Lecture 4

A solution to the Arf-Kervaire invariant problem Instituto Superior Técnico Lisbon May 7, 2009 Introduction Geometric fixed points The Slice Theorem The Periodicity Theorem Homotopy and actual Mike Hill fixed points University of Virginia Mike Hopkins Harvard University Doug Ravenel University of Rochester

A solution to the

Arf-Kervaire invariant problem Mike Hill Mike Hopkins Doug Ravenel

The goal of this lecture is fourfold.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

The goal of this lecture is fourfold.

(i) To sketch part of the proof of the slice theorem.

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

The goal of this lecture is fourfold.

- (i) To sketch part of the proof of the slice theorem.
- (ii) To describe the spectrum \tilde{M} used to prove the main theorem.

Mike Hill Mike Hopkins Doug Ravenel

ntroduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

The goal of this lecture is fourfold.

- (i) To sketch part of the proof of the slice theorem.
- (ii) To describe the spectrum \tilde{M} used to prove the main theorem.
- (iii) To sketch the proof of the (yet to be stated) periodicity theorem.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

ntroduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

The goal of this lecture is fourfold.

- (i) To sketch part of the proof of the slice theorem.
- (ii) To describe the spectrum \tilde{M} used to prove the main theorem.
- (iii) To sketch the proof of the (yet to be stated) periodicity theorem.
- (iv) To sketch the proof that the \tilde{M}^{C_8} and \tilde{M}^{hC_8} are equivalent.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

ntroduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

The goal of this lecture is fourfold.

- (i) To sketch part of the proof of the slice theorem.
- (ii) To describe the spectrum \tilde{M} used to prove the main theorem.
- (iii) To sketch the proof of the (yet to be stated) periodicity theorem.
- (iv) To sketch the proof that the \tilde{M}^{C_8} and \tilde{M}^{hC_8} are equivalent.

Before we can do this, we need to introduce another concept from equivariant stable homotopy theory, that of *geometric fixed points*.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

ntroductior

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Unstably a G-space X has a fixed point set,

$$X^{G} = \{x \in X \colon \gamma(x) = x \,\,\forall \, \gamma \in G\}.$$

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Unstably a G-space X has a fixed point set,

$$X^G = \{x \in X \colon \gamma(x) = x \,\,\forall\, \gamma \in G\}.$$

This is the same as $F(S^0, X_+)^G$, the space of based equivariant maps $S^0 \rightarrow X_+$,

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Unstably a G-space X has a fixed point set,

$$X^G = \{x \in X : \gamma(x) = x \ \forall \ \gamma \in G\}.$$

This is the same as $F(S^0, X_+)^G$, the space of based equivariant maps $S^0 \to X_+$, which is the same as the space of unbased equivariant maps $* \to X$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Unstably a G-space X has a fixed point set,

$$X^G = \{x \in X : \gamma(x) = x \ \forall \ \gamma \in G\}.$$

This is the same as $F(S^0, X_+)^G$, the space of based equivariant maps $S^0 \to X_+$, which is the same as the space of unbased equivariant maps $* \to X$.

The *homotopy fixed point set* X^{hG} is the space of based equivariant maps $EG_+ \rightarrow X_+$, where EG is a contractible free *G*-space.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Unstably a G-space X has a fixed point set,

$$X^{G} = \{x \in X : \gamma(x) = x \forall \gamma \in G\}.$$

This is the same as $F(S^0, X_+)^G$, the space of based equivariant maps $S^0 \to X_+$, which is the same as the space of unbased equivariant maps $* \to X$.

The *homotopy fixed point set* X^{hG} is the space of based equivariant maps $EG_+ \rightarrow X_+$, where EG is a contractible free *G*-space. The equivariant homotopy type of X^{hG} is independent of the choice of EG.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Both of these definitions have stable analogs, but the fixed point functor is awkward for two reasons:

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Both of these definitions have stable analogs, but the fixed point functor is awkward for two reasons: it fails to commute with smash products A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Both of these definitions have stable analogs, but the fixed point functor is awkward for two reasons: it fails to commute with smash products and with infinite suspensions. A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Both of these definitions have stable analogs, but the fixed point functor is awkward for two reasons: it fails to commute with smash products and with infinite suspensions.

The *geometric fixed set* $\Phi^G X$ is a convenient substitute that avoids these difficulties.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Both of these definitions have stable analogs, but the fixed point functor is awkward for two reasons: it fails to commute with smash products and with infinite suspensions.

The geometric fixed set $\Phi^G X$ is a convenient substitute that avoids these difficulties. In order to define it we need the *isotropy separation sequence*, which in the case of a finite cyclic 2-group *G* is

$$E\mathbf{Z}/2_+
ightarrow S^0
ightarrow ilde{E}\mathbf{Z}/2$$

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Both of these definitions have stable analogs, but the fixed point functor is awkward for two reasons: it fails to commute with smash products and with infinite suspensions.

The geometric fixed set $\Phi^G X$ is a convenient substitute that avoids these difficulties. In order to define it we need the *isotropy separation sequence*, which in the case of a finite cyclic 2-group *G* is

$$E{f Z}/2_+ o S^0 o ilde E{f Z}/2.$$

Here EZ/2 is a *G*-space via the projection $G \rightarrow Z/2$ and S^0 has the trivial action, so $\tilde{E}Z/2$ is also a *G*-space.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

with the similar properties.

Under this action $E\mathbf{Z}/2^{G}$ is empty while for any proper

subgroup *H* of *G*, $E\mathbf{Z}/2^{H} = E\mathbf{Z}/2$, which is contractible. For an arbitrary finite group *G* it is possible to construct a *G*-space

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Under this action $E\mathbf{Z}/2^{G}$ is empty while for any proper subgroup *H* of *G*, $E\mathbf{Z}/2^{H} = E\mathbf{Z}/2$, which is contractible. For an arbitrary finite group *G* it is possible to construct a *G*-space with the similar properties.

Definition

For a finite cyclic 2-group G and G-spectrum X, the geometric fixed point spectrum is

$$\Phi^G X = (X \wedge \tilde{E} \mathbf{Z}/2)^G$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

This functor has the following properties:

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

This functor has the following properties:

• For *G*-spectra *X* and *Y*, $\Phi^G(X \wedge X) = \Phi^G X \wedge \Phi^G Y$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

This functor has the following properties:

- For *G*-spectra *X* and *Y*, $\Phi^G(X \wedge X) = \Phi^G X \wedge \Phi^G Y$.
- A map *f* : X → Y is a *G*-equivalence iff Φ^H*f* is an ordinary equivalence for each subgroup *H* ⊂ *G*.

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

This functor has the following properties:

- For *G*-spectra *X* and *Y*, $\Phi^G(X \wedge X) = \Phi^G X \wedge \Phi^G Y$.
- A map *f* : X → Y is a *G*-equivalence iff Φ^H*f* is an ordinary equivalence for each subgroup *H* ⊂ *G*.
- For a *G*-space *X*, $\Phi^G \Sigma^{\infty} X = \Sigma^{\infty} (X^G)$.

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

This functor has the following properties:

- For *G*-spectra *X* and *Y*, $\Phi^G(X \wedge X) = \Phi^G X \wedge \Phi^G Y$.
- A map *f* : X → Y is a *G*-equivalence iff Φ^H*f* is an ordinary equivalence for each subgroup *H* ⊂ *G*.
- For a *G*-space *X*, $\Phi^G \Sigma^{\infty} X = \Sigma^{\infty} (X^G)$.

From the last property we can deduce that for $H \subset G$,

A solution to the

Arf-Kervaire invariant problem Mike Hill Mike Hopkins

This functor has the following properties:

- For *G*-spectra *X* and *Y*, $\Phi^G(X \wedge X) = \Phi^G X \wedge \Phi^G Y$.
- A map *f* : X → Y is a *G*-equivalence iff Φ^H*f* is an ordinary equivalence for each subgroup *H* ⊂ *G*.
- For a *G*-space *X*, $\Phi^G \Sigma^{\infty} X = \Sigma^{\infty} (X^G)$.

