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Early history of elliptic curves
In the 18th century it was natural to ask about the arc length of an ellipse.This

question led to the study of integrals involving
√

f(x) where f(x) is a polynomial
of degree 3 or 4. We know now that such integrals cannot be described in terms
of familiar functions that we teach in calculus. They came to be known as elliptic
integrals.

If the ellipse is a circle, then one can simplify things and replace f(x) by a
quadratic polynomial. We teach our calculus students how to handle these “circular
integrals,” for example we know that∫

dx√
1− x2

= sin−1 x.

Experience has taught us that the inverse of this function, namely sin x, is much
easier to deal with. Thus circular integrals lead to trigonometric functions g(x),
many of which are periodic in the sense that

g(x + 2π) = g(x).

This means that as a function of a complex variable, g(x) is well defined on the
quotient C/2πZ, which is topologically a cylinder.

Similarly, it is convenient to replace certain elliptic integrals by their inverses,
which came to be known as elliptic functions.his insight was originally due to Abel.

It turns out that an elliptic function g(x) is doubly periodic in the following
sense. There are nonzero complex numbers ω1 and ω2 (whose ratio is not real) such
that

g(x + ω1) = g(x + ω2) = g(x).
This means that g(x) factors through the quotient C/Λ, where Λ ⊂ C is the lattice
(additive subgroup) generated by ω1 and ω2. Topologically, C/Λ is a torus, and it
is by definition an elliptic curve over C. It is also an Abelian group since it is a
quotient of the additive group C.

One can assume without loss of generality that τ = ω1/ω2 has positive imaginary
part (permuting ω1 and ω2 if necessary), and by a simple rescaling, we can replace
ω2 by 1. Thus every elliptic curve is isomorphic to one associated with the lattice
generated by 1 and τ , where τ lies in the upper half plane.

1



2 DOUG RAVENEL

Elliptic curves as plane cubics
Weierstrass determined the field of meromorphic functions that are doubly pe-

riodic with respect to a given lattice. His work led to a description of the corre-
sponding elliptic curve as a cubic curve in the complex projective plane CP 2.

Recall that CP 2 is the space of complex lines through the origin in the complex
vector space C3. A nonzero point (x, y, z) determines such a line, which we denote
by [x, y, z]. Note that

[λx, λy, λz] = [x, y, z]
for any nonzero scalar λ, and there is no line with coordinates [0, 0, 0].

Now let h(x, y, z) be a homogeneous polynomial of degree d. This means that

h(λx, λy, λz) = λdh(x, y, z).

Hence h does not give a complex valued function on CP 2, although it can be shown
that is corresponds to a section of a certain line bundle over CP 2.

However the set of points in CP 2 where h vanishes is well defined and is called
a projective plane curve of degree d, which we will denote by Vh. For “most”
polynomials h, Vh is an embedded Riemann surface of genus

(
d−1
2

)
.

By “most” I mean the following. The set of homogeneous polynomials of degree
d is a complex vector space of dimension

(
d+2
2

)
. It is known to have an open dense

subset of polynomials h for which Vh is as above. It is also clear that this is not
true for all h. For example of h(x, y, z) is a product of d distinct linear factors, then
Vh will be the union of d projective lines instead of a surface of the required genus.

Weierstrass showed that every elliptic curve C/Λ is equivalent (in the appropriate
sense) to a projective plane curve E of degree 3. He gave formulas for the coefficients
of the polynomial in terms of the lattice Λ which I will not go into here. This
geometric description leads to the following way to describe the Abelian groups
structure induced by complex addition.

The sum of any three colinear points in E is zero.
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Note that finding the intersection of E with a projective line L boils down to
finding the roots of a cubic equation in one variable. The Fundamental Theorem
of Algebra tells us that one of three things will happen.

(i) There are three distinct roots, which means that L meets E at three distinct
points, say A, B and C.

(ii) There are two distinct roots, which means that L meets E at two distinct
points A and B. In this case the line is tangent to the point A correspsond-
ing to the repeated root, and 2A + B = 0.

(iii) There is a single root with multiplicity three. In this case L meets E
tangentially at a single point of inflection A, and 3A = 0.

The colinear rule is not quite enough to determine the group structure on E
because it does not determine which point e ∈ E is the identity. Since 3e = 0, e
must be a point of inflection, and it is known that there are 9 of them. This can
be seen from the lattice point of view as follows.

Suppose the lattice Λ is generated by 1 and τ . Then each of the 9 points points
in the set

{(a + bτ)/3: 0 ≤ a, b < 3}
has order dividing 3 in C/Λ. Similarly, there are n2 points with order dividing n.

Once we have chosen one of the 9 points of inflection as the identity element,
the group structure on E is determined by the colinear rule
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The formal group law
Suppose that

h(x, y, z) = x3 + axy2 + by3 − yz2

for some constants a and b. This defines an elliptic curve provided that

4a3 + 27b2 6= 0.

We can choose [0, 0, 1] to be our identity element. There is an embedding of the
affine plane C2 into the projective plane given by

(x, y) 7→ [x, y, 1].

Let E′ denote the intersection of this plane with the elliptic curve E defined by the
equation h(x, y, z) = 0, so E′ is the affine plane curve defined by

y = x3 + axy2 + by3.

The identity element of E lies in E′ at the origin.
The following facts are easily verified.

(i) Near the origin there is an odd power series expansion for y, namely

y = y(x) = x3 + ax7 + bx9 + 2a2x11 + . . . ,

so a point on E′ near the origin is determined by its first coordinate. This
power series has coefficients in the ring R = Z[a, b].

(ii) (x, y) ∈ E′ iff (−x,−y) ∈ E′, so the group theoretic inverse of the point
(x, y) is (−x,−y).

(iii) Given two points (x1, y1) and (x2, y2) near the origin, let (x3, y3) denote
their group theoretic sum. Then there is a power series expansion F (x1, x2)
for x3 in terms of x1 and x2 with coefficients in R.

In addition to having a positive radius of convergence, F must satisfy the fol-
lowing three conditions.

(i) F (u, 0) = F (0, u) = u since (0, 0) is the identity element.
(ii) F (v, u) = F (u, v) since the group is Abelian.
(iii) F (F (u, v), w) = F (u, F (v, w)) by associativity.

The oddness of the series for y above implies additionally that F (u,−u) = 0.
We define a commutative 1-dimensional formal group law over a ring R to be

a power series F ∈ R[[u, v]] satisfying the three conditions above, but without
any convergence requirement. A commutative n-dimensional formal group law is a
collection of n power series in 2n variable satsifying similar conditions. For a much
more thorough discussion [Rav04, Appendix 2].

The choice of h(x, y, z) above is convenient but not essential. The variable x
could be replaced by a local coordinate at the identity, and we would still get a
formal group law.
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