The detection theorem
A solution to the Arf-Kervaire invariant problem

Supplement to lectures given at Instituto Superior Técnico Lisbon
May 5-7, 2009

University of Virginia
Mike Hopkins
Harvard University
Doug Ravenel
University of Rochester

1 The Detection Theorem

1.1 $\quad \theta_{j}$ in the Adams-Novikov spectral sequence

θ_{j} in the Adams-Novikov spectral sequence
Browder's theorem says that θ_{j} is detected in the classical Adams spectral sequence by

$$
h_{j}^{2} \in \operatorname{Ext}_{A}^{2,2^{j+1}}(\mathbf{Z} / 2, \mathbf{Z} / 2) .
$$

This element is known to be the only one in its bidegree.
It is more convenient for us to work with the Adams-Novikov spectral sequence, which maps to the Adams spectral sequence. It has a family of elements in filtration 2, namely

$$
\beta_{i / j} \in \operatorname{Ext}_{M U_{*}(M U)}^{2,6 i-2 j}\left(M U_{*}, M U_{*}\right)
$$

for certain values of of i and j. When $j=1$, it is customary to omit it from the notation. The definition of these elements can be found in Chapter 5 of the third author's book Complex Cobordism and Stable Homotopy Groups of Spheres.
θ_{j} in the Adams-Novikov spectral sequence (continued)
Here are the first few of these in the relevant bidegrees.

$$
\begin{array}{ll}
\theta_{5}: & \beta_{8 / 8} \text { and } \beta_{6 / 2} \\
\theta_{6}: & \beta_{16 / 16}, \beta_{12 / 4} \text { and } \beta_{11} \\
\theta_{7}: & \beta_{32 / 32}, \beta_{24 / 8} \text { and } \beta_{22 / 2} \\
\theta_{8}: & \beta_{64 / 64}, \beta_{48 / 16}, \beta_{44 / 4} \text { and } \beta_{43}
\end{array}
$$

and so on. In the bidegree of θ_{j}, only $\beta_{2^{j-1} / 2^{j-1}}$ has a nontrivial image (namely h_{j}^{2}) in the Adams spectral sequence. There is an additional element in this bidegree, namely $\alpha_{1} \alpha_{2^{j}-1}$.

We need to show that any element mapping to h_{j}^{2} in the classical Adams spectral sequence has nontrivial image the Adams-Novikov spectral sequence for M.
θ_{j} in the Adams-Novikov spectral sequence (continued)
Detection Theorem. Let $x \in \operatorname{Ext}_{M U_{*}(M U)}^{2,2^{j+1}}\left(M U_{*}, M U_{*}\right)$ be any element whose image in $\operatorname{Ext}_{A}^{2,2^{j+1}}(\mathbf{Z} / 2, \mathbf{Z} / 2)$ is h_{j}^{2} with $j \geq 6$. (Here A denotes the mod 2 Steenrod algebra.) Then the image of x in $H^{2,2^{j+1}}\left(C_{8} ; \pi_{*}(M)\right)$ is nonzero.

We will prove this by showing the same is true after we map the latter to a simpler object involving another algebraic tool, the theory of formal A-modules, where A is the ring of integers in a suitable field.

1.2 Formal A-modules

Formal A-modules

Recall the a formal group law over a ring R is a power series

$$
F(x, y)=x+y+\sum_{i, j>0} a_{i, j} x^{i} y^{j} \in R[[x, y]]
$$

with certain properties.
For positive integers m one has power series $[m](x) \in R[[x]]$ defined recursively by $[1](x)=x$ and

$$
[m](x)=F(x,[m-1](x))
$$

These satisfy

$$
[m+n](x)=F([m](x),[n](x)) \text { and }[m]([n](x))=[m n](x)
$$

With these properties we can define $[m](x)$ uniquely for all integers m, and we get a homomorphism τ from \mathbf{Z} to $\operatorname{End}(F)$, the endomorphism ring of F.

Formal A-modules (continued)
If the ground ring R is an algebra over the p-local integers $\mathbf{Z}_{(p)}$ or the p-adic integers \mathbf{Z}_{p}, then we can make sense of $[m](x)$ for m in $\mathbf{Z}_{(p)}$ or \mathbf{Z}_{p}.

