Global Methods in Homotopy Theory Seminar

Hopes and dreams about Artin-Schreier curves

Doug Ravenel

University of Rochester and
Harvard University

December 16, 2005

1. Recollections About Artin-Schreier

 CURVESWe will use the following notation throughout. Fix a prime p and positive integer f. Then let

$$
\begin{array}{rlrl}
e & =p^{f}-1 & q & =p-1 \\
h & =q f & m & =q e .
\end{array}
$$

Theorem 1 (2002). Let $C(p, f)$ be the Artin-Schreier curve over \mathbf{F}_{p} defined by the affine equation

$$
y^{e}=x^{p}-x
$$

(Assume that $(p, f) \neq(2,1)$.) Then its Jacobian $J(C(p, f))$ has a 1-dimensional formal summand of height h.

Properties of $C(p, f)$:

- Its genus is $q(e-1) / 2$, eg it is 0 in the excluded case, and 1 in the cases $(p, f)=(2,2)$ and $(3,1)$. In these cases C is an elliptic curve whose formal group law has height 2 .
- Over $\mathbf{F}_{p^{h}}$ it has an action by the group

$$
G=\mathbf{F}_{p} \rtimes \mu_{m}
$$

given by

$$
(x, y) \mapsto\left(\zeta^{e} x+a, \zeta y\right)
$$

for $a \in \mathbf{F}_{p}$ and $\zeta \in \mu_{m}$.

REmARKS

- Let \mathbf{G}_{n} denote the extension of the Morava stabilizer group S_{n} by the Galois group C_{n}. Given a finite subgroup $G \subset \mathbf{G}_{n}$, Hopkins-Miller can construct a "homotopy fixed point spectrum" $E_{n}^{h G}$. The group G above was shown by Hewett to be a maximal finite subgroup of \mathbf{G}_{h}. It acts on the 1-dimensional summand of $\widehat{J}(C(p, f))$ in the appropriate way.
- The curve above does not lead to a Landweber exact functor and cohomology theory. In order to get on we need to lift the curve to characteristic 0 in the right way. We will describe such a lifting below.
- Gorbunov-Mahowald studied this curve for $f=$ 1. They found a lifting of the curve to characteristic zero associated with the Lubin-Tate lift of the formal group law of height $p-1$.

2. Deforming the Artin-Schreier curve

We want a lifting of $C(p, f)$ that admits a coordinate change similar to the one for the Weierstrass curve used in the construction of $\operatorname{tm} f$. The equation will have the form

$$
y^{e}=x^{p}+\cdots
$$

with (nonaffine) coordinate change

$$
\begin{aligned}
x & \mapsto x+\tilde{t} \quad \text { where } \tilde{t}=\sum_{i=1}^{f} t_{i} y^{\left(p^{f}-p^{j}\right) / p} \\
y & \mapsto y
\end{aligned}
$$

The t_{i} above are related to the generators of the same name in $B P_{*}(B P)$.
In order to state this precisely we need some notation. Let

$$
I=\left(i_{1}, \ldots, i_{f}\right)
$$

be an f-tuple of nonnegative integers and define

$$
\begin{array}{rlrl}
|I| & =\sum_{k} i_{k} & \|I\| & =\sum_{k}\left(p^{k}-1\right) i_{k} \\
t^{I} & =\prod_{k} t_{k}^{i_{k}} \quad I! & =\prod_{k} i_{k}!
\end{array}
$$

The coefficients in our equation will be formal variables a_{I} with $|I| \leq p$ (where $a_{0}=p$!) with topological dimension $2\|I\|$. We will sometimes write a_{I} as $a_{\|I\| \|}$. For $|I| \leq p, I$ is uniquely determined by its norm $\|I\|$. The number of indices I with $0<|I| \leq p$ is $\binom{p+f}{f}-1$.

