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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 347, Number 9, September 1995

 THE 7-CONNECTED COBORDISM RING AT p = 3

 MARK A. HOVEY AND DOUGLAS C. RAVENEL

 ABSTRACT. In this paper, we study the cobordism spectrum MO(8) at the
 prime 3. This spectrum is important because it is conjectured to play the
 role for elliptic cohomology that Spin cobordism plays for real K-theory. We
 show that the torsion is all killed by 3, and that the Adams-Novikov spectral

 sequence collapses after only 2 differentials. Many of our methods apply more
 generally.

 INTRODUCTION

 In algebraic topology, the complex cobordism spectrum MU is a sort of
 universal example of a well-behaved cohomology theory. Virtually every com-
 monly studied theory admits an orientation from MU. The most significant
 exception is real K-theory, KO. Now elliptic cohomology is supposed to be
 a higher analog of KO. So one would not expect it to admit an orientation
 from MU either. In Witten's interpretation [Wit] of the level 1 elliptic genus
 as the index of the equivariant Dirac operator on the free loop space LM of a
 manifold M, one needs LM to be Spin. The easiest way to guarantee this is
 to take M to be a manifold such that the classifying map of its tangent bun-
 dle, M - BO, lifts to BO(8) , the 7-connected cover of BO. This indicates
 that whatever the final version of elliptic cohomology is, it should admit an

 orientation of MO(8), which is the Thom spectrum built from BO(8) .
 Now MO(8) is not very well understood. It has torsion in its homotopy at

 the primes 2 and 3, and if we localize it by inverting 2 and 3, it splits into a
 wedge of suspensions of the Brown-Peterson spectrum BP. This means that the
 homotopy groups modulo torsion are easily computed, but the multiplicative
 structure is unknown. It is certainly not polynomial. There have been low-
 dimensional calculations of MO(8) at the prime 2, the most recent of which
 is due to Gorbunov and Mahowald [GM]. However, at the prime 3 virtually
 nothing is known. We attempt to remedy that in this paper.

 There is actually a candidate for level 1 elliptic cohomology at each of the
 primes 2 and 3. In each case, the spectrum involved is called E02, and they
 are special cases of a more general construction due to Hopkins and Miller
 [HM]. Their homotopy groups are completely known, and much of the algebra
 structure is known as well. But at the moment, there is no solid evidence relating
 them to elliptic cohomology. It would strengthen the case considerably if there
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 was an orientation MO(8) - E2 . This is another reason to try to understand
 MO(8). In fact, we show in this paper that MO(8) behaves very similarly

 to E02. Hopkins and Mahowald (personal communication) have constructed
 a connective, uncompleted version of E02, called eo(2), at p = 3. The
 conjecture is that MO(8) at p = 3 should be an amalgam of BP and eo(2)
 just as MSU at p = 2 is an amalgam of BP and ko [Pen].

 There is a standard strategy to try to compute the homotopy of a Thom

 spectrum such as MO(8). First one computes the cohomology of the base,
 in our case BO(8) , as a module over the Steenrod algebra XV . Here we
 would take mod 3 cohomology, so use the mod 3 Steenrod algebra. Then one

 computes the operations on the Thom class, or equivalently, the homomorphism

 Jv H*MO(8). These two things together give the structure of H*MO(8)
 as a module over X', and one then applies the Adams spectral sequence to get
 at the homotopy.

 The main problem with this strategy for MO(8) at p = 3 is in calculating

 the X-module structure on H* BO(8) . One certainly knows the structure of
 H*BSO, and there is a fibration

 K(Z, 3) BO(8) - BSO

 but the Serre spectral sequence only gives limited information about the -
 action. There are many Xe-extensions that are hard to compute. So we need
 a different method. The method we use is based on Hopf rings. It turns out
 that BO(8) localized at 3 is homotopy equivalent to BP(1)8 , the 8th space
 in the Q-spectrum for BP(1). One can then use the results in [Wil, RW] to
 calculate the XW-action.

 This approach also sheds light on the homomorphism vQ- H*MO(8) de-
 fined by the Thom class. First, notice that this homomorphism is the map
 induced on cohomology by

 MO(8) -MSO-HF3.

 At p = 3, this map factors through BP, so it will certainly kill the 2-sided
 ideal generated by the Bockstein. Denote by S the sub-Hopf algebra of v
 generated by the reduced powers. Note that PI in dimension 4 must go to 0
 in H*MO(8) for dimensional reasons, so we have a map

 9Aff(Pl ) H*MO(8).

 We show in the first section that this map is in fact injective. It turns out to
 be not very much harder to calculate the kernel of the corresponding map for
 all MO(k) at odd primes, and all MU(k), so we do so. This calculation is
 originally due to Rosen, who used a different method in his unpublished thesis
 [Ros].

 Now it follows from the general theory of XW-module coalgebras that
 Rosen's result puts some fairly tight restrictions on the Xe-module structure of
 H*MO(8). We also know, in the particular case of MO(8) at p = 3, that the
 cohomology is evenly graded. Let X denote the 8-skeleton of BP, which is a
 3-cell complex which is PI-free. Then these considerations lead to a proof that
 MO(8) A X is a wedge of suspensions of BP. Essentially we just have to put
 back in the PI that H*MO(8) does not see.
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 THE 7-CONNECTED COBORDISM RING AT p = 3 3475

 This result has a number of nice corollaries about the global structure of the
 homotopy of MO(8). For example, we show that the 3-torsion is all killed

 by 3 itself. There are also elements in 7r.MO(8) analogous to vk , for each
 k > 1, as constructed in [Hov]. We show that the 3-torsion coincides with the
 v I-torsion, and that the v I-torsion is all killed by any of the v I-elements above.
 This is all contained in the second section.

 Since MO(8) A X is a wedge of suspensions of BP, any X-resolution of
 the sphere becomes an Adams-Novikov resolution of MO(8) upon smashing
 with MO(8). But there is a very simple X-resolution of the sphere, used by the
 second author in [Rav, Chapter 7]. The resulting Adams-Novikov resolution of
 MO(8) puts severe restrictions on its Adams-Novikov spectral sequence. We
 find in the third section that the spectral sequence must collapse at Elo after
 at most d5 and dg . This is precisely what happens in E02, and the pattern of
 differentials appears to be the same.

 At this point, we must do some calculation to learn more. In the fourth
 section we calculate far enough to see that the Adams-Novikov spectral sequence
 does not collapse at E6, so one really does need two differentials. Here we use
 the Adams spectral sequence to compute with. This is certainly not the best
 method for computing in MO(8). We have a better spectral sequence for
 doing so which we will describe in a future paper. Here we calculate through
 dimension 32. This calculation leads to several conjectures about the behavior
 further out. The main thing stopping us from proving these conjectures at this
 time is a more thorough understanding of the homology of MO(8) .

 Our methods do not apply to MO(k) for k larger than 8, for two closely

 related reasons. Firstly, the homology of BP(1), is, so far as we know, not
 known as a comodule over the dual Steenrod algebra when n is larger than
 2p + 2. Secondly, one expects torsion in the homology of MO(k) for k > 8
 and in the homology of MU(k) for k > 6. One might ask if there is a Thom
 spectrum mapping to MO(k) for which these problems disappear. In fact, there
 is. One can build p-local Thom spectra over the spaces of the BP(r) spectrum,
 and if r is large enough relative to the connectivity k, these problems do not
 arise. We then get bounded torsion results for these Thom spectra. This is
 explained in the last section.

 The authors would like to thank several people for their help with this paper.
 This paper grew out of unpublished notes of David Pengelley and the second
 author, so we thank David for letting us use them. We thank Haynes Miller
 and Mike Hopkins for teaching us about the EOn, and for several helpful
 conversations. In particular, the argument for proving the bounded torsion
 theorem is due to Mike. We thank Neil Strickland for teaching the first author
 the correct way to calculate in Hopf rings. We thank Chuck Giffen and Nick
 Kuhn for help in defining p-local Thom spaces. We thank Bob Bruner for
 sharing his program for computing Ext. And we thank Mark Mahowald for
 pointing out the torsion in the homology of MO(k) for k > 8.

 Let us fix notation we will use throughout the paper. We will mostly be
 working in the p-local category, whether we are dealing with spaces or spectra.
 When we need a notation for the p-localization of X, we will use X(p). If E is
 a ring spectrum, ,u: E A E - E will denote its multiplication, and : SO - E
 will denote its unit. We reserve the letter H for the mod p homology spectrum,
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 3476 M. A. HOVEY AND D. C. RAVENEL

 so that H*H is the dual Steenrod algebra. T: X A Y Y A X will denote the
 twist map.

 1. ROSEN'S THEOREM

 Our goal in this section is to determine which Steenrod reduced powers act
 trivially on the Thom class in HOMO(k). First let us recall some well-known
 facts and notation.

 The mod p Steenrod algebra will be denoted by X, and its dual by s* . For

 p = 2, v' is generated by the Steenrod squares Sq2', and .4 is a polynomial
 algebra

 V* = P(4I, 2, ...) with 2'I = -1.

 The diagonal is defined by

 n

 i=O

 There is a canonical anti-automorphism c, and we let Cn denote cX, so that
 we have

 n

 i=O

 As usual, A(n) denotes the sub-Hopf algebra of _v generated by Sq2' for
 i < n, and it is convenient to let A(- 1) = 0.

 We denote by 39 the quotient of v by the 2-sided ideal generated by Sq, .
 3 is also a Hopf algebra, and its dual 39* = p(g2 4, ...). We denote by
 P(n) the sub-Hopf algebra of 3D generated by Sq2i for 1 < i < n + 1 and let
 P(-1) = 0.

