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THE SEGAL CONJECTURE FOR TOPOLOGICAL HOCHSCHILD HOMOLOGY

OF RAVENEL SPECTRA

GABRIEL ANGELINI-KNOLL AND J.D. QUIGLEY

Abstract. In the 1980’s, Ravenel introduced sequences of spectra X(n) and T (n) which played
an important role in the proof of the Nilpotence Theorem of Devinatz–Hopkins–Smith. In the
present paper, we solve the homotopy limit problem for topological Hochschild homology of X(n),
which is a generalized version of the Segal Conjecture for the cyclic groups of prime order. This
result is the first step towards computing the algebraic K-theory of X(n) using trace methods,
which approximates the algebraic K-theory of the sphere spectrum in a precise sense. We solve

the homotopy limit problem for topological Hochschild homology of T (n) under the assumption
that the canonical map T (n) → BP of homotopy commutative ring spectra can be rigidified to
map of E2 ring spectra. We show that the obstruction to our assumption holding can be described
in terms of an explicit class in an Atiyah-Hirzebruch spectral sequence.
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1. Introduction

In the 1970’s, Segal conjectured that after completion at the augmentation ideal, the Burn-
side ring of a finite group G and the cohomotopy of BG agree [Ada82]. This conjecture inspired an
outpouring of exciting research in the 1970’s and early 1980’s, leading to the resolution of the Segal
conjecture for any finite group by Carlsson in [Car84]. Let p be a prime, let Cp denote the cyclic
group of order p, and let S denote the Cp equivariant sphere spectrum. The Segal Conjecture for
Cp may then be stated more generally as the question of whether the Tate-valued Frobenius map

ϕp : S −→ StCp ,

using the terminology of Nikolaus–Scholze [NS18], is an equivalence after p-adic completion. This
version of the conjecture was resolved by Lin when p = 2 and by Gunawardena when p > 2 using
an algebraic construction called the Singer construction [LDMA80, AGM85].

Given an E1 ring spectrum R, the topological Hochschild homology of R, denoted THH(R),
has a canonical T-action, where T ⊂ C is the circle group, and consequently THH(R) has a canonical
Cp-action by restriction to the p-th roots of unity in T. The Segal Conjecture for the group Cp can
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then be rephrased as the question of whether the Tate-valued Frobenius map

ϕp : THH(S) −→ THH(S)tCp,

is an equivalence after p-adic completion. Since there is a Cp equivariant equivalence THH(S)
≃
→ S

induced by tensoring with the Cp equivariant collapse map S1 → ∗ in the category of commutative
ring spectra, this indeed implies the original Segal conjecture. More generally, for a E1 ring spectrum
R, one may ask whether the Tate-valued Frobenius map

ϕp : THH(R) −→ THH(R)tCp(1)

is an equivalence after p-adic completion. We therefore say that the Segal Conjecture for topological
Hochschild homology of R holds if the Tate-valued Frobenius map is an equivalence after p-adic
completion, following Lunøe-Nielsen–Rognes [LNR11].

Notably, the Segal conjecture for topological Hochschild homology ofMU holds by [LNR11].
The Segal conjecture for topological Hochschild homology of the Adams summand mod (p, v1) does
not hold on the nose, but the Tate-valued Frobenius map induces an isomorphism in mod (p, v1)
homotopy groups in sufficiently high degrees. This result was a crucial step in the calculation of
mod (p, v1) topological cyclic homology of the Adams summand by Ausoni–Rognes [AR02].

In the present paper, we prove the Segal Conjecture for topological Hochschild homology
of the Ravenel spectra X(k) holds for all k ≥ 1. The spectra X(k) are E2 ring spectra that filter
between the sphere spectrum and complex cobordism, in the sense that there is a sequence

S → X(1) → X(2) → · · · → X(k) → X(k + 1) → · · · → X(∞) = MU

of maps of E2 ring spectra. We refer to the maps appearing in this sequence as the canonical maps
X(k) → MU throughout. We also prove the Segal Conjecture for topological Hochschild homology
of the Ravenel spectra T (n) holds for all n ≥ 0 under the hypothesis that the canonical maps
T (n) → BP are map of E2 ring spectra.1 The Ravenel spectra T (n) are known to split off of the
p-localization of X(pn) in the same way that BP splits off of MU p-locally and there is a sequence

S = T (0) → T (1) → · · · → T (n) → T (n+ 1) → · · · → T (∞) = BP

of homotopy commutative ring spectra. Again, we refer to the maps T (n) → BP in this sequence
as the canonical maps throughout. It is not known, however, whether this sequence rigidifies to a
sequence of maps of E2 ring spectra. We therefore include this as an assumption in our work and
discuss this issue in more detail in Section 6.

Theorem 1.1. Let p be a fixed prime.

(a) The Tate-valued Frobenius maps

ϕp : THH(X(k)) → THH(X(k))tCp

are equivalences after p-adic completion for each integer k ≥ 1.
(b) Assuming each of the canonical maps T (n) → BP are maps of E2 ring spectra, the Tate-

valued Frobenius maps

ϕp : THH(T (n)) → THH(T (n))tCp

are equivalences after p-adic completion for each n ≥ 0.

The cases k = 1, n = 0, and k = n = ∞ were already known and we do not shed new light
on these results. In fact, the case k = 1 and n = 0 is exactly the Segal conjecture for the sphere
spectrum and the group Cp. The cases k = ∞ and n = ∞ are the Segal conjecture for topological
Hochschild homology MU and BP respectively and they were proven by Lunøe-Nielsen–Rognes
[LNR11].

1The notation we use for the Ravenel spectra T (n) is the notation from [Rav86]. We warn the reader that the same
notation is used for the vn telescope of a type n spectrum in [Kuh07].
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As a consequence of Theorem 1.1 and Tsalidis’ theorem [Tsa98, BBLeNR14], there are
equivalences

THH(R)Cpk
Γ

−→ THH(R)hCpk(2)

after p-adic completion when R is X(k) and k ≥ 1 is an integer and p any prime. Under our
running assumptions on T (n), we also prove that (2) is an equivalence after p-adic completion when
R = T (n) for each integer n ≥ 0 and prime p. We define

TC−(R;Zp) :=
(
THH(R)hT

)∧
p
,

where (−)∧p denotes p-adic completion and

TP (R;Zp) :=
(
THH(R)tT

)∧
p
.