Then the equation for our curve is

$$
\begin{aligned}
y^{e} & =\sum_{i=0}^{p} \frac{x^{p-i}}{(p-i)!} \sum_{|I|=i} a_{I} y^{(e i-\|I\| \|) / p} \\
& =x^{p}+a_{m} x+\cdots
\end{aligned}
$$

(recall that $e=p^{f}-1$) and the effect of the coordinate change on the coefficients a_{I} is given by

$$
a_{I} \mapsto \sum_{J+K=I} a_{J} \frac{t^{K}}{K!} .
$$

For $f=1$ the equation simplifies to the GorbunovMahowald equation

$$
y^{p-1}=x^{p}+\sum_{i=1}^{p} \frac{a_{q i} x^{p-i}}{(p-i)!}
$$

with coordinate change

$$
a_{q i} \mapsto a_{q i}+\sum_{0<j<i} \frac{a_{q j} t_{1}^{i-j}}{(i-j)!}+\frac{p!t_{1}^{i}}{i!}
$$

Theorem 2 (2004). Let

$$
\begin{aligned}
A & =\mathbf{Z}_{p}\left[a_{I}: 0<|I| \leq p\right] \\
\bar{A} & =A /\left(a_{m}-1\right) \\
\bar{A} \supset J & =\left(a_{i}: i \neq m,\right)
\end{aligned}
$$

Then the Jacobian of curve above defined above over the ring \bar{A} / J^{2} has a 1-dimensional formal summand of height h. The corresponding formal group law has Landweber exact liftings to \bar{A} and $a_{m}^{-1} A$ with the former given by $v_{r}= \begin{cases}p a_{m+p^{r}-1}+a_{p^{r}-1} & \text { if } 1 \leq r \leq \min (f, h-1) \\ a_{s e+p^{i}-1} & \text { if } f<r<h \text { and } p>2 \\ m-2 a_{2 e} & \text { if } r=h \text { and } p=2 \\ 1 & \text { if } r=h \text { and } p>2 ;\end{cases}$
up to unit scalar, where $r=s f+i$ with $1 \leq i \leq f$.
There is an associated Hopf algebroid

$$
\Gamma=A\left[t_{1}, \ldots, t_{f}\right]
$$

where each t_{i} is primitive and the right unit given by the coordinate change formula above.

Fantasy 3. For each (p, f) as above there is a spectrum generalizing tmf whose homotopy can be computed by an Adams-Novikov type spectral sequence with

$$
E_{2}=\operatorname{Ext}_{\Gamma}(A, A) .
$$

REmARKS

(i) This fantasy is not likely to be true for $f>1$ because the ring A is too large. Ideally its Krull dimension should be $p f$, the sum of the height of the formal group law and the number of coordinate change parameters.

Replace the equation above with

$$
y^{e}=\prod_{j=1}^{p}\left(x+\tilde{r}_{j}\right)
$$

with

$$
\tilde{r}_{j}=\sum_{i=1}^{f} r_{j, i} y^{\left(p^{f}-p^{i}\right) / p} \quad \text { and } \quad\left|r_{j, i}\right|=2\left(p^{i}-1\right)
$$

Thus we get a curve defined over the ring

$$
R=\mathbf{Z}_{p}\left[r_{j, i}: 1 \leq j \leq p, 1 \leq i \leq f\right]
$$

which has the desired Krull dimension.
However it leads to an uninteresting Ext group. The coordinate change above induces

$$
r_{j, i} \mapsto r_{j, i}+t_{i}
$$

and

$$
\operatorname{Ext}_{\Gamma}^{s}(R)= \begin{cases}\mathbf{Z}_{p}\left[r_{j, i}-r_{p, i}\right] & \text { for } s=0 \\ 0 & \text { for } s>0\end{cases}
$$

The equation for the curve is actually defined over the subring

$$
B=R^{\Sigma_{p}}
$$

where Σ_{p} acts on R via the second subscript. This ring is a quotient of A, but its structure is unknown for $f>1$ except for $(p, f)=(2,2)$. It is clearly a module (presumably free of rank $p!^{f-1}$) over the subring

$$
C=R^{\Sigma_{p}^{f}}
$$

where the f copies of Σ_{p} act independently on the f sets of p generators of R. Its structure is well known, namely

$$
C=\mathbf{Z}_{p}\left[\sigma_{k, i}: 1 \leq i \leq f, 1 \leq k \leq p\right]
$$

where $\sigma_{k, i}$ is the k th elementary symmetric function in the variables $r_{1, i}, \ldots, r_{p, i}$. It is the image of $a_{k\left(p^{i}-1\right)} /(p-k)$!.
(ii) Relation to tmf. The case $(p, f)=$ $(3,1)$ leads to $e O_{2}$. We will say more about the Ext computation below.
For $(p, f)=(2,2)$ our equation reads
$y^{3}=x^{2}+\left(a_{1} y+a_{3}\right) x+a_{2} y^{2}+a_{4} y+a_{6}$,
so our a_{i} s are the Weierstrass $a_{i} \mathrm{~S}$ up to sign. In the ring B there is a relation