From the last property we can deduce that for $H \subset G$,

•
$$\Phi^H S^V = S^{V^H}$$
.

Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

This functor has the following properties:

- For *G*-spectra *X* and *Y*, $\Phi^G(X \wedge X) = \Phi^G X \wedge \Phi^G Y$.
- A map *f* : X → Y is a *G*-equivalence iff Φ^H*f* is an ordinary equivalence for each subgroup *H* ⊂ *G*.
- For a *G*-space *X*, $\Phi^G \Sigma^{\infty} X = \Sigma^{\infty} (X^G)$.

From the last property we can deduce that for $H \subset G$,

- $\Phi^H S^V = S^{V^H}$.
- $\Phi^H M U^{(g/2)} = M O^{(g/h)}$, where *MO* is the unoriented cobordism spectrum.

A solution to the

Arf-Kervaire invariant problem Mike Hill Mike Hopkins

Geometric Fixed Point Theorem

Let G be a finite cyclic 2-group and let $\overline{\rho}$ denote its reduced regular representation. Then for any G-spectrum X, $\pi_{\star}(\tilde{E}\mathbf{Z}/2 \wedge X) = \chi_{\overline{\rho}}^{-1}\pi_{\star}(X)$, where $\chi_{\overline{\rho}} \in \pi_{-\overline{\rho}}$ is the element defined in Lecture 3.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Geometric Fixed Point Theorem

Let G be a finite cyclic 2-group and let $\overline{\rho}$ denote its reduced regular representation. Then for any G-spectrum X, $\pi_{\star}(\tilde{E}\mathbf{Z}/2 \wedge X) = \chi_{\overline{\rho}}^{-1}\pi_{\star}(X)$, where $\chi_{\overline{\rho}} \in \pi_{-\overline{\rho}}$ is the element defined in Lecture 3.

To prove this will show that $E = \lim_{i\to\infty} S(i\overline{\rho})$ is *G*-equivalent to $E\mathbf{Z}/2$ by showing it has the appropriate fixed point sets.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Geometric Fixed Point Theorem

Let G be a finite cyclic 2-group and let $\overline{\rho}$ denote its reduced regular representation. Then for any G-spectrum X, $\pi_{\star}(\tilde{E}\mathbf{Z}/2 \wedge X) = \chi_{\overline{\rho}}^{-1}\pi_{\star}(X)$, where $\chi_{\overline{\rho}} \in \pi_{-\overline{\rho}}$ is the element defined in Lecture 3.

To prove this will show that $E = \lim_{i\to\infty} S(i\overline{\rho})$ is *G*-equivalent to $E\mathbf{Z}/2$ by showing it has the appropriate fixed point sets. Since $(S(\overline{\rho}))^G$ is empty, the same is true of E^G .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Geometric Fixed Point Theorem

Let G be a finite cyclic 2-group and let $\overline{\rho}$ denote its reduced regular representation. Then for any G-spectrum X, $\pi_{\star}(\tilde{E}\mathbf{Z}/2 \wedge X) = \chi_{\overline{\rho}}^{-1}\pi_{\star}(X)$, where $\chi_{\overline{\rho}} \in \pi_{-\overline{\rho}}$ is the element defined in Lecture 3.

To prove this will show that $E = \lim_{i\to\infty} S(i\overline{\rho})$ is *G*-equivalent to $E\mathbb{Z}/2$ by showing it has the appropriate fixed point sets. Since $(S(\overline{\rho}))^G$ is empty, the same is true of E^G . Since $(S(\overline{\rho}))^H$ for a proper subgroup *H* is $S^{|G/H|-2}$, its infinite join E^H is contractible. A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Geometric Fixed Point Theorem

Let G be a finite cyclic 2-group and let $\overline{\rho}$ denote its reduced regular representation. Then for any G-spectrum X, $\pi_{\star}(\tilde{E}\mathbf{Z}/2 \wedge X) = \chi_{\overline{\rho}}^{-1}\pi_{\star}(X)$, where $\chi_{\overline{\rho}} \in \pi_{-\overline{\rho}}$ is the element defined in Lecture 3.

To prove this will show that $E = \lim_{i\to\infty} S(i\overline{\rho})$ is *G*-equivalent to $E\mathbb{Z}/2$ by showing it has the appropriate fixed point sets. Since $(S(\overline{\rho}))^G$ is empty, the same is true of E^G . Since $(S(\overline{\rho}))^H$ for a proper subgroup *H* is $S^{|G/H|-2}$, its infinite join E^H is contractible.

It follows that $\tilde{E}\mathbf{Z}/2$ is equivalent to $\lim_{i\to\infty} S^{i\,\overline{\rho}}$, which implies the result.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Recall that $\pi_*(MO) = \mathbb{Z}/2[y_i : i > 0, i \neq 2^k - 1]$ where $|y_i| = i$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Recall that $\pi_*(MO) = \mathbf{Z}/2[y_i : i > 0, i \neq 2^k - 1]$ where $|y_i| = i$. In $\pi_{i\rho_q}(MU^{(g/2)})$ we have the element

 $Nr_i = r_i(1)r_i(2)\cdots r_i(g/2).$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Recall that $\pi_*(MO) = \mathbf{Z}/2[y_i : i > 0, i \neq 2^k - 1]$ where $|y_i| = i$. In $\pi_{i\rho_a}(MU^{(g/2)})$ we have the element

 $Nr_i = r_i(1)r_i(2)\cdots r_i(g/2).$

Applying the functor Φ^G to the map $Nr_i : S^{i\rho_g} \to MU^{(g/2)}$ gives a map $S^i \to MO$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Recall that $\pi_*(MO) = \mathbf{Z}/2[y_i : i > 0, i \neq 2^k - 1]$ where $|y_i| = i$. In $\pi_{i\rho_a}(MU^{(g/2)})$ we have the element

 $Nr_i = r_i(1)r_i(2)\cdots r_i(g/2).$

Applying the functor Φ^G to the map $Nr_i : S^{i\rho_g} \to MU^{(g/2)}$ gives a map $S^i \to MO$.

Lemma

The generators r_i and y_i can be chosen so that

$$\Phi^G Nr_i = \begin{cases} 0 & \text{for } i = 2^k - \frac{1}{2} \\ y_i & \text{otherwise.} \end{cases}$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

The Slice Theorem describes the slices associated with $MU^{(g/2)}$. Its proof is a delicate induction argument. Here we will outline the proof of a key step in it.

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

The Slice Theorem describes the slices associated with $MU^{(g/2)}$. Its proof is a delicate induction argument. Here we will outline the proof of a key step in it.

Recall that

$$\pi^{u}_{*}(MU^{(g/2)}) = \mathbf{Z}[r_{i}(j): i > 0, 1 \le j \le g/2]$$
 with $|r_{i}(j)| = 2i$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

The Slice Theorem describes the slices associated with $MU^{(g/2)}$. Its proof is a delicate induction argument. Here we will outline the proof of a key step in it.

Recall that

$$\pi^{u}_{*}(MU^{(g/2)}) = \mathbf{Z}[r_{i}(j): i > 0, 1 \le j \le g/2]$$
 with $|r_{i}(j)| = 2i$.

There is a way to kill the $r_i(j)$ for any collection of *i*s and get a new equivariant spectrum which is a module over the E_{∞} -ring spectrum $MU^{(g/2)}$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

The Slice Theorem describes the slices associated with $MU^{(g/2)}$. Its proof is a delicate induction argument. Here we will outline the proof of a key step in it.

