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3.2

Our strategy

Recall our goal is to prove

Main Theorem

The Arf-Kervaire elements θj ∈ π2j+1−2(S0) do not exist for
j ≥ 7.

Our strategy is to find a map S0 → M to a nonconnective
spectrum M with the following properties.

(i) It has an Adams-Novikov spectral sequence in which the
image of each θj is nontrivial.

(ii) It is 256-periodic, meaning Σ256M ∼= M.
(iii) π−2(M) = 0.
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3.3

Our strategy (continued)

Our spectrum M will be derived from MU(4) regarded as a
C8-spectrum.

Let γ ∈ C8 be a generator and let zi be a point in MU. Then the
action of C8 on MU(4) is given by

γ(z1 ∧ z2 ∧ z3 ∧ z4) = z4 ∧ z1 ∧ z2 ∧ z3,

where z4 is the complex conjugate of z4.

We need to describe the homotopy of the underlying
nonequivariant spectrum, which we denote πu

∗(MU(4)).
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3.4

πu
∗(MU(4))

Recall that H∗(MU; Z) = Z[bi : i > 0] where |bi | = 2i . bi is the
image of a suitable generator of H2i (CP∞) under the map

Σ∞−2CP∞ = Σ∞−2MU(1)→ MU.

It follows that H∗(MU(4)) is the 4-fold tensor power of this
polynomial algebra. We denote its generators by bi (j) for
1 ≤ j ≤ 4.

The action of γ on these generators is given by

γ(bi (j)) =

{
bi (j + 1) for 1 ≤ j ≤ 3
(−1)ibi (1) for j = 4.
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3.5

πu
∗(MU(4)) (continued)

πu
∗(MU(4)) is also a polynomial algebra with 4 generators in

every positive even dimension.

We will denote the generators
in dimension 2i by ri (j) for 1 ≤ j ≤ 4. The action of G = C8 is
similar to that on the bi (j), namely

γ(ri (j)) =

{
ri (j + 1) for 1 ≤ j ≤ 3
(−1)i ri (1) for j = 4.

Earlier we said that π∗(MU) = Z[xi : i > 0] with |xi | = 2i . We
are using different notation now because ri (j) need not be the
image of xi under any map MU → MU(4).
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3.6

πu
∗(MU(4)) (continued)

Here is some useful notation. For a subgroup H ⊂ G, let
h = |H| and let ρh denote its regular real representation and for
m ∈ Z, let

W (mρh) = G+ ∧H Smρh .

The underlying spectrum here is a wedge of g/h (where
g = |G|) copies of Smh.

We will explain how πu
∗(MU(4)) is related to maps from the

W (mρh). Recall that in πu
∗(MU), any monomial in the

polynomial generators in dimension 2m is represented by an
equivariant map from Smρ2 .
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3.7

πu
∗(MU(4)) (continued)

In πu
2 (MU(4)) the 4 generators r1(j) are permuted up to sign by

G, so there is a single equivariant map W (ρ2)→ MU(4) whose
restrictions to the 4 wedge summands are the 4 generators.

In πu
4 (MU(4)) there are 14 monomials that fall into 4 orbits

under the action of G, each corresponding to a map from a
W (mρh).

W (2ρ2) ←→
{

r1(1)2, r1(2)2, r1(3)2, r1(4)2}
W (2ρ2) ←→ {r1(1)r1(2), r1(2)r1(3), r1(3)r1(4), r1(4)r1(1)}
W (ρ4) ←→ {r1(1)r1(3), r1(2)r1(4)}

W (2ρ2) ←→ {r2(1), r2(2), r2(3), r2(4)}
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W (ρ4) ←→ {r1(1)r1(3), r1(2)r1(4)}
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3.8

πu
∗(MU(4)) (continued)

It follows that all of πu
4 (MU(4)) is represented by an equivariant

map from

V4 = W (2ρ2) ∨W (2ρ2) ∨W (ρ4) ∨W (2ρ2).