$$
a_{4}^{2}-a_{1} a_{3} a_{4}=4 a_{2} a_{6}-a_{2} a_{3}^{2}-a_{1}^{2} a_{6}
$$

which makes it a free module on $\left\{1, a_{4}\right\}$ over

$$
C=\mathbf{Z}_{2}\left[a_{1}, a_{2}, a_{3}, a_{6}\right] .
$$

Our coordinate change is

$$
y \mapsto y \quad \text { and } \quad x \mapsto x+t_{1} y+t_{2},
$$

while in $t m f$ it is

$$
y \mapsto y+r \quad \text { and } \quad x \mapsto x+s y+t
$$

It seems likely that our fantasy (with A replaced by B) would lead to the spectrum

$$
t m f \wedge\left(S^{0} \cup_{\nu} e^{4}\right)
$$

Our right unit formula is

$$
\begin{aligned}
& a_{(0,2)}=a_{6} \mapsto a_{6}+a_{3} t_{2}+t_{2}{ }^{2} \\
& a_{(1,1)}=a_{4} \mapsto a_{4}+a_{3} t_{1}+a_{1} t_{2}+2 t_{1} t_{2} \\
& a_{(0,1)}=a_{3} \mapsto a_{3}+2 t_{2} \\
& a_{(2,0)}=a_{2} \mapsto a_{2}+a_{1} t_{1}+t_{1}{ }^{2} \\
& a_{(1,0)}=a_{1} \mapsto a_{1}+2 t_{1}, \\
& \text { while in } t m f \text { it is }
\end{aligned}
$$

$$
\begin{aligned}
a_{6} \mapsto & a_{6}+a_{4} r+a_{3} t+a_{2} r^{2} \\
& +a_{1} r t+t^{2}-r^{3} \\
a_{4} \mapsto & a_{4}+ \\
& a_{3} s+2 a_{2} r \\
& +a_{1}(r s+t)+2 s t-3 r^{2} \\
a_{3} \mapsto & a_{3}+a_{1} r+2 t \\
a_{2} \mapsto & a_{2}+a_{1} s-3 r+s^{2} \\
a_{1} \mapsto & a_{1}+2 s .
\end{aligned}
$$

The former can be obtained from the latter by

$$
\begin{aligned}
r & \mapsto 0 \\
s & \mapsto t_{1} \\
t & \mapsto t_{2}
\end{aligned}
$$

3. Some Ext calculations

Recall our right unit formula

$$
\eta_{R}\left(a_{I}\right)=\sum_{J+K=I} a_{J} \frac{t^{K}}{K!}
$$

In particular

$$
\eta_{R}\left(a_{p\left(p^{i}-1\right)}\right)=a_{p\left(p^{i}-1\right)}+\sum_{0<j<p} a_{j\left(p^{i}-1\right)} \frac{t_{i}^{p-j}}{(p-j)!}+t_{i}^{p}
$$

This leads to a change-of-rings isomorphism

$$
\operatorname{Ext}_{\Gamma}(A, A)=\operatorname{Ext}_{\Gamma^{\prime}}\left(A^{\prime}, A^{\prime}\right)
$$

where

$$
\begin{aligned}
A^{\prime} & =A /\left(a_{p \Delta_{1}}, \ldots, a_{p \Delta_{f}}\right) \\
\Gamma^{\prime} & =A^{\prime}\left[t_{1}, \ldots, t_{f}\right] /\left(\eta_{R}\left(a_{p\left(p^{i}-1\right)}\right)-a_{p\left(p^{i}-1\right)}\right)
\end{aligned}
$$

and
Note that Γ^{\prime} is a free A^{\prime}-module of rank p^{f}.
Next it is convenient to filter by powers of the maximal ideal J in A^{\prime}. We get

$$
\begin{aligned}
E_{0} A^{\prime} & =\mathbf{Z} /(p)\left[a_{I}: 0 \leq|I| \leq p, I \neq p \Delta_{i}\right] \\
& =S M \quad \text { where } M=J / J^{2} \\
E_{0} \Gamma^{\prime} & =E_{0} A^{\prime} \otimes P \\
\text { where } \quad P & =\mathbf{Z} /(p)\left[t_{i}\right] /\left(t_{i}^{p}\right)
\end{aligned}
$$