 For p odd, let us denote by 9 the sub-Hopf algebra of the mod p Steenrod
 algebra generated by the reduced powers. Recall that Y* is generated by the
 ppn, which have degree 2pn (p - 1). The dual 3* is a polynomial algebra
 P(1I 4 ,2, ...) with ~l,I = 2(pn - 1) and

 n

 / ) = E 0 i n
 i=O

 There is a canonical anti-automorphism c as at p = 2 and we denote C4n by
 cn * Then we have

 n

 ^t;n Cti (9 np-i-
 i=O

 Denote by P(n) the sub-Hopf algebra of SD generated by pP' for i < n, and
 let P(- 1) = 0. Notice that, for any prime p, H*BP = Y.

 Let us recall the result of Bahri-Mahowald [BM]. Given an integer r, let

 0(r) denote the dimension of the rth nonzero homotopy group of BSO. An
 explicit formula for 0(r) is as follows: write r = 4a + b, where 0 < b < 3,
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 THE 7-CONNECTED COBORDISM RING AT p = 3 3477

 and let 0(r) = 8a + 2b. Let f denote the map of ring spectra

 f: MO(O(r)) MO HF2.

 Then Bahri and Mahowald show that the kernel of H*(f) is the left ideal
 generated by the augmentation ideal of A(r - 1).

 The goal of this section is to investigate the analogous question when p is
 odd, and also for MU(k). If k > 2 and p is odd, let f denote the map of
 (p-local) ring spectra

 f: MO(k) MSO BP.

 Similarly, at any prime, let f denote the map of ring spectra

 f: MU(k) MU BP.

 Theorem 1.1 (Rosen [Ros]). (1) Suppose p is odd and tq + 4 < k < (t + l)q.
 Then the kernel of H*f: S H*MO(k) is the left ideal generated by the
 augmentation ideal of P(t - 1).

 (2) Suppose p is an arbitrary prime, and tq + 2 < k < (t + l)q. Then the
 kernel of H* f: S H*MU(k) is the left ideal generated by the augmentation
 ideal of P(t- 1).

 To prove this theorem, we will also need the equivalent dual statement: under

 the hypotheses above the image of H* f: H*MO(k) 9- * is

 p(Cp I 42P , . .. , tP, S t+l,***)

 Rosen's proof of this theorem is similar to the proof of Bahri-Mahowald
 [BM]. Because Rosen's proof is unpublished, and because we need the formal-
 ism of our proof later, we present our proof here.

 We will first prove the easy half, that the image is contained within the poly-
 nomial algebra above.

 Lemma 1.2. (1) Suppose p is odd, and k > tq+2. Then PP'1U = O, where
 U is the Thom class in either HOMO(k) or in HOMU(k).

 (2) Suppose p = 2, and k > 2t + 2. Then Sq2tU = 0, where U is the
 Thom class in HOMU(k).

 Proof. First assume p is odd. It suffices to prove that PPt1 U = 0 in
 H*MO(tq + 4), since there is a map MU(tq + 2) - MO(tq + 4) compati-
 ble with the Thom class. For this we use Giambalvo's calculation of H* BO(k)
 [Giam]. Given an integer n, let a(n) denote the sum of the digits in the p-adic
 expansion of n. He shows that the image of H*BO in H* BO(tq + 4) is a
 polynomial algebra on classes Ei in degree 4i, where a(2i - 1) > (p - 1)t + 1 .
 In particular, the image is 0 in positive degrees less than 4pt. By the Thom
 isomorphism theorem, the image of H*MSO in H*MO(tq + 4) is also 0 in

 positive degree less than 4pt. Since PPt1 U is in degree 2pt(p - 1) < 4pt, it
 must be 0. A similar argument works when p = 2 using the results of Stong
 [St]. o

 To prove the other half of Rosen's theorem, we use a completely different
 method. We will outline it here. We first point out that the space BO(k) is the
 kth space in the Q-spectrum for connective real K-theory, ko. When localized
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 at p, ko splits as a wedge of (p - 1)/2 shifted copies of BP(1). There is a
 corresponding decomposition of the p-localization of BO(k) into a product
 of spaces in the Q-spectrum of BP(1). The homology of these spaces form
 a Hopf ring which is not completely understood, but there is a map from the
 homology Hopf ring of BP, which is completely understood. We then use the
 Hopf ring distributive law to deduce the rest of Rosen's theorem.

 We first recall the nth space functor from spectra to spaces. We work in
 a good category of spectra, as for example the one used in [LMM]. There a
 spectrum E is a sequence of spaces, and we have the nth space functor En .
 If X is a space, then En (X) is homotopy classes of maps from X to En .
 The nth space functor is right adjoint to the functor that takes the space X to
 the nth desuspension of its suspension spectrum. The main properties of this
 functor are summarized in the following proposition.

 Proposition 1.3. (1) If E is a CW spectrum, then En has the homotopy type
 of a CW complex.

 (2) The nth space functor takes cofiber sequences to fiber sequences, and
 locally finite wedges to products.

 (3) XEn En+l .
 (4) If E is connective, then En is (n - 1)-connected.
 (5) The nth space functor commutes with p-localization.

 The proof of this proposition will be left to the reader, except for the first
 part, which can be found in [LMM, p. 52]. The second part is a consequence
 of the general facts that right adjoints preserve limits, and that many colimits
 in spectra are also limits. We will also comment on the last part. There is no
 reason that En should be connected, but if we write En = 7r-nE x E', then
 E' is nilpotent since its fundamental group is abelian. We can therefore define

 the p-localization of En to be 7 n (E(p)) x E(p). But we will only need this
 for connected spaces.

 Recall that Z x BU = kuo and Z x BO = koo are the 0th spaces of the
 connective K-theory spectra. We need to identify some of the other spaces in
 these Q-spectra.

 Lemma 1.4. We have the following homotopy equivalences of H-spaces.

 I B U (2 i) kU2i
 (2) BO0(8 i) ko8i.
 (3) BO(4i) (p) - (ko(p))4i. (Recall p is odd here.)

 Proof. Using the cofibre sequence

 X2ku xv? ku HZ

 we get a fibration of infinite loop spaces

 kun+2 kun - K(Z, n).

 By induction, we have an H-space equivalence BU(2n) ~ kU2n . Obstruction
 theory shows the composite

 BU(2n + 2) BU(2n) --* kU2n
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 lifts to an H-map

 BU(2n + 2) -kU2n+2

 which is an isomorphism on homotopy groups. The first part follows. The
 second and third parts are similar. Multiplication by v E ku2 is replaced
 by multiplication by v E ko8 and w E ko4 respectively. The base of the
 fibration is no longer an Eilenberg-Mac Lane space, but the obstruction theory
 still works. ni

 Now we must recall the well-known p-local splittings of ku and ko. Recall

 the p-local spectrum BP(1), whose homotopy is BP(1)* = Z(p)[vf], where
 IviI = 2(p - 1). There is an obvious ring homomorphism 7t.BP(l) 7*rkku(p)
 that takes v1 to vP-1, and we then have 7rcku(p) 7r.BP(l)[v]/(vP1 - v1).
 We have a corresponding multiplicative splitting of spectra

 p-2

 ku(p) V X2'BP(l).
 i=o

 The multiplication on the right-hand side is defined as follows. If i + j < p - 1,
 we have

 X2'BP(l) A X2jBP(1) -1) X2('+j)BP(l)

 andif i+j?p-1 wehave

 X2'BP(I) A X2jBP(1) ) x2('+j)BP(l) 2 x2(i'-p+1)BP(1).

 In particular, multiplication by v E 7r2ku corresponds in the splitting to the
 identity map on the summands X2iBP(1) where 0 < i < p - 1 and takes the
 summand X2(p- O)BP(l) to BP( 1) by multiplication by v1 . Similar remarks
 hold for ko at odd primes p, except there are (p - 1)/2 summands.

 By the preceding lemma, we then get a product decomposition of B U(k) (p)
 and, if p is odd, of BO(k) (p). We summarize in the following corollary, where
 we use the notation [vi] for the map BP(l)i+q BP(1)j corresponding to
 multiplication by v1 .

 Corollary 1.5. (1) If k is even, there is a p-local decomposition of H-spaces

 p-2

 'BU(k) (p)- r H BP(l)k+2i-
 i=O

 The map BU(k + 2) BU(k) corresponds to the identity map on the factors
 BP(l)k+2i when 0 < i < p - 1 and to [v1]: BP(l)k+q BP(l)k on the
 remaining factor.

 (2) If k is divisible by 4 and p is odd, there is a p-local decomposition of
 H-spaces

 (p-3)/2

 BO(k) H BP(l)k+4i
 i=O

 The map BO(k +4) BO(k) corresponds to the identity map on thefactors
 BP(l)k+4i when 0 < i < (p - 1)/2 and to [vi]: BP(l)k+q ' BP(l)k on the
 remaining factor.
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 3480 M. A. HOVEY AND D. C. RAVENEL

 Recall that we are trying to determine the image of the map

 H*MO(k) H*MSO H*BP =

 By the Thom isomorphism theorem, it suffices to determine the image of the
 algebra map

 H* BO(k) H*BSO H*MSO H*BP.

 However, by the above corollary, we have

 H*BSO = H* BO(4) =H* BP(1)4 00 H* BP(l)q.

 There is a natural map H* BPi H* BP(1)j , which, by [Wil], is a surjection
 for i < 2q.

