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The object of this paper is to compute H∗(Ω2SU(n);Z/(p)) and the Morava
K–theory K(m)∗(Ω2SU(n)). SU(n) as usual denotes the group of n×n unitary
complex matrices with determinant one. The methods we describe will also
work for the spaces Ω2SU(n + 1)/SU(k) for any k ≤ n, but we will leave these
questions for the interested reader.

We will now state our main results. First we recover a theorem due to
Waggoner [Wag85] and Yamaguchi [Yam86].

Theorem A (a) For each odd prime p, H∗(Ω2SU(n + 1);Z/(p)) is

E(x2pkj−1 : 0 < j ≤ n, k ≥ 0, p 6|j)⊗ P (yn,pkj−n : 0 < j ≤ n, pkj ≥ n, p 6|j).
where x2i−1 ∈ H2i−1 and yn,i−n ∈ H2i. E(x) denotes the exterior algebra on x
and P (y) denotes the polynomial algebra on y.

(b) For p = 2, H∗(Ω2SU(n + 1);Z/(2)) is

E(x2k+1`−1 : 0 < ` < n/2, k ≥ 0, ` odd)⊗
P (yn,2k+1`−n−1 : 0 < ` < n/2, 2k+1` ≥ n, ` odd)⊗

P (x2k+1`−1 : n/2 ≤ ` ≤ n, k ≥ 0, ` odd)

where for n/2 ≤ ` ≤ n, k ≥ 0 and ` odd, x2
2k+1`−1 = yn,2k+1`−n−1.

These are proved in Section 1 as 1.12 and 1.14. The elements yn,i−n and
x2i−1 arise in the following way. Consider the maps

Ω3SU/SU(n + 1) −→ Ω2SU(n + 1) −→ Ω2SU = U.

We will see below (1.2) that

H∗(Ω3SU/SU(n + 1);Z/(p)) = P (yn,i : i ≥ 0)
∗Partially supported by the National Science Foundation
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for all primes p. The element yn,i−n ∈ H2i(Ω2SU(n + 1)) is by definition the
image of yn,i−n ∈ H2i(Ω3SU/SU(n + 1)). The main idea of this paper is to
exploit the nice structure of H∗(Ω3SU/SU(n + 1)).

It is well known that

H∗(U ;Z/(p)) = E(x2i−1 : i ≥ 0).

The element x2i−1 ∈ H2i−1(Ω2SU(n + 1)) maps to x2i−1 ∈ H2i−1(U).
Similar statements can be made about the Morava K–theories of these spaces.

Our second main result is

Theorem B (a) The structure of K(m)∗(Ω2SU(n + 1)) for odd primes p is
⊗

0<j≤n
p-j

(E(x2jpk+1 : 0 ≤ k < t(m + 1))⊗ Ttm(yn,jpk−n−1 : k ≥ t))

where Th(y) denotes the truncated polynomial algebra on y of height ph, and t
is the smallest integer such that ptj > n.

(b) The structure of K(m)∗(Ω2SU(n + 1)) for p = 2 is
⊗

0<j≤n/2
j odd

(Ttm(yn,2kj−n−1 : k ≥ t)⊗E(x2k+1j−1 : 0 ≤ k < t(m + 1)))

⊗
⊗

n/2<j≤n
j odd

(Tm+1(x2k+1j−1 : 0 ≤ k ≤ m)⊗ Tm(yn,2k+1j−n−1 : k ≥ m + 1))

where x2
2k+1j−1 = yn,2k+1j−1−n for n/2 < j ≤ n.

This is proved in Section 2 as 2.4 and 2.6.
The proofs of these results requires some knowledge of BP∗Ω2S2n+1, which

is studied in Section 3. Our main result there (proved as 3.3) is

Theorem C For each prime p and each integer n > 0,

BP∗(Ω2S2n+1) = E(x(0))⊗ P (y(i) : i > 0)/(ρ1, ρ2, · · ·)
where x(0) ∈ BP2n−1(Ω2S2n+1), y(i) ∈ BP2pin−2(Ω2S2n+1) and

ρi ≡
∑

0≤j≤i

vjy
pj

(i−j) mod I2,

the vj are the usual generators of BP∗ (with v0 = p) and I = (p, v1, v2, · · ·).
We do not have a precise formula for the ρi. A conjecture about them is

given in 3.4.
We also determine K(m)∗(Ω2S2n+1) (3.7, which is originally due to Yam-

aguchi [Yam88]) and K(m)∗(Ω2S2n+1) (3.8).
Our main tool will be a generalization of the Serre spectral sequence due

to Dold [Dol62] (see Dyer’s book [Dye69] for a detailed proof). Given a fibre
sequence

F −→ E −→ B
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satisfying suitable hypotheses (e.g. either B is simply connected or both maps
are loop maps), and a generalized homology theory h∗, there is a spectral se-
quence converging to h∗(E) with

E2 = H∗(B; h∗(F )).

If h∗ is ordinary homology then this is the classical Serre spectral sequence.
If F is a point this is the Atiyah–Hirzebruch spectral sequence for h∗(B). If h∗
is the Morava K–theory K(m)∗ then the E2–term is simply

H∗(B;Z/(p))⊗K(m)∗(F )).

Morava K–theory satisfies a Künneth isomorphism, i.e.

K(m)∗(X)⊗K(m)∗(Y ) = K(m)∗(X × Y ).

Therefore one hopes for an Eilenberg–Moore spectral sequence similar to
the one for ordinary homology with coefficients in a field. In other words there
ought to be a spectral sequence converging to K(m)∗(F ) with

E2 = CotorR(K(m)∗(E),K(m)∗(pt.)),

where R = K(m)∗(B). Unfortunately such a spectral sequence has no chance
of converging in general since there are spaces X such that

K(m)∗(X) = K(m)∗(pt.)

but
K(m)∗(ΩX) 6= K(m)∗(pt.).

This happens when X is the Eilenberg–MacLane space K(G,m + 1) for a
finite abelian p–group G (see [RW80]). Conceivably such a spectral sequence
would converge under the additional hypothesis that E and B are K(m)∗–local,
which would imply that F is also K(m)∗–local.

