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The Morava stabilizer group Sn

Fix a prime p and a positive integer n.

Sn is the automorphism group of the Honda formal group law
Hn in characteristic p, which has height n.

It is the group of units in a certain division algebra Dn over the
p-adic numbers Qp.

Dn is known to contain every degree n extension of Qp as a
subfield.

Sn is a pro-p-group that plays a critical role in chromatic
homotopy theory.
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The Morava stabilizer group Sn, continued

There is a spectrum En related to the classification of lifts of
Hn to characteristic zero.

There is an action of Sn on π∗(En) defined by Lubin-Tate
theory, which is hard to describe explicitly.

It gives an action on En defined up to homotopy.

The cohomology of this action controls the homotopy of the
K (n)-local sphere spectrum LK(n)S0.

This was all known in the ’70s.
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The Goerss-Hopkins-Miller theorem

In the ’90s Goerss-Hopkins-Miller showed

• En is an E∞-ring spectrum.

• The action of Sn is rigid enough to allow the existence of
homotopy fixed point sets for arbitrary closed subgroups
G ⊂ Sn.

• There is a spectral sequence

H∗(G ;π∗(En)) =⇒ π∗(EhG
n ).

There are homomorphisms

π∗(S0)→ π∗(LK(n)S0)→ π∗(EhG
n ).

Experience has shown that finite subgroups lead to interesting
homotopy fixed point sets.
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Finite subgroups of Sn

Such groups G have been classified by Hewett.

If (p − 1)pk |n but (p − 1)pk+1|/ n, then Sn has k + 1 maximal
finite subgroups. If (p− 1)|/ n, there is only one, and its order is
prime to p.

When p = 2 and n ≡ 2 mod 4, one 2-Sylow subgroup is the
quaternion group Q8. We exclude this case in what follows.

Otherwise the p-Sylow subgroup is always cyclic.

Sn has an element of order pk+1 iff (p − 1)pk divides n.
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Finite subgroups of Sn, continued

Sn has an element of order pk+1 iff (p − 1)pk divides n.

The maximal finite subgroup G containing such an element is
metacyclic

0→ Z/pk+1 → G → Z/m→ 0

where m prime to p, depends on n, and is divisible by p − 1.

When k = 0 and n = (p − 1)f , then m = (p − 1)(pf − 1).
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Some previously known examples: real K -theory

Let p = 2, n = 1, and G = Z/2.

In this case S1 = Z×2
∼= {±1} × Z2, the 2-adic units.

Then E1 = K2, the 2-adic completion of complex K -theory.

The group action is complex conjugation.

EhG
1 = KO2, the 2-adic completion of real K -theory.

The behavior of the Hopkins-Miller spectral sequence is well
known. It collapses from E4.
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Some previously known examples: TMF

Let TMF be the spectrum associated with topological modular
forms. It has been studied by Hopkins, Mahowald and Miller.

For p = 3, LK(2)TMF = EhG
2 where G is the Hewett group of

order 12.
The Hopkins-Miller spectral sequence shows the Toda
differential.

For p = 2, LK(2)TMF = EhG
2 where G is the semidirect

product of the quaternion group Q8 with Z/3.
The Hopkins-Miller spectral sequence detects a large amount
of stable homotopy at the prime 2.
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Some previously known examples: EOp−1

Let p be odd and n = p − 1. There is a Hewett group G of
order (p − 1)2p.

EhG
n is denoted by EOp−1. The symbol O is meant to suggest

the analogy with real K -theory.

EOp−1 has been studied by Hopkins-Miller,
Gorbunov-Mahowold and Nave.

Nave used it to show the Smith-Toda complex V ((p + 1)/2)
does not exist.
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Some previously known examples: real
Johnson-Wilson theory

Let p = 2 and n > 0. There is a Hewett group G of order
2(2n − 1).
The Johnson-Wilson spectrum E (n) has

π∗(E (n)) = Z(2)[v1, . . . , vn−1, v
±1
n ].

It has an action of Z/2 by complex conjugation. The fixed
point set, ER(n) has been studied by Hu-Kriz and
Kitchloo-Wilson. Averett has recently shown that after
completion, ER(n) = EhG

n .
There is a fibration

Σλ(n)ER(n)→ ER(n)→ E (n)

where λ(n) = 22n+1 − 2n+2 + 1.
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New results: the action of Z/p

Let n = (p − 1)f and |G | = p(p − 1)(pf − 1)

π∗(En) is roughly a polynomial algebra of rank (p − 1)f .