Now suppose R is an algebra over a larger ring A, such as the ring of integers in a number field or a finite extension of the p-adic numbers. We say that the formal group law F is a formal A-module if the homomorphism τ extends to A in such a way that

$$
[a](x) \equiv a x \bmod \left(x^{2}\right) \text { for } a \in A
$$

The theory of formal A-modules is well developed. Lubin-Tate used them to do local class field theory.

Formal A-modules (continued)

The example of interest to us is $A=\mathbf{Z}_{2}\left[\zeta_{8}\right]$, where ζ_{8} is a primitive 8th root of unity. The maximal ideal of A is generated by $\pi=\zeta_{8}-1$, and π^{4} is a unit multiple of 2 . There is a formal A-module G over $R_{*}=A\left[w^{ \pm 1}\right]$ (with $|w|=2$) satisfying

$$
\log _{G}(G(x, y))=\log _{G}(x)+\log _{G}(y)
$$

where

$$
\log _{G}(x)=\sum_{n \geq 0} \frac{w^{2^{n}-1} x^{2^{n}}}{\pi^{n}}
$$

The classifying map $\lambda: M U_{*} \rightarrow R_{*}$ for G factors through $B P_{*}$, where the logarithm is

$$
\log _{F}(x)=\sum_{n \geq 0} \ell_{n} x^{2^{n}}
$$

Formal A-modules (continued)

Recall that $B P_{*}=\mathbf{Z}_{(2)}\left[v_{1}, v_{2}, \ldots\right]$ with $\left|v_{n}\right|=2\left(2^{n}-1\right)$. The v_{n} and the ℓ_{n} are related by Hazewinkel's formula,

$$
\begin{aligned}
\ell_{1} & =\frac{v_{1}}{2} \\
\ell_{2} & =\frac{v_{2}}{2}+\frac{v_{1}^{3}}{4} \\
\ell_{3} & =\frac{v_{3}}{2}+\frac{v_{1} v_{2}^{2}+v_{2} v_{1}^{4}}{4}+\frac{v_{1}^{7}}{8} \\
\ell_{4} & =\frac{v_{4}}{2}+\frac{v_{1} v_{3}^{2}+v_{2}^{5}+v_{3} v_{1}^{8}}{4}+\frac{v_{1}^{3} v_{2}^{4}+v_{1}^{9} v_{2}^{2}+v_{2} v_{1}^{12}}{8}+\frac{v_{1}^{15}}{16} \\
& \vdots
\end{aligned}
$$

$1.3 \pi_{*}\left(M U^{(4)}\right)$ and R_{*}

The relation between $M U^{(4)}$ and formal A-modules
What does all this have to do with our spectrum $M=D^{-1} M U^{(4)}$? Recall that $D=\bar{\Delta}_{1}^{(8)} N_{4}^{8}\left(\bar{\Delta}_{2}^{(4)}\right) N_{2}^{8}\left(\bar{\Delta}_{4}^{(2)}\right)$. We saw earlier that inverting a product of this sort is needed to get the Periodicity Theorem, but we did not explain the choice of subscripts of $\bar{\Delta}$. They are the smallest ones that satisfy the second part of the following.
Lemma. The classifying homomorphism $\lambda: \pi_{*}(M U) \rightarrow R_{*}$ for G factors through $\pi_{*}\left(M U^{(4)}\right)$ in such a way that

- the homomorphism $\lambda^{(4)}: \pi_{*}\left(M U^{(4)}\right) \rightarrow R_{*}$ is equivariant, where C_{8} acts on $\pi_{*}\left(M U^{(4)}\right)$ as before, it acts trivially on A and $\gamma \omega=\zeta_{8} w$ for a generator γ of C_{8}.
- The element $D \in \pi_{*}\left(M U^{(4)}\right)$ that we invert to get M goes to a unit in R_{*}.

We will prove this later.