When R is a connective E1 ring spectrum, there is an equivalence

TP (R;Zp)
≃
−→ (THH(R)tCp)hT(3)

by [NS18, Lem. II.4.2] and we abuse notation and write

ϕp : TC−(R;Zp) −→ TP (R;Zp)

for the composite of ϕhT
p the with the inverse of the equivalence (3) in the homotopy category. As

a consequence of Theorem 1.1, we therefore have the following corollary.

Corollary 1.2. Let p be a fixed prime.

(a) There are equivalences

ϕp : TC−(X(k);Zp) ≃ TP (X(k);Zp)

for each integer k ≥ 1.
(b) Assuming the canonical maps T (n) → BP are maps of E2 ring spectra for each n, then

there are equivalences

ϕp : TC−(T (n);Zp) ≃ TP (T (n);Zp)

for each integer n ≥ 0.

Following [NS18], we let

can: TC−(R) → TP (R;Zp);

denote the map appearing in the isotropy separation diagram (see [AR02, Eq. 35] where this map
is called Rh) post-composed with the map from TP (R) to its p-adic completion. The equalizer of
the diagram

TC−(R)
(ϕp)p∈P

//

(can)p∈P

//
∏

p∈P
TP (R;Zp)

in the homotopy category of spectra is equivalent to topological cyclic homology TC(R) of R, when
R is connective by Nikolaus–Scholze [NS18, Cor. 1.5]. Corollary 1.2 implies that TC(X(n)) is the
fiber of the difference of the canonical map and an equivalence. Again, we emphasize that knowing
that the maps ϕp induce isomorphisms insufficiently high degrees for R = HFp and R = ℓ, where ℓ
denotes the p complete Adams summand is a crucial step in the calculations of TC(HFp) and TC(ℓ)
by Hesselholt–Madsen and Ausoni–Rognes respectively [HM97, AR02].

By the Dundas–Goodwillie–McCarthy theorem [DGM13, Thm. 7.2.2.1], there is a pullback

K(X(k)) //

tr

��

K(Z)

tr

��

TC(X(k)) // TC(Z),
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induced by the linearization map X(k) → HZ and naturality of the cyclotomic trace map for each
k ≥ 1. In fact, it is also known that there are isomorphism

Ki(X(k)p;Zp) ∼= TCi(X(k)p;Zp) ∼= TCi(X(k);Zp)

by [DGM13, Thm 7.3.1.8 ] and [Dun97]. Our computation is therefore a key step in the direction of
computing the algebraic K-theory groups Ki(X(k)).

The program of Dundas–Rognes [DR18, Sec. 4.5] suggests that algebraic K-theory of the
sphere spectrum can be computed from the algebraic K-theory of X(k) by descent along the map
of ring spectra S → X(k). In particular, the Amitsur complex associated to the map S → X(k)
produces a cosimplicial resolution of S by smash powers of X(k). In [DR18], Dundas–Rognes prove
that algebraic K-theory satisfies cosimplicial descent and therefore one can approach the computation
of the algebraic K-theory groups of the sphere spectrum using the algebraic K-theory of the spectra
X(k). Our results therefore also provide a first step towards computing algebraic K-theory of the
sphere spectrum. Just as the the computation of the stable homotopy groups of spheres is one of the
most fundamental problems in algebraic topology, the algebraic K-theory of the sphere spectrum is
one of the most fundamental questions in algebraic K-theory because of its applications to stable
diffeomorphisms of manifolds; see for example Waldhausen [Wal87] for a survey.

Besides approximating algebraic K-theory of the sphere spectrum, computing invariants of
the spectra X(n) is useful in its own right because of the connection to formal groups. Just as
MU carries the universal formal group law, the spectra X(n) carry the universal formal n-bud.
Therefore, any spectrum E equipped with a formal n-bud receives a map of homotopy commutative
ring spectra from X(n). If this map of homotopy commutative ring spectra can be rigidified to
an actual E1 ring map, all of the invariants THH(E), TP (E;Zp), TC

−(E;Zp), TC(E;Zp) and
K(E;Zp) we have discussed are modules over the corresponding invariant for X(n). The analogous
statements for T (n) are true where formal n-buds are replaced with p-typical formal n-buds under
the additional assumption that the canonical maps T (n) → BP are maps of E2 ring spectra. This
relationship to formal n-buds is also one of the reasons the spectra X(k) and T (n) played such a
vital role in the proof of the Nilpotence theorem by Devinatz–Hopkins–Smith [DHS88].

1.1. Outline. In Section 2, we recall the definitions of the spectra X(k) and T (n) and their homol-
ogy. In Section 3, we compute homology of topological Hochschild homology of X(k) and T (n) using
the Bökstedt spectral sequence. In Section 4 we compute the continuous homology of the spectrum
THH(X(n))tCp , where continuous homology is defined as in Equation (6). In Section 5, we relate
H∗(THH(X(n))tCp) to the homological Singer construction R+(H

c
∗(THH(X(n)))) [AGM85]. We

then use this to prove our main theorem, Theorem 5.4, and subsequent corollaries, Corollary 5.5
and Corollary 5.6. In Section 6, we discuss the same computations for T (n) under the assumption
that the canonical map T (n) → BP is a map of E2 ring spectra. We also show that the obstruction
to our assumption holding can be described in terms of an explicit class in an Atiyah-Hirzebruch
spectral sequence.

1.2. Conventions. Throughout, homology is always taken with coefficients in Fp and H∗(−,Fp)
will simply be denoted H∗(−). We let HH∗(R) denote the Hochschild homology over Fp of a
graded Fp algebra R and we write ⊗ for the tensor product over Fp. We use the terminology p-adic
equivalence as shorthand for a map that induces an equivalence after p-adic completion. We write
P (x1, . . . xk) for a polynomial algebra with generators x1, . . . , xk over Fp and E(y1, . . . , yk) for an
exterior algebra with generators y1, . . . yk over Fp. We will use the convention of Milnor [Mil58] and

write A∗ = P (ζ1, ζ2, . . . ) for the dual Steenrod algebra at the prime 2 where we define ζ2i := ξi. We

will write A∗ = P (ξ1, ξ2, . . . )⊗E(τ0, τ1, . . . ) for the Steenrod algebra at primes p ≥ 3. We will write
T ⊂ C for the circle group, regarded as the unit vectors in the complex numbers, and let Cn ⊆ T

be subgroup of n-th roots of unity. We will use the notation =̇ for an equality that holds only up
to multiplication by a unit in Fp. In fact, our results only rely on the homotopy category of spectra
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in most cases and all of our results could be proven in any of the standard models for the closed
symmetric monoidal stable model category of spectra discussed in [MMSS01].