I became interested in this problem in 1985 through conversations with two
graduate students, Dan Wagonner and Atsuchi Yamaguchi. The former com-
puted the homology of Ω2SU(n + 1) in his thesis [Wag85]. He obtained his
results by studying the Serre spectral sequence for the fibration

Ω2SU(n) −→ Ω2SU(n + 1) −→ Ω2S2n+1.

Yamaguchi latter extended this calculation to double loop spaces of the com-
plex Stiefel manifolds SU(n + 1)/SU(k) in [Yam86] by studying the Eilenberg–
Moore spectral sequence on the path fibration for the single loop space. He also
computed the Morava K–theory of Ω2S2n+1 in [Yam88] by essentially the same
method used in this paper.

A draft of this paper was written and circulated in 1985. It was the preprint
referred to (under a different title) in [Yam88].
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1 The homology of Ω2SU(n)

Now we will turn to the specifics. Consider the diagram

Z×BU = Ω3SU −→ pt. −→ Ω2SU = U
f↓ ↓ ↓

Ω3SU/SU(n + 1) −→ Ω2SU(n + 1) −→ Ω2SU
(1.1)

where each row is a fibre sequence. The behavior of the Serre spectral sequence
for the upper fibration is well known. We will use the Serre spectral sequence of
the lower fibration to compute H∗(Ω2SU(n + 1);Z/(p)) and K(m)∗(Ω2SU(n +
1)). The following Lemma will imply that the groups are determined by the
map f∗ in homology.

Lemma 1.2 Let h∗ be a generalized multiplicative homology theory with a com-
plex orientation. Then

h∗(Ω3SU/SU(n + 1)) = P (yn,i : i ≥ 0)

where |yn,i| = 2(n + i).

Proof. We will give the argument in terms of ordinary homology theory H∗
and use the known structure of H∗(SU(n)) and H∗(BU). The analogous facts
for an arbitrary theory h∗ with complex orientation are proved in [Ada74].

We know
H∗(SU/SU(n + 1)) = E(x2n+3, x2n+5, · · ·)

where |xi| = i. It follows (using the Serre spectral sequence) that

H∗(ΩSU/SU(n + 1)) = P (bn+1, bn+2, · · ·)

where bi ∈ H2i(BU) = H2i(ΩSU) is the standard polynomial generator.
This polynomial algebra is not primitively generated. On the contrary

its coproduct is such that H∗(ΩSU/SU(n + 1)) is polynomial. This follows
from the fact that H∗(BU) maps surjectively onto H∗(ΩSU/SU(n + 1)), so
H∗(ΩSU/SU(n + 1)) maps injectively into H∗(BU). The map is one of Hopf
algebras and any sub–Hopf algebra of a polynomial Hopf algebra is also polyno-
mial. Since H∗(ΩSU/SU(n+1)) is polynomial on even dimensional generators,
it follows that both the homology and cohomology of Ω2SU/SU(n + 1) are ex-
terior algebras on odd dimensional generators. The latter implies the statement
of the Lemma.

Now go back to the Serre spectral sequence for the diagram (1.1). For the
upper fibration we have

H∗(U) = E(x1, x3, x5, · · ·)

and τ(x2i+1) = bi ∈ H2i(BU × Z) where τ is the transgression. Therefore
by naturality we have τ(x2i+1) = f∗(bi) in the Serre spectral sequence for the
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lower fibration. Thus we need to study the map f∗. This is best done in stages.
Consider the fibration

Ω3SU/SU(n)
fn−→ Ω3SU/SU(n + 1) −→ Ω2S2n+1 (1.3)

The map f of (1.1) is the composite fnfn−1 · · · f1. We have knowledge of
BP∗(Ω2S2n+1) (as will be explained in Section 3) that can be used to get enough
information about f for our purposes. The result we obtain is the following.

Lemma 1.4 Let
a(i) ∈ BP2(npi−1)(Ω3SU/SU(n))

and
c(i) ∈ BP2(npi−1)(Ω3SU/SU(n + 1))

be polynomial generators. They can be chosen such that

fn∗(a(i)) ≡
∑

j≥0

vjc
pj

(i−j) mod I2

where I = (p, v1, v2, · · ·), v0 = p, and vi is the ith polynomial generator of
π∗(BP ).

Moreover the polynomial generators in other dimensions can be chosen so
that fn∗(yn−1,0) = 0 and fn∗(yn−1,k) = (yn,k−1) for k > 0.

When we specialize this to K(m)∗ for m > 0, we get

fn∗(a(i+m)) = vmcpm

(i) mod I2.

If we knew that the error term here was a (pm)th, we could easily deduce the
following.

Lemma 1.5 Let a(i) and c(i) denote the corresponding polynomial generators of
H∗(X;Z(p)) and K(m)∗(X) for X as above. In the case of H∗, fn∗(a(i)) = pc(i).
In the case of K(m)∗, fn∗(a(i+m)) = vmcpm

(i) .

Proof. The indeterminacy in 1.4 forces us to go further afield for a proof. We
can deduce this description of K(m)∗(fn) from Yamaguchi’s computation of
K(m)∗(Ω2S2n+1), given below as Theorem 3.7. If fn∗(a(i+m)) was not a (pm)th

power, then K(m)∗(Ω2S2n+1) would have a different ring structure.

With this information in hand it is possible to read off H∗(f) and K(m)∗(f)
and to compute these theories on Ω2SU(n).

Example 1.6 We will do the computation at p = 2 for Ω2SU(4). The map f
is the composite f3f2f1. The following table shows the affect of these three maps
in integer homology as given by Corollary 1.5 in dimensions up to 22.

5



i f1∗(bi) f2∗(y1,i−1) f3∗(y2,i−2)
1 2y1,0 0
2 y1,1 y2,0 0
3 2y1,2 2y2,1 y3,0

4 2y1,3 2y2,2 y3,1

5 y1,4 y2,3 2y3,2

6 y1,5 y2,4 y3,3

7 2y1,6 2y2,5 y3,4

8 y1,7 y2,6 y3,5

9 y1,8 y2,7 y3,6

10 y1,9 y2,8 y3,7

11 y1,10 y2,9 2y3,8

In other words the behavior of f∗ in H∗(; Z(2)) is as follows.

f∗(bi) =





0 if i = 1 or 2;
2y3,i−3 if i = 3.2k − 1 for k ≥ 1;
4y3,i−3 if i = 2k − 1 for k ≥ 2 and
y3,i−3 otherwise.

