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The Structure of Morava Stabilizer Algebras

Douglas C. Ravenel *
Department of Mathematics, Columbia University, New York, N.Y. 10027, USA

§0. Introduction

The purpose of this note is to prove some general theorems which will facilitate
the computation of Ext}p zp(BP,, v, ' BP,/I,), where 1,=(p,v,, ..., v,_,) is the
n-th invariant prime ideal in BP,. Specific calculations and applications to the
Novikov spectral sequence will be exposed in [8] and [13].

This paper is a sequel to [4] in that we reprove some results of Morava ([10]
and [11]) with more conventional algebraic topological methods. Our approach
differs from those of Morava and Johnson-Wilson in that no use is made of any
cohomology theories other than Brown-Peterson theory. Our results have the
advantage of being more directly applicable to homotopy theoretic computations
than Morava’s were.

Although none of his results are actually used here, this paper owes its exis-
tence to many inspiring and invaluable conversations with Jack Morava. I would
also like to thank Haynes Miller, John Moore, Robert Morris, and Steve Wilson
for their interest and help.

In §1 we use the change of rings theorem of [7] to show that computing the
above mentioned Ext group is equivalent to computing the cohomology of a
certain Hopf algebra S(n), which we call the Morava stabilizer algebra. We
describe it explicitly using the results of [12].

In §2 we describe the relation of S(n) to a certain compact p-adic Lie group
S, which Morava called the stabilizer group, as it was the isotropy group of a
certain point in a scheme with a certain group action in [10]. This group has been
studied to some extent by number theorists but we do not exploit this fact. Its
basic cohomological properties were originally found by Morava and the author
(very likely not for the first time) by application of the results of Lazard [S]. The
results of § 3, however, make no use of [5] or even of the existence of S,, and §3
is independent of §2. We do however use this group theoretic interpretation to
get a certain splitting (Theorem (2.12)) of S(n) when p does not divide n.

*  Supported in part by NSF grant MPS 72 05055 A02
**  Current address: Department of Mathematics, University of Washington, Seattle, WA 98195,
USA
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In §3 we define a certain filtration of S(n) and describe the associated graded
Hopf algebra E, S(n) as the enveloping algebra of a restricted Lie algebra. Hence
the machinery of [6] may be applied to the computation of H* E,S(n) and
H* S(n). This will be done in a subsequent paper.

§1. The Definition and Structure of S(n)

Let K(n), =IF,[v,, v, '] and regard it as a BF,-algebra via the ring homomorphism
sending v; to O for i+n. Let

K(n), K(n)=K(n), ®pp, BE, BP ®pp, K(n),.
Then by the main result of [7] we have

(1.1) Theorem.
EthP. BP(BP* ’ U; ! BP*/In) = EXtI’.é(n),K(n)(K(n)* ’ K(")*) D

Since v, is invariant under BP, BP modulo I,, K(n), K(n) is a commutative
biassociative Hopf algebra over K(n), .

Now K(n)* is a graded field in the sense that every graded module over it is
free. (If M is such a module, then M, is canonically isomorphic to M, i+20m-1)
since dim v,=2(p"—1).) Hence the category of graded K(n),-modules is equi-
valent to that of IF,-modules graded over Z/2(p" —1). We define

S(n)y=K(n), K(n) @, IF,

where K(n), and K(n), K(n) are here regarded as graded over Z/2(p"—1) and IF,
is a K(n),-algebra via the map sending v, to 1.

S(n) will denote the linear dual of S(n),, but some care is required for its
definition. We can regard BF, BP as llm BP, BP where BF, BP'=BP,[t, ... t;]c
BP, BP. We define K(n), K(n)‘ and S(n)' accordmgly, so S(n)*-llm S(n),, with
the discrete topology. It will follow from Proposmon (1.3) below that S(n)* is
finite dimensional so we define S(n)'=Hom (S(n).,, IF,) and S(n)—y_rp—S(n)' S(n)
is compact and complete in the inverse limit topology. S(n) is also equipped
with a completed cocommutative coproduct, i.e. a map

4: $(n)— S(n)® S(n) = lim Hom (S(n)}, ® S(n), , IF,).

