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1.2

1 Background and history

1.1 Our main result

Our main result
Our main theorem can be stated in three different but equivalent ways:

• Manifold formulation: It says that a certain geometrically defined invariant Φ(M) (the Arf-
Kervaire invariant, to be defined later) on certain manifolds M is always zero.
• Stable homotopy theoretic formulation: It says that certain long sought hypothetical maps

between high dimensional spheres do not exist.
• Unstable homotopy theoretic formulation: It says something about the EHP sequence (to be

defined below), which has to do with unstable homotopy groups of spheres.

The problem solved by our theorem is nearly 50 years old. There were several unsuccessful
attempts to solve it in the 1970s. They were all aimed at proving the opposite of what we have
proved. 1.3
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A wildly popular dance craze

1.4

Our main result (continued)
Here is the stable homotopy theoretic formulation.

Main Theorem. The Arf-Kervaire elements θ j ∈ π2 j+1−2+n(S
n) for large n do not exist for j ≥ 7.

The θ j in the theorem is the name given to a hypothetical map between spheres for which the Arf-
Kervaire invariant is nontrivial. It has long been known that such things can exist only in dimensions
that are 2 less than a power of 2. 1.5

Our main result (continued)
Some homotopy theorists, most notably Mark
Mahowald, speculated about what would hap-
pen if θ j existed for all j. They derived nu-
merous consequences about homotopy groups of
spheres. The possible nonexistence of the θ j for
large j was known as the Doomsday Hypothesis.

After 1980, the problem faded into the background because it was thought to be too hard. Our
proof is two giant steps away from anything that was attempted in the 70s. We now know that the
world of homotopy theory is very different from what they had envisioned then. 1.6

Mark Mahowald’s sailboat
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1.7

1.2 The Arf-Kervaire formulation

The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free abelian group H of rank 2n with
mod 2 reduction H. It is known that H has a basis of the form {ai,bi : 1≤ i≤ n} with

λ (ai,ai′) = 0 λ (b j,b j′) = 0 and λ (ai,b j) = δi, j.

A quadratic refinement of λ is a map q : H→ Z/2 satisfying

q(x+ y) = q(x)+q(y)+λ (x,y)

Its Arf invariant is

Arf(q) =
n

∑
i=1

q(ai)q(bi) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n) determines the isomorphism type of
q. 1.8

On the money: Arf’s definition republished in 2009

1.9
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The Kervaire invariant of a framed (4k +2)-manifold
Let M be a 2k-connected smooth closed framed manifold of dimension 4k +2. The word framed

here means that M has an embedding in some Euclidean space Rn+4k+2 having trivial normal bundle
with a given trivialization. This framing leads to a map p(M) : Sn+4k+2→ Sn and hence an element
in πn+4k+2(Sn). This construction is due to Pontryagin.

1.10

The Kervaire invariant of a framed (4k +2)-manifold (continued)
Let H = H2k+1(M;Z), the homology group in the middle dimension. Each x ∈ H is represented

by an immersion ix : S2k+1 # M with a stably trivialized normal bundle. H has an antisymmetric
bilinear form λ defined in terms of intersection numbers. Kervaire defined a quadratic refinement q
on its mod 2 reduction in terms of the trivialization of each sphere’s normal bundle.

The Kervaire invari-
ant Φ(M) is defined
to be the Arf invariant
of q.

1.11

The Kervaire invariant of a framed (4k +2)-manifold (continued)
What can we say about Φ(M)?

• Kervaire (1960) showed it must vanish when k = 2. This enabled him to construct the first
example of a topological manifold (of dimension 10) without a smooth structure.
• For k = 0 there is a framing on the torus S1 × S1 ⊂ R4 with nontrivial Kervaire invariant.

Pontryagin used it in 1950 (after some false starts in the 30s) to show πn+2(Sn) = Z/2 for all
n≥ 2.

•
Brown-Peterson (1966)
showed that it vanishes for
all positive even k.

1.12

The Kervaire invariant of a framed (4k +2)-manifold (continued)
More of what we can say about Φ(M).
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•

Browder (1969) showed that it can be non-
trivial only if k = 2 j−1− 1 for some posi-
tive integer j. This happens iff the element
h2

j is a permanent cycle in the Adams spec-
tral sequence. The corresponding element
in πn+2 j+1−2(S

n) for large n is θ j, the sub-
ject of our theorem. This is the stable homo-
topy theoretic formulation of the problem.