 The Hopf algebra H* BPk is computed by Ravenel-Wilson in [RW]. To
 describe it, we need to introduce some notation. First, given a class z E 7iBP =
 BP-i(*), there is a corresponding map * - BP-i . If we choose a generator
 for Fp = Ho(*), we get a class [z] E Ho BP-i. From the canonical orientation
 in BP2CPoo we get a map CP? - BP2 . Let 8jy E H21CPOO be dual to
 xi E H*CP? = Z[x] . Define bj E H2j BP2 to be its image. These elements
 together generate H* BPk in the following sense. There is a circle product

 BPi x BPj 02 BPj+j
 coming from the ring spectrum structure of BP. On the other hand, there is
 the usual product

 BPk X BPk BPk.

 coming from the infinite loop space structure on BPk that makes H* BPk
 into a ring. Together, these structures make H* BP* or H* E* for any ring
 spectrum E, into a Hopf ring [RW].

 One of the results of Ravenel-Wilson is that H* BPk is a polynomial algebra
 on generators of the form [vI] o bJ. Here I and J are finite sequences of
 nonnegative integers, [vi] = [V11V12 ...], and bJ = b aJ? o bJIo . There 1 2 p 0 pp p

 are conditions on I and J which we will not state yet, as they become much
 simpler in H* BP(l)k

 Under the map H* BPk -. H* BP(1)k , the elements [vi] go to 0 for i > 1 .
 Therefore, for k < 2q, H* BP(1)k is generated multiplicatively by elements
 [v'] o bJ, where the conditions on i and J are that if i > 0 then all elements

 jn of J must be less than p, and that

 2 Ejn-qi = k.
 n

 Now let us consider again the map

 H*BSO -+ H*MSO H*BP.

 The generator [vil o EH* BP(1)k occurs in dimension Z 2jnpn - Zin
 (mod q) . Using the identity 2 E in - qi = k, we find that the only genera-
 tors occurring in dimensions divisible by q in H*BSO come from the factor
 H* BP(l)q . Therefore, all the other factors must go to 0 for dimensional rea-
 sons.

 Putting the last few paragraphs together, we have proved the following lemma.
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 Lemma 1.6. (1) If p is odd, and tq + 4 < k < (t + 1)q, the image of H*MO(k)
 in 9* is the same as the image of the composite

 H* BP(1)tq I H* BP(l)q H*BSO-- H*MSO H*BP.

 (2) If p is arbitrary and tq + 2 < k < (t + I)q, the image of H*MU(k) in
 9* is the same as the image of the composite

 H* BP(l)tq [ , H* BP(l)q H*BU H*MU - H*BP.

 We know from Lemma 1.2 that the image in question is contained in

 p(p pt- 1pt-2 cp (1 ' C2 '--. 1 c- I' 1 c_,t,-

 and we must now show that the image is that large.
 Now the map H*BSO - H*MSO - H*BP is onto, and since all the

 other factors go to 0, the map H* BP(l)q - H* BP must be onto. There
 is only one generator in H* BP(l)q in dimension 2(pn - 1), namely xn =
 [vn- I] o bl"- o * * boP-l . Thus, the image of xn must be congruent modulo
 decomposables to 4n E 93*

 It is evident that xn is in the image of [vV-] when n > t. But we can use
 properties of Hopf rings to find more elements in the image. Suppose we have
 a Hopf ring B(*) defined over a ring R. Then each B(n) is a Hopf algebra
 over R, equipped with a counit e: B(n) - R, and a unit for the *-product,
 which we denote [On]. Note that, if our Hopf ring is of the form E* G* for
 two ring spectra E and G, and if z E r*G, then E([z]) = 1. For x e B(m),
 we have

 [On] o x = 6(X)[On+,m]-

 Denote by I(*) the kernel of e. Then I(*) is a Hopf ideal, which we call the
 augmentation ideal and typically denote by simply I. We will need to consider
 the Hopf ideal 1*k as well, which is the ideal consisting of sums of terms of
 the form xl * x2 * ... * xk, where each xi is in I. To see that this is really a
 Hopf ideal, one needs the Hopf ring distributive law, which we will recall here.
 Given a e B(n), write

 Aa = Ea'a".

 Then

 a o (b * c) = ?(a'o b) *(a" a c).

 Since we will only be considering elements in even degree in each B(n) and
 only for even n, we can ignore the signs. There is also a right distributive law of
 the same form. Finally, given a ring homomorphism R S, one can extend
 scalars to get a Hopf ring defined over S.

 Now, form a power series b(s) = E bisi Here bo = [02], and we think of
 b(s) E H* BP(1)2 [[s]] as an element in a Hopf ring defined over Z[[s]] using
 the extension of scalars above. That is to say, the circle and star products on
 Z[[s]] are just the usual product. Now b(s) is a group-like element in the Hopf
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 3482 M. A. HOVEY AND D. C. RAVENEL

 algebra H. BP(1)2 [[s]], so that

 yi(b(s)) = b(s) X b(s).

 (This is an easy computation in H*CPI.) In this circumstance, the Hopf
 ring distributive law reduces to the ordinary distributive law. So if x, y E
 H* BP(1)* , we have

 (x * y) o b(s) = (x o b(s)) * (y o b(s)).

 In particular,

 Y*p o b(s) = (y o b(s))*Pk.

 If we take y to be constant and look at the coefficient of sP', we find that

 y o bpi = (y o bpik )*pk.

 Here, if i < k, y*pk obpi =0.
 The other ingredient we need is the main relation of Ravenel-Wilson [RW].

 Recall this says that if E and G are complex oriented ring spectra, then in
 E* G* [[s]], we have

 b([P]E(S)) = [PI[G](b(s)).
 Here the series on the left is just b(ps) = [021 if E is mod p homology. But
 the p-series on the right is not the usual one-ordinary addition is replaced by
 the star product, and multiplication is replaced by the circle product.

 Lemma 1.7. We have

 [02] b(s)*P * ([v1] 0 b(s)0P) (mod I*P2).

 Thus,
 b7*P-[vi] o bo (mod I*P+1)

 Proof. Recall that [p](x) = px +F v1xP in the formal group law associated to
 BP(1). We therefore have

 [P]BP(l)(b(s)) = b(s)*P * ([vI] O b(s)0P) * j([akl] 0 (b(s)*P)ok ? [V(] O b(s)OPI).

 Note that each term in this *-product is congruent to [021 modulo I*P, except
 [v1] o b(s)QP . Thus, using the main relation above, we have

 [v1] o b(s)0" = [021 (mod I*P).

 Now, by the distributive law, (b(s)*P)ok = (b(S)ok)*Pk. Since each o-factor

 [akl], [vI], and b(s) is group-like, the distributive law gives

 [akl] a (b(S)ok)*Pk o [vl] a b(s)OPl = ([akl] a b(s)ok o [v(] a b(s)0Pl)*Pp.

 But, since [vl] o b(s)0P [02] (mod I*P), the factor inside the parentheses is
 congruent to [02] (mod I*P) as well. Since we are working in characteristic p,
 raising to either the pth *-power or the pth o-power is additive, and we find
 that

 [akl] a (b(s)*P)0k a [vl] a b(s)0P1 [02] (mod I*P+).

 This completes the first part of the lemma.
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 The second part of the lemma is obtained by expanding the series in the first
 part. We have

 (Zb*PsP') * (E[vi] o b"P5P') [02] (mod I*P2).

 If we work mod I*P+l instead, all the cross terms in this *-product disappear,
 and we are left with

 bi*P _-[vl] o b?P (mod I*P+'). o

 Note that, in dimension 2p, there is no room for p + 1-fold *-decomposables
 in H* BP(1)2 . Thus we have

 Wl = -[vi] o boP.

 Using this, we can now complete the proof of Rosen's theorem.

 Lemma 1.8. In the Hopf ring H* BP(1)* we have the following relations.

 (1) bl~~~pn = (-l)n[vln] oboP o bpP-1 O ** bt?P-'

 (2) n [Vn+k-1] o bP o bP-1 o ...ob l ? bP b0i o1 *o b. p-1 k vn+klloboPabpl 1n1)n+kl I

 Proof. We proceed by induction. We have

 b - (b *Pn' )*P = ((_1)n- 1[Vn-1] O baP o b aP-1 oO b?P-1)*P

 Using the distributive law one element at a time starting from the right, we get

 b *pn = 1(-l)n- lbl*P o bpOP-l o o bOPe-1

 Then applying the relation br" = -[vI] o b'P completes the proof of the first
 part.

 For the second part, recall that

 Xk = [v k1] o bP- .. . O bOP-1 I I p~~~~~1k-i

 Because [vl] is primitive, we find that

 X = [v ] (bP1 o * boP l)

 Using the Hopf ring distributive law to remove as many factors from the right,
 one at a time as possible, we get

 x*pn = [vk-1] o (b "p) o bop-2 a b aP-1. . . bop-

 Now the first part completes the proof. n

 We saw in Lemma 1.2 and Lemma 1.6 that the image of H* BP(l)tq in

 Y* is contained in the subring P(p , ,1 ... , p 2 ...) . The pre-
 ceding lemma tells us that this image contains classes yi for i < t which

 are congruent to Cf modulo pt-i + 1-fold decomposables of Y, and el-
 ements yi for i > t which are congruent to 4i modulo decomposables. It
 follows, by either comparing ranks or induction, that the image is in fact all of
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 P(1"', 42P, *.. , tp , **t). This completes the proof of Rosen's theo-
 rem.

 2. CONSEQUENCES OF RoSEN's THEOREM

 In this section, we will see that Rosen's theorem implies that one can smash
 MO(8) with a small finite spectrum X and get a wedge of suspensions of BP.