A similar analysis can be made in any even dimension. G
always permutes monomials up to sign. The first case of a
singleton orbit occurs in dimension 8, namely

W (ρ8) ←→ {r1(1)r1(2)r1(3)r1(4)} .

In general the generators of πu
2n(MU(4)) can all be represented

by a single equivariant map from a wedge Vn of W (mρh)s.
Note that W (mρ1) never occurs as a wedge summand of Vn.
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3.9

The classical Postnikov tower

We will now construct a new equivariant analog of the
Postnikov tower.

First we need to recall some things about the
classical Postnikov tower.

The nth Postnikov section PnX of a space or spectrum X is
obtained by killing all homotopy groups of X above dimension
n by attaching cells. The fiber of the map X → PnX is Pn+1X ,
the n-connected cover of X .

These two functors have some universal properties. Let S and
S>n denote the categories of spectra and n-connected spectra.
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3.10

The classical Postnikov tower (continued)

Then the functor Pn+1 : S → S satisfies

• For all spectra X , Pn+1X ∈ S>n.
• For all A ∈ S>n and X ∈ S, map of function spectra
S(A,Pn+1X )→ S(A,X ) is a weak equivalence.

In other words, the map Pn+1X → X is universal among maps
from n-connected spectra to X .

Similarly the map X → PnX is universal among maps from X
to spectra which are S>n-null in the sense that all maps to them
from n-connected spectra are null. In other words,

• The spectrum PnX is S>n-null.
• For any S>n-null spectrum Z , the map
S(PnX ,Z )→ S(X ,Z ) is an equivalence.

Since S>n ⊂ S>n−1, there is a natural transformation
Pn → Pn−1, whose fiber is denoted by Pn

n X .
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3.11

An equivariant Postnikov tower

In what follows G will be an arbitrary finite cyclic 2-group, and
g = |G|.

The statements made earlier about MU(4) have
obvious generalizations to MU(g/2).

Let SG denote the category of G-equivariant spectra. We need
an equivariant analog of S>n. Our choice for this is somewhat
novel.

Recall that S>n is the category of spectra built up out of
spheres of dimension > n using arbitrary wedges and mapping
cones.
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3.12

An equivariant Postnikov tower (continued)

We will replace the set of sphere spectra by

A =
{

W (mρh), Σ−1W (mρh) : H ⊂ G, m ∈ Z, h = |H|
}
.

We will refer to the elements in this set as slice cells or simply
as cells. Note that Σ−2W (mρH) (and larger desuspensions)
are not cells. A free cell is one of the form W (mρ1) or
Σ−1W (mρ1), a wedge of g spheres permuted by G.

In order to define SG
>n, we need to assign a dimension to each

element in A. We do this in terms of the underlying wedge
summands, namely

dim W (mρH) = mh and dim Σ−1W (mρH) = mh − 1.
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as cells. Note that Σ−2W (mρH) (and larger desuspensions)
are not cells.

A free cell is one of the form W (mρ1) or
Σ−1W (mρ1), a wedge of g spheres permuted by G.

In order to define SG
>n, we need to assign a dimension to each

element in A. We do this in terms of the underlying wedge
summands, namely

dim W (mρH) = mh and dim Σ−1W (mρH) = mh − 1.
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3.13

An equivariant Postnikov tower (continued)

Then SG
>n is the category built up out of elements in A of

dimension > n using arbitrary wedges, mapping cones and
smash products with equivariant suspension spectra.

With this definition it is possible to construct functors PG
n+1 and

Pn
G with the same formal properties as in the classical case.

Thus we get a tower

. . . // Pn+1
G X // Pn

GX // Pn−1
G X // . . .

GPn+1
n+1 X

OO

GPn
n X

OO

GPn−1
n−1 X

OO

in which the inverse limit is X and the direct limit is contractible.
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3.14

The slice spectral sequence

We call this the slice tower.

GPn
n X is the nth slice and the

decreasing sequence of subgroups of π∗(X ) is the slice
filtration. We also get slice filtrations of the RO(G)-graded
homotopy π?(X ) and the homotopy groups of fixed point sets
π∗(X H).

