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1. RECOLLECTIONS ABOUT ARTIN-SCHREIER
CURVES

We will use the following notation throughout. Fix
a prime p and positive integer f. Then let

e=p -1 ¢g=p-1
h = qf m = qe.

Theorem 1 (2002). Let C(p, f) be the Artin-Schreier
curve over ¥, defined by the affine equation

Y- =af —x.
(Assume that (p, f) # (2,1).) Then its Jacobian
J(C(p, f)) has a 1-dimensional formal summand

of height h.

Properties of C(p, f):

e [ts genus is g(e — 1) /2, eg it is 0 in the excluded
case, and 1 in the cases (p, f) = (2,2) and (3, 1).
In these cases C'is an elliptic curve whose formal
group law has height 2.

e Over F ), it has an action by the group

G=F,x
given by
(#,y) — (C"z + a,(y)
for a € F), and ¢ € pyp,.



REMARKS

e Let (,, denote the extension of the Morava sta-
bilizer group S,, by the Galois group C),,. Given
a finite subgroup G C G,,, Hopkins-Miller can
construct a “homotopy fixed point spectrum”
E"GThe group G above was shown by Hewett
to be a maximal finite subgroup of Gy,. It acts

on the 1-dimensional summand of J(C'(p, f)) in
the appropriate way:.

e The curve above does not lead to a Landweber
exact functor and cohomology theory. In order
to get on we need to lift the curve to character-
istic 0 in the right way. We will describe such a
lifting below.

e Gorbunov-Mahowald studied this curve for f =
1. They found a lifting of the curve to charac-
teristic zero associated with the Lubin-Tate lift
of the formal group law of height p — 1.
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2. DEFORMING THE ARTIN-SCHREIER CURVE

We want a lifting of C(p, f) that admits a coor-
dinate change similar to the one for the Weierstrass
curve used in the construction of tm f. The equation
will have the form

yezxp+...

with (nonaffine) coordinate change

f .

T — r+1 where t = Z tiy(pf_p])/p
i=1

y —y

The t; above are related to the generators of the same
name in BP,(BP).

In order to state this precisely we need some nota-
tion. Let

I'=(i1,...,0¢)
be an f-tuple of nonnegative integers and define

] = Zkik ]| = Zk(pk—l)ik:
th = TI.tF 1" = T], %!

The coefficients in our equation will be formal vari-
ables a; with |I]| < p (where ag = p!) with topologi-
cal dimension 2||I]|. We will sometimes write a; as
ajr- For |[I| < p, I is uniquely determined by its
norm ||/ ||. The number of indices I with 0 < |[I] < p

is (") —1.



Then the equation for our curve is

. Z P 'Zayez I|11])/p

= \f =i
= xp + apmx + -
(recall that e = p/ — 1) and the effect of the coordi-
nate change on the coefficients ay is given by

For f = 1 the equation simplifies to the Gorbunov-
Mahowald equation

— (p—1)!

with coordinate change

a8 plit
(gi — Qg + Z q7°1 1.
(2 —7)! 7!
0<y<t
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Theorem 2 (2004). Let
A = Zylar: 0 < |I] < p

A = Al(ay —1)
ADJ = (a;:i#m,)
Then the Jacobian of curve above defined above
over the ring A/J* has a 1-dimensional formal
summand of height h. The corresponding formal
group law has Landweber exact liftings to A and
a, A with the former given by

( Py + a1 if 1 <7 < min(f,h—1)
U:<ase+pi—1 iff<7“<hcmdp>2
") m - 2an ifr="h andp=2

|1 if r=h and p > 2;

up to unit scalar, wherer = sf+1 with1 <1 < f.

There is an associated Hopf algebroid
[' = A[tl,...,tf]

where each ¢; is primitive and the right unit given by
the coordinate change formula above.

Fantasy 3. For each (p, f) as above there is a
spectrum generalizing tmf whose homotopy can be
computed by an Adams-Novikov type spectral se-
quence with



REMARKS

(i) This fantasy is not likely to be true for
f > 1 because the ring A is too large. Ide-
ally its Krull dimension should be pf, the sum
of the height of the formal group law and the
number of coordinate change parameters.

Replace the equation above with

H:c+rj

with
/ P _
=y om0 and gl =200 - 1),

Thus we get a curve defined over the ring
RzZp[rj,Z-:lﬁjSp, 1§’L§f],
which has the desired Krull dimension.
However it leads to an uninteresting Ext group.
The coordinate change above induces
Tiit—=Tji +t;
and
Zyri; —ry; for s =0
S _ pL" 7, byt
EMTGU__{O for s > 0.

