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Elliptic curves

Recall that an elliptic curvé’ is a 1-dimensional
algebraic variety with a group structure. If it is
defined over the complex numbdrs then it can be

regarded as the quotient groap' A, whereA is the
free abelian group generated by 1 and a number

with positive imaginary part.
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Elliptic curves

Recall that an elliptic curvé’ is a 1-dimensional
algebraic variety with a group structure. If it is
defined over the complex numbdrs then it can be

regarded as the quotient groap' A, whereA is the
free abelian group generated by 1 and a number

with positive imaginary part.

It can also be regarded as a plane cubic curve witt
group structure defined by the colinear rule: the st
of any three colinear points is the identity element.
The equation defining the curve can have coefficie

IN an arbitrary commutative ring.
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Formal group laws

After choosing a local coordinatenear the identity
element, we can express the group structure local

via a power series expansidt{z,y) € R||x,yl].
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Formal group laws

After choosing a local coordinatenear the identity
element, we can express the group structure local

via a power series expansidt{z,y) € R||x,yl].

This power series must have the following three
properties.

(i) F(x,0)= F(0,z) =z since(0,0) is the identity
element.

(i) F(y,x) = F(x,y) since the group is Abelian.
(i) F(F(x,y),2) = F(x, F(y, 2)) by associativity.
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Formal group laws

After choosing a local coordinatenear the identity
element, we can express the group structure local

via a power series expansidt{z,y) € R||x,yl].

This power series must have the following three
properties.

(i) F(x,0)= F(0,z) =z since(0,0) is the identity
element.

(i) F(y,x) = F(x,y) since the group is Abelian.
(i) F(F(x,y),2) = F(x, F(y, 2)) by associativity.

Such a power series is called a 1-dimensional
commutative formal group law ovex.
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Algebraic topology

Algebraic toplogists make a living by associating
algebraic structures with topological spaces and

studying them. One such structure Is ordinary
cohomology.
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Algebraic topology

Algebraic toplogists make a living by associating
algebraic structures with topological spaces and

studying them. One such structure Is ordinary
cohomology.

For a spaceX, H*(X) is a graded commutative ring

meaning that there are abelian group$.X) for
v > 0 and it is possible to multiply an element in

H'(X) by one inH’(X) and get one i """/ (X).
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Algebraic topology

Algebraic toplogists make a living by associating
algebraic structures with topological spaces and

studying them. One such structure Is ordinary
cohomology.

For a spaceX, H*(X) is a graded commutative ring
meaning that there are abelian groufg.X) for

v > 0 and it is possible to multiply an element in
H'(X) by one inH’(X) and get one i """/ (X).

Cohomology is aontraviant functor, which means
that a continuous maf§ — Y induces a ring
homomorphismid*(X) «— H*(Y); the arrow gets
reversed.
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Bordism and cobordism

H*(X) is described as the dual &f,(X), the
ordinary homology of the spack.
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Bordism and cobordism

H*(X) is described as the dual &f,(X), the
ordinary homology of the spack.

H.(X) is defined in terms of maps of simplicial
complexes intoX.
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Bordism and cobordism

H*(X) is described as the dual &f,(X), the
ordinary homology of the spack.

H.(X) is defined in terms of maps of simplicial
complexes intoX.

We get a richer version of homology by replacing
simplicial complexes with complex manifolds. The
resulting group Is called theomplex bordism of X

and is denoted by/ U, (X).
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Bordism and cobordism

H*(X) is described as the dual &f,(X), the
ordinary homology of the spack.

H.(X) is defined in terms of maps of simplicial
complexes intoX.

We get a richer version of homology by replacing
simplicial complexes with complex manifolds. The
resulting group Is called theomplex bordism of X

and is denoted by/ U, (X).

It has a cohomological version denoted /" (X )
(the complex cobordism oX') with formal properties
similar to those off*( X).
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Complex projective space

Recall thatCP" Is the space of complex lines thru t
origin in the vector spac€™"!.
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Complex projective space

Recall thatCP" Is the space of complex lines thru t
origin in the vector spac€™"!.

A linear embedding
cpPv!—cp"

is Poincaré dual to a clagsc MU?*(CP").
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Complex projective space

Recall thatCP" Is the space of complex lines thru t
origin in the vector spac€™"!.

