalent.

(i) There is a commutative diagram

YOO

∼=

��

X
f

77oooooooooooooo

ηX ''OOOOOOOOOOOOO

EX

(iia) f# : π∗(X) −→ π∗(Y ) is a localising map .

(iib) f∗ : H̃∗(X) −→ H̃∗(Y ) is a localising map.

(iiia) f# : π∗(X) ⊗ A −→ π∗(Y ) ⊗ A is an isomorphism and is couniversal
with that property (in the category of such X, Y ).

(iiib) f∗ : H∗(X ;A) −→ H∗(Y ;A) is an isomorphism and is couniversal with
that property (in the category of such X, Y ).

(iva) π∗(Y ) is local (i. e., an A-module) and f is universal with that property
(in the category of such X, Y ).
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(ivb) H̃∗(Y ) is local (i. e., an A-module) and f is universal with that property
(in the category of such X, Y ).

This is precisely the statement of 2.11 with the alternative descriptions of
S and D inserted from 5.9, 5.10.

[A section suggesting possible directions for further work on idempotent func-
tors is omitted here.]

Editorial Note. The results of this section can be strengthened with a little
additional effort. Namely one can weaken the hypothesis that the fundamen-
tal group is nilpotent and acts trivially on the higher homotopy groups to
requiring that the fundamental group act nilpotently on the higher homotopy
groups. This means that each higher homotopy group has a finite filtration
such that the fundamental group acts trivially on the filtration quotients.
Such spaces are called nilpotent spaces. The proof is along exactly the same
lines as above, except that one refines the Postnikov tower of the space by
a larger tower of fibrations corresponding to the filtration quotients in the
higher homotopy groups. See [10] for details.
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6 Profinite Completion

We start with the most classical example.

Example 6.1. Let G be a topological group. Then we can consider all
homomorphisms from G to finite groups Fα (with the discrete topology).
For our purposes we can replace Fα by the image of G → Fα; so it will be
sufficient to consider all closed normal subgroups Nβ ⊂ G of finite index and
consider the projections G→ G/Nβ. Such normal subgroups are ordered by
inclusion, Nβ ⊂ Nγ, so we get an inverse system of finite discrete groups,

G/Nβ → G/Nγ We define the profinite completion of G to be Ĝ = lim
←−

β

G/Nβ.

It comes equipped with a compact Hausdorff topology, the topology of the
inverse limit; and there is a canonical map G→ Ĝ.

In this way we get an idempotent functor on the category of topological
groups.

Of course, if you start with a discrete group G and complete it, you get a
topological group, say CoG. You can then apply the functor F which forgets
the topology. But the composite functor FCo is not idempotent.

Example 6.2. Take V to be a vector space over Zp, with the discrete topol-

ogy. Then CoV = V̂ ∼= V ∗∗, the double dual of V , with the topology of the
double dual. So FCoV ∼= V ∗∗ with the discrete topology. So FCoFCoV ∼=
V ∗∗∗∗ which is not isomorphic to V ∗∗ if V is infinite-dimensional.

Now let me try to explain Sullivan’s concerns. Suppose X is say an affine
algebraic variety ⊆ Cn, defined by polynomial equations with integer coeffi-
cients. Then the automorphism z 7→ z of C defines an automorphism of Cn

and an automorphism of X . So it gives an automorphism of H∗(X) or of any
other topological invariant of X .

Now suppose we have an invariant K(X) which can be defined by purely
algebraic means starting from the equations which define X . Then,we reason
that any algebraic automorphism of C which leaves Z fixed should induce an
automorphism ofK(X). In other words, the Galois group Gal(C/Q) should
act on K(X). Now, this is a monstrous big symmetry group. However,
most of it should be irrelevant. Purely algebraic constructions should hardly
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require more of C thanQ, the algebraic closure of Q. So we might expect the
action of Gal(C/Q) to factor through the quotient group Gal(Q/Q). But
this is still a pretty large group, and such symmetry is very useful.

This still leaves open, of course the question of what invariants ofX can be
defined by purely algebraic means; and in particular, how close we can come
to the usual topological invariants. This question has been much studied,
and the original studies concerned the fundamental group. It is equivalent
to study the covering spaces of X . It turns out that what you can do by
purely algebraic means is to construct the finite covering spaces of X . What
you cannot do by purely algebraic means is to construct any infinite covering
spaces of X . More precisely, let p : X̃ → X be a regular map between
algebraic varieties; if x0 ∈ X , the counterimage p−1x0 has to be an algebraic
subset of X , so if it is 0-dimensional it has to be finite. Therefore, what you
can learn about the fundamental group π1(X) is exactly the finite quotients

π1(X)/Nβ; so you can learn the profinite completion π̂1(X), which indeed
serves to summarize the information about the finite quotients.

The further developments of this story are the business of étale homotopy
theory, and I don’t claim to understand them. I am credibly informed that
what you can do by purely algebraic means is the following: you can recover
[X,Z] whenever Z is a complex all of whose homotopy groups are finite. For
example, taking Z to be an Eilenberg-MacLane space of type (π, 1), where
π is finite, you can recover the homomorphisms π1(X)→ π.

What Sullivan now does is to construct a functor X̂ of X which sum-
marizes all the information you can obtain from [X, Y ] where Y runs over
complexes with finite homotopy groups.

You might think that we already have a plausible candidate for such a
functor. That is, we define a subset S as follows: a map f : X → Y is to lie
in S if and only if f ∗ : [Y, Z] −→ [X,Z] is an isomorphism whenever Z has
finite homotopy groups. We can replace this by two conditions

(i) f ∗ : Hom (π1(Y ), F ) −→ Hom (π1(X), F ) is an isomorphism whenever
F is a finite group,

(ii) f ∗ : H∗(Y ;A) −→ H∗(X ;A) is an isomorphism whenever A is a finite
abelian group with operations from π1(Y ).

The necessity of (i) is seen by taking Z to be an Eilenberg-MacLane space
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of type (F, 1). The necessity of (ii) is seen by taking Z to be the obvious
fibering

K(A, n) −→ Z −→ K(Aut(A), 1).

(Since A is a finite group, Aut(A) is a finite group.)

The sufficiency of (i) plus (ii) is seen by obstruction theory.

The subset S clearly satisfies 3.1, 3.5 and 3.6. We see it satisfies 4.1 by
checking (i) and (ii); here (i) comes easily from Van Kampen’s Theorem and
(ii) comes by the same argument we used in 4.5.

Modulo 3.4, we get a functor EX . It is plausible to conjecture that it co-
incides with Sullivan’s X̂ in the main cases of interest. In fact, Sullivan only
proves that his functor X̂ has good properties under rather restrictive con-
ditions (π1(X) = 0 and πn(X) finitely generated for each n; see Sullivan [19,
Theorem 3.9, p. 330].) But since Sullivan indicates that these conditions can
be weakened, let us disregard the conditions and turn to Sullivan’s conclu-
sions. The conclusion 3.9(iv) certainly implies that Sullivan’s map X → X̂

lies in our class S; and whenever this conclusion holds, then Sullivan’s X̂ is
equivalent to our EX . It may even be the case that Sullivan’s X̂ is equiva-
lent to our EX whenever X is a finite complex. This would be completely
satisfactory, because the main application arises when X is an algebraic va-
riety, and algebraic varieties tend to be equivalent to finite complexes. It
is equally certain that I can’t prove it because of genuine difficulties with
the fundamental group. For example, one might like to know that if G is a
finitely presented group, such as π1(X), then any homomorphism from Ĝ to
a finite group is necessarily continuous. So far as I know, this is not known.

There are reasons why X̂ and EX should not be equivalent in general. The
first is this Sullivan ’s approach assumes that you are givenX and know [X,Z]
whenever Z has finite homotopy. The construction of EX tends to assume
that you know [Y, Z] whenever Z has finite homotopy groups and Y runs over
a lot of other things as well asX . Clearly if you take Y to be something which
is not an algebraic variety you are feeding in information not accessible to
algebraic geometry, so in this sense it is not obvious that algebraic geometry
will suffice to construct EX . The second reason is this. Sullivan’s approach
does not give an idempotent functor defined on the category C we have been
considering. If it is to have any chance to be idempotent it must be defined
on a different category.
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To explain this, I need the notion of a topologised object in a category.
One way to define a group object in a category is as follows. It is an object
G such that the set [X,G] is given the structure of a group for each X so
that the induced functions f ∗ : [Y,G] −→ [X,G] are group homomorphisms.
Similarly, we say that T is a topologised object in a category C if for each
X in C, [X, T ] is given the structure of a topological space, and for each
f : X → Y in C, the induced function f ∗ : [Y, T ] −→ [X, T ] is continuous.
Let T and U be topologised objects in C, we say that a map g : T → U in C
is a map topologised objects if. g∗ : [X, T ] −→ [X,U ] is, continuous for each
X .

Example 5.3. Let π be a compact (Hausdorff) abelian group, for example,
S1 or the p-adic integers. Then the Eilenberg-MacLane space K(π, n) is a
topologised object in the homotopy category. In fact, for any X we topol-
ogise Cq(X ; π) with the product topology; we take the obvious topology on
cocycles, coboundaries and Hn(X ; π). This gives a topology in [X,K(π, n)]
for each n (indeed making it a compact group), and the induced functions
are continuous. A continuous homomorphism θ : π1 → π2 induces a map of
the topologised objects K(π1, n) −→ K(π2, n).

I will say that T is a compact Hausdorff object in C if it is topologised and
the topology on [X, T ] is compact and Hausdorff for each X . Example 5.3
is of this kind. However, Sullivan speaks of a compact representable functor;
that is, he identifies T with the representable functor [X, T ].

