THE FIRST COHOMOLOGY GROUP OF THE GENERALIZED MORAVA STABILIZER ALGEBRA (DRAFT VERSION)

HIROFUMI NAKAI AND DOUGLAS C. RAVENEL September 8, 2000

ABSTRACT. There are p-local spectra T(m) with $BP_*(T(m)) = BP_*[t_1, \ldots, t_m]$. Its Adams-Novikov E_2 -term is isomorphic to

 $\operatorname{Ext}_{\Gamma(m+1)}(BP_*, BP_*),$

where

 $\Gamma(m+1) = BP_*(BP)/(t_1, \dots, t_m) = BP_*[t_{m+1}, t_{m+2}, \dots].$

$$\operatorname{Ext}^{1}_{\Gamma(m+1)}(BP_{*}, v_{n}^{-1}BP_{*}/I_{n})$$

for all m, n > 0. Its rank ranges from 2n + 1 to n^2 depending on the value of m.

1. INTRODUCTION AND MAIN THEOREM

Let BP be the Brown-Peterson spectrum for a fixed prime p. In [Rav86, §6.5], the second author has introduced the spectrum T(m) which has BP_* -homology

$$BP_*(T(m)) = BP_*[t_1, \cdots, t_m],$$

and is homotopy equivalent to BP below dimension $2p^{m+1} - 3$.

Then the Adams-Novikov E_2 -term converging to the homotopy groups of T(m)

$$E_2^{*,*}(T(m)) = \operatorname{Ext}_{BP_*(BP)}(BP_*, BP_*(T(m)))$$

is isomorphic by [Rav86, 7.1.3] to

$$\operatorname{Ext}_{\Gamma(m+1)}(BP_*, BP_*),$$

where

$$\Gamma(m+1) = BP_*(BP)/(t_1, \dots, t_m) = BP_*[t_{m+1}, t_{m+2}, \dots]$$

In particular $\Gamma(1) = BP_*(BP)$ by definition. To get the structure of this, we can use the chromatic method introduced in [MRW77].

Recall the Morava stabilizer algebra

$$\Sigma(n) = K(n)_* \otimes_{BP_*} BP_*(BP) \otimes_{BP_*} K(n)_*$$

and the isomorphism ([MR77] and [Rav86, 6.1.1])

In this paper we determine the groups

$$\operatorname{Ext}_{BP_*(BP)}(BP_*, v_n^{-1}BP_*/I_n) \cong \operatorname{Ext}_{\Sigma(n)}(K(n)_*, K(n)_*).$$

As an algebra,

$$\Sigma(n) = K(n)_*[t_1, t_2, \dots] / (v_n t_i^{p^n} - v_n^{p^i} t_i),$$

The second author acknowledges support from NSF grant DMS-9802516.

where t_i is the image of the generator of the same name in $BP_*(BP)$. As in [Rav86, §6.5] we let

$$\Sigma(n, m+1) = \Sigma(n)/(t_1, \dots, t_m);$$

we call this the *generalized Morava stabilizer algebra*. The object of this paper is to determine its first cohomology group,

$$\operatorname{Ext}_{\Sigma(n,m+1)}^{1}(K(n)_{*},K(n)_{*})$$

(which we will abbreivate by $\operatorname{Ext}_{\Sigma(n,m+1)}^{1}$) for all values of $m \geq 0$ and n > 0 and for all primes p. This amounts to identifying the primitive elements in $\Sigma(n, m+1)$. The case m = 0 was described in [Rav86, 6.3.12].

As explained in [Rav86, §6.2], the cohomology of $\Sigma(n)$ is essentially the continuous cohomology of a certain pro-*p*-group S_n known as the Morava stabilizer group. It can be described as a group of automorphisms of a certain formal group law F_n in characteristic *p* and as a group of units in the maximal order E_n of a certain *p*-adic division algebra D_n . E_n is also the endomorphism ring of F_n .

In a similar way $\Sigma(n, m+1)$ is related to a subgroup of S_n . In terms of the formal group law it is the subgroup of automorphisms given by power series congruent to the variable x modulo $(x^{p^{m+1}})$. In terms of E_n it is the multiplicature group of units congruent to 1 modulo the ideal (S^{m+1}) .

