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5.1

1 Introduction

Introduction
The goal of this lecture is fourfold.

(i) To sketch part of the proof of the Slice Theorem.
(ii) To describe the spectrum Ω̃ used to prove the main theorem.

(iii) To sketch the proof of the (yet to be stated) Periodicity Theorem.
(iv) To sketch the proof that the Ω̃C8 and Ω̃hC8 are equivalent, the Fixed Point Theorem.

Before we can do this, we need to introduce another concept from equivariant stable homotopy
theory, that of geometric fixed points. 5.2

2 Geometric fixed points

Geometric fixed points
Unstably a G-space X has a fixed point set,

XG = {x ∈ X : γ(x) = x ∀γ ∈ G} .

This is the same as F(S0,X+)
G, the space of based equivariant maps S0→ X+, which is the same

as the space of unbased equivariant maps ∗→ X .

The homotopy fixed point set XhG is the space of based equivariant maps EG+→ X+, where EG
is a contractible free G-space. The equivariant homotopy type of XhG is independent of the choice of
EG. 5.3

Geometric fixed points (continued)
Both of these definitions have stable analogs, but the fixed point functor is awkward for two

reasons: it fails to commute with smash products and with infinite suspensions.

The geometric fixed set ΦGX is a convenient substitute that avoids these difficulties. In order to
define it we need the isotropy separation sequence, which in the case of a finite cyclic 2-group G is

EC2+→ S0→ ẼC2.

Here EC2 is a G-space via the projection G→C2 and S0 has the trivial action, so ẼC2 is also a
G-space. 5.4
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Geometric fixed points (continued)
Under this action ECG

2 is empty while for any proper subgroup H of G, ECH
2 = EC2, which is

contractible. For an arbitrary finite group G it is possible to construct a G-space with the similar
properties.

Definition. For a finite cyclic 2-group G and G-spectrum X, the geometric fixed point spectrum is

Φ
GX = (X ∧ ẼC2)

G.

5.5

Geometric fixed points (continued)
We have the isotropy separation sequence

EC2+→ S0→ ẼC2

and
Φ

GX := (X ∧ ẼC2)
G.

This functor has the following properties:

∙ For G-spectra X and Y , ΦG(X ∧X) = ΦGX ∧ΦGY .
∙ For a G-space X , ΦGΣ∞X = Σ∞(XG).
∙ A map f : X → Y is a G-equivalence iff ΦH f is an ordinary equivalence for each subgroup

H ⊂ G.

From the second property we can deduce that for H ⊂ G,

∙ ΦHSV = SV H
.

∙ ΦHMU (g/2)
R = MO(g/h), where MO is the unoriented cobordism spectrum.

5.6

Geometric fixed points (continued)

Geometric Fixed Point Theorem. Let G be a finite cyclic 2-group and let ρ denote its reduced
regular representation. Then for any G-spectrum X, π★(ẼC2 ∧X) = a−1

ρ
π★(X), where aρ ∈ π−ρ is

the element defined in Lecture 4.
5.7

To prove this will show that E = limi→∞ S(iρ) is G-equivalent to EC2 by showing it has the
appropriate fixed point sets. Since (S(ρ))G is empty, the same is true of EG. Since (S(ρ))H for a
proper subgroup H is S∣G/H∣−2, its infinite join EH is contractible.

It follows that ẼC2 is equivalent to limi→∞ Siρ , which implies the result.

Geometric fixed points (continued)
Recall that π∗(MO) = Z/2[yi : i > 0, i ∕= 2k− 1] where ∣yi∣ = i. In πiρg(MU (g/2)

R ) we have the
element

Nri = ri(1)ri(2) ⋅ ⋅ ⋅ri(g/2).

Applying the functor ΦG to the map Nri : Siρg →MU (g/2)
R gives a map Si→MO.

Lemma. The generators ri and yi can be chosen so that

Φ
GNri =

{
0 for i = 2k−1
yi otherwise.