In particular, let C be the homotopy category, and let CT be the category
of topologised objects in C. Then our ignorance of CT is really deplorable;
in fact, it is one of the objects of this lecture to persuade some of you to
give a little thought to CT . Anyway, Sullivan’s profinite completion functor
is a functor Co from C to CT . Of course, we can compose it with the
functor F : CT → C, which forgets the topology; but the composite FCo is
not idempotent. (Take X to be an Eilenberg-MacLane space of type (V, n)
where V is as in Ex. 5.2.) Therefore, the only chance of making Sullivan’s
profinite completion idempotent is to set it up as a functor from CT to CT

(compare 5.1). I do not know whether Sullivan’s profinite completion can be
set up as a functor from CT to CT ; a fortiori I do not know if it can be set
up as an idempotent functor from CT to CT .

At this point, I should start to do the work. What follows is my interpre-
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tation of a letter from Sullivan.

Proposition 6.4. Let Z ∈ C be an object with finite homotopy groups. Then
there is one and only one way to give Z the structure of a compact Hausdorff
object. Any map Z → Z ′ between such objects is a map of topologised objects.

Proof. First let X be a finite complex. Then [X,Z] is a finite set, and there
is one and only one way to make it compact Hausdorff space.

Next letX be a general complex, and defineH(X) = lim
←−

α

[Xα, Z], whereXα

runs over all the finite subcomplexes of X . We topologise lim
←−

α

[Xα, Z] with the

inverse-limit topology. Clearly H is a contravariant functor from the category
C to the category of compact Hausdorff spaces. I claim H is representable.
To check the wedge axiom is automatic. To check the Mayer-Vietoris axiom
is straightforward, but one uses in an essential way the fact that the inverse
limit of a system of nonempty finite sets is nonempty. We conclude that

H(X)
∼=
←→ [X,Z]. Now we clearly have a natural transformation

[X,Z] −→ lim
←−

α

[Xα, Z] = H(X)←→ [X,Z]

This must be induced by a map Z → Z. Now if X is a sphere then clearly
[X,Z] −→ lim

←−

α

[Xα, Z] is an isomorphism because the limit is a attained.

Therefore Z → Z induces isomorphisms of homotopy groups, and is an
equivalence. So for any X , the obvious map [X,Z] −→ lim

←−

α

[Xα, Z] is an

isomorphism. We already topologised lim
←−

α

[Xα, Z], so this puts a compact

Hausdorff topology on [X,Z]. We check that we have made Z a compact
Hausdorff object, and such a structure on Z is unique. For any map Z → Z ′

the map [Xα, Z] −→ [Xα, Z
′] is continuous, so lim

←−

α

[Xα, Z] −→ lim
←−

α

[Xα, Z
′] is

continuous. 2

Now we turn to the construction of Sullivan’s profinite completion Y → Ŷ .
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Let Y be a fixed object in C. We consider a category: the objects are
maps gα : Y → Zα such that Zα has finite homotopy groups; the arrows are
diagrams

Zα

  A
AA

AA
AA

A

Y

gα

??~~~~~~~~

gβ
// Zβ

We check that this is a directed category (directed away from infinity). Given
two objects, I have to find one further from infinity than each. This is easy:
given

Zα

Y

gα

>>}}}}}}}}

gβ   @
@@

@@
@@

Zβ

I construct
Zα

Y

gα

55jjjjjjjjjjjjjjjjjjjjj

gβ
))SSSSSSSSSSSSSSSSSSSSS // Zα × Zβ

::uuuuuuuuu

$$H
HHHHHHHH

Zβ

and Zα × Zβ has finite homotopy groups. Secondly, suppose we are given a
diagram

•
//
// • ;

I have to construct
//___ •

//
// • .

So suppose given
Zα

k

��

h

��

Y

88ppppppppppppp

&&MMMMMMMMMMMMM

Zβ
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Form
Zα

(1,k)
��

Zα

(1,h) // Zα × Zβ

and take the homotopy pullback

F //

��

Zα

(1,k)
��

Zα

(1,h) // Zα × Zβ

(If I want to stay inside the category of connected spaces, I take the compo-
nent of the basepoint.) Then F has finite homotopy groups, and it is easy
to show that there is a map Y → F which does as required.

It is very tempting to modify this construction, taking Y to be a fixed
object in CT and considering maps gα : Y → Zα in CT . The difficulty comes
at the last step above: how can we know that we can, choose the map Y → F
to be a map of topologised objects?

Now that we have a directed category, we form H(X) = lim
←−

α

[X,Zα] Each

set [X,Zα] is a compact Hausdorff space by 5.4, so we give lim
←−

α

[X,Zα] the

inverse-limit topology, and it becomes a compact Hausdorff space. Thus H
becomes a contravariant functor from C to compact Hausdorff spaces.

Lemma 6.5. H is representable.

Proof. The proof of the wedge axiom is automatic. The proof of the Mayer-
Vietoris axiom is straightforward, but one makes essential use of the fact
that an inverse limit of nonempty compact Hausdorff spaces is nonempty.2

So we have lim
←−

α

[X,Zα] ←→ [X, Ŷ ] for an object Ŷ in C. Since we have

given lim
←−

α

[X,Zα] a compact Hausdorff topology, Ŷ is a compact Hausdorff

object in C. We have an obvious natural transformation.

[X, Y ] −→ lim
←−

α

[X,Zα]←→ [X, Ŷ ];
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this must be induced by a map Y → Ŷ .

It is rather clear that the homotopy groups of Ŷ are profinite: we have
[Sn, Ŷ ]←→ lim

←−

α

[Sn, Zα] where [Sn, Zα] is finite.

The following are among the main properties of Sullivan’s profinite com-
pletion.

Theorem 6.6. (Sullivan [19, Theorem 3.9, p. 330]) Suppose Y is simply
connected and its homotopy groups πn(Y ) are finitely-generated for each n.
Then

(i) The homotopy groups of Ŷ are profinite and universal with this prop-
erty: if

Ŷ

Y

88qqqqqqqqqqqqq

&&MMMMMMMMMMMMM

Z

and the homotopy groups of Z are profinite, then

Ŷ

∃t

���
�
�
�
�
�
�

Y

88qqqqqqqqqqqqq

&&MMMMMMMMMMMMM

Z

(ii) More precisely, π̂i(Y )
∼=
−→ πi(Ŷ ).

(iii) The topological structure of Ŷ is determined by the underlying object.
In fact

CoFCoY ∼= CoY.

The proof is to see what profinite completion does to the Postnikov system.
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Editorial Note. It turns out that Sullivan’s profinite completion functor,
for spaces satisfying the hypothesis of Theorem 6.6, is a special case of the
localisation functor of Theorem 4.6. Namely if one takes as S the class of
morphisms which induce isomorphisms in H∗(−;A), where A is a torsion
abelian group which has p-torsion for all primes p (e.g. A = ⊕pZ/pZ),

then the corresponding idempotent functor EY is naturally equivalent to Ŷ .
Again a good reference is [10].
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7 Use of Brown-Peterson Homology in Stable

Homotopy

You may have heard that we have a contradiction in homotopy theory these
days. There is supposed to be a certain map γ1; and Zahler and Thomas
claim to have proved that γ1 6= 0, while Oka and Toda claim to have proved
that γ1 = 0. The situation reminds me of these words of André Weil [22]
about the need for rigour in mathematics: “It is possible for the advancing
army to outrun its services of supply and incur disaster unless it waits for
the quartermaster to perform his inglorious but indispensable tasks.” In the
present situation the duty of the quartermaster is clearly to call in both
parties to the dispute and audit their books.

I have tried to repeat the work of Zahler and Thomas. What I would
like you to do is to watch with the most critical attention while I try to
perform it in public. I don’t think I’ve got anything up my sleeve, but
someone, somewhere has got a joker hidden away; probably not because he
put it there, but more likely because he accepted someone else’s work in too
trusting and uncritical a fashion.

I must begin by explaining the element γ1 and for that I need the spaces
V (n) of Toda and others. Let p be an odd prime. Let us recall that according
to Milnor, the mod p homology of the Eilenberg-MacLane spectrum HZp is
the tensor product of an exterior algebra and a polynomial algebra

(HZp)∗(HZp) = Λ[τ0, τ1, . . .]⊗ Zp[ξ1, ξ2, . . .].

The Brown-Peterson spectrum BP admits a map f : BP → HZp so that

f∗ : (HZp)∗(BP )→ (HZp)∗(HZp)

is mono, and its image is Zp[ξ1, ξ2, . . .]. Equivalently (HZp)∗(BP ) is a cyclic
module over the mod p Steenrod algebra A∗ generated by one generator f
and is isomorphic to the quotient A∗/A∗βpA

∗, where βp denotes the Bockstein
operation.

Similarly, we would admit X as a spectrum of type V (∞) if it had a map
f : X → HZp such that

f∗ : (HZp)∗(X)→ (HZp)∗(HZp)
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is mono and its image is Λ[τ0, τ1, . . .]. It would be well to specify also that X
should be connected and (HZq)∗(X) = 0 for q prime to p. If such a spectrum
existed, we could form

V (∞) ∧ BP −→ HZp ∧HZp −→ HZp,

and this would induce an isomorphism of (HZp)∗ so that V (∞)∧BP would
be an Eilenberg-MacLane spectrum HZp. However, no such spectrum V (∞)
is known to exist, so we turn to finite approximations to it.