The ring E_n has an embedding in the ring of $n \times n$ matrices over the Witt ring $W(\mathbf{F}_{p^n})$ described in [Rav86, 6.2.6]. This means that S_n and each of its subgroups supports a homomorphism induced by the determinant to the group of units in $W(\mathbf{F}_{p^n})$, and it is known that its image is contained in the *p*-adic units \mathbf{Z}_p^{\times} . The structure of this group is

$$\mathbf{Z}_p^{\times} \cong \left\{ \begin{array}{ll} \mathbf{Z}/(p-1) \oplus \mathbf{Z}_p & \text{for } p \text{ odd} \\ \mathbf{Z}/(2) \oplus \mathbf{Z}_2 & \text{for } p=2. \end{array} \right.$$

From this is it possible to construct primitives $T_n \in \Sigma(n)$ for all primes p and $U_n \in \Sigma(n)$ for p = 2 [Rav86, 6.3.12] satisfying

$$T_n \equiv \sum_{0 \le j < n} t_n^{p^j} \mod (t_1, \dots, t_{n-1})$$

and
$$U_n - T_n \equiv \sum_{0 \le j < n} t_{2n}^{2^j} \mod (t_1, \dots, t_{n-1}).$$

The corresponding elements in $\operatorname{Ext}_{\Sigma(n)}^1$, and their images in $\operatorname{Ext}_{\Sigma(n,m+1)}^1$, are denoted by ζ_n and ρ_n respectively.

The results of [Rav86, §6.3] are stated in terms of $S(n) = \Sigma(n) \otimes_{K(n)_*} \mathbf{F}_p$ and $S(n, m + 1) = \Sigma(n, m + 1) \otimes_{K(n)_*} \mathbf{F}_p$. Passing from $\Sigma(n)$ to S(n) amounts to dropping the grading and setting v_n equal to 1. Formulas are given for T_n and (for p = 2) U_n in S(n). It is straightforward to lift them to homogeneous elements in $\Sigma(n)$.

We can now state our main result.

Theorem 1.1. For p odd the rank of $\operatorname{Ext}_{\Sigma(n,m+1)}^1$ (as a vector space over $K(n)_*$) is

$$\begin{cases} (m+1)n+1 & \text{for } m < \frac{n-2}{2} \\ (m+1)n+n/2 & \text{for } n \text{ even and } m = \frac{n-2}{2} \\ (m+1)n & \text{for } \frac{n-1}{2} \le m \le n-1 \\ n^2 & \text{for } m \ge n-1. \end{cases}$$

Let $h_{m+i,j} \in \text{Ext}^1$ be the element corresponding to $t_{m+i}^{p^j}$ when it is primitive. Then a basis for Ext^1 is given by

$$\begin{cases} \{\zeta_n\} \cup \{h_{m+i,j} \colon 1 \le i \le m+1, j \in \mathbf{Z}/(n)\} & \text{for } m < \frac{n-2}{2} \\ \{\zeta_{n,j} \colon j \in \mathbf{Z}/(n/2)\} & \\ \cup \{h_{m+i,j} \colon 1 \le i \le m+1, j \in \mathbf{Z}/(n)\} & \text{for } n \text{ even and } m = \frac{n-2}{2} \\ \{h_{m+i,j} \colon 1 \le i \le m+1, j \in \mathbf{Z}/(n)\} & \text{for } \frac{n-1}{2} \le m \le n-1 \\ \{h_{m+i,j} \colon 1 \le i \le n, j \in \mathbf{Z}/(n)\} & \text{for } m \ge n. \end{cases}$$

where ζ_n is as above and

$$\zeta_{n,j} = v_n^{-p^j} (t_n + v_n^{1-p^{n/2}} t_n^{p^{n/2}} - t_{n/2}^{1+p^{n/2}})^{p^j}.$$

For p = 2 the rank is

$$\begin{array}{ll} (m+1)n+2 & for \ m < \frac{n-2}{2} \\ (m+1)n+n/2+1 & for \ n \ even \ and \ m = \frac{n-2}{2} \\ (m+1)n+1 & for \ \frac{n-1}{2} \le m \le n-1 \\ n^2 & for \ m \ge n. \end{array}$$

The basis is as in the odd primary case but with ρ_n added when m < n.