5.8
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3 The Slice Theorem

Toward the proof of the slice theorem
The Slice Theorem describes the slices associated with MU (g/2)

R . Its proof is a delicate induction
argument. Here we will outline the proof of a key step in it.

Recall that

π
u
∗ (MU (g/2)

R ) = Z[ri( j) : i > 0, 1≤ j ≤ g/2] with ∣ri( j)∣= 2i.

There is a way to kill the ri( j) for any collection of is and get a new equivariant spectrum which
is a module over the E∞-ring spectrum MU (g/2)

R . We let RG(m) denote the result of killing the ri( j)
for i≤ m. 5.9

4 The Reduction Theorem

The Reduction Theorem
There are maps

MU (g/2)
R = RG(0)→ RG(1)→ RG(2)→ ⋅⋅⋅ → HZ

and we denote the limit by RG(∞). A key step in the proof of the Slice Theorem is the following.

Reduction Theorem. The map fG : RG(∞)→ HZ is a weak G-equivalence.
5.10

The nonequivariant analog of this statement is obvious. We will prove the corresponding state-
ment over subgroups H ⊂ G by induction on the order of H.

The Reduction Theorem (continued)
This means it suffices to show that ΦH f is an ordinary equivalance for each subgroup H ⊂G. To

this end we will determine both π∗(Φ
HRG(∞)) and π∗(Φ

HHZ).

As H-spectra we have RG(m) = RH(m)(g/h), so it suffices to determine π∗(Φ
GRG(∞)). One can

show that for each m > 0 there is a cofiber sequence

ΣmΦGRG(m−1)
ΦGNrm // ΦGRG(m−1) // ΦGRG(m).

The lemma above determines the map ΦGNrm. 5.11

The Reduction Theorem (continued)
We know that ΦGRG(0) = MO and ΦGNr1 is trivial, so ΦGRG(1) = MO∧ (S0∨S2).

Let Q(m) denote the spectrum obtained from MO by killing the yi for i≤ m so the limit Q(∞) is
HZ/2. Recall that yi is not defined when i = 2k− 1. Our cofiber sequence for m = 2 is the smash
product of S0∨S2 with

Σ2MO
y2 // MO // Q(2).

Similarly we find that ΦGRG(∞) = ∨k≥0Σ2kHZ/2. 5.12
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The spectrum ΦGHZ
Recall that ΦGHZ = (ẼC2∧HZ)H . The action of the subgroup of index 2 is trivial, so this is the

same as (ẼC2∧HZ)C2 = ΦC2HZ.

Earlier we described the computation of

πk(Smρ2 ∧HZ) = πk(Sm+mσ ∧HZ) = πk−m−mσ (HZ).

This means we have all of π★(HZ), the RO(C2)-graded homotopy of HZ. It turns out that
a−1

σ π★(HZ) = Z/2[u2σ ,a±1
σ ], where u2σ ∈ π2−2σ . The integrally graded part of this is Z/2[b] where

b = u2σ/a2
σ ∈ π2.

Hence π∗(Φ
GHZ) and π∗(Φ

GRG(∞)) are abstractly isomorphic. A more careful analysis shows
that f induces this isomorphism, thereby proving the Reduction Theorem. 5.13

5 The Periodicity Theorem

Some differentials in the slice spectral sequence
Before we can state and prove the Periodicity Theorem, we need to explore some differentials in

the slice spectral sequence for MU (g/2)
R .

It follows from the Slice and Vanishing Theorems that it has a vanishing line of slope g−1. The
only slice cells which reach this line are the ones not induced from a proper subgroup, namely the
Snρg associated with the subring Z[Nri : i > 0].

For each i > 0 there is an element

fi ∈ πi(Siρg)⊂ E(g−1)i,gi
2 ,

the bottom element in π∗(Siρg ∧HZ). 5.14

Some slice differentials (continued)

It is the composite Si
aiρg // Siρg

Nri // MU (g/2)
R .