We admit X is a spectrum of type V (n) if it has a map f : X → HZp

such that
f∗ : (HZp)∗(X)→ (HZp)∗(HZp)

is mono and its image is Λ[τ0, τ1, . . . , τn]. Essentially we are prescribing
(HZp)∗(X) as a module over the mod p Steenrod algebra. Again we specify
that X should be connected and (HZq)∗(X) = 0 for q prime to p.

Example. V (0) exists; we can take V (0) = S0 ∪p e
1.

Example. V (1) exists. More precisely, there is a map α : S2p−2 −→ S1 such
that the operation P 1 is non-zero in (HZp)∗(S

1 ∪α e
2p−1. Since pα = 0 and

p, α, p = 0, we can find a map A to fill the diagram below

S2p−1 ∪p e
2p−1 A //______ S0 ∪p e

1

��
S2p−2

OO

α // S1

The mapping cone of A is a complex

V (1) = V (0) ∪A CS
2p−2V (0) = S0 ∪p e

1 ∪α e
2p−1 ∪p e

2p

in which the operation βP 1β is non-zero.

It is clearly stated by Toda that

V (2) exists for p ≥ 5

V (3) exists for p ≥ 7
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(H. Toda [21, pp. 53, Thm. 1.1].) He also asserts that these V (n) are unique
up to homotopy equivalence (Theorem 4.1, p. 57). This is not actually
essential for our purposes, but it is convenient.

Now we want to see how the spaces V (n) give rise to systematic families
of elements in homotopy theory. We have seen that there is a map

A : S2(p−1)V (0) −→ V (0).

By iterating it we can construct

S2r(p−1)V (0) // . . . // S4(p−1)V (0)
S2(p−1)A // S2(p−1)V (0)

A // V (0)

��
S2r(p−1)

OO

αr // S1

So we construct αr ∈ π
s
2r(p−1)−1. It is usual to write q = 2(p− 1); then αr is

of degree rq − 1.

Toda clearly asserts that there is a map

B : S2(p2−1)V (1) −→ V (1) for p ≥ 5

whose mapping cone is V (2), and a map

C : S2(p3−1)V (2) −→ V (2) for p ≥ 7

whose mapping cone is V (3) (Toda [21, Corollary 4.3, p. 58]).

By iterating B we can construct

S2r(p2−1)V (1) // . . . // S4(p2−1)V (1)
S2(p2−1)B // S2(p2−1)V (1)

B // V (1)

��

S2r(p2−1)

OO

βr // S2p

βr is of degree 2r(p2 − 1) − 2p = r(p + 1)q − q − 2. By iterating C we can
construct

S2r(p3−1)V (2) // . . . // S4(p3−1)V (2)
S2(p3−1)C // S2(p3−1)V (2)

C // V (2)

��

S2r(p3−1)

OO

γr // S(p+2)q+3
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γr has degree 2r(p3 − 1) − (p + 2)q − 3 = r(p2 + p + 1)q − (p + 2)q − 3. In
particular, γ1 has degree (p2 − 1)q − 3.

Now, of course, if C and V (3) do not exist, then there is nothing to discuss,
but it is generally supposed that they do exist.

Now we must discuss the BP -homology and cohomology of our spaces
V (n). It is necessary to recall that π∗(BP ) is a polynomial algebra over Z(p)

on generators v1, v2, v3, . . . , vi, . . ., of dimension 2(pi − 1). We will make the
choice of generators vi more precise later. From the cofibering

S0
p // S0 // V (0) // S1

p // S1

we see that BP∗(V (0)) ∼= π∗(BP )/pπ∗(BP ) on one generator of dimension
0, coming from the injection S0 → V (0). Similarly,

BP ∗(V (0)) ∼= π∗(BP )/pπ∗(BP )

on one generator of dimension 1, coming from the projection V (0)→ S1.

We now observe that

(HZp)∗(V (n) ∧BP ) −→ (HZp)∗(HZp)

is mono, and epi in dimension < 2pn+1 − 1. Therefore

πi(V (n) ∧BP ) = 0 for 0 < i < 2pn+1 − 2

i. e.,
BPi(V (n)) = 0 for 0 < i < 2pn+1 − 2.

In particular, if gn ∈ BP0(V (n)) comes from the injection S0 → V (n), then
we have

vign = 0 for i ≤ n

Consider now the cofibering

SqV (0)
A // V (0) // V (1) // Sq+1V (0)

SA // SV (0)

We have v1g0 7→ 0 in BPq(V (1)), so we conclude

A∗g0 = c1v1g0, c1 ∈ Zp
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with c1 6= 0. Then the cofibering gives

BP∗(V (1)) ∼= π∗(BP )/(p, v1)

generated by g1. Similarly, we see that

B∗g1 = c2v2g1, c1 ∈ Zp

with c2 6= 0, that
BP∗(V (2)) ∼= π∗(BP )/(p, v1, v2)

generated by g2, that

C∗g2 = c33v3g2, c3 ∈ Zp

with c3 6= 0, and that

BP∗(V (3)) ∼= π∗(BP )/(p, v1, v2, v3)

generated by g3.

Similar results are true for BP -cohomology. To deduce them, recall that

BP ∗(X) ∼= BP∗(DX)

where DX is the Spanier-Whitehead dual of X . But the Spanier-Whitehead
dual of a space V (n) is again a space V (n). Therefore we have

BP ∗(V (0)) ∼= π∗(BP )/(p)

BP ∗(V (1)) ∼= π∗(BP )/(p, v1)

BP ∗(V (2)) ∼= π∗(BP )/(p, v1, v2)

BP ∗(V (3)) ∼= π∗(BP )/(p, v1, vz, v3)

on generators g0, g1, g2, g3 of degrees 1, 1+ (2p− 1), 1+ (2p− 1)+ (2p2− 1),
1 + (2p− 1) + (2p2− 1) + (2p3− 1) coming from the projections V (0)→ S1,
V (1)→ S2p, etc. Similarly, we have

A∗g0 = c′1v1g0

B∗g1 = c′2v2g1

C∗g2 = c′3v3g2
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where c′1, c
′
2, c

′
3 ∈ Zp and are non-zero.

Without loss of generality we may replace A by an integer multiple mA
where m 6≡ 0 mod p. Similarly for B and C. Therefore we may suppose that

A∗g0 = v1g0

B∗g1 = v2g1

C∗g2 = v3g2

This is the normalisation usually adopted by those who work with BP -
cohomology. Now I want to explain the nature of the proof that γ1 6= 0.
First we form the complex

X3 = S0 ∪γ1 e
(p2−1)q−2

Then we inspect the cofibering

S(p2−1)q−3
γ1 // S0 i // X3 = S0 ∪γ1 e

(p2−1)q−2 // S(p2−1)q−2 // S1

Here BP ∗(S0) is non-zero only in dimensions ≡ 0 mod q, and BP ∗(S(p2−1)q−3)
is non-zero only in dimensions ≡ −3 mod q, and we may certainly suppose
q ≥ 8, so BP ∗(γ1) = 0. There is a unique element h ∈ BP 0(X3) projecting
to the generator of BP 0(S0) and we take k to be the image of the generator

in BP (p2−1)q−2
(
S(p2−1)q−2

)
. We will produce a cohomology operation χ in

BP -cohomology such that χh is a non-zero multiple of k. (By ”multiple”
we mean a multiple by an element of π∗(BP ).) This will contradict the
statement γ1 = 0, which implies X3 ≃ S0 ∨ S(p2−1)q−2. For if so, we would
have a map j : X3 → S0 such that ji = 1; then i∗j∗i∗h = i∗h and i∗ :
BP 0(X3) −→ BP 0(S0) is an isomorphism, so h = j∗i∗h. Then

χh ⊇ j∗i∗χh ⊇ j∗i∗(µk) ⊇ j∗0 = 0.

The only snag is that χ is a tertiary operation. However, when we see it we
will be able to check that it is defined on h and therefore also on i∗h, and
that its indeterminacy in X3 is manageable and its indeterminacy in S0 is
zero. I must now explain how to set up χ and calculate it.

For this I must explain about primary operations on BP -cohomology and
the relations between them. In [2], it is stated that

BP∗(BP ) = π∗(BP )[t1, t2, t3, . . .]
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where the ti are well-defined elements such that deg ti = 2(pi−1) (Thm 16.1,
p. 97). It follows that in BP ∗(BP ) we have unique elements Ri1i2...in such
that

< Ri1i2...in , t
j1
1 t

j2
2 . . . t

jn
n > = δi1j1δi2j2 . . . δinjn.

In particular, we will need R1, Rp and R01, which are the elements of the
“dual base” corresponding to t1, t

p
1, t2. They are of degree q, pq, (p+ 1)q.

Lemma 7.1. We have

R1Rp −RpR1 = R01

R1R01 −R01R1 = 0

RpR01 −R01Rp = 0

Proof. According to [1, Prop. 3, p. 73], the composition product in
BP ∗(BP ) is determined by the diagonal map in BP∗(BP ), according to
the following formula. Suppose

ψx =
∑

i

ei ⊗ xi

Then
< ab, x > =

∑

i

(−1)|b| |ei| < a, ei < b, xi >> .

According to [2, Th. 16.1, p. 98], the diagonal map in BP∗(BP ) is given by
the following formulae

ψt1 = t1 ⊗ 1 + 1⊗ t2

ψt2 = t2 ⊗ 1 + t1 ⊗ t
p
1 + 1⊗ t2 −

∑

i+j=p

i>0,j>0

(p− 1)!

i!j!
v1t

i
1 ⊗ t

j
1.