(1.7)

Thus in the mod 2 Serre spectral sequence for the fibration

Ω3SU/SU(4) −→ Ω2SU(4) −→ Ω2SU = U

we have

τ(x2i+1) =
{

0 if i = 3 · 2k − 1 or 2k+1 − 1 for k ≥ 0 and
y3,i−3 otherwise. (1.8)

It follows that the Serre E∞–term has the form

E(x1)⊗ E(x2k+1−1, x3·2k−1 : k ≥ 1)⊗ P (y3,2k+1−4, y3,3·2k−4 : k ≥ 1) (1.9)

There are some nontrivial multiplicative extensions, namely x2
3·2k−1 = y3,3·2k−4

for k ≥ 1. This is a special case of Theorem 1.13 below.
It follows that

H∗(Ω2SU(4);Z/(2)) = E(x2k+1−1 : k ≥ 0)⊗ P (y3,2k+2−4, x3·2k+1−1 : k ≥ 0)
(1.10)

where
x2

3·2k+1−1 = y3,3·2k+1−4.

Now we want to generalize this discussion to Ω2SU(n + 1). The following
result is straightforward.
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Theorem 1.11 (a) For a given prime p the polynomial generators yn,i−n ∈
H2i(Ω3SU/SU(n + 1)) can be chosen so that

f∗(bi) =
{

0 if i < n;
pϕ(n,i)yn,i−n otherwise.

where ϕ(n, i) is the number of ways to write i = jpk − 1 for j ≤ n and k ≥ 0.
(Notice than ϕ(n, i) is zero for most values of i and never more than 1+logp(n).
It is also bounded above by the p–adic valuation of 1 + i.)

(b) The transgression in mod p homology for the fibration

Ω3SU/SU(n + 1) −→ Ω2SU(n + 1) −→ Ω2SU = U

is given by

τ(x2i+1) =





0 if i = pkj − 1 with
0 < j ≤ n, k ≥ 0 and p6|j

yn,i−n otherwise.

(c) The Serre E∞–term for the fibration is

E(x2pkj−1 : 0 < j ≤ n, k ≥ 0)⊗ P (yn,pkj−n : 0 < j ≤ n, pkj ≥ n).

where p does not divide j.

For odd primes there are no multiplicative extensions in the spectral se-
quence, so we have

Corollary 1.12 With notation as in 1.11, for each odd prime p, the structure
of H∗(Ω2SU(n + 1);Z/(p)) is

E(x2pkj−1 : 0 < j ≤ n, k ≥ 0, p 6|j)⊗ P (yn,pkj−n : 0 < j ≤ n, pkj ≥ n, p 6|j).

where x2i−1 ∈ H2i−1 and yn,i−n ∈ H2i.

This is the first part of Theorem A.
Before we can describe the mod 2 case, we must determine the multiplicative

extensions.

Theorem 1.13 For p = 2, let x2i+1 ∈ H∗(Ω2SU(n + 1)) be one of the odd–
dimensional generators given by 1.11(c) above. Then x2

2i+1 = yn,2i+1−n if i =
2kj − 1 with k ≥ 0, j odd and j > n/2; x2

2i+1 = 0 for all other values of i.

Proof. Recall that in H∗(Ω2S2`+1), all of the odd–dimensional generators have
nontrivial squares; these generators occur in dimensions 2k+1` − 1 for k ≥ 0.
Now consider the map Ω2SU(` + 1) → Ω2S2`+1.

If ` is odd we find (by induction on `) that y`−1,0 ∈ H2`−2(Ω2SU(`)) is
trivial. Consider the Serre spectral sequence for the fibration

Ω2SU(`) −→ Ω2SU(` + 1) −→ Ω2S2`+1.
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The fundamental class u2`−1 ∈ H2`−1(Ω2S2`+1) survives to E∞ because there
is no primitive element in H2`−2(Ω2SU(`)) for it to transgress to. All of the
other generators u2k+1`−1 of H∗(Ω2S2`+1) can be expressed in terms of Dyer–
Lashof operations acting on u2`−1. Since the fibration is one of double loop
spaces, each of these generators must also survive to E∞ and the Serre spectral
sequence collapses. Thus we have

u2k+1`−1 = x2k+1`−1

and
x2

2k+1`−1 = y`,2k+1`−`−1

for all k ≥ 0. Furthermore, 1.5 tells us that for n > `, the image of y`,2k+1`−`−1

is yn,2k+1`−n−1 for n < 2` and zero for n ≥ 2`.
On the other hand if ` is even, we find that y`−1,0 is nontrivial and that

u2`−1 transgresses to it. It follows that u2k+1`−1 transgresses to y`−1,2k`−`. 1.5
tells us that each of these has trivial image in H∗(Ω2SU(`+1)). Moreover x2`−1

is present in H2`−1(Ω2SU(`/2 + 1)) where its square is a multiple (nonzero if
and only if `/2 is odd) of y`/2,3`/2−1. By 1.5 this element has trivial image in
H∗Ω2SU(` + 1).

The result follows.

Corollary 1.14 With notation as in 1.11, H∗(Ω2SU(n + 1);Z/(2)) is

E(x2k+1`−1 : 0 < ` < n/2, k ≥ 0, ` odd) ⊗
P (yn,2k+1`−n−1 : 0 < ` < n/2, 2k+1` ≥ n, ` odd) ⊗

P (x2k+1`−1 : n/2 ≤ ` ≤ n, k ≥ 0, ` odd)

where for n/2 ≤ ` ≤ n, k ≥ 0 and ` odd, x2
2k+1`−1 = yn,2k+1`−n−1.

This is the second part of Theorem A.

2 The Morava K–theory of Ω2SU(n)

Now we turn to Morava K–theory K(m)∗. We can use 1.5 to determine the
behavior of K(m)∗(f).