1.3. Acknowledgments. The authors would like to thank Mark Behrens and Andrew Salch for
their comments on earlier versions of this paper and an anonymous referee helpful comments. The
second author was partially supported by NSF grant DMS-1547292.

2. The spectra X(k) and T (n)

The Ravenel spectra X(k) and T (n) were first defined in [Rav84], where Ravenel proposed
his family of well regarded conjectures known as the Ravenel conjectures. The spectra X(k) and
T (n) were vital in the proofs of the Ravenel conjectures by Devinatz–Hopkins–Smith [DHS88, HS98].
The spectrum X(k) is constructed as the Thom spectrum X(k) := Th(f) of the 2-fold loop map
f : ΩSU(k) −→ ΩSU ≃ BU. By Lewis [LMSM86, Ch. IX], the Thom spectrum of an m-fold loop
map is an Em ring spectrum and hence X(k) is an E2 ring spectrum. Functoriality of the Thom
construction gives a sequence

S = X(1) → X(2) → · · · → X(∞) = MU

of maps of E2 ring spectra. We refer to the maps X(k) → MU as the canonical maps.
Just as MU splits p-locally as a wedge of suspensions of BP , X(k) splits p-locally as a

wedge of suspensions of T (n) where n is chosen such that pn ≤ k < pn+1 [Rav86, Thm. 6.5.1]. By
[Hop84, pg. 16], the spectra T (n) fit together to form a sequence whose homotopy colimit is BP .
We refer to the map from T (n) to the homotopy colimit BP as the canonical map. By [BM13], we
know that BP is an E4 ring spectrum and by [Rav86, Thm. 6.5.1] we know that T (n) is a homotopy
commutative homotopy associative ring spectrum for all n ≥ 0. However, it is not known whether
T (n) is an E2 ring spectrum or that the canonical map T (n) → BP is a map of E2 ring spectra for
any n > 0. We discuss the multiplicative structure of T (n) in more detail in Section 6.

The homology of MU and BP are well-known and the homology of X(k) and T (n) can be
found in [Rav84, Sec. 3]. We recall these results in the following omnibus lemma.

Lemma 2.1. Let p be a fixed prime.

(a) The homology of MU is determined by the isomorphism H∗(MU) ∼= P (b1, b2, b3, . . .) of A∗

comodule algebras where |bi| = 2i. The map X(k) → MU induces the isomorphism

H∗(X(k)) ∼= P (b1, . . . , bk).

of A∗ comodule algebras onto its image in H∗(MU).

(b) The map BP → HFp induces an isomorphism H∗(BP ) ∼= P (ξ1, ξ2, ξ3, . . .) of A∗-comodule

algebras [Rav84] onto its image in A∗, where |ξi| = 2pi − 2 for i ≥ 1. The canonical map

T (n) → BP induces an isomorphism

H∗(T (n)) ∼= P (ξ1, ξ2, . . . , ξn)

of A∗ comodule algebras onto the image of H∗(T (n)) in H∗(BP ).

3. Homology of the topological Hochschild homology of X(n)

Our first step is to calculate the homology of THH(X(n)). For this, we use the Bökstedt
spectral sequence [Bök86]. We quickly review the construction of this spectral sequence following
[EKMM07, Ch. IX]. Let R be an S-algebra. Then THH(R) is the geometric realization of the cyclic
bar construction on R, which is a simplicial ring spectrum Bcy

• (R) with k-simplices R∧k+1 and the
standard cyclic face and degeneracy maps. The Bökstedt spectral sequence arises from applying
homology to the skeletal filtration of the simplicial spectrum Bcy

• (R) and it is a strongly convergent
spectral sequence, with signature

E2
∗,∗(R) ∼= HH∗(H∗(R)) ⇒ H∗(THH(R)).(4)
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Proposition 3.1. The homology of THH(X(n)) is

H∗(THH(X(n)) ∼= P (b1, b2, . . . , bn)⊗ E(σb1, σb2, . . . , σbn).

Proof. To compute the E2-term of the Bökstedt spectral sequence (4) for X(k), we first need to
compute the Hochschild homology HH∗(H∗(X(k))). The Hochschild homology of grade polynomial
algebras with generators in even degree can be computed using the Koszul resolution, which shows
that

HH∗(P (x1, x2, . . .)) ∼= P (x1, x2, . . .)⊗ E(σx1, σx2, . . .),

see [MS93, Prop. 2. 1] for example. Therefore

E2
∗∗(X(k)) = P (b1, b2, . . . , bn)⊗ E(σb1, σb1, . . . , σbk)

where |bi| = (0, 2i) and |σbi| = (1, 2i).
Since there are no generators in filtration degree greater than one and the dr differentials

shift filtration degree by r ≥ 2, there are no possible differentials and the spectral sequence collapses
at the E2-term. We may resolve multiplicative extensions in the same way as in the proof of [LNR11,
Lem 6.2]. At p = 3, we simply observe that the square of an odd degree generator must be trivial
in a graded commutative Fp algebra. At p = 2 since THH(X(n)) is an E1 ring spectrum, we still

have a Dyer–Lashofoperation Q|σxℓ|/2(σxℓ) = (σxℓ)
2 in H∗(THH(X(n))), see [BMMS86, Ch. III

Thm. 3.2] and [Law19, Thm. 5.2]. In particular, we know

(σxℓ)
2 = Q|σxℓ|/2(σxℓ) = σQ|σxℓ|/2(xℓ) = 0

since Q|σxℓ|/2(xℓ) = 0 ∈ H∗(X(k)) and Dyer–Lashofoperations commute with the operator σ by
[Bök86]. This resolves the remaining possible multiplicative extensions. The abutment is a graded
Fp module so additive extensions are not possible. �

4. Homological Tate fixed points of THH(X(n))

The next step is to compute the continuous homology of the Tate construction of THH(X(k)),
where continuous homology is defined as (6). Our discussion follows the discussion of the Tate con-
struction in [LNR11, Proof of Prop. 4.9], and we refer the reader to that proof for additional details.