Here I need the fact that

v1 = [CP p−1] = pmp−1

in the notation of the above. Moreover, I need to know that if I have a mono-
mial tI =, ti11 t

i2
2 . . . t

in
n of degree say 2d, then ψtI has the form

∑
cJKt

J ⊗ tK ,
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where 0 ≤ deg cJK ≤
2d
p
, 2d(p−1)

p
< deg(tJ ⊗ tK) ≤ 2d. So in evaluating

a product RI ⊗ RJ of degree 2e, it will be sufficient to consider ψtI with
deg tI < 2ep

p−1
. Hence in proving this lemma, we need not worry about mono-

mials containing t3, t4, . . .. The following tables give enough values of the
pairing < ab, tI > to prove the lemma.

t1 t2 tp+1
1 t1t2

R1Rp p+ 1 0 1 −v1
RpR1 p+ 1 0 0 −v1

tj1 t1t2 t2

R1R01 0 1 0
R01R1 0 1 0

tj1 tp1t2 tp+1
1 t2 tp+2

1 t2 t2 t1t
2
2

RpR01 0 1 0 0 0 0
R01Rp 0 1 0 0 0 0

2

Multiplying out these relations, I get:

RpR
2
1 − 2R1RpR1 +R2

1Rp = 0

R2
pR1 − 2RpR1Rp +R1R

2
p = 0.

I now construct maps of spectra

S(2p+2)qBP S(p+2)qBP ∨ S(2p+1)qBP
d2oo SqBP ∨ Spq

d1oo BP
d0oo

with components

d0 =

[
R1

R2

]

d1 =

[
RpR1 − 2R1Rp R1

R2
p R1Rp

]

d2 =
[
Rp R1

]

Then by construction we have

d2d1 ≃ 0 d1d0 ≃ 0
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Consider also h : X3 → BP . Then I claim we have d0h ≃ 0. in fact, the
maps

BP q(X3)
i∗ // BP q(S0)

BP pq(X3)
i∗ // BP pq(S0)

are isomorphisms and

[S0, SqBP ] = 0

[S0, SpqBP ] = 0

so BP q(X3) = 0, BP pq(X3) = 0. Hence the composite

S0 // X3
h // BP

d0 // SqBP ∨ Spq

is zero, and so is d0h. For the sake of convenience I will call the spectra

C3 C2
d2oo C1

d1oo C0
d0oo

Let me now nail my colours to the mast. From now on set r = (p2 − 1)q.

Theorem 7.2. Let X3 = S0 ∪γ1 e
r−2. Then

BP ∗(X3) ∼= π∗(BP ) on generator h of degree 0, restricting to the

generator of S0

⊕π∗(BP ) on generator ℓ of degree r − 2, coming from the

generator of Sr−2

The operation {d2, d1, d0, h} is defined, and is a coset of maps

S2X3 −→ C3

and it is −2vp−3
2 ℓ mod (p, v1)ℓ.

At this time we only prove part of the theorem. We have already noted
that the facts about BP 0(X3) follow immediately from the cofibering

Sr−3
γ1 // S0 // X3

// Sr−2 // S1

77



We first check that the operation is defined. As I stated above d0h ≃ 0.
In fact, we showed

[X3, S
qBP ]

∼= // [S0, SqBP ] = 0

[X3, S
pqBP ]

∼= // [S0, SpqBP ] = 0

So we will certainly be able to form the Toda brackets

{d2, d1, d0}, {d1, d0, h}

The first is a set of maps SC0 → C3 but all such maps are null-homotopic
because BP ∗(BP ) = 0 in dimensions ≡ −1 mod q. Similarly, the second
is a set of maps SX3 → C2; but all such maps are null-homotopic because
BP ∗(X3) = 0 in dimensions ≡ −1 mod q. So these brackets are zero mod
zero. Therefore the quadruple Toda bracket

{d2, d1, d0, h}

is defined, and it is a set of maps S2X3 → C3.

Similarly, in the sphere S0, {d2, d1, d0, hi} is defined, and it is a set of
maps S2 −→ S(2p+2)qBP , i. e., it is zero mod zero.

Let us consider the indeterminacy of {d2, d1, d0, h}. We can vary the null-
homotopies d2d1 ≃ 0, d1d0 ≃ 0, d0h ≃ 0 by maps

SC1 −→ C3, SC0 −→ C2, X3 −→ C1

All such maps are null-homotopic, the first two because BP ∗(BP ) = 0 in
dimensions ≡ −1 mod q, the third because BP ∗(X3) = 0 in dimensions ≡ −1
mod q. We can vary the null-homotopies

{d2, d1, d0} ≃ 0, {d1, d0, h} ≃ 0

by maps
S2C0 −→ C3, S2X3 −→ C2.

Any map of the first sort is null-homotopic because BP ∗(BP ) = 0 in dimen-
sions ≡ −2 mod q. Maps of the second sort may be non-zero, but

[Sr, C2]
j∗ // [S2X3, C2]
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is an isomorphism. We conclude that the indeterminacy of our operation is
precisely

d2[S
r, C2]j

I now seek to prove that this indeterminacy is contained in the set (p, v1)ℓ.
First I observe that the ideal (p, v1) ⊆ π∗(BP ) is closed under all primary
operations. This is clear, because it is the kernel of an induced homomor-
phism

π∗(BP ) = BP ∗(S2p) −→ BP ∗(V (1)) =
π∗(BP )

(p, v1)

Next we observe that any element of [Sr, C2] has the form

[
a
b

]

with a, b ∈ π∗(BP ) of degrees (p
2 − p− 3)q, (p2 − 2p− 2)q. So they must be

of the form a = vp1c, b = v1d with c, d of degree (p− 3)(p+ 1)q. So they lie
in (p, v1), and so

d2

[
a
b

]
=
[
Rp R1

] [ a
b

]

lies in (p, v1). It remains only to evaluate the operation, and this will take a
bit more work.

First perhaps, you would like me to give you a bit more information on
the action of operations RI on the coefficient ring π∗(BP ). We have

RI(xy) =
∑

J+K=I

(RJx)(RKy)

so it is sufficient to give RI on the generators.

Lemma 7.3. Let the generators vi be defined by the formulae of Hazewinkel.
Then

R0v1 = v1

R1v1 = p

RIvi = 0 for |I| > 1

R0v2 = v2

79



R1v2 = −(p + 1)vp1
Riv2 ≡ 0 mod pivp+1−i

i for 1 < i < p

Rpv2 ≡ 0 mod pp−1v1

Rp+1v2 ≡ 0 mod pp

R01v2 = p

RIv2 = 0 for |I| > p+ 1

R1v3 = −vp2 mod (p, v1)

Rpv3 ≡ 0 mod (p, v1)

Proof. The formulae of Hazewinkel are as follows. We write mi for what is

called mpi−1 in [2], i. e., mi =
[CP pi−1]

pi
. Then

(i) v1 = pm2

(ii) v2 = pm2 − v
p
1m1

(iii) v3 = pm3 − v
p2

1 m2 − v
p
2m1

Perhaps we should try to justify these formulae. First consider the homo-
morphism

Q2n(π∗(BP )) −→ Q2n(H∗(BP ))

where Q2n means the indecomposable quotient in dimension 2n. It is known
that its image is the subgroup of index p if n = pi − 1 ([2, Lemma 8.10, p.
58]). So we must have

vi = λpmi mod decomposables

where λ = a
b
with a and b prime to p, and we may as well normalise by taking

λ = 1. This disposes of v1. For v2 we must have

v2 = pm2 + λvp+1
1

where λ is rational; and since p2m2 = [CP p2−1] is integral, we must have
pλ ∈ Z(p). Of course, we get an equally good generator by changing mod p.
So we may as well set

v2 = pm2 + µvp1m1
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where µ ∈ Z(p) and we want to determine µ mod p.

Consider now the Kronecker product < Rp⊗Rp2−p, ψt3 > . It must lie in
π∗(BP ). But according to [2, Thm 16.1, p. 98], we have

ψt3 +m1(ψt2)
p +m2(ψt1)

p2

= t3 ⊗ 1 + t2 ⊗ t
p2

1 + t1 ⊗ t
p
2 + 1⊗ t3 +m1t

p
2 ⊗ 1 +m1t

p
1 ⊗ t

p2

1

+m11⊗ t
p
2 +m2t

p2

1 ⊗ 1 +m21⊗ t
p2

1

Consider the pairing of these various terms with Rp ⊗ Rp2−p. On the

right-hand side we get O. On the left-hand side, the term m2(ψt1)
p2 gives

m2
p2)!

p!(p2 − p)!
≡ pm2 mod p3m2.

We have

ψt2 = t2 ⊗ 1 + t1 ⊗ t
p
1 + 1⊗ t2 − v1(t1 ⊗ t

p−1
1 + . . .+ tp−1

1 ⊗ ti)

Therefore
< (ψt2)

p, Rp ⊗ Rp2−p > = (−1)pvp1 = −vp1

We conclude that pm2 −m1v
p
1 lies in π∗(BP ). So we may as well choose it

for v2.

We now conclude that the coefficient of tp1⊗ t
p2−p
1 in ψt3 is −v2 mod p3m2.

For 0 ≤ i < p the coefficient of ti1 ⊗ t
p2−1
1 in ψt3 is 0 mod p2m2.

Let us now proceed similarly with the Kronecker product< Rp2⊗Rp3−p2 , ψt4 >.
The result is an element of π∗(BP ). By the same reference we have

ψt4 +m1(ψt3)
p +m2(ψt2)

p2 +m3(ψt1)
p3 = . . . ,

where every term on the right-hand side yields 0 when paired withRp2 ⊗ Rp3−p2.

The term m3(ψt1)
p3 gives

m3
(p3)!

(p2)!(p3 − p2)!
≡ pm3 mod p3m3.