1.4 The proof of the Detection Theorem

The proof of the Detection Theorem
It follows that we have a map

$$
H^{*}\left(C_{8} ; \pi_{*}\left(D^{-1} M U^{(4)}\right)\right)=H^{*}\left(C_{8} ; \pi_{*}(M)\right) \rightarrow H^{*}\left(C_{8} ; R_{*}\right) .
$$

The source here is the E_{2}-term of the homotopy fixed point spectral sequence for M, and the target is easy to calculate. We will use it to prove the Detection Theorem, namely
Detection Theorem. Let $x \in \operatorname{Ext}_{M U_{*},(M U)}^{2,,^{j+1}}\left(M U_{*}, M U_{*}\right)$ be any element whose image in $\operatorname{Ext}_{A}^{2,2 j^{j+1}}(\mathbf{Z} / 2, \mathbf{Z} / 2)$ is h_{j}^{2} with $j \geq 6$. (Here A denotes the mod 2 Steenrod algebra.) Then the image of x in $H^{2,2^{j+1}}\left(C_{8} ; \pi_{*}(M)\right)$ is nonzero.

We will prove this by showing that the image of x in $H^{2,2^{j+1}}\left(C_{8} ; R_{*}\right)$ is nonzero.
The proof of the Detection Theorem (continued)
We will calculate with $B P$-theory. Recall that

$$
B P_{*}(B P)=B P_{*}\left[t_{1}, t_{2}, \ldots\right] \quad \text { where }\left|t_{n}\right|=2\left(2^{n}-1\right) .
$$

We will abbreviate $\operatorname{Ext}_{B P_{*(B P)}^{s, t}}^{s,}\left(B P_{*}, B P_{*}\right)$ by $\mathrm{Ext}^{s, t}$.

There is a map from this Hopf algebroid to one associated with $H^{*}\left(C_{8} ; R_{*}\right)$ in which t_{n} maps to an R_{*}-valued function on C_{8} (regarded as the group of 8th roots of unity) determined by

$$
[\zeta](x)=\sum_{n \geq 0}^{F}\left\langle t_{n}, \zeta\right\rangle x^{2^{n}}
$$

An easy calculation shows that the function t_{1} sends a primitive root in C_{8} to a unit in R_{*}.
The proof of the Detection Theorem (continued)
Let

$$
b_{1, j-1}=\frac{1}{2} \sum_{0<i<2^{j}}\binom{2^{j}}{i}\left[t_{1}^{i} \mid t_{1}^{2^{j}-i}\right] \in \operatorname{Ext}^{2,2^{j+1}}
$$

It is is known to be cohomologous to $\beta_{2^{j-1} / 2^{j-1}}$ and to have order 2 . We will show that its image in $H^{2,2^{j+1}}\left(C_{8} ; R_{*}\right)$ is nontrivial for $j \geq 2$.
$H^{*}\left(C_{8} ; R_{*}\right)$ is the cohomology of the cochain complex

$$
R_{*}\left[C_{8}\right] \xrightarrow{\gamma-1} R_{*}\left[C_{8}\right] \xrightarrow{\text { Trace }} R_{*}\left[C_{8}\right] \xrightarrow{\gamma-1} \cdots
$$

where Trace is multiplication by $1+\gamma+\cdots+\gamma^{7}$.
The proof of the Detection Theorem (continued)
The cohomology groups $H^{s}\left(C_{8} ; R_{*}\right)$ for $s>0$ are periodic in s with period 2. We have

$$
\begin{aligned}
& H^{1}\left(C_{8} ; R_{2 m}\right)=\operatorname{ker}\left(1+\zeta_{8}^{m}+\cdots+\zeta_{8}^{7 m}\right) / \operatorname{im}\left(\zeta_{8}^{m}-1\right) \\
& = \begin{cases}w^{m} A /(\pi) & \text { for } m \text { odd } \\
w^{m} A /\left(\pi^{2}\right) & \text { for } m \equiv 2 \bmod 4 \\
w^{m} A /(2) & \text { for } m \equiv 4 \bmod 8 \\
0 & \text { for } m \equiv 0 \bmod 8\end{cases} \\
& H^{2}\left(C_{8} ; R_{2 m}\right)=\operatorname{ker}\left(\zeta_{8}^{m}-1\right) / \operatorname{im}\left(1+\zeta_{8}^{m}+\cdots+\zeta_{8}^{7 m}\right) \\
& = \begin{cases}w^{m} A /(8) & \text { for } m \equiv 0 \bmod 8 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