Recall that

$$\pi^{u}_{*}(MU^{(g/2)}) = \mathbf{Z}[r_{i}(j): i > 0, 1 \le j \le g/2]$$
 with $|r_{i}(j)| = 2i$.

There is a way to kill the $r_i(j)$ for any collection of *i*s and get a new equivariant spectrum which is a module over the E_{∞} -ring spectrum $MU^{(g/2)}$. We let $R_G(m)$ denote the result of killing the $r_i(j)$ for $i \leq m$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

There are maps

$$MU^{(g/2)} = R_G(0)
ightarrow R_G(1)
ightarrow R_G(2)
ightarrow \cdots
ightarrow H\mathbf{Z}$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

There are maps

$$MU^{(g/2)} = R_G(0)
ightarrow R_G(1)
ightarrow R_G(2)
ightarrow \cdots
ightarrow H\mathbf{Z}$$

and we denote the limit by $R_G(\infty)$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

There are maps

$$MU^{(g/2)} = R_G(0)
ightarrow R_G(1)
ightarrow R_G(2)
ightarrow \cdots
ightarrow H\mathbf{Z}$$

and we denote the limit by $R_G(\infty)$. A key step in the proof of the Slice Theorem is the following.

Reduction Theorem

The map $f_G : R_G(\infty) \to H\mathbf{Z}$ is a weak G-equivalence.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

There are maps

$$MU^{(g/2)} = R_G(0)
ightarrow R_G(1)
ightarrow R_G(2)
ightarrow \cdots
ightarrow H\mathbf{Z}$$

and we denote the limit by $R_G(\infty)$. A key step in the proof of the Slice Theorem is the following.

Reduction Theorem

The map $f_G : R_G(\infty) \to H\mathbf{Z}$ is a weak G-equivalence.

The nonequivariant analog of this statement is obvious. We will prove the corresponding statement over subgroups $H \subset G$ by induction on the order of H.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

This means it suffices to show that $\Phi^H f$ is an ordinary equivalance for each subgroup $H \subset G$.

Mike Hopkins Doug Ravenel

Mike Hill

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

This means it suffices to show that $\Phi^H f$ is an ordinary equivalance for each subgroup $H \subset G$. To this end we will determine both $\pi_*(\Phi^H R_G(\infty))$ and $\pi_*(\Phi^H H Z)$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

This means it suffices to show that $\Phi^H f$ is an ordinary equivalance for each subgroup $H \subset G$. To this end we will determine both $\pi_*(\Phi^H R_G(\infty))$ and $\pi_*(\Phi^H H \mathbf{Z})$.

As *H*-spectra we have $R_G(m) = R_H(m)^{(g/h)}$, so it suffices to determine $\pi_*(\Phi^G R_G(\infty))$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

This means it suffices to show that $\Phi^H f$ is an ordinary equivalance for each subgroup $H \subset G$. To this end we will determine both $\pi_*(\Phi^H R_G(\infty))$ and $\pi_*(\Phi^H H Z)$.

As *H*-spectra we have $R_G(m) = R_H(m)^{(g/h)}$, so it suffices to determine $\pi_*(\Phi^G R_G(\infty))$. One can show that for each m > 0 there is a cofiber sequence

$$\Sigma^m \Phi^G R_G(m-1) \xrightarrow{\Phi^G Nr_m} \Phi^G R_G(m-1) \longrightarrow \Phi^G R_G(m).$$

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

This means it suffices to show that $\Phi^H f$ is an ordinary equivalance for each subgroup $H \subset G$. To this end we will determine both $\pi_*(\Phi^H R_G(\infty))$ and $\pi_*(\Phi^H H \mathbf{Z})$.

As *H*-spectra we have $R_G(m) = R_H(m)^{(g/h)}$, so it suffices to determine $\pi_*(\Phi^G R_G(\infty))$. One can show that for each m > 0 there is a cofiber sequence

$$\Sigma^m \Phi^G R_G(m-1) \xrightarrow{\Phi^G Nr_m} \Phi^G R_G(m-1) \longrightarrow \Phi^G R_G(m).$$

The lemma above determines the map $\Phi^G Nr_m$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

We know that $\Phi^G R_G(0) = MO$ and $\Phi^G Nr_1$ is trivial, so $\Phi^G R_G(1) = MO \land (S^0 \lor S^2)$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

We know that $\Phi^G R_G(0) = MO$ and $\Phi^G Nr_1$ is trivial, so $\Phi^G R_G(1) = MO \land (S^0 \lor S^2)$.

Let Q(m) denote the spectrum obtained from *MO* by killing the y_i for $i \le m$ so the limit $Q(\infty)$ is $H\mathbb{Z}/2$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

We know that $\Phi^G R_G(0) = MO$ and $\Phi^G Nr_1$ is trivial, so $\Phi^G R_G(1) = MO \land (S^0 \lor S^2)$.

Let Q(m) denote the spectrum obtained from *MO* by killing the y_i for $i \le m$ so the limit $Q(\infty)$ is $H\mathbb{Z}/2$. Recall that y_i is not defined when $i = 2^k - 1$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

We know that $\Phi^G R_G(0) = MO$ and $\Phi^G Nr_1$ is trivial, so $\Phi^G R_G(1) = MO \land (S^0 \lor S^2)$.

Let Q(m) denote the spectrum obtained from *MO* by killing the y_i for $i \le m$ so the limit $Q(\infty)$ is $H\mathbb{Z}/2$. Recall that y_i is not defined when $i = 2^k - 1$. Our cofiber sequence for m = 2 is the smash product of $S^0 \lor S^2$ with

$$\Sigma^2 MO \xrightarrow{y_2} MO \longrightarrow Q(2).$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

n a parte trat

The Periodicity Theorem

We know that $\Phi^G R_G(0) = MO$ and $\Phi^G Nr_1$ is trivial, so $\Phi^G R_G(1) = MO \land (S^0 \lor S^2)$.

Let Q(m) denote the spectrum obtained from *MO* by killing the y_i for $i \le m$ so the limit $Q(\infty)$ is $H\mathbb{Z}/2$. Recall that y_i is not defined when $i = 2^k - 1$. Our cofiber sequence for m = 2 is the smash product of $S^0 \lor S^2$ with

$$\Sigma^2 MO \xrightarrow{y_2} MO \longrightarrow Q(2).$$

Similarly we find that $\Phi^G R_G(\infty) = \bigvee_{k \ge 0} \Sigma^{2k} H \mathbb{Z}/2$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Recall that $\Phi^H H \mathbf{Z} = (\tilde{E} \mathbf{Z}/2 \wedge H \mathbf{Z})^H$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Homotopy and actual fixed points

4.13

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Homotopy and actual fixed points

4.13

Recall that $\Phi^H H Z = (\tilde{E} Z/2 \wedge H Z)^H$. The action of the subgroup of index 2 is trivial, so this is the same as $(\tilde{E} Z/2 \wedge H Z)^{Z/2} = \Phi^{Z/2} H Z$.