The term m2(ψt2)
p2 gives m2(−v1)

p2 = −m2v
p2

1 . The term m1(ψt3)
p gives

m1

(
(−v2)

p mod (p2m2)
)
.
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We conclude that there is an element of π∗(BP ) of the form

pm3 −m2v
p2

1 −m1a

where a ≡ vp2 mod(p2m2).

By the same reference, the effect of the operation RI on the generators
mi is

R0m1 = m1, R1m1 = 1, RIm1 = 0 otherwise

R0m2 = m2, Rpm2 = m1, R01m2 = 1, RIm2 = 0 otherwise

R0m3 = m3, Rp2m3 = m2, R0pm3 = m1, R001m3 = 1, RIm3 = 0 otherwise.

So we get
R1v1 = R1(pm1) = pR1(m1) = p

R1v2 = R1

(
pm2 −

vp+1
1

p

)
= −

p + 1

p
(R1v1)v

p
1 = −(p + 1)vp1

Riv2 = Ri

(
pm2 −

vp+1
1

p

)
= −

(p+ 1)!

i!(p+ 1− 1)!

1

p
pivp+1−i

1 (i 6= p)

and for 1 < i < p the binomial coefficient contains a factor p.

Rpv2 = Rp

(
pm2 −

vp+1
1

p

)
= pm1 − (p+ 1)

1

p
ppv1 = v1 mod pp−1v1

and

R01v2 = R01

(
pm2 −

vp+1
1

p

)
= p · 1

Now take
v3 = pm3 −m2v

p2

1 −m1a

where
a = vp2 + (p2m2)b

Apply R1. We get

R1v3 = −m2p
2pvp

2−1
1 − a−m1R1a

= −(m2p
2)pvp

2−1
1 − v22 − (p2m2)b−m1(R1v

p
2)−m1(R1p

2m2)b

−m1(p
2m2)R1b

= −
(
pv2 + vp+1

1

)
pvp

2−1
1 − v2 −

(
pv2 + vp+1

1

)
b+m1p(p+ 1)v1v

p−1
2

−0 −m1

(
pv2 + vp+1

1

)
R1b.
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Now R1v3 is certainly integral, and all the terms on the right are integrai
except possibly -−m1v

p+1
1 R1b. We conclude that R1b must oft be divisible

by p, and the last term is v1
(
pv2 + vp+1

1

)
c. Thus

R1v3 ≡ −v
p
2 mod (p, vp+1

1 )

For reasons of degree, we have

Rpv3 ∈ (v21)

This proves Lemma 7.3. 2

Now I have to explain how I compute the fourfold bracket. Let me begin by
explaining it in a different way: γ1 is constructed as the following composite
(where r = (p2 − 1)q),

Sr−3V (2)

D

��6
66

66
66

66
66

66
66

6
66

66
66

66
66

6

Sr−3V (1)

i2

OO

Sr−3V (0)

i1

OO

Sr−3

i0

OO

γ1 // S0

Here D induces a non-zero homomorphism of BP ∗, that is, it carries the gen-
erator to v3g2. The other three maps induce the zero map of BP ∗, but they
give known elements in Ext1BP ∗(BP ). Therefore, the composite γ1 corresponds

to a calculable element of Ext3BP ∗(BP ), namely the Yoneda product.

Now I don’t propose to do it exactly that way, but in a parallel way. That
is, using a relation of the Peterson-Stein type, I will reduce the calculation of
our tertiary operation in X3 = S0∪γ1CS

r−3 to the calculation of a secondary
operation in X2 = S0 ∪CSr−3V (0). (The attaching map gives an element of
Ext2.) Using another relation of the Peterson-Stein type, I will reduce the
calculation of the secondary operation in X2 to the calculation of a primary
operation in X1 = S0 ∪ CSr−3V (1). (The attaching map then gives an
element of Ext1.) Finally, I calculate this primary operation using the known
behaviour of i2, D.
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In practice, of course, I proceed from the known to the unknown, and
calculate first in X1, then in X2, then in X3.

In calculating with composite maps, we always use the following lemma

Lemma 7.4. (Verdier’s Axiom) Given a composition

X
f // Y

g // Z ,

we can form the following diagram of cofiberings

Y

��

// Y ∪f CX

&&MMMMMMMMMMM

wwnnnnnnnnnnnn

Z ∪gf CX

��

// SX

��

""D
DD

DD
DD

DD

Z

::tttttttttt

$$J
JJJJJJJJJ SZ

Z ∪g CY //

''PPPPPPPPPPPP
SY

xxrrrrrrrrrrr

<<zzzzzzzzz

S(Y ∪f CX)

Lemma 7.5. Let X1 = S0 ∪Di2 CS
r−3V (1). Then

BP ∗(X1) ∼= π∗(BP ) on a unique generator h1 of degree 0

restricting to the generator on S0

⊕
π∗(BP )

(p, v1)
on a generator g1 of degree p2q coming

from the generator on Sr−2V (1).

We have

d0h1 =

[
−vp−1

2

0

]
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Proof. Take the diagram of Lemma 7.4 and make the following substitutions

X
f // Y

g // Z

Sr−3V (1)
i2 // Sr−3V (2)

D // S0

We obtain:

π∗(BP )
(p,v1,v2)

on generator
g2 of degree
(p2 + p+ 1)q

π∗(BP )
(p,v1

on generator
g1 of degree
(p2 + p+ 1)q

BP ∗ (Sr−3V (2)) BP ∗
(
S(p2+p)q−2V (1)

)
oo

BP ∗(X1)

i∗

66lllllllllllll

zzttttttttttttttttttttt
BP ∗ (Sr−2V (1))

OO

oo

BP ∗(S0)

D∗

OO

π∗(BP )
(p,v1)

on generator
g̃1 of degree

p2q

π∗(BP )
on generator
of degree 0

BP ∗ (Sr−2V (2))

OO

Since i2 induces the zero map of BP ∗, Di2 must also do so, and the exact
sequence across the middle is short exact. Now it is clear that BP ∗(X1) is
as stated, except that we have to show the choice of h1 is unique. Since
there is no monomial vi2v

j
3 . . . in

π∗(BP )
(p,v1

of the relevant degree p2q, this is
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clear. The generator g1 in BP ∗(X1) comes from BP ∗ (Sr−2V (1)), and since
the right-hand column is the cofibering which constructs V (2) we have

g1i = v2g1

Also h1 maps to the generator in BP ∗(S0) and then to v3 in BP
∗ (Sr−3V (2));

so
h1i = v3g1 mod (p, v1, v2).

But since (p2 + p+ 1)q is not divisible by p+ 1, no power vn2 g1 lies in degree
0. Therefore

h1i = v3g1 mod (p, v1),

i. e.,
h1i = v3g1.

Now in S0 we have [
R1

Rp

]
h1 = 0

So in X1 [
R1

Rp

]
h1

must be a multiple of g1. But on the summand π∗(BP )
(p,v1)

g1, i
∗ is a monomor-

phism; so it is sufficient to calculate in

S(p2+p)q−2V (1)

We find
[
R1

Rp

]
h1i =

[
R1

Rp

]
v3g1 =

[
−vp2
0

]
g1 mod (p, v1) (by 7.3)

=

[
−vp2
0

]
g1i

Therefore [
R1

Rp

]
h1 =

[
−vp2
0

]
g1

2
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To get any further we need Peterson-Stein relations. For the first one we
suppose again we have maps

C0
d0 // C1

d1 // C2

Here d0 and d1 are in practice the maps specified above, but the precise
spectra are not relevant. We interest ourselves in secondary operations of
the form

φ(ǫ) = {d1, d0, ǫ}

where ǫ : Y → C0. We suppose we are given a cofibering

X
i // Y

j // Z
k //

ζ

��

SX
Si //

ξ

��

SY

C0
d0 // C1

and maps ζ : Z → C0, ξ : SX → C1 such that ξk = d0ζ . Given ζ , two such
ξ differ by an element of

[SY, C1]Si

We have d0ζj ≃ ξkj ≃ 0 so

{d1, d0, ζj} ∈
[SY, C2]

d1[SY, C1] + [SC0, C2](Sζ)(Sj)

and

{d1, d0, ζj}Si ∈
[SX,C2]

d1[SY, C1]Si

Lemma 7.6. {d1, d0, ζj}Si = −d1ξ mod d1[SY, C1]Si.

Proof. This is simply the familiar identity

{d1, d0, ζj}Si = −d1{d0, ζij, i} ⊇ −d1{d0ζ, j, i}

(The latter is actually an equality sign because the indeterminacies are the
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same.) In fact, the prescription for {d0ζ, j, i} is that you take

SX
i // Z ∪j CY

d0ζ // C1

(Y ∪i CX) ∪ CY

≃

��
SX

and the identity map qualities as i. 2

Lemma 7.7. Let X2 = S0 ∪Di2i1 CS
r−3V (0). Then

BP ∗(X2) ∼= π∗(BP ) on a generator h2 of degree 0 restricting

to the generator on S0

⊕
π∗(BP )

(p)
on a generator g0 coming

from the generator in Sr−2V (1)

The operation {d1, d0, h2} is defined and it is a coset of maps SX2 → C2 and
it is [

2vp1v
p−3
2 g0

2v1v
p−3
2 g0

]
mod d1[SX2, C1].

N.B. I want to leave the indeterminacy in this form because will disappear
at the next step.

Exercise. Show directly that the value given does not lie in the indetermi-
nacy.