Example 2.1 We will do the computation at p = 2 for Ω2SU(4). We will
illustrate the behavior of K(m)∗(f) for m = 1 with a table similar to that of
1.6. In this case some polynomial generators are sent to squares of same by fi∗.
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i f1∗(bi) f2∗(y1,i−1) f3∗(y2,i−2)
1 0 0
2 y1,1 y2,0 0
3 v1y

2
1,0 0 y3,0

4 y1,3 y2,2 y3,1

5 y1,4 y2,3 0
6 y1,5 y2,4 y3,3

7 v1y
2
1,2 v1y

2
2,1 y3,4

8 y1,7 y2,6 y3,5

9 y1,8 y2,7 y3,6

10 y1,9 y2,8 y3,7

11 y1,10 y2,9 v1y
2
3,2

More generally Corollary 1.5 gives

f∗(bi) =





0 if i = 2k − 1 and 0 < k < 2m + 2;
0 if i = 3 · 2k − 1 and 0 < k < m + 1;
v2m+1

m y22m

3,2k−2m−4 if i = 2k − 1 and k ≥ 2m + 2;
vmy2m

3,3·2k−m−4 if i = 3 · 2k − 1 and k ≥ m + 1 and
y3,i−3 otherwise.

Then the E∞–term of the Serre spectral sequence is

E(x1, x3, x7, . . . x22m+2−1)⊗ E(x5, x11, . . . x3·2m+1−1)⊗
T2m(y3,2k+2−4 : k ≥ 0)⊗ Tm(y3,3·2k+1−4 : k ≥ 0)

where Ti(x) denotes the truncated polynomial algebra of height 2i.
As in the case of ordinary homology, there are some nontrivial multiplicative

extensions (that will be explained in Theorem 2.5), namely

x2
3·2k−1 = y3,3·2k+1−4 for 1 ≤ k ≤ m + 1 and

so K(m)∗(Ω2SU(4)) is

E(x1, x3, . . . x22m+2−1)⊗ T2m(y3,2k+2−4 : k ≥ 0)⊗
Tm+1(x5, x11, . . . x3·2m+1−1)⊗ Tm(y3,3·2k+m+2−4 : k ≥ 0).

Now we will generalize this to Ω2SU(n + 1). To describe the map f∗, first
observe that if i is not congruent to −1 mod p, then

f∗(bi) =
{

0 if i < n
yn,i−n otherwise.

If i is one less than a multiple of p, we can write

i = jpk+1 − 1 with k ≥ 0 and p6|j.

Let t be the smallest integer such that n < ptj. If t = 0, i.e. if j > n, then

f∗(bjpk+1−1) = yn,jpk+1−1−n.
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For t > 0 we have

f∗(bjpk+1−1) = vmypm

j,jpk+1−m−1−j

= v1+pm

m yp2m

pj,jpk+1−2m−1−pj

· · ·
= v(ptm−1)/(pm−1)

m yptm

pt−1j,jpk+1−tm−1−pt−1j

= v(ptm−1)/(pm−1)
m yptm

n,jpk+1−tm−1−n

where we are identifying

y`,s ∈ K(m)∗(Ω3SU/SU(` + 1)) for ` < n

with its image in K(m)∗(Ω3SU/SU(n + 1)), and it is understood that yn,s = 0
if s is not a nonnegative integer. In yn,jpk+1−tm−1−n the second subscript is a
nonnegative integer precisely when k + 1− tm ≥ t. In other words we have

f∗(bjpk+1−1) =





yn,jpk+1−1−n if j > n
0 if k < tm + t− 1
v
(ptm−1)/(pm−1)
m yptm

n,jpk+1−tm−1−n
otherwise

Combining these gives the following.

Theorem 2.2 The map

f∗ : K(m)∗(Z×BU) −→ K(m)∗(Ω3SU/SU(n + 1))

behaves as follows. Let
i = jpk − 1 with p6|j

and let t be the smallest integer such that ptj > n. (In particular, t = 0 if
j > n.) Then

f∗(bi) =

{
0 if 0 ≤ k < t(m + 1)
v
(ptm−1)/(pm−1)
m yptm

n,jpk−tm−1−n
otherwise

Corollary 2.3 There are precisely n(m + 1) values of i for which f∗(bi) = 0.
They are

s− 1 for 1 ≤ s ≤ n

and

pkm−m+ks− 1, pkm−m+k+1s− 1, . . . pkm+k−1s− 1 for 1 +
n

pk
≤ s ≤ n

pk−1

where k > 0. (Here the number s must be an integer, so for pk−1 > n, there are
no values of s satisfying the inequalities.)

Proof. First we will show that the number of values of i is as indicated by
induction on n. For n = 1 the only value of j with positive t is j = 1, which
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gives t = 1 and m+1 values of k, namely 0 ≤ k ≤ m. The corresponding values
of i are 0, p− 1, p2 − 1, . . . pm − 1. This starts the induction.

For the inductive step, suppose first that n is not divisible by p. Then for j =
n we have t = 1 and we get m+1 new values of i, namely n−1, pn−1, . . . pmn−1.
If n is divisible by p, we can write

n = jps with p6|j.

The value of t associated with this value of j gets increased from s to s+1, and
the m + 1 new values of i we get are npsm − 1, npsm+1 − 1, . . . npsm+m − 1.

The indicated values of i fall into various disjoint arithmetic progressions.
The first of them (0 ≤ i ≤ n−1) contains precisely n values. For each positive k
we have m arithmetic progressions each containing the same number of elements,
which varies with k and is zero for large k.

We will argue by induction on n. The indicated values of i fall into various
disjoint arithmetic progressions. The first of them (0 ≤ i ≤ n − 1) contains
precisely n values. For each positive k we have m arithmetic progressions each
containing the same number of elements, which varies with k and is zero for
large k.

We will argue by induction on n. Each time n is increased by one, the
number of values of s in the first progression increases by one. The number of
values of s in the other progressions remains the same (although the progressions
themselves may shift) for all but a single value of k (which depends on the p–adic
valuation of n), for which the number in each of the m progressions increases
by one.

The following table illustrates this phenomenon in the case p = 3, m = 2
and n ≤ 10.