The subring of elements on the vanishing line is Z[ fi : i > 0]/(2 fi). Under the map

π∗(MU (g/2)
R )→ π∗(Φ

GMU (g/2)
R ) = π∗(MO)

we have

fi 7→
{

0 for i = 2k−1
yi otherwise

It follows that any differentials hitting the vanishing line must land in the ideal ( f1, f3, f7, . . .). A
similar statement can be made after smashing with S2kσ . 5.15

Some slice differentials (continued)

Slice Differentials Theorem. In the slice spectral sequence for Σ2kσ MU (g/2)
R (for k > 0) we have

dr(u2kσ
) = 0 for r < 1+(2k−1)g, and

d1+(2k−1)g(u2kσ
) = a2k

σ f2k−1.

5.16

Inverting aσ in the slice spectral sequence will make it converge to π∗(MO). This means each
f2k−1 must be killed by some power of aσ . The only way this can happen is as indicated in the
theorem.
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Some slice differentials (continued)
Let

∆
(g)
k = Ng

2 r2k−1 ∈ π(2k−1)ρg
(MU (g/2)

R ).

We want to invert this element and study the resulting slice spectral sequence. As explained
previously, it is confined to the first and third quadrants with vanishing lines of slopes 0 and g−1.

The differential dr on u2k+1σ
described in the theorem is the last one possible since its target,

a2k+1
σ f2k+1−1, lies on the vanishing line. If we can show that this target is killed by an earlier differ-

ential after inverting ∆
(g)
k , then u2k+1σ

will be a permanent cycle. 5.17

Some slice differentials (continued)
We have

f2k+1−1∆
(g)
k = a(2k+1−1)ρg

Ng
2 r2k+1−1Ng

2 r2k−1

= a2kρg
∆
(g)
k+1 f2k−1

= ∆
(g)
k+1dr′(u2kσ

) for r′ < r.

Corollary. sequence for
(

∆
(g)
k

)−1
MU (g/2)

R , the class u2k

2σ
is a permanent cycle.

5.18

The Periodicity Theorem
The corollary shows that inverting a certain element makes a power of u2σ a permanent cycle.

We need a similar statement about a power of u2ρg when g = 2n.

We will get this by using the norm property of u, namely that if W is an oriented representation
of a subgroup H ⊂ G with W H = 0 and induced representation W ′, then the norm functor Ng

h from

H-spectra to G-spectra satisfies NG
H (uW )u∣W ∣/2

2ρG/H
= uW ′ .

From this we can deduce that u2ρg = ∏
n
m=1 N2n

2m(u2mσm), where σm denotes the sign representation
on C2m . 5.19

The Periodicity Theorem (continued)
In particular we have u2ρ8 = u8σ3N8

4 (u4σ2)N
8
2 (u2σ1).

By the Corollary we can make a power of each factor a permanent cycle by inverting some ∆
(2m)
km

for 1 ≤ m ≤ 3. If we make km too small we will lose the detection property, that is we will get a
spectrum that does not detect the θ j. It turns out that km must be chosen so that 8∣2mkm. This will be
explained in the last lecture.

∙ Inverting ∆
(2)
4 makes u32σ1 a permanent cycle.

∙ Inverting ∆
(4)
2 makes u8σ2 a permanent cycle.

∙ Inverting ∆
(8)
1 makes u4σ3 a permanent cycle.

∙ Inverting the product D of the norms of all three makes u32ρ8 a permanent cycle.
5.20

The Periodicity Theorem (continued)
Let

D = ∆
(8)
1 N8

4 (∆
(4)
2 )N8

2 (∆
(2)
4 ).

The we define Ω̃ = D−1MU (4)
R and Ω = Ω̃C8 .

