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1. Introduction

The theory of topological modular forms (tmf ) be-
gan with a calculation described in Hopkins–Mahowald’s
paper From elliptic curves to homotopy theory of
1995. Consider the elliptic curve is defined by the
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Under the affine coordinate change

y 7→ y + r and x 7→ x + sy + t

we get

a6 7→ a6 + a4 r + a3 t + a2 r
2

+a1 r t + t2 − r3

a4 7→ a4 + a3 s + 2 a2 r

+a1(r s + t) + 2 s t− 3 r2

a3 7→ a3 + a1 r + 2 t

a2 7→ a2 + a1 s− 3 r + s2

a1 7→ a1 + 2 s.

This can be used to define a Hopf algrebroid (A, Γ)
with

A = Z[a1, a2, a3, a4, a6]

Γ = A[r, s, t]

and right unit ηR : A → Γ given by the formulas
above. Its Ext group is the E2-term of a spectral
sequence converging to π∗(tmf). Tilman Bauer has
written a nice account of this calculation.

[Show Hopkins-Mahowald illustration.]



3

Theorem 1. [Hopkins et al]
The Ext group ExtΓ(A,A) defined above is the

E2-term of an spectral sequence converging to the
homotopy of an E∞-ring spectrum tmf .

There are two steps in this construction.

(i) A 1-dimensional formal group law over and ring
R leads to a homomorphism (called a genus)

ϕ : π∗(MU) → R

by Quillen’s theorem. The functor

X 7→MU∗(X)⊗ϕ R

is a homology theory if certain algebraic condi-
tions on ϕ are satisfied; this is the Landweber
Exact Functor Theorem.

Suppose E is an elliptic curve defined over
R. It is a 1-dimensional algebraic group, and
choosing a local paramater at the identity leads
to a formal group law Ê, the formal completion
of E. Thus we can apply the machinery above
and get an R-valued genus.

Here are two examples:
(a) The Jacobi quartic, defined by the equation

y2 = 1− 2δx2 + εx4,

is an elliptic curve over the ring

R = Z[1/2, δ, ε].
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The resulting formal group law is

F (x, y) =
xR(y) + y R(x)

1− εx2y2
,

where

R(t) =
√

1− 2δt2 + εt4;

this calculation is originally due to Euler.
The resulting genus is known to satisfy Landwe-
ber’s conditions (Landweber-Ravenel-Stong),
and this leads to one definition of elliptic co-
homology theory.

(b) The Weierstrass curve defined above over

A[∆−1] = Z[a1, a2, a3, a4, a6][∆
−1],

where the discriminant ∆ is a certain poly-
nomial in the ai, leads to a formal group law
satisfying Landweber’s conditions.

(ii) The spectrum tmf is derived from elliptic co-
homology as a certain homotopy inverse limit
defined in terms of a sheaf of E∞-ring spectra
over the moduli stack of elliptic curves. The
details of this theory will appear soon.
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2. Program to generalize tmf :

(i) Find a curve C of genus g whose Jacobian J(C)
(a g-dimensional abelian variety) has a formal

completion Ĵ(G) (a g-dimensional formal group
law) has a 1-dimensional formal summand of
height n. For n > 2, this means that g ≥ n.

(ii) “Deform” this curve into one with similar prop-
erties defined over a Landweber exact ring. This
will give a higher chromatic analog of elliptic co-
homology.

(iii) Find a groups of coordinate transformations and
compute the resulting Ext group. Use Lurie’s
machinery to prove an analog of Theorem 1.
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3. Artin-Schreier curves: the first step
in the program

Theorem 2 (2002). Let C(p, f ) be the Artin-Schreier
curve over Fp defined by the affine equation

ye = xp − x where e = pf − 1.

(Assume that (p, f ) 6= (2, 1).) Then its Jacobian
J(C(p, f )) has a 1-dimensional formal summand
of height h = (p− 1)f .

Properties of C(p, f ):

• Its genus is (p − 1)(e − 1)/2, eg it is 0 in the
excluded case, and 1 in the cases (p, f ) = (2, 2)
and (3, 1). In these cases C is an elliptic curve
whose formal group law has height 2.

• Over Fph it has an action by the group

G = Fp o µ(p−1)e

given by

(x, y) 7→ (ζex + a, ζy)

for a ∈ Fp and ζ ∈ µ(p−1)e.

Let Gn denote the extension of the Morava sta-
bilizer group Sn by the Galois group Cn. Given
a finite subgroup G ⊂ Gn, Hopkins-Miller can
construct a “homotopy fixed point spectrum”
EhG
n . The group G above was shown by Hewett

to be a maximal finite subgroup of Gn for n =
h = (p−1)f . It acts on the 1-dimensional sum-

mand of Ĵ(C(p, f )) in the appropriate way.
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Remarks

• This result was known to and cited by Manin in
1963. Most of what is needed for the proof can
be found in Katz’s 1979 Bombay Colloquium
paper and in Koblitz’ Hanoi notes.