New values Values of s in progressions
n of i First k = 1 k = 2 k = 3
1 0, 2, 8 0 1
2 1, 5, 17 0, 1 1, 2
3 26, 80, 242 0, 1, 2 2, 3 1
4 3, 11, 35 0, · · · , 3 2, 3, 4 1
5 4, 14, 44 0, · · · , 4 2, · · · , 5 1
6 53, 161, 485 0, · · · , 5 3, · · · , 6 1, 2
7 6, 20, 62 0, · · · , 6 3, · · · , 7 1, 2
8 7, 23, 71 0, · · · , 7 3, · · · , 8 1, 2
9 728, 2186, 6560 0, · · · , 8 4, · · · , 9 2, 3 1
10 9, 29, 89 0, · · · , 9 4, · · · , 10 2, 3 1

Notice that there are always n values of s in the first progression. In the
progressions for k = 1, one more value of s is added whenever n is not divisible
by 3.

When n is divisible by 3, the number of values of s is fixed but the range of
values shift by one. In this case the number of values of s increases by one for
some higher value of k.
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The generalization to other values of m, n and p is straightforward.

It follows that in the Serre E∞–term, there is a factor of E(x2i+1) where i
ranges over the values described in 2.3. The other factor is a truncated polyno-
mial algebra on the yn,i−n with i = jpk+1−1 for j ≤ n and j not divisible by p.
The height of such a generator depends on the number t, the smallest integer
such that jpt > n. The result is

Theorem 2.4 In the Serre spectral sequence for K(m)∗ of the total space of
the fibration

Ω3SU/SU(n + 1) −→ Ω2SU(n + 1) −→ Ω2SU,

the E∞–term is
⊗

0<j≤n
p-j

(E(x2jpk+1 : 0 ≤ k < t(m + 1))⊗ Tm(yn,jpk−n−1 : k ≥ t))

where Th(y) denotes the truncated polynomial algebra on y of height ph, and t
is the smallest integer such that pjt > n.

For odd p, K(m)∗(Ω2SU(n + 1)) has the same description.

This is the first part of Theorem B. For p = 2 there are some nontrivial
multiplicative extensions in the Serre spectral sequence which we now describe.
There are

[
n+1

2

]
infinite families of even–dimensional truncated polynomial gen-

erators, one for each positive odd value of j ≤ n. In roughly half of them, the
first m+1 elements are actually squares of odd–dimensional generators. Roughly
a quarter of the n(m + 1) odd–dimensional generators have nontrivial squares.

In 2.3 we described the values of i corresponding to generators x2i+1 ∈
K(m)∗(Ω2SU(n + 1)) in terms of arithmetic progressions. However it is not
convenient to describe the ones having nontrivial squares in these terms. We
also indicated that each time n is increased by one, we get m+1 more generators.
The ones with nontrivial squares the ones born on Ω2SU(` + 1) with ` odd and
more than n/2.

Theorem 2.5 For p = 2, let x2i+1 ∈ K(m)∗(Ω2SU(n + 1)) be one of the odd–
dimensional generators given by 2.3 above. Then x2

2i+1 = yn,2i+1−n if i = 2k`−1
with 1 ≤ k ≤ m+1, ` odd, and n/2 < ` ≤ n; x2

2i+1 = 0 for all other values of i.

Proof. As in the proof of 1.13, our starting point is the structure of K(m)∗(Ω2S2`+1),
which is given in 3.7 below. It is

Tm+1(u2`−1, · · ·u2m+1`−1)⊗ Tm(y`,2m+2`−1−`, y`,2m+3`−1−`, · · ·),
where y`,2k`−1−` = u2

2k`−1 for 1 ≤ k ≤ m + 1.
As in the proof of 1.13, if ` is odd we have

x2
2k`−1 = y`,2k`−1−` for 1 ≤ k ≤ m + 1.

and y`,2k`−1−` maps to yn,2k`−1−n ∈ K(m)∗(Ω2SU(n + 1)) when n < 2`, and
for larger n it maps to zero.

12



For even `, u2i`−1 has a nontrivial transgression and we deduce that x2
2i`−1 =

0. The result follows.

Using these extensions we get

Theorem 2.6 With notation as above, the structure of K(m)∗(Ω2SU(n + 1))
for p = 2 is

⊗
0<j≤n/2

j odd

(Ttm(yn,2k+1j−n−1 : k ≥ 0)⊗ E(x2k+1j−1 : 0 ≤ k < t(m + 1)))

⊗
⊗

n/2<j≤n
j odd

(Tm+1(x2k+1j−1 : 0 ≤ k ≤ m)⊗ Ttm(yn,2k+1j−n−1 : k ≥ m + 1))

where x2
2k+1j−1 = yn,2k+1j−1−n for n/2 < j ≤ n and, as usual, Tm(y) denotes

the truncated polynomial algebra on y of height 2m and t is the smallest integer
such that 2tj > n.

This is the second part of Theorem B

3 BP∗(Ω2S2n+1) and K(m)∗(Ω2S2n+1)

Now we will study BP∗(Ω2S2n+1) and prove Lemma 1.4. Our main tool will be
the Adams spectral sequence converging to

π∗(BP ∧ Ω2S2n+1) = BP∗(Ω2S2n+1).

The E2–term is

ExtA(Z/(p), H∗(BP ∧ Ω2S2n+1)),

where A is the dual Steenrod algebra and the homology is with coefficients in
Z/(p). By a well known change-of-rings isomorphism this is the same as

ExtE(Z/(p), H∗(Ω2S2n+1)),

where E is the exterior algebra,

E = E(τi : i ≥ 0).

Recall that |τi| = 2pi − 1 and that

ExtE(Z/(p), Z/(p)) = P (ai : i ≥ 0),

where bideg(ai) = (1, |τi|). We will denote this ring below by R.
Thus we need to know the structure of H∗(Ω2S2n+1) as a comodule–algebra

over E. Recall that for p > 2

H∗(Ω2S2n+1) = E(x(i) : i ≥ 0)⊗ P (y(i) : i > 0),
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where |x(i)| = 2npi − 1 and |y(i)| = 2npi − 2. For p = 2 we have

H∗(Ω2S2n+1) = P (x(i) : i ≥ 0),

and we will denote x2
(i) by y(i+1).

