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Elliptic curves
Recall that an elliptic curveE is a 1-dimensional
algebraic variety with a group structure. If it is
defined over the complex numbersC, then it can be
regarded as the quotient groupC/Λ, whereΛ is the
free abelian group generated by 1 and a numberτ
with positive imaginary part.
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Elliptic curves
Recall that an elliptic curveE is a 1-dimensional
algebraic variety with a group structure. If it is
defined over the complex numbersC, then it can be
regarded as the quotient groupC/Λ, whereΛ is the
free abelian group generated by 1 and a numberτ
with positive imaginary part.

It can also be regarded as a plane cubic curve with the
group structure defined by the colinear rule: the sum
of any three colinear points is the identity element.
The equation defining the curve can have coefficients
in an arbitrary commutative ringR.
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Formal group laws
After choosing a local coordinatex near the identity
element, we can express the group structure locally
via a power series expansionF (x, y) ∈ R[[x, y]].
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Formal group laws
After choosing a local coordinatex near the identity
element, we can express the group structure locally
via a power series expansionF (x, y) ∈ R[[x, y]].

This power series must have the following three
properties.

(i) F (x, 0) = F (0, x) = x since(0, 0) is the identity
element.

(ii) F (y, x) = F (x, y) since the group is Abelian.

(iii) F (F (x, y), z) = F (x, F (y, z)) by associativity.
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Formal group laws
After choosing a local coordinatex near the identity
element, we can express the group structure locally
via a power series expansionF (x, y) ∈ R[[x, y]].

This power series must have the following three
properties.

(i) F (x, 0) = F (0, x) = x since(0, 0) is the identity
element.

(ii) F (y, x) = F (x, y) since the group is Abelian.

(iii) F (F (x, y), z) = F (x, F (y, z)) by associativity.

Such a power series is called a 1-dimensional
commutative formal group law overR.
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Algebraic topology
Algebraic toplogists make a living by associating
algebraic structures with topological spaces and
studying them. One such structure is ordinary
cohomology.
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Algebraic topology
Algebraic toplogists make a living by associating
algebraic structures with topological spaces and
studying them. One such structure is ordinary
cohomology.

For a spaceX, H∗(X) is a graded commutative ring,
meaning that there are abelian groupsH i(X) for
i ≥ 0 and it is possible to multiply an element in
H i(X) by one inHj(X) and get one inH i+j(X).
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Algebraic topology
Algebraic toplogists make a living by associating
algebraic structures with topological spaces and
studying them. One such structure is ordinary
cohomology.

For a spaceX, H∗(X) is a graded commutative ring,
meaning that there are abelian groupsH i(X) for
i ≥ 0 and it is possible to multiply an element in
H i(X) by one inHj(X) and get one inH i+j(X).

Cohomology is acontraviant functor, which means
that a continuous mapX → Y induces a ring
homomorphismH∗(X)← H∗(Y ); the arrow gets
reversed.
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Bordism and cobordism
H∗(X) is described as the dual ofH∗(X), the
ordinary homology of the spaceX.
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Bordism and cobordism
H∗(X) is described as the dual ofH∗(X), the
ordinary homology of the spaceX.

H∗(X) is defined in terms of maps of simplicial
complexes intoX.
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Bordism and cobordism
H∗(X) is described as the dual ofH∗(X), the
ordinary homology of the spaceX.

H∗(X) is defined in terms of maps of simplicial
complexes intoX.

We get a richer version of homology by replacing
simplicial complexes with complex manifolds. The
resulting group is called thecomplex bordism of X
and is denoted byMU∗(X).
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Bordism and cobordism
H∗(X) is described as the dual ofH∗(X), the
ordinary homology of the spaceX.

H∗(X) is defined in terms of maps of simplicial
complexes intoX.

We get a richer version of homology by replacing
simplicial complexes with complex manifolds. The
resulting group is called thecomplex bordism of X
and is denoted byMU∗(X).

It has a cohomological version denoted byMU ∗(X)
(the complex cobordism ofX) with formal properties
similar to those ofH∗(X).
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Complex projective space
Recall thatCP n is the space of complex lines thru the
origin in the vector spaceCn+1.
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Complex projective space
Recall thatCP n is the space of complex lines thru the
origin in the vector spaceCn+1.

A linear embedding

CP n−1
→ CP n

is Poincaré dual to a classx ∈MU 2(CP n).
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Complex projective space
Recall thatCP n is the space of complex lines thru the
origin in the vector spaceCn+1.

A linear embedding

CP n−1
→ CP n

is Poincaré dual to a classx ∈MU 2(CP n).
We have

MU ∗(CP n) = MU ∗(point)[x]/(xn+1),
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Complex projective space
Recall thatCP n is the space of complex lines thru the
origin in the vector spaceCn+1.