A linear embedding
cpPv!—cp"

is Poincaré dual to a clagsc MU?*(CP").
We have

MU*(CP") = MU*(point)[z]/(z"+1),
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Complex projective space

Recall thatCP" Is the space of complex lines thru t
origin in the vector spac€""!.

A linear embedding
cpPv!—cp"

is Poincaré dual to a clagsc MU?*(CP").
We have

MU*(CP") = MU*(point)[z]/(z"+1),

and the ringM U™ := MU*(point) is known.
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M ore complex projective spaces
Similarly

MU*(CP™ x CP")
= MU z®1,101/(""®1,1® ")
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M ore complex projective spaces
Similarly
MU*(CP™ x CP")
= MU' z®1,10z]/(z"!®1,1® ")

We can regar@C” ! andC"*! and the spaces of
polynomials ovelC of degrees< m and< n
respectively.
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M ore complex projective spaces
Similarly

MU*(CP™ x CP")
= MU' z®1,10z]/(z"!®1,1® ")
We can regar@C” ! andC"*! and the spaces of

polynomials ovelC of degrees< m and< n
respectively.

Polynomial multiplication leads to a map

CP" x CP" — CP™™,
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A new formal group law

Lettingm,n — oo leads to a map

CP>* x CP* — CP~™
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A new formal group law

Lettingm,n — oo leads to a map
CP>* x CP* — CP~™

iInducing

MU*(CP® x CP®)~— MU*(CP>)

MUz ®1,1® 2] MU*([z]

Glr®1l,1® x) T
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A new formal group law

Lettingm,n — oo leads to a map
CP>* x CP* — CP~™

iInducing

MU*(CP® x CP®)~— MU*(CP>)

MUz ®1,1® 2] MU*([z]

Glr®1l,1® x) T

G(x,y) is a formal group law ovelt/ U*.
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Quillen’stheorem

By a theorem of Quillen, the formal group lat&has
the following unversal property: Any formal group
law F' over a ringR Is induced from via a
homomorphism

0. MU, — R.

Wayne State Mathematics Colloquium — p



Quillen’stheorem

By a theorem of Quillen, the formal group lat&has
the following unversal property: Any formal group
law F' over a ringR Is induced from via a
homomorphism

0. MU, — R.

An elliptic curve overR with a choice of local
coordinate determines a formal group law o¥&and
therefore a homomorphism as above.
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Elliptic conomology

This leads to a new functor
X— MU (X)®¢R

from spaces tdz-algebras.
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Elliptic conomology

This leads to a new functor
X— MU (X)®¢R
from spaces tdz-algebras.

In favorable cases this functor has formal propertie
similar to those of ordinary cohomology and is kna
aselliptic cohomology.
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Elliptic conomology

This leads to a new functor
X— MU (X)®¢R
from spaces tdz-algebras.

In favorable cases this functor has formal propertie
similar to those of ordinary cohomology and is kna
aselliptic cohomology.

In some caseg& can be interpreted as a ring of
modular forms, which makes this of interest to
number theorists.
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Elliptic conomology

Witten, Segal, Stolz and Teichner have conjecture
about the geometric interpretation of this functor
which make it of interest to mathematical physicist
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Elliptic conomology

Witten, Segal, Stolz and Teichner have conjecture
about the geometric interpretation of this functor
which make it of interest to mathematical physicist

WhenR Is a ring of modular forms} assigns one to
each complex manifold.
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Elliptic conomology

Witten, Segal, Stolz and Teichner have conjecture
about the geometric interpretation of this functor
which make it of interest to mathematical physicist

WhenR Is a ring of modular forms} assigns one to
each complex manifold.

This modular form has g-expansion with integer
coefficients.
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Elliptic conomology

Witten, Segal, Stolz and Teichner have conjecture
about the geometric interpretation of this functor
which make it of interest to mathematical physicist

WhenR Is a ring of modular forms} assigns one to
each complex manifold.

This modular form has g-expansion with integer
coefficients.

In 1986 Witten conjectured (correctly) that this
iInformation Is related to the index of the Dirac
operator on the free loop space of the manifold.
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