For the rest of this section we will assume that p > 2, leaving it to the reader
to modify our statements appropriately for p = 2.

Lemma 3.1 The right action of the Milnor primitive Qj (dual to τj) is given
by

(x(i))Qj =

{
ypj

(i−j) for i > j

0 otherwise and

(y(i))Qj = 0.

Proof. This is an easy exercise with the Nishida relations, given the fact that
each x(i) and each y(i) is defined as a certain Dyer–Lashof operation on x(0).
Recall [CLJ76] that

x(i) = (Q1)i(x(0)) and
y(i) = β(x(i)),

where (Q1)i is the ith iterate of the first Dyer–Lashof operation Q1 and β is the
Bockstein.

The Nishida relation tells us that

(βQ1(x))P1 = Q0βQ1(x),

where P1 is the first Steenrod reduced power operation and Q0 is the pth power
map in homology.

Applying this to x(i) for i > 0 gives

(y(i+1))P1 = yp
(i).

With this in mind we can determine the E–module structure of

H∗(Ω2S2n+1).

Recall that the Milnor primitive Qj+1 can be defined as the commutator [Qj ,Ppj

].
Then we can prove 3.1 by induction on j as follows.

We start the induction with the fact that Q0 = β and y(i) = β(x(i)).
Then we have

(x(i))Qj+1 = (x(i))[Qj ,Ppj

]

= (x(i))(QjPpj − P pj

Qj)

= (x(i))QjPpj

.
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We know the second term vanishes because there are no primitives in the
dimension of (x(i))Ppj

. The inductive hypothesis and the Cartan formula give

(x(i))QjPpj

= (ypj

(i−j))Ppj

= ypj+1

(i−j−1).

To compute the required Ext group it is convenient to define an increasing
multiplicative filtration {Fi} on our homology ring and to study the resulting
spectral sequence. We do this by setting

F0 = P (y(i) : i > 0)

and by defining the filtration degree of each x(i) to be one.
In this way we filter away the coaction of E. In other words the associated

bigraded object E0H∗(Ω2S2n+1) has the trivial E-comodule structure. Thus
our E1–term is

H(Ω2S2n+1)⊗R.

The differential d1 is determined by the E–comodule structure of

H∗(Ω2S2n+1),

which was given above. The formula one gets is

d1(x(i)) =
∑

0≤j<i

ajy
pj

(i−j). (3.2)

Theorem 3.3 (a) Let ri = d1(x(i)) as given (3.2). Then the ideal J = (r1, r2, · · ·) ⊂
P (y(i) : i > 0) is regular. In other words rj+1 is not a zero divisor in P (y(i) :
i > 0)/(r1, · · · rj).

(b) The filtration spectral sequence above collapses from E2 and gives

E∞ = E(x(0))⊗ P (y(i) : i > 0)/J.

(c) The Adams spectral sequence for BP∗(Ω2S2n+1) also collapses from E2.
The E∞–term has the same description as in (b). (There are still extension
problems in the BP∗–module structure which will be discussed below.)

Theorem C follows immediately from this result.
Proof. (a) is a reformulation of Lemma 4.15(b) of [RW77].

To show that (a) implies (b) we proceed as follows. Let

Pj = P (y(i) : i > 0)⊗ E(x(0), x(1), · · ·x(j))⊗R for j > 0.

Each Pj is a subcomplex of the E1–term and there are short exact sequences

0 −→ Pj −→ Pj+1 −→ Σ|x(j+1)|Pj −→ 0.

We will show by induction on j that

H∗(Pj) = P0/(r1, · · · rj).
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This statement is trivial for j = 0 so we can start the induction. The short
exact sequence above gives a long exact sequence of homology groups in which
the connecting homomorphism is multiplication by rj+1. By (a), rj+1 is not
a zero divisor in z0/(r1, · · · rj). Therefore the connecting homomorphism is
monomorphic and the map H∗(Pj) → H∗(Pj+1) is onto. This completes the
inductive step.

For (c) we must make partial use of the Snaith splitting of the suspension
spectrum of Ω2S2n+1. There is a corresponding splitting of the Adams spectral
sequence that we are studying. We will see that in each Snaith summand the
elements are concentrated either in even dimensions or in odd dimensions, so
there is no room for any differentials.

More specifically, the Snaith splitting leads to a decomposition of the mod
p homology in which x(i) and y(i) have degree pi. Thus x(0) has degree one and
all other generators have degree divisible by p. The stable summands whose
degrees are not congruent to zero or one mod p have trivial mod p homology.
From (b) we see that in each summand with degree divisible by p the Adams
E2–term is concentrated in even dimensions, while in the summands with degree
congruent to one mod p it is concentrated in odd dimensions.

For the extensions in the BP∗-module structure we offer

Conjecture 3.4 With notation as above,

BP∗(Ω2S2n+1) = E(x(0))⊗ P (y(i) : i > 0)/L,

where L is generated by the homogeneous components of the formal group law
sum expression ∑F

vjy
pj

(i−j),

where vj is the usual polynomial generator of BP∗ with v0 = p.

Now we will use Theorem 3.3 to prove Lemma 1.4. Recall the fibration

Ω3SU/SU(n)
fn−→ Ω3SU/SU(n + 1) −→ Ω2S2n+1.

Let a(i) ∈ BP∗(Ω3SU/SU(n)) and c(i) ∈ BP∗(Ω3SU/SU(n+1)) be polyno-
mial generators in dimension 2(npi− 1) for i ≥ 0 as before. They can be chosen
such that the image of c(i) in BP∗(Ω2S2n+1) is y(i). The generator a(0) is the
transgression of x(0) and it follows that

BP∗(Ω2S2n+1) = E(x(0))⊗ P (y(i) : i > 0)/L,

where L now denotes the ideal generated by the images of the f(a(i)) for i > 0.
Lemma 1.4 now follows by comparing this description with part (b) of The-

orem 3.3.
Now we will consider the Morava K–theory of Ω2S2n+1. The Adams spec-

tral sequence approach used above cam be modified to compute the connective
Morava K–theory k(m)∗(Ω2S2n+1). Here k(m) denotes the connective cover of
K(m), i.e.,

k(m)∗ = Z/(p)[vm].
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In this setting, (3.2) becomes

d1(x(i)) = amypm

(i−m). (3.5)

The Adams E2–term is a module over P (am), and it is convenient to consider
the am–torsion free quotient, namely

E2/(am–torsion) = E(x(0), · · ·x(m))⊗ Tm(y(1), y(2), · · ·). (3.6)

Now we want to show that the Adams spectral sequence collapses modulo
am–torsion from this point, i.e., that

a−1
m E∞ = a−1

m E2.