 This in turn gives bounds on the torsion and the vI-torsion in the homotopy of
 MO(8). We begin with a more general theorem.

 Theorem 2.1. (1) Let R denote a p-local finite type connective commutative

 ring spectrum equipped with a map f: R HFp of ring spectra such that the
 kernel of H* f: 5 H*R is Y (IA(n)). Let X denote a finite spectrum such
 that H*X is a free A(n)-module. Then R A X is a wedge of suspensions of

 HFp.
 (2) Let R denote a p-local finite type connective commutative ring spectrum

 equipped with a map f : R - BP of ring spectra such that the kernel of
 H*f: Y ) H*R is 9?(IP(n)). Suppose also that H*R is evenly graded. Let
 X denote a finite spectrum such that H*X is evenly graded and a free P(n)-
 module. Then R A X is a wedge of suspensions of BP.

 Note that finite spectra X as in the above theorem do exist, by the results of
 Mitchell [Mit] for the A(n) case and J. Smith [Sm] for the P(n) case.

 Proof. We will begin with the first part of the theorem, and we will show that
 H*(R A X) = H*R 0 H*X is a free V-module. To do this we use a characteri-
 zation of free XI-modules, due to Adams-Margolis [AM] at p = 2, and Moore-
 Peterson [MP] at odd primes, but proved most cleanly by Miller-Wilkerson in

 [MW]. We begin at p = 2. Let Pts e v denote the dual of 2 . Then if s < t,
 (ps)2 = 0, SO we can take the Ps-homology group of an u-module. At p odd,
 we have two kinds of differentials: Ps and Qt, where Pts is as above and Qt
 is the dual of Tt. We again have Q2 = 0, but if s < t, we now have (Pts)P = 0.
 We then define the Pts homology groups of an W-module by taking the kernel
 of Pts modulo the image of (Pts)P-1.

 Miller and Wilkerson show that, if B is a sub-Hopf algebra of X, and M
 is a bounded below B-module, then M is free if and only if H(M, x) = 0 for
 all differentials x E B. In particular, for X as in the first part of the theorem,
 we have H(H*X, x) = 0 for all x E A(n) . On the other hand, Margolis shows
 in [Mar, pp.356-358] that, under the hypotheses on R as in the first part of
 the theorem, H(H*R, x) = 0 for x f A(n). Margolis restricts himself to the
 prime 2, but in fact his argument works for an arbitrary prime. The crucial step
 is Theorem 19.21 of [Mar]. Now in general there is no Kunneth theorem for
 x-homology, but there is a spectral sequence, so that H(H*R 0 H*X, x) = 0
 for all x e X, so H* (R A X) is a free . -module. Choosing generators gives

 a map to a wedge of suspensions of HFp, which is an isomorphism on mod
 p homology. Since R is finite type, we then get a homotopy equivalence as
 required.

 We use a similar method to prove the second part of the theorem, where
 we replace v' by iO. The theorem of Miller and Wilkerson does not apply
 directly to v at p = 2. since we defined v as a quotient Hopf algebra rather
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 than a sub-Hopf algebra. But one can use the doubling isomorphism between
 the category of X-modules and the category of evenly graded A-modules. We

 get that a LA-module M is free over a sub-Hopf algebra B of L if and only
 if H(M, x) = 0 for all differentials x e B. Note that the differentials are

 the doubles of the old ones: that is, they are the pts+l for s < t. Doubling
 the theorems of Margolis, we find that, if the kernel of H*f : L - H*R is

 L(IP(n)), then H(H*R, x) = 0 for all differentials x V P(n). Smashing with
 X then gives us a free L-module, though not a free X -module. At odd primes,

 of course, we do not need the doubling. In any case, choosing a generator gives

 a map to (a suspension of) HFp, which will lift to BP since R A X is evenly
 graded. Then we get a mod p homology equivalence from R A X to a wedge
 of suspensions of BP which is then a homotopy equivalence. n

 We can apply the first part of this theorem directly to MO(k) at p = 2,
 using the result of Bahri-Mahowald mentioned in the previous section [BM].
 But to apply the second part of this theorem to MO(k) at an odd prime or

 to MU(k), we have to know the homology is evenly graded. Now H* BP, is
 always evenly graded, and the map

 H* BPn H* BP(1)n

 is onto for n < 2p + 2 by [Wil]. Thus H*MO(8) is evenly graded for p odd,
 and H*MU(6) is evenly graded for arbitrary p.

 In these small cases, we can find explicit models for the finite spectra X used
 in Theorem 2.1 . Indeed, for p > 3, we can take X = SO and we recover the
 fact that MO(8) and MU(6) split into a wedge of suspensions of BP when
 localized at such a prime. For p = 3, we have to find a finite spectrum which
 is free over P(0), which is the subalgebra generated by PI . Let Y denote the
 8-skeleton of BP, a 3-cell complex where the 4-cell is attached to the 0-cell
 by a 1 and the 8-cell to the 4-cell by a I . In fact, the 8-cell is also attached
 to the 0-cell, but we will see that this attachment is irrelevant to us. Y is
 then obviously free over P(O). At p = 2, we need to find a finite spectrum
 that is free over P(1), which is the double of A(1). Here one can double the

 construction of A(1) in [DM] to get a complex Z with 8 cells in dimensions
 0 through 12. We have then proved the following corollary.

 Corollary 2.2. Let Y and Z denote thefinite spectra above. Then:

 (1) MO(8)(3) A Y and MU(6)(3) A Y are wedges of suspensions of BP.
 (2) MU(6)(2) A Z is a wedge of suspensions of BP.

 (3) MU(6)(p) and MO(8)(p) are wedges of suspensions of BP when p > 3.
 In particular, for any p, the Bousfield class of MU(6)(p) and MO(8)(p) is the
 same as that of BP.

 The Bousfield class part of this corollary was previously conjectured by both
 of the authors [Hov]. It will be extended to all of the MU(k) and the MO(k)
 at odd primes in the last section of the paper.

 Theorem 2.3. The 3-torsion in 7r.MO(8) and in 7rMU(6) is all killed by 3
 itself The 2-torsion in 7rMU(6) is all killed by 16.
 Proof. The strategy in both cases is the same, and is due to Mike Hopkins. Let
 us first start with any ring spectrum R satisfying the hypotheses of part two of
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 Theorem 2.1. We will show the torsion in ,c*R is bounded. We can assume
 the bottom cell of the finite spectrum X in that theorem is in dimension 0.

 The resulting map R - R A X arising from inclusion of the bottom cell must
 kill all the torsion in 7r.R, since R A X is a wedge of suspensions of BP. On

 the other hand, let X J_ SO denote the fiber of the inclusion of the bottom
 cell S0 O X. Then X has cells in only odd degrees, and therefore [X, S?] is
 finite. Thus, there is some N such that pNj is null. We then get a map back
 R A X - R such that the composite

 R )-RAX - R

 is multiplication by pN. It follows that pN kills all the torsion in 7r.R.
 To determine specific bounds, we must look at the individual spectrum X.

 For the 3-cell complex Y, Y - 3 C(aI ) . It is not too hard to see that

 [X3C(al), SO] = Z/9
 generated by a class x which is al on the bottom cell. This shows that 9 kills

 the 3-torsion in iv*MO(8) and in 7r.MU(6). To see that 3 actually kills the
 torsion, note that 3x is the composite

 X3C(al) y7 2 50

 But we have shown in [Hov] that al2, and indeed everything in the image of
 J above dimension 3, goes to 0 in both n*MU(6) and in 7c*MO(8). Hence
 3x will be 0 upon smashing with either MU(6) or MO(8), so 3 will kill the
 3-torsion.

 Now consider the 2-local 8-cell spectrum Z. We must find the smallest k
 such that

 x2

 Z )SO )MU(6) - MU(6)
 is null. By Spanier-Whitehead duality, [Z, MU(6)] '- ri (MU(6) A W) where
 H* W is P(1) minus the top class ( Sq4Sq4Sq4) as a P(1)-module.

 The structure of H*MU(6) through dimension 12 can be computed using
 the Serre spectral sequences relating BSU to BU(6) and BU(6) to BU(8),
 or by the Hopf ring methods of the preceding section. We find 6 generators over
 F2: 1 in degree 0, x in degree 6, c4 in degree 8, y in degree 10, z and
 C6 in degree 12. Here Sq8l = C4, Sq2x = C4, Sq4x = y, Sq4c4 = c6, and
 Sq2y = z. All other Steenrod operations follow from these. One can then use
 Bruner's program [Br] for calculating Ext, or calculate by hand, to determine the
 E2-term of the Adams spectral sequence for MU(6) A W through dimension
 12. The hand calculation is not terribly difficult: the high point is that the Sq8
 in MU(6) means that in MU(6) A W one gets all of `7 through dimension
 12 except Sq4Sq4Sq4. This means one must calculate the Ext groups of the
 extension

 0 12-F2 *N 0

 where the class in dimension 12 goes to Sq4Sq4Sq4. One finds a Z/ 16 in
 dimension 11 in Ext(N) starting in Adams filtration 1 on a class b.

