THE FIRST COHOMOLOGY GROUP OF THE GENERALIZED MORAVA STABILIZER ALGEBRA (DRAFT VERSION)

HIROFUMI NAKAI AND DOUGLAS C. RAVENEL
September 8, 2000

Abstract. There are p-local spectra $T(m)$ with $B P_{*}(T(m))=B P_{*}\left[t_{1}, \ldots, t_{m}\right]$. Its Adams-Novikov E_{2}-term is isomorphic to

$$
\operatorname{Ext}_{\Gamma(m+1)}\left(B P_{*}, B P_{*}\right),
$$

where

$$
\Gamma(m+1)=B P_{*}(B P) /\left(t_{1}, \ldots, t_{m}\right)=B P_{*}\left[t_{m+1}, t_{m+2}, \ldots\right]
$$

In this paper we determine the groups

$$
\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*}, v_{n}^{-1} B P_{*} / I_{n}\right)
$$

for all $m, n>0$. Its rank ranges from $2 n+1$ to n^{2} depending on the value of m.

1. Introduction and main theorem

Let $B P$ be the Brown-Peterson spectrum for a fixed prime p. In [Rav86, §6.5], the second author has introduced the spectrum $T(m)$ which has $B P_{*}$-homology

$$
B P_{*}(T(m))=B P_{*}\left[t_{1}, \cdots \cdots, t_{m}\right]
$$

and is homotopy equivalent to $B P$ below dimension $2 p^{m+1}-3$.
Then the Adams-Novikov E_{2}-term converging to the homotopy groups of $T(m)$

$$
E_{2}^{*, *}(T(m))=\operatorname{Ext}_{B P_{*}(B P)}\left(B P_{*}, B P_{*}(T(m))\right)
$$

is isomorphic by $[\operatorname{Rav} 86,7.1 .3]$ to

$$
\operatorname{Ext}_{\Gamma(m+1)}\left(B P_{*}, B P_{*}\right),
$$

where

$$
\Gamma(m+1)=B P_{*}(B P) /\left(t_{1}, \ldots, t_{m}\right)=B P_{*}\left[t_{m+1}, t_{m+2}, \ldots\right] .
$$

In particular $\Gamma(1)=B P_{*}(B P)$ by definition. To get the structure of this, we can use the chromatic method introduced in [MRW77].

Recall the Morava stabilizer algebra

$$
\Sigma(n)=K(n)_{*} \otimes_{B P_{*}} B P_{*}(B P) \otimes_{B P_{*}} K(n)_{*}
$$

and the isomorphism ([MR77] and [Rav86, 6.1.1])

$$
\operatorname{Ext}_{B P_{*}(B P)}\left(B P_{*}, v_{n}^{-1} B P_{*} / I_{n}\right) \cong \operatorname{Ext}_{\Sigma(n)}\left(K(n)_{*}, K(n)_{*}\right)
$$

As an algebra,

$$
\Sigma(n)=K(n)_{*}\left[t_{1}, t_{2}, \ldots\right] /\left(v_{n} t_{i}^{p^{n}}-v_{n}^{p^{i}} t_{i}\right),
$$

[^0]where t_{i} is the image of the generator of the same name in $B P_{*}(B P)$. As in $[\operatorname{Rav} 86$, §6.5] we let
$$
\Sigma(n, m+1)=\Sigma(n) /\left(t_{1}, \ldots, t_{m}\right)
$$
we call this the generalized Morava stabilizer algebra. The object of this paper is to determine its first cohomology group,
$$
\operatorname{Ext}_{\Sigma(n, m+1)}^{1}\left(K(n)_{*}, K(n)_{*}\right)
$$
(which we will abbreivate by $\operatorname{Ext}_{\Sigma(n, m+1)}^{1}$) for all values of $m \geq 0$ and $n>0$ and for all primes p. This amounts to identifying the primitive elements in $\Sigma(n, m+1)$. The case $m=0$ was described in [Rav86, 6.3.12].

