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1. Recollections about Artin-Schreier
curves

We will use the following notation throughout. Fix
a prime p and positive integer f . Then let

e = pf − 1 q = p− 1
h = qf m = qe.

Theorem 1 (2002). Let C(p, f ) be the Artin-Schreier
curve over Fp defined by the affine equation

ye = xp − x.

(Assume that (p, f ) 6= (2, 1).) Then its Jacobian
J(C(p, f )) has a 1-dimensional formal summand
of height h.

Properties of C(p, f ):

• Its genus is q(e−1)/2, eg it is 0 in the excluded
case, and 1 in the cases (p, f ) = (2, 2) and (3, 1).
In these cases C is an elliptic curve whose formal
group law has height 2.

• Over Fph it has an action by the group

G = Fp o µm

given by

(x, y) 7→ (ζex + a, ζy)

for a ∈ Fp and ζ ∈ µm.
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Remarks

• Let Gn denote the extension of the Morava sta-
bilizer group Sn by the Galois group Cn. Given
a finite subgroup G ⊂ Gn, Hopkins-Miller can
construct a “homotopy fixed point spectrum”
EhG

n . The group G above was shown by Hewett
to be a maximal finite subgroup of Gh. It acts
on the 1-dimensional summand of Ĵ(C(p, f )) in
the appropriate way.

• The curve above does not lead to a Landweber
exact functor and cohomology theory. In order
to get on we need to lift the curve to character-
istic 0 in the right way. We will describe such a
lifting below.

• Gorbunov-Mahowald studied this curve for f =
1. They found a lifting of the curve to charac-
teristic zero associated with the Lubin-Tate lift
of the formal group law of height p− 1.
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2. Deforming the Artin-Schreier curve

We want a lifting of C(p, f ) that admits a coor-
dinate change similar to the one for the Weierstrass
curve used in the construction of tmf . The equation
will have the form

ye = xp + · · ·
with (nonaffine) coordinate change

x 7→ x + t̃ where t̃ =

f∑
i=1

tiy
(pf−pj)/p

y 7→ y

The ti above are related to the generators of the same
name in BP∗(BP ).

In order to state this precisely we need some nota-
tion. Let

I = (i1, . . . , if)

be an f -tuple of nonnegative integers and define

|I| =
∑

k ik ||I|| =
∑

k(p
k − 1)ik

tI =
∏

k t
ik
k I ! =

∏
k ik!

The coefficients in our equation will be formal vari-
ables aI with |I| ≤ p (where a0 = p!) with topologi-
cal dimension 2||I||. We will sometimes write aI as
a||I||. For |I| ≤ p, I is uniquely determined by its
norm ||I||. The number of indices I with 0 < |I| ≤ p
is

(
p+f
f

)
− 1.
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Then the equation for our curve is

ye =

p∑
i=0

xp−i

(p− i)!

∑
|I|=i

aIy
(ei−||I||)/p

= xp + amx + · · ·
(recall that e = pf − 1) and the effect of the coordi-
nate change on the coefficients aI is given by

aI 7→
∑

J+K=I

aJ
tK

K!
.

For f = 1 the equation simplifies to the Gorbunov-
Mahowald equation

yp−1 = xp +

p∑
i=1

aqix
p−i

(p− i)!

with coordinate change

aqi 7→ aqi +
∑

0<j<i

aqjt
i−j
1

(i− j)!
+

p!ti1
i!

.
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Theorem 2 (2004). Let

A = Zp[aI : 0 < |I| ≤ p]

A = A/(am − 1)

A ⊃ J = (ai : i 6= m, )

Then the Jacobian of curve above defined above
over the ring A/J2 has a 1-dimensional formal
summand of height h. The corresponding formal
group law has Landweber exact liftings to A and
a−1

m A with the former given by

vr =


pam+pr−1 + apr−1 if 1 ≤ r ≤ min(f, h− 1)
ase+pi−1 if f < r < h and p > 2
m− 2a2e if r = h and p = 2
1 if r = h and p > 2;

up to unit scalar, where r = sf +i with 1 ≤ i ≤ f .

There is an associated Hopf algebroid

Γ = A[t1, . . . , tf ]

where each ti is primitive and the right unit given by
the coordinate change formula above.

Fantasy 3. For each (p, f ) as above there is a
spectrum generalizing tmf whose homotopy can be
computed by an Adams-Novikov type spectral se-
quence with

E2 = ExtΓ(A, A).
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Remarks

(i) This fantasy is not likely to be true for
f > 1 because the ring A is too large. Ide-
ally its Krull dimension should be pf , the sum
of the height of the formal group law and the
number of coordinate change parameters.

Replace the equation above with

ye =

p∏
j=1

(x + r̃j)

with

r̃j =

f∑
i=1

rj,iy
(pf−pi)/p and |rj,i| = 2(pi − 1).

Thus we get a curve defined over the ring

R = Zp[rj,i : 1 ≤ j ≤ p, 1 ≤ i ≤ f ],

which has the desired Krull dimension.
However it leads to an uninteresting Ext group.

The coordinate change above induces

rj,i 7→ rj,i + ti

and

ExtsΓ(R) =

{
Zp[rj,i − rp,i] for s = 0
0 for s > 0.

The equation for the curve is actually defined
over the subring

B = RΣp,
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where Σp acts on R via the second subscript.
This ring is a quotient of A, but its structure is
unknown for f > 1 except for (p, f ) = (2, 2).
It is clearly a module (presumably free of rank
p!f−1) over the subring

C = RΣ
f
p

where the f copies of Σp act independently on
the f sets of p generators of R. Its structure is
well known, namely

C = Zp[σk,i : 1 ≤ i ≤ f, 1 ≤ k ≤ p]

where σk,i is the kth elementary symmetric func-
tion in the variables r1,i, . . . , rp,i. It is the image
of ak(pi−1)/(p− k)!.