 This proves the theorem, but one might hope that an Adams differential
 from the 12-stem could lower the bound to 8. (There are no differentials from
 the 1 1-stem to the 10-stem because the 10-stem is all infinite ho-towers.) But
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 in fact, there are no differentials from the 12-stem to the 1 1-stem. Indeed,
 consider the cofibration

 MU(6) A W MU(6) A X - X12MU(6)

 arising from putting in the missing top cell of P(1). MU(6) A X is a wedge
 of suspensions of BP, and it is easy to see what its Adams spectral sequence
 looks like in dimension 12. It looks precisely the same as that of MU(6) A W,
 except it has a class corresponding to v?v2 that is not in MU(6) A Z, and

 there is no class bhl . The class bhl is a permanent cycle since b is. If any
 other element supported a differential, we would necessarily have a class in

 7r*(MU(6) A X) that is not hit, yet a multiple of it is hit. This would lead to
 torsion in r12X12MU(6) = Z, so there are no differentials. o

 We conjecture that the correct exponent for the 2-torsion in MU(6) is in
 fact 8, though this method can only give 16.

 We now give some similar results for v1-torsion. Recall that an element

 x E 7r*X for X a p-local spectrum is said to be vl-torsion if x maps to 0
 under the natural map

 X LK(1)X-
 (The failure of the telescope conjecture makes this definition problematic for
 higher vM-see [MS].) Recall from [Hov] that an element v E 7r*R for a ring
 spectrum R is called a vl-element if

 LK(1)R = (v-1R)p.

 Here the subscript denotes p-completion. Another way of saying this is to say

 that the K(l)-Hurewicz image of v is a (possibly fractional) power of v, , and
 that the K(n)-Hurewicz image of v is nilpotent for n > 1. Given such a vI-
 element v, we say that R has bounded v I-torsion with respect to v if there
 is an N such that vNx = 0 for all vI-torsion elements x.

 Recall from [Hov] that there are vl-elements in every MU(k) and MO(k).
 There are v1-elements in 7r4kMO(8)(3) and lr4kMU(6)(3) for all k > 1. These
 elements induce the kth power of the Adams map on MO(8) A M(3) and on
 MU(6) A M(3), where M(3) denotes the mod 3 Moore spectrum. There are

 also vl-elements in 1r8kMU(6)(2) for k > 0.

 Theorem 2.4. Localize all spectra at p = 3.

 (1) The 3-torsion in ir*MO(8) coincides with the vl-torsion in 7z*MO(8).
 Similarlyfor MU(6).

 (2) Let v denote a v1-element in 7r*MO(8) that induces a power of the
 Adams map on MO(8) A M(3), such as those mentioned above. Then

 x E 7r*MO(8) is v, -torsion if and only if vx = 0. Similarly for MU(6).
 Proof. We again use the 3-cell complex Y, and we will just do the MO(8)
 case. Since BP has no vl-torsion, any vl-torsion element in 7r*MO(8) must
 map to 0 under the map MO(8) - MO(8) A Y, and therefore must be 3-

 torsion. Conversely, since LK(l)MO(8) = LK(1)MSO [Hov] is torsion-free, any
 3-torsion element is also vl-torsion. This proves the first part of the theorem.

 For the second part, suppose x E 7r*MO(8) is v1-torsion. Then x is 3-

 torsion. Note that x, and all the 3-torsion, will survive the map MO(8) 1
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 MO(8) A M(3) since the 3-torsion is killed by 3. Let v E 7[4kMO(8) denote a
 v1-element which indvuces 1 A Ak on MO(8) A M(3), where A is the Adams
 map and k is necessarily at least 2. It will suffice to prove that i(vx) = 0, or
 equivalently, (1 A A k)i(x) = 0.

 We will show that the composite

 X3C(al) So MO(8) A M(3) ? MO(8) A X-4M(3)

 ItAA MO(8) A - M(3)

 is null. We will then get a map

 MO(8) A M(3) A Y A MO(8) A EX8M(3)

 such that the composite

 MO(8) A M(3) MO(8) A M(3) A Y MO(8) A X8M(3)

 is 1 A A2. It then follows that (1 A A2)i(x) = 0.
 Now

 [Z3C(al). Z-4M(3)] = Z/3 E Z/3.

 The generators are a map which is a2 on the bottom cell of V3C(ai), and the
 composite

 13C(al) SI 41) Z-4M(3),
 where Ih is fl, on the top cell of the Moore spectrum. Both these generators
 map to the same class upon smashing with MO(8), since 62 goes to 0. The

 composite of ,Il with the Adams map is an element of 715M(3), which is
 generated by a4. It will then go to 0 in 715MO(8) A M(3), and we are done. n

 We think that the vI-torsion in .7r.MU(6)(2) is also bounded, but this method
 cannot prove that. The 2-torsion and the v I-torsion do not coincide in this case,
 though every vI-torsion element is a 2-torsion element.

 3. ADAMs-NovIKov RESOLUTIONS

 In this section, we will use the results of the previous section to construct
 an economical Adams-Novikov resolution for MO(8)(3) . We will see that this
 resolution forces the Adams-Novikov spectral sequence to collapse after at most
 two differentials. This section is essentially a combination of the Russian ap-
 proach to MSU, pioneered by Novikov [Nov] and extended by Botvinnik and
 Vershinin [Bot, Ver], with the last chapter of [Rav].

 Let Y denote the 3-cell spectrum considered in the previous section. There
 is a very simple Y-resolution of the sphere, considered in [Rav, Section 7.4]:

 so 3C(ai) - S10 11- X3C(al) -

 y1 1y
 y X3y I IOY 113y
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 Since MO(8) A Y is a wedge of suspensions of BP, when we smash this
 resolution with MO(8) we get an Adams-Novikov resolution of MO(8). We
 then get the following proposition.

 Proposition 3.1. There is a spectral sequence converging to n*MO(8)(3) which
 agrees with the Adams-Novikov spectral sequence from E2 onwards and whose
 E1-term is

 * (MO(8) A Y) X E(a) 0 P(fl).

 Here * (MO(8) A Y) is in filtration 0, a is in bidegree (1, 4), and fl is in
 bidegree (2, 10). The tensor product is taken over Z(3), and a and fl have
 infinite additive order in E1.

 Note that in E2, a corresponds to the usual a, and fl corresponds to fl,.
 (Both a and fl are permanent cycles for dimensional reasons, and easy low
 dimensional computation shows that they survive to Eo,.) In particular, in
 E2, they both have order 3. This is not true yet in E1 . This means there must

 be a d1 starting on the 1-line that kills 3,f. In particular, d, cannot be a
 derivation. One expects a multiplicative formula for d, similar to a Bockstein
 spectral sequence, but we do not yet know if such a formula exists. Note that
 MO(8) A Y is a ring spectrum, as it splits off of MO(8) A T(l), where T(l) is
 the ring spectrum used in the last two chapters of [Rav].

 Note that we have the usual sparseness phenomenon in this Adams-Novikov
 spectral sequence, so that di is 0 unless i = 4k + 1 for some k.

 The proposition above has the following corollary.

 Corollary 3.2. In the Adams-Novikov spectral sequence for 7*MO(8)(3), xfl

 E2 > E2s2 is an isomorphism if s > 0 and is surjective if s = 0.
 Proof. Inspect the chain complex whose homology is E2. That chain complex
 is

 1*(MO(8) A Y) f 7*(MO(8) A X4Y) g- 7c*(MO(8) A 12y)

 f) 7z*(MO(8) A,16Y) - - .... o

 This property continues to be true, in a weaker sense, as we get farther along
 in the spectral sequence.

 Lemma 3.3. In the Adams-Novikov spectral sequence for 7z*MO(8)(3), the map

 X3 ) Eks+2 xf Eks-
 is surjective for all s and is injective if s > k - 1.

 Proof. We proceed by induction. The cases k = 1, 2 have already been dis-
 cussed. So suppose k > 2. We will first prove multiplication by ft is surjective.

 Suppose x E ES+2, where x E Ek+2l has dk-lx = 0. By induction, there is a
 y E Es1 such that x = y,8. Thus

 0 = dk-I(y,8) = dk-I(Y)f

 since dk_ is a derivation. But, again by induction, x,f is surjective on Ek1
 in filtrations at least k - 2. The class dk1 (y) has filtration higher than this,
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 so in fact dk-l(y)= 0. Thus y survives to a class y e Ek with yfl=x. This
 shows that multiplication by fi is surjective.

 We will now show multiplication by f, on Ek is injective in filtrations at
 least k -1. So suppose x,8 = 0, where X E Ek and s > k- 1. Then there is
 a y Es+3-k such that dk-ly = x,8. Since s > k - 1, we have s + 3- k > 2,

 so, by surjectivity, there is a z E Ek 1-k such that y = z,8. Then

 dk- (Z)fl = dk-l(y) = Xfl.

 By induction, multiplication by fi is injective here, so in fact dk-l (z) = x.
 This means x = 0, as required. n

 Note that this proof fails, and in fact the lemma is false, for the spectral
 sequence used in [Rav, Section 7.4], because in that case none of the differentials
 are derivations. It is the fact that this spectral sequence is really the Adams-
 Novikov spectral sequence, so that the differentials are derivations, that makes
 the lemma work.

 Now the homotopy class corresponding to fi must be nilpotent. Since in
 this case fi is just l,i , there are in fact specific bounds, but in general a class
 of positive Novikov filtration in a ring spectrum is nilpotent by the nilpotence
 theorem of [DHS]. So some power of 8 must be killed by a differential. Choose
 the least k such that gk does not survive the spectral sequence.

 Lemma 3.4. There is an x E E2kl such that d2kl(X) = 8k.

 Proof There is some i and some class x E E 2k-i such that di(x) = ,Bk. If
 2k- i > 1, write x = yfl, for some yE E 2k-i-2. Then di(y)fl = k, and
 di(y) has filtration > i - 1. Thus di(y) = fk-l , which is impossible. El

 Theorem 3.5. The Adams-Novikov spectral sequence for 7r*M MO(8)(3) collapses at
 E2k, and Es = Ek = 0 for s > 2k-2.