As explained in [Rav86, $\S 6.2$], the cohomology of $\Sigma(n)$ is essentially the continuous cohomology of a certain pro-p-group S_{n} known as the Morava stabilizer group. It can be described as a group of automorphisms of a certain formal group law F_{n} in characteristic p and as a group of units in the maximal order E_{n} of a certain p-adic division algebra $D_{n} . E_{n}$ is also the endomorphism ring of F_{n}.

In a similar way $\Sigma(n, m+1)$ is related to a subgroup of S_{n}. In terms of the formal group law it is the subgroup of automorphisms given by power series congruent to the variable x modulo ($x^{p^{m+1}}$). In terms of E_{n} it is the multiplicatuve group of units congruent to 1 modulo the ideal (S^{m+1}).

The ring E_{n} has an embedding in the ring of $n \times n$ matrices over the Witt ring $W\left(\mathbf{F}_{p^{n}}\right)$ described in [Rav86, 6.2.6]. This means that S_{n} and each of its subgroups supports a homomorphism induced by the determinant to the group of units in $W\left(\mathbf{F}_{p^{n}}\right)$, and it is known that its image is contained in the p-adic units \mathbf{Z}_{p}^{\times}. The structure of this group is

$$
\mathbf{Z}_{p}^{\times} \cong \begin{cases}\mathbf{Z} /(p-1) \oplus \mathbf{Z}_{p} & \text { for } p \text { odd } \\ \mathbf{Z} /(2) \oplus \mathbf{Z}_{2} & \text { for } p=2\end{cases}
$$

From this is it possible to construct primitives $T_{n} \in \Sigma(n)$ for all primes p and $U_{n} \in \Sigma(n)$ for $p=2$ [Rav86, 6.3.12] satisfying

$$
\begin{aligned}
T_{n} & \equiv \sum_{0 \leq j<n} t_{n}^{p^{j}} \bmod \left(t_{1}, \ldots, t_{n-1}\right) \\
\text { and } \quad U_{n}-T_{n} & \equiv \sum_{0 \leq j<n} t_{2 n}^{2^{j}} \bmod \left(t_{1}, \ldots, t_{n-1}\right)
\end{aligned}
$$

The corresponding elements in $\operatorname{Ext}_{\Sigma(n)}^{1}$, and their images in $\operatorname{Ext}_{\Sigma(n, m+1)}^{1}$, are denoted by ζ_{n} and ρ_{n} respectively.

The results of [Rav86, §6.3] are stated in terms of $S(n)=\Sigma(n) \otimes_{K(n)_{*}} \mathbf{F}_{p}$ and $S(n, m+1)=\Sigma(n, m+1) \otimes_{K(n)_{*}} \mathbf{F}_{p}$. Passing from $\Sigma(n)$ to $S(n)$ amounts to dropping the grading and setting v_{n} equal to 1 . Formulas are given for T_{n} and (for $p=2) U_{n}$ in $S(n)$. It is straightforward to lift them to homogeneous elements in $\Sigma(n)$.

We can now state our main result.

Theorem 1.1. For p odd the rank of $\operatorname{Ext}_{\Sigma(n, m+1)}^{1}$ (as a vector space over $K(n)_{*}$) is

$$
\begin{cases}(m+1) n+1 & \text { for } m<\frac{n-2}{2} \\ (m+1) n+n / 2 & \text { for } n \text { even and } m=\frac{n-2}{2} \\ (m+1) n & \text { for } \frac{n-1}{2} \leq m \leq n-1 \\ n^{2} & \text { for } m \geq n-1 .\end{cases}
$$