Let X be a T-spectrum regarded as a Cp-spectrum by restricting the T-action to the p-th
roots of unity in T. Then the Tate construction of X , denoted XtCp , may be modeled by

XtCp :=
(
ẼT ∧ F (ET+, X)

)Cp

where ET is the total space of the universal T bundle over BT and ẼT is the cofiber of the map
ET+ → S0 induced by the collapse map ET → ∗ by applying the disjoint basepoint functor (−)+
from spaces to based spaces. In particular, there are Cp-equivariant equivalences ET ≃ ECp and

ẼT ≃ ẼCp. We fix a model ẼT as the one point compactification of S∞C of the countably infinite
dimensional C-vector space equipped with a T-action by coordinate-wise multiplication. We also fix

a T-CW structure on ẼT with (2n)-skeleton and (2n−1)-skeleton SnC so that the filtration quotients

SjC/S(j−1)C in the double speed skeletal filtration of ẼT are homeomorphic to Σ2j−1T+. We may

also equip ẼT with a Cp-action by restriction to the subgroup of p-th roots of unity and equip

ẼT with a Cp-CW structure with SjC as 2j-skeleton such that the double speed skeletal filtration

quotient Σ2j−1T+ is equipped with a Cp CW structure as in [LNR11, Def. 3.8]. We let Ẽj for j ≥ 0

be the j-skeleton of this skeletal filtration of ẼT as a Cp-CW complex. Following Greenlees [Gre87],

we define Ẽj for j < 0 to be the Spanier-Whitehead dual D(Ẽ−j−1). We can then define

XtCp [j] =
(
ẼT/Ẽj ∧ F (ET+, X)

)Cp

to obtain a filtration

XtCp → · · ·XtCp [j] → XtCp [j + 1] → XtCp [j + 2] → · · ·(5)
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of XtCp , which we refer to as the Greenlees filtration.2 The filtration quotients are
(
Ẽj/Ẽj−1 ∧ F (ET+, X)

)Cp

≃ ΣjX

for each integer j, as shown in [LNR11, Proof of Prop. 4.9].
Applying homology produces an exact couple whose associated spectral sequence is called

the homological Tate spectral sequence, which converges strongly to the continuous homology

Hc
∗(X

tCp) = lim
j

H∗(X
tCp [j])(6)

when X is bounded below and H∗(X) is finite type by [LNR11, Prop. 4.1].
We begin by analyzing this spectral sequence for THH(X(n)), which is clearly bounded

below and whose homology is clearly finite type by Lemma 3.1. The homological Tate spectral
sequence is therefore a strongly convergent spectral sequence, with signature

Ês,t
2 = Ĥ−s(Cp;Ht(THH(X(k))) ⇒ Hc

s+t(THH(X(k))tCp)(7)

where Hc
s+t(THH(X(k))tCp) is a continuous A∗-comodule by [LNR12, Prop. 4.1].3

The geometric realization of the cyclic bar construction admits a canonical T-action, so
THH(X(k)) is equipped with a canonical T-action. The Cp-action on H∗(THH(X(k))) is the
restriction of this T-action, so it acts trivially on H∗(THH(X(k))) because T is path connected and
the action of T on H∗(THH(X(k))) is continuous. Therefore, the E2-term of (7) splits as a tensor
product

Ê∗∗
2 = Ĥ−∗(Cp;H∗(THH(X(k)))) ∼= Ĥ−∗(Cp;Fp)⊗H∗(THH(X(k)).

Since Ĥ−∗(C2;F2) ∼= P (t±1) with |t| = −1 and Ĥ−∗(Cp;Fp) ∼= E(h) ⊗ P (t±1) with |h| = −1 and
|t| = −2 if p > 2, we can identify the E2-term of (7):

Ê∗∗
2

∼=

{
P (t±1)⊗ P (b1, b2, . . . , bn)⊗ E(σb1, σb2, . . . , σbk), p = 2,

E(h)⊗ P (t±1)⊗ P (b1, b2, . . . , bk)⊗ E(σb1, σb2, . . . , σbn), p > 2.

For p = 2, the degrees of the generators are |t| = (−1, 0), |bi| = (0, 2i), and |σbi| = (0, 2i+ 1). For
p > 2, the degrees of the generators are |h| = (−1, 0), |t| = (−2, 0), and the degrees of bi and σbi
are the same as in the case p = 2.

We note that the operator σ(−) is induced in homology by the natural map

S1 ∧R → S1
+ ∧R → S1

+ ∧ THH(R) → THH(R)

where the final map in the composite is exactly the action of S1
+. Thus, for each integer k ≥ 1, the

induced map

H∗(S
1)⊗H∗(X(k)) ∼= H∗(S

1 ∧X(k)) → H∗(THH(X(k)))

sends ι⊗ bi to σbi for all 1 ≤ i ≤ k, where ι is the fundamental class in H1(S
1) [MS93, Prop. 3. 2].

This fact will be used in the following result.

Proposition 4.1. In the homological Tate spectral sequence (7), the d2-differentials are generated

by

d2(bi) =̇

{
t2σbi for p = 2, and

tσbi for p > 2,

via the Leibniz rule for all 1 ≤ i ≤ k.

2This is not exactly the same as the filtration as defined by Greenlees in [Gre87], but the difference between the two
just amounts to a different choice of model for ECp as a Cp-CW complex.
3See [LNR12, Sec. 2.2] for a survey of continuous A∗ comodules.
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Proof. We compare the spectral sequence (7) for k finite with the the case k = ∞ whereX(∞) = MU
by examining the map of spectral sequences induced by the canonical map X(k) → MU . The d2-
differentials for the Tate spectral sequence converging to Hc

∗(THH(MU)tCp) were computed in
[LNR11, Prop. 6.3]. They showed that for all i ≥ 1, one has d2(bi) = t2σbi for p = 2, and
d2(bi)=̇tσbi for p > 2. This can be proven directly by lifting the differentials from the Tate spectral
sequence converging to the continuous homology Hc

∗(THH(X(k))tT) of the Tate construction along
the inclusion Cp → T, where continuous homology is defined as in [BR05, Prop. 7.1]. The T-Tate
spectral sequence differentials arise from looking at the skeletal filtration of the model of ET given
by S(∞C) and noting that the attaching maps are given by the T-action [BR05].