To do this we must show that for sufficiently large (depending on i) t, at
mx(i)

for 0 ≤ i ≤ m and at
my(i) for i ≥ 1 are permanent cycles.

We will need to make more extensive use of the Snaith splitting of Ω2S2n+1.
Stably we can write (with everything localized at p)

Ω2S2n+1
+ ' (S0 ∨ S2n−1) ∧

∨

i≥0

Σi(2pn−2)Dpi

where X+ denotes the suspension spectrum of the space X with a disjoint base
point adjoined, and each Dpi is a certain (−1)–connected finite spectrum, which
is independent of n. H∗(Dpi) is spanned by the monomials in H∗(Ω2S2n+1) of
Snaith degree pi. The generators x(j) and y(j) each have Snaith degree pj .

The top and bottom classes in H∗(Dpj ) for j > 0 are x(j) and ypj−1

(1) . The
difference between the dimensions of these classes is 2pj−1 − 1. It follows at
once that the Adams spectral sequence for k(m)∗(Dpj ) collapses for j ≤ m, so
x(j) and y(j) for j ≤ m are permanent cycles.

For j > m, the top and bottom classes in E2 for Dpj not killed by a power

of am are y(j) and ypm−1

(j−m+1). Their difference in dimensions is 2pm−1 − 2. It
follows that if y(j) supports a differential, the target must be am–torsion. There
are only finitely many such torsion elements, since Dpj is a finite complex. It
follows that for some t > 0, at

my(j) is a permanent cycle. This is good enough
for our purposes, and we get the following result, which was first proved by
Yamaguchi [Yam88].

Theorem 3.7 For p > 2,

K(m)∗(Ω2S2n+1) = E(x(0), · · ·x(m))⊗ Tm(y(1), y(2), · · ·),

and for p=2,

K(m)∗(Ω2S2n+1) = Tm+1(x(0), · · ·x(m))⊗ Tm(y(m+2), y(m+3), · · ·),

where y(i) = x2
(i−1) for 1 ≤ i ≤ m + 1.
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Now we will examine the coalgebra structure of the Morava K–theory of
Ω2S2n+1. We will describe the coproduct in K(m)∗(Ω2S2n+1) by giving the
behavior of the Verschiebung map V , which by definition is dual to the pth

power map in K(m)∗(Ω2S2n+1).
Note that this map is not K(m)∗–linear. Suppose u and w in K(m)∗(X)

are dual to a and b in K(m)∗(X) and that up = vmw. Then we would have
V (v−1

m b) = a. This means that the coproduct expansion for b would contain the
expression

vm

∑

0<i<p

1
p

(
p
i

)
ai ⊗ ap−i.

With this in mind our result is the following.

Theorem 3.8 In K(m)∗(Ω2S2n+1) the generators x(i) and y(i) for i ≤ m are
primitive.

For i > m,
V (v−1

m y(i)) = ypm−1

(i−m).

Consequently we have

K(1)∗(Ω2S2n+1) = E(u(0), u(1))⊗ P (w(1)),

K(2)∗(Ω2S2n+1) = E(u(0), u(1), u(2))⊗ T2(w(1), w(2), · · ·) and,

K(m)∗(Ω2S2n+1) = E(u(0), · · ·u(m))⊗ T2(w(1), w(2), · · ·)
⊗ T1(w(i,j) : i ≥ 1 and 1 < j < m) for m > 2

where u(0) is dual to x(0), w(i,j) is dual to ypj

(i), w(i) = w(i,0) and wp
(i) is dual to

y(i+m).

For p = 2 this says that x(m) is primitive while y(m+1) = x2
(m) is not. To

resolve this apparent contradiction, remember that mod 2 homology theories
such as K(m)∗ tend to have noncommutative multiplications (see [AT65] and
[AT66] for more details) even though we are dealing with a homotopy commu-
tative H–space. If x is a primitive element in K(m)∗(X) then the coproduct
expansion for x2 is

(x⊗ 1 + 1⊗ x)2 = x2 ⊗ 1 + 1⊗ x2 + (x⊗ 1)(1⊗ x) + (1⊗ x)(x⊗ 1).

Thus we have to deal with the commutator

[x⊗ 1, 1⊗ x] ∈ K(m)∗(X ×X).

The commutativity of K(m)∗(X) does not imply that of K(m)∗(X × X).
In general there is a formula for the commutator in K(m)∗(Y ) (see [AT65] and
[AT66] for m = 1 and [Wur86, 2.4] for m > 1) which says

[u, w] = vmQm−1(u)Qm−1(w),

where Qm−1 is a K(m)-cohomology operation in analogous to the Milnor prim-
itive with the same name. Presumably a similar formula holds in the K(m)–
homology of a homotopy commutative H–space. Thus we have

[x(m) ⊗ 1, 1⊗ x(m)] = vmQm−1(x(m−1))⊗Qm−1(x(m−1)) = vmy(1) ⊗ y(1).
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One way to understand this noncommutativity is the following. Let

X ×X
t−→ X ×X

be the switching map that sends the point (x, y) to (y, x). The classical proof
of the commutativity of the cup product (and of the Pontrjagin product in the
case of a homotopy commutative H–space) rests on the fact that in H∗(X×X),
t∗(a⊗ b) = ±(b⊗ a).

This is deduced from the analogous statement on the cochain level, which is
accessible to direct geometric calculation. However, in the case of a generalized
cohomology theory, there are no cochains, so this argument does not apply.

Since we do not actually require this calculation to prove Theorem 3.8 we
need not make it more rigorous.