Theorem 1

Polynomial generators can be chosen so that Z/p acts on them
linearly via f copies of the reduced regular representation.

The quotient group G/(Z/p) = Z/(p − 1)(pf − 1) acts on
H∗(Z/p;π∗(En)) and gives it an eigenspace decomposition.



Homotopy
fixed point

sets of finite
subgroups of

Sn

Background

The Morava
stabilizer group

The GHM
theorem

Finite subgroups

Old examples

Real K -theory

TMF

EOp−1
ER(n)

New results

Action of Z/p

Cohomology

Differentials

New results: the action of Z/p

Let n = (p − 1)f and |G | = p(p − 1)(pf − 1)

π∗(En) is roughly a polynomial algebra of rank (p − 1)f .

Theorem 1

Polynomial generators can be chosen so that Z/p acts on them
linearly via f copies of the reduced regular representation.

The quotient group G/(Z/p) = Z/(p − 1)(pf − 1) acts on
H∗(Z/p;π∗(En)) and gives it an eigenspace decomposition.



Homotopy
fixed point

sets of finite
subgroups of

Sn

Background

The Morava
stabilizer group

The GHM
theorem

Finite subgroups

Old examples

Real K -theory

TMF

EOp−1
ER(n)

New results

Action of Z/p

Cohomology

Differentials

New results: the action of Z/p

Let n = (p − 1)f and |G | = p(p − 1)(pf − 1)

π∗(En) is roughly a polynomial algebra of rank (p − 1)f .

Theorem 1

Polynomial generators can be chosen so that Z/p acts on them
linearly via f copies of the reduced regular representation.

The quotient group G/(Z/p) = Z/(p − 1)(pf − 1) acts on
H∗(Z/p;π∗(En)) and gives it an eigenspace decomposition.



Homotopy
fixed point

sets of finite
subgroups of

Sn

Background

The Morava
stabilizer group

The GHM
theorem

Finite subgroups

Old examples

Real K -theory

TMF

EOp−1
ER(n)

New results

Action of Z/p

Cohomology

Differentials

New results: the action of Z/p

Let n = (p − 1)f and |G | = p(p − 1)(pf − 1)

π∗(En) is roughly a polynomial algebra of rank (p − 1)f .

Theorem 1

Polynomial generators can be chosen so that Z/p acts on them
linearly via f copies of the reduced regular representation.

The quotient group G/(Z/p) = Z/(p − 1)(pf − 1) acts on
H∗(Z/p;π∗(En)) and gives it an eigenspace decomposition.



Homotopy
fixed point

sets of finite
subgroups of

Sn

Background

The Morava
stabilizer group

The GHM
theorem

Finite subgroups

Old examples

Real K -theory

TMF

EOp−1
ER(n)

New results

Action of Z/p

Cohomology

Differentials

New results: cohomology of G

Theorem 2

Modulo some elements on the 0-line,

H∗(G ;π∗(En)) = E (hi ,0, . . . , hf ,0)

⊗P(∆1/(p−1)β,∆±1)[[x1, . . . , xf−1]]

where
hi ,0 ∈ H1,2pi−2 β ∈ H2,0

∆ ∈ H0,2|G | xi ∈ H0,2p(pf−pi )

Remark: The element ∆1/(p−1)β ∈ H2,2p(pf−1) is not a
product, but is written this way to simplify statements in the
next theorem.
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New results: differentials

Theorem 3

The Hopkins-Miller spectral sequence has the following
differentials for 1 ≤ i ≤ f , and no others.

• d2pi−1(∆pi−1
) = hi ,0β

pi−1∆pi−1
.

• d1+2(p−1)(pi−1)(hi ,0∆(p−1)pi−1
)

= ∆1/(p−1)β1+(p−1)(pi−1)xi∆
(p−1)pi−1

where xf = 1. ∆pf
is a permanent cycle.

Remark: The last differential kills a unit multiple of
(∆1/(p−1)β)1+(p−1)(pf−1) and gives a horizontal vanishing line.
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New results: the Hopkins-Miller spectral sequence,
continued

Corollary

There are permanent cycles

ai = ∆ei hi ,0

yi = ∆e′i xi

with p-fold Massey products

〈ai , . . . , ai 〉 = yi∆
1/(p−1)β.
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