• The original proof rests on the determination
of the zeta function of the curve by Davenport-
Hasse in 1934, and on some properties of Gauss
sums proved by Stickelberger in 1890. The method
leads to complete determination of Ĵ(C(p, f ))
up to isogeny.

• We have a simpler proof based on Honda’s the-
ory of commutative formal group laws devel-
oped in the early ’70s. It does not rely on knowl-
edge of the zeta function and is therefore more
flexible. The starting point for it is the following
consequence of the Lagrange inversion formula.
If z = x − xp, then x has the power series ex-
pansion

x =
∑
i≥0

1

pi + 1

(
pi + 1

i

)
z1+(p−1)i

= z + zp + pz2p−1 +
p(3p− 1)

2
z3p−2 + · · ·
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More remarks

• The curve above does not lead to a Landweber
exact functor and cohomology theory. In order
to get on we need to lift the curve to character-
istic 0 in the right way. We will describe such a
lifting below.

• Gorbunov-Mahowald studied this curve for f =
1. They found a lifting of the curve to charac-
teristic zero associated with the Lubin-Tate lift
of the formal group law of height p− 1.
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4. Sketch of the Honda theoretic proof
of Theorem 2 .

Notation:

• Let A be a torsion free local ring with maximal
ideal m and residue field of characteristic p with
an automorphism a 7→ aσ which reduces the
Frobenius (or pth power) automorphism mod-
ulo m.

• Let Aσ〈〈T 〉〉 be the ring of noncommutative
power series in T over A subject to the rule
Ta = aσT .

• Let Md(A) denote the ring of ring of d × d-
matrices over A, and define Md(A)σ〈〈T 〉〉 in a
similar way.

• Suppose we have a d-dimensional formal group
law F over the ring A. F is characterized by its
logarithm f , which is a vector of d power series
in d variables over the field A⊗Q. Given such
an f , let fσ

i
be the vector of power series ob-

tained from f by applying σi to each coefficient.
Given a matrix H =

∑
iCiT

i in Md(A)σ〈〈T 〉〉,
define

(H ∗ f )(x1, . . . , xd) =
∑
i

Cif
σi

(xp
i

1 , . . . , x
pi

d ).

Definition 3. We say that H is a Honda ma-
trix for F (or for the vector f) and that F is of
type H, if H ≡ pId modulo T (Id is the d × d
identity matrix) and (H ∗ f )(x) ≡ 0 modulo (p).
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Two such matrices are said to be equivalent if
they differ by unit multiplication on the left.

Examples of Honda matrices:

• For d = 1 and A = Zp, let H be the 1 × 1
matrix with entry h = p − T n for a positive
integer n. Then

f (x) =
∑
i≥0

xp
ni

pi

and F is the formal group law for the Morava
K-theory K(n)∗.

• Let A = Zp[[u1, u2, . . . un−1]] for a positive in-
teger m, and let uσi = upi . Let H be the 1 × 1
matrix with entry

h = p− T n −
∑

0<i<n

uiT
i.

Then f (x) is the logarithm for the Lubin-Tate
lifting of the formal group law above.
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Theorem 4 (Honda, 1970). For A as above and
m-adically complete, the strict isomorphism classes
of d-dimensional formal group laws over A cor-
respond bijectively to the equivalence classes of
matrices

H ∈Md(Zp)σ〈〈T 〉〉
congruent to pId modulo degree 1. H and f are
related by the formula

f (x) = (H−1 ∗ p)(x).

Remarks:

• Under suitable hypotheses, the determinant of
the Honda matrix is he charctaeristic polyno-
mial of the Frobenius endomorphism (x 7→ xp)
of the mod m reduction of the formal group law.

Question: How can we find the Honda matrix for
the formal completion of the Jacobian of an algebraic
curve?

Theorem 5 (Honda, 1973). Let C be a curve of
genus g over A with smooth reduction modulo m,
and let

{ω1, . . . , ωg}
be a basis for the space of holomorphic 1-forms of
C written as power series in a local parameter y,
and let

ψi =

∫ y

0

ωi.
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Then if H is a Honda matrix for the vector (ψ1, . . . , ψg),

it is also one for Ĵ(C), the formal completion of
the Jacobian J(C).

Note that ψ above is a vector of power series in one
variable over A⊗Q, while the logarithm of Ĵ(C) is
a vector of power seires in g variables. The theorem
asserts that they have the same Honda matrix.

Theorem 6 (Tate, 1966). The determinant of the
Honda matrix for the curve C of genus g above
is a polynomial of the form

T 2g + · · · + pg.
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Recall that our curve C(p, f ) is defined by the
affine equation

ye = xp − x where e = pf − 1.

