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1. Introduction

This talk is an ad for a course I plan to give next
fall about the mathematics surrounding the research
I have been doing for the past 3 years. It might be
called “Applications of arithmetic algebraic geome-
try to stable homotopy theory.” Its syllabus might
look like this.

• Motivation from stable homotopy theory: how
an intimate knowledge of formal groups leads
to insights about the stable homotpy groups of
spheres.

• Relevant methods from algebraic geometry: how
algebraic curves lead to interesting and useful
examples of formal groups.

• Lubin-Tate’s theory of deformations of formal
groups.

• Explicit computations involving the Lagrange
inversion formula and Honda matrices.

For today I will give a taste of this by describing
some results about the following question.

What is the formal group associated with
the Jacobian of an algebraic curve defined
over the p-adic integers?

Do not worry if you do not know what these words
mean!
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2. Formal group laws

Let G be an n-dimensional commutuative analytic
Lie group and suppose we have a local coordinates
{x1, x2, . . . , xn} for which the origin is the identity
element. Then the multiplication map G×G → G
can be described by n power series in 2n variables

Fi(x1, x2, . . . , xn; y1, y2, . . . , yn) for 1 ≤ i ≤ n.

We will often abbreviate this by F (x, y), where x, y
and F are understood to be n-dimensional vectors.
F must satisfy the following conditions.

(i) F (x, 0) = F (0, x) = x (The origin is the iden-
tity element)

(ii) F (F (x, y), z) = F (x, F (y, z)) (Associativity)

(iii) F (x, y) = F (y, x) (Commutativity)

(i) implies F (x, y) ≡ x+y modulo xy, and the ex-
istence of inverses (a vector of power series i(x) with
F (x, i(x)) = 0) follows from the implicit function
theorem.

Definition 1. An n-dimensional commutative for-
mal group law over a commutative ring R is a
collection of n power series

Fi(x, y) ∈ R[[x1, x2, . . . , xn; y1, y2, . . . , yn]]

satisfying the conditions above.



4

It is known that if R is torsion free, there are power
series

fi(x) ∈ R⊗Q[[x1, x2, . . . , xn]]

(called the logarithm of F ) such that

F (x, y) = f−1(f (x) + f (y)).

Here is an example that motivates this terminology.
For n = 1, let

F (x, y) = x + y − xy = 1− (1− x)(1− y),

the multiplicative formal group law. Then by a well
known calculus exercise,

f (F (x, y)) = f (x) + f (y),

where

f (x) =

∞∑
i=1

xi

i
,

the power series expansion for the natural logarithm
of 1/(1 − x). Note that f is a power series over Q,
but F is defined over Z.

More generally, any vector f (x) of power series over
R⊗Q satisfying

f (x) ≡ x mod (x)2

leads to a formal group law

F (x, y) = f−1(f (x) + f (y))

defined over R ⊗Q. The subtlety of the theory is
finding conditions on f that guarantee that F is
defined over R. In most cases f (x) can be written
explicitly but F (x, y) cannot.
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3. Dieudonné’s examples Gm,n

Now we will describe some interesting examples of
higher dimensional commutative formal group laws
over Z(p) for a prime p. Let m and n be nonnegative
integers with m > 0, and gcd(m, n) = 1. Then
Gm,n is the m-dimensional formal group law with
logarithm given by

fk =
∑
i≥0

xpi

k+i

pi
for 1 ≤ k ≤ m,

where xj = xpn

j−m for j > m. In particular, G1,n−1

for n > 0 is the 1-dimensional formal group law with

f (x) =
∑
i≥0

xpni

pi
.

The integrality of Gm,n is far from obvious. One
can also define G0,1 (an étale group) in a similar way,
but that is another story.
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The following facts are known about the Gm,n.

• Let Gm,n denote the mod p reduction of Gm,n.
Over the algebraic closure of Fp, any formal
group law is isogenous to a direct sum of Gm,ns.

• If we define Gjm,jn as above for j > 1 (so that
the two indices are not relatively prime), then
it is isogenous to the direct sum of j copies of
Gm,n.

• As a Hopf algebra, Gm,n is dual to Gn,m. In
particular, G1,1 is self-dual.

• If the formal group law associated with an abelian
variety in characteristic p has a summand isoge-
nous to Gm,n, then it also has one isogenous to
Gn,m. This is called the Riemann symmetry
condition.