The map X(k) → MU induces an injective map of E2-terms of homological Tate spectral
sequences. In particular, any differential d2(bi) = t2σbi for p = 2 or d2(bi)=̇tσbi for p > 2 in the MU
case must also occur in the X(k) case when i ≤ k and when i > k both the source and target of the
differential in the target spectral sequence are not in the image of the map of E2-terms. This gives
the stated d2-differentials. Therefore, the map of E3-terms of homological Tate spectral sequences
is again injective. Since the homological Tate spectral sequence for MU collapses at the E3-term
by [LNR11, Prop. 6.3] and the map of E3-terms is injective the homological Tate spectral sequence
also collapses for X(k) for any integer k ≥ 1. �

The continuous homology Hc
∗(THH(X(k))tCp) of the Tate construction of THH(X(k))

follows from the above pattern of differentials.

Corollary 4.2. Let k ≥ 1 be an integer. The continuous homology of the Tate construction of

THH(X(k)) is determined by an isomorphism of continuous A∗-comoudle algebras

Hc
∗(THH(X(k))tCp) ∼=

{
P (t±1)⊗ P (b21, . . . , b

2
k)⊗ E(b1σb1, . . . , bkσbk), p = 2,

E(h)⊗ P (t±1)⊗ P (bp1, . . . , b
p
k)⊗ E(bp−1

1 σb1, . . . , b
p−1
k σbk), p > 2,

where the continuous A∗-coaction is determined by the inclusion into Hc
∗(THH(MU)tCp).

Proof. The E∞-term in the spectral sequence is determined by Proposition 4.1. To solve extensions,
we note that the map of spectral sequences induced by X(k) → MU is multiplicative by functoriality
of the homological Tate spectral sequence since the map X(k) → MU is a map of E2 ring spectra.
Therefore, the continuousA∗-comodule extensions and multiplicative extensions follow from [LNR11,
Props. 6.3, 6.4] and naturality of the Tate-valued Frobenius map. �

5. Identification with the Singer construction

The goal of this section is to prove the Segal Conjecture for THH(X(n)), Theorem 5.4.
Our proof proceeds by modifying the proof of the Segal Conjecture for THH(MU) given by Lunøe-
Nielsen–Rognes in [LNR11]. To avoid repeating some of their technical arguments and constructions,
we include precise references to their paper where possible. Note that we cannot directly apply the
proofs of in Lunøe-Nielsen–Rognes in [LNR11] because they use results from [BR05] in the case of
MU case that rely on having an E∞-ring spectrum structure on MU . No such E∞-ring spectrum
structure exists on X(n), which can be seen using Dyer–Lashoff operations Q1(ξi) = ξi+1 computed
by Steinberger [BMMS86].

By the isotropy separation diagram for topological Hochschild homology and the cyclotomic

structure on THH(R) (see [HM97, Prop. 4.1]), the map THH(R)Cp
Γ

−→ THH(R)hCp is a p-adic
equivalence whenever the Tate-valued Frobenius map

ϕp : THH(R) −→ THH(R)tCp

is an p-adic equivalence. We will show this by exhibiting an Ext-equivalence (Definition 5.1)

H∗(THH(R))
ǫ∗−→ R+(H∗(THH(R)))

Φn−→ Hc
∗(THH(R)tCp),(8)
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where R+(−) is the homological Singer construction [LNR12, Def. 3.7]. The p-adic equivalence then
follows from comparing Adams spectral sequence to the inverse limit Adams spectral sequence as in
[LDMA80, AGM85, LNR12]. The map ǫ∗ is an Ext-equivalence by [AGM85, Prop. 1.2, Thm. 1.3],
so we must show that the map Φn is an Ext-equivalence.

Definition 5.1. A homomorphism M → N of A∗-comodules is an Ext-equivalence if the induced
homomorphism

Exts,tA∗
(Fp,M) → Exts,tA∗

(Fp, N)

is an isomorphism for all s ≥ 0 and t ∈ Z.

We begin with the case R = X(k) and p > 2. By Corollary 4.2, the continuous homology
of the Tate construction on THH(X(k)) is determined by the isomorphism

Hc
∗(THH(X(k))tCp) ∼= E(h)⊗ P (t±1)⊗ P (bp1, b

p
2, . . . , b

p
k)⊗ E(bp−1

1 σb1, b
p−1
2 σb2 . . . , b

p−1
k σbn).

On the other hand, one can consider the homological Tate spectral sequence, with signature

Ê∗∗
2 = Ĥ−∗(Cp;H∗(THH(X(k))∧p)) ⇒ H∗(((THH(X(k))∧p)tCp) ∼= R+(H∗(THH(X(k))))

where the isomorphism on the right-hand side follows from [LNR12, Thm. 5.9]. In this case, the
homological Singer construction can be expressed as

R+(H∗(THH(X(k)))) = E(h)⊗ P (t±1)⊗ P (b⊗p
1 , b⊗p

2 , . . . , b⊗p
k )⊗ E(σb⊗p

1 , σb⊗p
2 , . . . , σb⊗p

k )

which is in bijection with Hc
∗(THH(X(k))tCp) via bpi 7→ b⊗p

i and bp−1
i σbi 7→ tm ⊗ σb⊗p

i where
m = (p − 1)/2. The goal is to promote this filtration-shifting bijection to an isomorphism of
complete A∗-comodules.

The homology of X(k) and THH(X(k)) are sub-A∗-comodules of the homology of MU
and THH(MU), respectively. Consequently, Hc

∗(THH(X(k))tCp) is a complete sub-A∗-comodule
of Hc

∗(THH(MU)tCp). Therefore, the formulas and computations leading up to [LNR11, Props.
7.2, 7.3] carry over mutatis mutandis. In particular, we obtain maps

R+(H∗(X(k)))⊗H∗(X(k)) H∗(THH(X(k)))
f

−→ R+(H∗(THH(X(k)))(9)

R+(H∗(X(k)))⊗H∗(X(k)) H∗(THH(X(k)))
g

−→ Hc
∗(THH(X(k))tCp)(10)

defined by f(α⊗ β) = R+(η∗)(α) · ǫ∗(β) and g(α⊗ β) = ηt∗(α) · Γ̂∗(β), where R+(η∗), ǫ∗, η
t
∗ and Γ̂∗

are the H∗(X(k))-linear maps

R+(η∗) : R+(H∗(X(k))) → R+(H∗(THH(X(k)))

ǫ∗ : H∗(THH(X(k))) → R+(H∗(THH(X(k))

ηt∗ : R+(H∗(X(k)) → Hc
∗(THH(X(k))tCp)

Γ̂∗ : H∗(THH(X(k))) → Hc
∗(THH(X(k))tCp)

induced by the usual unit map
η : X(k) → THH(X(k)),

Tate diagonal
ǫ : THH(X(k)) → (THH(X(k))∧p)tCp ,

and the Tate-valued Frobenius map

ϕp : THH(X(k)) → THH(X(k))tCp .

