Supit on ewnched caleqgies and weighted limits and columith Some inteqouiss haue natwal structures in their mouplixim rets.
Def It $V=\left(V_{0,} \otimes, I\right)$ be a oymmetuce monoidal category. A V-calegsun C, convicts of a colledion of oljects, for each pair $X, Y \in$ obl a mosflisim object $C(X, Y) \in$ ob V_{0}, for each ofocit X an indentily mouphiom $I \xrightarrow{I d} C(X, X)$ in V_{0}, and for each tuple $X, Y, Z \in$ obl a composition low $C(Y, Z) \otimes C(X, Y) \xrightarrow{\longrightarrow} C(X, Z)$ Thosedata are nequired to sutiofy associativily property

$$
\begin{aligned}
& C(z, w) \otimes C(Y, z) \otimes C(x, y) \xrightarrow{C(z, w) \otimes 0} C(z, w) \otimes C(x, y) \\
& 0 \otimes C(x, y) \downarrow \\
& C(y, w) \otimes C(x, y) \xrightarrow{0} C(X, w) \\
& \text { and wint puoperen } \\
& \begin{array}{l}
C(X, Y) \otimes \xrightarrow{\cong} \xrightarrow[\cong]{C(X, Y) \otimes d I \pm} C(X, Y) \otimes C(X, X) \\
\text { and emmeruly fon } I \otimes C(X, Y)
\end{array} C(X, Y)
\end{aligned}
$$

There is an underlying ordinain catepory C_{0} wilh sams olyects as C wilh $C_{0}(X, Y)=V_{0}(1, C(X, Y))$

Example
(1) (Let, $x, *)$ is exniched over slself
(2) Tor a gp G , the category Top ${ }^{\text {Gs of G }}$ Ghaces and equivaiuail maps. Dt is enuched over (Jop, $x, *$) [Riahl denoles the epace of anch mops by Top ${ }^{G}(X, Y)$ and the underlifung est ly. $\operatorname{Top}^{G}(X, t)$. Top ${ }^{G}$ is nymmetrue monoidal under Castecian product with drigional action.
Fon C_{n}-spaces X, Y, Top (X, Y) is a G- oppacl unden conjigation. Fon $f: X \rightarrow Y$ and $g \in G$, $(g f)(x):=g f\left(g^{\prime \prime}(x)\right)$. We demele tho reewithng, categosy ly Top (X, Y), which is ennched overs Top G and over Tap,
As a Topar enruchial categroun, Topa is underlain ly TopG

$$
\operatorname{Top}^{G}\left(*, \operatorname{Top}_{a}(x, Y)\right)=\operatorname{Tap}^{G}(X, Y)=\operatorname{Top}\left(*, \operatorname{Tab}{ }^{G}(x, y)\right)
$$

Bef LAt le a caterom onuiched over a SMC V
Then C is tencored (or copowered) over V if \forall
 with a natural ico mosphisin in V $C(K \cdot X, Y) \cong V(K, C(X, Y))$ for each olfeed Y in Q

In other wouds tenooing will X as a functer $V \rightarrow C$ is left adsoint of $C(x,-): C \rightarrow V$ Dually C is cotemsored (on powered) oven V if there is an olsied Y^{k} with natural sommophinsm

$$
C\left(X, Y^{K}\right) \cong V(K, C(X, Y))
$$

Limito and solimito in enriched calefors
Let $F: J \rightarrow C$ for small cateopory J
We lefine a J - eet (functon $J \rightarrow$ dd $) C(C, F)$
l_{y} j $\mapsto C\left(C, F_{j}\right)$ and a $J^{\prime \prime} \operatorname{cd} C(F, C)$
ly $\quad j \mapsto C\left(F_{j}, C\right)$
We have a *-valued J-eet and J "k ed
Then the limit and colimit of F (if they exset are characteruged ly
(1) $\left[C(C, \lim F) \cong \operatorname{Ld}^{F}(x, C(C, F))\right.$ and $C($ colim $F, c) \cong \operatorname{det}^{\top \phi}(x, C(F, c))$
(This is a reetatement of adpuinctions)
colim -1Δ and $\triangle-1$ lim.
We cangeneralised (1) ly replacing *. ly a J-et (Joted). W called theweight
and define weight limit/Lolimit, $\lim { }^{W}$, cslim ${ }^{W}$ as in (1).