An easy calculation shows that $b_{1, j-1}$ maps to $4 w^{2 j}$, which is the element of order 2 in $H^{2}\left(C_{8} ; R_{2}{ }^{j+1}\right)$.
The proof of the Detection Theorem (continued)
To finish the proof we need to show that the other $\beta \mathrm{s}$ in the same bidegree map to zero. We will do this for $j \geq 6$. The set of these is

$$
\left\{\beta_{c(j, k) / 2^{j-1-2 k}}: 0 \leq k<j / 2\right\}
$$

where $c(j, k)=2^{j-1-2 k}\left(1+2^{2 k+1}\right) / 3$. Note that $\beta_{c(j, 0) / 2^{j-1}}=\beta_{2^{j-1} / 2^{j-1}}$, so we need to show that the elements with $k>0$ map to zero.

We will see in the proof of the Lemma below that v_{1} and v_{2} map to unit multiples of $\pi^{3} w$ and $\pi^{2} w^{3}$ respectively. This means we can define a valuation on $B P_{*}$ compatible with the one on A in which $\|2\|=1,\|\pi\|=1 / 4,\left\|v_{1}\right\|=3 / 4$ and $\left\|v_{2}\right\|=1 / 2$. We extend the valuation on A to R_{*} by setting $\|w\|=0$.

The proof of the Detection Theorem (continued)
Hence for $k \geq 1$ and $j \geq 6$ we have

$$
\begin{aligned}
\left\|\beta_{c(j, k) / 2^{j-1-2 k}}\right\| & =\left\|\frac{v_{2}^{c(j, k)}}{2 v_{1}^{2 j-1-2 k}}\right\| \\
& =\frac{c(j, k)}{2}-\frac{3 \cdot 2^{j-1-2 k}}{4}-1 \\
& =\frac{2^{j}+2^{j-1-2 k}}{6}-\frac{3 \cdot 2^{j-1-2 k}}{4}-1 \\
& =\left(2^{j-1}-7 \cdot 2^{j-3-2 k}\right) / 3-1 \\
& \geq 5 .
\end{aligned}
$$

This means $\beta_{c(j, k)) / 2^{j-1-2 k}}$ maps to an element that is divisible by 8 and therefore zero.
The proof of the Detection Theorem (continued)
We have to make a similar computation with the element $\alpha_{1} \alpha_{2^{j}-1}$. We have

$$
\begin{aligned}
\left\|\alpha_{2^{j}-1}\right\| & =\left\|\frac{v_{1}^{2^{j}-1}}{2}\right\| \\
& =\frac{3\left(2^{j}-1\right)}{4}-1 \\
& \geq \frac{21}{4}-1 \geq 4 \quad \text { for } j \geq 3
\end{aligned}
$$

This completes the proof of the Detection Theorem modulo the Lemma.

1.5 The proof of the Lemma

The proof of the Lemma
Here it is again.
Lemma. The classifying homomorphism $\lambda: \pi_{*}(M U) \rightarrow R_{*}$ for G factors through $\pi_{*}\left(M U^{(4)}\right)$ in such a way that

- the homomorphism $\lambda^{(4)}: \pi_{*}\left(M U^{(4)}\right) \rightarrow R_{*}$ is equivariant, where C_{8} acts on $\pi_{*}\left(M U^{(4)}\right)$ as before, it acts trivially on A and $\gamma w=\zeta_{8} w$ for a generator γ of C_{8}.
- The element $D \in \pi_{*}\left(M U^{(4)}\right)$ that we invert to get M goes to a unit in R_{*}.

The proof of the Lemma (continued)
To prove the first part, consider the following diagram for an arbitrary ring K.

The maps λ_{1} and λ_{2} classify two formal group laws F_{1} and F_{2} over K. The Hopf algebroid $M U_{*}(M U)$ represents strict isomorphisms between formal group laws. Hence the existence of $\lambda^{(2)}$ is equivalent to that of a compatible strict isomorphism between F_{1} and F_{2}.

The proof of the Lemma (continued)
Similarly consider the diagram

The existence of $\lambda^{(4)}$ is equivalent to that of compatible strict isomorphisms between the formal group laws F_{j} classified by the λ_{j}.