There are filtrations of the above A∗-comodules defined by

F kH∗(X
tCp) = im

(
Hc

∗(X
tCp) → H∗(X

tCp [j])
)

where H∗(X
tCp [j]) is the homology of the j-th term in the Greenlees filtration (5). In particular, this

defines a filtration on R+(H∗(R)) and R+(H∗THH(R)) for an S-algebra R which is bounded below

and finite type because, by [LNR12, Thm. 5.9], there are isomorphisms R+(H∗R) ∼= Hc
∗((R

∧p)
tCp)



10 GABRIEL ANGELINI-KNOLL AND J.D. QUIGLEY

and R+(H∗THH(R)) ∼= Hc
∗((THH(R)∧p)

tCp).4 The maps f and g defined in (9) and (10) induce
maps {fj} and {gj} of cofiltered A∗-comodules.

Proposition 5.2. The maps {fj} and {gj} of cofiltered A∗-comodules are strict maps of cofiltered

A∗-comodules which assemble into pro-isomorphisms whose limits f̂ and ĝ are isomorphisms of

complete A∗-comodules.

Proof. Our proof is modified from the proof of [LNR11, Prop. 7.2]. We will only provide the proof
for {fj} since the proof for {gj} is similar. In each total degree d, fj defines a map

fj,d : [F jR+(H∗(X(k)))⊗ E(σb1, σb2, . . . , σbn)]d → F jR+(H∗(THH(X(k)))d.

For each k, we would like to define compatible maps

φj,d : [FNR+(H∗(THH(X(k))))]d → [F jR+(H∗(X(k)))⊗ E(σb1, σb2, . . . , σbk)]d

with N = N(j, d) = p(j − d) + d, such that the composition φj,d ◦ fN,d is equal to the structural
surjection

[FNR+(H∗(X(k)))⊗ E(σb1, σb2 . . . , σbk)]d // // [F jR+(H∗(X(k)))⊗ E(σb1, σb2 . . . , σbk)]d

and such that the composition fj,d ◦ φj,d, is equal to the structural surjection

[FNR+(H∗(THH(X(k)))]d // // [F jR+(H∗(THH(X(k))))]d.

We can then conclude that the collection {fj,d}j forms a pro-isomorphism with pro-inverse {φj,d}j
in each total degree d. These maps therefore assemble into a pro-isomorphism {fj} with pro-inverse
{φj}.

In [LNR11, Proof of Thm. 7.2], Lunøe-Nielsen–Rognes decompose the group

[R+(H∗(MU))⊗ E(ǫ∗(σmℓ)|ℓ ≥ 1)]d

into a direct sum indexed by strictly increasing sequences L = (ℓ1 < · · · < ℓr) of natural numbers
of length r ≥ 0. Then they define the maps φj,d for MU using this decomposition on [LNR11,
Pg. 618-619]. The desired maps φj,d for X(k) follow from exactly the same steps. To decompose
[R+(H∗(X(k))) ⊗ E(ǫ∗(σb1), . . . , ǫ∗(σbk)))]d into a direct sum, we restrict to strictly increasing se-
quences L = (ℓ1 < · · · < ℓr) where 0 ≤ r ≤ n. Using the notation ǫL = ǫ∗(σbℓ1) · . . . · ǫ∗(σbℓr), we
obtain homomorphisms

[FN−sLR+(H∗(X(k)))⊗ Fp{ǫL}]d → [F jR+(H∗(X(k)))⊗ E(σb1, σb2, . . . , σbk)]d

defined by ǫL 7→ σbℓ1 . . . σbℓr where sL = −(p − 1)(2ℓ1 + · · · + 2ℓr + r). The definition of φj,d is
then completed by taking the direct sum over L. The filtration shift estimates from [LNR11, Pg.
618-619] carry over to the X(k) case. Therefore the maps fj,d and φj,d compose into the desired
structural surjections in each total degree d. This implies that the set {fj} is a strict map of inverse
systems which assembles into a pro-isomorphism.

The analogous pro-isomorphisms can be defined for X(k) when p = 2 by essentially the

same argument. Setting ΦX := ĝ ◦ f̂−1 for the corresponding ĝ = limgj and f̂ = limfj yields the
desired isomorphism. �

Corollary 5.3. There is an isomorphism of complete A∗-comodules

ΦX(k) : R+(H∗(THH(X(k)))) −→ Hc
∗(THH(X(k))tCp).

Therefore, when R = X(k), the composite map (8) is an Ext-equivalence for each k ≥ 1.
We therefore have proven the main theorem.

4In fact, this result has recently been extended by Nikolaus–Scholze [NS18, Theorem III.1.7] who show that the map
X → (X∧p)tCp exhibits (X∧p)tCp as the p-completion of X for all bounded below spectra without the finite type
hypothesis.
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Theorem 5.4. The Tate-valued Frobenius map

ϕp : THH(X(k)) −→ THH(X(n))tCp

is a p-adic equivalence for all integers k ≥ 1 and primes p.

Proof. The Tate-valued Frobenius map

ϕp : THH(X(k)) → THH(X(k))tCp

induces a map from the Adams spectral sequence, with signature

Es,t
2 = Exts,tA∗

(Fp, H∗(THH(X(k)))) ⇒ πt−s(THH(X(k)))(11)

to the strongly convergent inverse limit Adams spectral sequence, with signature

Es,t
2 = Exts,tA∗

(Fp, H
c
∗(THH(X(n))tCp)) ⇒ πt−s(THH(X(n))tCp(12)

of [LNR12, Prop. 2.2].
By [LNR12, Thm. 5.9], there is an isomorphism

H∗ (THH(X(n))∧p)
tCp ∼= R+(H∗THH(X(n)))(13)

and by [AGM85, Proposition 1.2, Theorem 1.3] the map

H∗(THH(X(n))) → R+(H∗THH(X(n)))

induces an Ext-equivalence. Since we have proven that there is an isomorphism of complete A∗-
comodules

R+(H∗THH(X(n))) → H∗THH(X(n))tCp,(14)

there is an isomorphism between the E2-terms of (11) and (12). The result then follows from strong
convergence of the inverse limit of Adams spectral sequence. �

By the isotropy separation diagram (see [HM97, Prop. 4.1]) as well as Tsalidis’ theorem
[Tsa98, BBLeNR14], we conclude the following corollary.