Grame C is complete. Ther
(2) $\operatorname{det}^{J}(W, C(c, F)) \cong \int_{J} \operatorname{det}\left(W_{j}, C\left(C, F_{j}\right)\right)$

Prop 2. 4. 5 Inpposee we have two frunstons $F_{i} G: C \rightarrow E$ where C is smell. It $H: e^{\text {op }} \times C \rightarrow$ set ly $H\left(c, C^{\prime}\right)=\varepsilon\left(F(c), G\left(c^{\prime}\right)\right)$
Then $\int_{C} H\left(C, c^{\prime}\right)=\int_{C} \varepsilon\left(F(c), G\left(c^{\prime}\right)\right)$

$$
=\operatorname{Mat}_{a t}(F, G)=[C, C](F, G)
$$

Fen $\varepsilon=$ Let thi sives (2) and

$$
\begin{aligned}
\operatorname{set}^{\top}(W, C(c, F)) & \cong \int_{5} \operatorname{det}\left(W_{j}, C\left(c, F_{j}\right)\right) \\
& \cong \int_{J} C\left(c, F_{j} W_{j}^{j}\right) \text { vemon } \\
& \left.\cong C\left(c, \int_{J} F_{j}\right)\right)
\end{aligned}
$$

$s \lim ^{W} F=\int_{J} F_{y} W_{y}$

In Pxthculan, $\lim ^{W}{ }^{W}$ is sinst the extol natural hanaformations from W to F.
Example (1) By Foneda lemma, the limit of T weighted $l y$ the refroxentuble funiton $C(C,-)$ is Fc
(2) Fon C complete and I tmall, foramy fuxctors $F: J \rightarrow C$ and $K: J \rightarrow D_{0}$
$R_{a_{k}} F$ is defined hy

$$
\operatorname{Ran}_{k} F(d)=\int_{J} F_{j} \theta\left(d, k_{j}\right)=\lim _{J} \theta\left(d, k_{-}\right) F
$$

(3) Aually

$$
\text { Aually } F(d)=\int^{J} \theta\left(k_{j} \cdot d\right) \cdot F_{j}=\operatorname{colim}^{\theta(k, A)} F
$$

of a V-functon $F: D \rightarrow C$ of V-atcgeners cowistiof a functum $F:$ ob $\theta \rightarrow$ be C and for each privest ofsech X, Y a V-mouphisim $F: P(X, Y) \rightarrow C(F X, F Y)$ compatible with unit and composition

$$
\begin{aligned}
& \theta(Y, z) \otimes \theta(x, y) \xrightarrow{0} \theta(x, z) \\
& F_{y, z} \not F_{x, y} d \quad d F_{x, z} \\
& C(F Y, F Z) \otimes C(F X, F, V) \xrightarrow{\longrightarrow} C(F X, F Z) \\
& 1 \xrightarrow[1 』]{d d_{\bar{x}}} \theta(x, x)
\end{aligned}
$$

$$
\mathscr{L}_{F X}, \int_{C}^{d F_{x}, x}, F X^{\prime}
$$

a V-netural traneformation $T: F \Rightarrow C_{s}$ axsigns to ecth offeed X a moutlueir $T_{x}: 1 \rightarrow C(E X, F Y)$ mekimy thediagram

$$
A(X, Y) \xrightarrow{T N Q F} C C(F X, G, Y) \otimes C(F X, F Y)
$$

$$
\cos ^{2}{ }^{2}
$$

$$
C(G X, G) \nmid \otimes C(F X, G Y) \xrightarrow{\bullet} C(F X, G G Y)
$$

commute forall X, Y.