Let $h_{m+i, j} \in$ Ext 1 be the element corresponding to $t_{m+i}^{p^{j}}$ when it is primitive. Then a basis for Ext^{1} is given by

$$
\begin{cases}\left\{\zeta_{n}\right\} \cup\left\{h_{m+i, j}: 1 \leq i \leq m+1, j \in \mathbf{Z} /(n)\right\} & \text { for } m<\frac{n-2}{2} \\ \left\{\zeta_{n, j}: j \in \mathbf{Z} /(n / 2)\right\} & \\ \cup\left\{h_{m+i, j}: 1 \leq i \leq m+1, j \in \mathbf{Z} /(n)\right\} & \text { for } n \text { even and } m=\frac{n-2}{2} \\ \left\{h_{m+i, j}: 1 \leq i \leq m+1, j \in \mathbf{Z} /(n)\right\} & \text { for } \frac{n-1}{2} \leq m \leq n-1 \\ \left\{h_{m+i, j}: 1 \leq i \leq n, j \in \mathbf{Z} /(n)\right\} & \text { for } m \geq n .\end{cases}
$$

where ζ_{n} is as above and

$$
\zeta_{n, j}=v_{n}^{-p^{j}}\left(t_{n}+v_{n}^{1-p^{n / 2}} t_{n}^{p^{n / 2}}-t_{n / 2}^{1+p^{n / 2}}\right)^{p^{j}}
$$

For $p=2$ the rank is

$$
\begin{cases}(m+1) n+2 & \text { for } m<\frac{n-2}{2} \\ (m+1) n+n / 2+1 & \text { for } n \text { even and } m=\frac{n-2}{2} \\ (m+1) n+1 & \text { for } \frac{n-1}{2} \leq m \leq n-1 \\ n^{2} & \text { for } m \geq n\end{cases}
$$

The basis is as in the odd primary case but with ρ_{n} added when $m<n$.
Note that for $m=0$ this result gives the same answer as [Rav86, 6.3.12]. Also [Rav86, 6.5.6] implies that Ext ${ }^{1}$ has rank n^{2} with the basis indicated above when $m>\frac{p n}{2 p-2}-1$ and $m \geq n-1$; it says that in that case the full Ext group is the exterior algebra on those generators. [There is a missing hypothesis in [Rav86, 6.5.6] and [Rav86, 6.3.7]; see the online errata for details.]

Corollary 1.2. For $n \leq 3$ the rank of $\operatorname{Ext}_{\Sigma(n, m+1)}^{1}$ is as indicated in the following table.

$n=1$				$n=2$				$n=3$			
$p=2$		p odd		$p=2$		p odd		$p=2$		p odd	
m	rank										
0	2	≥ 0	1	0	4	0	3	0	5	0	4
≥ 1	1			1	5	≥ 1	4	1	7	1	6
				≥ 2	4			2	10	≥ 2	9
								≥ 3	9		

2. The proof

We need to show that the indicated basis elements are primitive and that there are no other primitives. The primitivity of ζ_{n} and (for $p=2$) ρ_{n} was established in [Rav86, 6.3.12].

For the rest we need to study the coproduct in $\Sigma(n, m+1)$. A formula for the coproduct in $B P_{*}(B P)$ was given in [Rav86, 4.3.13]. In $B P_{*}(B P) / I_{n}$ for $i \leq 2 n$ we have $[\operatorname{Rav} 86,4.3 .15]$

$$
\Delta\left(t_{i}\right)=\sum_{0 \leq j \leq i} t_{j} \otimes t_{i-j}^{p^{j}}+\sum_{0 \leq j \leq i-n-1} v_{n+j} b_{i-n-j, n+j-1}
$$

where $b_{i, j}$ satisfies

$$
b_{i, j} \equiv-\frac{1}{p} \sum_{0<k<p^{j+1}}\binom{p^{j+1}}{k} t_{i}^{k} \otimes t_{i}^{p^{j+1}-k} \quad \bmod \left(t_{1}, \ldots, t_{i-1}\right)
$$

It is defined precisely in [Rav86, 4.3.14]. Similar methods yield the following formula for the coproduct in $\Gamma(m+1) / I_{n}$ for $i \leq 2 n$.