Earlier we described the computation of

$$\pi_k(S^{m_{\rho_2}} \wedge H\mathbf{Z}) = \pi_k(S^{m+m_{\sigma}} \wedge H\mathbf{Z}) = \pi_{k-m-m_{\sigma}}(H\mathbf{Z}).$$

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Earlier we described the computation of

$$\pi_k(S^{m_{\rho_2}} \wedge H\mathbf{Z}) = \pi_k(S^{m+m_{\sigma}} \wedge H\mathbf{Z}) = \pi_{k-m-m_{\sigma}}(H\mathbf{Z}).$$

This means we have all of $\pi_{\star}(HZ)$, the RO(Z/2)-graded homotopy of HZ.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Earlier we described the computation of

$$\pi_k(S^{m_{\rho_2}} \wedge H\mathbf{Z}) = \pi_k(S^{m+m_{\sigma}} \wedge H\mathbf{Z}) = \pi_{k-m-m_{\sigma}}(H\mathbf{Z}).$$

This means we have all of $\pi_{\star}(HZ)$, the RO(Z/2)-graded homotopy of HZ. It turns out that $\chi_{\sigma}^{-1}\pi_{\star}(HZ) = Z/2[u_{2\sigma}, \chi_{\sigma}^{\pm 1}]$, A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Earlier we described the computation of

$$\pi_k(S^{m_{\rho_2}} \wedge H\mathbf{Z}) = \pi_k(S^{m+m_{\sigma}} \wedge H\mathbf{Z}) = \pi_{k-m-m_{\sigma}}(H\mathbf{Z}).$$

This means we have all of $\pi_{\star}(HZ)$, the RO(Z/2)-graded homotopy of HZ. It turns out that $\chi_{\sigma}^{-1}\pi_{\star}(HZ) = Z/2[u_{2\sigma}, \chi_{\sigma}^{\pm 1}]$, where $u_{2\sigma} \in \pi_{2-2\sigma}$. A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Earlier we described the computation of

$$\pi_k(S^{m_{\rho_2}} \wedge H\mathbf{Z}) = \pi_k(S^{m+m_{\sigma}} \wedge H\mathbf{Z}) = \pi_{k-m-m_{\sigma}}(H\mathbf{Z}).$$

This means we have all of $\pi_{\star}(HZ)$, the RO(Z/2)-graded homotopy of HZ. It turns out that $\chi_{\sigma}^{-1}\pi_{\star}(HZ) = Z/2[u_{2\sigma}, \chi_{\sigma}^{\pm 1}]$, where $u_{2\sigma} \in \pi_{2-2\sigma}$. The integrally graded part of this is Z/2[b]where $b = u_{2\sigma}/\chi_{\sigma}^2 \in \pi_2$. A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Earlier we described the computation of

$$\pi_k(S^{m_{\rho_2}} \wedge H\mathbf{Z}) = \pi_k(S^{m+m_{\sigma}} \wedge H\mathbf{Z}) = \pi_{k-m-m_{\sigma}}(H\mathbf{Z}).$$

This means we have all of $\pi_{\star}(HZ)$, the RO(Z/2)-graded homotopy of *HZ*. It turns out that $\chi_{\sigma}^{-1}\pi_{\star}(HZ) = Z/2[u_{2\sigma}, \chi_{\sigma}^{\pm 1}]$, where $u_{2\sigma} \in \pi_{2-2\sigma}$. The integrally graded part of this is Z/2[b]where $b = u_{2\sigma}/\chi_{\sigma}^2 \in \pi_2$.

Hence $\pi_*(\Phi^G H\mathbf{Z})$ and $\pi_*(\Phi^G R_G(\infty))$ are abstractly isomorphic.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Earlier we described the computation of

$$\pi_k(S^{m_{\rho_2}} \wedge H\mathbf{Z}) = \pi_k(S^{m+m_{\sigma}} \wedge H\mathbf{Z}) = \pi_{k-m-m_{\sigma}}(H\mathbf{Z}).$$

This means we have all of $\pi_*(HZ)$, the RO(Z/2)-graded homotopy of *HZ*. It turns out that $\chi_{\sigma}^{-1}\pi_*(HZ) = Z/2[u_{2\sigma}, \chi_{\sigma}^{\pm 1}]$, where $u_{2\sigma} \in \pi_{2-2\sigma}$. The integrally graded part of this is Z/2[b]where $b = u_{2\sigma}/\chi_{\sigma}^2 \in \pi_2$.

Hence $\pi_*(\Phi^G H \mathbf{Z})$ and $\pi_*(\Phi^G R_G(\infty))$ are abstractly isomorphic. A more careful analysis shows that *f* induces this isomorphism, thereby proving the Reduction Theorem.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Before we can state and prove the Periodicity Theorem, we need to explore some differentials in the slice spectral sequence for $MU^{(g/2)}$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Before we can state and prove the Periodicity Theorem, we need to explore some differentials in the slice spectral sequence for $MU^{(g/2)}$.

It follows from the Slice and Vanishing Theorems that it has a vanishing line of slope g - 1.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Before we can state and prove the Periodicity Theorem, we need to explore some differentials in the slice spectral sequence for $MU^{(g/2)}$.

It follows from the Slice and Vanishing Theorems that it has a vanishing line of slope g - 1. The only slice cells which reach this line are the ones *not* induced from a proper subgroup, namely the $S^{n_{\rho_g}}$ associated with the subring **Z**[*Nr_i* : *i* > 0].

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Before we can state and prove the Periodicity Theorem, we need to explore some differentials in the slice spectral sequence for $MU^{(g/2)}$.

It follows from the Slice and Vanishing Theorems that it has a vanishing line of slope g - 1. The only slice cells which reach this line are the ones *not* induced from a proper subgroup, namely the $S^{n_{\rho_g}}$ associated with the subring **Z**[*Nr_i* : *i* > 0].

For each i > 0 there is an element

$$f_i \in \pi_i(S^{i\rho_g}) \subset E_2^{(g-1)i,gi},$$

the bottom element in $\pi_*(S^{i\rho_g})$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

It is the composite $S^i \xrightarrow{\chi_{i\rho g}} S^{i\rho g} \xrightarrow{Nr_i} MU^{(g/2)}$.

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

It is the composite $S^i \xrightarrow{\chi_{i\rho g}} S^{i\rho g} \xrightarrow{Nr_i} MU^{(g/2)}$. The subring of elements on the vanishing line is $\mathbf{Z}[f_i: i > 0]/(2f_i)$. A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

It is the composite $S^i \xrightarrow{\chi_{i\rho g}} S^{i\rho g} \xrightarrow{Nr_i} MU^{(g/2)}$. The subring of elements on the vanishing line is $\mathbf{Z}[f_i: i > 0]/(2f_i)$. Under the map

$$\pi_*(MU^{(g/2)}) \to \pi_*(\Phi^G MU^{(g/2)}) = \pi_*(MO)$$

we have

$$f_i \mapsto \left\{ egin{array}{cc} 0 & ext{for } i=2^k-1 \\ y_i & ext{otherwise} \end{array}
ight.$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

It is the composite $S^i \xrightarrow{\chi_{i\rho g}} S^{i\rho g} \xrightarrow{Nr_i} MU^{(g/2)}$. The subring of elements on the vanishing line is $\mathbf{Z}[f_i: i > 0]/(2f_i)$. Under the map

$$\pi_*(\mathcal{MU}^{(g/2)}) \to \pi_*(\Phi^G \mathcal{MU}^{(g/2)}) = \pi_*(\mathcal{MO})$$

we have

$$f_i \mapsto \left\{ egin{array}{cc} 0 & ext{for } i=2^k-1 \ y_i & ext{otherwise} \end{array}
ight.$$

It follows that any differentials hitting the vanishing line must land in the ideal $(f_1, f_3, f_7, ...)$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

It is the composite $S^i \xrightarrow{\chi_{i\rho g}} S^{i\rho g} \xrightarrow{Nr_i} MU^{(g/2)}$. The subring of elements on the vanishing line is $\mathbf{Z}[f_i: i > 0]/(2f_i)$. Under the map

$$\pi_*(\mathcal{MU}^{(g/2)}) \to \pi_*(\Phi^G \mathcal{MU}^{(g/2)}) = \pi_*(\mathcal{MO})$$

we have

$$f_i \mapsto \left\{ egin{array}{l} 0 & ext{for } i = 2^k - 1 \ y_i & ext{otherwise} \end{array}
ight.$$

It follows that any differentials hitting the vanishing line must land in the ideal ($f_1, f_3, f_7, ...$). A similar statement can be made after smashing with $S^{2^k \sigma}$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Slice Differentials Theorem