Hence S(n) could be called a cocommutative profinite Hopf algebra.
The category of graded K(n), K(n)-comodules is equivalent to that of cycli-
cally graded S(n),-comodules, so we have

(1.2) Proposition.
Extg iy, k(K (), K(n),) @k m), F, = Exts (IF,, IF,). O

The latter group will be denoted by H* S(n). For the algebra structures of
S(n), and K(n), K(n) we have

(1.3) Proposition. As algebras
K(n), K =Kn),[t;, ty, ... 10, 7" =05 1))
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and
S(n)* ;IFp[tl ’ t2 i ]/(tf’" - ti)
where dim t;=2(p' —1).
Proof. We have
K(n), K(n)=K(n), ®gpp, BP, BP ®pp  K(n)
= K(n)* [tl s Ly ] ®BP, K(n)*
= K(n)* [tl s t2 v ]/(rlR vn-H')'
Now it follows from Theorem 1 of [12] that in K(n), [t;,¢,...],

= p" p'
NR Uns i =V, 8] —0F t; mOd (Mg Vyyys s R Vpsi 1)

and the result follows. [

The coproduct and conjugation of S(n), are essentially those inherited from
BP, BP. In order to give precise formulae we need some more notation. Let

K (n),=2Z,[v,] and K (n),,=Q[v,]. Let

K(n),[[x]]3logx= ¥ v"p—

i20

where a;=(p™"—1)/(p"—1). Then define F(x, y)eI% (), [[x,¥1] by log F(x,y)=
log x +log y.
Then we have

(1.4) Theorem. F(x,y) is a commutative formal group law over K(n)*, ie.

F(x, y)eK(n), [[x, y1] F(x,0)=F(0,x)=x,

F(x,y)=F(y,x) and F(F(x,y),2)=F(x, F(y,2)).
Proof. This is a consequence of Hazewinkel’s theorem ([3],1.2). O

Hence F(x, y) hasa mod p reduction which we denote by F(x, y)eK (n), [[x, y]]-
As in [12] we define i"" x;€K(n), [[x;, ..., x,,]] inductively by

i=1
m m—1
YFx;=F ( Zin,x,,,).
i=1

i=1

Now the coproduct 4 and conjugation ¢ are those inherited from BE, BP and
are given by

15 YFa@e)= Yy

iz0 i,jz0
and

(1.6)  YFte(t)’'=1, where to=1.

i,jz0
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These occur as formulae (17) and (19) of [12], where it is observed that they
can be regarded as structure formulae for BP, BP.

In order to get a more explicit formula for the coproduct in K(n), K(n) we
need the following

(1.7) Lemma. In K(n)*[[xl, ...s Xy]] there are unique symmetric homogeneous
polynomials w; ,(x, ... x,,) of degree p™ such that

ZFx—ZF VI W (X . Xp)

jiz0

where a;=(p" —1)/(p"— 1) and w, ,(x; ... X)) =) ;.
Proof. If we take the log of both sides we get

nk

nk
Z o ka = Z vﬁk+j Wf,"(xl k xm)P
n
k20 14 k,j20 p
13

which in degree p"* gives us
(AT71) Y xP =wo (X2 o, xEB)= Y P Wy (xg, eey X)P T
jz0
We can use this to define w,_, inductively if we can show that
Wo,ulel's s XB)= T pIwy (0 - %, mod p
. 0<j<k
or equivalently

(1.72) wo (2“7 L xBTY = Y pIwg (kg e, X T mod prt.
0<j<k
We will do this inductively, deriving (1.72) from (1.71) and observing that the
statement is trivially true for k=0. _
Now it follows from the binomial theorem that f=g mod p implies [ =
g”" mod p'*! for any f and g. We also have
wx" ... xE)=w(xy, ..., X,)° mod p,
sO -
Pwj L xXEE = plwy (e, xR T mod R,
This enables us to derive (1.72) from (1.71) by replacing x; by x?". [
For n=1, this Lemma is essentially due to Witt (see [1], Lemma 3).
Lemma (1.7) enables us to give a recursive formula for the coproduct in S(n),.
Let M, denote the (i+ 1)-ple of elements in S(n), ® S(n),, (t, @ /- * ) with 0k <i.
Leti= ]n+l with 0</<n and define the (2j)-ple 4, recursively by

Ai=(W0,n(Mi) wl n(Mi n))’ Wj n(Ml)9
Wl,n(Ai—n)9 W2 n(At 2n) 1 1, n(An+l)

and 4,=¢ (the empty set) for j=0.
Then we have

(1.8) Theorem. The coproduct in S(n), is given by

A(t)={"onM) forisn
l Wo,n(4;)  for i>n.
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Proof. This follows by straightforward iterated application of Lemma (1.7) to
15). O

Remark. It is immediate that w, ,(x;)=—Cn(x)=p~ (L (x?")—( x;)’"), so
Theorem (1.8) gives an expression for A(t;) for i<2n analogous to Theorem 8
of [12].