Note that for m = 0 this result gives the same answer as [Rav86, 6.3.12]. Also [Rav86, 6.5.6] implies that Ext¹ has rank n^2 with the basis indicated above when $m > \frac{pn}{2p-2} - 1$ and $m \ge n - 1$; it says that in that case the full Ext group is the exterior algebra on those generators. [There is a missing hypothesis in [Rav86, 6.5.6] and [Rav86, 6.3.7]; see the online errata for details.]

Corollary 1.2. For $n \leq 3$ the rank of $\operatorname{Ext}_{\Sigma(n,m+1)}^1$ is as indicated in the following table.

	n=1				n=2				n=3			
	p=2		p odd		p=2		$p \ odd$		p=2		p odd	
Γ	m	rank	m	rank	m	rank	m	rank	m	rank	m	rank
Γ	0	2	≥ 0	1	0	4	0	3	0	5	0	4
	≥ 1	1			1	5	≥ 1	4	1	7	1	6
					≥ 2	4			2	10	≥ 2	9
									≥ 3	9		

2. The proof

We need to show that the indicated basis elements are primitive and that there are no other primitives. The primitivity of ζ_n and (for p = 2) ρ_n was established in [Rav86, 6.3.12].

For the rest we need to study the coproduct in $\Sigma(n, m + 1)$. A formula for the coproduct in $BP_*(BP)$ was given in [Rav86, 4.3.13]. In $BP_*(BP)/I_n$ for $i \leq 2n$ we have [Rav86, 4.3.15]

$$\Delta(t_i) = \sum_{0 \le j \le i} t_j \otimes t_{i-j}^{p^j} + \sum_{0 \le j \le i-n-1} v_{n+j} b_{i-n-j,n+j-1},$$

where $b_{i,j}$ satisfies

$$b_{i,j} \equiv -\frac{1}{p} \sum_{0 < k < p^{j+1}} {\binom{p^{j+1}}{k}} t_i^k \otimes t_i^{p^{j+1}-k} \mod (t_1, \dots, t_{i-1}).$$

It is defined precisely in [Rav86, 4.3.14]. Similar methods yield the following formula for the coproduct in $\Gamma(m+1)/I_n$ for $i \leq 2n$.

$$\Delta(t_{m+i}) = t_{m+i} \otimes 1 + 1 \otimes t_{m+i} + \sum_{m < k < i} t_k \otimes t_{m+i-k}^{p^k} + \sum_{0 \le k \le i-n-1} v_{n+k} b_{m+i-n-k,n+k-1}.$$

In $\Sigma(n, m+1)$ this simplifies to

(2.1)
$$\Delta(t_{m+i}) = t_{m+i} \otimes 1 + 1 \otimes t_{m+i} + \sum_{m < k < i} t_k \otimes t_{m+i-k}^{p^k} + v_n b_{m+i-n,n-1},$$

where the last term vanishes when $i \leq n$. This formula implies that t_{m+i} is primitive for $i \leq \min(m+1, n)$.

When n is even and $m = \frac{n-2}{2}$ we have

$$\begin{split} \Delta(t_n) &= t_n \otimes 1 + 1 \otimes t_n + t_{n/2} \otimes t_{n/2}^{p^{n/2}}, \\ \Delta(v_n^{1-p^{n/2}} t_n^{p^{n/2}}) &= v_n^{1-p^{n/2}} \left(t_n \otimes 1 + 1 \otimes t_n + t_{n/2} \otimes t_{n/2}^{p^{n/2}} \right)^{p^{n/2}} \\ &= v_n^{1-p^{n/2}} \left(t_n^{p^{n/2}} \otimes 1 + 1 \otimes t_n^{p^{n/2}} + t_{n/2}^{p^{n/2}} \otimes t_{n/2}^{p^n} \right) \\ &= v_n^{1-p^{n/2}} \left(t_n^{p^{n/2}} \otimes 1 + 1 \otimes t_n^{p^{n/2}} + v_n^{p^{n/2}-1} t_{n/2}^{p^{n/2}} \otimes t_{n/2} \right) \\ &= v_n^{1-p^{n/2}} \left(t_n^{p^{n/2}} \otimes 1 + 1 \otimes t_n^{p^{n/2}} \right) + t_{n/2}^{p^{n/2}} \otimes t_{n/2}, \end{split}$$