There is an important difference between this tower and the
classical one. In the classical case the map X → PnX does not
change homotopy groups in dimensions ≤ n. This is not true in
this equivariant case.

In the classical case, Pn
n X is an Eilenberg-Mac Lane spectrum

whose nth homotopy group is that of X . In our case, π∗(GPn
n X )

need not be concentrated in dimension n.
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3.15

The slice spectral sequence (continued)

This means the slice filtration leads to a slice spectral
sequence converging to π∗(X ) and its variants.

One variant has the form

Es,t
2 = πG

t−s(GP t
t X ) =⇒ πG

t−s(X ).

Recall that πG
∗ (X ) is by definition π∗(X G), the homotopy of the

fixed point set.

This is the spectral sequence we will use to study MU(4) and its
relatives.
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3.16

The slice spectral sequence (continued)

A large portion of our paper is devoted to proving that the slice
spectral sequence has the desired properties.

From now on we
will drop the symbol G from the functors Pn, Pn+1 and Pn

n .

Slice Theorem

In the slice tower for MU(g/2), every odd slice is contractible
and P2n

2n = Vn ∧ HZ, where Vn is the wedge of W (mρh)s
indicated above and HZ is the integer Eilenberg-Mac Lane
spectrum. Vn never has any free summands.
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3.17

Computing πG
∗ (W (mρh) ∧ HZ)

Thus we need to find the groups

πG
∗ (W (mρh) ∧ HZ) = πH

∗ (Smρh ∧ HZ).

We need this for all integers m because eventually we will
invert a certain element in πG

∗ (MU(g/2)). Here is what we will
learn.

Vanishing Theorem

• For m ≥ 0, πH
∗ (Smρh ∧ HZ) = 0 for k < m and for k > mh.

• For m < 0 and h > 1, πH
∗ (Smρh ∧ HZ) = 0 for k < hm, and

for k > m − 3 except in the case (h,m) = (2,−2) when
πH
−4(S−2ρ2 ∧ HZ) = Z.

Gap Corollary

For h > 1 and all integers m, πH
k (Smρh ∧ HZ) = 0 for

−4 < k < 0.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

πu
∗(MU(4))

Postnikov towers

An equivariant
Postnikov tower

The slice spectral
sequence

Proof of Vanishing
Theorem

RO(G)-graded
homotopy
χV

uW

Two spectral
sequences for KO

3.17

Computing πG
∗ (W (mρh) ∧ HZ)

Thus we need to find the groups

πG
∗ (W (mρh) ∧ HZ) = πH

∗ (Smρh ∧ HZ).

We need this for all integers m because eventually we will
invert a certain element in πG

∗ (MU(g/2)). Here is what we will
learn.

Vanishing Theorem

• For m ≥ 0, πH
∗ (Smρh ∧ HZ) = 0 for k < m and for k > mh.

• For m < 0 and h > 1, πH
∗ (Smρh ∧ HZ) = 0 for k < hm, and

for k > m − 3 except in the case (h,m) = (2,−2) when
πH
−4(S−2ρ2 ∧ HZ) = Z.

Gap Corollary

For h > 1 and all integers m, πH
k (Smρh ∧ HZ) = 0 for

−4 < k < 0.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

πu
∗(MU(4))

Postnikov towers

An equivariant
Postnikov tower

The slice spectral
sequence

Proof of Vanishing
Theorem

RO(G)-graded
homotopy
χV

uW

Two spectral
sequences for KO

3.17

Computing πG
∗ (W (mρh) ∧ HZ)

Thus we need to find the groups

πG
∗ (W (mρh) ∧ HZ) = πH

∗ (Smρh ∧ HZ).

We need this for all integers m because eventually we will
invert a certain element in πG

∗ (MU(g/2)). Here is what we will
learn.

Vanishing Theorem

• For m ≥ 0, πH
∗ (Smρh ∧ HZ) = 0 for k < m and for k > mh.

• For m < 0 and h > 1, πH
∗ (Smρh ∧ HZ) = 0 for k < hm, and

for k > m − 3 except in the case (h,m) = (2,−2) when
πH
−4(S−2ρ2 ∧ HZ) = Z.