• θ j is known to exist for 1≤ j ≤ 5, i.e., in dimensions 2, 6, 14, 30 and 62.
• Our theorem says θ j does not exist for j ≥ 7. The case j = 6 is still open.

1.13

1.3 The unstable formulation

The EHP sequence

Assume all spaces in sight are localized and
the prime 2. For each n > 0 there is a fiber
sequence due to James,

Sn E //
ΩSn+1 H //

ΩS2n+1.

This leads to a long exact sequence of homotopy groups

. . . // πm(Sn)
E // πm+1(Sn+1)

H // πm+1(S2n+1)
P // πm−1(Sn) // . . .

1.14

The EHP sequence (continued)

. . . // πm(Sn) E // πm+1(Sn+1) H // πm+1(S2n+1) P // πm−1(Sn) // . . .

Here
E stands for Einhängung, the Ger-
man word for suspension.

H stands for Hopf invariant.

P stands for Whitehead product.
1.15

The EHP sequence (continued)
For m = 2n the sequence is

. . . // π2n(Sn) E // π2n+1(Sn+1) H // π2n+1(S2n+1) P // π2n−1(Sn) // . . .

Z

and we can ask about the image under P of the generator of π2n+1(S2n+1). We denote it by wn ∈
π2n−1(Sn), the Whitehead square. The following facts are known about it.
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• When n is even, wn it has infinite order and Hopf invariant two.
• wn is trivial for n = 1, 3 and 7. In these cases wn+1 ∈ π2n+1(Sn+1) is divisible by 2, the quotient

having Hopf invariant one.
• For other odd values of n, H(wn+1) = 2 and wn+1 is not divisible by 2, so wn has order 2.
• For such n, wn is divisible by 2 iff n = 2 j+1−1 with j > 2 and θ j exists, in which case wn = 2θ j.

1.16

The Hopf-Whitehead J homomorphism

Let SO(n) denote the special orthogonal group acting on Rn. Using the one point compactification,
each element g∈ SO(n) induces a base point preserving map Sn→ Sn. Thus we get a map J : SO(n)→
ΩnSn and for each k > 0 a homomorphism

πk(SO(n)) J // πk(ΩnSn) πn+k(Sn).

Both source and target known to be independent of n for n > k +1. 1.17

The Hopf-Whitehead J homomorphism (continued)

In this case its value for each k was determined by Bott in his periodicity theorem. He showed

πk(SO) =

 Z for k ≡ 3 or 7 mod 8
Z/2 for k ≡ 0 or 1 mod 8
0 otherwise.

k 1 2 3 4 5 6 7 8 9 10
πk(SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0

1.18

The Hopf-Whitehead J homomorphism (continued)

k 1 2 3 4 5 6 7 8 9 10
πk(SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0

In each case where the group is nontrivial, its generator is known to have nontrivial image (and
to generate a direct summand) under J. In the jth case we denote this image by β j and its dimension
by φ( j), which is roughly 2 j. The first three of these are the Hopf maps η ∈ π1, ν ∈ π3 and σ ∈ π7.
After that we have β4 ∈ π8, β5 ∈ π9, β6 ∈ π11 and so on. Here πk is short for πk+n(Sn) for n > k +1,
which is known to be independent of n. 1.19
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The Hopf-Whitehead J homomorphism (continued)
Each Whitehead square w2n+1 ∈ π4n+1(S2n+1) (except the cases n = 0, 1 and 3) desuspends to

a lower sphere until we get an element with a nontrivial Hopf invariant, which is always some β j.
More precisely we have

H(w(2s+1)2 j−1) = β j

for each j > 0 and s≥ 0. This result is essentially Adams’ 1961 solution to the vector field problem.

1.20

Back to the EHP sequence
Recall the EHP sequence

. . . // πm(Sn) E // πm+1(Sn+1) H // πm+1(S2n+1) P // πm−1(Sn) // . . .

Given some β j ∈ π2n+1+φ( j)(S2n+1) for φ( j) < 2n, one can ask about the Hopf invariant of its
image under P, which vanishes when β j is in the image of H. In most cases the answer is known and
is due to Mahowald. The remaining cases have to do with θ j. The answer that he had hoped for is
the following.