$$\text{nd} \qquad \Delta(t_{n/2}^{1+p^{n/2}}) &= \left(t_{n/2} \otimes 1 + 1 \otimes t_{n/2} \right)^{1+p^{n/2}} \\ &= t_{n/2}^{1+p^{n/2}} \otimes 1 + t_{n/2}^{p^{n/2}} \otimes t_{n/2} + t_{n/2} \otimes t_{n/2}^{p^{n/2}} + 1 \otimes t_{n/2}^{1+p^{n/2}}, \end{split}$$

so $\zeta_{n,j}$ is primitive.

aı

This means that each basis element specified in Theorem 1.1 is indeed primitive. To show that there are no other primitives in $\Sigma(n, m+1)$ we need the methods of [Rav86, §6.3]. As noted above, results there are stated in terms of S(n) = $\Sigma(n) \otimes_{K(n)*} \mathbf{F}_p$ and $S(n, m+1) = \Sigma(n, m+1) \otimes_{K(n)*} \mathbf{F}_p$. An increasing filtration on S(n) is described in [Rav86, 6.3.1]. The weight of $t_i^{p^j}$ for each j is the integer $d_{n,i}$ defined recursively by

$$d_{n,i} = \begin{cases} 0 & \text{if } i \le 0\\ \max(i, pd_{n,i-n}) & \text{if } i > 0. \end{cases}$$

The bigraded object $E^0S(n)$ is described in [Rav86, 6.3.2]. It is considerably simpler than the coproduct in the unfiltered object. It contains elements $t_{m+i,j}$ (with $j \in \mathbf{Z}/(n)$) which are the projections of $t_{m+i}^{p^j}$. The coproduct on these elements is given by

$$(2.2) \qquad \Delta(t_{m+i,j}) = \begin{cases} t_{m+i,j} \otimes 1 + 1 \otimes t_{m+i,j} \\ + \sum_{m < k < i} t_{k,j} \otimes t_{m+i-k,j+k} & \text{if } i < c - m \\ t_{m+i,j} \otimes 1 + 1 \otimes t_{m+i,j} \\ + \sum_{m < k < i} t_{k,j} \otimes t_{m+i-k,j+k} \\ + \overline{b}_{m+i-n,n-1+j} & \text{if } i = c - m \\ t_{m+i,j} \otimes 1 + 1 \otimes t_{m+i,j} \\ + \overline{b}_{m+i-n,n-1+j} & \text{if } i > c - m. \end{cases}$$

where c = pn/(p-1) and $\overline{b}_{m+i-n,n-1+j}$ is the projection of $b_{m+i-n,n-1+j}$, which is 0 for $i \leq n$.

Note $t_{m+i,j}$ is primitive for $i \leq m+1$ as expected, but it is also primitive for $c-m < i \leq n$, which can occur when m > n/(p-1).

To proceed further we use the fact that the dual of $E^0S(n, m+1)$ is a primitively generated Hopf algebra and therefore isomorphic to the universal enveloping algebra of its restricted Lie algebra of primitives, by a theorem of Milnor-Moore [MM65]. The cohomology of the unrestricted Lie algebra L(n, m+1) (this notation differs from that of [Rav86, §6.3]) is that of the Koszul complex

(2.3)
$$C(n, m+1) = E(h_{m+i,j}: i > 0, j \in \mathbf{Z}/(n)),$$

where each $h_{m+i,j}$ has cohomological degree 1, with

$$d(h_{m+i,j}) = \begin{cases} \sum_{\substack{m < k < i \\ 0}} h_{k,j} h_{m+i-k,j+k} & \text{if } i < = c - m \\ 0 & \text{if } i > c - m. \end{cases}$$