Gap Corollary

For h > 1 and all integers m, πH
k (Smρh ∧ HZ) = 0 for

−4 < k < 0.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

πu
∗(MU(4))

Postnikov towers

An equivariant
Postnikov tower

The slice spectral
sequence

Proof of Vanishing
Theorem

RO(G)-graded
homotopy
χV

uW

Two spectral
sequences for KO

3.17

Computing πG
∗ (W (mρh) ∧ HZ)

Thus we need to find the groups

πG
∗ (W (mρh) ∧ HZ) = πH

∗ (Smρh ∧ HZ).

We need this for all integers m because eventually we will
invert a certain element in πG

∗ (MU(g/2)). Here is what we will
learn.

Vanishing Theorem

• For m ≥ 0, πH
∗ (Smρh ∧ HZ) = 0 for k < m and for k > mh.

• For m < 0 and h > 1, πH
∗ (Smρh ∧ HZ) = 0 for k < hm, and

for k > m − 3

except in the case (h,m) = (2,−2) when
πH
−4(S−2ρ2 ∧ HZ) = Z.

Gap Corollary

For h > 1 and all integers m, πH
k (Smρh ∧ HZ) = 0 for

−4 < k < 0.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

πu
∗(MU(4))

Postnikov towers

An equivariant
Postnikov tower

The slice spectral
sequence

Proof of Vanishing
Theorem

RO(G)-graded
homotopy
χV

uW

Two spectral
sequences for KO

3.17

Computing πG
∗ (W (mρh) ∧ HZ)

Thus we need to find the groups

πG
∗ (W (mρh) ∧ HZ) = πH

∗ (Smρh ∧ HZ).

We need this for all integers m because eventually we will
invert a certain element in πG

∗ (MU(g/2)). Here is what we will
learn.

Vanishing Theorem

• For m ≥ 0, πH
∗ (Smρh ∧ HZ) = 0 for k < m and for k > mh.

• For m < 0 and h > 1, πH
∗ (Smρh ∧ HZ) = 0 for k < hm, and

for k > m − 3 except in the case (h,m) = (2,−2) when
πH
−4(S−2ρ2 ∧ HZ) = Z.

Gap Corollary

For h > 1 and all integers m, πH
k (Smρh ∧ HZ) = 0 for

−4 < k < 0.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

πu
∗(MU(4))

Postnikov towers

An equivariant
Postnikov tower

The slice spectral
sequence

Proof of Vanishing
Theorem

RO(G)-graded
homotopy
χV

uW

Two spectral
sequences for KO

3.17

Computing πG
∗ (W (mρh) ∧ HZ)

Thus we need to find the groups

πG
∗ (W (mρh) ∧ HZ) = πH

∗ (Smρh ∧ HZ).

We need this for all integers m because eventually we will
invert a certain element in πG

∗ (MU(g/2)). Here is what we will
learn.

Vanishing Theorem

• For m ≥ 0, πH
∗ (Smρh ∧ HZ) = 0 for k < m and for k > mh.

• For m < 0 and h > 1, πH
∗ (Smρh ∧ HZ) = 0 for k < hm, and

for k > m − 3 except in the case (h,m) = (2,−2) when
πH
−4(S−2ρ2 ∧ HZ) = Z.

Gap Corollary

For h > 1 and all integers m, πH
k (Smρh ∧ HZ) = 0 for

−4 < k < 0.
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3.18

Computing πG
∗ (W (mρh) ∧ HZ) (continued)

Gap Corollary

For h > 1 and all integers m, πH
k (Smρh ∧ HZ) = 0 for

−4 < k < 0.

This will lead directly to one of the three conditions we are
looking for in M, namely the vanishing of π−2.