Proof of 7.7. We consider Di2i1 as the composite (Di2)i1. We take the
diagram of Lemma 7.4 and substitute

X
f // Y

g // Z

Sr−3V (0)
i1 // Sr−3V (1)

Di2 // S0
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We get

π∗(BP )
9p)

on generator g0
of degree p2q − 1

BP ∗
(
Sp2q−2V (0)

)

BP ∗(X2)

i∗
55kkkkkkkkkkk

BP ∗ (Sr−2V (0))

iiSSSSSSSSSSS

oo

π∗(BP )⊕
π∗(BP )

(p)

on generators h2, g0
of degrees 0, r − 1

{{wwww
ww

π∗(BP )
(p)

on generator g0
of degree r − 1

BP ∗(S0) BP ∗(S1)

ccGGGGGGG

{{xxx
xx

xx

π∗(BP )⊕
π∗(BP )
(p,v1)

on generators h1, g1
of degrees 0, p2q

j∗

OO

ccGGGGGG

π∗(BP )
(p,v1)

on generator g1
of degree p2q

OO

BP ∗(X1) BP ∗ (Sr−2V (1))oo

BP ∗
(
Sp2q−1V (0)

)k∗

iiSSSSSSSSSSS

55kkkkkkkkkkk

π∗(BP )
(p)

on generator g0
of degree p2q
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Certainly the map of BP ∗ induced by Di2i1 is zero, for those induced by i2
and i1 are zero. So we have a short exact sequence for BP ∗(X2). We may
take the generator h1 in BP ∗(X1) and map it into X2; this gives an element
restricting to the generator in BP ∗(S0); we call this element h2. Now it is
clear that the structure of BP ∗(X2) is as stated.

The generator g0 at the bottom of the diagram maps g1 in Sr−2V (1) and
to g1 in X1. That is g0h1 = g1

By 7.5, the map

X1
d0h1−→ C1

is [
−vp−1

2 g1
0

]

and it is now clear that it factors through k; in fact, it is ξk, where

ξ =

[
−vp−1

2 g0
0

]

So
d0h2 = d0h1j = ξkj = 0,

and the bracket {d1, d0, h2} is defined. We must check its indeterminacy.
Since there is no way to change the homotopy d1d0 ≃ 0 the indeterminacy is
d1[SX2, C1].

We now proceed to apply Lemma 7.6 taking the cofibering in that lemma
to be the one marked with i∗, j∗, k∗ in the previous diagram. We take ζ = h1
and ξ as above. The lemma gives

{d1, d0, h2}Si = −d1ξ mod d1[SX2, C1]Si

=

[
RpR1 − 2R1Rp R2

1

R2
p −2RpR1 +R1Rp

] [
−vp−1

2 g0
0

]
mod d1[SX2, C1]Si

Now
RpR1 − 2R1Rp = −R01 − R1Rp,

and
R01v

p−1
2 g0 = 0 mod p

Rpv
p−1
2 g0 = (p− 1)v1v

p−2
2 g0 = −v1v

p−2
2 g0 mod p
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−R1Rpv
p−1
2 g0 = R1(v1v

p−2
2 g0 mod p

= v1(p− 2)(−1)vp1v
p−3
2 g0 mod p

= 2vp+1
1 vp−3

2 g0 mod p

Similarly

Rpv
p−1
2 g0 = −v1v

p−2
2 mod p (as above)

R2
p(v

p−1
2 g0) = −v1(p− 2)v1v

p−3
2 g0 mod p

= 2v21v
p−3
2 g0 mod p

Hence we obtain

{d1, d0, h2}Si =

[
2vp+1

1 vp−3
2 g0

2v21v
p−3
2 g0

]
mod d1[SX2, C1]Si.

Now from the commutativity of the upper triangle we see that g0i = g0; so
we obtain

{d1, d0, h2}Si =

[
2vp1v

p−3
2 g0

2v1v
p−3
2 g0

]
mod d1[SX2, C1]Si.

The injection S0 → X2 clearly annihilates {d1, d0, h2} (maps S1 → C2 are
zero), so it annihilates the indeterminacy d1[SX2, C1], and it clearly annihi-
lates [

2vp1v
p−3
2 g0

2v1v
p−3
2 g0

]

But on the complementary summand π∗(BP )
(p)

(Si)∗ is mono, so

{d1, d0, h2} =

[
2vp1v

p−3
2 g0

2v1v
p−3
2 g0

]
mod d1[SX2, C1].

This proves 7.7 2
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For the second Peterson-Stein relation, suppose we are given maps

C0
d0 // C1

d1 // C2
d2 // C3

with d2d1 ≃ 0, d1d0 ≃ 0 (e.g. as above). We interest ourselves in the tertiary
operations of the form {d2, d1, d0, ǫ} where ǫ : Y → C0, so we will have to
give ourselves the sort of data which ensure that such operations are defined.

We suppose given 0. cofibering

X
i // Y

j // Z
k // SX

Si // SY

and two maps

S2X

ξ

��

Z

ζ

��
C1 C0

We suppose d0ζ ≃ 0. We also pick a homotopy d1d0 ≃ 0; in the applications
there is only one way to pick it. We suppose that for this homotopy we have
simultaneously

(i) {d2, d1, d0} = 0 mod [SC1, C3]Sd0

(ii) {d1, d0, ζ} = 0 in [SZ,C2]/d1[SZ,C1],

We pick a homotopy d2d1 ≃ 0 which, gives 0 as a representative map for
{d2, d1, d0}. After this we are only willing to change it by a map θ ∈ [SC1, C3]
such that θSd0 ≃ 0. We also pick a homotopy d0ζ ≃ 0 which gives ζSk as
the representative map for {d1, d0, ζ}. After this we are willing to vary this
homotopy by an element φ ∈ [SZ,C1] such that d1φ ≃ 0.

Then {d1, d0, ζj} is represented by ξ · Sk · Sj = 0, and we can form

{d2, d1, d0, ζ} ∈ [S2Y, C3]/
(
d2[S

2C0, C2] + [S2C0, C2]S
2ζ · S2j

+{{d2, d1, φSj}|φ ∈ [SZ,C1], d1φ ≃ 0}

+{{θ, Sd0, Sζ · Sj}|θ ∈ [SC1, C3], θSd0 ≃ 0}

+ {θ′ · Sφ′ · S2j|θ′Sd0 ≃ 0, d1φ
′ ≃ 0}

)

(here we must also include any indeterminacy implied by the Toda brackets
which is not already accounted for). Then we may as well write {d2, d1, φ}S

2j
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for {d2, d1, φ ·Sj} and {θ, Sd0, Sζ}S
2j for {θ, Sd0, Sζ ·Sj} because these are

defined, are contained in what we wrote before, and the larger indeterminacy
is contained in what we have already written.

In the applications, of course, the indeterminacy reduces to d2[S
2Y, SC2],

as we have seen.

In general {d2, d1, d0, ζj}S
2i lies in [S2X,C3]/d2[S

2Y, SC2]S
2i.

Lemma 7.8.

{d2, d1, d0, ζj}S
2i = −d2ξ : S

2X → C3 mod d2[S
2Y, SC2]S

2i.

N.B. We do not allow ourselves to vary ξ, because the indeterminacy of the
quadruple bracket when we vary everything in sight may be greater than
what we have written.

Proof. In Lemma 7.6 we substitute
C2 7→ C3 d1 7→ d2
C1 7→ C2 d0 7→ d1
C0 7→ C1 ∪d0 CC0 (the choice of null-homotopy d1d0 ≃ 0

gives a specific extension of d1)
Now the old condition d1d0 ≃ 0 becomes the two new conditions d2d1 ≃ 0 and
{d2, d1, d0} = 0 mod [SC1, C3]Sd0. For the cofibering in 7.6, we substitute

SX
Si // SY

Sj // SZ
Sk //

ζ

��

S2X
S2i //

ξ

��

S2Y

C1 ∪d0 CC0
d1 // C2

and for the maps, ξ and a coextension ζ of ζ : Z → C0. Here the composite

SZ
ζ

// C1 ∪d0 CC0
d1 // C1

of course represents {d1, d0, ζ}, and we choose the coextension ζ so that we
actually get the element ξ · Sk in [SZ,C2]. Then the diagram is commu-
tative. The triple bracket {d1, d0, ζ · Sj} is now an alternative construction
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for {d2, d1, d0, ζj} and if you don’t like quadruple brackets, take this as the
definition. Applying Lemma 7.6, we come out with

{d2, d1, d0, ζj} = −d2ξ mod d2[S
2Y, C2]S

2i.

2

Proof of Theorem 7. 2 completed. We continue the process exhibited in
7.5, 7.7 applying Lemma 7.8. We consider Di2i1i0 as the composite (Di2i1)i0.
We take the diagram of Lemma 7.4, and substitute

X
f // Y

g // Z

Sr−3
i0 // Sr−3V (0)

Di2i1 // S0

We obtain

BP ∗(Sr−2)
π∗(BP )

on generator ℓ
of degree r − 2

BP ∗(X3)

{{ww
ww

ww
ww

w

i∗

@@��������������
BP ∗(Sr−2)

aaDDDDDDDDDDDDDDDD
oo

π∗(BP )
on generator ℓ
of degree r− 2

BP ∗(S0) BP (S1)

hhPPPPPPPPPPPP

wwooooooooooooo

BP ∗(X2)

j∗

OO

bbFFFFFFFFF

BP ∗ (Sr−2V (0))

OO

oo

π∗(BP )
(p)

on generator g0
of degree r − 1

BP ∗(Sr−1)

k∗

]];;;;;;;;;;;;;;;

=={{{{{{{{{{{{{{{{ π∗(BP )
on generator ℓ
of degree r − 1
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We need some induced maps. The right-hand vertical column is induced by
the cofibering

S0 p
−→ S0 −→ V (0),

so ℓ at bottom maps to g0, and ℓmaps to pℓ. We now proceed to apply Lemma
7. 8 to the cofibering marked i∗, j∗, k∗. We take ζh0 to be h2 : X2 → C0.
That d0h2 = 0 was already proved in Lemma 7.7. We now wish to produce
ξ.