§ 2. The Algebra S(n) and the Group S,

Our purpose in this section is to show that S(n) @ IF ., regarded as an ungraded
profinite Hopf algebra, is isomorphic to the IF . group algebra of a certain pro-
finite group S,. In proving this result we essentially recompute the endomor-
phism ring of a formal group over IF . of height n (see [2], III §2). Most of the
argument is well known but as far as we know it has not appeared in a form suitable
for our purposes, so we find it convenient to give a detailed proof.

We will show how the cyclic grading on S(n) ® IF . can be recovered from an
eigenspace decomposition associated with an action of IF,.. Finally we will
describe a representation of S, which will lead to a splitting of S(n) when n is not
divisible by p.

Throughout this section we set g=p". We will make extensive use of the
formal group law F(x,y) over K(n), defined in (1.4), its reduction to IF, (by
sending v, to 1€IF ), and the extension of the latter to IF,. The same notation will
be used for all three as the ground ring will be clear from the context. Z, will
denote the ring of p-adic integers and W(IF,) the Witt ring of IF,, i.e. the extension
of Z, obtained by adjoining (g —1)-th roots of unity. We will use the following
well-known facts about W(IF,).

(2.1) Lemma. a) W(F)) is a complete local ring with maximal ideal (p) and residue
fieldTF,.

b) Its group of units W(IF,)* is IF; ® W(F,)), for p>2, where IF =Z/(q—1),
and Z)2®F; @ W(IF)) for p=2.

c) W(F,) is a free Z ,-module of rank n.

d) Any element we W(IF,) can be expressed uniquely as w= Y. w; p’ where each
w; satisfies wi=w;,. i20

e) The Galois group of W(IF,) over Z, is cyclic of order n and generated by the
Frobenius automorphism (+)° given by w’= Y. w¥ p' in the notation of d).

i20
Proof. See [1] or [14]. O

Let E,= W(IF,){S»/(S" —p) where S is a noncommuting power series indeter-
minate with Sw=w?’S. The following properties of E, are immediate.

(2.2) Proposition. a) E, is a Z ,-algebra of rank n*.

b) E, is generated as a Z,-algebra by S and a primitive (q— 1)-th root of unity
weW(IF,); the relations Sw=w”S and S"=p completely determine the structure
of E,.

©) E,®Q, is a division algebra over Q, (the p-adic numbers) with Hasse
invariant 1/n. [
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(2.2)c) will not be used here. For literature on division algebras over Q,,
see [15].

We now define S, E, to be the group of units congruent to one modulo (S).
Then the main result of this section is

(2.3) Theorem. S(n)® IE,=IF,[S,] as profinite Hopf algebras, where we disregard
the grading on S(n).

Proof. We will state several Lemmas as needed and prove them below.

Our first task is to show that S(n) ®IF, is a group algebra. A cocommutative
Hopf algebra is a group algebra iff it has a basis {x;} of group like elements (i.e.
A(x;)=x;®x;) (see [16], Proposition 3.2.1). This is equivalent to the existence
of a dual basis {y;} with y? =y, and y, y;=0 for i+j. Since S(n), ®TF, is a tensor
product of algebras isomorphic to R=IF [t]/(t?—t), it suffices to produce such a
basis for R. Let aelF be a generator and let

{— Y (d'ty for O<i<g
re=

O<j<gq

1—ga-! for i=0.

Then {r;} is such a basis, so S(n) ®IF, is a group algebra.

For the moment let G(n) denote the corresponding group. We will now define
a left action of G(n) on the algebra IF,[[x]] by defining a completed left comodule
structure of IF [[x]] over S(n), ®IF,. We will need

(24) Lemma. For any a€lF,, F(ax, ay)=aF(x,y). O

We now define the comodule structure map ¢ : IF,[[x]]— S(n)*@)lF L[x]1]
to be an algebra homomorphism given by

V)= Yt @x"

iz0

where t,=1 as usual. To verify that this makes sense we must show that the
following diagram commutes.