A basis for the holomorphic 1-forms for C(p, f ) is

{ωi,j : ei + pj < (e− 1)(p− 1)− 1} ,
where

ωi,j =
xiyjdx

ye−1
.

We denote the integral of its expansion in terms of
y by ψei+j+1, which has a power series expansion of
the form

yei+j+1
∑

k≥0

cei+j+1,ky
mk where m = (p− 1)e.

We have explicit formulas for thses coefficients.

Examples of Honda matrices of the curves
C(p, f ):

• For C(2, 3) (where g = 3 and m = 7), the
integrals have the form

ψ1 ∈ yQ2[[y
7]]

ψ2 ∈ y2Q2[[y
7]]

ψ3 ∈ y3Q2[[y
7]]

This means that

Tψ1 ∈ y2Q2[[y
7]] T 2ψ1 ∈ y4Q2[[y

7]]
Tψ2 ∈ y4Q2[[y

7]] T 2ψ2 ∈ y8Q2[[y
7]] ⊂ yQ2[[y

7]]
Tψ3 ∈ y6Q2[[y

7]] T 2ψ3 ∈ y12Q2[[y
7]] ⊂ y5Q2[[y

7]]
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This implies that the Honda matrix has the
form

H =




h1,1(T
3) T 2h1,2(T

3) 0
Th2,1(T

3) h2,2(T
3) 0

0 0 h3,3(T
3)




where

hi,j(T
3) =

∑

k≥0

hi,j,kT
3k

with hi,i,0 = 2. Thus we have

detH = (h1,1(T
3)h2,2(T

3)− h2,1(T
3)Th1,2(T

3)T 2)h3,3(T
3)

≡ h2,1,0h
σ
1,2,0h3,3,1T

6 mod (2, T 7)

= T 6 + · · · + 8 by Theorem 6.

This means that h3,3,1 is a unit, which gives us
a 1-dimensional summand of F of height 3 as
desired.

• For C(3, 2) (where g = 7 and m = 16), we get
integrals ψi for

i ∈ S = {1, 2, 3, 4, 5, 9, 10} .
A similar computation shows that ψ5 corresponds
to a 1-dimensional formal summand of height
4. The argument boils down to seeing how
the orbits of Z/(16) under multiplication by 3
intersect the set S above. One such orbit is
{5, 15, 13, 7}, whose intersection with S is the
singleton {5}.
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5. Deforming the Artin-Schreier curve

We want a lifting of C(p, f ) that admits a coor-
dinate change similar to the one for the Weierstrass
curve. The equation will have the form

ye = xp + · · ·
with (nonaffine) coordinate change

x 7→ x + t̃ where t̃ =

f∑
i=1

tiy
pf−1−pi−1

y 7→ y

The ti above are related to the generators of the same
name in BP∗(BP ).

In order to state this precisely we need some nota-
tion. Let

I = (i1, . . . , if)

be a set of nonnegative integers and define

|I| =
∑

k

ik

||I|| =
∑

k

(pk − 1)ik

tI =
∏

k

t
ik
k

I ! =
∏

k

ik!
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The coefficients in our equation will be formal vari-
ables aI (where a0 = p!) with topological dimension
2||I||. Then the equation for our curve is

ye =

p∑
i=0

xp−i

(p− i)!

∑

|I|=i
aIy

(ei−||I||)/p

(recall that e = pf − 1) and the effect of the coordi-
nate change on the coefficients aI is given by

aI 7→
∑

J+K=I

aJ
tK

K!
.

For f = 1 the equation simplifies to the Gorbunov-
Mahowald equation

yp−1 = xp +

p∑
i=1

aix
p−i

(p− i)!

with coordinate change

ai 7→ ai +
∑

0<j<i

ajt
i−j
1

(i− j)!
+
p!ti1
i!
.

Theorem 7 (2004). The Jacobian of curve de-
fined above over the ring

A = Zp[aI : 0 < |I| ≤ p]

has a 1-dimensional formal summand of height
(p− 1)f .

There is an associated Hopf algebroid

Γ = A[t1, . . . , tf ]
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where each ti is primitive and the right unit given by
the coordinate change formula above. Note that

ηR(ap∆i
) = ap∆i

+
∑

0<j<p

aj∆i

tp−ji

(p− j)!
+ tpi .

This leads to a change-of-rings isomorphism

ExtΓ(A,A) = ExtΓ′(A
′, A′)

where

A′ = A/(ap∆1, . . . , ap∆f
)

and Γ′ = A′[t1, . . . , tf ]/(ηR(ap∆i
)− ap∆i

).

Note that Γ′ is a free A′-module of rank pf .

Conjecture 8. For each (p, f ) as above there is
a spectrum generalizing tmf whose homotopy can
be computed by an Adams-Novikov type spectral
sequence with

E2 = ExtΓ(A,A).
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