$$
\begin{aligned}
\Delta\left(t_{m+i}\right)=t_{m+i} & \otimes 1+1 \otimes t_{m+i}+\sum_{m<k<i} t_{k} \otimes t_{m+i-k}^{p^{k}} \\
& +\sum_{0 \leq k \leq i-n-1} v_{n+k} b_{m+i-n-k, n+k-1}
\end{aligned}
$$

In $\Sigma(n, m+1)$ this simplifies to

$$
\begin{gather*}
\Delta\left(t_{m+i}\right)=t_{m+i} \otimes 1+1 \otimes t_{m+i}+\sum_{m<k<i} t_{k} \otimes t_{m+i-k}^{p^{k}} \tag{2.1}\\
+v_{n} b_{m+i-n, n-1},
\end{gather*}
$$

where the last term vanishes when $i \leq n$. This formula implies that t_{m+i} is primitive for $i \leq \min (m+1, n)$.

When n is even and $m=\frac{n-2}{2}$ we have

$$
\begin{aligned}
\Delta\left(t_{n}\right) & =t_{n} \otimes 1+1 \otimes t_{n}+t_{n / 2} \otimes t_{n / 2}^{p^{n / 2}}, \\
\Delta\left(v_{n}^{1-p^{n / 2}} t_{n}^{p^{n / 2}}\right) & =v_{n}^{1-p^{n / 2}}\left(t_{n} \otimes 1+1 \otimes t_{n}+t_{n / 2} \otimes t_{n / 2}^{p^{n / 2}}\right)^{p^{n / 2}} \\
& =v_{n}^{1-p^{n / 2}}\left(t_{n}^{p^{n / 2}} \otimes 1+1 \otimes t_{n}^{p^{n / 2}}+t_{n / 2}^{p^{n / 2}} \otimes t_{n / 2}^{p^{n}}\right) \\
& =v_{n}^{1-p^{n / 2}}\left(t_{n}^{p^{n / 2}} \otimes 1+1 \otimes t_{n}^{p^{n / 2}}+v_{n}^{p^{n / 2}-1} t_{n / 2}^{p^{n / 2}} \otimes t_{n / 2}\right) \\
& =v_{n}^{1-p^{n / 2}}\left(t_{n}^{p^{n / 2}} \otimes 1+1 \otimes t_{n}^{p^{n / 2}}\right)+t_{n / 2}^{p^{n / 2}} \otimes t_{n / 2},
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta\left(t_{n / 2}^{1+p^{n / 2}}\right) & =\left(t_{n / 2} \otimes 1+1 \otimes t_{n / 2}\right)^{1+p^{n / 2}} \\
& =t_{n / 2}^{1+p^{n / 2}} \otimes 1+t_{n / 2}^{p^{n / 2}} \otimes t_{n / 2}+t_{n / 2} \otimes t_{n / 2}^{p^{n / 2}}+1 \otimes t_{n / 2}^{1+p^{n / 2}}
\end{aligned}
$$

so $\zeta_{n, j}$ is primitive.
This means that each basis element specified in Theorem 1.1 is indeed primitive.
To show that there are no other primitives in $\Sigma(n, m+1)$ we need the methods of [Rav86, §6.3]. As noted above, results there are stated in terms of $S(n)=$ $\Sigma(n) \otimes_{K(n) *} \mathbf{F}_{p}$ and $S(n, m+1)=\Sigma(n, m+1) \otimes_{K(n)_{*}} \mathbf{F}_{p}$. An increasing filtration
on $S(n)$ is described in $[\operatorname{Rav} 86,6.3 .1]$. The weight of $t_{i}^{p^{j}}$ for each j is the integer $d_{n, i}$ defined recursively by

$$
d_{n, i}= \begin{cases}0 & \text { if } i \leq 0 \\ \max \left(i, p d_{n, i-n}\right) & \text { if } i>0\end{cases}
$$