Corollary 5.5. Let k ≥ 1 and m ≥ 0 be integers and fix a prime p. The map

THH(X(k))Cpm
Γ

−→ THH(X(k))hCpm

is a p-adic equivalence.

The map ϕp : THH(X(k) → THH(X(k))tCp an T equivariant map because THH(X(k))
is cyclotomic in the sense of [NS18]. Theorem 5.4 therefore implies that the Tate-valued Frobenius
map is an equivalence of Borel T-equivariant spectra in the sense of [NS18], by [Joy08, Thm. 5.14.],
Consequently, we have the following corollary.

Corollary 5.6. The Tate-valued Frobenius map induces an equivalence

ϕp : TC−(X(k);Zp) ≃ TP (X(k);Zp)

for all primes p and all integers k ≥ 1.
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6. The Segal conjecture for topological Hochschild homology of T (n)

We conclude by briefly describing analogous results for the spectrum T (n) under the as-
sumptions that T (n) is an E2 ring spectrum and that the canonical maps T (n) → BP are maps
of E2 ring spectra for each n. These assumptions are necessary in our argument because they im-
ply THH(T (n)) is a ring spectrum and the map of strongly convergent homological Tate spectral
sequences

Ĥ−∗(Cp;H∗(THH(T (n)))) //

��

Ĥ−∗(Cp;H∗(THH(BP )))

��

Hc
∗(THH(T (n))tCp) // Hc

∗(THH(BP )tCp)

is multiplicative. The assumption that the canonical maps T (n) → BP are E2 ring spectrum maps
can be possibly be weakened to knowing either that the canonical maps T (n) → BP are maps of
E1 ring spectra or that T (n) is an E2 ring spectrum for each n > 0, but neither of theses results are
known.

We begin by discussing the plausibility of our assumption that the canonical maps T (n) →
BP are E2 ring spectrum maps for each n ≥ 0. We can express T (n) as the colimit

T (n) = colim
ǫk

X(k),

in the homotopy category where ǫk is the restriction of the Quillen idempotent ǫ : MU → MU to
X(k) as defined in [Hop84, Lem 1.3.5] and k satisfies pn ≤ k < pn−1. In particular, this implies
that T (n) is homotopy commutative and homotopy associative, see [Rav86, Thm. 6.5.1]. Work of
Chadwick–Mandell [CM15] shows that ǫ : MU → MU is a map of E2 ring spectra and the map
MU → BP is a map of E2 ring spectra. To prove that T (n) is an E2 ring spectrum and the map
T (n) → BP is a map of E2 ring spectra, it would suffice to show that the map ǫk : X(k) → X(k) is
a map of E2 ring spectra for all k ≥ 1. It would follow that T (n) is an E2 ring spectrum because the
colimit in E2 ring spectra is computed as the colimit of underlying spectra. Since the idempotent ǫk
is known to be compatible with the idempotent ǫ, in the sense that for each k there is a commutative
diagram

X(k)

ǫk

��

// MU

ǫ

��

X(k) // MU,

it would also imply, by naturality of the colimit in the category of E2 ring spectra, that the canonical
maps

T (n) → BP

are maps of E2 ring spectra.
Fix k and n such that pn−1 ≤ k < pn throughout this section. Let HoRing(X,Y ) denote

the set of homotopy classes of maps of ring spectra X → Y in the stable homotopy category,
and let E2-Ring(A,B) be the space of E2 ring maps A → B. We would like to show that ǫk ∈
HoRing(X(k), X(k)) pulls back to a class in π0(E2-Ring(X(k), X(k))) along the map

π0(E2-Ring(X(k), X(k))) → HoRing(X(k), X(k)).(15)

By using methods from [CM15, Sec. 6], we can identify

π0(E2-Ring(X(k), X(k))) ∼= s̃l1X(k)2(BSU(k))

and

HoRing(X(k), X(k)) ∼= s̃l1X(k)0(CP k−1).
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The map (15) is induced by the map

Σ2
CP k−1 → Σ2ΩSU(k) → B2ΩSU(k) ≃ BSU(k).

Therefore it suffices to examine the map of Atiyah-Hirzebruch spectral sequences, which is given on
E2 pages by

Hs+2(BSU(k);π−ts̃l1X(k)) → Hs(CP k−1;π−ts̃l1X(k)).

We can understand this map with integral coefficients

H∗+2(BSU(k);Z) → Hs(CP k−1;Z)

where H∗+2(BSU(k);Z) ∼= P (x2, x3, . . . , xk) with |xi| = 2i and H∗(CP k−1;Z) ∼= Pk(u) with |u| = 2.
By [CM15, Prop. 6.3], the element xi maps to (−1)iui for all 1 ≤ i ≤ k and all decomposables map to
zero. Therefore, it suffices to understand the map of Atiyah-Hirzebruch spectral sequences modulo
decomposables. We may determine the class z detecting ǫk in the target spectral sequence and
a class z̃ mapping to it from the source spectral sequence. Our goal then is to show that z̃ is a
permanent cycle.

In the work of Chadwick–Mandell, the class analogous to z̃ is a permanent cycle for bide-
gree reasons; there are no possible targets for differentials because all of the spectra they consider
have homotopy groups concentrated in even degrees. Since the homotopy groups π∗(X(k)) are not
known to be concentrated in even degrees, we cannot rule out the possibility of z̃ supporting a long
differential. We make the following assumption, which implies that T (n) is an E2 ring spectrum for
each n ≥ 0 and the canonical maps T (n) → BP are E2 ring spectrum maps.

Assumption 6.1. The class z̃ is a permanent cycle in the Atiyah-Hirzebruch spectral sequence with

abutment s̃l1X(k)∗(BSU(k)).