In the slice spectral sequence for $\Sigma^{2^k\sigma}MU^{(g/2)}$ (for k > 0) we have $d_r(u_{2^k\sigma}) = 0$ for $r < 1 + (2^k - 1)g$, and

$$d_{1+(2^{k}-1)g}(u_{2^{k}\sigma}) = \chi_{\sigma}^{2^{k}} f_{2^{k}-1}.$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Slice Differentials Theorem

In the slice spectral sequence for $\Sigma^{2^k\sigma}MU^{(g/2)}$ (for k > 0) we have $d_r(u_{2^k\sigma}) = 0$ for $r < 1 + (2^k - 1)g$, and

$$d_{1+(2^k-1)g}(u_{2^k\sigma}) = \chi_{\sigma}^{2^k} f_{2^k-1}$$

Inverting χ_{σ} in the slice spectral sequence will make it converge to $\pi_*(MO)$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Slice Differentials Theorem

In the slice spectral sequence for $\Sigma^{2^k\sigma}MU^{(g/2)}$ (for k > 0) we have $d_r(u_{2^k\sigma}) = 0$ for $r < 1 + (2^k - 1)g$, and

$$d_{1+(2^k-1)g}(u_{2^k\sigma}) = \chi_{\sigma}^{2^k} f_{2^k-1}$$

Inverting χ_{σ} in the slice spectral sequence will make it converge to $\pi_*(MO)$. This means each f_{2^k-1} must be killed by some power of χ_{σ} .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Slice Differentials Theorem

In the slice spectral sequence for $\Sigma^{2^k\sigma}MU^{(g/2)}$ (for k > 0) we have $d_r(u_{2^k\sigma}) = 0$ for $r < 1 + (2^k - 1)g$, and

$$d_{1+(2^k-1)g}(u_{2^k\sigma}) = \chi_{\sigma}^{2^k} f_{2^k-1}$$

Inverting χ_{σ} in the slice spectral sequence will make it converge to $\pi_*(MO)$. This means each f_{2^k-1} must be killed by some power of χ_{σ} . The only way this can happen is as indicated in the theorem.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity

Let

$$\overline{\Delta}_k^{(g)} = Nr_{2^k-1} \in \pi_{(2^k-1)\rho_g}(MU^{(g/2)}).$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Let

$$\overline{\Delta}_{k}^{(g)} = Nr_{2^{k}-1} \in \pi_{(2^{k}-1)\rho_{g}}(MU^{(g/2)}).$$

We want to invert this element and study the resulting slice spectral sequence.

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Let

$$\overline{\Delta}_{k}^{(g)} = Nr_{2^{k}-1} \in \pi_{(2^{k}-1)\rho_{g}}(MU^{(g/2)}).$$

We want to invert this element and study the resulting slice spectral sequence. As explained previously, it is confined to the first and third quadrants with vanishing lines of slopes 0 and g - 1.

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Let

$$\overline{\Delta}_{k}^{(g)} = Nr_{2^{k}-1} \in \pi_{(2^{k}-1)\rho_{g}}(MU^{(g/2)})$$

We want to invert this element and study the resulting slice spectral sequence. As explained previously, it is confined to the first and third quadrants with vanishing lines of slopes 0 and g - 1.

The differential d_r on $u_{2^{k+1}\sigma}$ described in the theorem is the last one possible since its target, $\chi_{\sigma}^{2^{k+1}} f_{2^{k+1}-1}$, lies on the vanishing line.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Let

$$\overline{\Delta}_{k}^{(g)} = Nr_{2^{k}-1} \in \pi_{(2^{k}-1)\rho_{g}}(MU^{(g/2)})$$

We want to invert this element and study the resulting slice spectral sequence. As explained previously, it is confined to the first and third quadrants with vanishing lines of slopes 0 and g - 1.

The differential d_r on $u_{2^{k+1}\sigma}$ described in the theorem is the last one possible since its target, $\chi_{\sigma}^{2^{k+1}} f_{2^{k+1}-1}$, lies on the vanishing line. If we can show that this target is killed by an earlier differential after inverting $\overline{\Delta}_{k}^{(g)}$, then $u_{2^{k+1}\sigma}$ will be a permanent cycle. A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

We have

$$f_{2^{k+1}-1}\overline{\Delta}_{k}^{(g)} = \chi_{(2^{k+1}-1)\rho_{g}} Nr_{2^{k+1}-1} Nr_{2^{k}-1}$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

We have

$$f_{2^{k+1}-1}\overline{\Delta}_{k}^{(g)} = \chi_{(2^{k+1}-1)\rho_{g}} Nr_{2^{k+1}-1} Nr_{2^{k}-1}$$
$$= \chi_{2^{k}\rho_{g}} \overline{\Delta}_{k+1}^{(g)} f_{2^{k}-1}$$

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

We have

$$f_{2^{k+1}-1}\overline{\Delta}_{k}^{(g)} = \chi_{(2^{k+1}-1)\rho_{g}} Nr_{2^{k+1}-1} Nr_{2^{k}-1}$$

= $\chi_{2^{k}\rho_{g}} \overline{\Delta}_{k+1}^{(g)} f_{2^{k}-1}$
= $\overline{\Delta}_{k+1}^{(g)} d_{r'}(u_{2^{k}\sigma})$ for $r' < r$.

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

We have

$$f_{2^{k+1}-1}\overline{\Delta}_{k}^{(g)} = \chi_{(2^{k+1}-1)\rho_{g}} Nr_{2^{k+1}-1} Nr_{2^{k}-1}$$

= $\chi_{2^{k}\rho_{g}} \overline{\Delta}_{k+1}^{(g)} f_{2^{k}-1}$
= $\overline{\Delta}_{k+1}^{(g)} d_{r'}(u_{2^{k}\sigma})$ for $r' < r$.

Corollary

In the RO(G)-graded slice spectral sequence for $\left(\overline{\Delta}_{k}^{(g)}\right)^{-1}$ MU^(g/2), the class $u_{2\sigma}^{2^{k}}$ is a permanent cycle.

The Periodicity Theorem

The corollary shows that inverting a certain element makes a power of $u_{2\sigma}$ a permanent cycle.

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

The corollary shows that inverting a certain element makes a power of $u_{2\sigma}$ a permanent cycle. We need a similar statement about a power of $u_{2\rho_q}$ when $g = 2^n$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

The corollary shows that inverting a certain element makes a power of $u_{2\sigma}$ a permanent cycle. We need a similar statement about a power of $u_{2\rho_{\sigma}}$ when $g = 2^{n}$.

We will get this by using the norm property of *u*, namely that if *W* is an oriented representation of a subgroup $H \subset G$ with $W^H = 0$ and induced representation *W'*, then the norm functor N_h^g from *H*-spectra to *G*-spectra satisfies $N_H^G(u_W)u_{2\rho_G/H}^{|W|/2} = u_{W'}$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

The corollary shows that inverting a certain element makes a power of $u_{2\sigma}$ a permanent cycle. We need a similar statement about a power of $u_{2\rho_q}$ when $g = 2^n$.

We will get this by using the norm property of *u*, namely that if *W* is an oriented representation of a subgroup $H \subset G$ with $W^H = 0$ and induced representation *W'*, then the norm functor N_h^g from *H*-spectra to *G*-spectra satisfies $N_H^G(u_W)u_{2\rho_G/H}^{|W|/2} = u_{W'}$.

From this we can deduce that $u_{2\rho_g} = \prod_{m=1}^n N_{2^m}^{2^n}(u_{2^m\sigma_m})$,

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity
Theorem

The corollary shows that inverting a certain element makes a power of $u_{2\sigma}$ a permanent cycle. We need a similar statement about a power of $u_{2\rho_{\sigma}}$ when $g = 2^{n}$.