The proof of the Lemma (continued)

Now suppose that K has a C_{8}-action and that $\lambda^{(4)}$ is equivariant with respect to the previously defined C_{8}-action on $M U^{(4)}$. Then the isomorphism induced by the fourth power of a generator $\gamma \in C_{8}$ is the isomorphism sending x to its formal inverse on each of the F_{j}.

This means that the existence of an equivariant $\lambda^{(4)}$ is equivalent to that of a formal $\mathbf{Z}\left[\zeta_{8}\right]$-module structure on each of the F_{j}, which are all isomorphic. This proves the first part of the Lemma.

The proof of the Lemma (continued)

For the second part, recall that $D=\bar{\Delta}_{1}^{(8)} N_{4}^{8}\left(\bar{\Delta}_{2}^{(4)}\right) N_{2}^{8}\left(\bar{\Delta}_{4}^{(2)}\right)$, where

$$
\bar{\Delta}_{k}^{(g)}= \begin{cases}x_{2^{k}-1} & \text { for } g=2 \\ N_{4}^{g}\left(r_{2^{k}-1}\right) & \text { otherwise }\end{cases}
$$

Since our formal A-module is 2-typical we can do the calculations using $B P$ in place of $M U$. Hence we can replace $x_{2^{k}-1}$ by v_{k} and $r_{2^{k}-1}$ by t_{k}. We have $\bar{\Delta}_{k}^{(2)}=v_{k}$. Using Hazewinkel's formula we find that

$$
\begin{aligned}
& v_{1} \mapsto\left(-\pi^{3}-4 \pi^{2}-6 \pi-4\right) w \\
& v_{2} \mapsto\left(4 \pi^{3}+11 \pi^{2}+6 \pi-6\right) w^{3} \\
& v_{3} \mapsto\left(40 \pi^{3}+166 \pi^{2}+237 \pi+100\right) w^{7} \\
& v_{4} \mapsto\left(-15754 \pi^{3}-56631 \pi^{2}-63495 \pi-9707\right) w^{15}
\end{aligned}
$$

so v_{4} (but not v_{n} for $n<4$) and therefore $N_{2}^{8}\left(\bar{\Delta}_{4}^{(2)}\right)$ maps to a unit.

The proof of the Lemma (continued)
We have $\bar{\Delta}_{k}^{(2)}=t_{k}$. We consider the equivariant composite

$$
B P_{*}^{(2)} \rightarrow B P_{*}^{(4)} \rightarrow R_{*}
$$

under which

$$
\eta_{R}\left(\ell_{n}\right) \mapsto \frac{\zeta_{8}^{2} w^{2^{n}-1}}{\pi^{n}}
$$

Using the right unit formula we find that

$$
\begin{aligned}
t_{1} & \mapsto(\pi+2) w \\
t_{2} & \mapsto\left(\pi^{3}+5 \pi^{2}+9 \pi+5\right) w^{3}
\end{aligned}
$$

This means t_{2} (but not t_{1}) and therefore $N_{4}^{8}\left(\bar{\Delta}_{2}^{(4)}\right)$ maps to a unit.
The proof of the Lemma (continued)
Finally, we have $\bar{\Delta}_{n}^{(8)}=t_{n}(1) \in B P_{*}^{(4)}$, where $t_{n}(1)$ is the analog of $r_{2^{n}-1}(1)$. Then we find

$$
\begin{aligned}
\ell_{n}(1) & \mapsto \frac{w^{2^{n}-1}}{\pi^{n}} \\
\ell_{n}(2) & \mapsto \frac{\left(\zeta_{8} w\right)^{2^{n}-1}}{\pi^{n}}
\end{aligned}
$$

This implies

$$
\bar{\Delta}_{1}^{(8)}=\ell_{1}(2)-\ell_{1}(1) \mapsto w .
$$

Thus we have shown that each factor of

$$
D=\bar{\Delta}_{1}^{(8)} N_{4}^{8}\left(\bar{\Delta}_{2}^{(4)}\right) N_{2}^{8}\left(\bar{\Delta}_{4}^{(2)}\right)
$$

and hence D itself maps to a unit in R_{*}, thus proving the lemma.