IF,[[x]] —*— 5(n), ®F,[[x]]

v 401

S(n), ®F,[[x]] 2% S(n), & S(n), ®F,[[x]]
for which we have
ARNYX)=A4®1) Y t,®x"
i20

- T Y @)@ x"

i20 j+k=i

= YFy,eiexr

J k20
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This can be seen by inserting x as a dummy variable in (1.5). We also have
1@V YE)=1Y)( X"t ®x")
jzo
- T @ (3 5@

i20 jz0
- ZF ti®t§,i®xpi+j.

i,j20
The last equality follows from the fact that F(x?, y?)=F(x, y)*. The linearity of y
follows from Lemma (2.4), so y defines an S(n), ® IF,-comodule structure on
IF,[[x]].

We can regard the t; as continuous IF,-valued functions on G(n) and define

an action of G(n) on the algebra IF, [[x]] by

gx)= Y t(g)x?

i20

for ge G(n). Hence g(x)=x iff g=1, so our representation is faithful.

We can embed G(n) in the set A(n) of all power series of the form a(x)= Y ¥ g xP'
i20
where a;elF,. We will show now that A(n) can be given the structure of a Z,-

algebra, which will turn out to be isomorphic to E,. We will need

(2.5) Lemma. Ifa,be A(n) then F(a,b)e A(n). 0O

Hence we can define F(a, b) to be the sum of a and b in A(n). We define the
multiplication to be composition of power series. The right and left distributive
laws follow immediately with the help of Lemma (2.4).

The ring homomorphism Z — A(n) is given by n— [n](x) where [1](x)=x,
[—1](x) is the inverse in the formal group law, and for

n>1, [n](x)=F(x,[n—1](x)).

We have
(2.6) Lemma. [p](x)=x% [

From this result it is evident that [n](x) can be defined for neZ, and that
A(n) is torsion-free as a Z -module.

We can define a Z,-algebra homomorphism h: E, — A(n) by h(S)=x" and
h(w)= @ x, where @ is the mod p reduction of w (see Proposition (2.2)).

To see that h is an isomorphism, observe that by Lemma (2.1) d) any element
ecE, can be written uniquely as e= Z e; S" where e;e W(IF,) satisfies e!=e;, so

h(e)= YT e x? where ¢, is the modp reductxon of e;. Since S,={ecE,:e,=1}
i20

and G(n)={ae A(n): a,=1}, this completes the proof of Theorem (2.3). [

We remark that A(n) is actually the endomorphism ring of the formal group
law F defined over IF,, and S(n), represents the €tale algebraic group which
assigns to an IF -algebra 4 the automorphism group of F over A. These facts are
essential in Morava’s exposition [10] but are not needed here.
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(2.7) Corollary. H*(S(n)) ® IF, = H*(S,; IF,), the continuous cohomology of S, with
coefficients in the trivial module IF,. [

To recover the grading on S(n), ® IF,;, we have an action of the cyclic group
of order g—1 generated by w via conjugation in E,.

(2.8) Proposition. The eigenspace of S(n), ®IF, with eigenvalue @' is the com-
ponent S(n),; ®IF, of degree 2i.

Proof. The eigenspace decomposition is multiplicative in the sense that if x and
y are in the eigenspaces with eigenvalues @' and &’ respectively, then xy is in

the eigenspace with eigenvalue @' /. Hence it suffices to show that ¢, is in the eigen-

space with eigenvalue @7~ 1.

To see this we compute the conjugation of t,S*cE, by w and we have
o 't SHo=0" o SF =1, 8. O

We now turn to the proofs of Lemmas (2.4)-(2.6).