Lemma 2.4. Let C(n, m + 1) be the complex of (2.3). Then $H^1(L(n, m + 1)) = H^1(C(n, m + 1))$ is spanned by

$$\{h_{m+i,j}: 1 \le i \le m+1\} \cup \{h_{m+i,j}: i > c-m\} \cup \left\{\sum_{j} h_{n,j}, \sum_{j} h_{2n,j}\right\},\$$

(where c = pn/(p-1)) unless n = 2m + 2, in which case we must adjoin the set

$$\{h_{n,j} + h_{n,j+n/2} \colon j \in \mathbf{Z}/(n/2)\}.$$

Note that $h_{n,j}$ is either trivial or in the first subset unless $n \ge 2m + 2$ and that $h_{n,j}$ is either trivial or in the second subset unless p = 2. Note also that the first and second subsets overlap when $m \ge c/2$.

Proof. The primitivity of the elements in the first and second subsets is obvious. For $\sum_j h_{n,j}$ we have

$$\begin{split} d\left(\sum_{j} h_{n,j}\right) &= \sum_{j} \sum_{m < k < n-m} h_{k,j} h_{n-k,j+k} \\ &= \sum_{m < k < n/2} \sum_{j} h_{k,j} h_{n-k,j+k} \\ &+ \left\{ \sum_{0} j h_{n/2,j} h_{n/2,j+n/2} & \text{if } n \text{ is even} \\ &+ \sum_{n/2 < k < n-m} \sum_{j} h_{k,j} h_{n-k,j+k} \\ &= \sum_{m < k < n/2} \sum_{j} h_{k,j} h_{n-k,j+k} + h_{n-k,j+k} h_{k,j} \\ &+ \left\{ \sum_{0 \le j < n/2} h_{n/2,j} h_{n/2,j} h_{n/2,j+n/2} \\ &+ \sum_{n/2 \le j < n} h_{n/2,j} h_{n/2,j+n/2} \\ &+ \int_{0} \sum_{0 \le j < n/2} h_{n/2,j} h_{n/2,j+n/2} + h_{n/2,j+n/2,j+n/2,j} \\ &= \left\{ \sum_{0 \le j < n/2} h_{n/2,j} h_{n/2,j+n/2} + h_{n/2,j+n/2,j+n/2,j} \\ &+ \int_{0} \sum_{0 \le j < n/2} h_{n/2,j} h_{n/2,j+n/2} + h_{n/2,j+n/2,j+n/2,j} \\ &= 0. \end{split}$$

Similar calculations show that for p = 2, $\sum_{j} h_{2n,j}$ is a cocycle, and that for n = 2m + 2, $h_{n,j} + h_{n,j+n/2}$ is one.

It remains to show that there are no other cocycles in the subspace spanned by

$$\{h_{m+i,j}: m+1 < i \le c-m\},\$$

which is nonempty only when

$$m < \frac{pn-p+1}{2(p-1)}.$$

It suffices to consider elements which are homogeneous with respect to the filtration grading, i.e., to restrict our attention to one value of i at a time. Thus we need to show that the subspace spanned by

(2.5)
$$\left\{\sum_{m < k < i} h_{k,j} h_{m+i-k,j+k} \colon j \in \mathbf{Z}/(n)\right\}$$

has dimension

(2.6)
$$\begin{cases} n/2 & \text{if } m+i=n \text{ and } n=2m+2\\ n-1 & \text{if } m+i=n \text{ and } n>2m+2\\ n-1 & \text{if } m+i=2n\\ n & \text{otherwise.} \end{cases}$$

When n = 2m + 2 and m + i = n, the set of (2.5) is

$$\begin{split} \left\{ h_{n/2,j}h_{n/2,j+n/2} \colon j \in \mathbf{Z}/(n) \right\} \\ &= \left\{ h_{n/2,j}h_{n/2,j+n/2} \colon 0 \le j < n/2 \right\} \cup \left\{ h_{n/2,j}h_{n/2,j+n/2} \colon n/2 \le j < n \right\} \\ &= \left\{ h_{n/2,j}h_{n/2,j+n/2} \colon 0 \le j < n/2 \right\} \cup \left\{ -h_{n/2,j+n/2}h_{n/2,j} \colon n/2 \le j < n \right\} \\ &= \left\{ h_{n/2,j}h_{n/2,j+n/2} \colon 0 \le j < n/2 \right\} \cup \left\{ -h_{n/2,j}h_{n/2,j+n/2} \colon 0 \le j < n/2 \right\}, \end{split}$$

so the subspace it spans has dimension n/2.