Now Lemma 7.6 contains an indeterminacy d1[SX2C1]. But every element
of [SX2, C1] lifts to [Sr−1V (0, C1] by 7.7; and every element of [Sr−1V (0, C1]
clearly lifts to [Sr, C1]. Therefore every element of d1[SX2, C1] lies in d1[S

r, C1]Sk.
We can also lift the representative

[
2vp1v

p−3
2 g0

2v1v
p−3
2 g0

]

by taking

ξ =

[
2vp1v

p−3
2 ℓ

2v1v
p−3
2 ℓ

]

So we see that we can in fact lift any element of {d1, d0, h2} by a lift congruent
to [

2vp1v
p−3
2 ℓ

2v1v
p−3
2 ℓ

]
mod d1[S

R, C1]

Now Lemma 7.8 states that

{d2, d1, d0, h3}S
2i = −d2ξ : S

2X3 → C3 mod d2[S
2X3, C2]S

2i.

Here d2[S
2X3, C2] is in our case exactly the indeterminacy of {d2, d1, d0, h3}

and we have already shown that it is contained in (p, v1)ℓ. Therefore

d2[S
2X3, C2]S

2i ⊆ (p2, pv1)ℓ.

As for −d2ξ consider first the term

−d2d1[S
r, C1].

It is 0, because d2d1 ≃ 0. Consider next the term

−
[
Rp R1

] [ 2vp1v
p−3
2 ℓ

2v1v
p−3
2 ℓ

]
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We have
Rp

(
vp1v

p−3
2

)
=
∑

i+j=p

(Riv
p
1)(Rjv

p−3
2 ).

Here the first term

Riv
p
1 =

p!

i!(p− i)!
pivp−i

i

lies in (p2, pv1) unless i = 0, in which case

Rp(v
p−3
2 ) = (p− 3)v1v

p−4
2 mod p2

and we get
Rp

(
vp1v

p−3
2

)
= (p− 3)vp+1

1 vp−4
2 mod (p2, pv1)

We have by 7.3

R1(v1v
p−3
2 ) = pvp−3

2 + v1(p− 3)(−(p+ 1))vp1v2

= pvp−3
2 + (p− 3)vp+1

1 vp−4
2 mod pvp+1

1

Totalling we get

−
[
Rp R1

] [ 2vp1v
p−3
2 ℓ

2v1v
p−3
2 ℓ

]
= −2pvp−3

2 ℓ mod (p2, pv1)

Since ℓ(S2i) = pℓ, we conclude that

{d2, d1, d0, h3} = −2v
p−3
2 ℓ mod (p, v1).

This completes the proof, and shows that γ1 6= 0. 2

Oka and Toda say they have not checked the assertion of Larry Smith
that βp 6= 0 and if this is false their proof collapses. So perhaps it will be
as well to examine βp. It turns out that by using an indirect method, we
can avoid even mentioning secondary operations; we need some preliminary
information first.

The symbol r is now freed for use, q = 2(p− 1).
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Lemma 7.9. Let X be a complex X = S0 ∪f e
rq where p2 < r < p2 + p.

Then

BP ∗(X) ∼= π∗(BP ) on one generator h of degree 0 restricting

to a generator on S0

⊕π∗(BP ) on one generator ℓ of degree rq coming from Srq

and
Rp2h ≡ 0 mod pp

(mod p suffices for what follows).

Proof. From the BP exact sequence of the cofibering, it is clear that we
have a short exact sequence

0 −→ BP ∗(Srq) −→ BP ∗(X) −→ BP ∗(S0) −→ 0

Everything that follows would be equally valid for a short exact sequence of
modules over BP ∗(BP )

0 // BP ∗(Srq) //M // BP ∗(S0) // 0

N L

Such a module defines an element of ExtiBP ∗(BP )(L,N). It is clear that the
structure of M as a module over If π∗(BP ) is as stated in the lemma; if we
choose a generator h, then the operations in M are given by a vector



R1

Rp

Rp2


h

In N3 = N ⊕N ⊕N . We may alter h to h + aℓ (a ∈ πrq(BP )); this alters



R1

Rp

Rp2


h to



R1

Rp

Rp2


h+



R1

Rp

Rp2


 aℓ
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We thus get a description of Exti as “cocycles” modulo “coboundaries” ; the
cocycles are the vectors 


R1

Rp

Rp2


h

the coboundaries are the vectors


R1

Rp

Rp2


 aℓ

We first check that the result claimed does not depend on the choice of
cocycle mod coboundaries. In fact, in the dimension considered a is a sum
of monomials

vi1v
j
2 with j ≤ p− 1

Consider Rp2(v
i
1v

j
2)ℓ and expand it by the Cartan formula. We have Rkv2 = 0

for k > p + 1 and Rp+1v2 = 0 mod pp, which only leaves for consideration
terms containing a factor Rk(v

i
1) with k ≥ p. Such a factor is ≡ 0 mod pk,

i. e., mod pp.

Now we have a choice of arguments. First, we assume it known that
ExtiBP ∗(BP ) (π∗(BP ), π∗(BP ))) is in this dimension Z/pZ generated by αr.
Then we can easily work out the operations in the corresponding complex.
We apply 7.4 to the composite

X
f // Y

g // Z

Srq−1 // Srq−1V (0) // S0
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We obtain the following diagram

π∗(BP )
(p)

on generator g0
of degree rq

π∗(BP )
on generator ℓ
of degree rq

BP ∗ (Srq−1V (0)) BP ∗ (Srq)oo

BP ∗ (S0 ∪gf e
rq)

����
��

��
��

��
��

��
��

��
��

��
��

��

i∗
55kkkkkkkkkk

BP ∗ (Srq)

iiSSSSSSSSSS

oo

π∗(BP )
on generator ℓ
of degree rq

BP ∗(S0)

g∗

OO

BP ∗ (SrqV (0))

OO

BP ∗ (S1)

eeKKKKKKKK

π∗(BP )
on generator h
of degree 0

π∗(BP )
on generator h
of degree 1

We see that

BP ∗
(
S0 ∪gf e

rq
)

= π∗(BP ) on one generator h of degree 0 restricting

to a generator on S0

⊕π∗(BP ) on one generator ℓ of degree rq coming

from Srq

as in the statement of the lemma. The map Srq → Srq is part of the cofibering
defining V (0), and has degree p, so ℓ maps to pℓ.

Also g∗ maps h to vr1g0 (by construction); so i∗ maps any choice of h to
vr1ℓ mod p. But i∗ maps ℓ to pℓ, so we can change the choice of h to ensure
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that hi = vr1ℓ. Then

Rp2hi = Rp2v
r
1ℓ = cpp

2

vp−1
1 ℓ = cpp

2

vp−1
1 ℓi, c ∈ Z

Now Rp2h clearly maps to 0 on S0 and on the complementary summand
π∗(BP )ℓ , i

∗ is mono; so with this choice of h we have

Rp2h = cpp
2−1vp−1

1 ℓ.

Secondly, we can merely assume it known that ExtiBP ∗(BP )(L,N) is finite.
Let us denote

d0 =



R1

Rp

Rp2




Then in this case, for each cocycle d0h there is an integer m such that md0h
is a coboundary d0(aℓ) where a ∈ πqr(BP ). Now with 0 < j ≤ p − 1 the
coboundary d0(v

i
1v

j
2ℓ) is



−jvi+p

1 vj−1
2 mod p

jvi+1
1 vj−i

2 mod pp−1

0 mod pp


 ℓ

while d0 ∗ v
r
1ℓ) is 


prvr−1

1

0 mod pp

0 mod pp
2


 ℓ

Note r 6≡ 0 mod p.

It is now clear that if c, cij are rational coefficients, then the coboundary

d0

(
cvr1ℓ+

∑

0<j≤p−1

cijv
i
1v

j
2ℓ

)

is integral only if the cij are integral (i. e.,lie in Z(p)) and pc is integral, say
c = m

p
. Therefore the most general cocycle is as obtained above.

Finally, you can explicitly obtain the cocycles as the kernel of d1, and if
you think this method is more reliable than the two already presented you
are welcome to go ahead. 2
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Next I undertake to define an invariant defined on elements of order p
in πrq−2(S

0), p2 < r < p2 + p. We know that βp is an element of order p,
because it extends over Srq−2 ∪p e

rq−1 = Srq−2V (0) and even over Srq−2V (1)
by construction. Toda’s elements εi of degree (p2 + i)q − 2 (1 ≤ i ≤ p − 1)
are also asserted to be of order p. So suppose given a map f : Srq−2 → S0 of
order p,and extend it to f : Srq−2 ∪p e

rq−1 −→ S0. Form the mapping cone

X = S0 ∪f C
(
Srq−2 ∪p e

rq−1
)
.

Then evidently we have a short exact sequence

0 // BP ∗ (Srq−2V (0)) // BP ∗(X) // BP ∗(S0) // 0

π∗(BP ) on
generator g0
of degree qr

π∗(BP )
(p)

on
generator h
of degree 0

We take an element h ∈ BP 0(X) projecting to the generator in BP ∗(S0)
and we consider Rp2h = ag0. Now changing h to h+bg0 will of course change
Rp2h to Rp2h+Rp2bg0, but we have already checked that Rp2bg0 is zero mod

pp, and here we are working in π∗(BP )
(p)

, so the resulting change is zero. We

must also not forget that we can change the extension f of f by an element
of πqr−1(S

0) but this changes our extension precisely by an element of the
group ExtiBP ∗(BP )(L,N) which I so carefully discussed in Lemma 7.9, and by
Lemma 7.9, the resulting change in Rp2h is zero mod p. This sets up our
invariant.