Proof of Lemma (2.4). We can redefine the formal group law F(x, y) over IF, as
the mod p reduction of F(x, y)e W(IF ) [[x, y]] defined by

log F(x, y)=log x +log ye(Q ® W(IF,)[[x, y1]

qi
where log x= ) );T Now let ae W(IF,) be a (g — 1)th root of unity. Then log ax =

i

. iz0 - .
alogx so F(ax,ay)=aF(x,y) and F(ax,ay)=aF(x,y), where a is the mod p
reduction of a. Since any nonzero element of IF, is the reduction of a root of
unity, this completes the proof. []

Proof of Lemma (2.5). We need to show that given a;, b;elF, for i20, we can find
c;elF, such that

ZF Ci xp‘ = F( ZF al' xpi, ZF bixp‘)= Z F(a, xpi, bi xpi).
iz0

i20 i20 iz0
By Lemma (1.7) we can find d; ;elF, for 0<i<j such that

F(agx,box)= ZF dO,ixpj

jzo
and for i>0

F(F(a;x”,bx™), YF dyxP)= Y d; ;xP'.

0=<h<i igj
Wecanthensetc;=d; ;. O
Proof of Lemma (2.6). We can lift [p](x)elF ,[[x]] to Z, [[x]] by defining if with
log [p](x)=p log xeQ[[x]]
which gives

log [p](x)=px+1log x*
[p1(x)=F (exp px, x7).
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But exp px=0mod p by Lemma 2 of [12], so [p](x)=x?mod p. O
We now describe a matrix representation of E, over W(IF ).

(29) Proposition. Let e= Y ;S with e;e W(F,) be an element of E,. Define

0<i<n
an n x n matrix (e;;) over W(IF ) by
. _{e}'_i for i<j
i+, j+1= . .
Pean i for i>).

Then a) this defines a faithful representation of E,;
b) the determinant |e;;| liesin Z,.

Proof. a)is straightforward. For b) it suffices to check that w and S give determinants
inZ, O

We can now define homomorphisms ¢: Z,— S, and d: §,—Z, for p>2, and
c:Z;—S,and d: S,— Z; for p=2 by identifying S, with the appropriate matrix
group. (Z, is to be regarded here as a subgroup of Z.) Let d be the determinant

for all primes. For p>2 let c(x)=(exp px)I where I is the nxn identity matrix
and xeZ,; for p=2 let c(x)=xI for xeZ;.

(2.10) Theorem. Let S =kerd.
a) Ifp>2and pin then S,=Z,®S,,.
b) If p=2 and n is odd then S,=S: ® Z}.
Proof. In both cases one sees that Im ¢ lies in the center of S,, (in fact Im c is the center

of S,) and is therefore a normal subgroup. The composition dc is multiplication
by n which is an isomorphism for ptn, so we have the desired splitting. [J

We now describe an analogous splitting for S(n), . Let A=IF,[Z] for p>2
and A=IF,[Z;] for p=2. Let A, be the continuous linear dual of A.

(2.11) Proposition. As an algebra A, =1IF,[u,,u, ...]/(u;—uf). The coproduct A
is given by

2o Aw)= Y u®u;

i20 i,j20
where ug=1 and G is the formal group law with
logg(x)=Y x*'/p’. O
Proof. Since A=IF [S,], this follows immediately from Theorem (2.3). [J

We can define Hopf algebra homomorphisms c,: S(n), ® IF,— 4, ®IF, and
d,: A, ®IF,—S(n), ®IF, dual to the group homomorphisms ¢ and d defined
above.

(2.12) Theorem. There exist maps c,: S(n),— A, and dy: A,—S(n), corre-
sponding to those defined above, and for pyn, S(n), = A, ® B, where B, ® IF, is the
continuous linear dual of IF [S}].
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Proof. We can define c, explicitly by

u; if n|i
C* ti — i/n I )
0 otherwise.

It is straightforward to check that this is a homomorphism corresponding to the

c, defined above. In lieu of defining d, explicitly we observe that the determinant

of Y t;S', where t,e W(IF ) and t;=1J, is a power series in p whose coefficients are
i20

polynomials in the t; over Z,. It follows that d, can be defined over IF,. The

splitting then follows as in Theorem (2.10). [J

§ 3. A Filtration of S(n)

Our object in this section is to define an increasing filtration of S(n), which will
be dual to a decreasing filtration of S(n). We will then describe the associated
graded Hopf algebras E°S(n), and its dual E, S(n). This filtration was originally
motivated by filtration of the algebra E, of § 2 by powers of (S). It is not the same
as the filtration of S(n) by powers of the augmentation ideal, but E, S(n) is never-
theless primitively generated. In [13] we will show that S(n), has other primitives
besides the usual /. These elements will have filtration degree greater than one in
our filtration, which we find more convenient for understanding the structure of
S(n).