Since the inverted element is represented by a map from Smρ8 , the slice spectral sequence for
π∗(Ω) has the usual properties:
∙ It is concentrated in the first and third quadrants and confined by vanishing lines of slopes 0

and 7.
∙ It has the gap property, i.e., no homotopy between dimensions −4 and 0. 5.21
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The Periodicity Theorem (continued)

Preperiodicity Theorem. Let ∆
(8)
1 = u2ρ8(∆

(8)
1 )2 ∈ E16,0

2 (D−1MU (4)
R ). Then (∆

(8)
1 )16 is a permanent

cycle.
5.22

To prove this, note that (∆(8)
1 )16 = u32ρ8

(
∆
(8)
1

)32
. Both u32ρ8 and ∆

(8)
1 are permanent cycles, so

(∆
(8)
1 )16 is also one.

Thus we have an equivariant map Σ256D−1MU (4)
R → D−1MU (4)

R and a similar map on the fixed
point set. The latter one is invertible because u32

2ρ8
restricts to the identity.

Thus we have proved

Periodicity Theorem. Let Ω = (D−1MU (4)
R )C8 . Then Σ256Ω is equivalent to Ω.

6 The Fixed Point Theorem

The Fixed Point Theorem
In order to finish the proof of the main theorem, we need to show that the actual fixed point set of

Ω̃ = D−1MU (4)
R is equivalent to the homotopy fixed point set. We call this statement the Fixed Point

Theorem.

The slice spectral sequence computes the homotopy of the former while the Hopkins-Miller spec-
tral sequence (which is known to detect θ j) computes that of the latter. 5.23

The Fixed Point Theorem (continued)
Here is a general approach to showing that actual and homotopy fixed points are equivalent for a

G-spectrum X .

We have an equivariant map EG+→ S0. Mapping both into X gives a map of G-spectra ϕ : X+→
F(EG+,X+). Passing to fixed points would give a map XG → XhG, but we will prove the stronger
statement that ϕ is a G-equivalence.

The case of interest is X = Ω̃ and G = C8. We will argue by induction on the order of the
subgroups H of G, the statement being obvious for the trivial group. We will smash ϕ with the
isotropy separation sequence

EG+→ S0→ ẼG.

5.24

The Fixed Point Theorem (continued)
This gives us the following diagram in which both rows are cofiber sequences.

EG+∧ Ω̃ //

ϕ ′��

Ω̃
//

ϕ
��

ẼG∧ Ω̃

ϕ ′′��
EG+∧F(EG+,Ω̃) // F(EG+,Ω̃) // ẼG∧F(EG+,Ω̃)

The map ϕ ′ is an equivalence because Ω̃ is nonequivariantly equivalent to F(EG+,Ω̃), and EG+

is built up entirely of free G-cells.

Thus it suffices to show that ϕ ′′ is an equivalence, which we will do by showing that both its
source and target are contractible. Both have the form ẼG∧X where X is a module spectrum over
Ω̃, so it suffices to show that ẼG∧ Ω̃ is contractible. 5.25
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The Fixed Point Theorem (continued)
We need to show that ẼG∧Ω̃ is G-equivariantly contractible. We will show that it is H-equivariantly

contractible by induction on the order of the subgroups H of G. Over the trivial group ẼG itself is
contractible. Let H be a subgroup, H ′ ⊂ H the subgroup of index 2 and H2 = H/H ′.

We will smash our spectrum with the cofiber sequence

EH2+→ S0→ ẼH2.

Then ẼH2 ∧ ẼG∧ Ω̃ is contractible over H ′, so it suffices to show that it H-fixed point set is
contractible. It is

Φ
H(ẼG∧ Ω̃) = Φ

H(ẼG)∧Φ
H(Ω̃),

and ΦH(Ω̃) is contractible because ΦH(D) = 0.

Thus it remains to show that EH2+ ∧ ẼG∧ Ω̃ is H-contractible. But this is equivalent to the
H ′-contractibility of ẼG∧ Ω̃, which we have by induction. 5.26
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