 Proof: Suppose we have a class z e ESE , where s > 2k and d2k1 (z) = 0

 Then we can write z = yfk for some y e Es72k1. Thus d2k- 1(y)k = 0. But
 d2k_ (y) is in high enough filtration for this to mean that d2k1 (y) = 0 .

 Now from the preceding lemma, there is a class x e EEkI such that d2k 1(x)

 = fk. Thus d2k1I(xy) = yfjk = z. Thus E2sk = 0 is s > 2k. The spectral
 sequence therefore collapses at E2k. To see that E '2k-I = 0, note that xfl
 E22k1i E 2k+' is injective. c
 2k 2k

 Note that the class a/3 E E' 40 cannot survive the spectral sequence. In-
 deed, it is in the image of the E2 term of the sphere, and does not survive that
 spectral sequence, as is well-known. One can consult the charts in [Rav] to see
 how it dies in the sphere. In MO(8), a/P3 is a permanent cycle, and can only
 be hit by a d5. But then Lemma 3.3 shows that there must be a class w E E? 24
 with d5w = aft2.

 This in turn implies, just as in the Hopkins-Miller calculation of E02, that
 d9(w2a) = ,B5. We will sketch their argument briefly, but first we present a
 simpler argument that shows that ft5 must be 0 in 7*MO(8). First note that
 the class wa is a d5-cycle, and since there is nothing in filtration greater than 5
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 in dimension 26 (even in the E1 term above), it is a permanent cycle. Choose
 a homotopy class e detected by wa. This class e is very similar to the class
 in nr37S0 commonly denoted e or c'. In fact, the argument below shows that
 /16 is the image of 6' under the unit map S0 MO(8). The class 6 is a
 representative for the Toda bracket (a, a, /12) . We will see in the next section
 that there is no indeterminancy. Now by Toda bracket manipulation, up to a

 unit multiple we have

 as = (a, a, a/I2) = (a, a, a) f?2 = /3.

 Again there is no indeterminancy, as we will see later. Hence we have /15 -
 /12a6 = 0.

 The argument of Hopkins and Miller relies on Steenrod operations in the
 Novikov spectral sequence and the Kudo transgression theorem relating dif-
 ferentials to these operations. The main references are [May] and Bruner's

 part of [BMMS]. Given a cocommutative Hopf algebroid A over an Fp -
 algebra R and a comodule algebra M over A, there are Steenrod operations
 in ExtA (R, M). These were originially constructed by May in the Hopf algebra
 case, and Bruner gives the generalization to Hopf algebroids. Therefore there
 are Steenrod operations in the E2-term of the Adams spectral sequence based
 on BP A M(p) of any ring spectrum E. However, we need some additional
 structure on E to be sure the differentials behave well with respect to these

 operations. In fact, we need E to be an H,, ring spectrum. Thom spectra
 such as MO(8) are always H,, ring spectra, so that is much simpler for us
 than the analogous fact for EQ2. Bruner shows how the Ho, ring structure
 allows one to relate differentials and operations. Unfortunately, he does not
 prove the Kudo transgression theorem (Theorem 3.4 of [May]) in this situation.
 His methods do apply though.

 The Kudo transgression formula tells us that d5(w) = a/I2 implies that

 d9 (w2a a12) = A p2 (afl2).

 Here we have used /1 for both the Bockstein and the homotopy class. The
 context should make clear which is meant. The Cartan formula applies, and
 using the fact that 81P0a = /8 we find that /1p2(a/12) = /17. Since multiplication

 by fl is injective in this range, we get dg(w 2a) = /15 as required. This is true in
 the spectral sequence based on BP A M(3), but since everything in the Novikov
 spectral sequence in positive filtration is killed by 3, it must also hold in the
 Novikov spectral sequence.

 This differential may not really occur: it could be that /15 is killed by a d5l.
 But then Lemma 3.3 shows /3 must also be hit by a d5 . We will see later that
 this does not happen. In any case, we have proved the following theorem.

 Theorem 3.6. The Adams-Novikov spectral sequencefor t*MO(8)(3) has Elo=
 E,, and Es= 0 for s > 8.

 Note that the same theorem is true for EQ2 at the prime 3 [HM]. We also
 point out that this method may be applicable to MU(6) at p = 2 as well.
 There one would need a Z-resolution of SO, where Z is one of the models for
 the double of A(1). We do not know if a compact such resolution exists, but
 if so, one would get an El-term for the Adams-Novikov spectral sequence for
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 MU(6) that would look something like

 nr*(MU(6) A Z) X P(q, v, w, Kc)/(v3, ?V, wv, W2 _ q2K).

 We have given these classes the names they normally have in n.SO: q is the
 degree 1 Hopf map, v the degree 3 Hopf map, and K a class in bidegree
 (4, 24). The class w in bidegree (3, 14) is not in the homotopy of the sphere,
 and does not seem to get involved in MU(6) either. The ring P(i, v, w, K)/
 is basically Extp(l)( F2 , F2 ), except that all of the classes in those Ext-groups
 have order 2, and here they have infinite order. Unfortunately, one does not
 get such a nice periodicity result here: there are two classes with infinite mul-
 tiplicative order, i1 and K. But 774 should be killed by a d3, so what should

 happen is that XK: E- * E4+4 is surjective, and, if s > 0, is an isomorphism.
 If that were so, the whole spectral sequence would collapse with a flat vanishing
 line as soon as a power of K is killed. This should happen by a d23 to kill K6,
 as it does in EO2 at the prime 2 [HM]. So we expect, in the Adams-Novikov

 spectral sequence for MU(6) at p = 2, that E24 = Eo, and that Es = 0 for
 s > 20.

 4. CALCULATIONS

 In this section, we calculate enough of the Adams spectral sequence for
 MO(8) at p = 3 to see that fi3 is nonzero, so that the Adams-Novikov spec-
 tral sequence really collapses at Elo and not at E6. The calculations suggest
 some conjectures about this Adams spectral sequence and about the homology
 of MO(8).

 We first calculate H*(BO(8) ; F3)= H( BP(1)8 ; F3) through dimension
 32. Recall we have the elements bi E H2i BP(1)2 and [vI] E Ho BP(1)-4 . The
 elements bi are the image of the corresponding elements f,i in H2iCPO dual
 to the powers of the generator, under the complex orientation CP? - BP(1)2.
 Through this range, the homology is generated multiplicatively by the classes in
 the following table, together with the class 1 in dimension 0.

 Dim Gen Dim Gen

 8 x8=bo4 24 x24= bo3 o bg

 12 x12= bo3 o b3 24 Y24 = b4

 16 x16 =bo2ob 2 28 X28 =b72o b3 o bg

 20 0=b, o bo3 32 x32= b o b20b

 In general, to find the generators in dimension 4k, one takes the 3-adic
 expansion of 2k:

 2k = Zai3'.

 If the sum of the ai is greater than 2, one has a single generator X4k which is
 the circle product of the boai and an appropriate power of [vI]. If 2k = 3' + 3X
 with 0 < i < j both positive and distinct, there are 2 generators, namely

 X4k = b33 l o b3i and Y4k = o b3l. Otherwise, there is just one generator
 X4k = b3i o bo331

This content downloaded from 128.151.124.135 on Sun, 03 Feb 2019 11:06:13 UTC
All use subject to https://about.jstor.org/terms



 THE 7-CONNECTED COBORDISM RING AT p = 3 3493

 Now H*BO(8) is not a polynomial ring. In fact, we know from [Sin] that
 it has some generators which are truncated at height 3, one in each dimension

 of the form 3i + 31 where i < j. In particular, x8, as the only element in
 dimension 8, must have cube 0. There are no other multiplicative relations
 in our range, as can be easily checked by counting dimensions. But there are
 multiplicative relations in higher dimensions. For example, there has to be a
 class in dimension 20 whose cube is 0. Hopf ring relations tell us that x30
 is congruent to 0 modulo 4-fold star-decomposables. But it is probably not
 0 on the nose, and will have to be modified by adding a multiple of x8x12 to
 produce a class whose cube is actually 0.

 We now must compute the Steenrod algebra coaction through our range. This

 is completely mechanical: the bi come from the homology of CP?? where the
 coaction is completely known. Indeed, we have

 I(b1) = I bl.
 q(b3) = 1b3+ 2C1 X b1.
 /(bg)= I b9+2C1, b7+ C2 b5+2C3 b3.

 Here we have used Ci instead of Xi as is frequently convenient in dealing with
 cobordism theories. The elements b7 and b5 are *-decomposable in H* CPO,

 but of course the map CP??- BP(1)2 is not an H-space map. In fact, it is
 part of the standard map

 CP - BU -(3) BP(1)2 x BP(1)4.

 This map is well-known to take the classes 8j to multiplicative generators. In
 particular, we must have

 b5 ?[v1]objb2ob3, b7 ? ?[v1]obi obo2
 modulo decomposables. By use of the Hopf ring relations developed in the first
 section, and careful calculation, we find the following formulae for the coaction
 in H* BO(8) through dimension 32.

 VX8 = 1 0 X8.

 rX12 = 1 X x12+ 2C1 o X8

 VX16 = 1 Xi X6 + O1 X1l2 + X X8.

 X20 = 1 x2o+2C3 x8.

 Y/X24 = l X24 + 2C3 (9 X12 + (2C2 + C4) o X8-

 VYY24 = 1 XY24+ 2C1 X X20 + 23 XX12 + O4 X X8.