Now we begin the proof of Theorem 3.8. We will make use of the homology
theory E(m)∗/Im−1 which we abbreviate by L(m)∗. We have

L(m)∗(pt.) =
{

Z(p)[v1] for m = 1 and
Z/(p)[vm−1, vm, v−1

m ] for m > 1.

There is a natural transformation L(m)∗ → K(m)∗ which sends vm−1 to zero.
We will also make use of the fibration

Ω3SU/SU(n)
fn−→ Ω3SU/SU(n + 1) −→ Ω2S2n+1.

We will study the coalgebra structure in L(m)∗(fn). In general L(m)∗(X)
does not have a coproduct since the theory does not have a Künneth isomor-
phism. However when X = Ω3SU/SU(n), L(m)∗(X) is a free L(m)∗–module
by Lemma 1.2, so

L(m)∗(X ×X) = L(m)∗(X)⊗ L(m)∗(X)

and we have a coproduct.
For the sake of simplicity we begin with the case n = 1, i.e. with Ω2S3. Then

we have Ω3SU/SU(n) = Z × BU and the coproduct structure is well known.
L(m)∗(BU) is a bipolynomial Hopf algebra, i.e.

L(m)∗(BU) = P (bi : i > 0)

with |bi| = 2i and V (bpi) = bi.
Let

y2,i−2 ∈ L(m)∗(Ω3SU/SU(2))

be an appropriate polynomial generator of in dimension 2i, and let a(j) and c(j)

as usual denote generators of L(m)∗(BU) and L(m)∗(Ω3SU/SU(2)) in dimen-
sion 2pj − 1. Then from Lemma 1.2 we have

f1∗(bi) =





0 if i = 1
y2,i−2 if i 6= pj − 1
vm−1c

pm−1

(j+1−m) + vmcpm

(j−m) ifi = pj − 1.

Here it is to be understood that c(j) = 0 for j ≤ 0.
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Now we have to argue by induction on m. For m = 1 we have

f1∗(a(1)) = pc(1) and
f1∗(a(2)) = pc(2) + v1c

p
(1).

The generators a(1) and a(2) are both primitive, so their images under f1∗
are also. The primitivity of pc(2) + v1c

p
(1) implies that

V (v−1
1 c(2)) = −c(1).

We can get rid of the minus sign by changing the definition of c(j). In a similar
fashion we get

V (v−1
1 c(j)) = c(j−1) for j > 2.

It follows immediately that

V (v−1
1 c(j)) = c(j−1) for j > 1

in K(1)∗(Ω2S2n+1).
This proves Theorem 3.8 in the case m = n = 1 and starts our induction on

m for the case n = 1. Now suppose inductively for n = 1 that

V (v−1
m−1c(j)) = cpm−2

(j−m+1) for j ≥ m

in K(m− 1)∗(Ω2S3).
Then the primitivity of

f1∗(a(j)) = vm−1c
pm−1

(j+1−m) + vmcpm

(j−j)

implies that
V (v−1

m c(j)) = −cpm−1

(j−m) for j > m

in K(m)∗(Ω2S3) as desired. This proves Theorem 3.8 for all values of m when
n = 1.

This argument generalizes immediately to other values of n provided that
the a(j) are primitive, but this is not always the case. They are primitive in
the cases when they are the images of the generators in the same dimensions in
L(m)∗(BU). This will happens whenever the number npj −1 does not have the
form kpj − 1 for some k < n. It is elementary that this condition is equivalent
to n not being divisible by p. Thus we have proved Theorem 3.8 in these cases.

If n is divisible by p then we can assume inductively that

V (a(j)) = vmapm−1

(j−m)

in K(m)∗(Ω3SU/SU(n)). In this case we can prove the Theorem 3.8 without
using L(m)–theory. Lemma 1.4 still gives

fn∗(a(j)) = vmcpm

(j−m).
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The Verschiebung is natural so we get

V (cpm

(j) ) = vpm

m cp2m−1

(j−m).

Since K(m)∗(Ω3SU/SU(n+1)) is a polynomial algebra by Lemma 1.2, this
implies

V (c(j)) = vmcpm−1

(j−m).

This completes the proof of Theorem 3.8.

References

[Ada74] J. F. Adams. Stable Homotopy and Generalised Homology. University
of Chicago Press, Chicago, 1974.

[AT65] S. Araki and H. Toda. Multiplicative structure in mod q cohomology
theories I. Osaka Journal of Mathematics, 2:71–115, 1965.

[AT66] S. Araki and H. Toda. Multiplicative structure in mod q cohomology
theories II. Osaka Journal of Mathematics, 3:81–120, 1966.

[CLJ76] F. R. Cohen, T. Lada, and J. P. May. The Homology of Iterated Loop
Spaces. Volume 533 of Lecture Notes in Mathematics, Springer–Verlag,
New York, 1976.

[Dol62] A. Dold. Relation between ordinary and extraordinary homology. In
Colloquium on Algebraic Topology, Aarhus 1962, pages 2–9, 1962.

[Dye69] E. Dyer. Cohomology Theories. Benjamin, New York, 1969.

[RW77] D. C. Ravenel and W. S. Wilson. The Hopf ring for complex cobordism.
Journal of Pure and Applied Algebra, 9:241–280, 1977.

[RW80] D. C. Ravenel and W. S. Wilson. The Morava K–theories of Eilenberg–
Mac Lane spaces and the Conner–Floyd conjecture. American Journal
of Mathematics, 102:691–748, 1980.

[Wag85] D. F. Wagonner. Loop spaces and the classical unitary groups. PhD
thesis, University of Kentucky, 1985.

[Wur86] U. Würgler. Commutative ring–spectra in characteristic 2. Commen-
tarii Mathematici Helvetici, 61:33–45, 1986.

[Yam86] A. Yamaguchi. The homology of double loop spaces of complex Stiefel
manifolds. Publications of Research Institute of Mathematical Sciences,
Kyoto University, 22:767–800, 1986.

[Yam88] A. Yamaguchi. Morava K–theory of double loop spaces of spheres.
Mathematische Zeitschrift, 199:511–523, 1988.

21