Now suppose that m + i = n, n > 2m + 2, and n is odd. It suffices to consider the middle two terms in the sum. Let $\ell = (n - 1)/2$. Then we have

 $d(h_{n,j}) = h_{\ell,j}h_{\ell+1,j+\ell} + h_{\ell+1,j}h_{\ell,j+\ell+1} + \dots$

We can cancel the second term by adding $d(h_{n,j+\ell+1})$, i.e.,

$$\begin{aligned} d(h_{n,j} + h_{n,j+\ell+1}) &= h_{\ell,j}h_{\ell+1,j+\ell} + h_{\ell+1,j}h_{\ell,j+\ell+1} \\ &+ h_{\ell,j+\ell+1}h_{\ell+1,j+\ell+1} + h_{\ell+1,j+\ell+1}h_{\ell,j+\ell+1} + \dots \\ &= h_{\ell,j}h_{\ell+1,j+\ell} + h_{\ell+1,j}h_{\ell,j+\ell+1} \\ &+ h_{\ell,j+\ell+1}h_{\ell+1,j} + h_{\ell+1,j+\ell+1}h_{\ell,j+1} + \dots \\ &= h_{\ell,j}h_{\ell+1,j+\ell} + h_{\ell+1,j+\ell+1}h_{\ell,j+1} + \dots \end{aligned}$$

Similarly we can cancel the second term here by adding $d(h_{n,j+1})$. Since (n+1)/2 and n are relatively prime, we will need to sum up the $h_{n,j}$ over all j to get a cocycle. It follows that this subspace has dimensions n-1 as claimed.

For m + i = n and n even, let $\ell = n/2$. Then it suffices to consider the middle three terms of the sum, i.e.,

$$d(h_{n,j}) = h_{\ell-1,j}h_{\ell+1,j+\ell-1} + h_{\ell,j}h_{\ell,j+\ell} + h_{\ell+1,j}h_{\ell-1,j+\ell+1} + \dots$$

We can cancel the middle term by adding $d(h_{n,j+\ell})$, so we get

$$d(h_{n,j} + h_{n,j+\ell}) = h_{\ell-1,j}h_{\ell+1,j+\ell-1} + h_{\ell,j}h_{\ell,j+\ell} + h_{\ell+1,j}h_{\ell-1,j+\ell+1} + h_{\ell-1,j+\ell}h_{\ell+1,j-1} + h_{\ell,j+\ell}h_{\ell,j} + h_{\ell+1,j+\ell}h_{\ell-1,j+1} + \dots$$
$$= h_{\ell-1,j}h_{\ell+1,j+\ell-1} + h_{\ell-1,j+\ell}h_{\ell+1,j-1} + h_{\ell+1,j+\ell}h_{\ell-1,j+1} + \dots$$

Now we can cancel the third and fourth terms by adding $d(h_{n,j+1} + h_{n,j+\ell+1})$, and we have

$$d(h_{n,j} + h_{n,j+\ell} + h_{n,j+1} + h_{n,j+\ell+1})$$

$$= h_{\ell-1,j}h_{\ell+1,j+\ell-1} + h_{\ell-1,j+\ell}h_{\ell+1,j-1} + h_{\ell+1,j+\ell+1}h_{\ell-1,j+1} + h_{\ell-1,j+\ell+1}h_{\ell-1,j+\ell+1}h_{\ell-1,j+1} + h_{\ell-1,j+\ell+1}h_{\ell-1,j+\ell+1}h_{\ell-1,j+2} + \dots$$

$$= h_{\ell-1,j}h_{\ell+1,j+\ell-1} + h_{\ell-1,j+\ell}h_{\ell+1,j-1} + h_{\ell+1,j+\ell+1}h_{\ell-1,j+2} + \dots$$

Again in order to get complete cancellation we need to sum over all j, so the subspace has dimension n-1 as claimed.