 VX28 = I XX28+ 2C1 0X24 +2Cl3 X16 +(2C2 +2Cl4) 9X12 +(Cl C2 +2C') 9X8-

 VX32 = 1 o X32 + C1 X X28 +I ( X24 + 2 X20+

 2C2 X X16 + 21I2 X X12 + (2C2 C2 + C6) o X8.

 To get the coaction on the homology of MO(8), we apply the Thom isomor-
 phism. The ring structure in homology is preserved by the Thom isomorphism,
 but the coaction is the composite below, dual to the usual description of the
 action of _v on a Thom spectrum.
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 H*BO(8) - H*BO(8) 0 H*BO(8) f0, Y* @ 9* @ H*BO(8)

 -0I o 0 H*BO(8).

 Here we have identified H*MO(8) and H* BO(8) , and f is the map con-
 sidered in the first section. So we must explicitly compute both the diagonal

 and f. The diagonal in H* CP?? is easy. In particular, we have

 Ab1 = [02] X bi + bi X [021.

 Since [02] o x = 0 for x in the augmentation ideal, this means that for all the
 generators except bo4 = Y24 in our range, we have

 Ax = [08] X + X ? [08]

 To compute Ab,4, we have

 Ab3 = [02]ob3+b1 ob2+b2ob1 +b3o[02j

 It is unclear just what b2 is in H* BP(1)2 , but it must be ab*2 for some
 a e F3 . Recall the Hopf ring relations

 b, o (x *y) = 0.
 b*2 o (x * y) = 2(b1 o x) * (b1 o y).

 for x, y in the augmentation ideal. These give

 AY24 = 1 X Y24 + 2a2X8 X 82 + 2a2X2 Ox8 + Y24 01.

 Recall from the second section that the image of f is P(C3, C2, 3, .. . ). In
 particular f(x8) = 0, so since f is an algebra map, f(x2) = 0 as well. Thus,
 if we denote the coaction in H*MO(8) by V/ and the coaction in H* BO(8)
 by VI', we have, in our range,

 q/(x) = vI'(x) + f(x) X 1.

 To get explicit formulas for f, one can work one's way up dimension by
 dimension, using coassociativity to determine f at each stage. Of course

 f(x8) = f(x20) = 0, and one has two possibilities for f(x12), namely C3 and
 2C3. By changing the generator x e H2CPoo, one can assume f(x12) = C3
 The resulting formulas for f are given below.

 f(x8) = 0. f(XI2) = 11
 f(X16) = C2 f(X20) = 0.
 f(X24) = 2C6. f(Y24) = 246
 f(X28) I C2. f(x32) = 2C2.

 It is then straightforward, though tedious, to analyze the comodule structure
 of H*MO(8) in this range. We get a splitting M0'8 M 16y 2 428Y 32Y H*MO(8) ~M? ? ? ?x2

 Here M is an extension

 0 - 8N M -N -0
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 where

 N = (Y11P(O)). = p(C13, C2, C3, . )-

 It is easy to verify that such an extension is given by pl C3, where PI is thought
 of as acting downward, and in this case it is X81.

 We would then like to compute Ext?* ( F3 , H*MO(8)), the E2-term of the
 Adams spectral sequence. Of course,

 Ext, ( F3 , = P(ao, al, , **

 where the ai are in bidegree (1, 2. 3i - 1). To compute Ext(N), we use the
 isomorphisms

 Ext_v (N) = Exty* (N ? P(ao, al, ...)) = Extp(o) (P(ao, a1, ,*)

 The first isomorphism can be found for example in [Rav, Theorem 4.4.3], where
 one sees that the P(O)*-comodule structure on P(ao, a1, ...) is determined by

 VlaI = 1 0a1 +4j i ao

 with the other ai being primitive.
 It is then easy to calculate

 Ext(N) = P(al3, a2, ...) P(ao, a,, a22, f1)/R,

 where a I E ExtI 4, a2 e Ext2'9 and 81 E Ext2,12. The relations R are gener-
 ated by

 2 2
 a2, a2, a0oa1, a0Ce2, ala2 - a0fli.

 Of course ao, cal, 52, 5fl are in the image of the map Extv* ( F3) - Ext< (N).
 To calculate Ext(M), we must then calculate the coboundary map

 3 Exts t(N) Exts+l' t(N).

 The coboundary map preserves multiplication by elements in Ext* ( F3). It is
 O on a3 and a6 for dimensional reasons. We still must determine it on the

 classes a2, aj3a2, and a 2. A cobar representative for a2 is

 [z2]C2 + V F21 + V21

 Here -i denotes the conjugate of zT. It follows that 3a2 - X8a2. If one knew
 that 3 were a derivation it would follow easily that

 3(a3a2) - X8ala2((a2) = 2X8a2a2.

 We do not know how to see that 3 is a derivation, so one must check these
 by hand. But that can be done. The resulting Adams E2-term is displayed in
 Figure 1, without the BP summands.

 There are some extensions and multiplicative behavior in the E2 term that
 we need to determine. The extensions are aoA = zaI, shown on the chart by a
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 thin line, and ya2 = za1. The multiplicative relations we need are:

 z = xa3.

 v =(al)3.

 u =ya3.

 t = xv.

 One must remember in these relations that most of these elements are not
 really well-defined. For example t is just some class in filtration 6 in the 32-
 stem which is not divisible by ao. There are many such elements, because of
 the BP summands not shown on the chart. What we really mean is that we
 can choose t and v so that t = xv. Or, equivalently, that any choice for t
 and v will give t xv modulo ao.

 The easiest way to get these extensions is to consider the differential d2 simul-
 taneously. The reader is encouraged to do this herself, as this kind of argument
 is easier to think of than to follow. The facts we need are that the torsion is all

 killed by 3 and any well-behaved vI-element, that no v1-element can be divis-
 ible by 3, that the product of 2 v1 -elements is again a v1 -element, and there
 have to be well-behaved v1 -elements in every dimension 4k, where k > 1.

 Note that aofl1 cannot survive the spectral sequence, since we know that I,h ,
 and indeed all of the torsion in nr*MO(8), is killed by 3. Thus d2(xai ) = ao,l1,
 which implies d2x = a2. The same argument implies that d2(zai) = a0a3fli,

 which implies that d2(z) = a3,a2 . It follows that z = xa3, at least modulo ao
 which is all we need.

 Now consider the class a3a fl,1 . This class cannot survive the spectral se-
 quence, since a3 is a vI-element. Thus we must have d2(yfll) = a3cafl1 . It
 follows that d2y = a3a 1. It also follows that d2(A) = a3,81h from which we get
 the extensions a0A = za1 and Ya2 = za1*

 Whatever (a3)2 is, it must be a v1 -element of filtration at least 6. It follows
 that it must be v , again modulo ao . Then d2(ya3) = val , so ya3 = u, modulo
 ao. Finally, d2(xv) = va2, so we must have t = xv modulo ao .

 These extensions and the d2's calculated above determine all the possible
 d2's in this range, and the resulting E3 term is shown in Figure 2.

 In this range, there is only one higher differential, d4(w) = a, l2 . This differ-
 ential gives rise to an extension aI waI = ,B3 , just as one gets the corresponding
 a, extension to f84 in 7*.S0. In any case, f83 certainly survives the spectral
 sequence, so the Adams-Novikov spectral sequence cannot collapse at E6.

 At this point, we present some speculations about the behavior of this Adams
 spectral sequence in larger dimensions. These conjectures are based on specu-
 lative calculations.

 Conjecture 4.1. (1) H.MO(8) splits into a direct sum of suspensions of M,
 N = M X F3 [C']/(g2), and 3*. The first N summand begins in dimension
 28.

 (2) There are differentials d3a3 = wal ,fl2, and d6a2a1 = al5.
 (3) The Adams spectral sequence collapses after d2, d3, d4, and d6.
 (4) The algebraic Novikov spectral sequence [Rav, Theorem 4.4.4] collapses

 after d1, which corresponds to the Adams d2, so that the Adams E3-term is a
 reindexed form of the Adams-Novikov E2-term.
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 (5) The Adams-Novikov d5 corresponds to the Adams d3 and d4, and the
 Adams-Novikov d9 corresponds to the Adams d6.

 Of course, there are many other questions to ask and answer here. For exam-
 ple, a9 should survive the spectral sequence and represent a v2-element. One
 would expect, in analogy to MSU at p = 2, that the higher ai survive as
 well and represent vi-elements. One would also expect a splitting of MO(8),
 in analogy to the splitting of MSU. And certainly one should determine the
 image of the unit in homotopy. In our range, the only classes in that image are

 C'I, Ih, a /11, '2 , and l3?. However, just outside our range, the class w,8l is
 also in the image. It is usually denoted e .

 5. GENERALIZATIONS

 In this section, we point out that our methods do apply to more spectra than
 MO(8) at p = 3 and MU(6) at p = 2 and p = 3, though they do not apply
 to other MO(k). Recall that we identified BO(8) at p = 3 with BP(1)8 and
 used knowledge of Hopf rings. The problem is that for n > 2p + 2, the map

 BPn - BP(1)n

 is not onto in homology, so we do not know that the homology of BP(1)n is
 evenly graded, nor do we know how to compute the coaction of the Steenrod
 algebra.