The bigraded object $E^{0} S(n)$ is described in [Rav86, 6.3.2]. It is considerably simpler than the coproduct in the unfiltered object. It contains elements $t_{m+i, j}$ (with $j \in \mathbf{Z} /(n))$ which are the projections of $t_{m+i}^{p^{j}}$. The coproduct on these elements is given by

$$
\Delta\left(t_{m+i, j}\right)=\left\{\begin{array}{cl}
t_{m+i, j} \otimes 1+1 \otimes t_{m+i, j} & \tag{2.2}\\
+\sum_{m<k<i} t_{k, j} \otimes t_{m+i-k, j+k} & \text { if } i<c-m \\
t_{m+i, j} \otimes 1+1 \otimes t_{m+i, j} & \\
+\sum_{m<k<i} t_{k, j} \otimes t_{m+i-k, j+k} & \\
+\bar{b}_{m+i-n, n-1+j} & \text { if } i=c-m \\
t_{m+i, j} \otimes 1+1 \otimes t_{m+i, j} & \text { if } i>c-m \\
+\bar{b}_{m+i-n, n-1+j} &
\end{array}\right.
$$

where $c=p n /(p-1)$ and $\bar{b}_{m+i-n, n-1+j}$ is the projection of $b_{m+i-n, n-1+j}$, which is 0 for $i \leq n$.

Note $t_{m+i, j}$ is primitive for $i \leq m+1$ as expected, but it is also primitive for $c-m<i \leq n$, which can occur when $m>n /(p-1)$.

To proceed further we use the fact that the dual of $E^{0} S(n, m+1)$ is a primitively generated Hopf algebra and therefore isomorphic to the universal enveloping algebra of its restricted Lie algebra of primitives, by a theorem of Milnor-Moore [MM65]. The cohomology of the unrestricted Lie algebra $L(n, m+1)$ (this notation differs from that of [Rav86, §6.3]) is that of the Koszul complex

$$
\begin{equation*}
C(n, m+1)=E\left(h_{m+i, j}: i>0, j \in \mathbf{Z} /(n)\right) \tag{2.3}
\end{equation*}
$$

where each $h_{m+i, j}$ has cohomological degree 1 , with

$$
d\left(h_{m+i, j}\right)= \begin{cases}\sum_{m<k<i} h_{k, j} h_{m+i-k, j+k} & \text { if } i<=c-m \\ 0 & \text { if } i>c-m\end{cases}
$$

Lemma 2.4. Let $C(n, m+1)$ be the complex of (2.3). Then $H^{1}(L(n, m+1))=$ $H^{1}(C(n, m+1))$ is spanned by

$$
\left\{h_{m+i, j}: 1 \leq i \leq m+1\right\} \cup\left\{h_{m+i, j}: i>c-m\right\} \cup\left\{\sum_{j} h_{n, j}, \sum_{j} h_{2 n, j}\right\}
$$

(where $c=p n /(p-1)$) unless $n=2 m+2$, in which case we must adjoin the set

$$
\left\{h_{n, j}+h_{n, j+n / 2}: j \in \mathbf{Z} /(n / 2)\right\} .
$$

Note that $h_{n, j}$ is either trivial or in the first subset unless $n \geq 2 m+2$ and that $h_{n, j}$ is either trivial or in the second subset unless $p=2$. Note also that the first and second subsets overlap when $m \geq c / 2$.

Proof. The primitivity of the elements in the first and second subsets is obvious. For $\sum_{j} h_{n, j}$ we have

$$
\begin{aligned}
& d\left(\sum_{j} h_{n, j}\right)=\sum_{j} \sum_{m<k<n-m} h_{k, j} h_{n-k, j+k} \\
& =\sum_{m<k<n / 2} \sum_{j} h_{k, j} h_{n-k, j+k} \\
& + \begin{cases}\sum_{j} h_{n / 2, j} h_{n / 2, j+n / 2} & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases} \\
& +\sum_{n / 2<k<n-m} \sum_{j} h_{k, j} h_{n-k, j+k} \\
& =\sum_{m<k<n / 2} \sum_{j} h_{k, j} h_{n-k, j+k}+h_{n-k, j+k} h_{k, j} \\
& + \begin{cases}\sum_{0 \leq j<n / 2} h_{n / 2, j} h_{n / 2, j+n / 2} & \\
\quad+\sum_{n / 2 \leq j<n} h_{n / 2, j} h_{n / 2, j+n / 2} & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases} \\
& = \begin{cases}\sum_{0 \leq j<n / 2} h_{n / 2, j} h_{n / 2, j+n / 2}+h_{n / 2, j+n / 2} h_{n / 2, j} & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases} \\
& =0 \text {. }
\end{aligned}
$$

