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It is our purpose here to announce the results of our study of the homol
ogy of the spaces in the £2-spectrum for complex cobordism and Brown-
Peterson cohomology. Let MU(n) be the standard Thorn complex. MUk = 
l im^^ ü,2(n~~k)MU(n) is the 2k space in the £2-spectrum for complex 
cobordism. We will consider the space MU — hmn^_00 Iï ;>n MUf-. We find 
this product easier to study than the separate factors, as will become apparent 
below. 

For a space X we have [X, MU] ~ U2*(X), the even degree part of 
the complex cobordism of X. Because MU is a multiplicative theory, 
U2 *(X) is a ring and MU is a commutative ring with identity in the homot-
opy category. Thus we have that for any field kt H%(MU; k) is a commu
tative ring with identity in the category of fc-coalgebras, i.e., it is a "Hopf 
ring". 

In more common language, the homology has two products and a 
coproduct. o will denote the multiplicative product which comes from the 
ring structure on the spectrum, while * will denote the additive product 
coming from the loop structure (Ü,2MU — MU). They obey the following 
distributive law: if \p(z) = 2 z ® z" is the coproduct, then z ° (x * j ) = 
2 (Z ' o x) * (z " o j / ) . 

We now describe the structure of H%(MU; R) where R is an algebra 
over a field k. Let 

CR(X)= be II H.(X;R): \jj(x)^x ® x,x*o\. 
' i>0 f 

CR(MU) is a ring, and for each x 6 CR(X) we have a ring homomorphism 
X :̂ U2*{X)—>CR(MU) defined by Xx(u) = ujx) for u € U2*{X). Let 
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Pn eH2n(CP°°;R) be the standard generator. 0(r) = Xp/ ecR(CP°°) for 
rGR. 

U2*CP°° = f/*[[r] ] , the power series ring on the canonical generator 
TE U2CP°° over the coefficient ring U* = Z[x2, x4, • • • ], a polynomial 
algebra on negative even-dimensional generators. We now have 

b(r) =Y,b/ = xm(T) e cR(uu). 
(In other words, if we represent T by a map ƒ: GP°° —* WJ, /^(jS^) = bn.) 

Note that ?r0M£/~ ir+MU^ U^ cz U~*9 and any element 
a E {ƒ* or £/„. gives rise to an element [a] EH0MU. The [x2i] generate 
the Hopf ring H0MU. Under the standard multiplication CP°° x CP°° —• 
GP°°, T pulls back to S fl^r/® JT', where a / ; G tf* O - ' - / ) . T h e ^ 
are the coefficients of the formal group associated with complex cobordism 
(see [1]). 

We use the above multiplication to get our first theorem. 

THEOREM 1. In CR(MU\ 

b(rx +r2)= Z [arfbirjbfyj. 
i,j>0 

The following is just a restatement of the theorem. 

THEOREM 1'. In HJWJ\R\ 

ftfri+'2)= * (["if] ° Hrjt ° b(r2r). 
V>o 

COROLLARY 2. log b(rx + r2) = log b(rt) + log b(r2) in CR(MU) 

W>0 H 

If we are working over the integers we can rephrase this to: 

COROLLARY 2'. log b{r) = btr in QHJ}AU\Q[r]). 

Let HR WJ denote the Hopf ring generated by the [x2i] and the 
bn subject to the relations implied by Theorem 1. 

THEOREM 3. The map HR WJ —* H^(MU; R) is a Hopf ting isomor
phism. 

This is still true if we replace R by Z. 
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The main result of [6], where the investigation of the homology of 
MUk was begun, is now an immediate corollary of Theorem 3. 

COROLLARY 4. HJ$AUk\ Z) has no torsion. 

PROOF. HR MU has only even-dimensional elements. 
Theorem 3 is a total information result. Not only does it give a com

plete description of both products and the coproduct, but, using the results of 
Switzer [5] on the coaction of the dual of the Steenrod algebra on CP°°, we 
can compute the structure of H^MU; F ) as a comodule over the dual to the 
Steenrod algebra directly from our algebraic construction HRMU. 

The most difficult part of the proof of Theorem 3 is showing that the 
map is onto. To do this, we first replace MU by BP, the Brown-Peterson 
spectrum [2], [3]. We can recover information about MU from BP by 
Quillen's result that U*(X\p) ^ U*p) <8>Bp* BP*(X). There are, of course, 
analogues of Theorems 1 —4 for the analogous space BP. We have 

H^MU; Fp) ~ H0(MU9 Fp) ®H0(BP;Fp) #*(B^; Fp) 

and BP# cz TT^BP ^ Z^p)[vl9 v2, • • • ] , where vs is a 2(ps - l)-dimen-
sional generator. From now on, all homology groups will have coefficients in 
F . An immediate consequence of Theorem 1 is that all the b( can be ex
pressed in terms of b n, which we denote by b,ny Note that these elements 
generate the stable homology H^BP. Define 

where I = (i1, i2, • • • ) and / = (/0, j \ , • • • ) are sequences of nonnegative 
o ƒ 

integers, and b, n, denotes the jnth power of b^ under the multiplicative 

or o product. 
DEFINITION. i/bJ is called allowable if 

/ = pAï + p2A1r 4- • • • + pnAJr + J' (nonneg. seq.), 

kx < k2 < • • • < kn 

implies in — 0. (Ak is the sequence with 1 in the kth place and zeros 
elsewhere.) 

Let BP(0) denote the zero component of BP. H^BP^ is a Hopf 
algebra under the * product. Let Q and P denote the indécomposables 
and primitives respectively. We now have 
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THEOREM 5. (a) HJàP^ is a polynomial algebra. 
(b) The allowable u V (J ± 0) form a basis for QH^BP{oy 

(c) The vJb ° with vTbJ allowable (J possibly zero) form a basis 
for PH*BP(oy 

The proof of Theorem 5 is by induction on dimension, using Eilenberg-
Moore spectral sequences which go from H^BP,^ to H%ÇIBP,0^ and back 
to H^BP^ using the periodicity O2BP ( 0 ) ^ BP and Theorem 6. 

H^BP is a BP+ module under the o product as BP*CH0(BP). We 

have the ideal (ul9 v2, • • • ) = / C BP^. The \p]-sequence [p](X) can be 

defined by log^p [ p ] 0 0 = P log^pPO- Also, [p](T) is the image of T 

when pulled back by the pth power map CP°° —> (CP°°)P —» CP°° in 

BI*CP-^BP*[[T]]. (Note, b = b(l).) 

THEOREM 6. (a) \p] (b) = 0 in CF (BP). 

(b) Z»=1 N ° * ° ( ^ 0 = 0 in QH^BP/PQH^BP. 

The first statement follows from the fact that the pth power map is 
trivial in H^CP00. (Recall that our coefficients are all F_.) The second state
ment follows from the fact that the coefficient of X? in the [p] sequence 
is a 2(pn — l)-dimensional generator in BP^. 

We now state some of the geometric corollaries which follow from our 
work. 

U^MU can be identified with the cobordism group of maps (with even 
codimension) of compact stably almost complex manifolds (see Stong [4] for 
the analogous statement in the unoriented case). From this point of view our 
main result is 

THEOREM 7. UJS/iU is a Hopf ring generated by maps to a point, 
identity maps, and linear embeddings bn\ CPn~l c+ QPn. 

COROLLARY 8. Any map of compact stably almost complex manifolds 
is cobordant to one of the form f: U. Ft x Vt —•> Af, where f\Ft x Vt is 
the composition of the projection F. x Vi —> Vt and an embedding Vi £-+ M. 
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