(3.1) Theorem. Let
_)o Jor i<0
“"\max (i, pd;_,) for i>0.

Then there is a unique increasing Hopf algebra filtration on S(n), with t{’jeEiiS(n)*
and t''¢F,_, S(n),.
Before proving this result we need

(3.2) Lemma. Let w; , be the polynomials defined in Lemma (1.7). Then w; ,(x;)=
w;, 1 (x?" ") mod p.

Proof. The w; , are defined by

g W)
B2) Y= Y
A 4 0Sk=j p

We will argue by induction on j, the statement being trivial for j=0. If w, ,(x;)=
Wy 1 (xP™ ") mod p, then

U-t_ e = ley prm(J - k) i
W, a7 =W ™ mod p' */=*

for m>0. Hence (3.21) can be rewritten

i W, 1 (xP™
e T
Zi v " kz<:j Pt
w x_pnj‘f pl—k
=w; (x)+ Y. Wea6 Y mod p.

j—k
k<j pl
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If we replace w; ,(x;)) by w, ,(x¥"'"') we obtain the definition of the latter, so
W W(x)=w; ;(x!" Ymodp. O

We now prove Theorem (3.1) by showing that all terms in the coproduct of
t?’ have degree <d, by induction on i. We use the notation of Theorem (1.8). It
follows from Lemma (3.2) that the polynomial w; , increases degree by a factor
of at most p’. Clearly M, has degree d; so it follows 4, has degreed,, [

We now describe E°S(n),. Let ¢; ;, M, ; and 4, ; denote the elements in the
appropriate graded object corresponding to t?’, M¥ and A, respectively, where
multiplication of vectors is componentwise, jeZ/(n), v,=1 and p=0 since we
are now working in S(n),. Then we have
(3.3) Theorem. a) As an algebra E°S(n), =IF ,[t; ;1/(t7 ;) with t, ;€ EJ S(n),., i>0,
JEZ/(n).

b) M — (1®ti,j’ tl.j®ti-l.j+1’ t2,j®ti——2,j+2’ ""ti,j®1) fOI’ iém

" (t;,;®1,1®¢, ) for i>m
where m=pn/(p—1).

c) Let i=kn+1with 0<I=<n and w,=w,_ . Then

Ai,j’_—(WO(Mi,j)’ Wl(Mi-n,j—l)’ Wk(Ml,j—k)’
wl(Ai—n,j— s wo(4i 2n,j— 2)s e Wiy (An+l.j+1—k)'
d) The coproduct in E° S(n), is given by

_Jwo(M; ;) for isn
A( i’j)—{wo(di_j) for i>n.

Proof. a) and b) are trivial, c) follows by applying Lemma (3.2) to the definition of
4, ;,and d) follows from Theorem (1.8). [

We now turn our attention to E,S(n). Let x; ;€ E,S(n) be the dual of ¢; ; with
respect to the monomial basis.

(34) Theorem. E,S(n) is the enveloping algebra of the restricted Lie algebra
with basis {x; ;}, bracket

1 j :
)0 Xivk i~ OksiXipk  Jor i+k=m
[xi,js xk,l]“ .
0 otherwise

(where 6;=1 iff s=t mod n and §; =0 otherwise), and restriction

Hx )= {0 if isn/(p—1)

~Xinj+1 Otherwise.
Proof. Since t? ;=0 for all i,j, E,S(n) is primitively generated with primitives x; ;
([16], Proposition 13.2.3). Hence by a theorem of Milnor-Moore ([9], Theorem
6.11) it is the enveloping algebra of the restricted Lie algebra of primitives. The
bracket and restriction can be read off from Theorem (3.3). [
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Now let L(n) be the Lie algebra (without restriction) on the primitives x; ;
for m—n<i<m and let UL(n) be its enveloping algebra. Let T(n) be the quotient
of E,S(n) by the subalgebra generated by x; ; for i>m—n.

(3.5) Corollary. E,S(n) is given as an extension of cocommutative Hopf algebras
which is trivial as an extension of coalgebras

IF,— UL(n)— E,S(n)— T(n)>TF,

and T(n) is a restricted enveloping algebra with trivial restriction. In particular
EyS(n)=UL(n)forn<p—1. O
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