It remains to calculate this invariant for βp.

Theorem 7.10. If f = βp, we have

Rp2(h) = vp−1
1 g0

and therefore βp 6= 0.
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Proof. Factor βp in the form

X
f // Y

g // Z

Srq−2V (0) Srq−2V (1) S0

where g∗(generator) = vp2g1. Apply 7.4. We obtain the following diagram

π∗(BP )
(p,v1)

on generator g1
of degree
(r+1)q

π∗(BP )
(p)

on generator g0
of degree
(r+1)q

BP ∗ (Srq−2V (1)) BP ∗
(
S(r+1)q−1V (0)

)
oo

BP ∗ (S0 ∪gf C (Srq−2V (0)))

i∗

44jjjjjjjjjjjjjjjjjjj

wwnnnnnnnnnnnnnnnnnnnnnn
BP ∗ (Srq−1V (0))

OO

oo

BP ∗(S0)

OO

π∗(BP )
(p)

on generator g0
of degree
(r+1)q

The map Srq−1V (0) −→ S(r+1)q−1V (0) comes from the cofibering defining
V (1) and therefore carries g0 to v1g0. So in our complex S0∪gfC (Srq−2V (0))
we have g0i = v1g0.

Let us choose a generator h in BP ∗ (S0 ∪gf C (Srq−2V (0))) so that it maps
to a generator in S0 and therefore to vp2g1 in Srq−2V (1). So we must have

hi = vp2g0 (mod v1)

But changing h by ag0 changes hi by v1ag0 so we can choose the generator
h so that it maps to vp2g0 exactly.
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Now Rp2h clearly maps to zero on S0. The complementary summand
π∗(BP )

(p)
g0 maps monomorphically under i∗, so it is sufficient to calculate Rp2hi.

We find

Rp2hi = Rp2v
p
2g0

= vp1g0 mod pp at least

= vp−1
1 g0i.

We conclude that
Rp2h = vp−1

1 g0

in π∗(BP )
(p)

g0. 2

103



8 Epilogue

Thomas and Zahler published their proof that γ1 6= 0 in 1974, cf. [20]. Their
proof uses a tertiary operation in Brown-Peterson cohomology to detect the
nontriviality of the element. Oka and Toda tracked down the mistake in
their original calculation and published an alternative proof of this result in
1975, cf. [15]. The methods they employ involve secondary compositions and
extended powers of complexes. Later that year Miller, Ravenel and Wilson
[11] announced a proof that γt 6= 0 for all t > 0 and all p ≥ 7, using the
Novikov spectral sequence.

In 1975 Bousfield published a proof of Theorem 4.6, cf. [5]. His proof uses
simplicial methods and proves a stronger result. Bousfield constructs a strict
functor on the category of simplicial sets which induces Adams’ conjectured
localisation upon passage to homotopy. However it should be noted that there
is a very simple way of repairing Adams’ original approach to localisation
given in these notes, which we explain below.

We first introduce a new axiom on the class S of morphisms we are in-
verting.

Axiom 8.1. For each pair of objects X , Y in C there is a set of diagrams
{
X

fα // Zα Y
sαoo

}

with sα in S such that for any diagram

X
f // Z Y

soo

with s ∈ S we can find a morphism t : Zα −→ Z in S so that the following
diagram commutes

Zα

t

��
X

fα
>>}}}}}}}} f // Z Y

soo

sα
``AAAAAAAA

.

Axiom 8.1 serves as a substitute for Axiom 3.4. Its virtue is that it is
easily verified for the example of interest in these notes, in contrast to 3.4.
We next prove the relevant revision of Theorem 3.8.
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Theorem 8.2. Let C be the category in which the objects are connected
CW-complexes with basepoint and the maps are homotopy classes. Let S be
a subclass of the morphisms of C, satisfying 3.1, 3.2, 3.3, 3.5, 3.6 and 8.1
(or alternatively 3.1, 3.5, 3.6, 4.1 and 8.1). Then S arises by 2.6 from a
pair (E, η) satisfying 2.1 and 2.2.

Proof. We first need to show that the quotient category S−1C is well defined,
i. e. [QX,QY ]S−1C is a set for any pair of objects X , Y in C. We see this
by showing that any morphism in [QX,QY ]S−1C , represented by a diagram

X
f // Z Y

soo ,

in C has an equivalent representative

X
fα // Zα Y

sαoo .

This is demonstrated by the following commutative diagram in C:

Z

NNNNNNNNNNNNN

NNNNNNNNNNNNN

X

f

77ppppppppppppp

fα &&NNNNNNNNNNNNN Y

s

OO

sα

��

s // Z

Zα

t

88qqqqqqqqqqqqq

The rest of the proof is identical to that of Theorem 3.8. Briefly we use the
Brown Representability Theorem to construct a right adjoint toQ : C → S−1C:

[QX, Y ]S−1C ←→ [X,RY ]C

and define E to be the composite

C
Q
−→ S−1C

R
−→ C

2

Finally we need to check that the class S of our main example satisfies
8.1. This is demonstrated by the following lemma, which is essentially Lemma
11.1 of [5].
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Lemma 8.3. Suppose that

X
f
−→ Z

s
←− Y

is a diagram in C, the homotopy category of based connected CW complexes.
Suppose that s induces an isomorphism with respect to a generalized homology
theory K∗. Then there is a commutative diagram

W

s′′

��
X

f ′
>>|||||||| f // Z Ys

oo

s′
``AAAAAAAA

such that s′ and s′′ induce isomorphisms with respect to K∗ and such that

#W ≤ max{#X,#Y,#K∗,ℵ0}.

Here #W , #X, #Y denote the cardinality of the sets of cells in these CW
complexes and #K∗ denotes the cardinality of ⊕m∈ZKm(pt).

Proof. Without loss of generality we may take f and s to be inclusions of
complexes. We then construct an sequence of subcomplexes

W0 ⊂W1 ⊂W2 ⊂ . . . ⊂ Z

with the following properties:

(i) The inclusions Wn → Z induce epimorphisms in K∗.

(ii) ker (K∗(Wn)→ K∗(Z)) ⊂ ker (K∗(Wn)→ K∗(Wn+1)).

(iii) #Wn ≤ max{#X,#Y,#K∗,ℵ0}.

We proceed by induction. We take W0 = X ∨ Y . Then (iii) is immediate
and (i) follows from the fact that Y ⊂ Z induces an isomorphism in K∗.

Having constructed Wn we note K∗(Z) = colimαK∗(Zα), where Zα varies
over all subcomplexes of Z obtained by attaching finitely many cells to Wn.
Hence for each element x ∈ ker (K∗(Wn)→ K∗(Z)) we can find such a sub-
complex Zαx

so that x ∈ ker (K∗(Wn)→ K∗(Zαx
)). We define Wn+1 =

∪xZαx
. Then (ii) follows from construction and (i) holds for Wn+1, since
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it contains W0. To check that (iii) holds for Wn+1, we first observe that it
follows from the induction hypothesis and the Atiyah-Hirzebruch spectral
sequence that K∗(Wn), and hence also ker (K∗(Wn)→ K∗(Z)), has cardinal-
ity bounded by max{#X,#Y,#K∗,ℵ0}, which implies the same bound on
#Wn+1.

Finally we defineW = ∪∞n=1Wn. Since K∗(W ) = colimnK∗(Wn), it follows
from (ii) that K∗(W )→ K∗(Z) is injective. Since W contains W0, this map
is also surjective, and hence an isomorphism. It follows that Y ⊂ W is
also an isomorphism in K∗. The bounds on #Wn imply the same bound on
#W . Thus the desired commutative diagram is provided by the inclusions
X ⊂W ⊂ Z and Y ⊂W ⊂ Z. 2

If we take S to be the class of morphisms in C which induce isomorphisms
in K∗, as in Theorem 4.6, then Lemma 8.3 shows that S satisfies Axiom 8.1
(we may take the underlying sets of the Zα in the axiom to be subsets of some
fixed set of large enough cardinality). Thus Theorem 8.2 implies Theorem
4.6. Note that we do not need to prove that S satisfies Axiom 3.4. Indeed
attempting to derive the proof of Theorem 4.6 from Axiom 3.4 appears to
be a blind alley.

A natural follow up question, which Adams did not address in these notes,
is whether there are localisations with respect to generalised cohomology the-
ories. It is clear that if one takes S to be the class of morphisms which are
inverted by a generalised cohomology theory, then S evidently satisfies Ax-
ioms 3.1, 3.5, 3.6, and 4.1. However the argument of Lemma 8.3 breaks
down completely and there does not appear to be any alternative argument
to show that [QX,QY ]S−1C is a set, and thus no apparent way to show the
existence of localisation with respect to S. In [4] Bousfield shows that for
ordinary cohomology theories (or more generally for anti-connective coho-
mology theories) such localisations exist because the class S is the same as
the class of morphisms inverted by H∗(−;A) for A a subring of Q or A a
subgroup of ⊕p primeZ/pZ. In [8], Hovey similarly demonstrates the exis-
tence of localisations with respect to a larger class of generalised cohomology
theories by constructing corresponding generalised homology theories with
the same classes S of inverted morphisms. He moreover conjectures that
for any generalised cohomology theory there is a corresponding generalised
homology theory such that the class of morphisms S that they invert are the
same. This conjecture is still open.
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