Similar calculations show that for $p=2, \sum_{j} h_{2 n, j}$ is a cocycle, and that for $n=$ $2 m+2, h_{n, j}+h_{n, j+n / 2}$ is one.

It remains to show that there are no other cocycles in the subspace spanned by

$$
\left\{h_{m+i, j}: m+1<i \leq c-m\right\},
$$

which is nonempty only when

$$
m<\frac{p n-p+1}{2(p-1)}
$$

It suffices to consider elements which are homogeneous with respect to the filtration grading, i.e., to restrict our attention to one value of i at a time. Thus we need to show that the subspace spanned by

$$
\begin{equation*}
\left\{\sum_{m<k<i} h_{k, j} h_{m+i-k, j+k}: j \in \mathbf{Z} /(n)\right\} \tag{2.5}
\end{equation*}
$$

has dimension

$$
\begin{cases}n / 2 & \text { if } m+i=n \text { and } n=2 m+2 \tag{2.6}\\ n-1 & \text { if } m+i=n \text { and } n>2 m+2 \\ n-1 & \text { if } m+i=2 n \\ n & \text { otherwise }\end{cases}
$$

When $n=2 m+2$ and $m+i=n$, the set of (2.5) is

$$
\begin{aligned}
& \left\{h_{n / 2, j} h_{n / 2, j+n / 2}: j \in \mathbf{Z} /(n)\right\} \\
& \quad=\left\{h_{n / 2, j} h_{n / 2, j+n / 2}: 0 \leq j<n / 2\right\} \cup\left\{h_{n / 2, j} h_{n / 2, j+n / 2}: n / 2 \leq j<n\right\} \\
& =\left\{h_{n / 2, j} h_{n / 2, j+n / 2}: 0 \leq j<n / 2\right\} \cup\left\{-h_{n / 2, j+n / 2} h_{n / 2, j}: n / 2 \leq j<n\right\} \\
& =\left\{h_{n / 2, j} h_{n / 2, j+n / 2}: 0 \leq j<n / 2\right\} \cup\left\{-h_{n / 2, j} h_{n / 2, j+n / 2}: 0 \leq j<n / 2\right\},
\end{aligned}
$$

so the subspace it spans has dimension $n / 2$.
Now suppose that $m+i=n, n>2 m+2$, and n is odd. It suffices to consider the middle two terms in the sum. Let $\ell=(n-1) / 2$. Then we have

$$
d\left(h_{n, j}\right)=h_{\ell, j} h_{\ell+1, j+\ell}+h_{\ell+1, j} h_{\ell, j+\ell+1}+\ldots
$$

We can cancel the second term by adding $d\left(h_{n, j+\ell+1}\right)$, i.e.,

$$
\begin{aligned}
& d\left(h_{n, j}+h_{n, j+\ell+1}\right) \\
& =h_{\ell, j} h_{\ell+1, j+\ell}+h_{\ell+1, j} h_{\ell, j+\ell+1} \\
& +h_{\ell, j+\ell+1} h_{\ell+1, j+\ell+\ell+1}+h_{\ell+1, j+\ell+1} h_{\ell, j+\ell+1+\ell+1}+\ldots \\
& =h_{\ell, j} h_{\ell+1, j+\ell}+h_{\ell+1, j} h_{\ell, j+\ell+1} \\
& +h_{\ell, j+\ell+1} h_{\ell+1, j}+h_{\ell+1, j+\ell+1} h_{\ell, j+1}+\ldots \\
& =h_{\ell, j} h_{\ell+1, j+\ell}+h_{\ell+1, j+\ell+1} h_{\ell, j+1}+\ldots
\end{aligned}
$$

Similarly we can cancel the second term here by adding $d\left(h_{n, j+1}\right)$. Since $(n+1) / 2$ and n are relatively prime, we will need to sum up the $h_{n, j}$ over all j to get a cocycle. It follows that this subspace has dimensions $n-1$ as claimed.