• The formal group law associated with an elliptic
curve in characteristic p is isogenous to either
G1,0, the ordinary case, or G1,1, the supersingu-
lar case.
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4. Some algebraic curves

An algebraic curve of genus g defined over a ring R
has associated with it a g-dimensional formal group
law, the formal completion of its Jacobian. If the
curve has good mod p reduction, we get a formal
group law in characteristic p, which we can try to
describe in terms of the Gm,n above.

We will state two theorems in this direction, one
for the Fermat curve defined by

xd + yd = 1

where the degree d is not divisible by p, and for the
Artin-Schreier curve defined by

ye = xp − x

for e not divisible by p.
These are originally due to Honda and Manin re-

spectively. Manin’s proof for the Artin-Schreier curve
(which was outlined in papers of Katz and Koblitz)
was quite sophisticated and used information about
the zeta function of the curve.

Honda’s proof for the Fermat curve was more direct
and his methods are more widely applicable. In par-
ticular, we have applied them to the Artin-Schreier
curve.

Both methods require some subtle p-adic analysis,
and both theorems can be stated in simple combina-
torial terms.
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The Fermat curve of degree d

Recall that p is a prime not dividing d. Let h de-
note the multiplicative order of p modulo d, i.e., the
smallest positive integer for which ph− 1 is divisible
by d.

Let

M = {(i, j) : 0 < i, j < d, i 6= j}
M0 = {(i, j) : 0 < j < i < d, }

The genus of the curve is
(
d−1
2

)
, the cardinality of

M0, which is half the cardinality of M .
Multiplication by p modulo d acts on the set M ,

decomposing it into S orbits M(s) for 1 ≤ s ≤ S,
each having cardinality dividing h. Let

M0(s) = M(s) ∩M0

and suppose that it has m(s) elements. Let n(s)
denote the number of remaining elements in M(s).
Then Honda shows that the formal group law for the
Jacobian decomposes into S summands with the sth
summand corresponding to a copy of the Gm(s),n(s)

over the algebraic closure of Fp. Note that if the orbit
of (i, j) yields a copy of Gm,n, then that of (j, i) will
give Gn,m, so the Riemann symmetry condition is
satisfied.
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For example, let (p, d) = (3, 5), for which h = 4
and the genus is 6. Then the action on M is given
by

(1, 2) → (3, 1) → (4, 3) → (2, 4) → (1, 2)
(1, 3) → (3, 4) → (4, 2) → (2, 1) → (1, 3)
(1, 4) → (3, 2) → (4, 1) → (2, 3) → (1, 4)

Hence there are three orbits each having 4 elements,
2 of which lie in M0. Thus we get 3 copies of G2,2,
which is isogenous to 6 copies of G1,1.

For p = 3, the only values of d with h = 4 are
the divisors of 80 which are not divisors of 8. [More
generally for given p and h, d must be a divisor of
ph− 1 which is not a divisor of ph′ − 1 for any h′|h.]
There are no G1,3 factors for d dividing 10; 12 such
factors for d = 16 and d = 20; 84 for d = 40 and 324
for d = 80.
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The Artin-Schreier curve of degree e

Now we consider the curve defined by

ye = xp − x

where p does not divide e. Experience has shown
that the most interesting case is e = pf − 1 for a
positive integer f . The genus of this curve is

g = (e− 1)(p− 1)/2.

It is known to be covered by the Fermat curve of
degree d = (p− 1)e.

As before, let h denote the multiplicative order of
p modulo d (when e = pf − 1, h = (p − 1)f ), and
let

M = {ei + j : 0 ≤ i < p− 1, 0 < j < e}
= {k : 0 < k < d, e - k}

M0 = {ei + j ∈ M : ei + pj < d}
As before, the genus is the cardinality of M0, which
is half that of M .

Multiplication by p modulo d acts on the set M ,
decomposing it into S orbits M(s) for 1 ≤ s ≤ S,
each having cardinality dividing h. The formal group
law has description similar to that in the Fermat case.
The Riemann symmetry condition follows from the
fact that for each k ∈ M , exactly one element of
{k, d− k} is in M0, so the orbits of k and d − k
yield dual factors.
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For example, when e = pf−1 and (p, f ) = (3, 2),
we have g = 7, d = 16, h = 4, and

M = {k : 0 < k < 16, 8 - k}
M0 = {1, 2, 3, 4, 5, 9, 10}

The orbit of 5 is {5, 15, 13, 7}, which yields a factor
isomorphic to G1,3, a 1-dimensional formal group law
of height 4.

More generally, the orbit of the integer

` = (m− 1)/p = pf − pf−1 − 1

yields a unique factor isomorphic to G1,h−1, a 1-
dimensional formal group law of height h.
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