The P-comodule M is a vector space of rank

$$
\binom{p+f}{f}-f
$$

For $f=1, M$ has basis

$$
\left\{a_{0}, a_{q}, \ldots, a_{(p-1) q}\right\}
$$

and is a free P-comodule. Its symmetric algebra is stably equivalent to

$$
\mathbf{Z} /(p)\left[a_{(p-1) q}^{p}\right],
$$

so above the 0 -line we have

$$
\operatorname{Ext}_{P}(S M)=\mathbf{Z} /(p)[\Delta] \otimes E\left(h_{1,0}\right) \otimes P\left(b_{1,0}\right)
$$

where $\Delta=a_{(p-1) q^{\prime}}^{p}$. In the spectral sequence there are differentials

$$
\begin{aligned}
d_{2 q+1}(\Delta) & =h_{1,0} b_{1,0}^{q} \\
d_{2 q^{2}+1}\left(h_{1,0} \Delta^{p-1}\right) & =b_{1,0}^{q^{2}+1}
\end{aligned}
$$

We now turn to $(p, f)=(3,2)$. The following is a picture of M.

Horizontal and vertcial arrows represent "Quillen operations" dual to t_{1} and t_{2} respectively. This comodule is is dual to unit coideal I.
The following 2 -variable Poincaré series describes $S M$ up to stable equivalance.

$$
S M=\left(\frac{1}{1-s^{3} t^{24}}\right)\left(\frac{1}{1-s^{3} t^{72}}\right)\left(\frac{1+\Sigma^{40} I^{-1}}{1-s^{3} I^{4}}\right)
$$

Without the term involving I^{-1}, the Ext group in positive filtrations is contained in

$$
P\left(a_{12}^{3}, a_{18}^{3}, z\right) \otimes E\left(h_{1,0}, h_{2,0}\right) \otimes P\left(b_{1,0}, b_{2,0}\right)
$$

where $z \in \operatorname{Ext}^{-4,0}$. In particular,

$$
\begin{aligned}
a_{4}^{3} & =z b_{1,0}^{2} \\
a_{16}^{3} & =z b_{2,0}^{2}
\end{aligned}
$$

Tensoring with $1+\Sigma^{40} I^{-1}$ corresponds to tensoring the Ext group with $E(u)$ with $u \in \operatorname{Ext}^{1,40}$.
It is likely that there are virtual Adams differentials

$$
\begin{aligned}
d_{5}(z) & =h_{1,0} \\
d_{9}\left(z^{2} h_{1,0}\right) & =b_{1,0} \\
d_{5}\left(a_{18}^{3}\right) & =h_{2,0} b_{2,0}^{2} \\
d_{9}\left(h_{2,0} a_{18}^{6}\right) & =b_{2,0}^{5}
\end{aligned}
$$

To get the 2-variable Poincaré series above:
Over $T\left(t_{i}\right)$, let x_{i} denote the class of the comodule which is the desuspension of the unit coideal I_{i} centered in dimension 0 , so that $x_{i}^{2}=1$. We know that

$$
\begin{aligned}
S\left(\Sigma^{n} T\left(t_{i}\right)\right) & =\frac{1}{1-s^{3} t^{3 n+6\left|v_{i}\right|}} \\
S\left(\Sigma^{n} x_{i}\right) & =\frac{1+\Sigma^{n} x_{i}}{1-s^{3} t^{3 n+3\left|v_{i}\right| / 2}}
\end{aligned}
$$

As a stable comodule over $E\left(t_{i}\right)$, we have

$$
I^{n}=\Sigma^{3 n\left|v_{i}\right| / 2} x_{i}^{n} .
$$

Now over $T\left(t_{1}\right)$ we have

$$
M=T\left(t_{1}\right) \oplus \Sigma^{16} T\left(t_{1}\right) \oplus \Sigma^{34} x_{1}
$$

so

$$
S M=\left(\frac{1}{1-s^{3} t^{24}}\right)\left(\frac{1}{1-s^{3} t^{72}}\right)\left(\frac{1+s^{34} x_{1}}{1-s^{3} t^{108}}\right) .
$$

Similarly over $T\left(t_{2}\right)$ we have

$$
M=T\left(t_{2}\right) \oplus \Sigma^{4} T\left(t_{2}\right) \oplus \Sigma^{16} x_{2}
$$

so
$S M=\left(\frac{1}{1-s^{3} t^{96}}\right)\left(\frac{1}{1-s^{3} t^{108}}\right)\left(\frac{1+s^{16} x_{2}}{1-s^{3} t^{72}}\right)$.
University of Rochester, Rochester, NY 14627

