Mr. Taque contmied
Cornectiven: G left deformation is always homotop ucal Pf: $f: x \xrightarrow{\approx} Y$

$$
\begin{gathered}
Q(x) \xrightarrow[Q(\gamma)]{Q(Y)} \\
\sim \mid g-1 / 8 \\
x \frac{1}{2}, 4
\end{gathered}
$$

Now $q Q(f)=f q$ is a weak equice no $Q(f)$ is \ln 2-of-3.
Prop Anven $X_{1} \in^{b} A_{1}, b, Y_{1}$
The roms are "xpans
(*)

$$
\hat{y}_{x_{2}}-\hat{A}_{2} \xrightarrow{\underline{b}} \dot{Y}_{2},
$$

the map $X_{1} v_{A}, Y_{1} \rightarrow X_{2} U_{A_{2}} Y_{2}$.
Prosf (1) We did it fon the case $A_{1}=A_{2}=A$ last time
(2) ane expmond the diafumabove to

flutnerrisprexeened by abrave chanal

Will the top 2 rows have equivalent pushouth

Then (1) wimples the rouault QED row

If om categom has faclounation

then we can weateen the lypoothexis, luy requiving anly one map in top row of (x) to be flat e.g.
 and sonclude that $X_{1} U_{A_{1}} Y_{1}^{\prime} \xrightarrow{\sim} X_{2} U_{A_{2}} Y_{2}$

Clim first 2 rows have equivalent pushouts

Ap ${ }^{G}$ with stable weak equins hary the factoryation prokenty alove
Rem inppose $(M, 1,1)$ is comotopernt $s M C$ in which every objoct Z admits a weate equiv from a flat offect \tilde{z}. Then if $X \xrightarrow{b^{\prime}} Y$ is meakequiv, to is fo z formy z.
of flot olsects

Proof By def $\tilde{z} \otimes(-)$ proecmes limith and weak equin

$$
\begin{aligned}
& x_{n} \tilde{\sim} \xrightarrow[?]{\sim} x_{n} Z \\
& \sim \downarrow \\
& \psi_{n} \tilde{?} \xrightarrow[?]{\sim} y_{1} Z
\end{aligned}
$$

Notation $i_{n+}: S_{+}^{n-1} \longrightarrow D_{+}^{n}, j_{n+}: I_{+}^{n} \longrightarrow I_{+}^{n+1} \quad n \geq 0$
$\left(\partial D_{0}=\phi\right)$
Then F (cuteperyy of pointed xpaces) has a cofilimanty generated wodel coleyouy

$$
\left.\begin{array}{rlrl}
\text { abucture with generating sels } \\
A & =\left\{i_{n+}: n \geq 0\right\} \text { und } \begin{array}{rl}
f & =\left\{j_{n}: n \geq 0\right\} \\
& =\text { generaling }
\end{array} & =\text { oseratang }
\end{array}\right\}
$$ equivanant maps

It has a CGMC etructure with

$$
\begin{aligned}
& d=\left\{G+\hat{H}_{n+1}: n \geq 0, H \leq G\right\} \\
& d=\left\{G_{+1} \hat{i}_{n+}: n \geq 0, H \leq G\right\}
\end{aligned}
$$

Weak equivalences, are maps, $X \xrightarrow{H} Y$ such that $f^{H:} X^{H} \rightarrow Y^{H}$ is s weafe
equivalencl $\forall H \leq G$.

Let $A p^{G}=$ catergouy of G - xpectry and equivariant maps
G map $f: X \longrightarrow Y$ is a struct punvalence if ov $: X_{v} \rightarrow Y_{v}$ is arweate equic in $\}^{\text {a }}$ for eash rep. V. Tob RIG. II
We set a CGMC etructure with

$$
\alpha=\left\{G_{+} \hat{H} S^{-V} i_{n+}: \quad \begin{array}{rl}
& n=0, H \leq G_{2} \\
V=n e p \text { of } H
\end{array}\right\}
$$

Recall the Yoneda ppectrum S^{-V} is deforied lyy $\left(S^{-V}\right)_{W}=f_{H}(V, W)=$ Tham andace

$$
f=\left\{G_{+} \hat{\mu}_{1} S^{-v_{1} j_{n+1}}: \quad \text { same }\right\}
$$

To define stible homotopy equoralence,, chooel a sequend of repls of C cs
(*) $V_{1} \hookrightarrow V_{2} \longleftrightarrow V_{3} \longleftrightarrow \cdots$
which is exhaustwe, i.e. eveny finite dinensional rep V is contaned in some V_{n}, l.g. $V_{n}=n P_{G}$. Fas a epectrum X, let

$$
R X=\operatorname{colim}\left(\Omega^{V_{1}} s^{v_{1}}, x \rightarrow \Omega^{v_{2}} S^{v_{2}}, x \rightarrow \cdots\right)
$$

His independent of the choice of \rightarrow FIBRANT REPLACEMENT

Iff A map $f: X \rightarrow Y$ is x stable equorend if $R f: R X \rightarrow R Y$ is a Ethict equorilme Remarks.
$\rightarrow R X$ is an " Ω-specturm", i.e one where $Y_{V} \simeq \Omega^{W} Y_{V \oplus W}$ for ell V, W
2) Aifine $\pi_{v} X=$ colim $\pi_{V+V_{n}} X_{V_{n}}$
stable homotopy aps
We will define a CGMC Dtructure suth this notion of weath equici and α as bufore. We need moul qenerating trivial iofibratiom than before.
Let W he a rep of G and difine $e_{W}: S_{N}^{-W} \rightarrow$

$$
\begin{aligned}
\left(S^{-W} \wedge S^{W}\right)_{V} & =\left(S^{-W}\right)_{V} \wedge S^{W} \\
& =f_{G}(W, V) \wedge f_{G}(O, W) \\
\downarrow & \downarrow \text { comorion }
\end{aligned}
$$

$$
\left(S^{-0}\right)_{V}=f_{G}(0, \dot{v})
$$

Thm e_{w} is a stable equveland and to is $e^{w} S^{-v}: S^{-w \otimes v} \longrightarrow S^{-v}$
We can we the mapting cylinder conetruction (equivalentls, the pmall bfyect anoudment breid on of - wfibs) to factor

mapting cylinder of $s^{-v} \wedge e_{w}$
$\hat{e}_{v, w}$ is a etable equin unice $s^{-v_{1} e_{w}}$ is one and $\hat{e}_{v, w}$ is a stuest equoxienct.
Recall orner maps: Buien udrapuim (in any catepory with purhouls

There isa malp

$$
X U_{A} B \longrightarrow Y
$$

the connen maps
 und $g: A \longrightarrow B$.

The coner map is denoted by $f \square g$ We then define

$$
f_{\text {atable }}=\gamma \cup\left\{\operatorname{cosin}_{H}\left(i_{n+} \square \hat{e}_{v, w}\right): \begin{array}{l}
n \geq 0 \\
N \leq G \\
v, w \text { reps } \\
q \in H
\end{array}\right\}
$$

Thin defines the complete model whous stuncture on Ipa
Fon techmial reasons to be explained laten we require (in both V and tetable) the posiliviten ondition $v^{H} \neq 0$
Wreid ionoeqnonce of positivilen 5^{-0} is not cofilmant to copleluant replarement in S^{-1}, S ! NEXT MEETINGM MARCH 21