We will get this by using the norm property of *u*, namely that if *W* is an oriented representation of a subgroup $H \subset G$ with $W^H = 0$ and induced representation *W'*, then the norm functor N_h^g from *H*-spectra to *G*-spectra satisfies $N_H^G(u_W)u_{2\rho_G/H}^{|W|/2} = u_{W'}$.

From this we can deduce that $u_{2\rho_g} = \prod_{m=1}^n N_{2^m}^{2^n}(u_{2^m\sigma_m})$, where σ_m denotes the sign representation on C_{2^m} .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

In particular we have $u_{2\rho_8} = u_{8\sigma_3} N_4^8 (u_{4\sigma_2}) N_2^8 (u_{2\sigma_1})$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

In particular we have $u_{2\rho_8} = u_{8\sigma_3}N_4^8(u_{4\sigma_2})N_2^8(u_{2\sigma_1})$.

By the Corollary we can make a power of each factor a permanent cycle by inverting some $\overline{\Delta}_{k_m}^{(2^m)}$ for $1 \le m \le 3$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

In particular we have $u_{2\rho_8} = u_{8\sigma_3}N_4^8(u_{4\sigma_2})N_2^8(u_{2\sigma_1})$.

By the Corollary we can make a power of each factor a permanent cycle by inverting some $\overline{\Delta}_{k_m}^{(2^m)}$ for $1 \le m \le 3$. If we make k_m too small we will lose the detection property, that is we will get a spectrum that does not detect the θ_i .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

In particular we have $u_{2\rho_8} = u_{8\sigma_3}N_4^8(u_{4\sigma_2})N_2^8(u_{2\sigma_1})$.

By the Corollary we can make a power of each factor a permanent cycle by inverting some $\overline{\Delta}_{k_m}^{(2^m)}$ for $1 \le m \le 3$. If we make k_m too small we will lose the detection property, that is we will get a spectrum that does not detect the θ_j . It turns out that k_m must be chosen so that $8|2^mk_m$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicit

In particular we have $u_{2\rho_8} = u_{8\sigma_3}N_4^8(u_{4\sigma_2})N_2^8(u_{2\sigma_1})$.

By the Corollary we can make a power of each factor a permanent cycle by inverting some $\overline{\Delta}_{k_m}^{(2^m)}$ for $1 \le m \le 3$. If we make k_m too small we will lose the detection property, that is we will get a spectrum that does not detect the θ_j . It turns out that k_m must be chosen so that $8|2^mk_m$.

• Inverting $\overline{\Delta}_4^{(2)}$ makes $u_{32\sigma_1}$ a permanent cycle.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicit

In particular we have $u_{2\rho_8} = u_{8\sigma_3}N_4^8(u_{4\sigma_2})N_2^8(u_{2\sigma_1})$.

By the Corollary we can make a power of each factor a permanent cycle by inverting some $\overline{\Delta}_{k_m}^{(2^m)}$ for $1 \le m \le 3$. If we make k_m too small we will lose the detection property, that is we will get a spectrum that does not detect the θ_j . It turns out that k_m must be chosen so that $8|2^mk_m$.

- Inverting $\overline{\Delta}_4^{(2)}$ makes $u_{32\sigma_1}$ a permanent cycle.
- Inverting $\overline{\Delta}_2^{(4)}$ makes $u_{8\sigma_2}$ a permanent cycle.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicit Theorem

In particular we have $u_{2\rho_8} = u_{8\sigma_3}N_4^8(u_{4\sigma_2})N_2^8(u_{2\sigma_1})$.

By the Corollary we can make a power of each factor a permanent cycle by inverting some $\overline{\Delta}_{k_m}^{(2^m)}$ for $1 \le m \le 3$. If we make k_m too small we will lose the detection property, that is we will get a spectrum that does not detect the θ_j . It turns out that k_m must be chosen so that $8|2^mk_m$.

- Inverting $\overline{\Delta}_4^{(2)}$ makes $u_{32\sigma_1}$ a permanent cycle.
- Inverting $\overline{\Delta}_2^{(4)}$ makes $u_{8\sigma_2}$ a permanent cycle.
- Inverting $\overline{\Delta}_1^{(8)}$ makes $u_{4\sigma_3}$ a permanent cycle.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicit Theorem

In particular we have $u_{2\rho_8} = u_{8\sigma_3}N_4^8(u_{4\sigma_2})N_2^8(u_{2\sigma_1})$.

By the Corollary we can make a power of each factor a permanent cycle by inverting some $\overline{\Delta}_{k_m}^{(2^m)}$ for $1 \le m \le 3$. If we make k_m too small we will lose the detection property, that is we will get a spectrum that does not detect the θ_j . It turns out that k_m must be chosen so that $8|2^mk_m$.

- Inverting $\overline{\Delta}_4^{(2)}$ makes $u_{32\sigma_1}$ a permanent cycle.
- Inverting $\overline{\Delta}_2^{(4)}$ makes $u_{8\sigma_2}$ a permanent cycle.
- Inverting $\overline{\Delta}_1^{(8)}$ makes $u_{4\sigma_3}$ a permanent cycle.
- Inverting the product *D* of the norms of all three makes $u_{32\rho_8}$ a permanent cycle.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

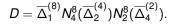
Introduction Geometric fixed points The Slice Theorem

The Periodicity

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Let



Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Let

$$D = \overline{\Delta}_1^{(8)} N_4^8 (\overline{\Delta}_2^{(4)}) N_2^8 (\overline{\Delta}_4^{(2)}).$$

The we define $\tilde{M} = D^{-1}MU^{(4)}$ and $M = \tilde{M}^{C_8}$.

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Let

$$D = \overline{\Delta}_1^{(8)} N_4^8 (\overline{\Delta}_2^{(4)}) N_2^8 (\overline{\Delta}_4^{(2)}).$$

The we define $\tilde{M} = D^{-1}MU^{(4)}$ and $M = \tilde{M}^{C_8}$.

Since the inverted element is represented by a map from $S^{m_{\rho_8}}$, the slice spectral sequence for $\pi_*(M)$ has the usual properties:

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Let

$$D = \overline{\Delta}_1^{(8)} N_4^8 (\overline{\Delta}_2^{(4)}) N_2^8 (\overline{\Delta}_4^{(2)}).$$

The we define $\tilde{M} = D^{-1}MU^{(4)}$ and $M = \tilde{M}^{C_8}$.

Since the inverted element is represented by a map from $S^{m_{\rho_8}}$, the slice spectral sequence for $\pi_*(M)$ has the usual properties:

• It is concentrated in the first and third quadrants and confined by vanishing lines of slopes 0 and 7.

The Periodicity Theorem

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Let

$$D = \overline{\Delta}_1^{(8)} N_4^8(\overline{\Delta}_2^{(4)}) N_2^8(\overline{\Delta}_4^{(2)}).$$

The we define $\tilde{M} = D^{-1}MU^{(4)}$ and $M = \tilde{M}^{C_8}$.

Since the inverted element is represented by a map from $S^{m_{\rho_8}}$, the slice spectral sequence for $\pi_*(M)$ has the usual properties:

- It is concentrated in the first and third quadrants and confined by vanishing lines of slopes 0 and 7.
- It has the gap property, i.e., no homotopy between dimensions -4 and 0.

The Slice Theorem

The Periodicity Theorem

Preperiodicity Theorem

Let
$$\Delta_1^{(8)} = u_{2\rho_8}(\overline{\Delta}_1^{(8)})^2 \in E_2^{16,0}(D^{-1}MU^{(4)})$$
. Then $(\Delta_1^{(8)})^{16}$ is a permanent cycle.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Preperiodicity Theorem

Let $\Delta_1^{(8)} = u_{2\rho_8}(\overline{\Delta}_1^{(8)})^2 \in E_2^{16,0}(D^{-1}MU^{(4)})$. Then $(\Delta_1^{(8)})^{16}$ is a permanent cycle.

