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3.2

Our strategy

Recall our goal is to prove

Main Theorem

The Arf-Kervaire elements �j ∈ �2j+1−2(S0) do not exist for
j ≥ 7.

Our strategy is to find a map S0 → Ω to a nonconnective
spectrum Ω with the following properties.

(i) It has an Adams-Novikov spectral sequence in which the
image of each �j is nontrivial.

(ii) It is 256-periodic, meaning Σ256Ω ∼= Ω.
(iii) �−2(Ω) = 0.
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3.3

G-spaces

Before we can describe any of this, we need to introduce
equivariant stable homotopy theory.

Peter May John Greenlees Gaunce Lewis

Let G be a finite group. A G-space is a topological space X
with a continuous left action by G; a based G-space is a
G-space together with a basepoint fixed by G.

We can convert an unbased G-spaces X into a based one by
taking the topological sum of X and a G-fixed basepoint,
denoted by X+.
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3.4

Products and maps of G-spaces

The product X × Y of two G-spaces is a G-space under the
diagonal action, as is the smash product of two based
G-spaces.

The space F (X ,Y ) of based maps X → Y is itself a G-space
with G-action defined by (
f )(x) = 
f (
−1x) for 
 ∈ G.

Its fixed point set F (X ,Y )G is the space of based G-maps
X → Y , i.e., those maps commuting with the action of G.

We use the notation [X ,Y ]G to denote the set of homotopy
classes of based G-maps X → Y .

A map of G-spaces f : X → Y is said to be a weak
G-equivalence if for each subgroup H ⊂ G, the induced map
f : X H → Y H is a weak equivalence in the nonequivariant
sense.
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3.5

G-CW complexes via orbits

There are two ways to generalize the construction of
CW-complexes to the equivariant world, one using orbits and
one using representations.

For the orbit construction, given any subgroup H of G we may
form the homogeneous space G/H and its based counterpart,
G/H+.

These are treated as 0-dimensional cells, and they play a role
in equivariant theory analogous to the role of points in
nonequivariant theory.
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3.6

G-CW complexes via orbits (continued)

We form the n-dimensional cells from these homogeneous
spaces. In the unbased context, the cell-sphere pair is

(G/H × Dn,G/H × Sn−1)

and in the based context

(G/H+ ∧ Dn,G/H+ ∧ Sn−1).

A cell is said to be induced if it comes from a proper subgroup
H.

Starting from these cell-sphere pairs, we form G-CW
complexes exactly as nonequivariant CW-complexes are
formed from the cell-sphere pairs (Dn,Sn−1). In such a
complex, an element 
 ∈ G acts on a cell either by mapping it
homeomorphically to another cell or by fixing it.
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3.7

G-CW complexes via representations

Let V be an orthogonal representation of G. Denote its
one-point compactification by SV , with∞ as the basepoint.

We
denote the trivial n-dimensional real representation by n, giving
the symbol Sn its usual meaning.

We may also form the unit disc and unit sphere

D(V ) = {v ∈ V : ∣∣v ∣∣ ≤ 1} and S(V ) = {v ∈ V : ∣∣v ∣∣ = 1} ;

we think of them as unbased G-spaces. There is a
homeomorphism SV ∼= D(V )/S(V ).

We can use these objects to build G-CW complexes as well. In
this case G can act on an individual cell by “rotating” it via the
representation V .
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D(V ) = {v ∈ V : ∣∣v ∣∣ ≤ 1} and S(V ) = {v ∈ V : ∣∣v ∣∣ = 1} ;

we think of them as unbased G-spaces. There is a
homeomorphism SV ∼= D(V )/S(V ).

We can use these objects to build G-CW complexes as well. In
this case G can act on an individual cell by “rotating” it via the
representation V .
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3.8

More general G-CW complexes

We can also mix these two constructions by considering
cell-sphere pairs such as

(G ×H D(V ),G ×H S(V ))

and
(G+ ∧H D(V ),G+ ∧H S(V )),

where V is a representation of the subgroup H.

In such a complex, individual cells may be either permuted or
rotated by an element of G.
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3.9

Toward equivariant spectra

Before defining equivariant spectra, we need to recall the
definition of an ordinary spectrum.