For $m+i=n$ and n even, let $\ell=n / 2$. Then it suffices to consider the middle three terms of the sum, i.e.,

$$
d\left(h_{n, j}\right)=h_{\ell-1, j} h_{\ell+1, j+\ell-1}+h_{\ell, j} h_{\ell, j+\ell}+h_{\ell+1, j} h_{\ell-1, j+\ell+1}+\ldots
$$

We can cancel the middle term by adding $d\left(h_{n, j+\ell}\right)$, so we get

$$
\begin{aligned}
& d\left(h_{n, j}+h_{n, j+\ell}\right) \\
& =\begin{array}{l}
h_{\ell-1, j} h_{\ell+1, j+\ell-1}+h_{\ell, j} h_{\ell, j+\ell}+h_{\ell+1, j} h_{\ell-1, j+\ell+1} \\
\quad \\
\quad+h_{\ell-1, j+\ell} h_{\ell+1, j-1}+h_{\ell, j+\ell} h_{\ell, j}+h_{\ell+1, j+\ell} h_{\ell-1, j+1}+\ldots
\end{array} \\
& =\begin{aligned}
= & h_{\ell-1, j} h_{\ell+1, j+\ell-1}+h_{\ell-1, j+\ell} h_{\ell+1, j-1}
\end{aligned} \\
& \quad+h_{\ell+1, j} h_{\ell-1, j+\ell+1}+h_{\ell+1, j+\ell} h_{\ell-1, j+1}+\ldots
\end{aligned}
$$

Now we can cancel the third and fourth terms by adding $d\left(h_{n, j+1}+h_{n, j+\ell+1}\right)$, and we have

$$
\begin{aligned}
& d\left(h_{n, j}+h_{n, j+\ell}+h_{n, j+1}+h_{n, j+\ell+1}\right) \\
&= h_{\ell-1, j} h_{\ell+1, j+\ell-1}+h_{\ell-1, j+\ell} h_{\ell+1, j-1} \\
&+h_{\ell+1, j} h_{\ell-1, j+\ell+1}+h_{\ell+1, j+\ell} h_{\ell-1, j+1} \\
&+h_{\ell-1, j+1} h_{\ell+1, j+\ell}+h_{\ell-1, j+\ell+1} h_{\ell+1, j} \\
&+h_{\ell+1, j+1} h_{\ell-1, j+\ell+2}+h_{\ell+1, j+\ell+1} h_{\ell-1, j+2}+\ldots \\
&= h_{\ell-1, j} h_{\ell+1, j+\ell-1}+h_{\ell-1, j+\ell} h_{\ell+1, j-1} \\
&+h_{\ell+1, j+1} h_{\ell-1, j+\ell+2}+h_{\ell+1, j+\ell+1} h_{\ell-1, j+2}+\ldots
\end{aligned}
$$

Again in order to get complete cancellation we need to sum over all j, so the subspace has dimension $n-1$ as claimed.

We can make a similar argument for $m+i=2 n$ when $p=2$, namely

$$
\begin{aligned}
& d\left(h_{2 n, j}\right)=h_{n-1, j} h_{n+1, j-1}+h_{n, j} h_{n, j}+h_{n+1, j} h_{n-1, j+1}+\ldots \\
&=h_{n-1, j} h_{n+1, j-1}+h_{n+1, j} h_{n-1, j+1}+\ldots, \\
& d\left(h_{2 n, j}+h_{2 n, j+1}\right)
\end{aligned} \quad \begin{aligned}
= & h_{n-1, j} h_{n+1, j-1}+h_{n+1, j} h_{n-1, j+1} \\
\quad & h_{n-1, j+1} h_{n+1, j}+h_{n+1, j+1} h_{n-1, j+2}+\ldots \\
& =h_{n-1, j} h_{n+1, j-1}+h_{n+1, j+1} h_{n-1, j+2}+\ldots,
\end{aligned}
$$