(ii) Relation to tmf . The case (p, f ) =
(3, 1) leads to eo2. We will say more about the
Ext computation below.

For (p, f ) = (2, 2) our equation reads

y3 = x2 + (a1y + a3)x + a2y
2 + a4y + a6,

so our ais are the Weierstrass ais up to sign. In
the ring B there is a relation

a2
4 − a1a3a4 = 4a2a6 − a2a

2
3 − a2

1a6,

which makes it a free module on {1, a4} over

C = Z2[a1, a2, a3, a6].

Our coordinate change is

y 7→ y and x 7→ x + t1y + t2,
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while in tmf it is

y 7→ y + r and x 7→ x + sy + t.

It seems likely that our fantasy (with A replaced
by B) would lead to the spectrum

tmf ∧
(
S0 ∪ν e4

)
.

Our right unit formula is

a(0,2) = a6 7→ a6 + a3 t2 + t2
2

a(1,1) = a4 7→ a4 + a3 t1 + a1t2 + 2 t1 t2
a(0,1) = a3 7→ a3 + 2 t2

a(2,0) = a2 7→ a2 + a1 t1 + t1
2

a(1,0) = a1 7→ a1 + 2 t1,

while in tmf it is

a6 7→ a6 + a4 r + a3 t + a2 r2

+a1 r t + t2 − r3

a4 7→ a4 + a3 s + 2 a2 r

+a1(r s + t) + 2 s t− 3 r2

a3 7→ a3 + a1 r + 2 t

a2 7→ a2 + a1 s− 3 r + s2

a1 7→ a1 + 2 s.

The former can be obtained from the latter by

r 7→ 0

s 7→ t1
t 7→ t2
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3. Some Ext calculations

Recall our right unit formula

ηR(aI) =
∑

J+K=I

aJ
tK

K!
.

In particular

ηR(ap(pi−1)) = ap(pi−1) +
∑

0<j<p

aj(pi−1)

tp−j
i

(p− j)!
+ tpi .

This leads to a change-of-rings isomorphism

ExtΓ(A, A) = ExtΓ′(A
′, A′)

where

A′ = A/(ap∆1, . . . , ap∆f
)

and Γ′ = A′[t1, . . . , tf ]/(ηR(ap(pi−1))− ap(pi−1)).

Note that Γ′ is a free A′-module of rank pf .
Next it is convenient to filter by powers of the max-

imal ideal J in A′. We get

E0A
′ = Z/(p)[aI : 0 ≤ |I| ≤ p, I 6= p∆i]

= SM where M = J/J2

E0Γ
′ = E0A

′ ⊗ P

where P = Z/(p)[ti]/(tpi )

The P -comodule M is a vector space of rank(
p + f

f

)
− f.
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For f = 1, M has basis{
a0, aq, . . . , a(p−1)q

}
and is a free P -comodule. Its symmetric algebra is
stably equivalent to

Z/(p)[ap
(p−1)q],

so above the 0-line we have

ExtP (SM) = Z/(p)[∆]⊗ E(h1,0)⊗ P (b1,0).

where ∆ = ap
(p−1)q. In the spectral sequence there

are differentials

d2q+1(∆) = h1,0b
q
1,0

d2q2+1(h1,0∆
p−1) = bq2+1

1,0

We now turn to (p, f ) = (3, 2). The following is a
picture of M .

a16

��

a18

��

oo

a8

��

a10

��

oo a12

��

oo

a0 a2oo a4oo

Horizontal and vertcial arrows represent “Quillen op-
erations” dual to t1 and t2 respectively. This comod-
ule is is dual to unit coideal I .

The following 2-variable Poincaré series describes
SM up to stable equivalance.

SM =

(
1

1− s3t24

) (
1

1− s3t72

) (
1 + Σ40I−1

1− s3I4

)
.
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Without the term involving I−1, the Ext group in
positive filtrations is contained in

P (a3
12, a

3
18, z)⊗ E(h1,0, h2,0)⊗ P (b1,0, b2,0)

where z ∈ Ext−4,0. In particular,

a3
4 = zb2

1,0

a3
16 = zb2

2,0

Tensoring with 1+Σ40I−1 corresponds to tensoring
the Ext group with E(u) with u ∈ Ext1,40.

It is likely that there are virtual Adams differentials

d5(z) = h1,0

d9(z
2h1,0) = b1,0

d5(a
3
18) = h2,0b

2
2,0

d9(h2,0a
6
18) = b5

2,0

To get the 2-variable Poincaré series above:

Over T (ti), let xi denote the class of the comod-
ule which is the desuspension of the unit coideal Ii

centered in dimension 0, so that x2
i = 1. We know

that

S(ΣnT (ti)) =
1

1− s3t3n+6|vi|

S(Σnxi) =
1 + Σnxi

1− s3t3n+3|vi|/2



13

As a stable comodule over E(ti), we have

In = Σ3n|vi|/2xn
i .

Now over T (t1) we have

M = T (t1)⊕ Σ16T (t1)⊕ Σ34x1

so

SM =

(
1

1− s3t24

) (
1

1− s3t72

) (
1 + s34x1

1− s3t108

)
.

Similarly over T (t2) we have

M = T (t2)⊕ Σ4T (t2)⊕ Σ16x2

so

SM =

(
1

1− s3t96

) (
1

1− s3t108

) (
1 + s16x2

1− s3t72

)
.
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