To prove this, note that $(\Delta_1^{(8)})^{16} = u_{32\rho_8\left(\overline{\Delta}_1^{(8)}\right)^{32}}$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Preperiodicity Theorem

Let $\Delta_1^{(8)} = u_{2\rho_8}(\overline{\Delta}_1^{(8)})^2 \in E_2^{16,0}(D^{-1}MU^{(4)})$. Then $(\Delta_1^{(8)})^{16}$ is a permanent cycle.

To prove this, note that $(\Delta_1^{(8)})^{16} = u_{32\rho_8}(\overline{\Delta}_1^{(8)})^{32}$. Both $u_{32\rho_8}$ and $\overline{\Delta}_1^{(8)}$ are permanent cycles, so $(\Delta_1^{(8)})^{16}$ is also one.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Preperiodicity Theorem

Let $\Delta_1^{(8)} = u_{2\rho_8}(\overline{\Delta}_1^{(8)})^2 \in E_2^{16,0}(D^{-1}MU^{(4)})$. Then $(\Delta_1^{(8)})^{16}$ is a permanent cycle.

To prove this, note that $(\Delta_1^{(8)})^{16} = u_{32\rho_8}(\overline{\Delta}_1^{(8)})^{32}$. Both $u_{32\rho_8}$ and $\overline{\Delta}_1^{(8)}$ are permanent cycles, so $(\Delta_1^{(8)})^{16}$ is also one.

Thus we have an equivariant map $\Sigma^{256} D^{-1} M U^{(4)} \rightarrow D^{-1} M U^{(4)}$ and a similar map on the fixed point set. The latter one is invertible because $u_{2\rho_8}^{32}$ restricts to the identity. A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Preperiodicity Theorem

Let $\Delta_1^{(8)} = u_{2\rho_8}(\overline{\Delta}_1^{(8)})^2 \in E_2^{16,0}(D^{-1}MU^{(4)})$. Then $(\Delta_1^{(8)})^{16}$ is a permanent cycle.

To prove this, note that $(\Delta_1^{(8)})^{16} = u_{32\rho_8}(\overline{\Delta}_1^{(8)})^{32}$. Both $u_{32\rho_8}$ and $\overline{\Delta}_1^{(8)}$ are permanent cycles, so $(\Delta_1^{(8)})^{16}$ is also one.

Thus we have an equivariant map $\Sigma^{256} D^{-1} M U^{(4)} \rightarrow D^{-1} M U^{(4)}$ and a similar map on the fixed point set. The latter one is invertible because $u_{2\rho_8}^{32}$ restricts to the identity.

Thus we have proved

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

The Periodicity Theorem (continued)

Preperiodicity Theorem

Let $\Delta_1^{(8)} = u_{2\rho_8}(\overline{\Delta}_1^{(8)})^2 \in E_2^{16,0}(D^{-1}MU^{(4)})$. Then $(\Delta_1^{(8)})^{16}$ is a permanent cycle.

To prove this, note that $(\Delta_1^{(8)})^{16} = u_{32\rho_8}(\overline{\Delta}_1^{(8)})^{32}$. Both $u_{32\rho_8}$ and $\overline{\Delta}_1^{(8)}$ are permanent cycles, so $(\Delta_1^{(8)})^{16}$ is also one.

Thus we have an equivariant map $\Sigma^{256}D^{-1}MU^{(4)} \rightarrow D^{-1}MU^{(4)}$ and a similar map on the fixed point set. The latter one is invertible because $u_{2\rho_8}^{32}$ restricts to the identity.

Thus we have proved

Periodicity Theorem

Let $M = (D^{-1}MU^{(4)})^{C_8}$. Then $\Sigma^{256}M$ is equivalent to M.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Homotopy and actual fixed points

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction

Geometric fixed points

The Slice Theorem

The Periodicity Theorem

Homotopy and actual fixed points

4.24

In order to finish the proof of the main theorem, we need to show that the actual fixed point set of $\tilde{M} = D^{-1}MU^{(4)}$ is equivalent to the homotopy fixed point set.

Homotopy and actual fixed points

In order to finish the proof of the main theorem, we need to show that the actual fixed point set of $\tilde{M} = D^{-1}MU^{(4)}$ is equivalent to the homotopy fixed point set.

The slice spectral sequence computes the homotopy of the former while the Hopkins-Miller spectral sequence (which is known to detect θ_i) computes that of the latter.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Here is a general approach to showing that actual and homotopy fixed points are equivalent for a G-spectrum X.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Here is a general approach to showing that actual and homotopy fixed points are equivalent for a G-spectrum X.

We have an equivariant map $EG_+ \rightarrow S^0$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Here is a general approach to showing that actual and homotopy fixed points are equivalent for a G-spectrum X.

We have an equivariant map $EG_+ \rightarrow S^0$. Mapping both into X gives a map of G-spectra $\varphi : X + \rightarrow F(EG_+, X_+)$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Here is a general approach to showing that actual and homotopy fixed points are equivalent for a *G*-spectrum *X*.

We have an equivariant map $EG_+ \rightarrow S^0$. Mapping both into X gives a map of G-spectra $\varphi : X + \rightarrow F(EG_+, X_+)$. Passing to fixed points would give a map $X^G \rightarrow X^{hG}$, but we will prove the stronger statement that φ is a G-equivalence.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

Here is a general approach to showing that actual and homotopy fixed points are equivalent for a *G*-spectrum *X*.

We have an equivariant map $EG_+ \rightarrow S^0$. Mapping both into X gives a map of G-spectra $\varphi : X + \rightarrow F(EG_+, X_+)$. Passing to fixed points would give a map $X^G \rightarrow X^{hG}$, but we will prove the stronger statement that φ is a G-equivalence.

The case of interest is $X = \tilde{M}$ and $G = C_8$.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem The Periodicity

Theorem

Here is a general approach to showing that actual and homotopy fixed points are equivalent for a G-spectrum X.

We have an equivariant map $EG_+ \rightarrow S^0$. Mapping both into X gives a map of G-spectra $\varphi : X+ \rightarrow F(EG_+, X_+)$. Passing to fixed points would give a map $X^G \rightarrow X^{hG}$, but we will prove the stronger statement that φ is a G-equivalence.

The case of interest is $X = \tilde{M}$ and $G = C_8$. We will argue by induction on the order of the subgroups *H* of *G*, the statement being obvious for the trivial group. We will smash φ with the isotropy separation sequence

$$EG_+ o S^0 o ilde EG_.$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

This gives us the following diagram in which both rows are cofiber sequences.

$$\begin{array}{ccc} EG_{+} \land \tilde{M} & \longrightarrow \tilde{M} & \longrightarrow \tilde{E}G \land \tilde{M} \\ & \downarrow^{\varphi'} & \downarrow^{\varphi} & \downarrow^{\varphi''} \\ EG_{+} \land F(EG_{+}, \tilde{M}) & \longrightarrow F(EG_{+}, \tilde{M}) & \longrightarrow \tilde{E}G \land F(EG_{+}, \tilde{M}) \end{array}$$

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem The Periodicity

Theorem

This gives us the following diagram in which both rows are cofiber sequences.

$$\begin{array}{ccc} EG_{+} \land \tilde{M} & \longrightarrow \tilde{M} & \longrightarrow \tilde{E}G \land \tilde{M} \\ & \downarrow^{\varphi'} & \downarrow^{\varphi} & \downarrow^{\varphi''} \\ EG_{+} \land F(EG_{+}, \tilde{M}) & \longrightarrow F(EG_{+}, \tilde{M}) & \longrightarrow \tilde{E}G \land F(EG_{+}, \tilde{M}) \end{array}$$

The map φ' is an equivalence because \tilde{M} is nonequivariantly equivalent to $F(EG_+, \tilde{M})$, and EG_+ is built up entirely of free *G*-cells.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem The Periodicity

Theorem

This gives us the following diagram in which both rows are cofiber sequences.

$$\begin{array}{cccc} EG_{+} \land \tilde{M} & \longrightarrow \tilde{M} & \longrightarrow \tilde{E}G \land \tilde{M} \\ & \downarrow^{\varphi'} & \downarrow^{\varphi} & \downarrow^{\varphi''} \\ EG_{+} \land F(EG_{+}, \tilde{M}) & \longrightarrow F(EG_{+}, \tilde{M}) & \longrightarrow \tilde{E}G \land F(EG_{+}, \tilde{M}) \end{array}$$

The map φ' is an equivalence because \tilde{M} is nonequivariantly equivalent to $F(EG_+, \tilde{M})$, and EG_+ is built up entirely of free *G*-cells.