 However, as long as n < 2(pr +pr-l +...p + 1), the map

 BPn BP(r) n

 will be onto in homology [Wil]. So we should build Thom spectra over these
 spaces. We must assume that n is even, and that n is divisible by 4 if p
 is odd. At p = 2, write n = 2t + 2. For p odd, write n = tq + s, where
 4 < s < q. If p is odd, consider the composite of infinite loop maps

 BP(r)n - BP(1) n [I BP(1) s - B0(p).
 For p = 2, consider the analogous map

 BP(r)n BP B(1)n [ I BP(1)2 BU(2)-
 In both cases, the last map comes from the splitting of infinite loop spaces of
 Corollary 1.5 .

 These maps do not give us vector bundles over BP(r) n, because they are

 p-local. So we must build Thom spectra over maps X BOW(). We adopt a
 naive approach to this problem: surely there is a better way that would involve
 equivariant homotopy theory. In our cases, X is always simply connected,
 and the map actually comes from a map to BSO(p). We build Thom spectra

 by putting together Thom spaces as usual. So assume we have a map Y L
 BSO(r)(p), where Y is simply connected. We can assume r is at least 3,
 since we are really only interested in spectra. These assumptions get rid of the
 fundamental group, which can be a problem in localizations. What one would
 normally do is to pull back the universal bundle to Y, take its disk bundle,
 and mod out by its sphere bundle. But p-localization is really only defined on

This content downloaded from 128.151.124.135 on Sun, 03 Feb 2019 11:06:13 UTC
All use subject to https://about.jstor.org/terms



 THE 7-CONNECTED COBORDISM RING AT p= 3 3499

 the homotopy category of spaces, where one cannot see the SO(r)-action very
 well. But we can localize the universal sphere bundle S(gr) over BSO(r) to

 get a fibration S(>r)(p) BSO(r)(p) with fiber Srl. Then we can define S(f) (p)

 to be the induced fibration over Y. Then define the Thom space T(f) to be
 the cofibre of S(f) - Y. We will leave it to the reader to verify the usual
 properties of Thom spaces and Thom spectra, which all hold.

 Let us denote the resulting Thom spectrum over BP(r), by MBP(r, n).
 The B is still there because it refers to Brown, not to classifying space. The
 MBP(r, n) are only defined when n is divisible by 4 if p is odd and when n
 is even if p = 2. They are commutative ring spectra. We will concentrate on
 the case n = tq . Corollary 1.5 shows that MBP(r, tq) admits a ring spectrum
 map to MO(k) and to MU(k) when k < tq. The proof of Rosen's theorem
 applies without change to the MBP(r, tq), since the proof actually showed
 that the image of H* BPtq in H*BP is at least as large as (P//P(t -2))*
 and that the image of H*MO(k) is at least as small as (P//P(t - 2))* when
 k > (t - l)q + 2. Thus we get the following theorem.

 Theorem 5.1. Let f denote the map

 MBP(r, tq) -- MSO(p) BP.
 Then the kernel of H*f is the left ideal generated by the augmentaion ideal of
 P(t - 2).

 We then get the following corollary.

 Corollary 5.2. Let X denote a p-local finite spectrum whose cohomology is
 evenly graded and free over P(t - 2). Then, if tq < 2(pr + ...+p + 1),
 MBP(r, tq) A X is a wedge of suspensions of BP.

 Then methods of Section 2 then apply, and we get

 Theorem 5.3. Suppose tq < 2(pr + ... + p + 1). Then the torsion in
 7r*MBP(r, tq) is bounded and the Bousfield class of MBP(r, tq) coincides
 with the Bousfield class of BP.

 This theorem does allow us to deduce the Bousfield class of the MU(k).

 Corollary 5.4. (1) For any k, the Bousfield class of MU(k)(p) is the same as
 that of BP. If p is odd, the same is true for the Bousfield class of MO(k)(p).

 (2) At p = 2, the Bousfield class of MO(q(r)) is less than or equal to that
 of BP(r- 1).

 Here 0(r) is the dimension of the rth nonzero homotopy group of BSO as
 before.

 Proof If r and t are large enough, there is an orientation MBP(r, tq)
 MU(k), so the Bousfield classes of MU(k) and MO(k) are bounded above
 by that of BP. On the other hand, there is an orientation MU(k) - BP
 and if p is odd, an orientation MO(k) - BP. Thus the Bousfield classes of
 MU(k) and, if p is odd, MO(k), are also bounded below by that of BP.

 To examine the Bousfield class of MO(O(r)) at p = 2, we must recall the
 usual notation for Bousfield class that we have been avoiding, (X). The re-
 sults of Section 2 together with the work of Bahri and Mahowald previously
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 mentioned [BM] imply that MO(q(r)) A X is a wedge of suspensions of H F2
 if X is a finite spectrum whose homology which is free over A(r - 1). Any
 such spectrum will have type r. We now apply the fundamental Bousfield class
 decomposition used in [Hov 1]:

 (SO) = (Tel(O)) V V (Tel(r - 1)) V (F(r)).

 Here Tel(i) is the telescope of a vi-self-map on a type i finite spectrum, and
 F(r) is a finite spectrum of type r. The Bousfield classes are independent of
 the specific spectra chosen.

 If we smash this decomposition with MO(O(r)) , the last term will be (H F2).
 Also, since MO(O(r)) is a module over MU(O(r)), which has the same Bous-
 field class as BP, we have (MO(O(r)) A Tel(i)) = (MO(q(r)) A K(i)). Thus

 (MO(q(r))) < (K(O)) V V (K(r - 1)) V (HF2) = (BP(r - 1)),

 as required. Ei

 It is natural to conjecture that the Bousfield class of MO(O(r)) at p = 2
 is precisely that of BP(r - 1). To prove this, it would suffice to show that
 K(i)*MO(q(r)) 0 for i < r.

 Now we will show that, just as the 3-torsion in 7*MO(8)(3) = 7riMBP( 1, 2q)
 is all killed by 3, the p-torsion in 7r.MBP(2, 2q) is all killed by p. To do
 this we first must examine how the image of J behaves in 7r.MBP(r, tq).

 Lemma 5.5. If p is an odd prime, the composite

 ImJ 7z*S? 7tc*MBP(r, tq)

 is injective in dimensions < tq - 2 and 0 in dimensions > tq - 1. At p = 2
 the same theorem is true for the image of the complex J homomorphism.

 Proof. The proof is just like the proof of the analogous theorem for MO(k) and
 MU(k) in [Hov]. First assume p is odd. Suppose x e Im J in dimension k.
 Then the mapping cone on x, C(x), is the Thom complex of a map Sk+1 >
 BO. Because the image of J is concentrated in dimensions congruent to -1
 mod q, this map will lift to Sk+l1 BP(l)q . Assume k > tq - 2. Then it will
 lift further to Sk+1 ) BP(l)tq . Since the map of spectra BP(r) - BP(1) is
 onto on homotopy groups, it will lift even further to Sk+1 ) BP(r)tq . Hence
 x maps to 0 in 7c*MBP(r, tq). Injectivity for smaller values of k just follows
 from the high connectivity of BP(l)tq . The case p = 2 is similar. E

 Theorem 5.6. The torsion in 7n*MBP(2, 2q) is all killed by p.
 Proof We follow the same outline as the proof of the analogous theorem for
 7t*MO(8). We know that MBP(2, 2q) A X is a wedge of suspensions of BP
 for an evenly graded X whose cohomology is a free PI-module. So we can
 take X to be the (p - 1)q skeleton of BP, a finite spectrum with p cells. If
 we denote by X the fiber of the inclusion of the bottom cell SO - X, we must
 calculate the image of [X, SO] in [X, MBP(2, 2q)]. As before, [X, SO] -
 Z/pP-1, with generator a1 on the bottom cell. The ai for 1 < i < p - 1 all
 pile up to make the Z/pP- , in the sense that pa1I is 0 on the bottom cell but
 a2 on the second cell, etc. But all of these ai go to 0 in MBP(2, 2q) except
 a1. So the image in [X, MBP(2, 2q)] has order p. Ei

This content downloaded from 128.151.124.135 on Sun, 03 Feb 2019 11:06:13 UTC
All use subject to https://about.jstor.org/terms



 THE 7-CONNECTED COBORDISM RING AT p = 3 3501

 One can also find vI-elements in 7r.MBP(r, tq), show that the vl-torsion
 and the p-torsion in 7*MBP(2, 2q) coincide if p is odd, and show that any

 such torsion element is killed by any well-behaved vl-element. The proofs are
 all analogous to the corresponding theorems for MO(8).

 One also gets results analogous to those of Section 3 for MBP(2, 2q). That
 is, the Adams-Novikov spectral sequence collapses with a flat vanishing line as

 soon as a power of I1 is killed. Note that sparseness tells us the only non-
 zero differentials are dkq+l, since H*MBP(2, 2q) is concentrated in degrees
 congruent to 0 mod q. Again a 1,flP cannot survive the spectral sequence,
 since it does not survive the Adams-Novikov spectral sequence for the sphere.

 (It is killed by the Toda differential [Rav].) Once again, the only way this can
 happen is if there is a w E E~OPq(P1) with dq+Iw ai= afl"IP-. The fact that 3,B
 is the p-fold Toda bracket of a 1 then induces a differential d(p- )q+I (wP-' a) =

 flP2 -2p+2 . So the Adams-Novikov spectral sequence for MBP(2, 2q) collapses
 after at most p - 1 differentials. This differential may of course be pre-empted
 by a shorter one, though we would be very surprised if that happened.

 This behavior is very similar to that of Adams-Novikov spectral sequence

 for EOp_ I. The first author has shown [Hov] that no MO(k) can admit an
 orientation to EOp_ if p > 3. That proof does not apply to the MBP(2, 2q),
 so it is possible that they do in fact admit orientations to EOp-, .
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