A prespectrum D is a collection of spaces {Dn : n≫ 0} with
maps ΣDn → Dn+1. The adjoint of the structure map is a map
Dn → ΩDn+1.

We get a spectrum E = {En : n ∈ Z} from the prespectrum D
by defining

En = lim
→
k

Ωk Dn+k

This makes En homeomorphic to ΩEn+1.

For technical reasons it is convenient to replace the collection
{En} by {EV} indexed by finite dimensional subspaces V of a
countably infinite dimensional real vector space U called a
universe.
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3.10

Toward equivariant spectra (continued)

The homotopy type of EV depends only on the dimension of V
and there are homeomorphisms

EV → Ω∣W ∣−∣V ∣EW for V ⊂W ⊂ U .

A map of spectra f : E → E ′ is a collection of maps of based
G-spaces fV : EV → E ′V which commute with the respective
structure maps.
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3.11

G-equivariant spectra

Let G be a finite group. Experience has shown that in order to
do equivariant stable homotopy theory, one needs G-spaces
EV indexed by finite dimensional orthogonal representations V
sitting in a countably infinite dimensional orthogonal
representation U .

This universe U is said to be complete if it contains infinitely
many copies of each irreducible representation of G. A
canonical example of a complete universe for finite G is the
direct sum of countably many copies of the regular real
representation of G.
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3.12

G-equivariant spectra (continued)

A G-equivariant spectrum (G-spectrum for short) indexed on U
consists of a based G-space EV for each finite dimensional
subspace V ⊂ U together with a transitive system of based
G-homeomorphisms

EV ∼=

�̃V,W // ΩW−V EW

for V ⊂W ⊂ U .

Here ΩV X = F (SV ,X ) and W − V is the
orthogonal complement of V in W . As in the classical case, the
G-homotopy type of EV depends only on the isomorphism
class of V .
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3.13

G-equivariant spectra (continued)

A map of G-spectra f : E → E ′ is a collection of maps of based
G-spaces fV : EV → E ′V which commute with the respective
structure maps.

Dropping the requirement that the structure maps be
homeomorphisms gives us a G-prespectrum.

The structure map �̃V ,W is adjoint to a map

�V ,W : ΣW−V EV → EW ,

where ΣV X is defined to be SV ∧ X .

A suspension G-prespectrum is a G-prespectrum in which the
maps above are G-equivalences for V sufficiently large.
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3.13
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3.14

RO(G)-graded homotopy groups

Given a representation V one has a suspension G-spectrum
Σ∞SV , which is often denoted abusively (as in the
nonequivariant case) by SV .

As in the nonequivariant case, to define a prespectrum D it
suffices to define G-spaces DV for a cofinal collection of
representations V .

We define S−V by saying its W th space for V ⊂W is SW−V .
This is the analog of formal desuspension in the
nonequivariant case.
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3.15

RO(G)-graded homotopy groups (continued)

Given a virtual representation � = W − V , we define
S� = ΣW S−V . Hence we have a collection of sphere spectra
graded over the orthogonal representation ring RO(G).

We define
�G
� (X ) = [S� ,X ]G,

the RO(G)-graded homotopy groups of the G-spectrum X .
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3.16

MU as a C2-spectrum

Let � denote the real regular representation of C2.

It is
isomorphic to the complex numbers C with conjugation.

We define a C2-prespectrum mu by muk� = MU(k), the Thom
space of the universal Ck -bundle over BU(k), which is a direct
limit of complex Grassmannian manifolds. The action of C2 is
by complex conjugation.

Since any orthogonal representation V of C2 is contained in k�
for k ≫ 0, we can define the C2-spectrum MU by

MUV = lim
→
k

Ωk�−V MU(k).
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3.17

MU as a C2-spectrum (continued)
This spectrum in known as real cobordism theory MUR and has
been studied by Landweber, Araki, Hu-Kriz and
Kitchloo-Wilson.

Peter Shoro Araki Nitu Kitchloo Steve Wilson
Landweber 1930–2005

Igor Kriz and Po Hu
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3.18

Inducing and coinducing up to a larger group

Let H ⊂ G be groups and let X be a H-space. There are two
ways to get a G-space from it. The corresponding functors are
the left and right adjoints to the forgetful functor from G-spaces
to H-spaces.

There is the induced G-space G ×H X . Its underlying space is
the disjoint union of ∣G/H∣ copies of X .