World Without End Hypothesis (Mahowald 1967). • The Arf-Kervaire element θ j ∈ π2 j+1−2
exists for all j > 0.
• It desuspends to S2 j+1−1−φ( j) and its Hopf invariant is β j.
• Let j,s > 0 and suppose that m = 2 j+2(s+1)−4−φ( j) and n = 2 j+1(s+1)−2−φ( j). Then

P(β j) has Hopf invariant θ j.
1.21

1.4 Questions raised by our theorem

Questions raised by our theorem

EHP sequence formulation. The World Without End Hypothesis was the nicest possible statement
of its kind given all that was known prior to our theorem. Now we know it cannot be true since θ j
does not exist for j ≥ 7. This means the behavior of the indicated elements P(β j) for j ≥ 7 is a
mystery.

Adams spectral sequence formulation. We now know that the h2
j for j ≥ 7 are not permanent

cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Our method of proof offers a new tool for studying the stable homotopy groups of spheres. We
look forward to learning more with it in the future. 1.22

2 Our strategy

2.1 Ingredients of the proof

Ingredients of the proof
Our proof has several ingredients.
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• It uses methods of stable homotopy theory, which means it uses spectra instead of topological
spaces. The definition of these would take us too far afield, so instead we offer a slogan:

Spectra are to spaces as integers are to natural numbers.

In particular, recall that a space X has a homotopy group πk(X) for each positive integer k. A
spectrum X has an abelian homotopy group πk(X) defined for every integer k.

For the sphere spectrum S0, πk(S0) is the usual homotopy group πn+k(Sn) for n > k + 1. The
hypothetical θ j is an element of this group for k = 2 j+1−2.

1.23

Ingredients of the proof (continued)
More ingredients of our proof:

• It uses complex cobordism theory. This is a branch of algebraic topology having deep connec-
tions with algebraic geometry and number theory. It includes some highly developed compu-
tational techniques that began with work by Novikov and Quillen in the 60s. A pivotal tool in
the subject is the theory of formal group laws.
• It also makes use of newer less familiar methods from equivariant stable homotopy theory.

This means there is a finite group G (a cyclic 2-group) acting on all spaces in sight, and all
maps are required to commute with these actions. When we pass to spectra, we get homotopy
groups indexed not just by the integers Z, but by RO(G), the real representation ring of G. Our
calculations make use of this richer structure.

1.24

2.2 The spectrum Ω

The spectrum Ω

We will produce a map S0 → Ω, where Ω is a nonconnective spectrum (meaning that it has
nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for
calculating homotopy groups) in which the image of each θ j is nontrivial. This means that if
θ j exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that πk(Ω) depends only on the reduction of
k modulo 256.

(iii) Gap Theorem. πk(Ω) = 0 for −4 < k < 0. This property is our zinger. Its proof involves a
new tool we call the slice spectral sequence.

1.25

The spectrum Ω (continued)

Here again are the properties of Ω

(i) Detection Theorem. If θ j exists, it has nontrivial image in π∗(Ω).
(ii) Periodicity Theorem. πk(Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. π−2(Ω) = 0.

(ii) and (iii) imply that π254(Ω) = 0.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in this group, so it cannot exist. The
argument for θ j for larger j is similar, since |θ j|= 2 j+1−2≡−2 mod 256 for j ≥ 7. 1.26
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2.3 How we construct Ω

How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C8 (the cyclic group of order 8)
on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum MU . It can be thought of as the
set of complex points of an algebraic variety defined over the real numbers. This means that it has
an action of C2 defined by complex conjugation. The fixed point set of this action is the set of real
points, known to topologists as MO, the unoriented cobordism spectrum. In this notation, U and O
stand for the unitary and orthogonal groups. 1.27

How we construct Ω (continued)
To get a C8-spectrum, we use the following general construction for getting from a space or

spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup.
Let

Y = MapH(G,X),

the space (or spectrum) of H-equivariant maps from G to X . Here the action of H on G is by right
multiplication, and the resulting object has an action of G by left multiplication. As a set, Y = X |G/H|,
the |G/H|-fold Cartesian power of X . A general element of G permutes these factors, each of which
is left invariant by the subgroup H.

In particular we get a C8-spectrum

MU (4) = MapC2
(C8,MU).

This spectrum is not periodic, but it has a close relative Ω̃ which is. 1.28
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