The equation for the curve is actually defined
over the subring

B =R,



where >, acts on IR via the second subscript.
This ring is a quotient of A, but its structure is
unknown for f > 1 except for (p, f) = (2,2).
It is clearly a module (presumably free of rank
p!/ =1 over the subring

C = R%

where the f copies of X, act independently on
the f sets of p generators of R. Its structure is
well known, namely

C=Zyon; 1<i<f 1<k<p]

where oy, ; is the kth elementary symmetric func-
tion in the variables rq 4, ..., rp,;. It is the image

of ak@i_l)/(p — ]f)‘

(ii) RELATION TO tmf. The case (p, f) =
(3,1) leads to eoy. We will say more about the
Ext computation below.

For (p, f) = (2,2) our equation reads

y3 — 7’ + (a1y + as)r + a2y2 + auy + ag,

so our a;s are the Weierstrass a;s up to sign. In
the ring B there is a relation

ai — arazays = 4asag — a2a§ — a%ae,,
which makes it a free module on {1, ay} over
C = ZQ[CLl, as, as, CL6].
Our coordinate change is

Y — Yy and T — T+ ty + to,



while in tm f it is

yr—y-—+r

and T — x+ sy +t.

[t seems likely that our fantasy (with A replaced
by B) would lead to the spectrum

tmf N (SO U, 64) :

Our right unit formula is

a,2) = Q¢
a(1,1) = a4
Q1) = as
a2,0) = @2
a(1,0) = A1

—

—>

—

—>

—

a6—|—a3t2+t22

as+ agt; + arto + 2t 9
as + 29

a2+a1t1 +t12

ay + 2y,

while in tm f it is

ag +— a6+a4r+a3t+a2r2
—|—a1fr‘t+t2—fr’3

a, — as+aszs—+2asr
+ai(rs+t)+2st— 37
ag — ag+a;r—+2t

Uy — as—+ays—3r+ s

a, — aj+2s.

The former can be obtained from the latter by

r — 0
S — 1

tl—>t2
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3. SOME EXT CALCULATIONS

Recall our right unit formula

tK
nR(CL[) = Z CLJE.
J+K=I
In particular
7
7mmm#n*:%WAr%E:QMﬁn@Ljﬂ+ﬁ-

0<j<p
This leads to a change-of-rings isomorphism
Extp(A, A) = Ext (A’ A
where
A" = Af(apn,, -5 apn,)
and  T" = A'lty,....t5]/(r(ay,pi-1) = Gppi1))-
Note that I is a free A’-module of rank p/.

Next it is convenient to filter by powers of the max-
imal ideal J in A". We get

EyA" = Z/(p)la; : 0 < |I| < p, I # pAj]
= SM  where M = J/J?
E)l" = E/A®P
where P = Z/(p)ti]/ (t];)

The P-comodule M is a vector space of rank

()
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For f =1, M has basis

{a0> Qgy - - -5 a(p—l)q}
and is a free P-comodule. Its symmetric algebra is
stably equivalent to

A
so above the 0-line we have
Extp(SM) = Z/(p)|A] ® E(h10) ® P(bi).
where A = ay(9 . In the spectral sequence there

. S (p—1)g
are differentials

dagr1(A) = hiobf,

2
dogp1 (i pAPY) = b

We now turn to (p, f) = (3,2). The following is a
picture of M.

ai16+— Q18
as aio ai2
ao as a4

Horizontal and vertcial arrows represent “Quillen op-
erations” dual to £; and ¢, respectively. This comod-
ule is is dual to unit coideal I.

The following 2-variable Poincaré series describes
SM up to stable equivalance.

40 7—1
Sl — 1 1 1+ 2T |
1 — s3t24 1 — g3t 1 — s3[4
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Without the term involving I~!, the Ext group in
positive filtrations is contained in

P(aty, als, 2) @ E(hy, hag) @ P(byg, bay)
where z € Ext™°. In particular,
ai = Zb%,o

3 2
A1 = 252,0

Tensoring with 1+%4°7~! corresponds to tensoring
the Ext group with £(u) with v € Ext'*.
It is likely that there are virtual Adams differentials

ds(z) = hig
do(2°h1) = big
ds(ajs) = hoobi
(h20a18) = bg,o

To get the 2-variable Poincaré series above:

Over T(t;), let x; denote the class of the comod-
ule which is the desuspension of the unit coideal I;

centered in dimension 0, so that 7 = 1. We know
that

i 1
ST (t;) = 1 — $343n+6[u;]
1+ X",
S(Znﬂlj‘l) — i -

1 — g3¢3n+3lvl/2



As a stable comodule over E(t;), we have

" — E3n|vz|/2x;1

Now over T'(t1) we have
M = T(tl) D 216T(t1) D 234$1

SO

o= (=) (=) (T )
1 s3¢24 ) \ 1 — 3472 ) \ 1 _ g34108

Similarly over T'(t9) we have
M =T(ty) ® ST (ty) @ X102,
SO

o = (=) (=) ()
1 — g3¢96 1 — g3¢108 1 — g3¢72
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