It is our main motivation for using equivariant stable homotopy
theory and developing the slice spectral sequence.
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Computing πG
∗ (W (mρh) ∧ HZ) (continued)

Here is a picture of some slices Smρ8 ∧ HZ.
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Computing πG
∗ (W (mρh) ∧ HZ) (continued)
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3.20

Computing πG
∗ (W (mρh) ∧ HZ) (continued)

• Note that all elements are in the first and third quadrants
between certain black lines with slopes 0 and orchid lines
with slope 7,

and are concentrated on diagonals where t is
divisible by 8.

• Bullets, circles and diamonds indicate cyclic groups of
order 2, 4 and 8, and boxes indicate copies of the integers.

• A similar picture for Smρ4 ∧ HZ would be confined to the
regions between the black lines and blue lines with slope 3
and concentrated on diagonals where t is divisible by 4.

• A similar picture for Smρ2 ∧ HZ would be confined to the
regions between the black lines and green lines with slope
1 and concentrated on diagonals where t is divisible by 2.
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Computing πG
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3.21

Computing πG
∗ (W (mρh) ∧ HZ) (continued)

• The slice spectral sequence for MU(4) is concentrated in
the first quadrant and confined by the same vanishing
lines.

• Later we will invert elements in πmρ8 (MU(4)). The fact that

S−ρ8 ∧W (mρh) = W ((m − 8/h)ρh).

means that the resulting slice spectral sequence is
confined to the regions of the first and third quadrants
shown in the picture.
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3.22

The proof of the Vanishing Theorem

The proofs of the Vanishing Theorem and Gap Corollary are
surprisingly easy.

We begin by constructing an equivariant cellular chain complex
C∗(mρg) for Smρg , where m ≥ 0. In it the cells are permuted by
the action of G. It is a complex of Z[G]-modules and is
determined by fixed point data of Smρg . For H ⊂ G we have

(Smρg )H = Smg/h

This means there is a G-CW-complex with one cell in
dimension m, two cells in each dimension from m + 1 to 2m,
four cells in each dimension from 2m + 1 to 4m, and so on.
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3.23

The proof of the Vanishing Theorem (continued)

In other words,

Cmρg
k =

 0 for k < m
Z[G/H] for mg/2h < k ≤ mg/h
0 for k > gm

Each of these is a cyclic Z[G]-module. The boundary operator
is determined by the fact that H∗(C(mρg)) = H∗(Sgm).

Then we have

πG
∗ (Smρg ∧ HZ) = H∗(HomZ[G](Z,C(mρg))).
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The proof of the Vanishing Theorem (continued)

In other words,

Cmρg
k =

 0 for k < m
Z[G/H] for mg/2h < k ≤ mg/h
0 for k > gm

Each of these is a cyclic Z[G]-module.

The boundary operator
is determined by the fact that H∗(C(mρg)) = H∗(Sgm).

Then we have

πG
∗ (Smρg ∧ HZ) = H∗(HomZ[G](Z,C(mρg))).



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

πu
∗(MU(4))

Postnikov towers

An equivariant
Postnikov tower

The slice spectral
sequence

Proof of Vanishing
Theorem

RO(G)-graded
homotopy
χV

uW

Two spectral
sequences for KO

3.23

The proof of the Vanishing Theorem (continued)
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The proof of the Vanishing Theorem (continued)
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3.24

The proof of the Vanishing Theorem (continued)

These groups are nontrivial only for m ≤ k ≤ gm, which gives
the Vanishing Theorem for m ≥ 0.

We will look at the bottom three groups in the complex
HomZ[G](Z,C

mρg
∗ ). Since Cmρg

k is a cyclic Z[G]-module, the Hom
group is always Z.

We have

Cm(mρg) Cm+1(mρg) Cm+2(mρg)

0 Zoo Z[C2]
εoo Z[C2 or C4]

1−γoo . . .1+γoo
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The proof of the Vanishing Theorem (continued)
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The proof of the Vanishing Theorem (continued)
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The proof of the Vanishing Theorem (continued)
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3.25

The proof of the Vanishing Theorem (continued)

Applying HomZ[G](Z, ·) to this gives

Z Z
2oo Z

0oo Z
2oo Z

0oo . . .oo

so for m > 0,

πG
m(Smρg ∧ HZ) = Z/2

πG
m+1(Smρg ∧ HZ) = 0

πG
m+2(Smρg ∧ HZ) =

 0 for m = 1 and g = 2
Z for m = 2 and g = 2
Z/2 otherwise.
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3.26

The proof of the Vanishing Theorem (continued)

For the negative multiples of ρg , S−mρg is the equivariant
Spanier-Whitehead dual of Smρg .