Assuming that the canonical maps T (n) → BP are maps of E2 ring spectra, we can prove
the Segal Conjecture for THH(T (n)) by following the same strategy as we did for THH(X(k)). The
homology H∗(THH(T (n))) can be computed using the Bökstedt spectral sequence (4). In this case,
the Bökstedt spectral sequence again collapses at the E2 term because of the bidegrees of the algebra
generators and the multiplcitive extensions may again be resolved using the E1 Dyer–Lashof algebra.
This part only uses the assumption that T (n) is an E2 ring spectrum and not the assumption that
the canonical maps T (n) → BP are maps of E2 ring spectra. One obtains

H∗(THH(T (n))) ∼= P (ξ1, ξ2, . . . , ξn)⊗ E(σξ1, σξ2, . . . , σξn).

The continuous homology Hc
∗(THH(T (n))tCp) can be computed using the homological

Tate spectral sequence by comparison with the homological Tate spectral sequence converging to
Hc

∗(THH(BP )tCp) which was computed in [LNR11, Prop. 6.8]. Notably, the homological Tate spec-
tral sequence for BP still collapses at the E3 term and the map of E3-terms is still injective. The
map of spectral sequences is also multiplicative under our assumptions, which allows us to determine
multiplicative extensions in the source spectral sequence. This is where we use our assumption that
the map T (n) → BP is a map of E2 ring spectra. Thus, there are isomorphisms

Hc
∗(THH(T (n))tCp) ∼=

{
P (t±1)⊗ P (ξ

2

1, . . . , ξ
2

n)⊗ E(ξ1σξ1, . . . , ξnσξn) for p = 2,

E(h)⊗ P (t±1)⊗ P (ξ
p

1, . . . , ξ
p

n)⊗ E(ξ
p−1

1 σξ1, . . . , ξ
p−1

n σξn) for p > 2

of continuous A∗-comodule algebras. For p = 2, the degrees of the generators are |t| = (−1, 0),
|ξi| = (0, 2i+1−2), and |σξi| = (0, 2i+1−1). For p > 2, the degrees of the generators are |h| = (−1, 0),

|t| = (−2, 0), |ξi| = (0, 2pi − 2), and |σξi| = (0, 2pi − 1).
The homological Singer construction R+(H∗(THH(T (n)))) can be identified using [LNR12,

Thm. 5.9] as in (13). The identification with the homological Singer construction

R+(H∗(THH(T (n)))) ∼= Hc
∗(THH(T (n))tCp)

as continuous A∗ comodules follows from a modification of the proof of [LNR11, Thm. 7.2]. This
modification is similar to the modification proving the analogous isomorphism (14) for THH(X(n))
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in Section 5. One concludes using the strongly convergent inverse limit Adams spectral sequence
that the Tate-valued Frobenius map

THH(T (n))
Γ
→ THH(T (n))tCp

is a p-adic equivalence. The analogues of Corollary 5.5 and Corollary 5.6 also hold for T (n) under
our running assumptions for each n ≥ 0 .
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[Joy08] André Joyal. The theory of quasicategories and its applications. Lecture notes from CRM in Barcelona,
2008.

[Kuh07] Nicholas J. Kuhn. Goodwillie towers and chromatic homotopy: an overview. In Proceedings of the
Nishida Fest (Kinosaki 2003), volume 10 of Geom. Topol. Monogr., pages 245–279. Geom. Topol.
Publ., Coventry, 2007.

[Law19] Tyler Lawson. En ring spectra and Dyer-Lashof operations. In Handbook of Homotopy Theory, chap-
ter 19. CRC Press, 2019.

[LDMA80] WH Lin, DM Davis, ME Mahowald, and JF Adams. Calculation of Lin’s Ext groups. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 87, pages 459–469. Cambridge Univ Press,
1980.

[LMSM86] L. G. Lewis, Jr., J. P. May, M. Steinberger, and J. E. McClure. Equivariant stable homotopy theory,
volume 1213 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With contributions by J.
E. McClure.



THE SEGAL CONJECTURE FOR TOPOLOGICAL HOCHSCHILD HOMOLOGY OF RAVENEL SPECTRA 15

[LNR11] Sverre Lunøe-Nielsen and John Rognes. The Segal conjecture for topological Hochschild homology of
complex cobordism. Journal of Topology, 4(3):591–622, 2011.

[LNR12] Sverre Lunøe-Nielsen and John Rognes. The topological Singer construction. Documenta Mathematica,
17:861–909, 2012.

[Mil58] John Milnor. The Steenrod algebra and its dual. Ann. of Math. (2), 67:150–171, 1958.
[MMSS01] M. A. Mandell, J. P. May, S. Schwede, and B. Shipley. Model categories of diagram spectra. Proc.

London Math. Soc. (3), 82(2):441–512, 2001.
[MS93] J. E. McClure and R. E. Staffeldt. On the topological Hochschild homology of bu. I. Amer. J. Math.,

115(1):1–45, 1993.
[NS18] Thomas Nikolaus and Peter Scholze. On topological cyclic homology. Acta Math., 221(2):203–409, 2018.
[Rav84] Douglas C Ravenel. Localization with respect to certain periodic homology theories. American Journal

of Mathematics, 106(2):351–414, 1984.
[Rav86] Douglas C. Ravenel. Complex cobordism and stable homotopy groups of spheres, volume 121 of Pure

and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1986.
[Tsa98] Stavros Tsalidis. Topological Hochschild homology and the homotopy descent problem. Topology,

37(4):913–934, 1998.
[Wal87] Friedhelm Waldhausen. An outline of how manifolds relate to algebraic K-theory. In Homotopy theory

(Durham, 1985), volume 117 of London Math. Soc. Lecture Note Ser., pages 239–247. Cambridge Univ.
Press, Cambridge, 1987.

Email address: gak @math.fu-berlin.de

Department of Mathematics, Freie Universität Berlin, Germany, Berlin, Arnimalee 7, 14195

Email address: jdq27@cornell.edu

Department of Mathematics, Cornell University, U.S.A., Ithaca, NY, 580 Malott Hall, 14853


	1. Introduction
	1.1. Outline
	1.2. Conventions
	1.3. Acknowledgments

	2. The spectra X(k) and T(n)
	3. Homology of the topological Hochschild homology of X(n)
	4. Homological Tate fixed points of THH(X(n))
	5. Identification with the Singer construction
	6. The Segal conjecture for topological Hochschild homology of T(n)
	References