An example is the the cell-sphere pair

(G/H × Dn,G/H × Sn−1).
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(G/H × Dn,G/H × Sn−1).
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Inducing and coinducing up to a larger group (continued)

There is also the coinduced G-space

mapH(G,X ) =
{

f ∈ map(G,X ) : f (
�−1) = �f (
)

∀� ∈ H and 
 ∈ G}

The underlying space here is the Cartesian product X ∣G/H∣.

There is a based analog of the coinduced G-space in which the
underlying space is the smash product X (∣G/H∣).

It extends to H-spectra. For a H-spectrum X we denote the
coinduced G-spectrum by NG

H X , the norm of X along the
inclusion H ⊂ G.
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3.20

Norming up from MU

We apply this construction to the case H = C2, G = C2n+1 and
X = MUR.

The underlying spectrum of NG
H MUR is the 2n-fold

smash power MU(2n).

Let 
 ∈ G be a generator and let zi be a point in MUR. Then
the action of G on MU(2n)

R is given by


(z1 ∧ ⋅ ⋅ ⋅ ∧ z2n ) = z2n ∧ z1 ∧ ⋅ ⋅ ⋅ ∧ z2n−1,

where z2n is the complex conjugate of z2n .
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3.21

Our spectrum Ω

In particular this makes MU(4)
R into a C8-spectrum.

Our
spectrum Ω̃ is obtained from it by equivariantly inverting a
certain element in its homotopy. Then Ω = Ω̃C8 , which we will
show to be equivalent to Ω̃hC8 .

The spectrum MU(4)
R has two advantages over our earlier

candidate E4.

(i) It is a C8-equivariant spectrum, while E4 was merely an
ordinary spectrum with a C8 “action” for which a homotopy
fixed point set could be defined.

(ii) The action of C8 on �∗(MU(4)
R ) is transparent, unlike its

mysterious action on �∗(E4).
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3.22

Our strategy (continued)

Our spectrum Ω will be derived from MU(4)
R regarded as a

C8-spectrum.

We need to describe the homotopy of the underlying
nonequivariant spectrum, which we denote �u

∗(MU(4)
R ).
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3.23

�u
∗(MU(4)

R )

Recall that H∗(MU; Z) = Z[bi : i > 0] where ∣bi ∣ = 2i . bi is the
image of a suitable generator of H2i (CP∞) under the map

Σ∞−2CP∞ = Σ∞−2MU(1)→ MU.

It follows that H∗(MU(4)
R ) is the 4-fold tensor power of this

polynomial algebra. We denote its generators by bi (j) for
1 ≤ j ≤ 4.

The action of 
 on these generators is given by


(bi (j)) =

{
bi (j + 1) for 1 ≤ j ≤ 3
(−1)ibi (1) for j = 4.
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3.24

�u
∗(MU(4)

R ) (continued)

�u
∗(MU(4)

R ) is also a polynomial algebra with 4 generators in
every positive even dimension.

We will denote the generators
in dimension 2i by ri (j) for 1 ≤ j ≤ 4. The action of G = C8 is
similar to that on the bi (j), namely


(ri (j)) =

{
ri (j + 1) for 1 ≤ j ≤ 3
(−1)i ri (1) for j = 4.

Earlier we said that �∗(MUR) = Z[xi : i > 0] with ∣xi ∣ = 2i . We
are using different notation now because ri (j) need not be the
image of xi under any map MUR → MU(4)

R .
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3.25

�u
∗(MU(4)

R ) (continued)

Here is some useful notation.

For a subgroup H ⊂ G, let
h = ∣H∣, let �h denote its regular real representation and for
m ∈ Z, let

Ŝ(m�h) = G+ ∧H Sm�h .

The underlying spectrum here is a wedge of ∣G/H∣ copies of
Smh. We call this a slice cell of dimension mh.

We will explain how �u
∗(MU(4)

R ) is related to maps from the
Ŝ(m�h). The following notion is helpful.

Definition

Suppose X is a G-spectrum such that its underlying homotopy
group �u

k (X ) is free abelian. A refinement of �u
k (X ) is an

equivariant map
c : Ŵ → X

in which Ŵ is a wedge of slice cells of dimension k whose
underlying spheres represent a basis of �u

k (X ).
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Ŝ(m�h) = G+ ∧H Sm�h .