Thus it suffices to show that φ''_H is an equivalence, which we will do by showing that both its source and target are contractible.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem The Periodicity

Theorem

This gives us the following diagram in which both rows are cofiber sequences.

$$\begin{array}{cccc} EG_{+} \land \tilde{M} & \longrightarrow \tilde{M} & \longrightarrow \tilde{E}G \land \tilde{M} \\ & \downarrow^{\varphi'} & \downarrow^{\varphi} & \downarrow^{\varphi''} \\ EG_{+} \land F(EG_{+}, \tilde{M}) & \longrightarrow F(EG_{+}, \tilde{M}) & \longrightarrow \tilde{E}G \land F(EG_{+}, \tilde{M}) \end{array}$$

The map φ' is an equivalence because \tilde{M} is nonequivariantly equivalent to $F(EG_+, \tilde{M})$, and EG_+ is built up entirely of free *G*-cells.

Thus it suffices to show that φ''_H is an equivalence, which we will do by showing that both its source and target are contractible. Both have the form $\tilde{E}G \wedge X$ where X is a module spectrum over \tilde{M} , so it suffices to show that $\tilde{E}G \wedge \tilde{M}$ is contractible. A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem The Periodicity

Theorem

We need to show that $\tilde{E}G \wedge \tilde{M}$ is *G*-equivariantly contractible.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

We need to show that $\tilde{E}G \wedge \tilde{M}$ is *G*-equivariantly contractible. We will show that it is *H*-equivariantly contractible by induction on the order of the subgroups *H* of *G*. A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

We need to show that $\tilde{E}G \wedge \tilde{M}$ is *G*-equivariantly contractible. We will show that it is *H*-equivariantly contractible by induction on the order of the subgroups *H* of *G*. Over the trivial group $\tilde{E}G$ itself is contractible. A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

We need to show that $\tilde{E}G \wedge \tilde{M}$ is *G*-equivariantly contractible. We will show that it is *H*-equivariantly contractible by induction on the order of the subgroups *H* of *G*. Over the trivial group $\tilde{E}G$ itself is contractible. Let *H* be a subgroup, $H' \subset H$ the subgroup of index 2 and $H_2 = H/H'$. A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

We need to show that $\tilde{E}G \wedge \tilde{M}$ is *G*-equivariantly contractible. We will show that it is *H*-equivariantly contractible by induction on the order of the subgroups *H* of *G*. Over the trivial group $\tilde{E}G$ itself is contractible. Let *H* be a subgroup, $H' \subset H$ the subgroup of index 2 and $H_2 = H/H'$.

We will smash our spectrum with the cofiber sequence

$$EH_{2+}
ightarrow S^0
ightarrow ilde{E}H_2$$

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

We need to show that $\tilde{E}G \wedge \tilde{M}$ is *G*-equivariantly contractible. We will show that it is *H*-equivariantly contractible by induction on the order of the subgroups *H* of *G*. Over the trivial group $\tilde{E}G$ itself is contractible. Let *H* be a subgroup, $H' \subset H$ the subgroup of index 2 and $H_2 = H/H'$.

We will smash our spectrum with the cofiber sequence

$$EH_{2+}
ightarrow S^0
ightarrow ilde{E}H_2$$

Then $\tilde{E}H_2 \wedge \tilde{E}G \wedge \tilde{M}$ is contractible over H', so it suffices to show that it *H*-fixed point set is contractible.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem

The Periodicity Theorem

We need to show that $\tilde{E}G \wedge \tilde{M}$ is *G*-equivariantly contractible. We will show that it is *H*-equivariantly contractible by induction on the order of the subgroups *H* of *G*. Over the trivial group $\tilde{E}G$ itself is contractible. Let *H* be a subgroup, $H' \subset H$ the subgroup of index 2 and $H_2 = H/H'$.

We will smash our spectrum with the cofiber sequence

 $\label{eq:ehernol} E\!H_{2+} \to S^0 \to \tilde{E} H_2.$

Then $\tilde{E}H_2 \wedge \tilde{E}G \wedge \tilde{M}$ is contractible over H', so it suffices to show that it *H*-fixed point set is contractible. It is

$$\Phi^{H}(\tilde{E}G\wedge\tilde{M})=\Phi^{H}(\tilde{E}G)\wedge\Phi^{H}(\tilde{M}),$$

and $\Phi^{H}(\tilde{M})$ is contractible because $\Phi^{H}(D) = 0$.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem The Periodicity

Theorem

We need to show that $\tilde{E}G \wedge \tilde{M}$ is *G*-equivariantly contractible. We will show that it is *H*-equivariantly contractible by induction on the order of the subgroups *H* of *G*. Over the trivial group $\tilde{E}G$ itself is contractible. Let *H* be a subgroup, $H' \subset H$ the subgroup of index 2 and $H_2 = H/H'$.

We will smash our spectrum with the cofiber sequence

 $\label{eq:ehernol} E\!H_{2+} \to S^0 \to \tilde{E} H_2.$

Then $\tilde{E}H_2 \wedge \tilde{E}G \wedge \tilde{M}$ is contractible over H', so it suffices to show that it *H*-fixed point set is contractible. It is

 $\Phi^{H}(\tilde{E}G\wedge\tilde{M})=\Phi^{H}(\tilde{E}G)\wedge\Phi^{H}(\tilde{M}),$

and $\Phi^{H}(\tilde{M})$ is contractible because $\Phi^{H}(D) = 0$.

Thus it remains to show that $EH_{2+} \wedge \tilde{E}G \wedge \tilde{M}$ is *H*-contractible.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem The Periodicity

Theorem Homotopy and actua

We need to show that $\tilde{E}G \wedge \tilde{M}$ is *G*-equivariantly contractible. We will show that it is *H*-equivariantly contractible by induction on the order of the subgroups *H* of *G*. Over the trivial group $\tilde{E}G$ itself is contractible. Let *H* be a subgroup, $H' \subset H$ the subgroup of index 2 and $H_2 = H/H'$.

We will smash our spectrum with the cofiber sequence

 $\label{eq:ehernol} E\!H_{2+} \to S^0 \to \tilde{E} H_2.$

Then $\tilde{E}H_2 \wedge \tilde{E}G \wedge \tilde{M}$ is contractible over H', so it suffices to show that it *H*-fixed point set is contractible. It is

 $\Phi^{H}(\tilde{E}G\wedge \tilde{M})=\Phi^{H}(\tilde{E}G)\wedge \Phi^{H}(\tilde{M}),$

and $\Phi^{H}(\tilde{M})$ is contractible because $\Phi^{H}(D) = 0$.

Thus it remains to show that $EH_{2+} \wedge \tilde{E}G \wedge \tilde{M}$ is *H*-contractible. But this is equivalent to the *H'*-contractibility of $\tilde{E}G \wedge \tilde{M}$, which we have by induction. A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

Introduction Geometric fixed points The Slice Theorem The Periodicity

Theorem

fixed points