We can make a similar argument for m + i = 2n when p = 2, namely

$$d(h_{2n,j}) = h_{n-1,j}h_{n+1,j-1} + h_{n,j}h_{n,j} + h_{n+1,j}h_{n-1,j+1} + \dots$$

= $h_{n-1,j}h_{n+1,j-1} + h_{n+1,j}h_{n-1,j+1} + \dots$,
so $d(h_{2n,j} + h_{2n,j+1})$
= $h_{n-1,j}h_{n+1,j-1} + h_{n+1,j}h_{n-1,j+1}$
 $h_{n-1,j+1}h_{n+1,j} + h_{n+1,j+1}h_{n-1,j+2} + \dots$
= $h_{n-1,j}h_{n+1,j-1} + h_{n+1,j+1}h_{n-1,j+2} + \dots$,

and so on.

Finally we need to consider the cases of (2.6) where m + i is not divisible by n. For this we can show that the expressions

$$\sum_{k < k < i} h_{k,j} h_{m+i-k,j+k}$$

are linearly independent. Suppose the term

 $\pm h_{k,x}h_{m+i-k,y}$

appears the sums for some value of j. Then modulo n either j = x and $y \equiv k + x$, so $x \equiv y - k$, or j = y and $x \equiv m + i + y - k$. These conditions on x are mutually exclusive since m + i is not divisible by n. This means that each monomial of this form can appear in the sum for at most one value of j, so the sums for various j are linearly independent.

Now $\operatorname{Ext}_{S(n,m+1)}^1$ is a subspace of $H^1(L(n, m+1))$. To finish the proof of the theorem we need to show that the elements $h_{m+i,j}$ with $i > \max(c-m, m+1)$ do not survive passage to $\operatorname{Ext}_{E^0S(n,m+1)}^1$ or from it to $\operatorname{Ext}_{S(n,m+1)}^1$. We need to look at the first and second spectral sequences constructed for this purpose by May in [May66] and described (for m = 0) in [Rav86, 6.3.4]. It follows from (2.2) that in the first May spectral sequence

$$d_r(h_{m+i,j}) = b_{m+i-n,j-1} \neq 0 \qquad \text{for } i > n$$

for some r.

This eliminates all of the unwanted primitives except the ones with

$$\max(c-m, m+1) < i \le n$$

For this we can use (2.1), which implies that in the second May spectral sequence,

$$d_r(h_{m+i,j}) = \sum_{m < k < i} h_{k,j} h_{m+i-k,j+k}$$

where

$$r = \min(d_{n,m+i} - d_{n,k} - d_{n,m+i-k} : m < k < i)$$

= $p(m+i-n) - (m+i)$
since k and $m-i-k$ do not exceed n and $m+i < 2n$
= $(p-1)(m+i) - pn$.

Note that

$$n < c < m + i \le m + n < 2n$$

so m + i is not divisible by n. Thus we can argue as in the last paragraph of the proof of Lemma 2.4 that the sums $\sum_{m < k < i} h_{k,j} h_{m+i-k,j+k}$ are linearly independent. It follows that no linear combination of the unwanted $h_{m+i,j}$ can survive to $\operatorname{Ext}^1_{S(n,m+1)}$, so $\operatorname{Ext}^1_{\Sigma(n,m+1)}$ is as claimed.

References

- [May66] J. P. May. The cohomology of restricted Lie algebras and of Hopf algebras. Journal of Algebra, 3:123–146, 1966.
- [MM65] J. W. Milnor and J. C. Moore. On the structure of Hopf algebras. Annals of Mathematics, 81(2):211–264, 1965.
- [MR77] H. R. Miller and D. C. Ravenel. Morava stabilizer algebras and the localization of Novikov's E₂-term. Duke Mathematical Journal, 44:433–447, 1977.
- [MRW77] H. R. Miller, D. C. Ravenel, and W. S. Wilson. Periodic phenomena in the Adams-Novikov spectral sequence. Annals of Mathematics, 106:469–516, 1977.
- [Rav86] D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres. Academic Press, New York, 1986. Errata available at http://www.math.rochester.edu/u/drav/mu.html.

University of Rochester, Rochester, NY 14627