The underlying spectrum here is a wedge of ∣G/H∣ copies of
Smh. We call this a slice cell of dimension mh.

We will explain how �u
∗(MU(4)

R ) is related to maps from the
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Ŝ(m�h). The following notion is helpful.

Definition

Suppose X is a G-spectrum such that its underlying homotopy
group �u

k (X ) is free abelian. A refinement of �u
k (X ) is an

equivariant map
c : Ŵ → X
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3.26

�u
∗(MU(4)

R ) (continued)

Recall that in �u
∗(MUR), any monomial in the polynomial

generators in dimension 2m is represented by an equivariant
map from Sm�2 .

�u
∗(MU(4)) is a polynomial algebra with 4 generators in every

positive even dimension. We will denote the generators in
dimension 2i by ri (j) for 1 ≤ j ≤ 4. The action of a generator

 ∈ G = C8 is given by


(ri (j)) =

{
ri (j + 1) for 1 ≤ j ≤ 3
(−1)i ri (1) for j = 4.
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map from Sm�2 .
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positive even dimension. We will denote the generators in
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The action of a generator

 ∈ G = C8 is given by
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{
ri (j + 1) for 1 ≤ j ≤ 3
(−1)i ri (1) for j = 4.
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Recall that in �u
∗(MUR), any monomial in the polynomial

generators in dimension 2m is represented by an equivariant
map from Sm�2 .

�u
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positive even dimension. We will denote the generators in
dimension 2i by ri (j) for 1 ≤ j ≤ 4. The action of a generator
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3.27

�u
∗(MU(4)

R ) (continued)

We will explain how �u
∗(MU(4)) can be refined.

�u
2 (MU(4)) has 4 generators r1(j) that are permuted up to sign

by G. It is refined by an equivariant map

Ŵ1 = Ŝ(�2)→ MU(4).

Recall that the underlying spectrum of Ŵ1 is a wedge of 4
copies of S2.
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by G.
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We will explain how �u
∗(MU(4)) can be refined.

�u
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by G. It is refined by an equivariant map
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3.28

�u
∗(MU(4)

R ) (continued)

In �u
4 (MU(4)) there are 14 monomials that fall into 4 orbits

under the action of G, each corresponding to a map from a
slice cell.

Ŝ(2�2) ←→
{

r1(1)2, r1(2)2, r1(3)2, r1(4)2}
Ŝ(2�2) ←→ {r1(1)r1(2), r1(2)r1(3), r1(3)r1(4), r1(4)r1(1)}
Ŝ(2�2) ←→ {r2(1), r2(2), r2(3), r2(4)}

Ŝ(�4) ←→ {r1(1)r1(3), r1(2)r1(4)}

(Recall that Ŝ(�4) is underlain by S4 ∨ S4.) It follows that
�u

4 (MU(4)) is refined by an equivariant map from

Ŵ2 = Ŝ(2�2) ∨ Ŝ(2�2) ∨ Ŝ(�4) ∨ Ŝ(2�2).
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Ŝ(�4) ←→ {r1(1)r1(3), r1(2)r1(4)}
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(Recall that Ŝ(�4) is underlain by S4 ∨ S4.) It follows that
�u

4 (MU(4)) is refined by an equivariant map from
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3.29

The refinement of �u
∗(MU(4)) (continued)

A similar analysis can be made in any even dimension. G
always permutes monomials up to sign.

The first case of a
singleton orbit occurs in dimension 8, namely

Ŝ(�8) ←→ {r1(1)r1(2)r1(3)r1(4)} .

Each group �u
2n(MU(4)

R ) can be refined by a map from a wedge
of slice cells Ŵn. Note that Ŝ(m�1) never occurs as a wedge
summand of Ŵn because no monomial has a free orbit.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Equivariant stable
homotopy theory
G-spaces

G-CW complexes

Ordinary spectra

Equivariant spectra

RO(G)-graded homotopy

MU as a C2-spectrum

The norm functor

Our spectrum Ω

�u
∗(MU(4)

R )

3.29

The refinement of �u
∗(MU(4)) (continued)

A similar analysis can be made in any even dimension. G
always permutes monomials up to sign. The first case of a
singleton orbit occurs in dimension 8, namely
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