A linear embedding

CP n−1
→ CP n

is Poincaré dual to a classx ∈MU 2(CP n).
We have

MU ∗(CP n) = MU ∗(point)[x]/(xn+1),

and the ringMU ∗ := MU ∗(point) is known.
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More complex projective spaces
Similarly

MU ∗(CPm
×CP n)

= MU ∗[x⊗ 1, 1⊗ x]/(xm+1
⊗ 1, 1⊗ xn+1)
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More complex projective spaces
Similarly

MU ∗(CPm
×CP n)

= MU ∗[x⊗ 1, 1⊗ x]/(xm+1
⊗ 1, 1⊗ xn+1)

We can regardCm+1 andC
n+1 and the spaces of

polynomials overC of degrees≤ m and≤ n
respectively.
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More complex projective spaces
Similarly

MU ∗(CPm
×CP n)

= MU ∗[x⊗ 1, 1⊗ x]/(xm+1
⊗ 1, 1⊗ xn+1)

We can regardCm+1 andC
n+1 and the spaces of

polynomials overC of degrees≤ m and≤ n
respectively.

Polynomial multiplication leads to a map

CPm
×CP n

→ CPm+n.
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A new formal group law
Lettingm,n→∞ leads to a map

CP∞ ×CP∞ → CP∞
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A new formal group law
Lettingm,n→∞ leads to a map

CP∞ ×CP∞ → CP∞

inducing

MU ∗(CP∞ ×CP∞) MU ∗(CP∞)oo

MU ∗[[x⊗ 1, 1⊗ x]] MU ∗[[x]]

G(x⊗ 1, 1⊗ x) x�oo
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A new formal group law
Lettingm,n→∞ leads to a map

CP∞ ×CP∞ → CP∞

inducing

MU ∗(CP∞ ×CP∞) MU ∗(CP∞)oo

MU ∗[[x⊗ 1, 1⊗ x]] MU ∗[[x]]

G(x⊗ 1, 1⊗ x) x�oo

G(x, y) is a formal group law overMU ∗.
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Quillen’s theorem
By a theorem of Quillen, the formal group lawG has
the following unversal property: Any formal group
law F over a ringR is induced fromG via a
homomorphism

θ : MU∗ → R.
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Quillen’s theorem
By a theorem of Quillen, the formal group lawG has
the following unversal property: Any formal group
law F over a ringR is induced fromG via a
homomorphism

θ : MU∗ → R.

An elliptic curve overR with a choice of local
coordinate determines a formal group law overR and
therefore a homomorphism as above.
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Elliptic cohomology
This leads to a new functor

X 7→MU ∗(X)⊗θ R

from spaces toR-algebras.
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Elliptic cohomology
This leads to a new functor

X 7→MU ∗(X)⊗θ R

from spaces toR-algebras.

In favorable cases this functor has formal properties
similar to those of ordinary cohomology and is known
aselliptic cohomology.
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Elliptic cohomology
This leads to a new functor

X 7→MU ∗(X)⊗θ R

from spaces toR-algebras.

In favorable cases this functor has formal properties
similar to those of ordinary cohomology and is known
aselliptic cohomology.

In some casesR can be interpreted as a ring of
modular forms, which makes this of interest to
number theorists.
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Elliptic cohomology
Witten, Segal, Stolz and Teichner have conjectures
about the geometric interpretation of this functor
which make it of interest to mathematical physicists.
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Elliptic cohomology
Witten, Segal, Stolz and Teichner have conjectures
about the geometric interpretation of this functor
which make it of interest to mathematical physicists.

WhenR is a ring of modular forms,θ assigns one to
each complex manifold.
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Elliptic cohomology
Witten, Segal, Stolz and Teichner have conjectures
about the geometric interpretation of this functor
which make it of interest to mathematical physicists.

WhenR is a ring of modular forms,θ assigns one to
each complex manifold.

This modular form has aq-expansion with integer
coefficients.
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Elliptic cohomology
Witten, Segal, Stolz and Teichner have conjectures
about the geometric interpretation of this functor
which make it of interest to mathematical physicists.

WhenR is a ring of modular forms,θ assigns one to
each complex manifold.

This modular form has aq-expansion with integer
coefficients.

In 1986 Witten conjectured (correctly) that this
information is related to the index of the Dirac
operator on the free loop space of the manifold.

Wayne State Mathematics Colloquium – p. 11/11


	Elliptic curves
	Elliptic curves

	Formal group laws
	Formal group laws
	Formal group laws

	Algebraic topology
	Algebraic topology
	Algebraic topology

	Bordism and cobordism
	Bordism and cobordism
	Bordism and cobordism
	Bordism and cobordism

	Complex projective space
	Complex projective space
	Complex projective space
	Complex projective space

	More complex projective spaces
	More complex projective spaces
	More complex projective spaces

	A new {FGL }
	A new {FGL }
	A new {FGL }

	Quillen's theorem
	Quillen's theorem

	Elliptic cohomology
	Elliptic cohomology
	Elliptic cohomology

	Elliptic cohomology
	Elliptic cohomology
	Elliptic cohomology
	Elliptic cohomology