This means that

πG
∗ (S−mρg ∧ HZ) = H∗(HomZ[G](C(mρg),Z)).

Applying the functor HomZ[G](·,Z) to our chain complex gives a
cochain complex beginning with

Z
1 // Z

0 // Z
2 // Z

0 // Z // . . .

The critical fact here is the difference in behavior of the map
ε : Z[C2]→ Z under the functors HomZ[G](Z, ·) and
HomZ[G](·,Z). They convert it to maps of degrees 2 and 1
respectively.
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3.27

The proof of the Vanishing Theorem (continued)

For m < 0 this gives

πG
m(Smρg ∧ HZ) = 0

πG
−1+m(Smρg ∧ HZ) = 0

πG
−2+m(Smρg ∧ HZ) =

{
Z for (g,m) = (2,−2)
0 otherwise

πG
−3+m(Smρg ∧ HZ) =

{
0 for (g,m) = 2,−1 or (2,−2)
Z/2 otherwise

This gives both the Vanishing Theorem for m < 0 and the Gap
Corollary.
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3.28

The element χV ∈ π−V (X )

For future reference we record some elements in the
RO(G)-graded homotopy of a G-spectrum X , π?(X ).

For any
representation V of G with V G = 0, we have a map
χV : S0 → SV .

Suppose X is a ring spectrum with unit map S0 → X .
Smashing it with χV gives a map S0 → ΣV X which is adjoint to
a map S−V → X . We also denote this by χV ∈ π−V (X ).

It has the multiplicative property χV+W = χVχW .

If V is a representation of a subgroup H ⊂ G with V H = 0 and
V ′ is the induced representation of G, the NG

H (χV ) = χV ′ .
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3.29

The element uW ∈ π|W |−W (HZ)

Let W be an oriented representation of G, meaning that it
takes values in the special orthogonal group.

Then
π|W |(SW ∧ HZ) = Z and we denote its generator by
uW ∈ π|W |−W (HZ).

We have uV+W = uV uW , and for a trivial representation n,
un = 1.

If W is an oriented representation of a subgroup H ⊂ G with
induced representation W ′ and W H = 0, then |W | is even and
the norm functor NG

H from H-spectra to G-spectra satisfies

NG
H (uW )u|W |/2

2ρG/H
= uW ′ ,

where ρG/H denotes the representation of G induced up from
the degree 1 trivial representation of H.
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3.30

The Hopkins-Miller spectral sequence for KO

The simplest case of a finite subgroup of Sn acting on En is that
of C2 acting on E1 for p = 2.

It has been known since the 70s.
E1 is 2-adic complex K -theory and the group action is complex
conjugation. The homotopy fixed point set is 2-adic real
K -theory.

Here is the Hopkins-Miller spectral sequence for it.
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3.31

The slice spectral sequence for KO

Here is the slice spectral sequence for the actual fixed point
set.

It was originally studied by Dan Dugger.
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3.32

Actual fixed points and homotopy fixed points

These two spectral sequences are computing different things.

• The Hopkins-Miller spectral sequence converges to
π∗(EhC2

1 ), the homotopy of the homotopy fixed point set,
F (EC2,E1)C2 , the spectrum of equivariant maps from a
contractible free C2-spectrum EC2 to E1.

• The slice spectral sequence converges to π∗(EC2
1 ), the

homotopy groups of the actual fixed point set.

In general the homotopy and actual fixed point sets need not
be equivalent, but in this case they are.

In our case M̃ is a C8-spectrum related to MU(4). In order to
prove our main theorem, we will need to show that its actual
and homotopy fixed point sets are equivalent. We will do this at
the end of the next lecture.
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