so
and so on.
Finally we need to consider the cases of (2.6) where $m+i$ is not divisible by n. For this we can show that the expressions

$$
\sum_{m<k<i} h_{k, j} h_{m+i-k, j+k}
$$

are linearly independent. Suppose the term

$$
\pm h_{k, x} h_{m+i-k, y}
$$

appears the sums for some value of j. Then modulo n either $j=x$ and $y \equiv k+x$, so $x \equiv y-k$, or $j=y$ and $x \equiv m+i+y-k$. These conditions on x are mutually exclusive since $m+i$ is not divisible by n. This means that each monomial of this form can appear in the sum for at most one value of j, so the sums for various j are linearly independent.

Now $\operatorname{Ext}_{S(n, m+1)}^{1}$ is a subspace of $H^{1}(L(n, m+1))$. To finish the proof of the theorem we need to show that the elements $h_{m+i, j}$ with $i>\max (c-m, m+1)$ do not survive passage to $\operatorname{Ext}_{E^{0} S(n, m+1)}^{1}$ or from it to $\operatorname{Ext}_{S(n, m+1)}^{1}$. We need to look at the first and second spectral sequences constructed for this purpose by May in [May66] and described (for $m=0$) in [Rav86, 6.3.4]. It follows from (2.2) that in the first May spectral sequence

$$
d_{r}\left(h_{m+i, j}\right)=b_{m+i-n, j-1} \neq 0 \quad \text { for } i>n
$$

for some r.
This eliminates all of the unwanted primitives except the ones with

$$
\max (c-m, m+1)<i \leq n
$$

For this we can use (2.1), which implies that in the second May spectral sequence,

$$
d_{r}\left(h_{m+i, j}\right)=\sum_{m<k<i} h_{k, j} h_{m+i-k, j+k}
$$

where

$$
\begin{aligned}
r & =\min \left(d_{n, m+i}-d_{n, k}-d_{n, m+i-k}: m<k<i\right) \\
& =p(m+i-n)-(m+i)
\end{aligned}
$$

since k and $m-i-k$ do not exceed n and $m+i<2 n$

$$
=(p-1)(m+i)-p n
$$

Note that

$$
n<c<m+i \leq m+n<2 n
$$

so $m+i$ is not divisible by n. Thus we can argue as in the last paragraph of the proof of Lemma 2.4 that the sums $\sum_{m<k<i} h_{k, j} h_{m+i-k, j+k}$ are linearly independent. It follows that no linear combination of the unwanted $h_{m+i, j}$ can survive to $\operatorname{Ext}_{S(n, m+1)}^{1}$, so $\operatorname{Ext}_{\Sigma(n, m+1)}^{1}$ is as claimed.

References

[May66] J. P. May. The cohomology of restricted Lie algebras and of Hopf algebras. Journal of Algebra, 3:123-146, 1966.
[MM65] J. W. Milnor and J. C. Moore. On the structure of Hopf algebras. Annals of Mathematics, 81(2):211-264, 1965.
[MR77] H. R. Miller and D. C. Ravenel. Morava stabilizer algebras and the localization of Novikov's E_{2}-term. Duke Mathematical Journal, 44:433-447, 1977.
[MRW77] H. R. Miller, D. C. Ravenel, and W. S. Wilson. Periodic phenomena in the AdamsNovikov spectral sequence. Annals of Mathematics, 106:469-516, 1977.
[Rav86] D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres. Academic Press, New York, 1986. Errata available at http://www.math.rochester.edu/u/drav/mu.html.

University of Rochester, Rochester, NY 14627

[^0]: The second author acknowledges support from NSF grant DMS-9802516.

